[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020013197A1 - 継目無鋼管及びその製造方法 - Google Patents

継目無鋼管及びその製造方法 Download PDF

Info

Publication number
WO2020013197A1
WO2020013197A1 PCT/JP2019/027199 JP2019027199W WO2020013197A1 WO 2020013197 A1 WO2020013197 A1 WO 2020013197A1 JP 2019027199 W JP2019027199 W JP 2019027199W WO 2020013197 A1 WO2020013197 A1 WO 2020013197A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
seamless steel
less
intersections
ferrite
Prior art date
Application number
PCT/JP2019/027199
Other languages
English (en)
French (fr)
Inventor
松尾 大輔
悠索 富尾
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020530208A priority Critical patent/JP7107370B2/ja
Priority to EP19835123.1A priority patent/EP3822381A4/en
Priority to US17/253,222 priority patent/US12043885B2/en
Priority to MX2021000240A priority patent/MX2021000240A/es
Priority to BR112021000039-9A priority patent/BR112021000039B1/pt
Publication of WO2020013197A1 publication Critical patent/WO2020013197A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • the present invention relates to a seamless steel pipe and a method for manufacturing the same, and more particularly, to a seamless steel pipe suitable for use in geothermal power generation, or in an oil well environment or a gas well environment, and a method for manufacturing the same.
  • an oil well and a gas well are collectively referred to as an “oil well”.
  • the high-temperature environment is an environment having a temperature of about 150 to 200 ° C. and containing a corrosive gas.
  • the corrosive gas is, for example, carbon dioxide gas and / or hydrogen sulfide gas.
  • Patent Literature 1 JP-A-2013-249516
  • Patent Literature 2 JP-A-2016-145372
  • Patent Literature 3 disclose the above-mentioned high temperature environment applications. Oil well steel pipes having high strength, or high strength and low temperature toughness have been proposed.
  • the chemical composition of the high-strength stainless steel seamless pipe for oil wells proposed in Patent Document 1 is mass%, C: 0.005 to 0.06%, Si: 0.05 to 0.5%, Mn: 0 0.2 to 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 18.0%, Ni: 1.5 to 5.0%, V: 0. 02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less, and Mo: 1.0 to 3.5 %, W: 3.0% or less, Cu: 3.5% or less, one or more selected from the group to satisfy the formulas (1) and (2), and the balance Fe And unavoidable impurities.
  • the microstructure of the high-strength stainless steel seamless tube for oil wells has martensite as a main phase, and as a second phase, 10 to 60% by volume of ferrite and 0 to 10% of austenite. Further, in the above microstructure, the GSI value defined as the number of ferrite-martensite grain boundaries existing per unit length of a line segment drawn in the thickness direction is 120 or more at the thickness center position. Further, the wall thickness of the high-strength stainless steel seamless pipe for oil wells is more than 25.4 mm.
  • Equation (1) is defined by Cr + 0.65Ni + 0.60Mo + 0.30W + 0.55Cu-20C ⁇ 19.5, and the equation (2) is expressed by Cr + Mo + 0.50W + 0.30Si-43.5C-0.4Mn-Ni-. 0.3Cu-9N ⁇ 11.5.
  • Patent Document 1 a material having the above-described chemical composition is manufactured by hot rolling including piercing rolling. Then, in hot rolling, the total draft in the temperature range of 1100 to 900 ° C. is set to 30% or more. It is described that by this, a high-strength stainless steel seamless pipe for oil wells having the above-described structure can be manufactured.
  • the hot rolling in the temperature range of 1100 to 900 ° C. is not a piercing and rolling process using a piercing and rolling machine but a stretching and rolling process using a mandrel mill or the like after the piercing and rolling process in the process of manufacturing a seamless steel pipe. Of hot rolling.
  • the chemical composition is mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.2. 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 18%, Ni: 1.5 to 5%, Cu: 3.5% or less, Mo: 1 to 3.5%, V: 0.02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less, In addition, it satisfies the same formulas (1) and (2) as in Patent Document 1, and is further selected from Nb: 0.2% or less, Ti: 0.3% or less, and Zr: 0.2% or less.
  • a steel material containing one or more of the above and the balance being Fe and unavoidable impurities is prepared. Then, the heating of the steel material when performing the steel pipe material processing and the hot working on the steel material is performed under the condition that the temperature is lower than the temperature T (K) defined by the equation (3).
  • the C content (mass%) is substituted for [C]
  • the content (mass%) of the element X having the largest content among V, Ti, Nb and Zr is substituted for [X].
  • is a coefficient
  • 2 is substituted when the element X is V or Ti
  • 1 is substituted when the element X is Nb or Zr.
  • Patent Document 2 describes that the above-described manufacturing method enables the miniaturization of ferrite, and as a result, the low-temperature toughness of a seamless steel pipe can be increased.
  • the oil well stainless steel proposed in Patent Document 3 is, by mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04. %, S: 0.01% or less, Cr: more than 16.0 to 18.0%, Ni: more than 4.0 to 5.6%, Mo: 1.6 to 4.0%, Cu: 1. Chemical composition containing 5 to 3.0%, Al: 0.001 to 0.10%, N: 0.050% or less, the balance being Fe and impurities, satisfying the formulas (1) and (2) And 10 to 40% ferrite by volume, each having a length of 50 ⁇ m in the thickness direction from the surface of the stainless steel, and arranged in a line in a range of 200 ⁇ m at a pitch of 10 ⁇ m.
  • equation (1) is defined as Cr + Cu + Ni + Mo ⁇ 25.5
  • equation (2) is defined as ⁇ 8 ⁇ 30 (C + N) + 0.5Mn + Ni + Cu / 2 + 8.2-1.1 (Cr + Mo) ⁇ ⁇ 4.
  • the oil well stainless steel disclosed in Patent Document 3 controls ferrite in the surface layer structure. Specifically, in the manufacturing process, hot working is performed using a steel material having the above-described chemical composition. In hot working, the total area reduction at 850 to 1250 ° C. is 50% or more. When considering the total area reduction rate at 850 to 1250 ° C., not only the area reduction rate in piercing rolling but also the area reduction rate in elongation rolling is included.
  • Patent Documents 1 and 2 are described as having excellent low-temperature toughness.
  • the yield strength of these documents is less than 862 MPa.
  • Patent Documents 1 and 2 do not discuss a seamless steel pipe having a yield strength of 862 MPa or more and excellent in low-temperature toughness.
  • the stainless steel for oil wells described in Patent Document 3 has not been studied from the viewpoint of low-temperature toughness.
  • An object of the present disclosure is to provide a seamless steel pipe capable of achieving both a yield strength of 862 MPa or more and excellent low-temperature toughness.
  • the seamless steel pipe according to the present disclosure is: Chemical composition In mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.0150% or less, Cu: 0.09 to 3.00%, Cr: 15.00 to 18.00%, Ni: 4.00 to 9.00%, Mo: 1.50 to 4.00%, Al: 0.040% or less, N: 0.0150% or less, Ca: 0.0010 to 0.0040%, Ti: 0.020% or less, Nb: 0.020% or less, V: 0 to 0.20%, Co: 0 to 0.30%, W: 0 to 2.00%, and balance: Fe and impurities, satisfying the formulas (1) and (2),
  • the pipe axis direction of the seamless steel pipe is defined as the L direction
  • the thickness direction is defined as the T direction
  • the L direction and the direction perpendicular to the T direction are defined as the C direction
  • the microstructure has the following (I) to (III).
  • the number of intersections NT L which is the number of intersections between the line segments T L 1 to T L 4 and the ferrite interface, is 38 or more;
  • a number of intersections NL is the number of intersections between the ferrite interface between the line segments L1 ⁇ L4, wherein the number of intersections NT L satisfies the equation (3).
  • Line segments C1 to C4 which are arranged at equal intervals in the T direction, and which divide the C-direction observation visual field plane into five equal parts in the T direction, are defined as line segments C1 to C4,
  • the number of intersections NT C which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface, is 30 or more;
  • the intersection number NC is the number of intersections between the ferrite interface between the line segment C1 ⁇ C4, the a number of intersections NT C satisfies the equation (4).
  • a method for manufacturing a seamless steel pipe according to the present disclosure includes: Chemical composition In mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.0150% or less, Cu: 0.09 to 3.00%, Cr: 15.00 to 18.00%, Ni: 4.00 to 9.00%, Mo: 1.50 to 4.00%, Al: 0.040% or less, N: 0.0150% or less, Ca: 0.0010 to 0.0040%, Ti: 0.020% or less, Nb: 0.020% or less, V: 0 to 0.20%, Co: 0 to 0.30%, A heating step of holding a material consisting of W: 0 to 2.00% and the balance: Fe and impurities and satisfying the formulas (1) and (2) at a heating temperature T of 1200 to 1260 ° C.
  • X in the formula (A) is defined by the following formula (B).
  • X (T + 273) ⁇ ⁇ 20 + log (t) ⁇ (B)
  • T is a heating temperature (° C.) of the material
  • t is a holding time (hour) at the heating temperature T.
  • the section reduction rate Y (%) in the equation (A) is defined by the equation (C).
  • the seamless steel pipe according to the present disclosure can achieve both a yield strength of 862 MPa or more and excellent low-temperature toughness.
  • the method for manufacturing a seamless steel pipe according to the present disclosure can manufacture the above-described seamless steel pipe.
  • FIG. 1 shows the center position of the thickness of a seamless steel pipe having the same chemical composition as that of the seamless steel pipe of the present embodiment, but different microstructures, in the pipe axis direction (L direction) and the thickness direction of the seamless steel pipe.
  • It is a schematic diagram of a microstructure in a cross section including (T direction).
  • FIG. 2 is a schematic diagram of a microstructure in a cross-section including an L direction and a T direction at a center position of a thickness of the seamless steel pipe of the present embodiment.
  • FIG. 3 is a schematic diagram for explaining the relationship between the microstructure and the growth of cracks in the cross section of the seamless steel pipe.
  • Figure 4 is a layered index LI L in the L-direction observation field plane in the present embodiment: is a schematic diagram for explaining a method of calculating (LI Layer Index).
  • FIG. 5 is a schematic diagram for explaining a method of calculating the layer index LIC on the C- direction observation visual field plane in the present embodiment.
  • FIG. 6 shows that the content of each element in the chemical composition is within the above-mentioned range, satisfies the expressions (1) and (2), and the layer index LIL on the L- direction observation visual field is expressed by the expression (3).
  • the layered index LI C in C direction observation field plane is a diagram showing the relationship between absorbed energy and (low-temperature toughness) at -10 ° C..
  • the present inventors have studied a seamless steel pipe capable of achieving both a yield strength of 862 MPa or more and excellent low-temperature toughness.
  • the present inventors studied the chemical composition of a seamless steel pipe having a yield strength of 862 MPa or more and excellent low-temperature toughness. As a result, when the chemical composition is expressed by mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.
  • the microstructure is a two-phase structure mainly composed of ferrite and martensite. More specifically, the microstructure contains ferrite and martensite, and the balance consists of retained austenite.
  • the present inventors investigated the relationship between the low-temperature toughness and the volume fraction of ferrite and martensite having a two-phase structure.
  • the present inventors further investigated and examined the relationship between the distribution state of ferrite and martensite having a two-phase structure and low-temperature toughness.
  • the two-phase structure of the steel material having the above-described chemical composition even if the ferrite volume ratio and the martensite volume ratio are equivalent, if the distribution states of ferrite and martensite are different, the obtained low-temperature toughness is completely different. It has been found.
  • FIGS. 1 and 2 are schematic diagrams of a microstructure of a seamless steel pipe having the above-described chemical composition in a cross section including a pipe axis direction and a wall thickness direction.
  • the horizontal direction in FIG. 1 corresponds to the tube axis direction (rolling direction), and the vertical direction in FIG. 1 corresponds to the thickness direction.
  • the horizontal direction in FIG. 2 corresponds to the L direction
  • the vertical direction in FIG. 2 corresponds to the T direction.
  • the pipe axis direction (rolling direction) of the seamless steel pipe is defined as “L direction”.
  • the thickness direction of the seamless steel pipe is defined as “T direction”.
  • the thickness direction means a radial direction in a cross section perpendicular to the tube axis direction.
  • the direction perpendicular to the L direction and the T direction (corresponding to the circumferential direction of the seamless steel pipe) is defined as “C direction”.
  • the schematic diagram has a length in the L direction of 100 ⁇ m and a length in the T direction of 100 ⁇ m.
  • the white region 10 is ferrite.
  • the hatched area 20 is martensite.
  • the ferrite volume ratio and the martensite volume ratio in FIG. 1 are not so different from the ferrite volume ratio and the martensite volume ratio in FIG.
  • the distribution state of the ferrite 10 and the martensite 20 in FIG. 1 is significantly different from the distribution state of the ferrite 10 and the martensite 20 in FIG.
  • the ferrite 10 and the martensite 20 extend in random directions, respectively, and have a non-layered structure.
  • the ferrite 10 and the martensite 20 extend in the L direction, and the ferrite 10 and the martensite 20 are stacked in the T direction. That is, the microstructure shown in FIG. 2 is a layered structure of ferrite 10 and martensite 20.
  • a seamless steel pipe having the above-described chemical composition may have a significantly different microstructure even with the same chemical composition.
  • Charpy impact test pieces were collected from the seamless steel pipe having the microstructure shown in FIG. 1 and the seamless steel pipe having the microstructure shown in FIG. 2 by the method described later. Then, a Charpy impact test was performed in accordance with ASTM No. A370-18, and the absorbed energy (J) at ⁇ 10 ° C. was determined. As a result, the microstructure (layered structure) of the seamless steel pipe shown in FIG. 1 was compared with the absorbed energy at ⁇ 10 ° C. of the seamless steel pipe at ⁇ 10 ° C. Had a remarkably high absorption energy.
  • the present inventors have found that if a microstructure having a cross section including the L direction and the T direction (hereinafter, referred to as an L direction cross section) having a layered structure extending along the L direction is obtained in the above-described chemical composition, We thought that low-temperature toughness could be obtained.
  • the present inventors examined the relationship between the direction of crack propagation in the seamless steel pipe and the direction of extension of the layered structure. As a result, in order to increase the low-temperature toughness, it was found that it is important that the layered structure extends not only in the L direction but also in the C direction. The reason for this is not clear, but the following may be considered.
  • FIG. 3 is a schematic diagram for explaining the relationship between the microstructure and the growth of cracks in the cross section of the seamless steel pipe 1.
  • a cross section including the L direction and the T direction is defined as “L direction cross section” 1L.
  • a cross section including the C direction and the T direction is defined as a “C direction cross section” 1C.
  • the layered structure extends sufficiently in the L direction and also extends sufficiently in the C direction.
  • the crack propagation direction D is decomposed into an L-direction component and a C-direction component.
  • the L-direction component of the crack propagation direction is defined as LDC (L Direction Crack).
  • the C direction component of the crack propagation direction is defined as CDC (C Direction Crack).
  • the martensite 20 prevents the growth of a crack. That is, the martensite 20 has a finer metal structure than the ferrite 10 and is a structure excellent in toughness. Therefore, the martensite 20 acts as a resistance to crack propagation. Even if the direction in which the crack propagates and the direction in which the martensite 20 extends intersect, and the tip of the crack that collides with the martensite 20 changes the direction of propagation and starts to grow again, the tip of the crack is again martensite. In the case where collision with the crack 20 easily occurs, that is, when it is difficult to avoid the martensite 20 regardless of where the crack grows, the growth of the crack can be effectively prevented.
  • the L direction component LDC of the crack intersects (orthogonally) with the martensite 20 extending in the C direction.
  • the martensite 20 extending in the C direction acts as a resistance to the L-direction component LDC of the crack and prevents the propagation of the L-direction component LDC of the crack.
  • the C direction component CDC of the crack intersects (orthogonally) with the martensite 20 extending in the L direction.
  • the martensite extending in the L direction acts as a resistance to the C-direction component CDC of the crack, and prevents the propagation of the C-direction component CDC of the crack.
  • martensite extending in the C and L directions prevents the growth of cracks. Furthermore, in the cross section 1L in the L direction and the cross section 1C in the C direction, the larger the number of laminations in the T direction per unit area, the more difficult it is for the propagation of cracks to avoid the martensite 20. Specifically, as the number of laminations in the T direction per unit area in the L-direction cross section 1L and the C-direction cross section 1C increases, the cracks once stopped by the martensite 20 change the growth direction and start to grow again. Even so, the probability that the crack tip immediately collides with another martensite 20 increases. Therefore, the growth of the crack is prevented.
  • the layer structure extends sufficiently in the L direction, and the cross section in the C direction.
  • the layered structure is sufficiently sufficiently only in the L direction. The cracks are less likely to avoid the martensite 20 than if they did not extend sufficiently in the C direction. Therefore, crack growth can be sufficiently suppressed.
  • the number of laminations of the ferrite 10 and the martensite 20 in the T direction per unit area in the microstructure in the L-direction cross section 1L is simply used.
  • the number of layers of the ferrite 10 and the martensite 20 in the T direction per unit area is large in the microstructure of the cross section 1C in the C direction.
  • the present inventors further studied not only the form of the layered structure in the L-direction section 1L but also the form of the layered structure in the C-direction section 1C.
  • the cross section 1L in the L direction (II-1) the number of intersections NT L is 38 or more; (II-2) The layer index exponent L I L (Layer Index of Longitudinal direction) defined by the formula (3) is 1.80 or more;
  • L I L Layer Index of Longitudinal direction
  • the C direction cross section 1C (III-1) the number of intersections NT C is 30 or more, and (III-2) (4) layered index is defined by the LI C (Layer Index of Circumferential direction ) is 1.70 or more, If so, it was found that even if it had a yield strength of 862 MPa or more, cracks could be extremely effectively suppressed, and excellent low-temperature toughness could be obtained.
  • Layered index LI L NT L /NL ⁇ 1.80 (3)
  • Layering index LI C NT C /NC ⁇ 1.70 (4)
  • the number of intersections NT L and the layered index LI L the number of intersections NT C and the layered index LI C will be described.
  • Layered index LI L is an index indicating the degree of development of lamellar structure in the L cross section 1L.
  • NT L and NL in the layered index L L are defined as follows.
  • the length of the side extending in the L direction is 100 ⁇ m
  • the length of the side extending in the T direction is 100 ⁇ m.
  • a 100 ⁇ m square area is defined as an L-direction observation visual field plane 50.
  • the L-direction observation visual field plane 50 includes the ferrite 10 and the martensite 20.
  • the interface between the ferrite 10 and the martensite 20 is defined as a “ferrite interface” FB.
  • the retained austenite is present at the lath interface in the martensite 20 and is difficult to observe with a microscope.
  • the ferrite 10 and the martensite 20 have different contrasts in microscopic observation, those skilled in the art can easily identify them.
  • Line segments T L1 to T L4 in FIG. 4 extend in the T direction, are arranged at equal intervals in the L direction, and divide the L-direction observation visual field plane 50 into five equal parts in the L direction.
  • the number of intersections (marked by “ ⁇ ” in FIG. 4) between the line segments T L 1 to T L 4 and the ferrite interface FB in the L-direction observation visual field plane 50 is defined as the number of intersections NT L (pieces).
  • the number of intersections NT L means the number of layers of the ferrite 10 and the martensite 20 in the T direction per unit area in the L-direction cross section 1L (L-direction observation viewing plane 50).
  • Line segments L1 to L4 in FIG. 4 are line segments extending in the L direction, arranged at equal intervals in the T direction, and dividing the L direction observation visual field plane 50 into five equal parts in the T direction.
  • the number of intersections (indicated by “ ⁇ ” in FIG. 4) between the line segments L1 to L4 and the ferrite interface FB in the L-direction observation visual field plane 50 is defined as the number of intersections NL (pieces).
  • Layered index LI L is in the L cross section 1L (L direction observation field plane 50), means the development degree of lamellar structure.
  • the number of intersections NT L is 38 or more and the laminarity index L IL is 1.80 or more, it means that a sufficiently developed laminar structure is obtained in the 1 L section in the L direction.
  • the number of intersections NT C in the C-direction cross section 1C (C-direction observation visual field plane 60) is 30 or more and the laminarity index LI C is 1.70 or more
  • the steel pipe has a yield strength of 862 MPa or more and excellent low-temperature toughness.
  • the number of intersections NT L is 43 and the number of intersections NL is 6.
  • the layered index LI L is 7.17.
  • Layered index LI C is in the C direction section 1C, which is an index indicating the degree of development of lamellar structure.
  • NT C and NC in the layer index LI C are defined as follows.
  • the length of the side extending in the C direction is 100 ⁇ m
  • the length of the side extending in the T direction is 100 ⁇ m.
  • a 100 ⁇ m square area is defined as a C-direction observation visual field plane 60.
  • the viewing direction surface 60 in the C direction includes the ferrite 10 and the martensite 20.
  • Lines T C1 to T C4 in FIG. 5 extend in the T direction, are arranged at equal intervals in the C direction, and divide the C-direction observation visual field plane 60 into five equal parts in the C direction.
  • the number of intersections (marked by “ ⁇ ” in FIG. 5) between the line segments T C 1 to T C 4 and the ferrite interface FB in the C-direction observation viewing plane 60 is defined as the number of intersections NT C (pieces).
  • the number of intersections NT C means the number of laminations of the ferrite 10 and the martensite 20 in the T direction per unit area in the cross section 1C in the C direction (C direction observation viewing plane 60).
  • Line segments C1 to C4 in FIG. 5 are line segments that extend in the C direction and are arranged at equal intervals in the C direction, and divide the C-direction observation visual field plane 60 into five equal parts in the T direction.
  • the number of intersections (indicated by “ ⁇ ” in FIG. 5) between the line segments C1 to C4 and the ferrite interface FB in the C-direction observation visual field plane 60 is defined as the number of intersections NC (pieces).
  • the laminar index LI C means the degree of development of the laminar structure in the C-direction cross section 1C (C-direction observation viewing plane 60).
  • the number of intersections NT C is 30 or more and the laminarity index LI C is 1.70 or more, it means that a sufficiently developed laminar structure is obtained in the cross section 1C in the C direction.
  • the intersection number NT L in the L cross section 1L is not less 38 or more, assuming that the layered index LI L is 1.80 or more, the seamless steel pipes the above-described chemical composition, the yield strength of at least 862MPa And excellent low-temperature toughness is obtained.
  • the number of intersections NT C is 36, and the number of intersections NC is 10.
  • the layered index LI C is 3.60.
  • the number of intersections NT L which means the number of stacked T direction of the ferrite 10 and martensite 20 per unit area in the L cross section 1L and 38 or more indicates a layered degree of ferrite 10 and martensite 20 the layered index LI L and 1.80 or more (satisfying the clogging formula (3)) as well as exchange which means the number of stacked T direction of the ferrite 10 and martensite 20 per unit area in the C direction section 1C scores NT C and more than 30, the layered index LI C showing the layered degree of martensite and ferrite is 1.70 or more (satisfying the clogging formula (4)).
  • the layered index LI C showing the layered degree of martensite and ferrite is 1.70 or more (satisfying the clogging formula (4)).
  • a carbonitride etc. mean the general term of nitride, carbide, or carbonitride.
  • the present inventors have determined the relationship between the Ti content, Nb content, Al content, N content, V content, C content, Mn content, and S content in the chemical composition and the lamellar structure.
  • the degree of development was examined.
  • the above chemical composition further satisfies the expression (1), the generation of a precipitate exhibiting a pinning effect (hereinafter referred to as pinning particles) can be sufficiently suppressed, and both the L-direction section 1L and the C-direction section 1C can be suppressed.
  • pinning particles a precipitate exhibiting a pinning effect
  • the above-mentioned chemical composition satisfies not only the formula (1) but also the following formula (2).
  • the content (% by mass) of the corresponding element is substituted for the element symbol in the formula (2).
  • Solute S segregates at the grain boundaries and lowers hot workability. If S is fixed by Ca, solid solution S in steel is reduced, and hot workability can be improved.
  • the chemical composition of the seamless steel pipe also satisfies the formula (1), a layered structure satisfying the above (II-1) and (II-2) is obtained in the L direction section 1L, and further, the C direction section.
  • a layered structure satisfying (III-1) and (III-2) is obtained.
  • FIG. 6 shows that the content of each element in the chemical composition is within the above range, satisfies the formulas (1) and (2), and the number of intersection points NT L on the L-direction observation visual field plane is 38 or more.
  • the layered index LI L satisfies the equation (3) and the yield strength is 862 MPa or more.
  • the yield strength is 862 MPa or more, and a sufficiently developed layered structure is obtained in the 1 L section in the L direction, it is a diagram showing the relationship between the development degree of lamellar structure in cross section 1C (LI C) and low temperature toughness.
  • the content of each element in the chemical composition is within the above-mentioned range, and satisfies the formulas (1) and (2), and the (II-1) and (II-1) (II-2) satisfy the, in seamless steel pipe yield strength is not less than 862MPa, if a layered index LI C is less than 1.70 in the C direction observation field plane, the layered index LI C increases, -10 Absorbed energy at ° C increases sharply.
  • the layered index LI C is 1.70 or more, although the absorption energy at -10 ° C. the above 150 J, increasing cost of the absorbed energy at -10 ° C. with increasing layer index LI C is layered index LI C is less than in the case of less than 1.70. In other words, the layered index LI C has an inflection point at 1.70 vicinity.
  • the laminar index LI C is 1.70 or more, the number of intersections NT C is 30 or more.
  • FIG. 6 shows that in the seamless steel pipe having a yield strength of 862 MPa or more, not only the layered structure is sufficiently developed in the L-direction section 1L, but also the layered structure is sufficiently developed in the C-direction section 1C. This indicates that the low-temperature toughness is significantly increased.
  • the content of each element in the chemical composition is within the above-mentioned range, satisfies the formulas (1) and (2), and the number of intersections NT L on the L-direction observation visual field is 38 or more; in seamless steel pipe layered index LI L satisfies the equation (3), the number of intersections NT C and more than 30, and, by the layered index LI C is 1.70 or more, a yield strength of at least 862MPa to obtain In addition, excellent low-temperature toughness can be obtained.
  • the pipe axis direction of the seamless steel pipe is defined as the L direction
  • the thickness direction is defined as the T direction
  • the L direction and the direction perpendicular to the T direction are defined as the C direction
  • the microstructure has the following (I) to (III).
  • Line segments L1 to L4 are defined as line segments L1 to L4,
  • the number of intersections NT L which is the number of intersections between the line segments T L 1 to T L 4 and the ferrite interface, is 38 or more;
  • a number of intersections NL is the number of intersections between the ferrite interface between the line segments L1 ⁇ L4, wherein the number of intersections NT L satisfies the equation (3).
  • the number of intersections NT C which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface, is 30 or more;
  • the intersection number NC is the number of intersections between the ferrite interface between the line segment C1 ⁇ C4, the a number of intersections NT C satisfies the equation (4).
  • the seamless steel pipe of [2] The seamless steel pipe according to [1],
  • the chemical composition is V: 0.01 to 0.20%.
  • the seamless steel pipe of [3] The seamless steel pipe according to [1] or [2],
  • the chemical composition is Co: 0.10 to 0.30%, and W: at least one selected from the group consisting of 0.02 to 2.00%.
  • the method for manufacturing a seamless steel pipe of [4] is as follows: Chemical composition In mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.0150% or less, Cu: 0.09 to 3.00%, Cr: 15.00 to 18.00%, Ni: 4.00 to 9.00%, Mo: 1.50 to 4.00%, Al: 0.040% or less, N: 0.0150% or less, Ca: 0.0010 to 0.0040%, Ti: 0.020% or less, Nb: 0.020% or less, V: 0 to 0.20%, Co: 0 to 0.30%, A heating step of holding a material consisting of W: 0 to 2.00% and the balance: Fe and impurities and satisfying the formulas (1) and (2) at a heating temperature T of 1200 to 1260 ° C.
  • X in the formula (A) is defined by the following formula (B).
  • X (T + 273) ⁇ ⁇ 20 + log (t) ⁇ (B)
  • T is the heating temperature (° C.) of the material
  • t is the holding time (hour) at the heating temperature T.
  • the section reduction rate Y (%) in the equation (A) is defined by the equation (C).
  • the method for manufacturing a seamless steel pipe of [5] is as follows: A method for producing a seamless steel pipe according to [4], The chemical composition is V: 0.01 to 0.20%.
  • the manufacturing method of the seamless steel pipe of [6] is as follows.
  • a method for producing a seamless steel pipe according to [4] or [5] The chemical composition is Co: 0.10 to 0.30%, and W: at least one selected from the group consisting of 0.02 to 2.00%.
  • the application of the seamless steel pipe according to the present embodiment is not particularly limited.
  • the seamless steel pipe of the present embodiment is widely applicable to applications requiring high strength and low-temperature toughness.
  • the seamless steel pipe according to the present embodiment can be used, for example, as a steel pipe for geothermal power generation or a steel pipe for chemical plant use.
  • the seamless steel pipe according to the present embodiment is particularly suitable for use as an oil well steel pipe. Seamless steel pipes for oil well applications are, for example, casings, tubing, drill pipes.
  • the chemical composition of the seamless steel pipe according to the present embodiment contains the following elements.
  • C 0.050% or less Carbon (C) is inevitably contained. That is, the C content is more than 0%. C increases the strength of the steel material. However, if the C content exceeds 0.050%, the hardness after tempering becomes too high and the low-temperature toughness is reduced even if the content of other elements is within the range of the present embodiment. When the C content exceeds 0.050%, retained austenite further increases. In this case, the yield strength tends to be low even when the content of other elements is within the range of the present embodiment. Therefore, the C content is 0.050% or less.
  • the lower limit of the C content is not particularly limited. However, excessive reduction of the C content greatly increases refining costs in the steelmaking process.
  • a preferable lower limit of the C content is 0.001%, more preferably 0.002%, further preferably 0.003%, and further preferably 0.007%. %.
  • the preferred upper limit of the C content is 0.040%, and more preferably 0.030%.
  • Si Silicon
  • Si is inevitably contained. That is, the Si content is more than 0%. Si deoxidizes steel. However, if the Si content exceeds 0.50%, the low-temperature toughness and hot workability of the steel material deteriorate even if the content of other elements is within the range of the present embodiment. Therefore, the Si content is 0.50% or less.
  • the preferred lower limit of the Si content is not particularly limited. However, excessive reduction of the Si content greatly increases the refining cost of the steelmaking process. Therefore, in consideration of industrial production, a preferable lower limit of the Si content is 0.01%, more preferably 0.02%, and further preferably 0.10%. A preferred upper limit of the Si content is 0.45%, and more preferably 0.40%.
  • Mn 0.01 to 0.20%
  • Manganese (Mn) deoxidizes steel and desulfurizes steel. Mn further enhances the hot workability of the steel material. If the Mn content is less than 0.01%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Mn content exceeds 0.20%, Mn segregates at the grain boundary together with impurities such as P and S, even if other element contents are within the range of the present embodiment. In this case, the corrosion resistance in a high temperature environment decreases. Therefore, the Mn content is 0.01 to 0.20%. A preferred lower limit of the Mn content is 0.02%, more preferably 0.03%, and still more preferably 0.05%. A preferred upper limit of the Mn content is 0.18%, more preferably 0.15%, and further preferably 0.13%.
  • Phosphorus (P) is an unavoidable impurity. That is, the P content is more than 0%. P segregates at the grain boundaries and lowers the low-temperature toughness of the steel material. Therefore, the P content is 0.025% or less.
  • the preferable upper limit of the P content is 0.020%, and more preferably 0.015%.
  • the P content is preferably as low as possible. However, excessive reduction of the P content greatly increases the refining cost of the steelmaking process. Therefore, in consideration of industrial production, a preferable lower limit of the P content is 0.001%, more preferably 0.002%.
  • S 0.0150% or less Sulfur (S) is an unavoidable impurity. That is, the S content is more than 0%. S segregates at the grain boundaries and lowers the low-temperature toughness and hot workability of the steel material. Therefore, the S content is 0.0150% or less.
  • the preferable upper limit of the S content is 0.0050%, more preferably 0.0030%, and further preferably 0.0020%.
  • the S content is preferably as low as possible. However, excessive reduction of the S content greatly increases the refining cost of the steelmaking process. Therefore, in consideration of industrial production, a preferable lower limit of the S content is 0.0001%, more preferably 0.0002%, and further preferably 0.0003%.
  • Cu 0.09 to 3.00% Copper (Cu) increases the strength of the steel material by precipitation strengthening. Cu further enhances the corrosion resistance of the steel in high temperature environments. If the Cu content is less than 0.09%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Cu content exceeds 3.00%, the hot workability of the steel material decreases even if the content of other elements is within the range of the present embodiment. Therefore, the Cu content is 0.09 to 3.00%.
  • the preferable lower limit of the Cu content is 0.10%, more preferably 0.20%, further preferably 0.80%, and further preferably 1.20%.
  • the preferred upper limit of the Cu content is 2.90%, more preferably 2.80%, and even more preferably 2.70%.
  • Chromium (Cr) enhances the corrosion resistance of steel in a high temperature environment. Specifically, Cr reduces the corrosion rate of steel in a high-temperature environment and increases the carbon dioxide corrosion resistance of the steel. If the Cr content is less than 15.00%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Cr content exceeds 18.00%, the ferrite in the steel increases, and the strength of the steel decreases, even if the content of other elements is within the range of the present embodiment. Therefore, the Cr content is 15.00 to 18.00%. A preferred lower limit of the Cr content is 15.50%, more preferably 16.00%, and still more preferably 16.50%. The preferable upper limit of the Cr content is 17.80%, more preferably 17.50%, and further preferably 17.20%.
  • Ni 4.00 to 9.00%
  • Nickel (Ni) increases the strength of the steel material. Ni further enhances corrosion resistance in high temperature environments. If the Ni content is less than 4.00%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Ni content exceeds 9.00%, residual austenite is likely to be excessively generated even when the content of other elements is within the range of the present embodiment. Therefore, the Ni content is 4.00 to 9.00%.
  • a preferred lower limit of the Ni content is 4.20%, more preferably 4.40%, and further preferably 4.80%.
  • the preferable upper limit of the Ni content is 8.70%, more preferably 8.00%, further preferably 7.00%, and further preferably 6.00%.
  • Mo 1.50 to 4.00%
  • Molybdenum (Mo) enhances the hardenability of steel. Mo further generates fine carbides and increases the tempering softening resistance of the steel material. As a result, Mo enhances the corrosion resistance of the steel material by high-temperature tempering. If the Mo content is less than 1.50%, these effects cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content exceeds 4.00%, these effects are saturated even if the content of other elements is within the range of the present embodiment. Therefore, the Mo content is 1.50 to 4.00%. A preferred lower limit of the Mo content is 1.60%, more preferably 1.70%, and still more preferably 1.80%. The preferable upper limit of the Mo content is 3.80%, more preferably 3.50%, and further preferably 3.20%.
  • Al 0.040% or less Aluminum (Al) is inevitably contained. That is, the Al content is more than 0%. Al deoxidizes steel. However, if the Al content exceeds 0.040%, AlN is excessively generated even if other element contents are within the range of the present embodiment. Since AlN is a pinning particle, the formation of a layered structure in the L-direction section 1L and / or the C-direction section 1C is suppressed. Further, coarse oxide-based inclusions are generated. Coarse oxide inclusions decrease the toughness of the steel material. Therefore, the Al content is 0.040% or less. A preferred lower limit of the Al content is 0.001%, more preferably 0.005%, and still more preferably 0.010%. The preferred upper limit of the Al content is 0.035%, and more preferably 0.032%. In addition, the Al content referred to in this specification is “acid-soluble Al”, that is, sol. It means the content of Al.
  • N 0.0150% or less Nitrogen (N) is inevitably contained. That is, N is more than 0%. N forms a solid solution to increase the strength of the steel material. However, if the N content exceeds 0.0150%, AlN is excessively generated even if other element contents are within the range of the present embodiment. Since AlN is a pinning particle, the formation of a layered structure in the L-direction section 1L and / or the C-direction section 1C is suppressed. Further, coarse nitrides are formed, and the corrosion resistance of the steel material is reduced. Therefore, the N content is 0.0150% or less. Excessive reduction of the N content greatly increases the refining costs of the steelmaking process.
  • a preferable lower limit of the N content is 0.0001%.
  • a preferable lower limit of the N content for more effectively obtaining the above effects is 0.0020%, more preferably 0.0040%, and further preferably 0.0050%.
  • a preferred upper limit of the N content is 0.0140%, and more preferably 0.0130%.
  • Ca 0.0010-0.0040% Calcium (Ca) combines with S in the steel material to form sulfides and reduce solid solution S. Thereby, the hot workability of the steel material is enhanced. If the Ca content is less than 0.0010%, this effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ca content exceeds 0.0040%, even if the other element content is within the range of the present embodiment, a coarse oxide is generated and the corrosion resistance of the steel material is reduced. Therefore, the Ca content is 0.0010 to 0.0040%. A preferred lower limit of the Ca content is 0.0012%, more preferably 0.0014%, and further preferably 0.0016%. A preferred upper limit of the Ca content is 0.0036%, more preferably 0.0034%.
  • Ti 0.020% or less
  • Ti titanium
  • Ti is inevitably contained. That is, the Ti content is more than 0%.
  • Ti combines with nitrogen (N) and / or carbon (C) to form nitrides, carbides, or carbonitrides (ie, carbonitrides, etc.).
  • N nitrogen
  • C carbon
  • Ti carbonitride or the like refines crystal grains by a pinning effect and increases the toughness of the steel material.
  • Ti carbonitride and the like hinder the elongation of the ferrite in the L and / or C directions due to the pinning effect. As a result, a desired layered structure cannot be obtained.
  • the Ti content is 0.020% or less.
  • the preferable upper limit of the Ti content is 0.018%, more preferably 0.015%, further preferably 0.010%, and further preferably 0.005%. It is preferable that the Ti content be as low as possible. However, excessive reduction of the Ti content may increase manufacturing costs. Therefore, a preferable lower limit of the Ti content is 0.001%.
  • Nb 0.020% or less
  • Nb niobium
  • Nb niobium
  • Nb niobium
  • C carbon
  • Nb carbonitride or the like refines crystal grains by a pinning effect and increases the toughness of the steel material.
  • Nb carbonitride and the like hinder the elongation of the ferrite in the L direction and / or the C direction due to the pinning effect. As a result, a desired layered structure cannot be obtained.
  • the Nb content exceeds 0.020%, even if the other element content is within the range of the present embodiment, both of the formulas (3) and (4) are caused by the pinning effect of Nb carbonitride or the like. A layered structure that satisfies the above condition cannot be obtained. As a result, the low-temperature toughness of the seamless steel pipe decreases. Therefore, the Nb content is 0.020% or less.
  • the preferable upper limit of the Nb content is 0.018%, more preferably 0.015%, further preferably 0.010%, and further preferably 0.005%.
  • the Nb content is preferably as low as possible. However, excessive reduction of the Nb content may increase manufacturing costs. Therefore, a preferable lower limit of the Nb content is 0.001%.
  • the balance of the chemical composition of the seamless steel pipe according to the present embodiment is composed of Fe and impurities.
  • the impurities are those that are mixed in from the ore, scrap, or the production environment as a raw material when industrially producing a seamless steel pipe, and adversely affect the seamless steel pipe according to the present embodiment. Means that it is acceptable within a certain range.
  • the chemical composition of the above-mentioned seamless steel pipe may further contain V instead of a part of Fe.
  • V Vanadium
  • V is an optional element and may not be contained. That is, the V content may be 0%. When contained, V forms a carbonitride or the like to increase the strength of the steel material. However, if the V content exceeds 0.20%, the V carbonitride exhibits a pinning effect at the time of piercing rolling even if other element contents are within the range of the present embodiment, and the ferrite content is increased. In the L direction and / or the C direction. As a result, a desired layered structure cannot be obtained.
  • V content exceeds 0.20%, a pinning effect of V carbonitride or the like is exerted, so that a layered structure satisfying both Expressions (3) and (4) cannot be obtained. As a result, the low-temperature toughness of the seamless steel pipe decreases. If the V content exceeds 0.20%, carbonitrides and the like are further coarsened, and the toughness of the steel material is reduced. Therefore, the V content is 0 to 0.20%.
  • a preferred lower limit of the V content is more than 0%, and more preferably 0.01%.
  • the preferred upper limit of the V content is less than 0.20%, more preferably 0.15%, and still more preferably 0.10%.
  • the chemical composition of the seamless steel pipe described above may further include one or more selected from the group consisting of Co and W instead of a part of Fe. These elements are all optional elements. These elements form a corrosion coating on the surface of the seamless steel pipe in a high-temperature environment, and this corrosion coating suppresses hydrogen from entering the inside of the seamless steel pipe. Thereby, these elements increase the corrosion resistance of the seamless steel pipe.
  • Co is an optional element and need not be contained. That is, the Co content may be 0%.
  • Co forms a corrosion coating on the surface of a steel material (seamless steel pipe) in a high temperature environment. This suppresses intrusion of hydrogen into the steel material. Therefore, the corrosion resistance of the steel material increases. The above effect can be obtained to some extent if Co is contained even a little. However, if the Co content exceeds 0.30%, the hardenability of the steel material is reduced and the strength of the steel material is reduced even if the content of other elements is within the range of the present embodiment. Therefore, the Co content is 0 to 0.30%.
  • a preferred lower limit of the Co content is more than 0%, more preferably 0.01%, further preferably 0.10%, more preferably 0.12%, and still more preferably 0.14%. It is.
  • the preferable upper limit of the Co content is 0.29%, more preferably 0.28%, and further preferably 0.27%.
  • W 0-2.00% Tungsten (W) is an optional element and need not be contained. That is, the W content may be 0%. When contained, W forms a corrosion coating on the surface of a steel material (seamless steel pipe) in a high-temperature environment. This suppresses intrusion of hydrogen into the steel material. Therefore, the corrosion resistance of the steel material increases. The above effect can be obtained to some extent if W is contained at all. However, if the W content exceeds 2.00%, coarse carbides are generated in the steel material even if other element contents are within the range of the present embodiment, and the corrosion resistance of the steel material is reduced. Therefore, the W content is 0 to 2.00%.
  • a preferable lower limit of the W content is more than 0%, more preferably 0.01%, further preferably 0.02%, and further preferably 0.03%.
  • a preferable upper limit of the W content is 1.80%, more preferably 1.50%, further preferably 1.00%, further preferably 0.50%, and still more preferably 0.40%. %.
  • F1 156Al + 18Ti + 12Nb + 11Mn + 5V + 328.125N + 243.75C + 12.5S.
  • F1 is an index relating to the amount of precipitates (pinning particles) that exhibit a pinning effect when the content of each element in the chemical composition is within the above range.
  • MnS such as Ti carbonitride, Nb carbonitride, Al nitride, V carbonitride, etc.
  • MnS may all be generated as fine precipitates (pinning particles) that act as a pinning effect.
  • F1 exceeds 12.5
  • pinning particles are excessively generated.
  • the stretching of the ferrite grains in the L direction and / or the C direction during piercing and rolling is suppressed by the pinning particles.
  • a layered structure cannot be obtained in the section in the L direction, or a layered structure cannot be obtained in the section in the C direction.
  • Expression (3) and Expression (4) cannot be compatible.
  • F1 is 12.4, more preferably 12.3, and still more preferably 12.0.
  • F1 is a value obtained by rounding off the second decimal place of the obtained value (that is, the value of the first decimal place).
  • the hot workability be excellent. If the hot workability is excellent, surface defects are less likely to occur in the manufacturing process. Surface flaws are the starting point of destruction. Therefore, if the hot workability is excellent, a decrease in low-temperature toughness can be suppressed.
  • F2 Ca / S is defined. If F2 is less than 4.0, the Ca content with respect to the S content in the steel material will be insufficient. Therefore, sufficient hot workability cannot be obtained in the process of manufacturing a seamless steel pipe having a layered structure satisfying both the expressions (3) and (4) in the present embodiment. When F2 is 4.0 or more, the Ca content relative to the S content in the steel material is sufficient. Therefore, Ca sufficiently fixes S, and excellent hot workability is obtained.
  • F2 is 4.1, more preferably 4.2, and still more preferably 4.5.
  • F2 is a value obtained by rounding off the second decimal place of the obtained value (that is, the value of the first decimal place).
  • the microstructure of the seamless steel pipe according to the present embodiment satisfies the following (I) to (III).
  • Four line segments dividing the L-direction observation visual field plane into five equal parts in the T direction are defined as line segments L1 to L4.
  • the interface between ferrite and martensite is defined as a ferrite interface.
  • the line segment T L 1 ⁇ T L 4 and the intersection number NT L is the number of intersections of the ferrite interface is 38 or more.
  • the number of intersections NL is the number of intersections between the line segment L1 ⁇ L4 ferrite interface, and the number of intersections NT L, satisfies the equation (3).
  • the number of intersections NT C which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface is 30 or more.
  • the number of intersections NL which is the number of intersections between the line segments L1 to L4 and the ferrite interface, and the number of intersections NT C satisfy Expression (4).
  • the microstructure of the seamless steel pipe of this embodiment contains ferrite and martensite in a total volume ratio of 80% or more, and the balance is made of retained austenite.
  • martensite includes tempered martensite.
  • a preferred lower limit of the total volume ratio of ferrite and martensite is 82%, more preferably 85%, further preferably 90%, more preferably 92%, and still more preferably 95%, More preferably, it is 97%, and most preferably, it is 100%.
  • phase other than ferrite and martensite are retained austenite.
  • the volume fraction of retained austenite is less than 20%.
  • the preferred upper limit of the volume fraction of retained austenite is 18%, more preferably 15%, more preferably 10%, more preferably 8%, further preferably 5%, and still more preferably 3%. %, And most preferably 0%. Note that a small amount of retained austenite increases low-temperature toughness. Therefore, if the volume ratio is less than 20%, the microstructure may include retained austenite. Retained austenite may not be included.
  • the microstructure of the seamless steel pipe according to the present embodiment may contain precipitates and inclusions such as carbonitrides in addition to ferrite, martensite, and retained austenite.
  • precipitates and inclusions such as carbonitrides in addition to ferrite, martensite, and retained austenite.
  • the total volume fraction of precipitates and inclusions is negligibly small compared to the volume fractions of ferrite, martensite, and retained austenite. Therefore, in this specification, when calculating the total volume ratio of ferrite and martensite by the method described below, the total volume ratio of precipitates and inclusions is ignored.
  • the preferred volume fraction of ferrite in the microstructure is 10 to 40%.
  • a preferable lower limit of the volume ratio of ferrite is 12%, more preferably 14%, and further preferably 16%.
  • the preferable upper limit of the volume ratio of ferrite is 38%, more preferably 36%, and further preferably 34%.
  • the total volume ratio of ferrite and martensite is determined by the following method. Specifically, a sample is collected from the center position of the wall thickness of the seamless steel pipe.
  • the size of the sample is not particularly limited as long as the following X-ray diffraction method can be performed, but an example of the sample size is 15 mm in the L direction, 2 mm in the T direction, and a direction perpendicular to the L and T directions (C direction). 15 mm.
  • V ⁇ 100 / ⁇ 1+ (I ⁇ ⁇ R ⁇ ) / (I ⁇ ⁇ R ⁇ ) ⁇ (5)
  • I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is the crystallographic theoretical calculation value of the ⁇ phase.
  • I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is a crystallographic theoretical calculation value of the ⁇ phase.
  • R ⁇ on the (200) plane of the ⁇ phase is 15.9
  • R ⁇ on the (211) plane of the ⁇ phase is 29.2
  • R ⁇ on the (200) plane of the ⁇ phase is 35. 5.
  • R ⁇ on the (220) plane of the ⁇ phase is 20.8, and R ⁇ on the (311) plane of the ⁇ phase is 21.8.
  • the total volume ratio (%) of ferrite and martensite in the microstructure is determined by the following equation (6).
  • Total volume fraction of ferrite and martensite 100-volume fraction of retained austenite (6)
  • the value of the first decimal place of the total volume ratio of ferrite and martensite obtained by the above method is rounded off.
  • FIG. 4 is a schematic view showing an example of the L-direction observation visual field plane 50.
  • four line segments that divide the L-direction observation visual field plane 50 into five equal parts in the L direction are defined as line segments T L1 to T L4 .
  • four line segments dividing the L-direction observation visual field plane 50 into five equal parts in the T direction are defined as line segments L1 to L4.
  • an interface between the ferrite 10 and the martensite 20 is defined as a ferrite interface FB.
  • Form of lamellar structure in the L direction observation field plane 50 (intersection number NT L and NT L / NL) is measured by the following method.
  • a sample having a cross section 1L (observation surface) in the L direction including the L direction and the T direction is taken at the center of the thickness of the seamless steel pipe.
  • the size of the L-direction cross section 1L is not particularly limited as long as a later-described L-direction observation visual field surface 50 can be secured.
  • the L direction cross section 1L is, for example, L direction: 5 mm ⁇ T direction: 5 mm. At this time, a sample is collected so that the center position in the T direction of the L-direction cross section 1L substantially matches the center position in the T direction (wall thickness direction) of the seamless steel pipe.
  • 1 L of the cross section in the L direction is mirror-polished.
  • the mirror-polished 1 L section in the L direction is immersed in a virella etchant (a mixed solution of nitric acid, hydrochloric acid and glycerin) for 10 seconds to reveal the structure by etching.
  • the center position of the etched L-direction cross section 1L is observed using an optical microscope.
  • This observation viewing plane is defined as “L-direction observation viewing plane” 50.
  • the ferrite 10 and the martensite 20 can be distinguished based on the contrast.
  • L-direction observation visual field plane 50 includes ferrite 10 (white area in the figure) and martensite 20 (hatched area in the figure). As described above, those skilled in the art can distinguish ferrite and martensite from the etched L-direction observation visual field plane 50 by contrast.
  • Line segments extending in the T direction and arranged at equal intervals in the L direction on the L direction observation visual field surface 50 and dividing the L direction observation visual field surface 50 into five equal parts in the L direction are referred to as line segments T L 1 to T L 4.
  • the number of intersections (indicated by “ ⁇ ” in FIG. 4) between the line segments T L 1 to T L 4 and the ferrite interface FB in the L-direction observation visual field plane 50 is defined as the number of intersections NT L (pieces). I do.
  • line segments extending in the L direction and arranged at equal intervals in the T direction of the L direction observation visual field surface 50 and dividing the L direction observation visual field surface 50 into five equal parts in the T direction (thickness direction) are represented by line segments L1 to L1. Defined as L4. The number of intersections (indicated by “ ⁇ ” in FIG. 4) between the line segments L1 to L4 and the ferrite interface in the L-direction observation viewing plane 50 is defined as the number of intersections NL (pieces).
  • Microstructure of a seamless steel tube according to the present embodiment in the L direction observation field plane 50, number of intersections NT L is at 38 or more, and has a lamellar structure in which the layered index LI L satisfies the equation (3).
  • Layered index LI L NT L /NL ⁇ 1.80
  • ten L-direction observation visual field planes 50 are selected from arbitrary positions.
  • each L direction observation field plane 50 by the methods described above, obtaining the number of intersections NT L and layered index LI L.
  • the arithmetic mean value of number of intersections NT L obtained in 10 positions defined as the number of intersections NT L in the L-direction observation field plane of a seamless steel pipe of the present embodiment.
  • the arithmetic mean value of the layered index LI L obtained in 10 positions defined as layered index LI L in the L-direction observation field plane of a seamless steel pipe of the present embodiment.
  • Layered index LI L means the development degree of lamellar structure in the L direction observation field plane.
  • the number of intersections NT L is 38 or more and the laminarity index L IL is 1.80 or more
  • the cross section 1L in the L direction is obtained. Means that a well-developed layered tissue has been obtained.
  • a plane parallel to the C direction and the T direction is defined as a C direction cross section 1C.
  • a square cross section that is located at the center position of the thickness of the seamless steel pipe the length of the side extending in the C direction is 100 ⁇ m, and the length of the side extending in the T direction is 100 ⁇ m, Defined as the C-direction observation visual field plane 60.
  • the direction C can be regarded as a straight line.
  • FIG. 5 is a schematic diagram illustrating an example of the C-direction observation visual field plane 60.
  • four line segments that divide the C-direction observation visual field plane 60 into five equal parts in the C direction are defined as line segments T C1 to T C4 .
  • four line segments that divide the C-direction observation visual field plane 60 into five equal parts in the T direction are defined as line segments C1 to C4.
  • the interface between ferrite and martensite is defined as a ferrite interface FB.
  • the C-direction observation visual field 60 further has the following items (III- Satisfies 1) and (III-2).
  • III-1 The number of intersections NT C, which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface, is 30 or more.
  • III-2) and the number of intersections NC is the number of intersections between the line segment C1 ⁇ C4 and the ferrite interface, and the number of intersections NT C, satisfies the equation (4).
  • the morphology (number of intersections NT C and NT C / NC) of the layered structure on the C-direction observation visual field plane 60 is measured by the following method.
  • a sample having a C-direction cross section including the C direction and the T direction at the center of the thickness of the seamless steel pipe is collected.
  • the size of the C-direction cross section 1C is not particularly limited as long as a C-direction observation visual field surface 60 described later can be secured.
  • the size of the cross section 1C in the C direction is, for example, 5 mm in the C direction ⁇ 5 mm in the T direction.
  • the sample is collected such that the center position in the T direction of the cross section in the C direction substantially coincides with the center position in the T direction (wall thickness direction) of the seamless steel pipe.
  • the cross section 1C in the C direction is mirror-polished.
  • the mirror-polished cross section 1C in the C direction is immersed in a virella etchant for 10 seconds to reveal the structure by etching.
  • the center position of the etched cross section 1C in the C direction is observed using an optical microscope.
  • Line segments extending in the T direction and arranged at equal intervals in the L direction on the C direction observation field surface 60 and dividing the L direction observation field surface 50 into five equal parts in the C direction are referred to as line segments T C1 to T C4.
  • the number of intersections (indicated by “ ⁇ ” in FIG. 5) between the line segments T C 1 to T C 4 and the ferrite interface FB in the C direction observation visual field plane 60 is defined as the number of intersections NT C (pieces). I do.
  • line segments extending in the C direction and arranged at equal intervals in the T direction of the C direction observation visual field plane 60 and dividing the C direction observation visual field plane 60 into five equal parts in the T direction (thickness direction) are represented by line segments C1 to C1. Defined as C4.
  • the number of intersections (indicated by “ ⁇ ” in FIG. 5) between the line segments C1 to C4 and the ferrite interface in the C-direction observation visual field plane 60 is defined as the number of intersections NC (pieces).
  • the microstructure of the seamless steel pipe according to the present embodiment is such that while the L-direction observation visual field 50 satisfies the above (II-1) and (II-2), the C-direction observation visual field 60 has a number of intersections NT C is 30 or more, and has a lamellar structure in which the layered index LI C satisfies the equation (4).
  • Layering index LI C NT C /NC ⁇ 1.70 (4)
  • ten C-direction observation visual field planes 60 are selected from arbitrary positions.
  • the number of intersections NT C and the layered index LI C are obtained by the above-described method.
  • the arithmetic mean value of the number of intersections NT C obtained at 10 locations is defined as the number of intersections NT C on the C-direction observation visual field plane 60 of the seamless steel pipe of the present embodiment.
  • the arithmetic mean value of the laminar indices LI C obtained at ten locations is defined as the laminar indices LI C of the seamless steel pipe of the present embodiment in the C-direction observation visual field plane 60.
  • the laminar index LI C means the degree of development of the laminar structure on the C-direction observation visual field. Number of intersections NT L in the L direction observation field plane 50 is not less 38 or more, the layered index LI L is not less 1.80 or more, further, number of intersections NT C in C direction observation field plane 60 is 30 or more There, when the layered index LI C is 1.70 or more, the seamless steel pipes the above-described chemical composition satisfying the formula (1) and (2), not only L cross section 1L, also in C cross section 1C Means that a well-developed layered tissue has been obtained.
  • the seamless steel pipe of the present embodiment has a chemical composition that satisfies the formulas (1) and (2), and further has a microstructure in which the number of intersections NT L on the L-direction observation visual plane 50 is 38. and the FOB, layered index LI L is not less 1.80 or more, further, number of intersections NT C in C direction observation field plane 60 is 30 or more, is layered index LI C 1.70 or more. Therefore, the seamless steel pipe of the present embodiment can achieve both a yield strength of 862 MPa or more and excellent low-temperature toughness.
  • the lower limit of the number of intersections NT L is preferably 39, more preferably 40, more preferably 41, more preferably 55, and even more preferably 58. And more preferably 60.
  • the upper limit of the number of intersections NT L is not particularly limited, for example, 150.
  • a preferable lower limit of the layered index LI L is 1.82, still more preferably 1.84, still more preferably 1.86, more preferably 1.88, further It is preferably 1.90, more preferably 1.92, further preferably 2.10, more preferably 2.50, further preferably 2.64, and still more preferably 3.00. It is.
  • the upper limit of the layered index LI L is not particularly limited, for example, it is 10.0.
  • the lower limit of the number of intersections NT C is preferably 32, more preferably 34, more preferably 36, more preferably 40, and even more preferably 45. , More preferably 50, and even more preferably 54.
  • the upper limit of the number of intersections NT C is not particularly limited, but is, for example, 150.
  • a preferable lower limit of the layered index LI C is 1.75, still more preferably 1.78, still more preferably 1.80, more preferably 1.82, further It is preferably 1.85, more preferably 1.88, further preferably 1.90, further preferably 1.95, more preferably 1.98, and still more preferably 2.00. And more preferably 2.25.
  • the upper limit of the layered index LI C is not particularly limited, for example, it is 10.0.
  • the thickness of the seamless steel pipe according to the present embodiment is not particularly limited. When a seamless steel pipe is used for oil well applications, the preferred wall thickness is between 5.0 and 60.0 mm.
  • the yield strength of the steel material according to the present embodiment is 862 MPa or more.
  • the yield strength referred to in the present specification means a 0.2% offset proof stress (MPa) obtained by a tensile test in the air at normal temperature (20 ⁇ 15 ° C.) in accordance with ASTM E8 / E8M-16a.
  • the upper limit of the yield strength of the seamless steel pipe of the present embodiment is not particularly limited. However, in the case of the above-mentioned chemical composition, the upper limit of the yield strength of the seamless steel pipe of the present embodiment is, for example, 1000 MPa.
  • the preferred upper limit of the yield strength of the seamless steel pipe of the present embodiment is 990 MPa, and more preferably 988 MPa. More preferably, the yield strength of the seamless steel pipe according to this embodiment is of the order of 125 ksi, specifically, 862 to 965 MPa.
  • the yield strength of the seamless steel pipe according to the present embodiment is determined by the following method.
  • a round bar tensile test piece is collected from the center of the wall thickness.
  • the diameter of the parallel portion of the round bar tensile test piece is 4 mm, and the length of the parallel portion is 35 mm.
  • the longitudinal direction of the parallel portion of the round bar tensile test piece is parallel to the L direction.
  • the center position of the cross section perpendicular to the longitudinal direction of the round bar tensile test piece is made to substantially coincide with the center position of the wall thickness.
  • a tensile test is performed at room temperature (20 ⁇ 15 ° C.) in the air in accordance with ASTM No. E8 / E8M-16a.
  • the 0.2% offset proof stress obtained by the test is defined as the yield strength (MPa).
  • the seamless steel pipe of the present embodiment not only has a high yield strength as described above, but also has excellent low-temperature toughness. Specifically, in the seamless steel pipe of the present embodiment, the absorbed energy at ⁇ 10 ° C. obtained by performing the Charpy impact test based on ASTM A370-18 is 150 J or more.
  • the low-temperature toughness of the seamless steel pipe of this embodiment is determined by the following method. From the center of the wall thickness of the seamless steel pipe, the API 5CRA / ISO13680 ⁇ TABLE ⁇ A. A V-notch test piece according to 5 is collected. Using a test piece, a Charpy impact test is performed in accordance with ASTM No. A370-18, and the absorbed energy (J) at ⁇ 10 ° C. is determined.
  • An example of the method for manufacturing a seamless steel pipe of the present embodiment includes a heating step, a piercing and rolling step, a drawing and rolling step, and a heat treatment step.
  • the elongation rolling step is an optional step and need not be performed.
  • each manufacturing process will be described.
  • the material having the above-mentioned chemical composition is heated at 1200 to 1260 ° C.
  • the material may be manufactured and prepared, or may be prepared by purchasing from a third party.
  • a molten steel having the above chemical composition is manufactured.
  • the material is manufactured by casting using molten steel.
  • a slab slab, bloom, or billet
  • An ingot may be manufactured by using a molten steel by an ingot-making method.
  • a billet may be manufactured by subjecting a slab, bloom or ingot manufactured by casting to slab rolling. The material is manufactured through the above steps.
  • the prepared material is held at a heating temperature T of 1200 to 1260 ° C. for a holding time t (time).
  • a heating temperature T corresponds to the furnace temperature (° C.) of the heating furnace.
  • the holding time t (time) at the heating temperature T is, for example, 1.0 hour to 10.0 hours.
  • the heating temperature T is less than 1200 ° C., the hot workability of the material is too low, so that surface defects easily occur in the material during piercing and subsequent elongation rolling.
  • the heating temperature T is 1200 to 1260 ° C., on the premise that the conditions of each step described later are satisfied, a layered structure satisfying the formulas (3) and (4) is obtained in the microstructure of the manufactured seamless steel pipe. can get.
  • Punch rolling is performed on the heated material to produce a hollow shell. Specifically, the material is pierced and rolled using a piercing machine.
  • the punch includes a pair of inclined rolls and a plug. A pair of inclined rolls are arranged around the pass line. The plug is located between the pair of inclined rolls and on the pass line.
  • the pass line is a line through which the central axis of the material passes during piercing and rolling.
  • the inclined roll may be of a barrel type or a cone type.
  • piercing and rolling are performed so as to satisfy (A).
  • X in the formula (A) is a heating condition parameter.
  • the heating condition parameter X is defined by the following equation (B).
  • X (T + 273) ⁇ ⁇ 20 + log (t) ⁇ (B)
  • T in the formula (B) is a heating temperature (° C.)
  • t is a holding time (hour) at the heating temperature T.
  • Y in the formula (A) is a cross-section reduction rate in the drilling machine.
  • the cross-sectional reduction rate Y in the piercing machine does not include the cross-sectional reduction rate in elongation rolling after piercing rolling in the piercing machine.
  • the section reduction rate Y (%) in the drilling machine is defined by Expression (C).
  • Y ⁇ 1- (Cross-sectional area perpendicular to tube axis direction of pipe after piercing / rolling / cross-sectional area perpendicular to pipe axis direction of raw material before piercing and rolling) ⁇ ⁇ 100 (C)
  • the layered structure having a cross section 1L in the L direction is sufficiently developed (that is, the above (II-1) and (II-2) ))
  • a layered structure having a cross section 1C in the C direction sufficiently (that is, satisfy the above (III-1) and (III-2)) by heating in piercing and rolling with a piercing machine.
  • the relationship between the temperature T, the holding time t, and the cross-sectional reduction rate Y in the drilling machine is important. Unless an appropriate reduction is applied to a material heated under appropriate heating conditions by a punch, the reduction cannot be sufficiently penetrated into the inside of the material.
  • the layered structure in the cross section in the C direction can be sufficiently developed by heating conditions and piercing and rolling conditions in piercing and rolling by a piercing machine.
  • the steps after the piercing rolling do not contribute much to the development of the layered structure in the C-direction cross section.
  • the above-mentioned FA is an index of heating conditions and piercing rolling conditions in the piercing and rolling step for sufficiently developing the layered structure of not only the L-direction section 1L but also the C-direction section 1C. If the FA is 1720 or more, the piercing and rolling conditions are inappropriate for the material heated to 1200 to 1260 ° C. In this case, particularly, the layered structure of the seamless steel pipe at the cross section 1C in the C direction is not sufficiently developed. Specifically, in the C-direction observation visual field plane 60, the number of intersections NT C becomes less than 30, or NT C / NL becomes less than 1.70.
  • the layered structure not only in the C-direction section 1C but also in the L-direction section 1L of the seamless steel pipe may not be sufficiently developed.
  • number of intersections NT L is or becomes less than 38, NT C / NL in some cases or is less than 1.80.
  • the piercing and rolling conditions are appropriate. Therefore, the material heated under appropriate heating conditions can be pierced and rolled at an appropriate cross-sectional reduction rate in a piercing machine. Therefore, the layered structure is sufficiently developed in both the L-direction section 1L and the C-direction section 1C of the seamless steel pipe, assuming that the conditions of each step described later are satisfied.
  • the number of intersections NT L becomes 38 or more
  • NT C / NL becomes 1.80 or more.
  • the number of intersections NT C becomes 30 or more
  • NT C / NL becomes 1.70 or more.
  • the lower limit of FA is not particularly limited, but the lower limit of FA is preferably 1600, more preferably 1620, further preferably 1630, further preferably 1640, and further preferably 1650.
  • the preferred upper limit of FA is 1715, more preferably 1710, further preferably 1705, and still more preferably 1695.
  • the material since the chemical composition of the material satisfies the formula (2), the material has excellent hot workability. Therefore, even if the material is pierced and rolled under the condition satisfying the expression (A), generation of surface flaws can be sufficiently suppressed.
  • the temperature of the tube immediately after piercing and rolling is, for example, 1050 ° C or higher, more preferably 1060 ° C, and further preferably 1100 ° C or higher. That is, the above equation (A) shows the heating conditions and the piercing and rolling conditions in the piercing and rolling step when the raw material temperature immediately after the piercing and rolling is 1050 ° C. or higher.
  • the tube temperature immediately after piercing and rolling can be measured by the following method.
  • a thermometer is arranged on the exit side of the drilling machine.
  • the surface temperature of the tube after piercing and rolling is measured by a thermometer on the outlet side of the piercing machine.
  • the surface temperature distribution in the tube axis direction (longitudinal direction) of the raw tube is obtained by measuring the temperature.
  • the average of the obtained surface temperature distribution is defined as the tube temperature (° C.) after piercing and rolling.
  • the heating condition parameter X is not particularly limited as long as it is within the range of the above formula (A).
  • a preferred lower limit of the heating condition parameter X is 29500, and more preferably 29700.
  • the preferable upper limit of the heating condition parameter X is 31500, more preferably 31200.
  • a preferable cross-sectional reduction rate Y in piercing rolling is 25 to 80%.
  • the more preferable lower limit of the cross-sectional reduction rate Y in the piercing rolling is 30%, more preferably 35% or more.
  • a more preferable upper limit of the cross-sectional reduction rate Y in the piercing rolling is 75%.
  • the permeability of the drilling machine into the material (base tube) is much greater than the permeability of the mandrel mill or sizer mill in the downstream process. Therefore, among the layered structures of the L-direction cross section 1L and the C-direction cross section 1C of the seamless steel pipe, the layered structure of the C-direction cross section 1C in particular satisfies the formula (A) by the piercing and rolling step satisfying the formula (A). -1) and (III-2) can be satisfied.
  • the layered structure in the L-direction cross section is (II-1) and (II) even if the reduction in the area is increased in the elongating and rolling process even if the reduction is increased. It is difficult to manufacture a seamless steel pipe that satisfies -2) and has a microstructure in which the layered structure in the cross section in the C direction satisfies (III-1) and (III-2).
  • the elongation rolling step may not be performed.
  • elongation rolling is performed on the raw tube manufactured in the piercing rolling step.
  • the elongation rolling is performed using an elongation rolling mill.
  • the elongation rolling mill includes a plurality of roll stands arranged in a row from upstream to downstream along a pass line. Each roll stand includes a plurality of rolling rolls.
  • the elongation mill is, for example, a mandrel mill.
  • the mandrel bar into the tube is advanced on the pass line of the elongation rolling mill, and elongation rolling is performed. After elongation rolling, the mandrel bar inserted into the raw tube is pulled out.
  • the cross-sectional reduction rate in elongation rolling is, for example, 10 to 70%.
  • the tube temperature immediately after the completion of elongation rolling is, for example, 980 to 1000 ° C.
  • the tube temperature immediately after the completion of elongation rolling can be measured by the following method. A thermometer is arranged on the outlet side of a stand for rolling down the raw tube at the end of the elongating mill.
  • the surface temperature of the raw tube after elongation rolling is measured by a thermometer on the outlet side of the stand that finally lowers the raw tube.
  • the surface temperature distribution in the tube axis direction of the raw tube is obtained by measuring the temperature.
  • the average of the obtained surface temperature distribution is defined as the tube temperature (° C.) immediately after the completion of the elongation rolling.
  • the constant diameter rolling step may be performed on the raw tube after the elongation rolling step, if necessary. That is, the constant diameter rolling step may not be performed.
  • the constant diameter rolling mill includes a plurality of roll stands arranged in a line from upstream to downstream along a pass line. Each roll stand includes a plurality of rolling rolls.
  • the constant diameter rolling mill is, for example, a sizer or a stretch reducer.
  • the piercing rolling step, the elongating rolling step, and the constant diameter rolling step are defined as a “pipe forming step”.
  • the cumulative cross-sectional reduction rate in the pipe making process is, for example, 30 to 90%.
  • the method of cooling the raw tube after the piercing rolling step, the elongating rolling step, or the constant diameter rolling step is not particularly limited.
  • the raw tube may be air-cooled.
  • directly quenching after the piercing and rolling process, after the elongating and rolling process, or after the sizing and rolling process May be.
  • the raw tube may be reheated, and then quenching may be performed.
  • the heat treatment step After the elongation rolling step or the constant diameter rolling step, the heat treatment step is performed.
  • the heat treatment step includes a quenching step and a tempering step.
  • the quenching step a known quenching is performed on the raw tube.
  • the quenching temperature is 850 to 1150 ° C.
  • the microstructure of the tube becomes a two-phase structure of austenite and ferrite.
  • the quenching may be performed by direct quenching after the piercing and rolling step, immediately after the elongation rolling step, or immediately after the constant diameter rolling step. Further, after the piercing rolling step, the elongating rolling step, or the constant diameter rolling step, the cooled raw tube may be reheated using a heat treatment furnace to perform quenching.
  • the surface temperature of the raw tube measured by a thermometer installed on the exit side of the final stand is defined as quenching temperature (° C).
  • the furnace temperature of the heat treatment furnace is defined as a quenching temperature (° C.).
  • the holding time at the quenching temperature is not particularly limited. When a heat treatment furnace is used, the holding time at the quenching temperature is, for example, 10 to 60 minutes.
  • the method of quenching the tube at the quenching temperature is not particularly limited.
  • the pipe may be immersed in a water bath to rapidly cool the pipe, or shower water or mist cooling may be used to pour or spray cooling water on the outer and / or inner surface of the pipe, May be quenched.
  • Hardening may be performed multiple times. For example, after the piercing and rolling step, after the elongation and rolling step, or after directly quenching the raw tube after the M constant diameter rolling step, the raw tube is heated to a quenching temperature using a heat treatment furnace, and quenched again. May be implemented. Further, quenching and tempering described below may be repeatedly performed a plurality of times. That is, quenching and tempering may be performed a plurality of times. When performing quenching and tempering a plurality of times, the quenching temperature in each quenching is 850 to 1150 ° C., and the holding time at the quenching temperature is 10 to 60 minutes. The tempering temperature in each tempering is 400 to 700 ° C., and the holding time at the tempering temperature is 15 to 120 minutes. The microstructure of the quenched tube mainly contains ferrite and martensite, and the remainder consists of retained austenite.
  • tempering process tempering is performed on the tube after the above-described quenching step.
  • the tempering temperature is 400 to 700 ° C.
  • the holding time at the tempering temperature is not particularly limited, but is, for example, 15 to 120 minutes.
  • the yield strength of the seamless steel pipe is adjusted to 862 MPa or more.
  • the total volume ratio of ferrite and martensite 80% or more, and retained austenite is 20% or less.
  • the seamless steel pipe according to the present embodiment can be manufactured by the above manufacturing method.
  • the content of each element in the chemical composition is within the above-described range, and satisfies Expression (1) and Expression (2).
  • Expression (1) and Expression (2) satisfies Expression (1) and Expression (2).
  • the total volume ratio of ferrite and martensite is 80% or more, and the balance of retained austenite
  • (II) the intersection number NT L in the L direction observation field plane 50 is 38 or more And NT L / NL is 1.80 or more
  • the number of intersections NT C on the C-direction observation visual field plane 60 is 30 or more
  • NT C / NC is 1.70 or more. It is. Therefore, the yield strength becomes 862 MPa or more, and excellent low-temperature toughness is obtained. That is, both high yield strength and high low-temperature toughness can be achieved.
  • the above-described manufacturing method is an example of the method for manufacturing a seamless steel pipe according to the present embodiment. Therefore, the seamless steel pipe of the present embodiment has the above-mentioned chemical composition satisfying the formulas (1) and (2), and in the microstructure, the total volume ratio of (I) ferrite and martensite is 80% or more. Yes, the remainder consists of retained austenite, (II) the number of intersections NT L on the L direction observation visual field is 38 or more, and NT L / NL is 1.80 or more, and (III) the C direction If the number of intersections NT C in the observation visual field is 30 or more and NT C / NC is 1.70 or more, it may be manufactured by a manufacturing method other than the above-described manufacturing method.
  • a blank portion in Table 1 means that the content of the corresponding element was below the detection limit. That is, it means that the corresponding element was not contained.
  • a plurality of round billets as raw materials were manufactured by continuous casting using molten steel.
  • the round billet was heated at a heating temperature T (° C.) and a holding time t (hour) shown in Table 2.
  • the heated round billet was pierced and rolled using a piercing machine to produce a raw tube.
  • the tube temperature of each test number immediately after piercing and rolling was 1050 ° C. or higher.
  • the raw tubes after piercing and rolling were allowed to cool to room temperature (20 ⁇ 15 ° C.).
  • the tube after elongation rolling was allowed to cool to room temperature.
  • the tube was hardened. Specifically, the raw tube was charged into a heat treatment furnace, kept at a quenching temperature of 950 ° C. for 15 minutes, and then immersed in a water bath to perform water cooling (water quenching). Tempering was performed on the quenched tube. Specifically, the raw tube was charged into a heat treatment furnace and kept at a tempering temperature of 550 ° C. for 30 minutes. Through the above manufacturing steps, a seamless steel pipe as a steel material of each test number was manufactured. Table 2 shows the outer diameter (mm) and wall thickness (mm) of the seamless steel pipe of each manufactured test number.
  • the average value of the volume ratio V ⁇ of the six sets of retained austenite was defined as the volume ratio (%) of the retained austenite.
  • V ⁇ 100 / ⁇ 1+ (I ⁇ ⁇ R ⁇ ) / (I ⁇ ⁇ R ⁇ ) ⁇ (5)
  • R ⁇ on the (200) plane of the ⁇ phase is 15.9
  • R ⁇ on the (211) plane of the ⁇ phase is 29.2
  • R ⁇ on the (200) plane of the ⁇ phase is 35.5
  • R ⁇ on the (220) plane was 20.8, and R ⁇ on the (311) plane of the ⁇ phase was 21.8.
  • a sample was taken at the center position in the T direction (wall thickness direction) of the seamless steel pipe of each test number and including a cross section including the L direction and the T direction (a cross section in the L direction).
  • the section in the L direction was a plane including the L direction and the T direction.
  • the size of the cross section in the L direction was 5 mm in the L direction ⁇ 5 mm in the T direction.
  • a sample was taken such that the center position in the T direction of the cross section in the L direction substantially coincided with the center position in the T direction (thickness direction) of the seamless steel pipe.
  • the cross section in the L direction was immersed in a virella etchant for 10 seconds to reveal the structure by etching.
  • the etched section in the L direction was subjected to a layered structure confirmation test using an optical microscope with a magnification of 1000 times.
  • each L-direction observation visual field line segments T L1 to T L 4 extending in the T direction were arranged at regular intervals in the L direction, and the L-direction observation visual field was divided into five equal parts in the L direction. Further, the line segments L1 to L4 extending in the L direction were arranged at regular intervals in the T direction, and the L-direction observation visual field plane was divided into five equal parts in the T direction. The number of intersections between the line segments T L1 to T L4 and the ferrite interface in the L-direction observation visual field plane was counted and defined as the number of intersections NT L (pieces).
  • the number of intersections between the line segments L1 to L4 and the ferrite interface in the plane of the L-direction observation visual field was counted and defined as the number of intersections NL (pieces).
  • the average value of the 10 number of intersections NT L obtained in each of the L-direction observation field plane 10 points was defined as the number of intersections NT L (number) in the seamless steel pipes of the test numbers.
  • the average value of the ten layered index LI L obtained in each of the L-direction observation field plane 10 points was defined as the layered index LI L in seamless steel pipes of the test numbers. Number resulting intersection NT L, the number of intersections NL and layered index LI L, shown in Table 2.
  • a sample was taken at the center position in the T direction (thickness direction) of the seamless steel pipe of each test number and including a cross section including the C direction and the T direction (C direction cross section).
  • the cross section in the C direction was a plane including the C direction and the T direction.
  • the size of the cross section in the C direction was 5 mm in the C direction ⁇ 5 mm in the T direction.
  • a sample was taken such that the center position in the T direction of the cross section in the C direction substantially coincides with the center position in the T direction (thickness direction) of the seamless steel pipe.
  • the cross section in the C direction was immersed in a virella etchant for 10 seconds to reveal the structure by etching.
  • a layered structure confirmation test was performed on the etched cross section in the C direction using an optical microscope with a magnification of 1000 times.
  • each C-direction observation visual field line segments T C1 to T C 4 extending in the T direction were arranged at regular intervals in the C direction, and the C-direction observation visual field was divided into five equal parts in the C direction. Further, the line segments C1 to C4 extending in the C direction were arranged at equal intervals in the T direction, and the C-direction observation visual field plane was divided into five equal parts in the T direction. The number of intersections between the line segments T C1 to T C4 and the ferrite interface in the field of view in the C direction observation was counted and defined as the number of intersections NT C (pieces).
  • the number of intersections between the line segments C1 to C4 and the ferrite interface in the C-direction observation visual field plane was counted and defined as the number of intersections NC (pieces).
  • the average value of the 10 number of intersections NT C obtained in each of the C-direction observation field plane 10 points was defined as the number of intersections NT C (number) in the seamless steel pipes of the test numbers.
  • the average value of the ten laminar indices LI C obtained in each of the ten C-direction observation visual fields was defined as the laminar indices LI C in the seamless steel pipe of the test number.
  • Table 2 shows the obtained number of intersections NT C , number of intersections NC, and layered index LI C.
  • a hot workability test (a grease test) was performed. Specifically, a plurality of test pieces having a diameter of 10 mm and a length of 130 mm were cut out from billets of each steel number. The central axis of the test piece coincided with the central axis of the round billet. The test piece was heated to 1250 ° C. for 3 minutes using a high-frequency induction heating furnace, and then kept at 1250 ° C. for 3 minutes.
  • each of the plurality of test pieces having the steel number was cooled to 1250 ° C., 1200 ° C., 1100 ° C., and 1000 ° C., and then a tensile test was performed at a strain rate of 10 sec ⁇ 1. To break it.
  • the cross-sectional reduction rate of the fractured test piece was determined. If the obtained cross-sectional reduction rate is 70.0% or more at any temperature, it is determined that the steel of the steel number has excellent hot workability ("E” in the column of "Hot workability” in Table 2). (Expressed as “Excellent”). On the other hand, when the cross-sectional reduction rate was less than 70.0% in any of the temperature ranges, it was determined that the hot workability was low (“NA” (Not Accepted) in the “Hot workability” column of Table 2). Notation).
  • the chemical compositions of the seamless steel pipes of Test Nos. 1 to 15 were appropriate, and satisfied Expressions (1) and (2). Furthermore, the manufacturing conditions were also appropriate. Therefore, in the microstructure of the seamless steel pipe of each test number, the total volume ratio of ferrite and martensite was 80% or more, and the rest was retained austenite. In addition, the number of intersections NT L on the L-direction observation visual field is 38 or more, and NT L / NL is 1.80 or more, and the number of intersections NT C on the C-direction observation visual field is 30 or more. And NT C / NC was 1.70 or more. That is, in the seamless steel pipes of Test Nos.
  • the layered structure was sufficiently developed in both the L-direction cross section and the C-direction cross section.
  • the yield strength was 862 MPa or more, and sufficient hot workability was obtained.
  • the absorbed energy at ⁇ 10 ° C. was 150 J or more, and excellent low-temperature toughness was obtained.
  • Test Nos. 16 to 25 although the heating temperature T was appropriate, the FA did not satisfy the formula (A) in piercing and rolling. Therefore, in Test Nos. 16 to 25, at least NT C / NC on the C-direction observation visual field was less than 1.70. That is, in the microstructure of the seamless steel pipe of Test Nos. 16 to 25, at least in the cross section in the C direction, the layered structure was not sufficiently developed. As a result, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
  • NT L / NL in the L direction observation visual field was 1.80 or more, but NT C / NC in the C direction observation visual field was less than 1.70. there were. Therefore, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
  • the heating temperature T was too high. Therefore, in the microstructure, NT L / NL in the L direction observation visual field was less than 1.80, and NT C / NC in the C direction observation visual field was less than 1.70. As a result, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
  • the Nb content was too high. Therefore, in the microstructure, NT L / NL in the L direction observation visual field was less than 1.80, and NT C / NC in the C direction observation visual field was less than 1.70. As a result, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
  • the seamless steel pipe of the present embodiment is widely applicable to applications requiring high strength and low temperature toughness.
  • the seamless steel pipe according to the present embodiment can be used, for example, as a steel pipe for geothermal power generation or a steel pipe for chemical plant use.
  • the seamless steel pipe according to the present embodiment is particularly suitable for oil well applications. Seamless steel pipes for oil well applications are, for example, casings, tubing, drill pipes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

862MPa以上の降伏強度と、優れた低温靱性と両立できる継目無鋼管を提供する。継目無鋼管の化学組成は、質量%で、Cr:15.00~18.00%を含有し、式(1)及び式(2)を満たす。さらに、ミクロ組織において、(I)フェライト及びマルテンサイトの総体積率が80%以上であり、残部が体積率で20%以下の残留オーステナイトからなり、(II)L方向観察視野面での交点数NTLが38個以上となり、かつ、NTL/NLが1.80以上であり、さらに、(III)C方向観察視野での交点数NTCが30個以上となり、かつ、NTC/NCが1.70以上である。 156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1) Ca/S≧4.0 (2) NTL/NL≧1.85 (3) NTC/NL≧1.80 (4)

Description

継目無鋼管及びその製造方法
 本発明は、継目無鋼管及びその製造方法に関し、さらに詳しくは、地熱発電での使用、又は、油井環境又はガス井環境での使用等に適した継目無鋼管及びその製造方法に関する。以下、本明細書において、油井及びガス井をまとめて「油井」と称する。
 油井用鋼管は、炭酸ガス及び/又は硫化水素ガスを含有する高温環境の油井で使用される場合がある。本明細書において、高温環境は、150~200℃程度の温度を有し、腐食性ガスを含有する環境である。腐食性ガスはたとえば、炭酸ガス及び/又は硫化水素ガス等である。
 従来、油井用鋼管として、13質量%程度のCrを含有し、耐炭酸ガス腐食性に優れる13Cr鋼材が使用されていた。しかしながら、上述の高温環境の油井に使用する場合、さらなる耐食性が必要となる。そこで、Cr含有量を13Cr鋼材よりも高めて、15~18%程度とした、17Cr鋼材が提案されている。17Cr鋼材は、上述の高温環境において、優れた耐食性を示す。
 ところで、最近の油井の深井戸化に伴い、従来よりもさらに高い強度を有する油井用鋼管が求められている。具体的には、125ksi級(降伏強度が862MPa以上)の高強度を有する油井用鋼管が求められている。また、最近ではさらに、油井開発が寒冷地でも行われている。このような寒冷地の深井戸に使用される油井用鋼管には、高い強度だけでなく、優れた低温靱性が求められる。
 特開2013-249516号公報(特許文献1)、特開2016-145372号公報(特許文献2)、及び、国際公開第2010/134498号(特許文献3)では、上述の高温環境用途であって、高い強度、又は、高い強度及び高い低温靱性を有する油井用鋼管が提案されている。
 特許文献1に提案された油井用高強度ステンレス鋼継目無管の化学組成は、mass%で、C:0.005~0.06%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18.0%、Ni:1.5~5.0%、V:0.02~0.2%、Al:0.002~0.05%、N:0.01~0.15%、O:0.006%以下を含み、さらに、Mo:1.0~3.5%、W:3.0%以下、Cu:3.5%以下のうちから選ばれた1種又は2種以上を、式(1)及び式(2)を満足するように含有し、残部Fe及び不可避的不純物からなる。上記油井用高強度ステンレス鋼継目無管のミクロ組織は、マルテンサイトを主相とし、第二相として体積率で10~60%のフェライトと0~10%のオーステナイトとからなる。さらに、上記ミクロ組織において、肉厚方向に引いた線分の単位長さ当たりに存在するフェライト-マルテンサイト粒界の数として定義されるGSI値が、肉厚中央位置で120以上である。さらに、上記油井用高強度ステンレス鋼継目無管の肉厚は25.4mm超である。ここで、式(1)は、Cr+0.65Ni+0.60Mo+0.30W+0.55Cu-20C≧19.5で定義され、式(2)は、Cr+Mo+0.50W+0.30Si-43.5C-0.4Mn-Ni-0.3Cu-9N≧11.5で定義されている。
 特許文献1では、上述の化学組成を有する素材を、穿孔圧延を含む熱間圧延にて製造する。そして、熱間圧延において、1100~900℃の温度範囲における合計圧下率を30%以上にする。これにより、上述の組織を有する油井用高強度ステンレス鋼継目無管が製造できる、と記載されている。なお、1100~900℃の温度範囲での熱間圧延は、継目無鋼管の製造工程においては、穿孔圧延機を用いた穿孔圧延工程ではなく、穿孔圧延工程後のマンドレルミル等による延伸圧延工程での熱間圧延に相当する。
 特許文献2に提案された継目無鋼管の製造方法では、化学組成が、mass%で、C:0.005~0.05%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18%、Ni:1.5~5%、Cu:3.5%以下、Mo:1~3.5%、V:0.02~0.2%、Al:0.002~0.05%、N:0.01~0.15%、O:0.006%以下を含み、かつ、特許文献1と同じ式(1)及び式(2)を満足し、さらに、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下のうちから選ばれた1種又は2種以上を含有し、残部Fe及び不可避的不純物からなる鋼素材を準備する。そして、鋼素材に対して鋼管素材加工及び熱間加工を実施するときの鋼素材の加熱を、式(3)で定義される温度T(K)未満となる条件で行う。ここで、式(3)は、T(K)=7650/{2.35-log10([C]×α[X])}で定義される。式(3)において、[C]にはC含有量(mass%)が代入され、[X]にはV、Ti、Nb、Zrのうち、含有量がもっとも多い元素Xの含有量(mass%)が代入され、αは係数であって、元素XがV、Tiの場合には2が代入され、元素XがNb、Zrの場合は1が代入される。
 特許文献2では、上記製造方法により、フェライトの微細化を可能とし、その結果、継目無鋼管の低温靱性を高めることができると記載されている。
 特許文献3に提案されている油井用ステンレス鋼は、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす化学組成と、マルテンサイトと、体積率で10~40%のフェライトとを含み、かつ、各々がステンレス鋼の表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に一列に配列された複数の仮想線分をステンレス鋼の断面に配置したとき、仮想線分の総数に対するフェライトと交差する仮想線分の数の割合が85%よりも多い組織と、758MPa以上の0.2%オフセット耐力とを有することを特徴とする。ここで、式(1)は、Cr+Cu+Ni+Mo≧25.5と定義され、式(2)は、-8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2-1.1(Cr+Mo)≦-4と定義されている。
 特許文献3の油井用ステンレス鋼は、表層の組織中のフェライトを制御する。具体的には、製造工程において、上述の化学組成を有する鋼素材を用いて熱間加工を実施する。熱間加工において、850~1250℃における総減面率を50%以上とする。850~1250℃における総減面率を考慮する場合、穿孔圧延での減面率だけでなく、延伸圧延での減面率も含まれている。
特開2013-249516号公報 特開2016-145372号公報 国際公開第2010/134498号
 特許文献1及び2に記載の継目無鋼管はいずれも、低温靱性に優れると記載されている。しかしながらこれらの文献の降伏強度はいずれも862MPa未満である。特許文献1及び2では、862MPa以上の降伏強度を有し、かつ、低温靱性にも優れる継目無鋼管については検討されていない。また、特許文献3に記載の油井用ステンレス鋼に関しては低温靱性の観点からの検討がされていない。
 本開示の目的は、862MPa以上の降伏強度と、優れた低温靱性とを両立可能な継目無鋼管を提供することである。
 本開示による継目無鋼管は、
 化学組成が、
 質量%で、
 C:0.050%以下、
 Si:0.50%以下、
 Mn:0.01~0.20%、
 P:0.025%以下、
 S:0.0150%以下、
 Cu:0.09~3.00%、
 Cr:15.00~18.00%、
 Ni:4.00~9.00%、
 Mo:1.50~4.00%、
 Al:0.040%以下、
 N:0.0150%以下、
 Ca:0.0010~0.0040%、
 Ti:0.020%以下、
 Nb:0.020%以下、
 V:0~0.20%、
 Co:0~0.30%、
 W:0~2.00%、及び
 残部:Fe及び不純物からなり、式(1)及び式(2)を満たし、
 前記継目無鋼管の管軸方向をL方向、肉厚方向をT方向、前記L方向及び前記T方向と垂直な方向をC方向と定義したとき、ミクロ組織が、次の(I)~(III)を満たす。
 (I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
 (II)前記継目無鋼管の肉厚中央位置に位置し、前記L方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のL方向観察視野面において、
 前記T方向に延びる線分であって、前記L方向に等間隔に配列され、前記L方向観察視野面を前記L方向に5等分する4つの線分を線分TL1~TL4と定義し、
 前記L方向に延びる線分であって、前記T方向に等間隔に配列され、前記L方向観察視野面を前記T方向に5等分する4つの線分を線分L1~L4と定義し、
 前記フェライトと前記マルテンサイトとの界面をフェライト界面と定義したとき、
 前記線分TL1~TL4と前記フェライト界面との交点の数である交点数NTLが38個以上であり、
 前記線分L1~L4と前記フェライト界面との交点の数である交点数NLと、前記交点数NTLとが、式(3)を満たす。
 (III)前記継目無鋼管の肉厚中央位置に位置し、前記C方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のC方向観察視野面において、
 前記T方向に延びる線分であって、前記C方向に等間隔に配列され、前記C方向観察視野面を前記C方向に5等分する4つの線分を線分TC1~TC4と定義し、
 前記C方向に延びる線分であって、前記T方向に等間隔に配列され、前記C方向観察視野面を前記T方向に5等分する4つの線分を線分C1~C4と定義し、
 前記線分TC1~TC4と前記フェライト界面との交点の数である交点数NTCが30個以上であり、
 前記線分C1~C4と前記フェライト界面との交点の数である交点数NCと、前記交点数NTCとが、式(4)を満たす。
 156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
 Ca/S≧4.0 (2)
 NTL/NL≧1.80 (3)
 NTC/NC≧1.70 (4)
 ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 本開示による継目無鋼管の製造方法は、
 化学組成が、
 質量%で、
 C:0.050%以下、
 Si:0.50%以下、
 Mn:0.01~0.20%、
 P:0.025%以下、
 S:0.0150%以下、
 Cu:0.09~3.00%、
 Cr:15.00~18.00%、
 Ni:4.00~9.00%、
 Mo:1.50~4.00%、
 Al:0.040%以下、
 N:0.0150%以下、
 Ca:0.0010~0.0040%、
 Ti:0.020%以下、
 Nb:0.020%以下、
 V:0~0.20%、
 Co:0~0.30%、
 W:0~2.00%、及び
 残部:Fe及び不純物からなり、式(1)及び式(2)を満たす素材を、1200~1260℃の加熱温度Tでt時間保持する加熱工程と、
 前記加熱工程で加熱された前記素材を、式(A)を満たす条件で穿孔圧延して素管を製造する穿孔圧延工程と、
 前記素管を延伸圧延する延伸圧延工程と、
 前記延伸圧延工程後の前記素管に対して、850~1150℃の焼入れ温度で焼入れを実施する焼入れ工程と、
 前記焼入れ工程後の前記素管に対して、400~700℃の焼戻し温度で焼戻しを実施する焼戻し工程と、を備える、
 継目無鋼管の製造方法。
 156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
 Ca/S≧4.0 (2)
 0.057X-Y<1720 (A)
 式(A)中のXは次の式(B)で定義される。
 X=(T+273)×{20+log(t)} (B)
 ここで、Tは前記素材の加熱温度(℃)であり、tは、前記加熱温度Tでの保持時間(時間)である。
 式(A)中の断面減少率Y(%)は式(C)で定義される。
 Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C)
 本開示による継目無鋼管は、862MPa以上の降伏強度と、優れた低温靱性とを両立できる。本開示による継目無鋼管の製造方法は、上述の継目無鋼管を製造できる。
図1は、本実施形態の継目無鋼管と同じ化学組成を有するものの、ミクロ組織が異なる継目無鋼管の肉厚中央位置であって、継目無鋼管の管軸方向(L方向)及び肉厚方向(T方向)を含む断面でのミクロ組織の模式図である。 図2は、本実施形態の継目無鋼管の肉厚中央位置であって、L方向及びT方向を含む断面でのミクロ組織の模式図である。 図3は、継目無鋼管の断面でのミクロ組織と亀裂の進展との関係を説明するための模式図である。 図4は、本実施形態におけるL方向観察視野面での層状指数LIL(LI:Layer Index)の算出方法を説明するための模式図である。 図5は、本実施形態におけるC方向観察視野面での層状指数LICの算出方法を説明するための模式図である。 図6は、化学組成中の各元素含有量が上述の範囲内であり、かつ、式(1)及び式(2)を満たし、L方向観察視野面での層状指数LILが式(3)を満たす継目無鋼管における、C方向観察視野面での層状指数LICと、-10℃での吸収エネルギー(低温靱性)との関係を示す図である。
 本発明者らは、862MPa以上の降伏強度と、優れた低温靱性とを両立可能な継目無鋼管について検討を行った。
 初めに、本発明者らは、862MPa以上の降伏強度を有し、かつ、優れた低温靱性を有する継目無鋼管の化学組成について検討を行った。その結果、化学組成が、質量%で、C:0.050%以下、Si:0.50%以下、Mn:0.01~0.20%、P:0.025%以下、S:0.0150%以下、Cu:0.09~3.00%、Cr:15.00~18.00%、Ni:4.00~9.00%、Mo:1.50~4.00%、Al:0.040%以下、N:0.0150%以下、Ca:0.0010~0.0040%、Ti:0.020%以下、Nb:0.020%以下、V:0~0.20%、Co:0~0.30%、W:0~2.00%、及び、残部:Fe及び不純物、からなる継目無鋼管であれば、862MPa(125ksi)以上の高い降伏強度と、優れた低温靱性とを両立できる可能性があると考えた。
 ところで、上述の化学組成を有する継目無鋼管の場合、ミクロ組織は、主としてフェライトとマルテンサイトとからなる二相組織である。より具体的には、ミクロ組織は、フェライト及びマルテンサイトを含有し、残部は、残留オーステナイトからなる。
 本発明者らは、二相組織のフェライトの体積率及びマルテンサイトの体積率と低温靱性との関係を調査した。本発明者らはさらに、二相組織のフェライトとマルテンサイトとの分布状態と低温靱性との関係についても調査及び検討を行った。その結果、上述の化学組成を有する鋼材の二相組織において、フェライト体積率とマルテンサイト体積率とが同等であっても、フェライト及びマルテンサイトの分布状態が異なれば、得られる低温靱性が全く異なることが判明した。
 図1及び図2は、上述の化学組成を有する継目無鋼管の管軸方向及び肉厚方向を含む断面でのミクロ組織の模式図である。図1の左右方向が管軸方向(圧延方向)に相当し、図1の上下方向が肉厚方向に相当する。同様に、図2の左右方向がL方向に相当し、図2の上下方向がT方向に相当する。なお、本明細書において、継目無鋼管の管軸方向(圧延方向)を「L方向」と定義する。継目無鋼管の肉厚方向を「T方向」と定義する。ここで、肉厚方向とは、管軸方向に垂直な断面における、径方向を意味する。L方向とT方向とに垂直な方向(継目無鋼管の周方向に相当)を「C方向」と定義する。図1及び図2のいずれにおいても、模式図のL方向長さは100μmであり、T方向長さは100μmである。
 図1及び図2において、白色の領域10はフェライトである。ハッチングされた領域20はマルテンサイトである。図1でのフェライト体積率及びマルテンサイト体積率は、図2でのフェライト体積率及びマルテンサイト体積率とそれほど大きくは変わらない。しかしながら、図1のフェライト10及びマルテンサイト20の分布状態は、図2のフェライト10及びマルテンサイト20の分布状態と大きく異なる。具体的には、図1に示すミクロ組織では、フェライト10及びマルテンサイト20が各々ランダムな方向に延びており、非層状組織となっている。一方、図2に示すミクロ組織では、フェライト10及びマルテンサイト20がL方向に延びており、フェライト10及びマルテンサイト20がT方向に積層している。つまり、図2に示すミクロ組織は、フェライト10とマルテンサイト20との層状組織となっている。
 このように、上述の化学組成を有する継目無鋼管では、同じ化学組成であっても、ミクロ組織が大きく異なる場合があることが判明した。図1に示すミクロ組織を有する継目無鋼管、及び、図2に示すミクロ組織を有する継目無鋼管から後述する方法でシャルピー衝撃試験片を採取した。そして、ASTM A370-18に準拠して、シャルピー衝撃試験を実施し、-10℃での吸収エネルギー(J)を求めた。その結果、図1に示すミクロ組織(非層状組織)の継目無鋼管の-10℃での吸収エネルギーと比較して、図2に示すミクロ組織(層状組織)の継目無鋼管の-10℃での吸収エネルギーは顕著に大きかった。したがって、本発明者らは、上述の化学組成において、L方向及びT方向を含む断面(以下、L方向断面という)のミクロ組織において、L方向に沿って延びる層状組織が得られれば、優れた低温靱性が得られると考えた。
 しかしながら、さらなる検討を行った結果、継目無鋼管のミクロ組織が、L方向に沿って延びる層状組織を有していても、必ずしも低温靱性に優れるわけではなかった。つまり、継目無鋼管のミクロ組織が、L方向断面において、L方向に沿って延びる層状組織を有していても、低温靱性が低い場合があった。
 そこで、本発明者らは、継目無鋼管での亀裂の進展方向と、層状組織の延在方向との関係について検討した。その結果、低温靱性を高めるためには、層状組織が単にL方向に延びているだけでなく、層状組織がC方向にも延びていることが重要であることが判明した。この理由は定かではないが、次の理由が考えられる。
 継目無鋼管での亀裂は、L方向に進展する場合と、C方向に進展する場合とが存在する。したがって、低温靱性を高めるためには、亀裂の進展がL方向及びC方向のいずれの方向に進展しても、層状組織中のマルテンサイトにより、亀裂の進展を阻止できることが好ましい。
 図3は、継目無鋼管1の断面でのミクロ組織と亀裂の進展との関係を説明するための模式図である。図3を参照して、継目無鋼管1において、上述のとおり、L方向及びT方向を含む断面を「L方向断面」1Lと定義する。さらに、C方向及びT方向を含む断面を「C方向断面」1Cと定義する。図3では、層状組織が、L方向にも十分に伸びており、かつ、C方向にも十分に延びていると仮定する。
 図3に示すとおり、亀裂の進展方向DをL方向成分とC方向成分とに分解する。亀裂の進展方向のL方向成分を、LDC(L Direction Crack)と定義する。亀裂の進展方向のC方向成分を、CDC(C Direction Crack)と定義する。
 フェライト10及びマルテンサイト20からなる層状組織において、マルテンサイト20は、亀裂の進展を阻止する。つまり、マルテンサイト20は、フェライト10よりも金属組織が微細であり、靭性に優れた組織である。そのため、マルテンサイト20は、亀裂の進展の抵抗として作用する。亀裂の進展方向とマルテンサイト20の延在方向とが交差しており、かつ、マルテンサイト20に衝突した亀裂先端が進展方向を変化させて再度進展を開始しても、亀裂先端が再びマルテンサイト20に衝突しやすい場合、つまり、亀裂がどこに進展してもマルテンサイト20を回避しにくい場合、亀裂の進展を有効に阻止できる。
 図3のC方向断面1Cのミクロ組織に示すとおり、亀裂のL方向成分LDCは、C方向に延びるマルテンサイト20と交差(直交)する。この場合、C方向に延びるマルテンサイト20は、亀裂のL方向成分LDCに対して抵抗として作用し、亀裂のL方向成分LDCの進展を阻止する。
 同様に、図3のL方向断面1Lのミクロ組織に示すとおり、亀裂のC方向成分CDCは、L方向に延びるマルテンサイト20と交差(直交)する。この場合、L方向に延びるマルテンサイトは、亀裂のC方向成分CDCに対して抵抗として作用し、亀裂のC方向成分CDCの進展を阻止する。
 以上のとおり、C方向及びL方向に延びるマルテンサイトは、亀裂の進展を阻止する。さらに、L方向断面1L及びC方向断面1Cにおいて、単位面積当たりのT方向の積層数が多いほど、亀裂の進展がマルテンサイト20を回避しにくくなる。具体的には、L方向断面1L及びC方向断面1Cでの単位面積当たりのT方向の積層数が多いほど、マルテンサイト20により進展をいったん阻止された亀裂が進展方向を変えて再び進展を開始しても、亀裂先端が他のマルテンサイト20にすぐに衝突する確率が高くなる。そのため、亀裂の進展が阻止される。
 以上のとおり、L方向断面1Lにおいて層状組織の単位面積当たりのT方向のフェライト10及びマルテンサイト20の積層数が多く、かつ、層状組織がL方向に十分に延びており、かつ、C方向断面1Cにおいて層状組織の単位面積当たりのT方向のフェライト10及びマルテンサイト20の積層数が多く、かつ、層状組織がC方向に十分に延びているほど、単に、層状組織がL方向にだけ十分に延びており、C方向には十分に延びていない場合よりも、亀裂がマルテンサイト20を回避しにくい。そのため、亀裂の進展を十分に抑制できる。
 以上のとおり、継目無鋼管1での亀裂の進展を効果的に抑制するためには、単にL方向断面1Lでのミクロ組織において、単位面積当たりのT方向のフェライト10及びマルテンサイト20の積層数が多く、かつ、マルテンサイト20がL方向に十分に延びているだけでなく、C方向断面1Cでのミクロ組織においても、単位面積当たりのT方向のフェライト10及びマルテンサイト20の積層数が多く、かつ、マルテンサイト20がC方向に十分に延びていることが極めて有効であると考えた。
 以上の検討結果に基づいて、本発明者らは、L方向断面1Lでの層状組織の形態だけでなく、C方向断面1Cでの層状組織の形態について、さらに検討を行った。その結果、L方向断面1Lにおいて、
 (II-1)交点数NTLが38個以上であり、
 (II-2)式(3)で定義される層状指数LIL(Layer Index of Longitudinal direction)が1.80以上であり、
 かつ、C方向断面1Cにおいて、
 (III-1)交点数NTCが30個以上であり、かつ、
 (III-2)式(4)で定義される層状指数LIC(Layer Index of Circumferential direction)が1.70以上、
 であれば、862MPa以上の降伏強度を有していても、亀裂を極めて有効に抑制することが可能となり、優れた低温靱性が得られることがわかった。
 層状指数LIL=NTL/NL≧1.80 (3)
 層状指数LIC=NTC/NC≧1.70 (4)
 以下、交点数NTL及び層状指数LIL、交点数NTC及び層状指数LICについて説明する。
 [L方向断面1Lでの交点数NTL及び層状指数LILについて]
 層状指数LILは、L方向断面1Lにおける層状組織の発達の度合いを示す指標である。層状指数LIL中のNTL、NLは次のとおり定義される。
 図4を参照して、継目無鋼管の肉厚中央位置でのL方向及びT方向を含むL方向断面1Lにおいて、L方向に延びる辺の長さが100μm、T方向に延びる辺の長さが100μmの正方形の領域を、L方向観察視野面50と定義する。図5では、L方向観察視野面50が、フェライト10とマルテンサイト20とを含む。ここで、フェライト10とマルテンサイト20との界面を、「フェライト界面」FBと定義する。なお、残留オーステナイトは、マルテンサイト20内のラス界面に存在し、顕微鏡観察では観察が困難である。一方、フェライト10とマルテンサイト20とは、顕微鏡観察において、コントラストが異なるため、当業者であれば容易に特定できる。
 図4中の線分TL1~TL4は、T方向に延び、L方向に等間隔に配列され、L方向観察視野面50をL方向に5等分する線分である。線分TL1~TL4と、L方向観察視野面50内のフェライト界面FBとの交点(図4中で「●」印)の数を、交点数NTL(個)と定義する。交点数NTLは、L方向断面1L(L方向観察視野面50)における、単位面積当たりのT方向におけるフェライト10とマルテンサイト20との積層数を意味する。
 図4中の線分L1~L4は、L方向に延び、T方向に等間隔に配列され、L方向観察視野面50をT方向に5等分する線分である。線分L1~L4と、L方向観察視野面50内のフェライト界面FBとの交点(図4中で「◇」印)の数を、交点数NL(個)と定義する。
 層状指数LILは、L方向断面1L(L方向観察視野面50)における、層状組織の発達度合いを意味する。交点数NTLが38個以上であり、かつ、層状指数LILが1.80以上である場合、L方向断面1Lにおいて、十分に発達した層状組織が得られていることを意味する。この場合、C方向断面1C(C方向観察視野面60)における交点数NTCが30個以上であり、層状指数LICが1.70以上であることを前提として、上述の化学組成の継目無鋼管において、862MPa以上の降伏強度を有し、かつ、優れた低温靱性が得られる。なお、図4において、交点数NTLは43個であり、交点数NLは6個である。したがって、層状指数LILは7.17である。
 [C方向断面1Cでの交点数NTC及び層状指数LICについて]
 層状指数LICは、C方向断面1Cにおける、層状組織の発達の度合いを示す指標である。層状指数LIC中のNTC、NCは次のとおり定義される。
 図5を参照して、継目無鋼管の肉厚中央位置でのC方向及びT方向を含むC方向断面1Cにおいて、C方向に延びる辺の長さが100μm、T方向に延びる辺の長さが100μmの正方形の領域を、C方向観察視野面60とする。図4と同様に、図5では、C方向観察視野面60が、フェライト10とマルテンサイト20とを含む。
 図5中の線分TC1~TC4は、T方向に延び、C方向に等間隔に配列され、C方向観察視野面60をC方向に5等分する線分である。線分TC1~TC4と、C方向観察視野面60内のフェライト界面FBとの交点(図5中で「●」印)の数を、交点数NTC(個)と定義する。交点数NTCは、C方向断面1C(C方向観察視野面60)における、単位面積当たりのT方向におけるフェライト10とマルテンサイト20との積層数を意味する。
 図5中の線分C1~C4は、C方向に延び、C方向に等間隔に配列され、C方向観察視野面60をT方向に5等分する線分である。線分C1~C4と、C方向観察視野面60内のフェライト界面FBとの交点(図5中で「◇」印)の数を、交点数NC(個)と定義する。
 層状指数LICは、C方向断面1C(C方向観察視野面60)における層状組織の発達度合いを意味する。交点数NTCが30個以上であり、かつ、層状指数LICが1.70以上である場合、C方向断面1Cにおいて、十分に発達した層状組織が得られていることを意味する。この場合、L方向断面1Lにおける交点数NTLが38個以上であり、層状指数LILが1.80以上であることを前提として、上述の化学組成の継目無鋼管において、862MPa以上の降伏強度を有し、かつ、優れた低温靱性が得られる。なお、図6において、交点数NTCは36個であり、交点数NCは10個である。したがって、層状指数LICは3.60である。
 上述のとおり、L方向断面1Lでの単位面積当たりのT方向のフェライト10及びマルテンサイト20の積層数を意味する交点数NTLを38個以上とし、フェライト10及びマルテンサイト20の層状度合いを示す層状指数LILを1.80以上とする(つまり式(3)を満たす)だけでなく、C方向断面1Cでの単位面積当たりのT方向のフェライト10及びマルテンサイト20の積層数を意味する交点数NTCを30個以上とし、マルテンサイトとフェライトとの層状度合いを示す層状指数LICを1.70以上とする(つまり式(4)を満たす)。これにより、亀裂を有効に抑制でき、862MPa以上の降伏強度を有していても、優れた低温靱性が得られる。
 しかしながら、上述の化学組成を有する継目無鋼管であっても、L方向断面1L及びC方向断面1Cでの層状組織が、必ずしも式(3)及び式(4)を満たさない場合があることがわかった。そこで、本発明者らはその原因について検討を行った。その結果、次の事項が判明した。
 通常、Ti及びNbは、熱間加工時において炭窒化物等を生成して、ピンニング効果により結晶粒を微細化するのに有効である。なお、本明細書において、炭窒化物等とは、窒化物、炭化物又は炭窒化物の総称を意味する。
 しかしながら、上述の化学組成の素材を用いた継目無鋼管の製造において、Ti及びNbのピンニング効果は、フェライトの延伸を阻害する。同様に、AlはAlNを生成して、ピンニング効果を発揮する。また、VはV炭窒化物を生成して、ピンニング効果を発揮する。さらに、Mnは、Sと結合して微細なMnSを生成する場合がある。この場合、MnSもピンニング効果を発揮する。これらのピンニング効果を発生させる析出物が多数生成すれば、フェライトの延伸が阻害される。そのため、L方向断面1L及び/又はC方向断面1Cにおいて、十分に発達した層状組織が得られにくくなる。その結果、ミクロ組織が式(3)及び/又は式(4)を満たさなくなってしまう。
 そこで、本発明者らは、化学組成中におけるTi含有量、Nb含有量、Al含有量、N含有量、V含有量、C含有量、Mn含有量及びS含有量の関係と、層状組織の発達度合いとについて検討を行った。その結果、上記化学組成においてさらに、式(1)を満たせば、ピンニング効果を発揮する析出物(以下、ピンニング粒子という)の生成を十分に抑制でき、L方向断面1L及びC方向断面1Cの両方において、十分に発達した層状組織が得られることを知見した。
 156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 さらに、継目無鋼管において、上述の式(3)及び式(4)を満たす層状組織を得るためには、製造工程中における熱間加工性も高めた方が好ましい。そこで、上述の化学組成は、式(1)だけでなく、次の式(2)も満たすことが好ましい。
 Ca/S≧4.0 (2)
 ここで、式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
 固溶Sは粒界に偏析して熱間加工性を低下する。CaによりSを固定すれば、鋼中の固溶Sが低減し、熱間加工性を高めることができる。上記化学組成の継目無鋼管の場合、S含有量に対するCa含有量が式(2)を満たすことにより、十分な熱間加工性が得られる。そのため、継目無鋼管の化学組成が式(1)も満たすことを前提として、L方向断面1Lにおいて上記(II-1)及び(II-2)を満たす層状組織が得られ、さらに、C方向断面1Cにおいて(III-1)及び(III-2)を満たす層状組織が得られる。その結果、亀裂を有効に抑制でき、862MPa以上の降伏強度を有していても、優れた低温靱性が得られる。
 図6は、化学組成中の各元素含有量は上述の範囲内であり、かつ、式(1)及び式(2)を満たし、L方向観察視野面での交点数NTLが38個以上であり、層状指数LILが式(3)を満たし、降伏強度が862MPa以上である継目無鋼管における、C方向観察視野面での層状指数LICと、-10℃での吸収エネルギー(低温靱性)との関係を示す図である。つまり、式(1)及び式(2)を満たす化学組成を有し、降伏強度が862MPa以上であり、L方向断面1Lでは十分に発達した層状組織が得られている継目無鋼管での、C方向断面1Cでの層状組織の発達度合い(LIC)と低温靱性との関係を示す図である。
 図6を参照して、化学組成中の各元素含有量は上述の範囲内であり、かつ、式(1)及び式(2)を満たし、L方向観察視野面において上記(II-1)及び(II-2)を満たし、降伏強度が862MPa以上である継目無鋼管において、C方向観察視野面での層状指数LICが1.70未満であれば、層状指数LICが増加すると、-10℃での吸収エネルギーが急激に増加する。そして、層状指数LICが1.70以上となると、-10℃での吸収エネルギーが150J以上となるものの、層状指数LICの増加に伴う-10℃での吸収エネルギーの増加代が、層状指数LICが1.70未満の場合よりも少ない。つまり、層状指数LICが1.70近傍で変曲点を有する。なお、図6において、層状指数LICが1.70以上である場合、交点数NTCは30個以上であった。
 要するに、図6は、862MPa以上の降伏強度を有する継目無鋼管において、L方向断面1Lで層状組織が十分に発達しているだけでなく、C方向断面1Cでも層状組織が十分に発達していることにより、低温靱性が顕著に高まることを示している。したがって、化学組成中の各元素含有量が上述の範囲内であり、かつ、式(1)及び式(2)を満たし、L方向観察視野面での交点数NTLが38個以上であり、層状指数LILが式(3)を満たす継目無鋼管において、交点数NTCを30個以上とし、かつ、層状指数LICが1.70以上とすることにより、862MPa以上の降伏強度が得られつつ、優れた低温靱性も得られる。
 以上の知見に基づいて完成した本実施形態による継目無鋼管及びその製造方法は、次の構成を有する。
 [1]の継目無鋼管は、
 化学組成が、
 質量%で、
 C:0.050%以下、
 Si:0.50%以下、
 Mn:0.01~0.20%、
 P:0.025%以下、
 S:0.0150%以下、
 Cu:0.09~3.00%、
 Cr:15.00~18.00%、
 Ni:4.00~9.00%、
 Mo:1.50~4.00%、
 Al:0.040%以下、
 N:0.0150%以下、
 Ca:0.0010~0.0040%、
 Ti:0.020%以下、
 Nb:0.020%以下、
 V:0~0.20%、
 Co:0~0.30%、
 W:0~2.00%、及び
 残部:Fe及び不純物からなり、式(1)及び式(2)を満たし、
 前記継目無鋼管の管軸方向をL方向、肉厚方向をT方向、前記L方向及び前記T方向と垂直な方向をC方向と定義したとき、ミクロ組織が、次の(I)~(III)を満たす。
 (I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
 (II)前記継目無鋼管の肉厚中央位置に位置し、前記L方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のL方向観察視野面において、
 前記T方向に延びる線分であって、前記L方向に等間隔に配列され、前記L方向観察視野面を前記L方向に5等分する4つの線分を線分TL1~TL4と定義し、
 前記L方向に延びる線分であって、前記T方向に等間隔に配列され、前記L方向観察視野面を前記T方向に5等分する4つの線分を線分L1~L4と定義し、
 前記フェライトと前記マルテンサイトとの界面をフェライト界面と定義したとき、
 前記線分TL1~TL4と前記フェライト界面との交点の数である交点数NTLが38個以上であり、
 前記線分L1~L4と前記フェライト界面との交点の数である交点数NLと、前記交点数NTLとが、式(3)を満たす。
 (III)前記継目無鋼管の肉厚中央位置に位置し、前記C方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のC方向観察視野面において、
 前記T方向に延びる線分であって、前記C方向に等間隔に配列され、前記C方向観察視野面を前記C方向に5等分する4つの線分を線分TC1~TC4と定義し、
 前記C方向に延びる線分であって、前記T方向に等間隔に配列され、前記C方向観察視野面を前記T方向に5等分する4つの線分を線分C1~C4と定義し、
 前記線分TC1~TC4と前記フェライト界面との交点の数である交点数NTCが30個以上であり、
 前記線分C1~C4と前記フェライト界面との交点の数である交点数NCと、前記交点数NTCとが、式(4)を満たす。
 156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
 Ca/S≧4.0 (2)
 NTL/NL≧1.80 (3)
 NTC/NC≧1.70 (4)
 ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 [2]の継目無鋼管は、
 [1]に記載の継目無鋼管であって、
 前記化学組成は、
 V:0.01~0.20%、を含有する。
 [3]の継目無鋼管は、
 [1]又は[2]に記載の継目無鋼管であって、
 前記化学組成は、
 Co:0.10~0.30%、及び、
 W:0.02~2.00%、からなる群から選択される1種以上、を含有する。
 [4]の継目無鋼管の製造方法は、
 化学組成が、
 質量%で、
 C:0.050%以下、
 Si:0.50%以下、
 Mn:0.01~0.20%、
 P:0.025%以下、
 S:0.0150%以下、
 Cu:0.09~3.00%、
 Cr:15.00~18.00%、
 Ni:4.00~9.00%、
 Mo:1.50~4.00%、
 Al:0.040%以下、
 N:0.0150%以下、
 Ca:0.0010~0.0040%、
 Ti:0.020%以下、
 Nb:0.020%以下、
 V:0~0.20%、
 Co:0~0.30%、
 W:0~2.00%、及び
 残部:Fe及び不純物からなり、式(1)及び式(2)を満たす素材を、1200~1260℃の加熱温度Tでt時間保持する加熱工程と、
 前記加熱工程で加熱された前記素材を、式(A)を満たす条件で穿孔圧延して素管を製造する穿孔圧延工程と、
 前記素管を延伸圧延する延伸圧延工程と、
 前記延伸圧延工程後の前記素管に対して、850~1150℃の焼入れ温度で焼入れを実施する焼入れ工程と、
 前記焼入れ工程後の前記素管に対して、400~700℃の焼戻し温度で焼戻しを実施する焼戻し工程と、を備える、
 継目無鋼管の製造方法。
 156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
 Ca/S≧4.0 (2)
 0.057X-Y<1720 (A)
 式(A)中のXは次の式(B)で定義される。
 X=(T+273)×{20+log(t)} (B)
 ここで、Tは素材の加熱温度(℃)であり、tは、加熱温度Tでの保持時間(時間)である。
 式(A)中の断面減少率Y(%)は式(C)で定義される。
 Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C)
 [5]の継目無鋼管の製造方法は、
 [4]に記載の継目無鋼管の製造方法であって、
 前記化学組成は、
 V:0.01~0.20%、を含有する。
 [6]の継目無鋼管の製造方法は、
 [4]又は[5]に記載の継目無鋼管の製造方法であって、
 前記化学組成は、
 Co:0.10~0.30%、及び、
 W:0.02~2.00%、からなる群から選択される1種以上、を含有する。
 本実施形態による継目無鋼管の用途は特に限定されない。本実施形態の継目無鋼管は、高強度及び低温靱性が求められる用途に広く適用可能である。本実施形態による継目無鋼管はたとえば、地熱発電用途の鋼管や、化学プラント用途の鋼管として利用可能である。本実施形態による継目無鋼管は特に、油井用鋼管としての使用に好適である。油井用途の継目無鋼管はたとえば、ケーシング、チュービング、ドリルパイプである。
 以下、本実施形態による継目無鋼管について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [化学組成]
 本実施形態による継目無鋼管の化学組成は、次の元素を含有する。
 C:0.050%以下
 炭素(C)は、不可避に含有される。つまり、C含有量は0%超である。Cは、鋼材の強度を高める。しかしながら、C含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、焼戻し後の硬さが高くなり過ぎ、低温靱性が低下する。C含有量が0.050%を超えればさらに、残留オーステナイトが増加する。この場合、他の元素含有量が本実施形態の範囲内であっても、降伏強度が低くなりやすい。したがって、C含有量は0.050%以下である。C含有量の下限は特に限定されない。しかしながら、C含有量の過剰な低減は、製鋼工程における精錬コストを大幅に高める。したがって、工業生産を考慮すれば、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは、0.007%である。C含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%である。
 Si:0.50%以下
 シリコン(Si)は、不可避に含有される。つまり、Si含有量は0%超である。Siは、鋼を脱酸する。しかしながら、Si含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性及び熱間加工性が低下する。したがって、Si含有量は0.50%以下である。Si含有量の好ましい下限は特に限定されない。しかしながら、Si含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、工業生産を考慮すれば、Si含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.10%である。Si含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%である。
 Mn:0.01~0.20%
 マンガン(Mn)は、鋼を脱酸し、鋼を脱硫する。Mnはさらに、鋼材の熱間加工性を高める。Mn含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Mn含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、MnがP及びS等の不純物とともに、粒界に偏析する。この場合、高温環境における耐食性が低下する。したがって、Mn含有量は0.01~0.20%である。Mn含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Mn含有量の好ましい上限は0.18%であり、さらに好ましくは0.15%であり、さらに好ましくは0.13%である。
 P:0.025%以下
 燐(P)は不可避に含有される不純物である。すなわち、P含有量は0%超である。Pは、粒界に偏析して、鋼材の低温靱性を低下する。したがって、P含有量は0.025%以下である。P含有量の好ましい上限は0.020%であり、さらに好ましくは0.015%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、工業生産を考慮すれば、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。
 S:0.0150%以下
 硫黄(S)は不可避に含有される不純物である。すなわち、S含有量は0%超である。Sは、粒界に偏析して、鋼材の低温靱性及び熱間加工性を低下する。したがって、S含有量は0.0150%以下である。S含有量の好ましい上限は0.0050%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
 Cu:0.09~3.00%
 銅(Cu)は、析出強化により、鋼材の強度を高める。Cuはさらに、高温環境での鋼材の耐食性を高める。Cu含有量が0.09%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Cu含有量が3.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Cu含有量は、0.09~3.00%である。Cu含有量の好ましい下限は0.10%であり、さらに好ましくは、0.20%であり、さらに好ましくは0.80%であり、さらに好ましくは1.20%である。Cu含有量の好ましい上限は2.90%であり、さらに好ましくは2.80%であり、さらに好ましくは2.70%である。
 Cr:15.00~18.00%
 クロム(Cr)は、高温環境での鋼材の耐食性を高める。具体的には、Crは高温環境での鋼材の腐食速度を低減し、鋼材の耐炭酸ガス腐食性を高める。Cr含有量が15.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Cr含有量が18.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中のフェライトが増加して、鋼材の強度が低下する。したがって、Cr含有量は15.00~18.00%である。Cr含有量の好ましい下限は15.50%であり、さらに好ましくは16.00%であり、さらに好ましくは16.50%である。Cr含有量の好ましい上限は17.80%であり、さらに好ましくは17.50%であり、さらに好ましくは17.20%である。
 Ni:4.00~9.00%
 ニッケル(Ni)は鋼材の強度を高める。Niはさらに、高温環境での耐食性を高める。Ni含有量が4.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Ni含有量が9.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、残留オーステナイトが過剰に生成しやすくなる。したがって、Ni含有量は4.00~9.00%である。Ni含有量の好ましい下限は、4.20%であり、さらに好ましくは4.40%であり、さらに好ましくは4.80%である。Ni含有量の好ましい上限は8.70%であり、さらに好ましくは8.00%であり、さらに好ましくは7.00%であり、さらに好ましくは6.00%である。
 Mo:1.50~4.00%
 モリブデン(Mo)は、鋼材の焼入れ性を高める。Moはさらに、微細な炭化物を生成し、鋼材の焼戻し軟化抵抗を高める。その結果、Moは、高温焼戻しにより鋼材の耐食性を高める。Mo含有量が1.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Mo含有量が4.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が飽和する。したがって、Mo含有量は1.50~4.00%である。Mo含有量の好ましい下限は1.60%であり、さらに好ましくは1.70%であり、さらに好ましくは1.80%である。Mo含有量の好ましい上限は3.80%であり、さらに好ましくは3.50%であり、さらに好ましくは、3.20%である。
 Al:0.040%以下
 アルミニウム(Al)は、不可避に含有される。つまり、Al含有量は0%超である。Alは、鋼を脱酸する。しかしながら、Al含有量が0.040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、AlNが過剰に生成する。AlNはピンニング粒子であるため、L方向断面1L及び/又はC方向断面1Cでの層状組織の形成を抑制する。さらに、粗大な酸化物系介在物が生成する。粗大な酸化物系介在物は、鋼材の靱性を低下する。したがって、Al含有量は0.040%以下である。Al含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Al含有量の好ましい上限は0.035%であり、さらに好ましくは0.032%である。なお、本明細書にいうAl含有量は、「酸可溶Al」、つまり、sol.Alの含有量を意味する。
 N:0.0150%以下
 窒素(N)は不可避に含有される。つまり、Nは0%超である。Nは固溶して鋼材の強度を高める。しかしながら、N含有量が0.0150%を超えれば、他の元素含有量が本実施形態の範囲内であっても、AlNが過剰に生成する。AlNはピンニング粒子であるため、L方向断面1L及び/又はC方向断面1Cでの層状組織の形成を抑制する。さらに、粗大な窒化物が生成して鋼材の耐食性が低下する。したがって、N含有量は0.0150%以下である。N含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、N含有量の好ましい下限は0.0001%である。上記効果をより有効に得るためのN含有量の好ましい下限は0.0020%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0050%である。N含有量の好ましい上限は、0.0140%であり、さらに好ましくは0.0130%である。
 Ca:0.0010~0.0040%
 カルシウム(Ca)は、鋼材中のSと結合して硫化物を生成し、固溶Sを低減する。これにより、鋼材の熱間加工性を高める。Ca含有量が0.0010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Ca含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物を生成して鋼材の耐食性が低下する。したがって、Ca含有量は0.0010~0.0040%である。Ca含有量の好ましい下限は0.0012%であり、さらに好ましくは0.0014%であり、さらに好ましくは0.0016%である。Ca含有量の好ましい上限は0.0036%であり、さらに好ましくは0.0034%である。
 Ti:0.020%以下
 本実施形態の継目無鋼管において、チタン(Ti)は不可避に含有される。つまり、Ti含有量は0%超である。Tiは窒素(N)及び/又は炭素(C)と結合して、窒化物、炭化物、又は炭窒化物(つまり、炭窒化物等)を形成する。通常、Ti炭窒化物等は、ピンニング効果により結晶粒を微細化して、鋼材の靱性を高める。しかしながら、本実施形態では、穿孔圧延時において、Ti炭窒化物等がピンニング効果により、フェライトのL方向及び/又はC方向への延伸を阻害してしまう。その結果、所望の層状組織が得られなくなる。Ti含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Ti炭窒化物等のピンニング効果により、式(3)及び式(4)の両方を満たす層状組織が得られなくなる。その結果、継目無鋼管の低温靱性が低下する。したがって、Ti含有量は0.020%以下である。Ti含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%であり、さらに好ましくは0.005%である。Ti含有量はなるべく低い方が好ましい。しかしながら、Ti含有量の過剰な低減は製造コストを高める場合がある。したがって、Ti含有量の好ましい下限は0.001%である。
 Nb:0.020%以下
 本実施形態の継目無鋼管において、ニオブ(Nb)は不可避に含有される。つまり、Nb含有量は0%超である。Nbは窒素(N)及び/又は炭素(C)と結合して、Nb炭窒化物等を形成する。通常、Nb炭窒化物等は、ピンニング効果により結晶粒を微細化して、鋼材の靱性を高める。しかしながら、本実施形態では、穿孔圧延時において、Nb炭窒化物等がピンニング効果により、フェライトのL方向及び/又はC方向への延伸を阻害してしまう。その結果、所望の層状組織が得られなくなる。Nb含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Nb炭窒化物等のピンニング効果により、式(3)及び式(4)の両方を満たす層状組織が得られなくなる。その結果、継目無鋼管の低温靱性が低下する。したがって、Nb含有量は0.020%以下である。Nb含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%であり、さらに好ましくは0.005%である。Nb含有量はなるべく低い方が好ましい。しかしながら、Nb含有量の過剰な低減は製造コストを高める場合がある。したがって、Nb含有量の好ましい下限は0.001%である。
 本実施形態による継目無鋼管の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、継目無鋼管を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態による継目無鋼管に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 上述の継目無鋼管の化学組成はさらに、Feの一部に代えて、Vを含有してもよい。
 V:0~0.20%
 バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、Vは、炭窒化物等を形成して、鋼材の強度を高める。しかしながら、V含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、穿孔圧延時において、V炭窒化物等がピンニング効果を発揮して、フェライトのL方向及び/又はC方向への延伸を阻害してしまう。その結果、所望の層状組織が得られなくなる。つまり、V含有量が0.20%を超えれば、V炭窒化物等のピンニング効果が発現することにより、式(3)及び式(4)の両方を満たす層状組織が得られなくなる。その結果、継目無鋼管の低温靱性が低下する。V含有量が0.20%を超えればさらに、炭窒化物等が粗大化して、鋼材の靱性が低下する。したがって、V含有量は0~0.20%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%である。V含有量の好ましい上限は0.20%未満であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%である。
 上述の継目無鋼管の化学組成はさらに、Feの一部に代えて、Co及びWからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素である。これらの元素は、高温環境中で継目無鋼管の表面に腐食被膜を形成し、この腐食被膜により、水素の継目無鋼管内部への侵入を抑制する。これにより、これらの元素は継目無鋼管の耐食性を高める。
 Co:0~0.30%
 コバルト(Co)は任意元素であり、含有されなくてもよい。つまり、Co含有量は0%であってもよい。含有される場合、Coは高温環境で鋼材(継目無鋼管)の表面に腐食被膜を形成する。これにより、鋼材内部への水素の侵入が抑制される。そのため、鋼材の耐食性が高まる。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が0.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が低下して、鋼材の強度が低下する。したがって、Co含有量は0~0.30%である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.10%であり、さらに好ましくは0.12%であり、さらに好ましくは0.14%である。Co含有量の好ましい上限は0.29%であり、さらに好ましくは0.28%であり、さらに好ましくは0.27%である。
 W:0~2.00%
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wは高温環境中で鋼材(継目無鋼管)の表面に腐食被膜を形成する。これにより、鋼材内部への水素の侵入が抑制される。そのため、鋼材の耐食性が高まる。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が2.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に粗大な炭化物が生成して、鋼材の耐食性が低下する。したがって、W含有量は0~2.00%である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。W含有量の好ましい上限は1.80%であり、より好ましくは1.50%であり、さらに好ましくは1.00%であり、さらに好ましくは0.50%であり、さらに好ましくは0.40%である。
 [式(1)について]
 本実施形態の継目無鋼管の化学組成はさらに、式(1)を満たす。
 156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 F1=156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5Sと定義する。F1は、化学組成中の各元素含有量が上述の範囲内である場合において、ピンニング効果を発揮する析出物(ピンニング粒子)の生成量に関する指標である。
 上述のとおり、Ti炭窒化物等、Nb炭窒化物等、Al窒化物、V炭窒化物等、MnSはいずれも、ピンニング効果を作用する微細な析出物(ピンニング粒子)として生成する場合がある。化学組成中の各元素含有量が上述の範囲内である場合において、F1が12.5を超えれば、ピンニング粒子が過剰に生成してしまう。この場合、ピンニング粒子により、穿孔圧延時において、フェライト粒のL方向及び/又はC方向への延伸が抑制されてしまう。この場合、L方向断面での層状組織が得られなかったり、C方向断面での層状組織が得られなかったりする。その結果、式(3)及び式(4)を両立させることができない。
 F1が12.5以下であれば、ピンニング粒子の生成を十分に抑制することができる。そのため、穿孔圧延時において、フェライト粒がL方向及びC方向へ十分に延伸する。この場合、L方向断面及びC方向断面の両方で十分な層状組織が得られ、式(3)及び式(4)を両立させることができる。
 F1の好ましい上限は12.4であり、さらに好ましくは12.3であり、さらに好ましくは12.0である。なお、F1は得られた値の小数第二位を四捨五入して得られた値(つまり、小数第一位の値)である。
 [式(2)について]
 上述の本実施形態の継目無鋼管の化学組成はさらに、式(2)を満たす。
 Ca/S≧4.0 (2)
 本実施形態の継目無鋼管では、上述の式(3)及び式(4)の両方を満たす層状組織を得るために、熱間加工性に優れる方が好ましい。熱間加工性に優れていれば、製造工程において表面疵が発生しにくい。表面疵は、破壊の起点となる。そのため、熱間加工性に優れていれば、低温靱性の低下を抑制できる。
 固溶Sが粒界に偏析すれば、熱間加工性が低下する。CaによりSを固定すれば、鋼中の固溶Sが低減する。その結果、鋼材の熱間加工性を高めることができる。
 F2=Ca/Sと定義する。F2が4.0未満であれば、鋼材中のS含有量に対するCa含有量が不足する。そのため、本実施形態の式(3)及び式(4)の両方を満たす層状組織を有する継目無鋼管の製造工程において、十分な熱間加工性が得られない。F2が4.0以上であれば、鋼材中のS含有量に対するCa含有量が十分に足りている。そのため、CaがSを十分に固定して、優れた熱間加工性が得られる。
 F2の好ましい下限は4.1であり、さらに好ましくは4.2であり、さらに好ましくは4.5である。なお、F2は得られた値の小数第二位を四捨五入して得られた値(つまり、小数第一位の値)である。
 [ミクロ組織]
 本実施形態による継目無鋼管のミクロ組織は、次の(I)~(III)を満たす。
 (I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
 (II)L方向観察視野面において、L方向観察視野面をL方向に5等分する4つの線分を線分TL1~TL4と定義する。L方向観察視野面をT方向に5等分する4つの線分を線分L1~L4と定義する。フェライトとマルテンサイトとの界面をフェライト界面と定義する。このとき、線分TL1~TL4とフェライト界面との交点の数である交点数NTLが38個以上である。そして、線分L1~L4とフェライト界面との交点の数である交点数NLと、交点数NTLとが、式(3)を満たす。
 NTL/NL≧1.80 (3)
 (III)C方向観察視野面において、C方向観察視野面をC方向に5等分する4つの線分を線分TC1~TC4と定義する。C方向観察視野面をT方向に5等分する4つの線分を線分C1~C4と定義する。このとき、線分TC1~TC4とフェライト界面との交点の数である交点数NTCが30個以上である。そして、線分L1~L4とフェライト界面との交点の数である交点数NLと、交点数NTCとが、式(4)を満たす。
 NTC/NL≧1.70 (4)
 以下、ミクロ組織を規定する(I)~(III)について詳述する。
 [(I)フェライト及びマルテンサイトの体積率について]
 本実施形態の継目無鋼管のミクロ組織は、総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部は残留オーステナイトからなる。ここで、マルテンサイトとは、焼戻しマルテンサイトも含む。フェライト及びマルテンサイトの総体積率の好ましい下限は、82%であり、さらに好ましくは85%であり、さらに好ましくは90%であり、さらに好ましくは92%であり、さらに好ましくは95%であり、さらに好ましくは97%であり、最も好ましくは、100%である。
 ミクロ組織のうち、フェライト及びマルテンサイト以外の他の相は、残留オーステナイトである。残留オーステナイトの体積率は20%未満である。残留オーステナイトの体積率の好ましい上限は18%であり、さらに好ましくは15%であり、さらに好ましくは10%であり、さらに好ましくは8%であり、さらに好ましくは5%であり、さらに好ましくは3%であり、最も好ましくは0%である。なお、少量の残留オーステナイトは、低温靱性を高める。したがって、体積率で20%未満であれば、ミクロ組織が残留オーステナイトを含んでもよい。残留オーステナイトは含んでいなくてもよい。
 本実施形態による継目無鋼管のミクロ組織は、フェライト、マルテンサイト、及び残留オーステナイトの他に、炭窒化物等の析出物や介在物を含有していてもよい。ただし、析出物及び介在物の総体積率は、フェライト、マルテンサイト及び残留オーステナイトの体積率と比較して、無視できるほど小さい。したがって、本明細書において、後述の方法によりフェライト及びマルテンサイトの総体積率を算出する場合、析出物及び介在物の総体積率は無視する。
 ミクロ組織中のフェライトの好ましい体積率は10~40%である。フェライトの体積率の好ましい下限は12%であり、さらに好ましくは14%であり、さらに好ましくは16%である。フェライトの体積率の好ましい上限は38%であり、さらに好ましくは36%であり、さらに好ましくは34%である。
 フェライト及びマルテンサイトの総体積率は、次の方法で求める。具体的には、継目無鋼管の肉厚中央位置からサンプルを採取する。サンプルのサイズは下記のX線回折法を実施できれば特に限定されないが、サンプルのサイズの一例は、L方向に15mm、T方向に2mm、L方向とT方向とに垂直な方向(C方向)に15mmである。得られたサンプルを用いて、α相(フェライト及びマルテンサイト)の(200)面、α相の(211)面、γ相(残留オーステナイト)の(200)面、γ相の(220)面、γ相の(311)面の各々のX線回折強度を測定し、各面の積分強度を算出する。X線回折強度の測定において、X線回折装置のターゲットをMoとし(MoKα線:λ=71.0730pm)、出力を50kV-40mAとする。算出後、α相の各面と、γ相の各面との組合せ(2×3=6組)ごとに式(5)を用いて残留オーステナイトの体積率Vγ(%)を算出する。そして、6組の残留オーステナイトの体積率Vγの平均値を、残留オーステナイトの体積率(%)と定義する。
 Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (5)
 ここで、Iαはα相の積分強度である。Rαはα相の結晶学的理論計算値である。Iγはγ相の積分強度である。Rγはγ相の結晶学的理論計算値である。なお、本明細書において、α相の(200)面でのRαを15.9、α相の(211)面でのRαを29.2、γ相の(200)面でのRγを35.5、γ相の(220)面でのRγを20.8、γ相の(311)面でのRγを21.8とする。
 得られた残留オーステナイトの体積率(%)を用いて、次の式(6)により、ミクロ組織中のフェライト及びマルテンサイトの総体積率(%)を求める。
 フェライト及びマルテンサイトの総体積率=100-残留オーステナイトの体積率 (6)
 なお、本明細書では、上述の方法により得られたフェライト及びマルテンサイトの総体積率の小数第一位の値を四捨五入する。
 [(II)L方向観察視野面50での層状組織について]
 本実施形態の継目無鋼管のミクロ組織のうち、図3に示すとおり、L方向とT方向とに平行な面をL方向断面1Lと定義する。そして、L方向断面1Lにおいて、継目無鋼管の肉厚中央位置に位置し、L方向に延びる辺の長さが100μmであり、T方向に延びる辺の長さが100μmである正方形の断面を、L方向観察視野面50と定義する。
 図4はL方向観察視野面50の一例を示す模式図である。図4を参照して、L方向観察視野面50をL方向に5等分する4つの線分を線分TL1~TL4と定義する。さらに、L方向観察視野面50をT方向に5等分する4つの線分を線分L1~L4と定義する。また、フェライト10とマルテンサイト20との界面をフェライト界面FBと定義する。
 本実施形態での継目無鋼管のミクロ組織では、L方向観察視野面50において、次の2つの事項を満たす。
 (II-1)線分TL1~TL4とフェライト界面FBとの交点の数である交点数NTLが38個以上である。
 (II-2)線分L1~L4とフェライト界面FBとの交点の数である交点数NLと、交点数NTLとが、式(3)を満たす。
 NTL/NL≧1.80 (3)
 L方向観察視野面50での層状組織の形態(交点数NTL及びNTL/NL)は次の方法で測定する。
 継目無鋼管の肉厚中央位置であって、L方向及びT方向を含むL方向断面1L(観察面)を有するサンプルを採取する。L方向断面1Lの大きさは後述のL方向観察視野面50を確保できれば特に限定されない。L方向断面1Lはたとえば、L方向:5mm×T方向:5mmとする。このとき、L方向断面1LのT方向における中央位置が、継目無鋼管のT方向(肉厚方向)の中央位置とほぼ一致するように、サンプルを採取する。
 L方向断面1Lを鏡面研磨する。鏡面研磨されたL方向断面1Lをビレラ腐食液(硝酸、塩酸、グリセリンの混合液)に10秒浸漬して、エッチングによる組織現出を行う。エッチングされたL方向断面1Lの中心位置を、光学顕微鏡を用いて観察する。観察視野面の面積は100μm×100μm=10000μm2(倍率1000倍)とする。この観察視野面を「L方向観察視野面」50と定義する。L方向観察視野面50において、フェライト10とマルテンサイト20とは、コントラストに基づいて区別できる。
 図4を参照して、L方向観察視野面50では、フェライト10(図中白色の領域)とマルテンサイト20(図中ハッチングされた領域)とが含まれている。エッチングされた実際のL方向観察視野面50では、上述のとおり、当業者であれば、フェライトとマルテンサイトとをコントラストにより判別可能である。
 L方向観察視野面50において、T方向に延び、L方向に等間隔に配列され、L方向観察視野面50をL方向に5等分する線分を、線分TL1~TL4と定義する。そして、線分TL1~TL4と、L方向観察視野面50内のフェライト界面FBとの交点(図4中で「●」印)の数を、交点数NTL(個)と定義する。
 さらに、L方向に延び、L方向観察視野面50のT方向に等間隔に配列され、L方向観察視野面50をT方向(肉厚方向)に5等分する線分を、線分L1~L4と定義する。そして、線分L1~L4と、L方向観察視野面50内のフェライト界面との交点(図4中で「◇」印)の数を、交点数NL(個)と定義する。
 本実施形態による継目無鋼管のミクロ組織は、L方向観察視野面50において、交点数NTLが38個以上であり、かつ、層状指数LILが式(3)を満たす層状組織を有する。
 層状指数LIL=NTL/NL≧1.80 (3)
 上述の方法により任意の位置からL方向観察視野面50を10箇所選択する。各L方向観察視野面50において、上述の方法により、交点数NTLと層状指数LILとを求める。10箇所で求めた交点数NTLの算術平均値を、本実施形態の継目無鋼管のL方向観察視野面での交点数NTLと定義する。同様に、10箇所で求めた層状指数LILの算術平均値を、本実施形態の継目無鋼管のL方向観察視野面での層状指数LILと定義する。
 層状指数LILは、L方向観察視野面における層状組織の発達度合いを意味する。交点数NTLが38個以上であり、層状指数LILが1.80以上である場合、式(1)及び式(2)を満たす上述の化学組成の継目無鋼管において、L方向断面1Lにおいて、十分に発達した層状組織が得られていることを意味する。
 [(III)C方向観察視野面60での層状組織について]
 本実施形態の継目無鋼管のミクロ組織ではさらに、層状組織がL方向に十分に発達しているだけではなく、層状組織がC方向にも十分に発達している。このL方向だけでなく、C方向に十分に発達した層状組織により、本実施形態の継目無鋼管は、862MPa以上の降伏強度を有し、かつ、優れた低温靱性を有する。以下、C方向観察視野面60での層状組織について詳述する。
 図3を参照して、C方向とT方向とに平行な面をC方向断面1Cと定義する。そして、C方向断面のうち、継目無鋼管の肉厚中央位置に位置し、C方向に延びる辺の長さが100μmであり、T方向に延びる辺の長さが100μmである正方形の断面を、C方向観察視野面60と定義する。なお、100μm×100μmの微小領域の場合、C方向は直線とみなすことができる。
 図5はC方向観察視野面60の一例を示す模式図である。図5を参照して、C方向観察視野面60をC方向に5等分する4つの線分を線分TC1~TC4と定義する。さらに、C方向観察視野面60をT方向に5等分する4つの線分を線分C1~C4と定義する。また、L方向観察視野面50の場合と同じく、フェライトとマルテンサイトとの界面をフェライト界面FBと定義する。
 本実施形態での継目無鋼管のミクロ組織では、L方向観察視野面50が(II-1)及び(II-2)を満たしつつ、さらに、C方向観察視野面60が次の事項(III-1)及び(III-2)を満たす。
 (III-1)線分TC1~TC4とフェライト界面との交点の数である交点数NTCが30個以上である。
 (III-2)線分C1~C4とフェライト界面との交点の数である交点数NCと、交点数NTCとが、式(4)を満たす。
 NTC/NC≧1.70 (4)
 C方向観察視野面60での層状組織の形態(交点数NTC及びNTC/NC)は次の方法で測定する。
 継目無鋼管の肉厚中央位置であって、C方向及びT方向を含むC方向断面を有するサンプルを採取する。C方向断面1Cの大きさは、後述のC方向観察視野面60を確保できれば特に限定されない。C方向断面1Cの大きさはたとえば、C方向:5mm×T方向:5mmとする。このとき、C方向断面のT方向における中央位置が、継目無鋼管のT方向(肉厚方向)の中央位置とほぼ一致するように、サンプルを採取する。
 C方向断面1Cを鏡面研磨する。鏡面研磨されたC方向断面1Cをビレラ腐食液に10秒浸漬して、エッチングによる組織現出を行う。エッチングされたC方向断面1Cの中心位置を、光学顕微鏡を用いて観察する。観察視野面の面積は100μm×100μm=10000μm2(倍率1000倍)とする。この観察視野面を「C方向観察視野面」60と定義する。図5を参照して、C方向観察視野面60では、フェライト10とマルテンサイト20とが含まれている。
 C方向観察視野面60において、T方向に延び、L方向に等間隔に配列され、L方向観察視野面50をC方向に5等分する線分を、線分TC1~TC4と定義する。そして、線分TC1~TC4と、C方向観察視野面60内のフェライト界面FBとの交点(図5中で「●」印)の数を、交点数NTC(個)と定義する。
 さらに、C方向に延び、C方向観察視野面60のT方向に等間隔に配列され、C方向観察視野面60をT方向(肉厚方向)に5等分する線分を、線分C1~C4と定義する。そして、線分C1~C4と、C方向観察視野面60内のフェライト界面との交点(図5中で「◇」印)の数を、交点数NC(個)と定義する。
 本実施形態による継目無鋼管のミクロ組織は、L方向観察視野面50が上記(II-1)及び(II-2)を満たしつつ、さらに、C方向観察視野面60において、交点数NTCが30個以上であり、かつ、層状指数LICが式(4)を満たす層状組織を有する。
 層状指数LIC=NTC/NC≧1.70 (4)
 上述の方法により任意の位置からC方向観察視野面60を10箇所選択する。各C方向観察視野面60において、上述の方法により、交点数NTCと層状指数LICとを求める。10箇所で求めた交点数NTCの算術平均値を、本実施形態の継目無鋼管のC方向観察視野面60での交点数NTCと定義する。同様に、10箇所で求めた層状指数LICの算術平均値を、本実施形態の継目無鋼管のC方向観察視野面60での層状指数LICと定義する。
 層状指数LICは、C方向観察視野面における層状組織の発達度合いを意味する。L方向観察視野面50での交点数NTLが38個以上であり、層状指数LILが1.80以上であり、さらに、C方向観察視野面60での交点数NTCが30個以上であり、層状指数LICが1.70以上である場合、式(1)及び式(2)を満たす上述の化学組成の継目無鋼管において、L方向断面1Lだけでなく、C方向断面1Cにおいても、十分に発達した層状組織が得られていることを意味する。
 以上のとおり、本実施形態の継目無鋼管は、式(1)及び式(2)を満たす化学組成を有し、さらに、ミクロ組織において、L方向観察視野面50での交点数NTLが38個以上であり、層状指数LILが1.80以上であり、さらに、C方向観察視野面60での交点数NTCが30個以上であり、層状指数LICが1.70以上である。そのため、本実施形態の継目無鋼管は、862MPa以上の降伏強度と、優れた低温靱性とを両立することができる。
 L方向観察視野面50において、交点数NTLの好ましい下限は39個であり、さらに好ましくは40個であり、さらに好ましくは41個であり、さらに好ましくは55個であり、さらに好ましくは58個であり、さらに好ましくは60個である。交点数NTLの上限は特に限定されないが、たとえば、150個である。
 L方向観察視野面50において、層状指数LILの好ましい下限は1.82であり、さらに好ましくは1.84であり、さらに好ましくは1.86であり、さらに好ましくは1.88であり、さらに好ましくは1.90であり、さらに好ましくは1.92であり、さらに好ましくは2.10であり、さらに好ましくは2.50であり、さらに好ましくは2.64であり、さらに好ましくは3.00である。層状指数LILの上限は特に限定されないが、たとえば、10.0である。
 C方向観察視野面60において、交点数NTCの好ましい下限は32個であり、さらに好ましくは34個であり、さらに好ましくは36個であり、さらに好ましくは40個であり、さらに好ましくは45個であり、さらに好ましくは50個であり、さらに好ましくは54個である。交点数NTCの上限は特に限定されないが、たとえば、150個である。
 C方向観察視野面60において、層状指数LICの好ましい下限は1.75であり、さらに好ましくは1.78であり、さらに好ましくは1.80であり、さらに好ましくは1.82であり、さらに好ましくは1.85であり、さらに好ましくは1.88であり、さらに好ましくは1.90であり、さらに好ましくは1.95であり、さらに好ましくは1.98であり、さらに好ましくは2.00であり、さらに好ましくは2.25である。層状指数LICの上限は特に限定されないが、たとえば、10.0である。
 [継目無鋼管の肉厚]
 本実施形態による継目無鋼管の肉厚は特に限定されない。継目無鋼管が油井用途に使用される場合、好ましい肉厚は5.0~60.0mmである。
 [継目無鋼管の降伏強度]
 本実施形態による鋼材の降伏強度は862MPa以上である。本明細書でいう降伏強度は、ASTM E8/E8M-16aに準拠した常温(20±15℃)、大気中での引張試験により得られた、0.2%オフセット耐力(MPa)を意味する。本実施形態の継目無鋼管の降伏強度の上限は特に限定されない。しかしながら、上述の化学組成の場合、本実施形態の継目無鋼管の降伏強度の上限はたとえば、1000MPaである。本実施形態の継目無鋼管の降伏強度の好ましい上限は990MPaであり、さらに好ましくは988MPaである。さらに好ましくは、本実施形態による継目無鋼管の降伏強度は、125ksi級であり、具体的には、862~965MPaである。
 本実施形態による継目無鋼管の降伏強度は、次の方法で求める。肉厚中央位置から丸棒引張試験片を採取する。丸棒引張試験片の平行部の直径は4mmとし、平行部長さは35mmとする。丸棒引張試験片の平行部の長手方向は、L方向と平行とする。丸棒引張試験片の長手方向に垂直な断面の中心位置は、肉厚中央位置とほぼ一致するようにする。丸棒引張試験片を用いて、ASTM E8/E8M-16aに準拠した方法で、常温(20±15℃)、大気中にて、引張試験を行う。試験により得られた0.2%オフセット耐力を、降伏強度(MPa)と定義する。
 [継目無鋼管の低温靱性]
 本実施形態の継目無鋼管は、上述のとおり高い降伏強度を有するだけでなく、優れた低温靱性も有する。具体的には、本実施形態の継目無鋼管では、ASTM A370-18に準拠したシャルピー衝撃試験を実施して得られた、-10℃での吸収エネルギーが150J以上となる。
 本実施形態の継目無鋼管の低温靱性は、次の方法で求める。継目無鋼管の肉厚中央位置から、API 5CRA/ISO13680 TABLE A.5に準拠したVノッチ試験片を採取する。試験片を用いて、ASTM A370-18に準拠して、シャルピー衝撃試験を実施し、-10℃での吸収エネルギー(J)を求める。
 [継目無鋼管の製造方法]
 上述の構成を有する本実施形態による継目無鋼管の製造方法の一例を説明する。以降に説明する継目無鋼管の製造方法は、本実施形態の継目無鋼管の製造方法のあくまでも一例である。したがって、上述の構成を有する継目無鋼管は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。つまり、本実施形態の継目無鋼管の製造方法は、以降に説明する製造方法に限定されない。しかしながら、以降に説明する製造方法は、本実施形態の継目無鋼管の製造方法の好ましい一例である。
 本実施形態の継目無鋼管の製造方法の一例は、加熱工程と、穿孔圧延工程と、延伸圧延工程と、熱処理工程とを含む。延伸圧延工程は任意の工程であり、実施しなくてもよい。以下、各製造工程について説明する。
 [加熱工程]
 加熱工程では、上述の化学組成を有する素材を1200~1260℃で加熱する。素材は製造して準備してもよいし、第三者から購入することにより準備してもよい。
 素材を製造する場合、たとえば、次の方法で製造する。上述の化学組成を有する溶鋼を製造する。溶鋼を用いて、鋳造により素材を製造する。たとえば、溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造してもよい。溶鋼を用いて造塊法によりインゴットを製造してもよい。
 必要に応じて、鋳造により製造されたスラブ、ブルーム又はインゴットを分塊圧延して、ビレットを製造してもよい。以上の工程により素材を製造する。
 準備された素材を、1200~1260℃の加熱温度Tで保持時間t(時間)保持する。たとえば、素材を加熱炉に装入して、素材を加熱炉で加熱する。このとき、加熱温度Tは加熱炉の炉温(℃)に相当する。上記加熱温度Tでの保持時間t(時間)は、たとえば、1.0時間~10.0時間である。
 加熱温度Tが1200℃未満であれば、素材の熱間加工性が低すぎるため、穿孔圧延及びその後の延伸圧延において、素材に表面疵が発生しやすくなる。
 一方、加熱温度Tが1260℃を超えれば、温度低下中に生成するオーステナイト量が多くなるため、生成したオーステナイトがL方向に延びたフェライトを分断してしまう。そのため、式(3)及び/又は式(4)を満たさなくなる。
 加熱温度Tが1200~1260℃であれば、後述の各工程の条件を満たすことを前提として、製造された継目無鋼管のミクロ組織において、式(3)及び式(4)を満たす層状組織が得られる。
 [穿孔圧延工程]
 加熱された素材に対して、穿孔圧延を実施して、素管(Hollow Shell)を製造する。具体的には、穿孔機を用いて、素材を穿孔圧延する。穿孔機は、一対の傾斜ロールと、プラグとを備える。一対の傾斜ロールは、パスライン周りに配置される。プラグは、一対の傾斜ロールの間であって、パスライン上に配置される。ここで、パスラインとは、穿孔圧延時において、素材の中心軸が通過するラインである。傾斜ロールは、バレル型であってもコーン型であってもよい。
 穿孔圧延工程では、(A)を満たすように、穿孔圧延を実施する。
 0.057X-Y<1720 (A)
 ここで、式(A)中のXは加熱条件パラメーターである。加熱条件パラメーターXは、次の式(B)で定義される。
 X=(T+273)×{20+log(t)} (B)
 式(B)中のTは加熱温度(℃)であり、tは、加熱温度Tでの保持時間(時間)である。
 式(A)中のYは、穿孔機での断面減少率である。つまり、穿孔機での断面減少率Yには、穿孔機での穿孔圧延以降の延伸圧延での断面減少率は含まれない。穿孔機での断面減少率Y(%)は、式(C)で定義される。
 Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C)
 FA=0.057X-Yと定義する。式(1)及び式(2)を満たす化学組成を有する継目無鋼管のミクロ組織において、L方向断面1Lの層状組織を十分に発達させつつ(つまり、上記(II-1)及び(II-2)を満たしつつ)、さらに、C方向断面1Cの層状組織も十分に発達させる(つまり、上記(III-1)及び(III-2)を満たす)ためには、穿孔機での穿孔圧延における加熱温度T、保持時間t、及び穿孔機での断面減少率Yとの関係が重要である。適切な加熱条件にて加熱された素材に対して穿孔機で適切な圧下を付与しなければ、素材内部まで圧下を十分に浸透させることができない。素材内部に圧下が十分に浸透しなければ、層状組織が十分に発達せず、特に、C方向に延びる層状組織が十分に発達しない。C方向断面での層状組織は、穿孔機による穿孔圧延での加熱条件及び穿孔圧延条件により、十分に発達させることができる。一方、穿孔圧延以降の工程(延伸圧延工程、定径圧延、及び、熱処理工程)は、C方向断面での層状組織の発達にはそれほど寄与しない。
 上述のFAは、L方向断面1Lだけでなく、C方向断面1Cの層状組織を十分に発達させるための、穿孔圧延工程での加熱条件及び穿孔圧延条件の指標である。FAが1720以上であれば、1200~1260℃に加熱された素材に対して、穿孔圧延条件が不適切である。この場合、特に、継目無鋼管のC方向断面1Cでの層状組織が十分に発達しない。具体的には、C方向観察視野面60において、交点数NTCが30個未満になったり、NTC/NLが1.70未満になったりする。FAが1720以上の場合さらに、継目無鋼管のC方向断面1Cだけでなく、L方向断面1Lでの層状組織も十分に発達しない場合がある。具体的には、L方向観察視野面50において、交点数NTLが38個未満になったり、NTC/NLが1.80未満になったりする場合がある。
 一方、FAが1720未満であれば、穿孔圧延条件が適切である。そのため、適切な加熱条件で加熱された素材を、穿孔機において適切な断面減少率で穿孔圧延できている。そのため、後述の各工程の条件を満たすことを前提として、継目無鋼管のL方向断面1L及びC方向断面1Cの両方において、層状組織が十分に発達する。その結果、継目無鋼管のL方向観察視野面50において、交点数NTLが38個以上となり、かつ、NTC/NLが1.80以上となるだけでなく、C方向観察視野面60において、交点数NTCが30個以上となり、かつ、NTC/NLが1.70以上となる。
 FAの下限は特に限定されないが、FAの好ましい下限は1600であり、さらに好ましくは1620であり、さらに好ましくは1630であり、さらに好ましくは1640であり、さらに好ましくは1650である。FAの好ましい上限は1715であり、さらに好ましくは1710であり、さらに好ましくは1705であり、さらに好ましくは1695である。
 なお、本実施形態では、素材の化学組成が式(2)を満たすため、熱間加工性に優れる。そのため、式(A)を満たす条件で素材を穿孔圧延しても、表面疵の発生を十分に抑制できる。
 なお、穿孔圧延直後の素管の温度はたとえば、1050℃以上であり、さらに好ましくは1060℃であり、さらに好ましくは1100℃以上である。つまり、上述の式(A)は、穿孔圧延直後の素材温度が1050℃以上の場合における、穿孔圧延工程での加熱条件及び穿孔圧延条件を示す。穿孔圧延直後の素管温度は、次の方法で測定可能である。穿孔機の出側には、測温計が配置されている。穿孔圧延後の素管の表面温度を、穿孔機の出側の測温計にて測温する。測温により、素管の管軸方向(長手方向)の表面温度分布を得る。得られた表面温度分布の平均を、穿孔圧延後の素管温度(℃)と定義する。
 加熱条件パラメーターXは上記式(A)の範囲内であれば特に限定されない。加熱条件パラメーターXの好ましい下限は29500であり、さらに好ましくは29700である。加熱条件パラメーターXの好ましい上限は31500であり、さらに好ましくは31200である。
 穿孔圧延での好ましい断面減少率Yは、25~80%である。穿孔圧延での断面減少率Yのより好ましい下限は30%であり、さらに好ましくは35%以上である。穿孔圧延での断面減少率Yのより好ましい上限は75%である。
 なお、穿孔機による素材(素管)内部への圧下の浸透度は、後工程のマンドレルミルやサイザーミルによる素管内部への圧下の浸透度よりもはるかに大きい。したがって、継目無鋼管のL方向断面1Lの層状組織及びC方向断面1Cの層状組織のうち、特にC方向断面1Cの層状組織は、穿孔圧延工程が式(A)を満たすことで、上記(III-1)及び(III-2)を満たすことができる。穿孔圧延工程において式(A)を満たす条件で穿孔圧延を実施しない場合、延伸圧延工程においてたとえ断面減少率を高めて圧下しても、L方向断面における層状組織が(II-1)及び(II-2)を満たし、かつ、C方向断面における層状組織が(III-1)及び(III-2)を満たすミクロ組織を有する継目無鋼管を製造しにくい。
 [延伸圧延工程]
 延伸圧延工程は実施しなくてもよい。実施する場合、延伸圧延工程では、穿孔圧延工程により製造された素管に対して、延伸圧延を実施する。延伸圧延は、延伸圧延機を用いて実施される。延伸圧延機は、パスラインに沿って上流から下流に向かって一列に配列された複数のロールスタンドを備える。各ロールスタンドは複数の圧延ロールを備える。延伸圧延機はたとえば、マンドレルミルである。
 素管に対してマンドレルバーを挿入する。マンドレルバーが挿入された素管を延伸圧延機のパスライン上に進めて、延伸圧延を実施する。延伸圧延後、素管に挿入されているマンドレルバーが引き抜かれる。延伸圧延での断面減少率はたとえば10~70%である。延伸圧延完了直後の素管温度はたとえば、980~1000℃である。延伸圧延完了直後の素管温度は、次の方法で測定可能である。延伸圧延機の最後に素管を圧下するスタンドの出側には、測温計が配置されている。延伸圧延後の素管の表面温度を、最後に素管を圧下するスタンドの出側の測温計にて測温する。測温により、素管の管軸方向の表面温度分布を得る。得られた表面温度分布の平均を、延伸圧延完了直後の素管温度(℃)と定義する。
 [定径圧延工程]
 本実施形態の製造方法では、必要に応じて、延伸圧延工程後の素管に対して、定径圧延工程を実施してもよい。つまり、定径圧延工程は実施しなくてもよい。
 定径圧延工程では、定径圧延機を用いて、素管に対してさらに延伸圧延を実施して、素管の外径を所望の外径寸法とする。定径圧延機は、パスラインに沿って上流から下流に向かって一列に配列された複数のロールスタンドを備える。各ロールスタンドは複数の圧延ロールを備える。定径圧延機はたとえば、サイザーやストレッチレデューサーである。
 なお、穿孔圧延工程、延伸圧延工程、及び定径圧延工程を、「製管工程」と定義する。製管工程での累積断面減少率は、たとえば、30~90%である。累積断面減少率は、次の式で定義される。
 累積断面減少率={1-(製管工程後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100
 穿孔圧延工程後、延伸圧延工程後、又は定径圧延工程後の素管の冷却方法は特に限定されない。穿孔圧延工程後、延伸圧延工程後、又は、定径圧延工程後の素管を空冷してもよい。穿孔圧延工程後、延伸圧延工程後、又は、定径圧延工程後の素管を、常温まで冷却せずに、穿孔圧延工程後、延伸圧延工程後、又は、定径圧延工程後に直接焼入れを実施してもよい。また、穿孔圧延工程後、延伸圧延工程後、又は、定径圧延工程後に素管を再加熱して、その後、焼入れを実施してもよい。
 [熱処理工程]
 延伸圧延工程後、又は、定径圧延工程後の素管に対して、熱処理工程を実施する。熱処理工程は、焼入れ工程と、焼戻し工程とを備える。
 [焼入れ工程]
 焼入れ工程では、素管に対して、周知の焼入れを実施する。本実施形態の化学組成を有する素管では、焼入れ温度は850~1150℃である。この焼入れ温度域において、素管のミクロ組織はオーステナイトとフェライトとの2相組織となる。
 焼入れは、穿孔圧延工程後、延伸圧延工程直後、又は、定径圧延工程直後に焼入れする直接焼入れを実施してもよい。また、穿孔圧延工程後、延伸圧延工程後、又は、定径圧延工程後にいったん冷却された素管を、熱処理炉を用いて再加熱して、焼入れを実施してもよい。直接焼入れの場合、最終のスタンドの出側に設置された測温計で測定された素管の表面温度を、焼入れ温度(℃)と定義する。熱処理炉を用いた焼入れを実施する場合、熱処理炉の炉温を、焼入れ温度(℃)と定義する。焼入れ温度での保持時間は特に限定されない。熱処理炉を用いる場合、焼入れ温度での保持時間はたとえば、10~60分である。
 焼入れ温度の素管の急冷方法(焼入れ方法)は特に制限されない。素管を水槽に浸漬して素管を急冷してもよいし、シャワー冷却又はミスト冷却により、素管の外面及び/又は内面に対して冷却水を注いだり、噴射したりして、素管を急冷してもよい。
 焼入れを複数回実施してもよい。たとえば、穿孔圧延工程後、延伸圧延工程後、又はM定径圧延工程後の素管に対して直接焼入れを実施した後、熱処理炉を用いて素管を焼入れ温度まで加熱して、再度焼入れを実施してもよい。また、焼入れと後述の焼戻しとを繰り返し複数回実施してもよい。すなわち、複数回の焼入れ焼戻しを実施してもよい。複数回の焼入れ焼戻しを実施する場合、各焼入れでの焼入れ温度は850~1150℃であり、焼入れ温度での保持時間は10~60分である。そして、各焼戻しでの焼戻し温度は400~700℃であり、焼戻し温度での保持時間は15~120分である。焼入れ後の素管のミクロ組織は、主として、フェライトとマルテンサイトとを含有し、残部は残留オーステナイトからなる。
 [焼戻し工程]
 焼戻し工程では、上述の焼入れ工程後の素管に対して焼戻しを実施する。本実施形態の化学組成を有する素管において、焼戻し温度は400~700℃である。焼戻し温度での保持時間は特に制限されないが、たとえば、15~120分である。
 以上の熱処理工程(焼入れ工程及び焼戻し工程)により、継目無鋼管の降伏強度を862MPa以上に調整する。焼戻し工程後の継目無鋼管のミクロ組織では、フェライトとマルテンサイト(焼戻しマルテンサイト)との総体積率が80%以上となり、残留オーステナイトは20%以下である。
 以上の製造方法によって、本実施形態による継目無鋼管を製造することができる。本実施形態の継目無鋼管は、化学組成における各元素含有量が上述の範囲内であり、かつ、式(1)及び式(2)を満たす。さらに、ミクロ組織において、(I)フェライト及びマルテンサイトの総体積率が80%以上であり、残部が残留オーステナイトからなり、(II)L方向観察視野面50での交点数NTLが38個以上となり、かつ、NTL/NLが1.80以上であり、さらに、(III)C方向観察視野面60での交点数NTCが30個以上となり、かつ、NTC/NCが1.70以上である。そのため、降伏強度が862MPa以上となり、かつ、優れた低温靱性が得られる。つまり、高い降伏強度と高い低温靱性とを両立させることができる。
 なお、上述の製造方法は、本実施形態による継目無鋼管の製造方法の一例である。したがって、本実施形態の継目無鋼管は、式(1)及び式(2)を満たす上述の化学組成を有し、ミクロ組織において、(I)フェライト及びマルテンサイトの総体積率が80%以上であり、残部が残留オーステナイトからなり、(II)L方向観察視野面での交点数NTLが38個以上となり、かつ、NTL/NLが1.80以上であり、さらに、(III)C方向観察視野での交点数NTCが30個以上となり、かつ、NTC/NCが1.70以上であれば、上述の製造方法以外の他の製造方法で製造されてもよい。
 表1に示す化学組成を有する丸ビレットを製造した。
Figure JPOXMLDOC01-appb-T000001
 表1中の空白部分は、対応する元素の含有量が検出限界未満であったことを意味する。つまり、対応する元素が含有されていなかったことを意味する。
 溶鋼を用いて連続鋳造法により、素材である複数の丸ビレットを製造した。丸ビレットを、表2に示す加熱温度T(℃)及び保持時間t(時間)で加熱した。加熱された丸ビレットを、穿孔機を用いて穿孔圧延して、素管を製造した。穿孔圧延時における各試験番号の加熱条件パラメーターX、穿孔機の断面減少率Y(%)、及び、FA(=0.057X-Y)は、表2に示すとおりであった。なお、穿孔圧延直後の各試験番号の素管温度はいずれも、1050℃以上であった。
Figure JPOXMLDOC01-appb-T000002
 穿孔圧延後の素管に対して、延伸圧延を実施した。延伸圧延には、マンドレルミルを用いた。延伸圧延後の累積断面減少率(つまり、穿孔圧延工程及び延伸圧延工程を合わせた累積の断面減少率)(%)は表2の「累積断面減少率」欄に示すとおりであった。なお、試験番号4、5、23、27~29では、穿孔圧延を実施した後、延伸圧延を実施しなかった。
 試験番号4、5、23、27~29については穿孔圧延後の素管を常温(20±15℃)まで放冷した。その他の試験番号について、延伸圧延後の素管を常温まで放冷した。その後、素管に対して焼入れを実施した。具体的には、素管を熱処理炉に装入して、950℃の焼入れ温度で15分保持した後、水槽に浸漬して水冷(水焼入れ)を実施した。焼入れ後の素管に対して、焼戻しを実施した。具体的には、素管を熱処理炉に装入して、550℃の焼戻し温度で30分保持した。以上の製造工程により、各試験番号の鋼材である継目無鋼管を製造した。製造された各試験番号の継目無鋼管の外径(mm)及び肉厚(mm)を表2に示す。
 [評価試験]
 [ミクロ組織観察試験]
 各試験番号の継目無鋼管の肉厚中央位置からサンプルを採取した。サンプルのサイズは、継目無鋼管のL方向に15mm、T方向に2mm、L方向とT方向とに垂直な方向(C方向)に15mmであった。得られたサンプルを用いて、α相(フェライト及びマルテンサイト)の(200)面、α相の(211)面、γ相(残留オーステナイト)の(200)面、γ相の(220)面、γ相の(311)面の各々のX線回折強度を測定し、各面の積分強度を算出した。X線回折装置にはブルカー社(Bruker)製の商品名:MXP3を用い、ターゲットをMoとし(MoKα線:λ=71.0730pm)、出力を50kV-40mAとした。算出後、α相の各面と、γ相の各面との組合せ(2×3=6組)ごとに式(5)を用いて残留オーステナイトの体積率Vγ(%)を算出した。そして、6組の残留オーステナイトの体積率Vγの平均値を、残留オーステナイトの体積率(%)と定義した。
 Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (5)
 なお、α相の(200)面でのRαを15.9、α相の(211)面でのRαを29.2、γ相の(200)面でのRγを35.5、γ相の(220)面でのRγを20.8、γ相の(311)面でのRγを21.8とした。
 得られた残留オーステナイトの体積率(%)を用いて、次の式(6)により、ミクロ組織中のフェライト及びマルテンサイトの総体積率(%)を求めた。
 フェライト及びマルテンサイトの総体積率=100-残留オーステナイトの体積率 (6)
 表2の「F+M総体積率(%)」に、フェライト及びマルテンサイトの総体積率(%)を示す。測定の結果、全ての試験番号の継目無鋼管において、フェライト及びマルテンサイトの総体積率は80%以上であり、残部は残留オーステナイトであった。
 [層状組織確認試験]
 次の方法により、L方向観察視野面での層状組織の発達度合いと、C方向観察視野面での層状組織の発達度合いとを測定した。
 [L方向観察視野面での層状組織について]
 各試験番号の継目無鋼管のT方向(肉厚方向)の中央位置であって、L方向及びT方向を含む断面(L方向断面)を含むサンプルを採取した。L方向断面は、L方向及びT方向を含む面とした。L方向断面の大きさは、L方向:5mm×T方向:5mmとした。L方向断面のT方向における中央位置が、継目無鋼管のT方向(肉厚方向)の中央位置とほぼ一致するように、サンプルを採取した。L方向断面を鏡面研磨した後、L方向断面をビレラ腐食液に10秒浸漬して、エッチングによる組織現出を行った。エッチングされたL方向断面を、1000倍の倍率の光学顕微鏡を用いて、層状組織確認試験を実施した。
 層状組織確認試験では、エッチングされたL方向断面において、L方向に100μm、T方向に100μmの任意のL方向観察視野面を10箇所選択した。各L方向観察視野面では、マルテンサイトと、フェライトとが、コントラストから区別可能であった。各L方向観察視野面において、コントラストに基づいて、マルテンサイトと、フェライトとを特定した。
 さらに、各L方向観察視野面において、T方向に延びる線分TL1~TL4を、L方向に等間隔に配列して、L方向観察視野面をL方向に5等分した。さらに、L方向に延びる線分L1~L4を、T方向に等間隔に配列して、L方向観察視野面をT方向に5等分した。線分TL1~TL4とL方向観察視野面内のフェライト界面との交点の数をカウントして、交点数NTL(個)とした。線分L1~L4とL方向観察視野面内のフェライト界面との交点の数をカウントして、交点数NL(個)とした。得られた交点数NTL及び交点数NLを用いて、層状指数LIL=NTL/NLを求めた。10箇所のL方向観察視野面の各々で得られた10個の交点数NTLの平均値を、その試験番号の継目無鋼管における交点数NTL(個)と定義した。また、10箇所のL方向観察視野面の各々で得られた10個の層状指数LILの平均値を、その試験番号の継目無鋼管における層状指数LILと定義した。得られた交点数NTL、交点数NL及び層状指数LILを、表2に示す。
 [C方向観察視野面での層状組織について]
 各試験番号の継目無鋼管のT方向(肉厚方向)の中央位置であって、C方向及びT方向を含む断面(C方向断面)を含むサンプルを採取した。C方向断面は、C方向及びT方向を含む面とした。C方向断面の大きさは、C方向:5mm×T方向:5mmとした。C方向断面のT方向における中央位置が、継目無鋼管のT方向(肉厚方向)の中央位置とほぼ一致するように、サンプルを採取した。C方向断面を鏡面研磨した後、C方向断面をビレラ腐食液に10秒浸漬して、エッチングによる組織現出を行った。エッチングされたC方向断面を、1000倍の倍率の光学顕微鏡を用いて、層状組織確認試験を実施した。
 層状組織確認試験では、エッチングされたC方向断面において、C方向に100μm、T方向に100μmの任意のC方向観察視野面を10箇所選択した。各C方向観察視野面では、マルテンサイトと、フェライトとが、コントラストから区別可能であった。各C方向観察視野面において、コントラストに基づいて、マルテンサイトと、フェライトとを特定した。
 さらに、各C方向観察視野面において、T方向に延びる線分TC1~TC4を、C方向に等間隔に配列して、C方向観察視野面をC方向に5等分した。さらに、C方向に延びる線分C1~C4を、T方向に等間隔に配列して、C方向観察視野面をT方向に5等分した。線分TC1~TC4とC方向観察視野面内のフェライト界面との交点の数をカウントして、交点数NTC(個)とした。線分C1~C4とC方向観察視野面内のフェライト界面との交点の数をカウントして、交点数NC(個)とした。得られた交点数NTC及び交点数NCを用いて、層状指数LIC=NTC/NCを求めた。10箇所のC方向観察視野面の各々で得られた10個の交点数NTCの平均値を、その試験番号の継目無鋼管における交点数NTC(個)と定義した。また、10箇所のC方向観察視野面の各々で得られた10個の層状指数LICの平均値を、その試験番号の継目無鋼管における層状指数LICと定義した。得られた交点数NTC、交点数NC及び層状指数LICを、表2に示す。
 ミクロ組織において、(II)及び(III)を満たす場合、つまり、(II)L方向観察視野面での交点数NTLが38個以上となり、かつ、NTL/NLが1.80以上であり、さらに、(III)C方向観察視野での交点数NTCが30個以上となり、かつ、NTC/NCが1.70以上である場合、ミクロ組織において、L方向断面及びC方向断面に両方ともに、層状組織であると判断した(表2の「ミクロ組織判定」欄において「層状」と記載)。一方、ミクロ組織において、(II)及び(III)のいずれか1つでも満たさない場合、ミクロ組織が層状組織でないと判断した(表2の「ミクロ組織判定」欄において「非層状」と記載)。
 [引張試験]
 各試験番号の継目無鋼管の肉厚中央位置から、丸棒引張試験片を採取した。丸棒引張試験片の平行部の直径は4mmであり、平行部の長さは35mmであった。丸棒引張試験片の長手方向は、継目無鋼管の管軸方向(L方向)と平行であった。各丸棒引張試験片を用いて、常温(20±15℃)、大気中にて引張試験を実施して、降伏強度(MPa)を求めた。具体的には、引張試験で得られた0.2%オフセット耐力を、降伏強度と定義した。得られた降伏強度(MPa)を表2の「降伏強度」欄に示す。
 [低温靱性評価試験]
 各試験番号の継目無鋼管の肉厚中央位置から、API 5CRA/ISO13680 TABLE A.5に準拠したVノッチ試験片を採取した。試験片を用いて、ASTM A370-18に準拠して、シャルピー衝撃試験を実施し、-10℃での吸収エネルギー(J)を求めた。得られた結果を表2の「吸収エネルギー」欄に示す。
 [熱間加工性試験]
 各鋼番号の丸ビレットを用いて、熱間加工性試験(グリーブル試験)を実施した。具体的には、各鋼番号のビレットから、直径10mm、長さ130mmの試験片を複数切り出した。試験片の中心軸は、丸ビレットの中心軸と一致した。高周波誘導加熱炉を用いて、試験片を3分間で1250℃まで昇温させた後、1250℃で3分間保持した。その後、100℃/秒の速度で、鋼番号の複数の試験片のそれぞれを、1250℃、1200℃、1100℃、1000℃まで冷却し、その後、ひずみ速度10秒-1で引張試験を実施して、破断させた。各温度において(1250℃、1200℃、1100℃、1000℃)、破断した試験片の断面減少率を求めた。求めた断面減少率がいずれの温度においても70.0%以上であれば、その鋼番号の鋼材は熱間加工性に優れると判断した(表2の「熱間加工性」欄で「E」(Excellent)と表記)。一方、いずれかの温度域で断面減少率が70.0%未満であった場合、熱間加工性が低いと判断した(表2の「熱間加工性」欄で「NA」(Not Accepted)と表記)。
 [試験結果]
 表2に試験結果を示す。
 表1及び表2を参照して、試験番号1~15の継目無鋼管の化学組成は適切であり、式(1)及び式(2)を満たした。さらに、製造条件も適切であった。そのため、各試験番号の継目無鋼管のミクロ組織において、フェライト及びマルテンサイトの総体積率は80%以上であり、残部は残留オーステナイトであった。また、L方向観察視野面での交点数NTLが38個以上となり、かつ、NTL/NLが1.80以上であり、さらに、C方向観察視野面での交点数NTCが30個以上となり、かつ、NTC/NCが1.70以上であった。つまり、試験番号1~15の継目無鋼管では、ミクロ組織において、L方向断面及びC方向断面ともに、層状組織が十分に発達していた。その結果、降伏強度は862MPa以上であり、かつ、十分な熱間加工性が得られた。さらに、-10℃における吸収エネルギーは150J以上であり、優れた低温靱性が得られた。
 一方、試験番号16~25では、加熱温度Tが適切であったものの、穿孔圧延において、FAが式(A)を満たさなかった。そのため、試験番号16~25では、少なくとも、C方向観察視野面でのNTC/NCが1.70未満であった。つまり、試験番号16~25の継目無鋼管のミクロ組織では、少なくとも、C方向断面において、層状組織が十分に発達していなかった。その結果、-10℃における吸収エネルギーが150J未満であり、低温靱性が低かった。
 なお、試験番号16~20では、ミクロ組織において、L方向観察視野面でのNTL/NLが1.80以上であったものの、C方向観察視野でのNTC/NCが1.70未満であった。そのため、-10℃における吸収エネルギーが150J未満であり、低温靱性が低かった。
 試験番号26~29では、加熱温度Tが高すぎた。そのため、ミクロ組織において、L方向観察視野面でのNTL/NLが1.80未満であり、かつ、C方向観察視野でのNTC/NCが1.70未満であった。その結果、-10℃における吸収エネルギーが150J未満であり、低温靱性が低かった。
 試験番号30では、Ti含有量が高すぎた。そのため、ミクロ組織において、L方向観察視野面でのNTL/NLが1.80未満、及び、C方向観察視野でのNTC/NCが1.70未満であった。その結果、-10℃における吸収エネルギーが150J未満であり、低温靱性が低かった。
 試験番号31では、Nb含有量が高すぎた。そのため、ミクロ組織において、L方向観察視野面でのNTL/NLが1.80未満であり、かつ、C方向観察視野でのNTC/NCが1.70未満であった。その結果、-10℃における吸収エネルギーが150J未満であり、低温靱性が低かった。
 試験番号32及び33では、化学組成中の各元素の含有量は適切であったものの、F2が式(2)を満たさなかった。そのため、十分な熱間加工性が得られなかった。
 試験番号34では、化学組成中の各元素含有量は適切であったものの、F1が式(1)を満たさなかった。そのため、ミクロ組織において、L方向観察視野面でのNTL/NLが1.80未満、及び、又は、C方向観察視野でのNTC/NCが1.70未満であった。その結果、-10℃における吸収エネルギーが150J未満であり、低温靱性が低かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 本実施形態の継目無鋼管は、高強度及び低温靱性が求められる用途に広く適用可能である。本実施形態による継目無鋼管はたとえば、地熱発電用途の鋼管や、化学プラント用途の鋼管として利用可能である。本実施形態による継目無鋼管は特に、油井用途に好適である。油井用途の継目無鋼管はたとえば、ケーシング、チュービング、ドリルパイプである。
1 継目無鋼管
10 フェライト
20 マルテンサイト
50 L方向観察視野面
60 C方向観察視野面
L1~TL4、TC1~TC4 線分
L1~L4、C1~C4 線分
FB フェライト界面
1L L方向断面
1C C方向断面

Claims (6)

  1.  継目無鋼管であって、
     化学組成が、
     質量%で、
     C:0.050%以下、
     Si:0.50%以下、
     Mn:0.01~0.20%、
     P:0.025%以下、
     S:0.0150%以下、
     Cu:0.09~3.00%、
     Cr:15.00~18.00%、
     Ni:4.00~9.00%、
     Mo:1.50~4.00%、
     Al:0.040%以下、
     N:0.0150%以下、
     Ca:0.0010~0.0040%、
     Ti:0.020%以下、
     Nb:0.020%以下、
     V:0~0.20%、
     Co:0~0.30%、
     W:0~2.00%、及び
     残部:Fe及び不純物からなり、式(1)及び式(2)を満たし、
     前記継目無鋼管の管軸方向をL方向、肉厚方向をT方向、前記L方向及び前記T方向と垂直な方向をC方向と定義したとき、ミクロ組織が、次の(I)~(III)を満たす、
     継目無鋼管。
     (I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
     (II)前記継目無鋼管の肉厚中央位置に位置し、前記L方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のL方向観察視野面において、
     前記T方向に延びる線分であって、前記L方向に等間隔に配列され、前記L方向観察視野面を前記L方向に5等分する4つの線分を線分TL1~TL4と定義し、
     前記L方向に延びる線分であって、前記T方向に等間隔に配列され、前記L方向観察視野面を前記T方向に5等分する4つの線分を線分L1~L4と定義し、
     前記フェライトと前記マルテンサイトとの界面をフェライト界面と定義したとき、
     前記線分TL1~TL4と前記フェライト界面との交点の数である交点数NTLが38個以上であり、
     前記線分L1~L4と前記フェライト界面との交点の数である交点数NLと、前記交点数NTLとが、式(3)を満たす。
     (III)前記継目無鋼管の肉厚中央位置に位置し、前記C方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のC方向観察視野面において、
     前記T方向に延びる線分であって、前記C方向に等間隔に配列され、前記C方向観察視野面を前記C方向に5等分する4つの線分を線分TC1~TC4と定義し、
     前記C方向に延びる線分であって、前記T方向に等間隔に配列され、前記C方向観察視野面を前記T方向に5等分する4つの線分を線分C1~C4と定義し、
     前記線分TC1~TC4と前記フェライト界面との交点の数である交点数NTCが30個以上であり、
     前記線分C1~C4と前記フェライト界面との交点の数である交点数NCと、前記交点数NTCとが、式(4)を満たす。
     156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
     Ca/S≧4.0 (2)
     NTL/NL≧1.80 (3)
     NTC/NC≧1.70 (4)
     ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
  2.  請求項1に記載の継目無鋼管であって、
     前記化学組成は、
     V:0.01~0.20%、を含有する、
     継目無鋼管。
  3.  請求項1又は請求項2に記載の継目無鋼管であって、
     前記化学組成は、
     Co:0.10~0.30%、及び、
     W:0.02~2.00%、からなる群から選択される1種以上、を含有する、
     継目無鋼管。
  4.  化学組成が、
     質量%で、
     C:0.050%以下、
     Si:0.50%以下、
     Mn:0.01~0.20%、
     P:0.025%以下、
     S:0.0150%以下、
     Cu:0.09~3.00%、
     Cr:15.00~18.00%、
     Ni:4.00~9.00%、
     Mo:1.50~4.00%、
     Al:0.040%以下、
     N:0.0150%以下、
     Ca:0.0010~0.0040%、
     Ti:0.020%以下、
     Nb:0.020%以下、
     V:0~0.20%、
     Co:0~0.30%、
     W:0~2.00%、及び
     残部:Fe及び不純物からなり、式(1)及び式(2)を満たす素材を、1200~1260℃の加熱温度Tでt時間保持する加熱工程と、
     前記加熱工程で加熱された前記素材を、式(A)を満たす条件で穿孔圧延して素管を製造する穿孔圧延工程と、
     前記素管を延伸圧延する延伸圧延工程と、
     前記延伸圧延工程後の前記素管に対して、850~1150℃の焼入れ温度で焼入れを実施する焼入れ工程と、
     前記焼入れ工程後の前記素管に対して、400~700℃の焼戻し温度で焼戻しを実施する焼戻し工程と、を備える、
     継目無鋼管の製造方法。
     156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
     Ca/S≧4.0 (2)
     0.057X-Y<1720 (A)
     式(A)中のXは次の式(B)で定義される。
     X=(T+273)×{20+log(t)} (B)
     ここで、Tは素材の加熱温度(℃)であり、tは、加熱温度Tでの保持時間(時間)である。
     式(A)中の断面減少率Y(%)は式(C)で定義される。
     Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C)
  5.  請求項4に記載の継目無鋼管の製造方法であって、
     前記化学組成は、
     V:0.01~0.20%、を含有する、
     継目無鋼管の製造方法。
  6.  請求項4又は請求項5に記載の継目無鋼管の製造方法であって、
     前記化学組成は、
     Co:0.10~0.30%、及び、
     W:0.02~2.00%、からなる群から選択される1種以上、を含有する、
     継目無鋼管の製造方法。
PCT/JP2019/027199 2018-07-09 2019-07-09 継目無鋼管及びその製造方法 WO2020013197A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020530208A JP7107370B2 (ja) 2018-07-09 2019-07-09 継目無鋼管及びその製造方法
EP19835123.1A EP3822381A4 (en) 2018-07-09 2019-07-09 SEAMLESS STEEL TUBE AND METHOD OF MANUFACTURE THEREOF
US17/253,222 US12043885B2 (en) 2018-07-09 2019-07-09 Seamless steel pipe and method for producing the same
MX2021000240A MX2021000240A (es) 2018-07-09 2019-07-09 Tubo de acero sin costura y metodo para producir el mismo.
BR112021000039-9A BR112021000039B1 (pt) 2018-07-09 2019-07-09 Tubo de aço sem costura e método para a sua produção

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129666 2018-07-09
JP2018-129666 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020013197A1 true WO2020013197A1 (ja) 2020-01-16

Family

ID=69141728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027199 WO2020013197A1 (ja) 2018-07-09 2019-07-09 継目無鋼管及びその製造方法

Country Status (6)

Country Link
US (1) US12043885B2 (ja)
EP (1) EP3822381A4 (ja)
JP (1) JP7107370B2 (ja)
BR (1) BR112021000039B1 (ja)
MX (1) MX2021000240A (ja)
WO (1) WO2020013197A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218426A1 (ja) * 2019-04-24 2020-10-29 日本製鉄株式会社 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法
WO2021200571A1 (ja) * 2020-04-01 2021-10-07 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JP2021161503A (ja) * 2020-04-01 2021-10-11 日本製鉄株式会社 継目無鋼管
JPWO2021206080A1 (ja) * 2020-04-07 2021-10-14
JPWO2021225103A1 (ja) * 2020-05-07 2021-11-11
JPWO2021256128A1 (ja) * 2020-06-19 2021-12-23

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117987746B (zh) * 2024-03-27 2024-10-15 南通市嘉业机械制造有限公司 一种耐磨无缝钢管穿孔顶头及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134498A1 (ja) 2009-05-18 2010-11-25 住友金属工業株式会社 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
WO2011136175A1 (ja) * 2010-04-28 2011-11-03 住友金属工業株式会社 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
WO2013146046A1 (ja) * 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP2013249516A (ja) 2012-05-31 2013-12-12 Jfe Steel Corp 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP2016145372A (ja) 2015-02-06 2016-08-12 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
WO2017010036A1 (ja) * 2015-07-10 2017-01-19 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
JP2017031493A (ja) * 2015-08-05 2017-02-09 新日鐵住金株式会社 ステンレス鋼管の製造方法
WO2017122405A1 (ja) * 2016-01-13 2017-07-20 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
WO2018020886A1 (ja) * 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945946B2 (ja) * 2005-07-26 2012-06-06 住友金属工業株式会社 継目無鋼管およびその製造方法
EP2902522B1 (en) * 2012-09-28 2018-06-27 Nippon Steel & Sumitomo Metal Corporation Piercer plug material for producing seamless steel tube, and method for producing said material
MX2017002975A (es) * 2014-09-08 2017-06-19 Jfe Steel Corp Tuberia de acero sin costura de alta resistencia para productos tubulares de region petrolifera y metodo de produccion de la misma.
US11193179B2 (en) * 2015-01-15 2021-12-07 Jfe Steel Corporation Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same
AU2017266359B2 (en) * 2016-05-20 2019-10-03 Nippon Steel Corporation Steel bar for downhole member and downhole member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134498A1 (ja) 2009-05-18 2010-11-25 住友金属工業株式会社 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
WO2011136175A1 (ja) * 2010-04-28 2011-11-03 住友金属工業株式会社 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
WO2013146046A1 (ja) * 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP2013249516A (ja) 2012-05-31 2013-12-12 Jfe Steel Corp 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP2016145372A (ja) 2015-02-06 2016-08-12 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
WO2017010036A1 (ja) * 2015-07-10 2017-01-19 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
JP2017031493A (ja) * 2015-08-05 2017-02-09 新日鐵住金株式会社 ステンレス鋼管の製造方法
WO2017122405A1 (ja) * 2016-01-13 2017-07-20 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
WO2018020886A1 (ja) * 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822381A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188570B2 (ja) 2019-04-24 2022-12-13 日本製鉄株式会社 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法
WO2020218426A1 (ja) * 2019-04-24 2020-10-29 日本製鉄株式会社 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法
JPWO2020218426A1 (ja) * 2019-04-24 2021-12-02 日本製鉄株式会社 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法
JP2021161503A (ja) * 2020-04-01 2021-10-11 日本製鉄株式会社 継目無鋼管
CN115298346B (zh) * 2020-04-01 2023-10-20 杰富意钢铁株式会社 油井用高强度不锈钢无缝钢管及其制造方法
JPWO2021200571A1 (ja) * 2020-04-01 2021-10-07
WO2021200571A1 (ja) * 2020-04-01 2021-10-07 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
CN115298346A (zh) * 2020-04-01 2022-11-04 杰富意钢铁株式会社 油井用高强度不锈钢无缝钢管及其制造方法
JP7201094B2 (ja) 2020-04-01 2023-01-10 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JPWO2021206080A1 (ja) * 2020-04-07 2021-10-14
WO2021206080A1 (ja) * 2020-04-07 2021-10-14 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
JP7397375B2 (ja) 2020-04-07 2023-12-13 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
JP7477790B2 (ja) 2020-05-07 2024-05-02 日本製鉄株式会社 二相ステンレス継目無鋼管
CN115485406A (zh) * 2020-05-07 2022-12-16 日本制铁株式会社 双相不锈钢无缝钢管
WO2021225103A1 (ja) * 2020-05-07 2021-11-11 日本製鉄株式会社 二相ステンレス継目無鋼管
JPWO2021225103A1 (ja) * 2020-05-07 2021-11-11
CN115485406B (zh) * 2020-05-07 2023-12-19 日本制铁株式会社 双相不锈钢无缝钢管
JP7095811B2 (ja) 2020-06-19 2022-07-05 Jfeスチール株式会社 合金管およびその製造方法
JPWO2021256128A1 (ja) * 2020-06-19 2021-12-23

Also Published As

Publication number Publication date
JP7107370B2 (ja) 2022-07-27
EP3822381A1 (en) 2021-05-19
EP3822381A4 (en) 2022-01-26
BR112021000039B1 (pt) 2023-11-07
US20210269904A1 (en) 2021-09-02
JPWO2020013197A1 (ja) 2021-08-05
US12043885B2 (en) 2024-07-23
BR112021000039A2 (pt) 2021-03-30
MX2021000240A (es) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2020013197A1 (ja) 継目無鋼管及びその製造方法
JP6859835B2 (ja) 鋼材及び油井用継目無鋼管
JP6103156B2 (ja) 低合金油井用鋼管
JP7188570B2 (ja) 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法
JP7425360B2 (ja) マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法
JP7036238B2 (ja) サワー環境での使用に適した鋼材
WO2016035316A1 (ja) 厚肉油井用鋼管及びその製造方法
WO2015064006A1 (ja) 継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法
WO2021039431A1 (ja) サワー環境での使用に適した鋼材
JP6028863B2 (ja) サワー環境で使用されるラインパイプ用継目無鋼管
JP6672620B2 (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
WO2022075405A1 (ja) マルテンサイト系ステンレス鋼材
JP7088305B2 (ja) 鋼材、及び、鋼材の製造方法
JP7036237B2 (ja) サワー環境での使用に適した鋼材
JP7135708B2 (ja) 鋼材
JP7428952B1 (ja) マルテンサイト系ステンレス鋼材
JP7364993B1 (ja) 鋼材
JP7488503B1 (ja) マルテンサイト系ステンレス鋼材
WO2023204294A1 (ja) 鋼材
JP7417181B1 (ja) 鋼材
JP7417180B1 (ja) 鋼材
JP7364955B1 (ja) 二相ステンレス鋼材
WO2021210655A1 (ja) 鋼材
JP6859836B2 (ja) 鋼材及び油井用継目無鋼管
JP2021161438A (ja) 継目無鋼管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021000039

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021000039

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210104