WO2020013197A1 - 継目無鋼管及びその製造方法 - Google Patents
継目無鋼管及びその製造方法 Download PDFInfo
- Publication number
- WO2020013197A1 WO2020013197A1 PCT/JP2019/027199 JP2019027199W WO2020013197A1 WO 2020013197 A1 WO2020013197 A1 WO 2020013197A1 JP 2019027199 W JP2019027199 W JP 2019027199W WO 2020013197 A1 WO2020013197 A1 WO 2020013197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel pipe
- seamless steel
- less
- intersections
- ferrite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
Definitions
- the present invention relates to a seamless steel pipe and a method for manufacturing the same, and more particularly, to a seamless steel pipe suitable for use in geothermal power generation, or in an oil well environment or a gas well environment, and a method for manufacturing the same.
- an oil well and a gas well are collectively referred to as an “oil well”.
- the high-temperature environment is an environment having a temperature of about 150 to 200 ° C. and containing a corrosive gas.
- the corrosive gas is, for example, carbon dioxide gas and / or hydrogen sulfide gas.
- Patent Literature 1 JP-A-2013-249516
- Patent Literature 2 JP-A-2016-145372
- Patent Literature 3 disclose the above-mentioned high temperature environment applications. Oil well steel pipes having high strength, or high strength and low temperature toughness have been proposed.
- the chemical composition of the high-strength stainless steel seamless pipe for oil wells proposed in Patent Document 1 is mass%, C: 0.005 to 0.06%, Si: 0.05 to 0.5%, Mn: 0 0.2 to 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 18.0%, Ni: 1.5 to 5.0%, V: 0. 02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less, and Mo: 1.0 to 3.5 %, W: 3.0% or less, Cu: 3.5% or less, one or more selected from the group to satisfy the formulas (1) and (2), and the balance Fe And unavoidable impurities.
- the microstructure of the high-strength stainless steel seamless tube for oil wells has martensite as a main phase, and as a second phase, 10 to 60% by volume of ferrite and 0 to 10% of austenite. Further, in the above microstructure, the GSI value defined as the number of ferrite-martensite grain boundaries existing per unit length of a line segment drawn in the thickness direction is 120 or more at the thickness center position. Further, the wall thickness of the high-strength stainless steel seamless pipe for oil wells is more than 25.4 mm.
- Equation (1) is defined by Cr + 0.65Ni + 0.60Mo + 0.30W + 0.55Cu-20C ⁇ 19.5, and the equation (2) is expressed by Cr + Mo + 0.50W + 0.30Si-43.5C-0.4Mn-Ni-. 0.3Cu-9N ⁇ 11.5.
- Patent Document 1 a material having the above-described chemical composition is manufactured by hot rolling including piercing rolling. Then, in hot rolling, the total draft in the temperature range of 1100 to 900 ° C. is set to 30% or more. It is described that by this, a high-strength stainless steel seamless pipe for oil wells having the above-described structure can be manufactured.
- the hot rolling in the temperature range of 1100 to 900 ° C. is not a piercing and rolling process using a piercing and rolling machine but a stretching and rolling process using a mandrel mill or the like after the piercing and rolling process in the process of manufacturing a seamless steel pipe. Of hot rolling.
- the chemical composition is mass%, C: 0.005 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.2. 1.8%, P: 0.03% or less, S: 0.005% or less, Cr: 15.5 to 18%, Ni: 1.5 to 5%, Cu: 3.5% or less, Mo: 1 to 3.5%, V: 0.02 to 0.2%, Al: 0.002 to 0.05%, N: 0.01 to 0.15%, O: 0.006% or less, In addition, it satisfies the same formulas (1) and (2) as in Patent Document 1, and is further selected from Nb: 0.2% or less, Ti: 0.3% or less, and Zr: 0.2% or less.
- a steel material containing one or more of the above and the balance being Fe and unavoidable impurities is prepared. Then, the heating of the steel material when performing the steel pipe material processing and the hot working on the steel material is performed under the condition that the temperature is lower than the temperature T (K) defined by the equation (3).
- the C content (mass%) is substituted for [C]
- the content (mass%) of the element X having the largest content among V, Ti, Nb and Zr is substituted for [X].
- ⁇ is a coefficient
- 2 is substituted when the element X is V or Ti
- 1 is substituted when the element X is Nb or Zr.
- Patent Document 2 describes that the above-described manufacturing method enables the miniaturization of ferrite, and as a result, the low-temperature toughness of a seamless steel pipe can be increased.
- the oil well stainless steel proposed in Patent Document 3 is, by mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04. %, S: 0.01% or less, Cr: more than 16.0 to 18.0%, Ni: more than 4.0 to 5.6%, Mo: 1.6 to 4.0%, Cu: 1. Chemical composition containing 5 to 3.0%, Al: 0.001 to 0.10%, N: 0.050% or less, the balance being Fe and impurities, satisfying the formulas (1) and (2) And 10 to 40% ferrite by volume, each having a length of 50 ⁇ m in the thickness direction from the surface of the stainless steel, and arranged in a line in a range of 200 ⁇ m at a pitch of 10 ⁇ m.
- equation (1) is defined as Cr + Cu + Ni + Mo ⁇ 25.5
- equation (2) is defined as ⁇ 8 ⁇ 30 (C + N) + 0.5Mn + Ni + Cu / 2 + 8.2-1.1 (Cr + Mo) ⁇ ⁇ 4.
- the oil well stainless steel disclosed in Patent Document 3 controls ferrite in the surface layer structure. Specifically, in the manufacturing process, hot working is performed using a steel material having the above-described chemical composition. In hot working, the total area reduction at 850 to 1250 ° C. is 50% or more. When considering the total area reduction rate at 850 to 1250 ° C., not only the area reduction rate in piercing rolling but also the area reduction rate in elongation rolling is included.
- Patent Documents 1 and 2 are described as having excellent low-temperature toughness.
- the yield strength of these documents is less than 862 MPa.
- Patent Documents 1 and 2 do not discuss a seamless steel pipe having a yield strength of 862 MPa or more and excellent in low-temperature toughness.
- the stainless steel for oil wells described in Patent Document 3 has not been studied from the viewpoint of low-temperature toughness.
- An object of the present disclosure is to provide a seamless steel pipe capable of achieving both a yield strength of 862 MPa or more and excellent low-temperature toughness.
- the seamless steel pipe according to the present disclosure is: Chemical composition In mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.0150% or less, Cu: 0.09 to 3.00%, Cr: 15.00 to 18.00%, Ni: 4.00 to 9.00%, Mo: 1.50 to 4.00%, Al: 0.040% or less, N: 0.0150% or less, Ca: 0.0010 to 0.0040%, Ti: 0.020% or less, Nb: 0.020% or less, V: 0 to 0.20%, Co: 0 to 0.30%, W: 0 to 2.00%, and balance: Fe and impurities, satisfying the formulas (1) and (2),
- the pipe axis direction of the seamless steel pipe is defined as the L direction
- the thickness direction is defined as the T direction
- the L direction and the direction perpendicular to the T direction are defined as the C direction
- the microstructure has the following (I) to (III).
- the number of intersections NT L which is the number of intersections between the line segments T L 1 to T L 4 and the ferrite interface, is 38 or more;
- a number of intersections NL is the number of intersections between the ferrite interface between the line segments L1 ⁇ L4, wherein the number of intersections NT L satisfies the equation (3).
- Line segments C1 to C4 which are arranged at equal intervals in the T direction, and which divide the C-direction observation visual field plane into five equal parts in the T direction, are defined as line segments C1 to C4,
- the number of intersections NT C which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface, is 30 or more;
- the intersection number NC is the number of intersections between the ferrite interface between the line segment C1 ⁇ C4, the a number of intersections NT C satisfies the equation (4).
- a method for manufacturing a seamless steel pipe according to the present disclosure includes: Chemical composition In mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.0150% or less, Cu: 0.09 to 3.00%, Cr: 15.00 to 18.00%, Ni: 4.00 to 9.00%, Mo: 1.50 to 4.00%, Al: 0.040% or less, N: 0.0150% or less, Ca: 0.0010 to 0.0040%, Ti: 0.020% or less, Nb: 0.020% or less, V: 0 to 0.20%, Co: 0 to 0.30%, A heating step of holding a material consisting of W: 0 to 2.00% and the balance: Fe and impurities and satisfying the formulas (1) and (2) at a heating temperature T of 1200 to 1260 ° C.
- X in the formula (A) is defined by the following formula (B).
- X (T + 273) ⁇ ⁇ 20 + log (t) ⁇ (B)
- T is a heating temperature (° C.) of the material
- t is a holding time (hour) at the heating temperature T.
- the section reduction rate Y (%) in the equation (A) is defined by the equation (C).
- the seamless steel pipe according to the present disclosure can achieve both a yield strength of 862 MPa or more and excellent low-temperature toughness.
- the method for manufacturing a seamless steel pipe according to the present disclosure can manufacture the above-described seamless steel pipe.
- FIG. 1 shows the center position of the thickness of a seamless steel pipe having the same chemical composition as that of the seamless steel pipe of the present embodiment, but different microstructures, in the pipe axis direction (L direction) and the thickness direction of the seamless steel pipe.
- It is a schematic diagram of a microstructure in a cross section including (T direction).
- FIG. 2 is a schematic diagram of a microstructure in a cross-section including an L direction and a T direction at a center position of a thickness of the seamless steel pipe of the present embodiment.
- FIG. 3 is a schematic diagram for explaining the relationship between the microstructure and the growth of cracks in the cross section of the seamless steel pipe.
- Figure 4 is a layered index LI L in the L-direction observation field plane in the present embodiment: is a schematic diagram for explaining a method of calculating (LI Layer Index).
- FIG. 5 is a schematic diagram for explaining a method of calculating the layer index LIC on the C- direction observation visual field plane in the present embodiment.
- FIG. 6 shows that the content of each element in the chemical composition is within the above-mentioned range, satisfies the expressions (1) and (2), and the layer index LIL on the L- direction observation visual field is expressed by the expression (3).
- the layered index LI C in C direction observation field plane is a diagram showing the relationship between absorbed energy and (low-temperature toughness) at -10 ° C..
- the present inventors have studied a seamless steel pipe capable of achieving both a yield strength of 862 MPa or more and excellent low-temperature toughness.
- the present inventors studied the chemical composition of a seamless steel pipe having a yield strength of 862 MPa or more and excellent low-temperature toughness. As a result, when the chemical composition is expressed by mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.
- the microstructure is a two-phase structure mainly composed of ferrite and martensite. More specifically, the microstructure contains ferrite and martensite, and the balance consists of retained austenite.
- the present inventors investigated the relationship between the low-temperature toughness and the volume fraction of ferrite and martensite having a two-phase structure.
- the present inventors further investigated and examined the relationship between the distribution state of ferrite and martensite having a two-phase structure and low-temperature toughness.
- the two-phase structure of the steel material having the above-described chemical composition even if the ferrite volume ratio and the martensite volume ratio are equivalent, if the distribution states of ferrite and martensite are different, the obtained low-temperature toughness is completely different. It has been found.
- FIGS. 1 and 2 are schematic diagrams of a microstructure of a seamless steel pipe having the above-described chemical composition in a cross section including a pipe axis direction and a wall thickness direction.
- the horizontal direction in FIG. 1 corresponds to the tube axis direction (rolling direction), and the vertical direction in FIG. 1 corresponds to the thickness direction.
- the horizontal direction in FIG. 2 corresponds to the L direction
- the vertical direction in FIG. 2 corresponds to the T direction.
- the pipe axis direction (rolling direction) of the seamless steel pipe is defined as “L direction”.
- the thickness direction of the seamless steel pipe is defined as “T direction”.
- the thickness direction means a radial direction in a cross section perpendicular to the tube axis direction.
- the direction perpendicular to the L direction and the T direction (corresponding to the circumferential direction of the seamless steel pipe) is defined as “C direction”.
- the schematic diagram has a length in the L direction of 100 ⁇ m and a length in the T direction of 100 ⁇ m.
- the white region 10 is ferrite.
- the hatched area 20 is martensite.
- the ferrite volume ratio and the martensite volume ratio in FIG. 1 are not so different from the ferrite volume ratio and the martensite volume ratio in FIG.
- the distribution state of the ferrite 10 and the martensite 20 in FIG. 1 is significantly different from the distribution state of the ferrite 10 and the martensite 20 in FIG.
- the ferrite 10 and the martensite 20 extend in random directions, respectively, and have a non-layered structure.
- the ferrite 10 and the martensite 20 extend in the L direction, and the ferrite 10 and the martensite 20 are stacked in the T direction. That is, the microstructure shown in FIG. 2 is a layered structure of ferrite 10 and martensite 20.
- a seamless steel pipe having the above-described chemical composition may have a significantly different microstructure even with the same chemical composition.
- Charpy impact test pieces were collected from the seamless steel pipe having the microstructure shown in FIG. 1 and the seamless steel pipe having the microstructure shown in FIG. 2 by the method described later. Then, a Charpy impact test was performed in accordance with ASTM No. A370-18, and the absorbed energy (J) at ⁇ 10 ° C. was determined. As a result, the microstructure (layered structure) of the seamless steel pipe shown in FIG. 1 was compared with the absorbed energy at ⁇ 10 ° C. of the seamless steel pipe at ⁇ 10 ° C. Had a remarkably high absorption energy.
- the present inventors have found that if a microstructure having a cross section including the L direction and the T direction (hereinafter, referred to as an L direction cross section) having a layered structure extending along the L direction is obtained in the above-described chemical composition, We thought that low-temperature toughness could be obtained.
- the present inventors examined the relationship between the direction of crack propagation in the seamless steel pipe and the direction of extension of the layered structure. As a result, in order to increase the low-temperature toughness, it was found that it is important that the layered structure extends not only in the L direction but also in the C direction. The reason for this is not clear, but the following may be considered.
- FIG. 3 is a schematic diagram for explaining the relationship between the microstructure and the growth of cracks in the cross section of the seamless steel pipe 1.
- a cross section including the L direction and the T direction is defined as “L direction cross section” 1L.
- a cross section including the C direction and the T direction is defined as a “C direction cross section” 1C.
- the layered structure extends sufficiently in the L direction and also extends sufficiently in the C direction.
- the crack propagation direction D is decomposed into an L-direction component and a C-direction component.
- the L-direction component of the crack propagation direction is defined as LDC (L Direction Crack).
- the C direction component of the crack propagation direction is defined as CDC (C Direction Crack).
- the martensite 20 prevents the growth of a crack. That is, the martensite 20 has a finer metal structure than the ferrite 10 and is a structure excellent in toughness. Therefore, the martensite 20 acts as a resistance to crack propagation. Even if the direction in which the crack propagates and the direction in which the martensite 20 extends intersect, and the tip of the crack that collides with the martensite 20 changes the direction of propagation and starts to grow again, the tip of the crack is again martensite. In the case where collision with the crack 20 easily occurs, that is, when it is difficult to avoid the martensite 20 regardless of where the crack grows, the growth of the crack can be effectively prevented.
- the L direction component LDC of the crack intersects (orthogonally) with the martensite 20 extending in the C direction.
- the martensite 20 extending in the C direction acts as a resistance to the L-direction component LDC of the crack and prevents the propagation of the L-direction component LDC of the crack.
- the C direction component CDC of the crack intersects (orthogonally) with the martensite 20 extending in the L direction.
- the martensite extending in the L direction acts as a resistance to the C-direction component CDC of the crack, and prevents the propagation of the C-direction component CDC of the crack.
- martensite extending in the C and L directions prevents the growth of cracks. Furthermore, in the cross section 1L in the L direction and the cross section 1C in the C direction, the larger the number of laminations in the T direction per unit area, the more difficult it is for the propagation of cracks to avoid the martensite 20. Specifically, as the number of laminations in the T direction per unit area in the L-direction cross section 1L and the C-direction cross section 1C increases, the cracks once stopped by the martensite 20 change the growth direction and start to grow again. Even so, the probability that the crack tip immediately collides with another martensite 20 increases. Therefore, the growth of the crack is prevented.
- the layer structure extends sufficiently in the L direction, and the cross section in the C direction.
- the layered structure is sufficiently sufficiently only in the L direction. The cracks are less likely to avoid the martensite 20 than if they did not extend sufficiently in the C direction. Therefore, crack growth can be sufficiently suppressed.
- the number of laminations of the ferrite 10 and the martensite 20 in the T direction per unit area in the microstructure in the L-direction cross section 1L is simply used.
- the number of layers of the ferrite 10 and the martensite 20 in the T direction per unit area is large in the microstructure of the cross section 1C in the C direction.
- the present inventors further studied not only the form of the layered structure in the L-direction section 1L but also the form of the layered structure in the C-direction section 1C.
- the cross section 1L in the L direction (II-1) the number of intersections NT L is 38 or more; (II-2) The layer index exponent L I L (Layer Index of Longitudinal direction) defined by the formula (3) is 1.80 or more;
- L I L Layer Index of Longitudinal direction
- the C direction cross section 1C (III-1) the number of intersections NT C is 30 or more, and (III-2) (4) layered index is defined by the LI C (Layer Index of Circumferential direction ) is 1.70 or more, If so, it was found that even if it had a yield strength of 862 MPa or more, cracks could be extremely effectively suppressed, and excellent low-temperature toughness could be obtained.
- Layered index LI L NT L /NL ⁇ 1.80 (3)
- Layering index LI C NT C /NC ⁇ 1.70 (4)
- the number of intersections NT L and the layered index LI L the number of intersections NT C and the layered index LI C will be described.
- Layered index LI L is an index indicating the degree of development of lamellar structure in the L cross section 1L.
- NT L and NL in the layered index L L are defined as follows.
- the length of the side extending in the L direction is 100 ⁇ m
- the length of the side extending in the T direction is 100 ⁇ m.
- a 100 ⁇ m square area is defined as an L-direction observation visual field plane 50.
- the L-direction observation visual field plane 50 includes the ferrite 10 and the martensite 20.
- the interface between the ferrite 10 and the martensite 20 is defined as a “ferrite interface” FB.
- the retained austenite is present at the lath interface in the martensite 20 and is difficult to observe with a microscope.
- the ferrite 10 and the martensite 20 have different contrasts in microscopic observation, those skilled in the art can easily identify them.
- Line segments T L1 to T L4 in FIG. 4 extend in the T direction, are arranged at equal intervals in the L direction, and divide the L-direction observation visual field plane 50 into five equal parts in the L direction.
- the number of intersections (marked by “ ⁇ ” in FIG. 4) between the line segments T L 1 to T L 4 and the ferrite interface FB in the L-direction observation visual field plane 50 is defined as the number of intersections NT L (pieces).
- the number of intersections NT L means the number of layers of the ferrite 10 and the martensite 20 in the T direction per unit area in the L-direction cross section 1L (L-direction observation viewing plane 50).
- Line segments L1 to L4 in FIG. 4 are line segments extending in the L direction, arranged at equal intervals in the T direction, and dividing the L direction observation visual field plane 50 into five equal parts in the T direction.
- the number of intersections (indicated by “ ⁇ ” in FIG. 4) between the line segments L1 to L4 and the ferrite interface FB in the L-direction observation visual field plane 50 is defined as the number of intersections NL (pieces).
- Layered index LI L is in the L cross section 1L (L direction observation field plane 50), means the development degree of lamellar structure.
- the number of intersections NT L is 38 or more and the laminarity index L IL is 1.80 or more, it means that a sufficiently developed laminar structure is obtained in the 1 L section in the L direction.
- the number of intersections NT C in the C-direction cross section 1C (C-direction observation visual field plane 60) is 30 or more and the laminarity index LI C is 1.70 or more
- the steel pipe has a yield strength of 862 MPa or more and excellent low-temperature toughness.
- the number of intersections NT L is 43 and the number of intersections NL is 6.
- the layered index LI L is 7.17.
- Layered index LI C is in the C direction section 1C, which is an index indicating the degree of development of lamellar structure.
- NT C and NC in the layer index LI C are defined as follows.
- the length of the side extending in the C direction is 100 ⁇ m
- the length of the side extending in the T direction is 100 ⁇ m.
- a 100 ⁇ m square area is defined as a C-direction observation visual field plane 60.
- the viewing direction surface 60 in the C direction includes the ferrite 10 and the martensite 20.
- Lines T C1 to T C4 in FIG. 5 extend in the T direction, are arranged at equal intervals in the C direction, and divide the C-direction observation visual field plane 60 into five equal parts in the C direction.
- the number of intersections (marked by “ ⁇ ” in FIG. 5) between the line segments T C 1 to T C 4 and the ferrite interface FB in the C-direction observation viewing plane 60 is defined as the number of intersections NT C (pieces).
- the number of intersections NT C means the number of laminations of the ferrite 10 and the martensite 20 in the T direction per unit area in the cross section 1C in the C direction (C direction observation viewing plane 60).
- Line segments C1 to C4 in FIG. 5 are line segments that extend in the C direction and are arranged at equal intervals in the C direction, and divide the C-direction observation visual field plane 60 into five equal parts in the T direction.
- the number of intersections (indicated by “ ⁇ ” in FIG. 5) between the line segments C1 to C4 and the ferrite interface FB in the C-direction observation visual field plane 60 is defined as the number of intersections NC (pieces).
- the laminar index LI C means the degree of development of the laminar structure in the C-direction cross section 1C (C-direction observation viewing plane 60).
- the number of intersections NT C is 30 or more and the laminarity index LI C is 1.70 or more, it means that a sufficiently developed laminar structure is obtained in the cross section 1C in the C direction.
- the intersection number NT L in the L cross section 1L is not less 38 or more, assuming that the layered index LI L is 1.80 or more, the seamless steel pipes the above-described chemical composition, the yield strength of at least 862MPa And excellent low-temperature toughness is obtained.
- the number of intersections NT C is 36, and the number of intersections NC is 10.
- the layered index LI C is 3.60.
- the number of intersections NT L which means the number of stacked T direction of the ferrite 10 and martensite 20 per unit area in the L cross section 1L and 38 or more indicates a layered degree of ferrite 10 and martensite 20 the layered index LI L and 1.80 or more (satisfying the clogging formula (3)) as well as exchange which means the number of stacked T direction of the ferrite 10 and martensite 20 per unit area in the C direction section 1C scores NT C and more than 30, the layered index LI C showing the layered degree of martensite and ferrite is 1.70 or more (satisfying the clogging formula (4)).
- the layered index LI C showing the layered degree of martensite and ferrite is 1.70 or more (satisfying the clogging formula (4)).
- a carbonitride etc. mean the general term of nitride, carbide, or carbonitride.
- the present inventors have determined the relationship between the Ti content, Nb content, Al content, N content, V content, C content, Mn content, and S content in the chemical composition and the lamellar structure.
- the degree of development was examined.
- the above chemical composition further satisfies the expression (1), the generation of a precipitate exhibiting a pinning effect (hereinafter referred to as pinning particles) can be sufficiently suppressed, and both the L-direction section 1L and the C-direction section 1C can be suppressed.
- pinning particles a precipitate exhibiting a pinning effect
- the above-mentioned chemical composition satisfies not only the formula (1) but also the following formula (2).
- the content (% by mass) of the corresponding element is substituted for the element symbol in the formula (2).
- Solute S segregates at the grain boundaries and lowers hot workability. If S is fixed by Ca, solid solution S in steel is reduced, and hot workability can be improved.
- the chemical composition of the seamless steel pipe also satisfies the formula (1), a layered structure satisfying the above (II-1) and (II-2) is obtained in the L direction section 1L, and further, the C direction section.
- a layered structure satisfying (III-1) and (III-2) is obtained.
- FIG. 6 shows that the content of each element in the chemical composition is within the above range, satisfies the formulas (1) and (2), and the number of intersection points NT L on the L-direction observation visual field plane is 38 or more.
- the layered index LI L satisfies the equation (3) and the yield strength is 862 MPa or more.
- the yield strength is 862 MPa or more, and a sufficiently developed layered structure is obtained in the 1 L section in the L direction, it is a diagram showing the relationship between the development degree of lamellar structure in cross section 1C (LI C) and low temperature toughness.
- the content of each element in the chemical composition is within the above-mentioned range, and satisfies the formulas (1) and (2), and the (II-1) and (II-1) (II-2) satisfy the, in seamless steel pipe yield strength is not less than 862MPa, if a layered index LI C is less than 1.70 in the C direction observation field plane, the layered index LI C increases, -10 Absorbed energy at ° C increases sharply.
- the layered index LI C is 1.70 or more, although the absorption energy at -10 ° C. the above 150 J, increasing cost of the absorbed energy at -10 ° C. with increasing layer index LI C is layered index LI C is less than in the case of less than 1.70. In other words, the layered index LI C has an inflection point at 1.70 vicinity.
- the laminar index LI C is 1.70 or more, the number of intersections NT C is 30 or more.
- FIG. 6 shows that in the seamless steel pipe having a yield strength of 862 MPa or more, not only the layered structure is sufficiently developed in the L-direction section 1L, but also the layered structure is sufficiently developed in the C-direction section 1C. This indicates that the low-temperature toughness is significantly increased.
- the content of each element in the chemical composition is within the above-mentioned range, satisfies the formulas (1) and (2), and the number of intersections NT L on the L-direction observation visual field is 38 or more; in seamless steel pipe layered index LI L satisfies the equation (3), the number of intersections NT C and more than 30, and, by the layered index LI C is 1.70 or more, a yield strength of at least 862MPa to obtain In addition, excellent low-temperature toughness can be obtained.
- the pipe axis direction of the seamless steel pipe is defined as the L direction
- the thickness direction is defined as the T direction
- the L direction and the direction perpendicular to the T direction are defined as the C direction
- the microstructure has the following (I) to (III).
- Line segments L1 to L4 are defined as line segments L1 to L4,
- the number of intersections NT L which is the number of intersections between the line segments T L 1 to T L 4 and the ferrite interface, is 38 or more;
- a number of intersections NL is the number of intersections between the ferrite interface between the line segments L1 ⁇ L4, wherein the number of intersections NT L satisfies the equation (3).
- the number of intersections NT C which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface, is 30 or more;
- the intersection number NC is the number of intersections between the ferrite interface between the line segment C1 ⁇ C4, the a number of intersections NT C satisfies the equation (4).
- the seamless steel pipe of [2] The seamless steel pipe according to [1],
- the chemical composition is V: 0.01 to 0.20%.
- the seamless steel pipe of [3] The seamless steel pipe according to [1] or [2],
- the chemical composition is Co: 0.10 to 0.30%, and W: at least one selected from the group consisting of 0.02 to 2.00%.
- the method for manufacturing a seamless steel pipe of [4] is as follows: Chemical composition In mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.01 to 0.20%, P: 0.025% or less, S: 0.0150% or less, Cu: 0.09 to 3.00%, Cr: 15.00 to 18.00%, Ni: 4.00 to 9.00%, Mo: 1.50 to 4.00%, Al: 0.040% or less, N: 0.0150% or less, Ca: 0.0010 to 0.0040%, Ti: 0.020% or less, Nb: 0.020% or less, V: 0 to 0.20%, Co: 0 to 0.30%, A heating step of holding a material consisting of W: 0 to 2.00% and the balance: Fe and impurities and satisfying the formulas (1) and (2) at a heating temperature T of 1200 to 1260 ° C.
- X in the formula (A) is defined by the following formula (B).
- X (T + 273) ⁇ ⁇ 20 + log (t) ⁇ (B)
- T is the heating temperature (° C.) of the material
- t is the holding time (hour) at the heating temperature T.
- the section reduction rate Y (%) in the equation (A) is defined by the equation (C).
- the method for manufacturing a seamless steel pipe of [5] is as follows: A method for producing a seamless steel pipe according to [4], The chemical composition is V: 0.01 to 0.20%.
- the manufacturing method of the seamless steel pipe of [6] is as follows.
- a method for producing a seamless steel pipe according to [4] or [5] The chemical composition is Co: 0.10 to 0.30%, and W: at least one selected from the group consisting of 0.02 to 2.00%.
- the application of the seamless steel pipe according to the present embodiment is not particularly limited.
- the seamless steel pipe of the present embodiment is widely applicable to applications requiring high strength and low-temperature toughness.
- the seamless steel pipe according to the present embodiment can be used, for example, as a steel pipe for geothermal power generation or a steel pipe for chemical plant use.
- the seamless steel pipe according to the present embodiment is particularly suitable for use as an oil well steel pipe. Seamless steel pipes for oil well applications are, for example, casings, tubing, drill pipes.
- the chemical composition of the seamless steel pipe according to the present embodiment contains the following elements.
- C 0.050% or less Carbon (C) is inevitably contained. That is, the C content is more than 0%. C increases the strength of the steel material. However, if the C content exceeds 0.050%, the hardness after tempering becomes too high and the low-temperature toughness is reduced even if the content of other elements is within the range of the present embodiment. When the C content exceeds 0.050%, retained austenite further increases. In this case, the yield strength tends to be low even when the content of other elements is within the range of the present embodiment. Therefore, the C content is 0.050% or less.
- the lower limit of the C content is not particularly limited. However, excessive reduction of the C content greatly increases refining costs in the steelmaking process.
- a preferable lower limit of the C content is 0.001%, more preferably 0.002%, further preferably 0.003%, and further preferably 0.007%. %.
- the preferred upper limit of the C content is 0.040%, and more preferably 0.030%.
- Si Silicon
- Si is inevitably contained. That is, the Si content is more than 0%. Si deoxidizes steel. However, if the Si content exceeds 0.50%, the low-temperature toughness and hot workability of the steel material deteriorate even if the content of other elements is within the range of the present embodiment. Therefore, the Si content is 0.50% or less.
- the preferred lower limit of the Si content is not particularly limited. However, excessive reduction of the Si content greatly increases the refining cost of the steelmaking process. Therefore, in consideration of industrial production, a preferable lower limit of the Si content is 0.01%, more preferably 0.02%, and further preferably 0.10%. A preferred upper limit of the Si content is 0.45%, and more preferably 0.40%.
- Mn 0.01 to 0.20%
- Manganese (Mn) deoxidizes steel and desulfurizes steel. Mn further enhances the hot workability of the steel material. If the Mn content is less than 0.01%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Mn content exceeds 0.20%, Mn segregates at the grain boundary together with impurities such as P and S, even if other element contents are within the range of the present embodiment. In this case, the corrosion resistance in a high temperature environment decreases. Therefore, the Mn content is 0.01 to 0.20%. A preferred lower limit of the Mn content is 0.02%, more preferably 0.03%, and still more preferably 0.05%. A preferred upper limit of the Mn content is 0.18%, more preferably 0.15%, and further preferably 0.13%.
- Phosphorus (P) is an unavoidable impurity. That is, the P content is more than 0%. P segregates at the grain boundaries and lowers the low-temperature toughness of the steel material. Therefore, the P content is 0.025% or less.
- the preferable upper limit of the P content is 0.020%, and more preferably 0.015%.
- the P content is preferably as low as possible. However, excessive reduction of the P content greatly increases the refining cost of the steelmaking process. Therefore, in consideration of industrial production, a preferable lower limit of the P content is 0.001%, more preferably 0.002%.
- S 0.0150% or less Sulfur (S) is an unavoidable impurity. That is, the S content is more than 0%. S segregates at the grain boundaries and lowers the low-temperature toughness and hot workability of the steel material. Therefore, the S content is 0.0150% or less.
- the preferable upper limit of the S content is 0.0050%, more preferably 0.0030%, and further preferably 0.0020%.
- the S content is preferably as low as possible. However, excessive reduction of the S content greatly increases the refining cost of the steelmaking process. Therefore, in consideration of industrial production, a preferable lower limit of the S content is 0.0001%, more preferably 0.0002%, and further preferably 0.0003%.
- Cu 0.09 to 3.00% Copper (Cu) increases the strength of the steel material by precipitation strengthening. Cu further enhances the corrosion resistance of the steel in high temperature environments. If the Cu content is less than 0.09%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Cu content exceeds 3.00%, the hot workability of the steel material decreases even if the content of other elements is within the range of the present embodiment. Therefore, the Cu content is 0.09 to 3.00%.
- the preferable lower limit of the Cu content is 0.10%, more preferably 0.20%, further preferably 0.80%, and further preferably 1.20%.
- the preferred upper limit of the Cu content is 2.90%, more preferably 2.80%, and even more preferably 2.70%.
- Chromium (Cr) enhances the corrosion resistance of steel in a high temperature environment. Specifically, Cr reduces the corrosion rate of steel in a high-temperature environment and increases the carbon dioxide corrosion resistance of the steel. If the Cr content is less than 15.00%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Cr content exceeds 18.00%, the ferrite in the steel increases, and the strength of the steel decreases, even if the content of other elements is within the range of the present embodiment. Therefore, the Cr content is 15.00 to 18.00%. A preferred lower limit of the Cr content is 15.50%, more preferably 16.00%, and still more preferably 16.50%. The preferable upper limit of the Cr content is 17.80%, more preferably 17.50%, and further preferably 17.20%.
- Ni 4.00 to 9.00%
- Nickel (Ni) increases the strength of the steel material. Ni further enhances corrosion resistance in high temperature environments. If the Ni content is less than 4.00%, these effects cannot be sufficiently obtained even if other element contents are within the range of the present embodiment. On the other hand, if the Ni content exceeds 9.00%, residual austenite is likely to be excessively generated even when the content of other elements is within the range of the present embodiment. Therefore, the Ni content is 4.00 to 9.00%.
- a preferred lower limit of the Ni content is 4.20%, more preferably 4.40%, and further preferably 4.80%.
- the preferable upper limit of the Ni content is 8.70%, more preferably 8.00%, further preferably 7.00%, and further preferably 6.00%.
- Mo 1.50 to 4.00%
- Molybdenum (Mo) enhances the hardenability of steel. Mo further generates fine carbides and increases the tempering softening resistance of the steel material. As a result, Mo enhances the corrosion resistance of the steel material by high-temperature tempering. If the Mo content is less than 1.50%, these effects cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content exceeds 4.00%, these effects are saturated even if the content of other elements is within the range of the present embodiment. Therefore, the Mo content is 1.50 to 4.00%. A preferred lower limit of the Mo content is 1.60%, more preferably 1.70%, and still more preferably 1.80%. The preferable upper limit of the Mo content is 3.80%, more preferably 3.50%, and further preferably 3.20%.
- Al 0.040% or less Aluminum (Al) is inevitably contained. That is, the Al content is more than 0%. Al deoxidizes steel. However, if the Al content exceeds 0.040%, AlN is excessively generated even if other element contents are within the range of the present embodiment. Since AlN is a pinning particle, the formation of a layered structure in the L-direction section 1L and / or the C-direction section 1C is suppressed. Further, coarse oxide-based inclusions are generated. Coarse oxide inclusions decrease the toughness of the steel material. Therefore, the Al content is 0.040% or less. A preferred lower limit of the Al content is 0.001%, more preferably 0.005%, and still more preferably 0.010%. The preferred upper limit of the Al content is 0.035%, and more preferably 0.032%. In addition, the Al content referred to in this specification is “acid-soluble Al”, that is, sol. It means the content of Al.
- N 0.0150% or less Nitrogen (N) is inevitably contained. That is, N is more than 0%. N forms a solid solution to increase the strength of the steel material. However, if the N content exceeds 0.0150%, AlN is excessively generated even if other element contents are within the range of the present embodiment. Since AlN is a pinning particle, the formation of a layered structure in the L-direction section 1L and / or the C-direction section 1C is suppressed. Further, coarse nitrides are formed, and the corrosion resistance of the steel material is reduced. Therefore, the N content is 0.0150% or less. Excessive reduction of the N content greatly increases the refining costs of the steelmaking process.
- a preferable lower limit of the N content is 0.0001%.
- a preferable lower limit of the N content for more effectively obtaining the above effects is 0.0020%, more preferably 0.0040%, and further preferably 0.0050%.
- a preferred upper limit of the N content is 0.0140%, and more preferably 0.0130%.
- Ca 0.0010-0.0040% Calcium (Ca) combines with S in the steel material to form sulfides and reduce solid solution S. Thereby, the hot workability of the steel material is enhanced. If the Ca content is less than 0.0010%, this effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ca content exceeds 0.0040%, even if the other element content is within the range of the present embodiment, a coarse oxide is generated and the corrosion resistance of the steel material is reduced. Therefore, the Ca content is 0.0010 to 0.0040%. A preferred lower limit of the Ca content is 0.0012%, more preferably 0.0014%, and further preferably 0.0016%. A preferred upper limit of the Ca content is 0.0036%, more preferably 0.0034%.
- Ti 0.020% or less
- Ti titanium
- Ti is inevitably contained. That is, the Ti content is more than 0%.
- Ti combines with nitrogen (N) and / or carbon (C) to form nitrides, carbides, or carbonitrides (ie, carbonitrides, etc.).
- N nitrogen
- C carbon
- Ti carbonitride or the like refines crystal grains by a pinning effect and increases the toughness of the steel material.
- Ti carbonitride and the like hinder the elongation of the ferrite in the L and / or C directions due to the pinning effect. As a result, a desired layered structure cannot be obtained.
- the Ti content is 0.020% or less.
- the preferable upper limit of the Ti content is 0.018%, more preferably 0.015%, further preferably 0.010%, and further preferably 0.005%. It is preferable that the Ti content be as low as possible. However, excessive reduction of the Ti content may increase manufacturing costs. Therefore, a preferable lower limit of the Ti content is 0.001%.
- Nb 0.020% or less
- Nb niobium
- Nb niobium
- Nb niobium
- C carbon
- Nb carbonitride or the like refines crystal grains by a pinning effect and increases the toughness of the steel material.
- Nb carbonitride and the like hinder the elongation of the ferrite in the L direction and / or the C direction due to the pinning effect. As a result, a desired layered structure cannot be obtained.
- the Nb content exceeds 0.020%, even if the other element content is within the range of the present embodiment, both of the formulas (3) and (4) are caused by the pinning effect of Nb carbonitride or the like. A layered structure that satisfies the above condition cannot be obtained. As a result, the low-temperature toughness of the seamless steel pipe decreases. Therefore, the Nb content is 0.020% or less.
- the preferable upper limit of the Nb content is 0.018%, more preferably 0.015%, further preferably 0.010%, and further preferably 0.005%.
- the Nb content is preferably as low as possible. However, excessive reduction of the Nb content may increase manufacturing costs. Therefore, a preferable lower limit of the Nb content is 0.001%.
- the balance of the chemical composition of the seamless steel pipe according to the present embodiment is composed of Fe and impurities.
- the impurities are those that are mixed in from the ore, scrap, or the production environment as a raw material when industrially producing a seamless steel pipe, and adversely affect the seamless steel pipe according to the present embodiment. Means that it is acceptable within a certain range.
- the chemical composition of the above-mentioned seamless steel pipe may further contain V instead of a part of Fe.
- V Vanadium
- V is an optional element and may not be contained. That is, the V content may be 0%. When contained, V forms a carbonitride or the like to increase the strength of the steel material. However, if the V content exceeds 0.20%, the V carbonitride exhibits a pinning effect at the time of piercing rolling even if other element contents are within the range of the present embodiment, and the ferrite content is increased. In the L direction and / or the C direction. As a result, a desired layered structure cannot be obtained.
- V content exceeds 0.20%, a pinning effect of V carbonitride or the like is exerted, so that a layered structure satisfying both Expressions (3) and (4) cannot be obtained. As a result, the low-temperature toughness of the seamless steel pipe decreases. If the V content exceeds 0.20%, carbonitrides and the like are further coarsened, and the toughness of the steel material is reduced. Therefore, the V content is 0 to 0.20%.
- a preferred lower limit of the V content is more than 0%, and more preferably 0.01%.
- the preferred upper limit of the V content is less than 0.20%, more preferably 0.15%, and still more preferably 0.10%.
- the chemical composition of the seamless steel pipe described above may further include one or more selected from the group consisting of Co and W instead of a part of Fe. These elements are all optional elements. These elements form a corrosion coating on the surface of the seamless steel pipe in a high-temperature environment, and this corrosion coating suppresses hydrogen from entering the inside of the seamless steel pipe. Thereby, these elements increase the corrosion resistance of the seamless steel pipe.
- Co is an optional element and need not be contained. That is, the Co content may be 0%.
- Co forms a corrosion coating on the surface of a steel material (seamless steel pipe) in a high temperature environment. This suppresses intrusion of hydrogen into the steel material. Therefore, the corrosion resistance of the steel material increases. The above effect can be obtained to some extent if Co is contained even a little. However, if the Co content exceeds 0.30%, the hardenability of the steel material is reduced and the strength of the steel material is reduced even if the content of other elements is within the range of the present embodiment. Therefore, the Co content is 0 to 0.30%.
- a preferred lower limit of the Co content is more than 0%, more preferably 0.01%, further preferably 0.10%, more preferably 0.12%, and still more preferably 0.14%. It is.
- the preferable upper limit of the Co content is 0.29%, more preferably 0.28%, and further preferably 0.27%.
- W 0-2.00% Tungsten (W) is an optional element and need not be contained. That is, the W content may be 0%. When contained, W forms a corrosion coating on the surface of a steel material (seamless steel pipe) in a high-temperature environment. This suppresses intrusion of hydrogen into the steel material. Therefore, the corrosion resistance of the steel material increases. The above effect can be obtained to some extent if W is contained at all. However, if the W content exceeds 2.00%, coarse carbides are generated in the steel material even if other element contents are within the range of the present embodiment, and the corrosion resistance of the steel material is reduced. Therefore, the W content is 0 to 2.00%.
- a preferable lower limit of the W content is more than 0%, more preferably 0.01%, further preferably 0.02%, and further preferably 0.03%.
- a preferable upper limit of the W content is 1.80%, more preferably 1.50%, further preferably 1.00%, further preferably 0.50%, and still more preferably 0.40%. %.
- F1 156Al + 18Ti + 12Nb + 11Mn + 5V + 328.125N + 243.75C + 12.5S.
- F1 is an index relating to the amount of precipitates (pinning particles) that exhibit a pinning effect when the content of each element in the chemical composition is within the above range.
- MnS such as Ti carbonitride, Nb carbonitride, Al nitride, V carbonitride, etc.
- MnS may all be generated as fine precipitates (pinning particles) that act as a pinning effect.
- F1 exceeds 12.5
- pinning particles are excessively generated.
- the stretching of the ferrite grains in the L direction and / or the C direction during piercing and rolling is suppressed by the pinning particles.
- a layered structure cannot be obtained in the section in the L direction, or a layered structure cannot be obtained in the section in the C direction.
- Expression (3) and Expression (4) cannot be compatible.
- F1 is 12.4, more preferably 12.3, and still more preferably 12.0.
- F1 is a value obtained by rounding off the second decimal place of the obtained value (that is, the value of the first decimal place).
- the hot workability be excellent. If the hot workability is excellent, surface defects are less likely to occur in the manufacturing process. Surface flaws are the starting point of destruction. Therefore, if the hot workability is excellent, a decrease in low-temperature toughness can be suppressed.
- F2 Ca / S is defined. If F2 is less than 4.0, the Ca content with respect to the S content in the steel material will be insufficient. Therefore, sufficient hot workability cannot be obtained in the process of manufacturing a seamless steel pipe having a layered structure satisfying both the expressions (3) and (4) in the present embodiment. When F2 is 4.0 or more, the Ca content relative to the S content in the steel material is sufficient. Therefore, Ca sufficiently fixes S, and excellent hot workability is obtained.
- F2 is 4.1, more preferably 4.2, and still more preferably 4.5.
- F2 is a value obtained by rounding off the second decimal place of the obtained value (that is, the value of the first decimal place).
- the microstructure of the seamless steel pipe according to the present embodiment satisfies the following (I) to (III).
- Four line segments dividing the L-direction observation visual field plane into five equal parts in the T direction are defined as line segments L1 to L4.
- the interface between ferrite and martensite is defined as a ferrite interface.
- the line segment T L 1 ⁇ T L 4 and the intersection number NT L is the number of intersections of the ferrite interface is 38 or more.
- the number of intersections NL is the number of intersections between the line segment L1 ⁇ L4 ferrite interface, and the number of intersections NT L, satisfies the equation (3).
- the number of intersections NT C which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface is 30 or more.
- the number of intersections NL which is the number of intersections between the line segments L1 to L4 and the ferrite interface, and the number of intersections NT C satisfy Expression (4).
- the microstructure of the seamless steel pipe of this embodiment contains ferrite and martensite in a total volume ratio of 80% or more, and the balance is made of retained austenite.
- martensite includes tempered martensite.
- a preferred lower limit of the total volume ratio of ferrite and martensite is 82%, more preferably 85%, further preferably 90%, more preferably 92%, and still more preferably 95%, More preferably, it is 97%, and most preferably, it is 100%.
- phase other than ferrite and martensite are retained austenite.
- the volume fraction of retained austenite is less than 20%.
- the preferred upper limit of the volume fraction of retained austenite is 18%, more preferably 15%, more preferably 10%, more preferably 8%, further preferably 5%, and still more preferably 3%. %, And most preferably 0%. Note that a small amount of retained austenite increases low-temperature toughness. Therefore, if the volume ratio is less than 20%, the microstructure may include retained austenite. Retained austenite may not be included.
- the microstructure of the seamless steel pipe according to the present embodiment may contain precipitates and inclusions such as carbonitrides in addition to ferrite, martensite, and retained austenite.
- precipitates and inclusions such as carbonitrides in addition to ferrite, martensite, and retained austenite.
- the total volume fraction of precipitates and inclusions is negligibly small compared to the volume fractions of ferrite, martensite, and retained austenite. Therefore, in this specification, when calculating the total volume ratio of ferrite and martensite by the method described below, the total volume ratio of precipitates and inclusions is ignored.
- the preferred volume fraction of ferrite in the microstructure is 10 to 40%.
- a preferable lower limit of the volume ratio of ferrite is 12%, more preferably 14%, and further preferably 16%.
- the preferable upper limit of the volume ratio of ferrite is 38%, more preferably 36%, and further preferably 34%.
- the total volume ratio of ferrite and martensite is determined by the following method. Specifically, a sample is collected from the center position of the wall thickness of the seamless steel pipe.
- the size of the sample is not particularly limited as long as the following X-ray diffraction method can be performed, but an example of the sample size is 15 mm in the L direction, 2 mm in the T direction, and a direction perpendicular to the L and T directions (C direction). 15 mm.
- V ⁇ 100 / ⁇ 1+ (I ⁇ ⁇ R ⁇ ) / (I ⁇ ⁇ R ⁇ ) ⁇ (5)
- I ⁇ is the integrated intensity of the ⁇ phase.
- R ⁇ is the crystallographic theoretical calculation value of the ⁇ phase.
- I ⁇ is the integrated intensity of the ⁇ phase.
- R ⁇ is a crystallographic theoretical calculation value of the ⁇ phase.
- R ⁇ on the (200) plane of the ⁇ phase is 15.9
- R ⁇ on the (211) plane of the ⁇ phase is 29.2
- R ⁇ on the (200) plane of the ⁇ phase is 35. 5.
- R ⁇ on the (220) plane of the ⁇ phase is 20.8, and R ⁇ on the (311) plane of the ⁇ phase is 21.8.
- the total volume ratio (%) of ferrite and martensite in the microstructure is determined by the following equation (6).
- Total volume fraction of ferrite and martensite 100-volume fraction of retained austenite (6)
- the value of the first decimal place of the total volume ratio of ferrite and martensite obtained by the above method is rounded off.
- FIG. 4 is a schematic view showing an example of the L-direction observation visual field plane 50.
- four line segments that divide the L-direction observation visual field plane 50 into five equal parts in the L direction are defined as line segments T L1 to T L4 .
- four line segments dividing the L-direction observation visual field plane 50 into five equal parts in the T direction are defined as line segments L1 to L4.
- an interface between the ferrite 10 and the martensite 20 is defined as a ferrite interface FB.
- Form of lamellar structure in the L direction observation field plane 50 (intersection number NT L and NT L / NL) is measured by the following method.
- a sample having a cross section 1L (observation surface) in the L direction including the L direction and the T direction is taken at the center of the thickness of the seamless steel pipe.
- the size of the L-direction cross section 1L is not particularly limited as long as a later-described L-direction observation visual field surface 50 can be secured.
- the L direction cross section 1L is, for example, L direction: 5 mm ⁇ T direction: 5 mm. At this time, a sample is collected so that the center position in the T direction of the L-direction cross section 1L substantially matches the center position in the T direction (wall thickness direction) of the seamless steel pipe.
- 1 L of the cross section in the L direction is mirror-polished.
- the mirror-polished 1 L section in the L direction is immersed in a virella etchant (a mixed solution of nitric acid, hydrochloric acid and glycerin) for 10 seconds to reveal the structure by etching.
- the center position of the etched L-direction cross section 1L is observed using an optical microscope.
- This observation viewing plane is defined as “L-direction observation viewing plane” 50.
- the ferrite 10 and the martensite 20 can be distinguished based on the contrast.
- L-direction observation visual field plane 50 includes ferrite 10 (white area in the figure) and martensite 20 (hatched area in the figure). As described above, those skilled in the art can distinguish ferrite and martensite from the etched L-direction observation visual field plane 50 by contrast.
- Line segments extending in the T direction and arranged at equal intervals in the L direction on the L direction observation visual field surface 50 and dividing the L direction observation visual field surface 50 into five equal parts in the L direction are referred to as line segments T L 1 to T L 4.
- the number of intersections (indicated by “ ⁇ ” in FIG. 4) between the line segments T L 1 to T L 4 and the ferrite interface FB in the L-direction observation visual field plane 50 is defined as the number of intersections NT L (pieces). I do.
- line segments extending in the L direction and arranged at equal intervals in the T direction of the L direction observation visual field surface 50 and dividing the L direction observation visual field surface 50 into five equal parts in the T direction (thickness direction) are represented by line segments L1 to L1. Defined as L4. The number of intersections (indicated by “ ⁇ ” in FIG. 4) between the line segments L1 to L4 and the ferrite interface in the L-direction observation viewing plane 50 is defined as the number of intersections NL (pieces).
- Microstructure of a seamless steel tube according to the present embodiment in the L direction observation field plane 50, number of intersections NT L is at 38 or more, and has a lamellar structure in which the layered index LI L satisfies the equation (3).
- Layered index LI L NT L /NL ⁇ 1.80
- ten L-direction observation visual field planes 50 are selected from arbitrary positions.
- each L direction observation field plane 50 by the methods described above, obtaining the number of intersections NT L and layered index LI L.
- the arithmetic mean value of number of intersections NT L obtained in 10 positions defined as the number of intersections NT L in the L-direction observation field plane of a seamless steel pipe of the present embodiment.
- the arithmetic mean value of the layered index LI L obtained in 10 positions defined as layered index LI L in the L-direction observation field plane of a seamless steel pipe of the present embodiment.
- Layered index LI L means the development degree of lamellar structure in the L direction observation field plane.
- the number of intersections NT L is 38 or more and the laminarity index L IL is 1.80 or more
- the cross section 1L in the L direction is obtained. Means that a well-developed layered tissue has been obtained.
- a plane parallel to the C direction and the T direction is defined as a C direction cross section 1C.
- a square cross section that is located at the center position of the thickness of the seamless steel pipe the length of the side extending in the C direction is 100 ⁇ m, and the length of the side extending in the T direction is 100 ⁇ m, Defined as the C-direction observation visual field plane 60.
- the direction C can be regarded as a straight line.
- FIG. 5 is a schematic diagram illustrating an example of the C-direction observation visual field plane 60.
- four line segments that divide the C-direction observation visual field plane 60 into five equal parts in the C direction are defined as line segments T C1 to T C4 .
- four line segments that divide the C-direction observation visual field plane 60 into five equal parts in the T direction are defined as line segments C1 to C4.
- the interface between ferrite and martensite is defined as a ferrite interface FB.
- the C-direction observation visual field 60 further has the following items (III- Satisfies 1) and (III-2).
- III-1 The number of intersections NT C, which is the number of intersections between the line segments T C 1 to T C 4 and the ferrite interface, is 30 or more.
- III-2) and the number of intersections NC is the number of intersections between the line segment C1 ⁇ C4 and the ferrite interface, and the number of intersections NT C, satisfies the equation (4).
- the morphology (number of intersections NT C and NT C / NC) of the layered structure on the C-direction observation visual field plane 60 is measured by the following method.
- a sample having a C-direction cross section including the C direction and the T direction at the center of the thickness of the seamless steel pipe is collected.
- the size of the C-direction cross section 1C is not particularly limited as long as a C-direction observation visual field surface 60 described later can be secured.
- the size of the cross section 1C in the C direction is, for example, 5 mm in the C direction ⁇ 5 mm in the T direction.
- the sample is collected such that the center position in the T direction of the cross section in the C direction substantially coincides with the center position in the T direction (wall thickness direction) of the seamless steel pipe.
- the cross section 1C in the C direction is mirror-polished.
- the mirror-polished cross section 1C in the C direction is immersed in a virella etchant for 10 seconds to reveal the structure by etching.
- the center position of the etched cross section 1C in the C direction is observed using an optical microscope.
- Line segments extending in the T direction and arranged at equal intervals in the L direction on the C direction observation field surface 60 and dividing the L direction observation field surface 50 into five equal parts in the C direction are referred to as line segments T C1 to T C4.
- the number of intersections (indicated by “ ⁇ ” in FIG. 5) between the line segments T C 1 to T C 4 and the ferrite interface FB in the C direction observation visual field plane 60 is defined as the number of intersections NT C (pieces). I do.
- line segments extending in the C direction and arranged at equal intervals in the T direction of the C direction observation visual field plane 60 and dividing the C direction observation visual field plane 60 into five equal parts in the T direction (thickness direction) are represented by line segments C1 to C1. Defined as C4.
- the number of intersections (indicated by “ ⁇ ” in FIG. 5) between the line segments C1 to C4 and the ferrite interface in the C-direction observation visual field plane 60 is defined as the number of intersections NC (pieces).
- the microstructure of the seamless steel pipe according to the present embodiment is such that while the L-direction observation visual field 50 satisfies the above (II-1) and (II-2), the C-direction observation visual field 60 has a number of intersections NT C is 30 or more, and has a lamellar structure in which the layered index LI C satisfies the equation (4).
- Layering index LI C NT C /NC ⁇ 1.70 (4)
- ten C-direction observation visual field planes 60 are selected from arbitrary positions.
- the number of intersections NT C and the layered index LI C are obtained by the above-described method.
- the arithmetic mean value of the number of intersections NT C obtained at 10 locations is defined as the number of intersections NT C on the C-direction observation visual field plane 60 of the seamless steel pipe of the present embodiment.
- the arithmetic mean value of the laminar indices LI C obtained at ten locations is defined as the laminar indices LI C of the seamless steel pipe of the present embodiment in the C-direction observation visual field plane 60.
- the laminar index LI C means the degree of development of the laminar structure on the C-direction observation visual field. Number of intersections NT L in the L direction observation field plane 50 is not less 38 or more, the layered index LI L is not less 1.80 or more, further, number of intersections NT C in C direction observation field plane 60 is 30 or more There, when the layered index LI C is 1.70 or more, the seamless steel pipes the above-described chemical composition satisfying the formula (1) and (2), not only L cross section 1L, also in C cross section 1C Means that a well-developed layered tissue has been obtained.
- the seamless steel pipe of the present embodiment has a chemical composition that satisfies the formulas (1) and (2), and further has a microstructure in which the number of intersections NT L on the L-direction observation visual plane 50 is 38. and the FOB, layered index LI L is not less 1.80 or more, further, number of intersections NT C in C direction observation field plane 60 is 30 or more, is layered index LI C 1.70 or more. Therefore, the seamless steel pipe of the present embodiment can achieve both a yield strength of 862 MPa or more and excellent low-temperature toughness.
- the lower limit of the number of intersections NT L is preferably 39, more preferably 40, more preferably 41, more preferably 55, and even more preferably 58. And more preferably 60.
- the upper limit of the number of intersections NT L is not particularly limited, for example, 150.
- a preferable lower limit of the layered index LI L is 1.82, still more preferably 1.84, still more preferably 1.86, more preferably 1.88, further It is preferably 1.90, more preferably 1.92, further preferably 2.10, more preferably 2.50, further preferably 2.64, and still more preferably 3.00. It is.
- the upper limit of the layered index LI L is not particularly limited, for example, it is 10.0.
- the lower limit of the number of intersections NT C is preferably 32, more preferably 34, more preferably 36, more preferably 40, and even more preferably 45. , More preferably 50, and even more preferably 54.
- the upper limit of the number of intersections NT C is not particularly limited, but is, for example, 150.
- a preferable lower limit of the layered index LI C is 1.75, still more preferably 1.78, still more preferably 1.80, more preferably 1.82, further It is preferably 1.85, more preferably 1.88, further preferably 1.90, further preferably 1.95, more preferably 1.98, and still more preferably 2.00. And more preferably 2.25.
- the upper limit of the layered index LI C is not particularly limited, for example, it is 10.0.
- the thickness of the seamless steel pipe according to the present embodiment is not particularly limited. When a seamless steel pipe is used for oil well applications, the preferred wall thickness is between 5.0 and 60.0 mm.
- the yield strength of the steel material according to the present embodiment is 862 MPa or more.
- the yield strength referred to in the present specification means a 0.2% offset proof stress (MPa) obtained by a tensile test in the air at normal temperature (20 ⁇ 15 ° C.) in accordance with ASTM E8 / E8M-16a.
- the upper limit of the yield strength of the seamless steel pipe of the present embodiment is not particularly limited. However, in the case of the above-mentioned chemical composition, the upper limit of the yield strength of the seamless steel pipe of the present embodiment is, for example, 1000 MPa.
- the preferred upper limit of the yield strength of the seamless steel pipe of the present embodiment is 990 MPa, and more preferably 988 MPa. More preferably, the yield strength of the seamless steel pipe according to this embodiment is of the order of 125 ksi, specifically, 862 to 965 MPa.
- the yield strength of the seamless steel pipe according to the present embodiment is determined by the following method.
- a round bar tensile test piece is collected from the center of the wall thickness.
- the diameter of the parallel portion of the round bar tensile test piece is 4 mm, and the length of the parallel portion is 35 mm.
- the longitudinal direction of the parallel portion of the round bar tensile test piece is parallel to the L direction.
- the center position of the cross section perpendicular to the longitudinal direction of the round bar tensile test piece is made to substantially coincide with the center position of the wall thickness.
- a tensile test is performed at room temperature (20 ⁇ 15 ° C.) in the air in accordance with ASTM No. E8 / E8M-16a.
- the 0.2% offset proof stress obtained by the test is defined as the yield strength (MPa).
- the seamless steel pipe of the present embodiment not only has a high yield strength as described above, but also has excellent low-temperature toughness. Specifically, in the seamless steel pipe of the present embodiment, the absorbed energy at ⁇ 10 ° C. obtained by performing the Charpy impact test based on ASTM A370-18 is 150 J or more.
- the low-temperature toughness of the seamless steel pipe of this embodiment is determined by the following method. From the center of the wall thickness of the seamless steel pipe, the API 5CRA / ISO13680 ⁇ TABLE ⁇ A. A V-notch test piece according to 5 is collected. Using a test piece, a Charpy impact test is performed in accordance with ASTM No. A370-18, and the absorbed energy (J) at ⁇ 10 ° C. is determined.
- An example of the method for manufacturing a seamless steel pipe of the present embodiment includes a heating step, a piercing and rolling step, a drawing and rolling step, and a heat treatment step.
- the elongation rolling step is an optional step and need not be performed.
- each manufacturing process will be described.
- the material having the above-mentioned chemical composition is heated at 1200 to 1260 ° C.
- the material may be manufactured and prepared, or may be prepared by purchasing from a third party.
- a molten steel having the above chemical composition is manufactured.
- the material is manufactured by casting using molten steel.
- a slab slab, bloom, or billet
- An ingot may be manufactured by using a molten steel by an ingot-making method.
- a billet may be manufactured by subjecting a slab, bloom or ingot manufactured by casting to slab rolling. The material is manufactured through the above steps.
- the prepared material is held at a heating temperature T of 1200 to 1260 ° C. for a holding time t (time).
- a heating temperature T corresponds to the furnace temperature (° C.) of the heating furnace.
- the holding time t (time) at the heating temperature T is, for example, 1.0 hour to 10.0 hours.
- the heating temperature T is less than 1200 ° C., the hot workability of the material is too low, so that surface defects easily occur in the material during piercing and subsequent elongation rolling.
- the heating temperature T is 1200 to 1260 ° C., on the premise that the conditions of each step described later are satisfied, a layered structure satisfying the formulas (3) and (4) is obtained in the microstructure of the manufactured seamless steel pipe. can get.
- Punch rolling is performed on the heated material to produce a hollow shell. Specifically, the material is pierced and rolled using a piercing machine.
- the punch includes a pair of inclined rolls and a plug. A pair of inclined rolls are arranged around the pass line. The plug is located between the pair of inclined rolls and on the pass line.
- the pass line is a line through which the central axis of the material passes during piercing and rolling.
- the inclined roll may be of a barrel type or a cone type.
- piercing and rolling are performed so as to satisfy (A).
- X in the formula (A) is a heating condition parameter.
- the heating condition parameter X is defined by the following equation (B).
- X (T + 273) ⁇ ⁇ 20 + log (t) ⁇ (B)
- T in the formula (B) is a heating temperature (° C.)
- t is a holding time (hour) at the heating temperature T.
- Y in the formula (A) is a cross-section reduction rate in the drilling machine.
- the cross-sectional reduction rate Y in the piercing machine does not include the cross-sectional reduction rate in elongation rolling after piercing rolling in the piercing machine.
- the section reduction rate Y (%) in the drilling machine is defined by Expression (C).
- Y ⁇ 1- (Cross-sectional area perpendicular to tube axis direction of pipe after piercing / rolling / cross-sectional area perpendicular to pipe axis direction of raw material before piercing and rolling) ⁇ ⁇ 100 (C)
- the layered structure having a cross section 1L in the L direction is sufficiently developed (that is, the above (II-1) and (II-2) ))
- a layered structure having a cross section 1C in the C direction sufficiently (that is, satisfy the above (III-1) and (III-2)) by heating in piercing and rolling with a piercing machine.
- the relationship between the temperature T, the holding time t, and the cross-sectional reduction rate Y in the drilling machine is important. Unless an appropriate reduction is applied to a material heated under appropriate heating conditions by a punch, the reduction cannot be sufficiently penetrated into the inside of the material.
- the layered structure in the cross section in the C direction can be sufficiently developed by heating conditions and piercing and rolling conditions in piercing and rolling by a piercing machine.
- the steps after the piercing rolling do not contribute much to the development of the layered structure in the C-direction cross section.
- the above-mentioned FA is an index of heating conditions and piercing rolling conditions in the piercing and rolling step for sufficiently developing the layered structure of not only the L-direction section 1L but also the C-direction section 1C. If the FA is 1720 or more, the piercing and rolling conditions are inappropriate for the material heated to 1200 to 1260 ° C. In this case, particularly, the layered structure of the seamless steel pipe at the cross section 1C in the C direction is not sufficiently developed. Specifically, in the C-direction observation visual field plane 60, the number of intersections NT C becomes less than 30, or NT C / NL becomes less than 1.70.
- the layered structure not only in the C-direction section 1C but also in the L-direction section 1L of the seamless steel pipe may not be sufficiently developed.
- number of intersections NT L is or becomes less than 38, NT C / NL in some cases or is less than 1.80.
- the piercing and rolling conditions are appropriate. Therefore, the material heated under appropriate heating conditions can be pierced and rolled at an appropriate cross-sectional reduction rate in a piercing machine. Therefore, the layered structure is sufficiently developed in both the L-direction section 1L and the C-direction section 1C of the seamless steel pipe, assuming that the conditions of each step described later are satisfied.
- the number of intersections NT L becomes 38 or more
- NT C / NL becomes 1.80 or more.
- the number of intersections NT C becomes 30 or more
- NT C / NL becomes 1.70 or more.
- the lower limit of FA is not particularly limited, but the lower limit of FA is preferably 1600, more preferably 1620, further preferably 1630, further preferably 1640, and further preferably 1650.
- the preferred upper limit of FA is 1715, more preferably 1710, further preferably 1705, and still more preferably 1695.
- the material since the chemical composition of the material satisfies the formula (2), the material has excellent hot workability. Therefore, even if the material is pierced and rolled under the condition satisfying the expression (A), generation of surface flaws can be sufficiently suppressed.
- the temperature of the tube immediately after piercing and rolling is, for example, 1050 ° C or higher, more preferably 1060 ° C, and further preferably 1100 ° C or higher. That is, the above equation (A) shows the heating conditions and the piercing and rolling conditions in the piercing and rolling step when the raw material temperature immediately after the piercing and rolling is 1050 ° C. or higher.
- the tube temperature immediately after piercing and rolling can be measured by the following method.
- a thermometer is arranged on the exit side of the drilling machine.
- the surface temperature of the tube after piercing and rolling is measured by a thermometer on the outlet side of the piercing machine.
- the surface temperature distribution in the tube axis direction (longitudinal direction) of the raw tube is obtained by measuring the temperature.
- the average of the obtained surface temperature distribution is defined as the tube temperature (° C.) after piercing and rolling.
- the heating condition parameter X is not particularly limited as long as it is within the range of the above formula (A).
- a preferred lower limit of the heating condition parameter X is 29500, and more preferably 29700.
- the preferable upper limit of the heating condition parameter X is 31500, more preferably 31200.
- a preferable cross-sectional reduction rate Y in piercing rolling is 25 to 80%.
- the more preferable lower limit of the cross-sectional reduction rate Y in the piercing rolling is 30%, more preferably 35% or more.
- a more preferable upper limit of the cross-sectional reduction rate Y in the piercing rolling is 75%.
- the permeability of the drilling machine into the material (base tube) is much greater than the permeability of the mandrel mill or sizer mill in the downstream process. Therefore, among the layered structures of the L-direction cross section 1L and the C-direction cross section 1C of the seamless steel pipe, the layered structure of the C-direction cross section 1C in particular satisfies the formula (A) by the piercing and rolling step satisfying the formula (A). -1) and (III-2) can be satisfied.
- the layered structure in the L-direction cross section is (II-1) and (II) even if the reduction in the area is increased in the elongating and rolling process even if the reduction is increased. It is difficult to manufacture a seamless steel pipe that satisfies -2) and has a microstructure in which the layered structure in the cross section in the C direction satisfies (III-1) and (III-2).
- the elongation rolling step may not be performed.
- elongation rolling is performed on the raw tube manufactured in the piercing rolling step.
- the elongation rolling is performed using an elongation rolling mill.
- the elongation rolling mill includes a plurality of roll stands arranged in a row from upstream to downstream along a pass line. Each roll stand includes a plurality of rolling rolls.
- the elongation mill is, for example, a mandrel mill.
- the mandrel bar into the tube is advanced on the pass line of the elongation rolling mill, and elongation rolling is performed. After elongation rolling, the mandrel bar inserted into the raw tube is pulled out.
- the cross-sectional reduction rate in elongation rolling is, for example, 10 to 70%.
- the tube temperature immediately after the completion of elongation rolling is, for example, 980 to 1000 ° C.
- the tube temperature immediately after the completion of elongation rolling can be measured by the following method. A thermometer is arranged on the outlet side of a stand for rolling down the raw tube at the end of the elongating mill.
- the surface temperature of the raw tube after elongation rolling is measured by a thermometer on the outlet side of the stand that finally lowers the raw tube.
- the surface temperature distribution in the tube axis direction of the raw tube is obtained by measuring the temperature.
- the average of the obtained surface temperature distribution is defined as the tube temperature (° C.) immediately after the completion of the elongation rolling.
- the constant diameter rolling step may be performed on the raw tube after the elongation rolling step, if necessary. That is, the constant diameter rolling step may not be performed.
- the constant diameter rolling mill includes a plurality of roll stands arranged in a line from upstream to downstream along a pass line. Each roll stand includes a plurality of rolling rolls.
- the constant diameter rolling mill is, for example, a sizer or a stretch reducer.
- the piercing rolling step, the elongating rolling step, and the constant diameter rolling step are defined as a “pipe forming step”.
- the cumulative cross-sectional reduction rate in the pipe making process is, for example, 30 to 90%.
- the method of cooling the raw tube after the piercing rolling step, the elongating rolling step, or the constant diameter rolling step is not particularly limited.
- the raw tube may be air-cooled.
- directly quenching after the piercing and rolling process, after the elongating and rolling process, or after the sizing and rolling process May be.
- the raw tube may be reheated, and then quenching may be performed.
- the heat treatment step After the elongation rolling step or the constant diameter rolling step, the heat treatment step is performed.
- the heat treatment step includes a quenching step and a tempering step.
- the quenching step a known quenching is performed on the raw tube.
- the quenching temperature is 850 to 1150 ° C.
- the microstructure of the tube becomes a two-phase structure of austenite and ferrite.
- the quenching may be performed by direct quenching after the piercing and rolling step, immediately after the elongation rolling step, or immediately after the constant diameter rolling step. Further, after the piercing rolling step, the elongating rolling step, or the constant diameter rolling step, the cooled raw tube may be reheated using a heat treatment furnace to perform quenching.
- the surface temperature of the raw tube measured by a thermometer installed on the exit side of the final stand is defined as quenching temperature (° C).
- the furnace temperature of the heat treatment furnace is defined as a quenching temperature (° C.).
- the holding time at the quenching temperature is not particularly limited. When a heat treatment furnace is used, the holding time at the quenching temperature is, for example, 10 to 60 minutes.
- the method of quenching the tube at the quenching temperature is not particularly limited.
- the pipe may be immersed in a water bath to rapidly cool the pipe, or shower water or mist cooling may be used to pour or spray cooling water on the outer and / or inner surface of the pipe, May be quenched.
- Hardening may be performed multiple times. For example, after the piercing and rolling step, after the elongation and rolling step, or after directly quenching the raw tube after the M constant diameter rolling step, the raw tube is heated to a quenching temperature using a heat treatment furnace, and quenched again. May be implemented. Further, quenching and tempering described below may be repeatedly performed a plurality of times. That is, quenching and tempering may be performed a plurality of times. When performing quenching and tempering a plurality of times, the quenching temperature in each quenching is 850 to 1150 ° C., and the holding time at the quenching temperature is 10 to 60 minutes. The tempering temperature in each tempering is 400 to 700 ° C., and the holding time at the tempering temperature is 15 to 120 minutes. The microstructure of the quenched tube mainly contains ferrite and martensite, and the remainder consists of retained austenite.
- tempering process tempering is performed on the tube after the above-described quenching step.
- the tempering temperature is 400 to 700 ° C.
- the holding time at the tempering temperature is not particularly limited, but is, for example, 15 to 120 minutes.
- the yield strength of the seamless steel pipe is adjusted to 862 MPa or more.
- the total volume ratio of ferrite and martensite 80% or more, and retained austenite is 20% or less.
- the seamless steel pipe according to the present embodiment can be manufactured by the above manufacturing method.
- the content of each element in the chemical composition is within the above-described range, and satisfies Expression (1) and Expression (2).
- Expression (1) and Expression (2) satisfies Expression (1) and Expression (2).
- the total volume ratio of ferrite and martensite is 80% or more, and the balance of retained austenite
- (II) the intersection number NT L in the L direction observation field plane 50 is 38 or more And NT L / NL is 1.80 or more
- the number of intersections NT C on the C-direction observation visual field plane 60 is 30 or more
- NT C / NC is 1.70 or more. It is. Therefore, the yield strength becomes 862 MPa or more, and excellent low-temperature toughness is obtained. That is, both high yield strength and high low-temperature toughness can be achieved.
- the above-described manufacturing method is an example of the method for manufacturing a seamless steel pipe according to the present embodiment. Therefore, the seamless steel pipe of the present embodiment has the above-mentioned chemical composition satisfying the formulas (1) and (2), and in the microstructure, the total volume ratio of (I) ferrite and martensite is 80% or more. Yes, the remainder consists of retained austenite, (II) the number of intersections NT L on the L direction observation visual field is 38 or more, and NT L / NL is 1.80 or more, and (III) the C direction If the number of intersections NT C in the observation visual field is 30 or more and NT C / NC is 1.70 or more, it may be manufactured by a manufacturing method other than the above-described manufacturing method.
- a blank portion in Table 1 means that the content of the corresponding element was below the detection limit. That is, it means that the corresponding element was not contained.
- a plurality of round billets as raw materials were manufactured by continuous casting using molten steel.
- the round billet was heated at a heating temperature T (° C.) and a holding time t (hour) shown in Table 2.
- the heated round billet was pierced and rolled using a piercing machine to produce a raw tube.
- the tube temperature of each test number immediately after piercing and rolling was 1050 ° C. or higher.
- the raw tubes after piercing and rolling were allowed to cool to room temperature (20 ⁇ 15 ° C.).
- the tube after elongation rolling was allowed to cool to room temperature.
- the tube was hardened. Specifically, the raw tube was charged into a heat treatment furnace, kept at a quenching temperature of 950 ° C. for 15 minutes, and then immersed in a water bath to perform water cooling (water quenching). Tempering was performed on the quenched tube. Specifically, the raw tube was charged into a heat treatment furnace and kept at a tempering temperature of 550 ° C. for 30 minutes. Through the above manufacturing steps, a seamless steel pipe as a steel material of each test number was manufactured. Table 2 shows the outer diameter (mm) and wall thickness (mm) of the seamless steel pipe of each manufactured test number.
- the average value of the volume ratio V ⁇ of the six sets of retained austenite was defined as the volume ratio (%) of the retained austenite.
- V ⁇ 100 / ⁇ 1+ (I ⁇ ⁇ R ⁇ ) / (I ⁇ ⁇ R ⁇ ) ⁇ (5)
- R ⁇ on the (200) plane of the ⁇ phase is 15.9
- R ⁇ on the (211) plane of the ⁇ phase is 29.2
- R ⁇ on the (200) plane of the ⁇ phase is 35.5
- R ⁇ on the (220) plane was 20.8, and R ⁇ on the (311) plane of the ⁇ phase was 21.8.
- a sample was taken at the center position in the T direction (wall thickness direction) of the seamless steel pipe of each test number and including a cross section including the L direction and the T direction (a cross section in the L direction).
- the section in the L direction was a plane including the L direction and the T direction.
- the size of the cross section in the L direction was 5 mm in the L direction ⁇ 5 mm in the T direction.
- a sample was taken such that the center position in the T direction of the cross section in the L direction substantially coincided with the center position in the T direction (thickness direction) of the seamless steel pipe.
- the cross section in the L direction was immersed in a virella etchant for 10 seconds to reveal the structure by etching.
- the etched section in the L direction was subjected to a layered structure confirmation test using an optical microscope with a magnification of 1000 times.
- each L-direction observation visual field line segments T L1 to T L 4 extending in the T direction were arranged at regular intervals in the L direction, and the L-direction observation visual field was divided into five equal parts in the L direction. Further, the line segments L1 to L4 extending in the L direction were arranged at regular intervals in the T direction, and the L-direction observation visual field plane was divided into five equal parts in the T direction. The number of intersections between the line segments T L1 to T L4 and the ferrite interface in the L-direction observation visual field plane was counted and defined as the number of intersections NT L (pieces).
- the number of intersections between the line segments L1 to L4 and the ferrite interface in the plane of the L-direction observation visual field was counted and defined as the number of intersections NL (pieces).
- the average value of the 10 number of intersections NT L obtained in each of the L-direction observation field plane 10 points was defined as the number of intersections NT L (number) in the seamless steel pipes of the test numbers.
- the average value of the ten layered index LI L obtained in each of the L-direction observation field plane 10 points was defined as the layered index LI L in seamless steel pipes of the test numbers. Number resulting intersection NT L, the number of intersections NL and layered index LI L, shown in Table 2.
- a sample was taken at the center position in the T direction (thickness direction) of the seamless steel pipe of each test number and including a cross section including the C direction and the T direction (C direction cross section).
- the cross section in the C direction was a plane including the C direction and the T direction.
- the size of the cross section in the C direction was 5 mm in the C direction ⁇ 5 mm in the T direction.
- a sample was taken such that the center position in the T direction of the cross section in the C direction substantially coincides with the center position in the T direction (thickness direction) of the seamless steel pipe.
- the cross section in the C direction was immersed in a virella etchant for 10 seconds to reveal the structure by etching.
- a layered structure confirmation test was performed on the etched cross section in the C direction using an optical microscope with a magnification of 1000 times.
- each C-direction observation visual field line segments T C1 to T C 4 extending in the T direction were arranged at regular intervals in the C direction, and the C-direction observation visual field was divided into five equal parts in the C direction. Further, the line segments C1 to C4 extending in the C direction were arranged at equal intervals in the T direction, and the C-direction observation visual field plane was divided into five equal parts in the T direction. The number of intersections between the line segments T C1 to T C4 and the ferrite interface in the field of view in the C direction observation was counted and defined as the number of intersections NT C (pieces).
- the number of intersections between the line segments C1 to C4 and the ferrite interface in the C-direction observation visual field plane was counted and defined as the number of intersections NC (pieces).
- the average value of the 10 number of intersections NT C obtained in each of the C-direction observation field plane 10 points was defined as the number of intersections NT C (number) in the seamless steel pipes of the test numbers.
- the average value of the ten laminar indices LI C obtained in each of the ten C-direction observation visual fields was defined as the laminar indices LI C in the seamless steel pipe of the test number.
- Table 2 shows the obtained number of intersections NT C , number of intersections NC, and layered index LI C.
- a hot workability test (a grease test) was performed. Specifically, a plurality of test pieces having a diameter of 10 mm and a length of 130 mm were cut out from billets of each steel number. The central axis of the test piece coincided with the central axis of the round billet. The test piece was heated to 1250 ° C. for 3 minutes using a high-frequency induction heating furnace, and then kept at 1250 ° C. for 3 minutes.
- each of the plurality of test pieces having the steel number was cooled to 1250 ° C., 1200 ° C., 1100 ° C., and 1000 ° C., and then a tensile test was performed at a strain rate of 10 sec ⁇ 1. To break it.
- the cross-sectional reduction rate of the fractured test piece was determined. If the obtained cross-sectional reduction rate is 70.0% or more at any temperature, it is determined that the steel of the steel number has excellent hot workability ("E” in the column of "Hot workability” in Table 2). (Expressed as “Excellent”). On the other hand, when the cross-sectional reduction rate was less than 70.0% in any of the temperature ranges, it was determined that the hot workability was low (“NA” (Not Accepted) in the “Hot workability” column of Table 2). Notation).
- the chemical compositions of the seamless steel pipes of Test Nos. 1 to 15 were appropriate, and satisfied Expressions (1) and (2). Furthermore, the manufacturing conditions were also appropriate. Therefore, in the microstructure of the seamless steel pipe of each test number, the total volume ratio of ferrite and martensite was 80% or more, and the rest was retained austenite. In addition, the number of intersections NT L on the L-direction observation visual field is 38 or more, and NT L / NL is 1.80 or more, and the number of intersections NT C on the C-direction observation visual field is 30 or more. And NT C / NC was 1.70 or more. That is, in the seamless steel pipes of Test Nos.
- the layered structure was sufficiently developed in both the L-direction cross section and the C-direction cross section.
- the yield strength was 862 MPa or more, and sufficient hot workability was obtained.
- the absorbed energy at ⁇ 10 ° C. was 150 J or more, and excellent low-temperature toughness was obtained.
- Test Nos. 16 to 25 although the heating temperature T was appropriate, the FA did not satisfy the formula (A) in piercing and rolling. Therefore, in Test Nos. 16 to 25, at least NT C / NC on the C-direction observation visual field was less than 1.70. That is, in the microstructure of the seamless steel pipe of Test Nos. 16 to 25, at least in the cross section in the C direction, the layered structure was not sufficiently developed. As a result, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
- NT L / NL in the L direction observation visual field was 1.80 or more, but NT C / NC in the C direction observation visual field was less than 1.70. there were. Therefore, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
- the heating temperature T was too high. Therefore, in the microstructure, NT L / NL in the L direction observation visual field was less than 1.80, and NT C / NC in the C direction observation visual field was less than 1.70. As a result, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
- the Nb content was too high. Therefore, in the microstructure, NT L / NL in the L direction observation visual field was less than 1.80, and NT C / NC in the C direction observation visual field was less than 1.70. As a result, the absorbed energy at ⁇ 10 ° C. was less than 150 J, and the low-temperature toughness was low.
- the seamless steel pipe of the present embodiment is widely applicable to applications requiring high strength and low temperature toughness.
- the seamless steel pipe according to the present embodiment can be used, for example, as a steel pipe for geothermal power generation or a steel pipe for chemical plant use.
- the seamless steel pipe according to the present embodiment is particularly suitable for oil well applications. Seamless steel pipes for oil well applications are, for example, casings, tubing, drill pipes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
化学組成が、
質量%で、
C:0.050%以下、
Si:0.50%以下、
Mn:0.01~0.20%、
P:0.025%以下、
S:0.0150%以下、
Cu:0.09~3.00%、
Cr:15.00~18.00%、
Ni:4.00~9.00%、
Mo:1.50~4.00%、
Al:0.040%以下、
N:0.0150%以下、
Ca:0.0010~0.0040%、
Ti:0.020%以下、
Nb:0.020%以下、
V:0~0.20%、
Co:0~0.30%、
W:0~2.00%、及び
残部:Fe及び不純物からなり、式(1)及び式(2)を満たし、
前記継目無鋼管の管軸方向をL方向、肉厚方向をT方向、前記L方向及び前記T方向と垂直な方向をC方向と定義したとき、ミクロ組織が、次の(I)~(III)を満たす。
(I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
(II)前記継目無鋼管の肉厚中央位置に位置し、前記L方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のL方向観察視野面において、
前記T方向に延びる線分であって、前記L方向に等間隔に配列され、前記L方向観察視野面を前記L方向に5等分する4つの線分を線分TL1~TL4と定義し、
前記L方向に延びる線分であって、前記T方向に等間隔に配列され、前記L方向観察視野面を前記T方向に5等分する4つの線分を線分L1~L4と定義し、
前記フェライトと前記マルテンサイトとの界面をフェライト界面と定義したとき、
前記線分TL1~TL4と前記フェライト界面との交点の数である交点数NTLが38個以上であり、
前記線分L1~L4と前記フェライト界面との交点の数である交点数NLと、前記交点数NTLとが、式(3)を満たす。
(III)前記継目無鋼管の肉厚中央位置に位置し、前記C方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のC方向観察視野面において、
前記T方向に延びる線分であって、前記C方向に等間隔に配列され、前記C方向観察視野面を前記C方向に5等分する4つの線分を線分TC1~TC4と定義し、
前記C方向に延びる線分であって、前記T方向に等間隔に配列され、前記C方向観察視野面を前記T方向に5等分する4つの線分を線分C1~C4と定義し、
前記線分TC1~TC4と前記フェライト界面との交点の数である交点数NTCが30個以上であり、
前記線分C1~C4と前記フェライト界面との交点の数である交点数NCと、前記交点数NTCとが、式(4)を満たす。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
Ca/S≧4.0 (2)
NTL/NL≧1.80 (3)
NTC/NC≧1.70 (4)
ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
化学組成が、
質量%で、
C:0.050%以下、
Si:0.50%以下、
Mn:0.01~0.20%、
P:0.025%以下、
S:0.0150%以下、
Cu:0.09~3.00%、
Cr:15.00~18.00%、
Ni:4.00~9.00%、
Mo:1.50~4.00%、
Al:0.040%以下、
N:0.0150%以下、
Ca:0.0010~0.0040%、
Ti:0.020%以下、
Nb:0.020%以下、
V:0~0.20%、
Co:0~0.30%、
W:0~2.00%、及び
残部:Fe及び不純物からなり、式(1)及び式(2)を満たす素材を、1200~1260℃の加熱温度Tでt時間保持する加熱工程と、
前記加熱工程で加熱された前記素材を、式(A)を満たす条件で穿孔圧延して素管を製造する穿孔圧延工程と、
前記素管を延伸圧延する延伸圧延工程と、
前記延伸圧延工程後の前記素管に対して、850~1150℃の焼入れ温度で焼入れを実施する焼入れ工程と、
前記焼入れ工程後の前記素管に対して、400~700℃の焼戻し温度で焼戻しを実施する焼戻し工程と、を備える、
継目無鋼管の製造方法。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
Ca/S≧4.0 (2)
0.057X-Y<1720 (A)
式(A)中のXは次の式(B)で定義される。
X=(T+273)×{20+log(t)} (B)
ここで、Tは前記素材の加熱温度(℃)であり、tは、前記加熱温度Tでの保持時間(時間)である。
式(A)中の断面減少率Y(%)は式(C)で定義される。
Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C)
(II-1)交点数NTLが38個以上であり、
(II-2)式(3)で定義される層状指数LIL(Layer Index of Longitudinal direction)が1.80以上であり、
かつ、C方向断面1Cにおいて、
(III-1)交点数NTCが30個以上であり、かつ、
(III-2)式(4)で定義される層状指数LIC(Layer Index of Circumferential direction)が1.70以上、
であれば、862MPa以上の降伏強度を有していても、亀裂を極めて有効に抑制することが可能となり、優れた低温靱性が得られることがわかった。
層状指数LIL=NTL/NL≧1.80 (3)
層状指数LIC=NTC/NC≧1.70 (4)
以下、交点数NTL及び層状指数LIL、交点数NTC及び層状指数LICについて説明する。
層状指数LILは、L方向断面1Lにおける層状組織の発達の度合いを示す指標である。層状指数LIL中のNTL、NLは次のとおり定義される。
層状指数LICは、C方向断面1Cにおける、層状組織の発達の度合いを示す指標である。層状指数LIC中のNTC、NCは次のとおり定義される。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
Ca/S≧4.0 (2)
ここで、式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
化学組成が、
質量%で、
C:0.050%以下、
Si:0.50%以下、
Mn:0.01~0.20%、
P:0.025%以下、
S:0.0150%以下、
Cu:0.09~3.00%、
Cr:15.00~18.00%、
Ni:4.00~9.00%、
Mo:1.50~4.00%、
Al:0.040%以下、
N:0.0150%以下、
Ca:0.0010~0.0040%、
Ti:0.020%以下、
Nb:0.020%以下、
V:0~0.20%、
Co:0~0.30%、
W:0~2.00%、及び
残部:Fe及び不純物からなり、式(1)及び式(2)を満たし、
前記継目無鋼管の管軸方向をL方向、肉厚方向をT方向、前記L方向及び前記T方向と垂直な方向をC方向と定義したとき、ミクロ組織が、次の(I)~(III)を満たす。
(I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
(II)前記継目無鋼管の肉厚中央位置に位置し、前記L方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のL方向観察視野面において、
前記T方向に延びる線分であって、前記L方向に等間隔に配列され、前記L方向観察視野面を前記L方向に5等分する4つの線分を線分TL1~TL4と定義し、
前記L方向に延びる線分であって、前記T方向に等間隔に配列され、前記L方向観察視野面を前記T方向に5等分する4つの線分を線分L1~L4と定義し、
前記フェライトと前記マルテンサイトとの界面をフェライト界面と定義したとき、
前記線分TL1~TL4と前記フェライト界面との交点の数である交点数NTLが38個以上であり、
前記線分L1~L4と前記フェライト界面との交点の数である交点数NLと、前記交点数NTLとが、式(3)を満たす。
(III)前記継目無鋼管の肉厚中央位置に位置し、前記C方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のC方向観察視野面において、
前記T方向に延びる線分であって、前記C方向に等間隔に配列され、前記C方向観察視野面を前記C方向に5等分する4つの線分を線分TC1~TC4と定義し、
前記C方向に延びる線分であって、前記T方向に等間隔に配列され、前記C方向観察視野面を前記T方向に5等分する4つの線分を線分C1~C4と定義し、
前記線分TC1~TC4と前記フェライト界面との交点の数である交点数NTCが30個以上であり、
前記線分C1~C4と前記フェライト界面との交点の数である交点数NCと、前記交点数NTCとが、式(4)を満たす。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
Ca/S≧4.0 (2)
NTL/NL≧1.80 (3)
NTC/NC≧1.70 (4)
ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
[1]に記載の継目無鋼管であって、
前記化学組成は、
V:0.01~0.20%、を含有する。
[1]又は[2]に記載の継目無鋼管であって、
前記化学組成は、
Co:0.10~0.30%、及び、
W:0.02~2.00%、からなる群から選択される1種以上、を含有する。
化学組成が、
質量%で、
C:0.050%以下、
Si:0.50%以下、
Mn:0.01~0.20%、
P:0.025%以下、
S:0.0150%以下、
Cu:0.09~3.00%、
Cr:15.00~18.00%、
Ni:4.00~9.00%、
Mo:1.50~4.00%、
Al:0.040%以下、
N:0.0150%以下、
Ca:0.0010~0.0040%、
Ti:0.020%以下、
Nb:0.020%以下、
V:0~0.20%、
Co:0~0.30%、
W:0~2.00%、及び
残部:Fe及び不純物からなり、式(1)及び式(2)を満たす素材を、1200~1260℃の加熱温度Tでt時間保持する加熱工程と、
前記加熱工程で加熱された前記素材を、式(A)を満たす条件で穿孔圧延して素管を製造する穿孔圧延工程と、
前記素管を延伸圧延する延伸圧延工程と、
前記延伸圧延工程後の前記素管に対して、850~1150℃の焼入れ温度で焼入れを実施する焼入れ工程と、
前記焼入れ工程後の前記素管に対して、400~700℃の焼戻し温度で焼戻しを実施する焼戻し工程と、を備える、
継目無鋼管の製造方法。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
Ca/S≧4.0 (2)
0.057X-Y<1720 (A)
式(A)中のXは次の式(B)で定義される。
X=(T+273)×{20+log(t)} (B)
ここで、Tは素材の加熱温度(℃)であり、tは、加熱温度Tでの保持時間(時間)である。
式(A)中の断面減少率Y(%)は式(C)で定義される。
Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C)
[4]に記載の継目無鋼管の製造方法であって、
前記化学組成は、
V:0.01~0.20%、を含有する。
[4]又は[5]に記載の継目無鋼管の製造方法であって、
前記化学組成は、
Co:0.10~0.30%、及び、
W:0.02~2.00%、からなる群から選択される1種以上、を含有する。
本実施形態による継目無鋼管の化学組成は、次の元素を含有する。
炭素(C)は、不可避に含有される。つまり、C含有量は0%超である。Cは、鋼材の強度を高める。しかしながら、C含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、焼戻し後の硬さが高くなり過ぎ、低温靱性が低下する。C含有量が0.050%を超えればさらに、残留オーステナイトが増加する。この場合、他の元素含有量が本実施形態の範囲内であっても、降伏強度が低くなりやすい。したがって、C含有量は0.050%以下である。C含有量の下限は特に限定されない。しかしながら、C含有量の過剰な低減は、製鋼工程における精錬コストを大幅に高める。したがって、工業生産を考慮すれば、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは、0.007%である。C含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%である。
シリコン(Si)は、不可避に含有される。つまり、Si含有量は0%超である。Siは、鋼を脱酸する。しかしながら、Si含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性及び熱間加工性が低下する。したがって、Si含有量は0.50%以下である。Si含有量の好ましい下限は特に限定されない。しかしながら、Si含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、工業生産を考慮すれば、Si含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.10%である。Si含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%である。
マンガン(Mn)は、鋼を脱酸し、鋼を脱硫する。Mnはさらに、鋼材の熱間加工性を高める。Mn含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Mn含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、MnがP及びS等の不純物とともに、粒界に偏析する。この場合、高温環境における耐食性が低下する。したがって、Mn含有量は0.01~0.20%である。Mn含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Mn含有量の好ましい上限は0.18%であり、さらに好ましくは0.15%であり、さらに好ましくは0.13%である。
燐(P)は不可避に含有される不純物である。すなわち、P含有量は0%超である。Pは、粒界に偏析して、鋼材の低温靱性を低下する。したがって、P含有量は0.025%以下である。P含有量の好ましい上限は0.020%であり、さらに好ましくは0.015%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、工業生産を考慮すれば、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。
硫黄(S)は不可避に含有される不純物である。すなわち、S含有量は0%超である。Sは、粒界に偏析して、鋼材の低温靱性及び熱間加工性を低下する。したがって、S含有量は0.0150%以下である。S含有量の好ましい上限は0.0050%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
銅(Cu)は、析出強化により、鋼材の強度を高める。Cuはさらに、高温環境での鋼材の耐食性を高める。Cu含有量が0.09%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Cu含有量が3.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Cu含有量は、0.09~3.00%である。Cu含有量の好ましい下限は0.10%であり、さらに好ましくは、0.20%であり、さらに好ましくは0.80%であり、さらに好ましくは1.20%である。Cu含有量の好ましい上限は2.90%であり、さらに好ましくは2.80%であり、さらに好ましくは2.70%である。
クロム(Cr)は、高温環境での鋼材の耐食性を高める。具体的には、Crは高温環境での鋼材の腐食速度を低減し、鋼材の耐炭酸ガス腐食性を高める。Cr含有量が15.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Cr含有量が18.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中のフェライトが増加して、鋼材の強度が低下する。したがって、Cr含有量は15.00~18.00%である。Cr含有量の好ましい下限は15.50%であり、さらに好ましくは16.00%であり、さらに好ましくは16.50%である。Cr含有量の好ましい上限は17.80%であり、さらに好ましくは17.50%であり、さらに好ましくは17.20%である。
ニッケル(Ni)は鋼材の強度を高める。Niはさらに、高温環境での耐食性を高める。Ni含有量が4.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Ni含有量が9.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、残留オーステナイトが過剰に生成しやすくなる。したがって、Ni含有量は4.00~9.00%である。Ni含有量の好ましい下限は、4.20%であり、さらに好ましくは4.40%であり、さらに好ましくは4.80%である。Ni含有量の好ましい上限は8.70%であり、さらに好ましくは8.00%であり、さらに好ましくは7.00%であり、さらに好ましくは6.00%である。
モリブデン(Mo)は、鋼材の焼入れ性を高める。Moはさらに、微細な炭化物を生成し、鋼材の焼戻し軟化抵抗を高める。その結果、Moは、高温焼戻しにより鋼材の耐食性を高める。Mo含有量が1.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が十分に得られない。一方、Mo含有量が4.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、これらの効果が飽和する。したがって、Mo含有量は1.50~4.00%である。Mo含有量の好ましい下限は1.60%であり、さらに好ましくは1.70%であり、さらに好ましくは1.80%である。Mo含有量の好ましい上限は3.80%であり、さらに好ましくは3.50%であり、さらに好ましくは、3.20%である。
アルミニウム(Al)は、不可避に含有される。つまり、Al含有量は0%超である。Alは、鋼を脱酸する。しかしながら、Al含有量が0.040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、AlNが過剰に生成する。AlNはピンニング粒子であるため、L方向断面1L及び/又はC方向断面1Cでの層状組織の形成を抑制する。さらに、粗大な酸化物系介在物が生成する。粗大な酸化物系介在物は、鋼材の靱性を低下する。したがって、Al含有量は0.040%以下である。Al含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Al含有量の好ましい上限は0.035%であり、さらに好ましくは0.032%である。なお、本明細書にいうAl含有量は、「酸可溶Al」、つまり、sol.Alの含有量を意味する。
窒素(N)は不可避に含有される。つまり、Nは0%超である。Nは固溶して鋼材の強度を高める。しかしながら、N含有量が0.0150%を超えれば、他の元素含有量が本実施形態の範囲内であっても、AlNが過剰に生成する。AlNはピンニング粒子であるため、L方向断面1L及び/又はC方向断面1Cでの層状組織の形成を抑制する。さらに、粗大な窒化物が生成して鋼材の耐食性が低下する。したがって、N含有量は0.0150%以下である。N含有量の過剰な低減は、製鋼工程の精錬コストを大幅に高める。したがって、N含有量の好ましい下限は0.0001%である。上記効果をより有効に得るためのN含有量の好ましい下限は0.0020%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0050%である。N含有量の好ましい上限は、0.0140%であり、さらに好ましくは0.0130%である。
カルシウム(Ca)は、鋼材中のSと結合して硫化物を生成し、固溶Sを低減する。これにより、鋼材の熱間加工性を高める。Ca含有量が0.0010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Ca含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物を生成して鋼材の耐食性が低下する。したがって、Ca含有量は0.0010~0.0040%である。Ca含有量の好ましい下限は0.0012%であり、さらに好ましくは0.0014%であり、さらに好ましくは0.0016%である。Ca含有量の好ましい上限は0.0036%であり、さらに好ましくは0.0034%である。
本実施形態の継目無鋼管において、チタン(Ti)は不可避に含有される。つまり、Ti含有量は0%超である。Tiは窒素(N)及び/又は炭素(C)と結合して、窒化物、炭化物、又は炭窒化物(つまり、炭窒化物等)を形成する。通常、Ti炭窒化物等は、ピンニング効果により結晶粒を微細化して、鋼材の靱性を高める。しかしながら、本実施形態では、穿孔圧延時において、Ti炭窒化物等がピンニング効果により、フェライトのL方向及び/又はC方向への延伸を阻害してしまう。その結果、所望の層状組織が得られなくなる。Ti含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Ti炭窒化物等のピンニング効果により、式(3)及び式(4)の両方を満たす層状組織が得られなくなる。その結果、継目無鋼管の低温靱性が低下する。したがって、Ti含有量は0.020%以下である。Ti含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%であり、さらに好ましくは0.005%である。Ti含有量はなるべく低い方が好ましい。しかしながら、Ti含有量の過剰な低減は製造コストを高める場合がある。したがって、Ti含有量の好ましい下限は0.001%である。
本実施形態の継目無鋼管において、ニオブ(Nb)は不可避に含有される。つまり、Nb含有量は0%超である。Nbは窒素(N)及び/又は炭素(C)と結合して、Nb炭窒化物等を形成する。通常、Nb炭窒化物等は、ピンニング効果により結晶粒を微細化して、鋼材の靱性を高める。しかしながら、本実施形態では、穿孔圧延時において、Nb炭窒化物等がピンニング効果により、フェライトのL方向及び/又はC方向への延伸を阻害してしまう。その結果、所望の層状組織が得られなくなる。Nb含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Nb炭窒化物等のピンニング効果により、式(3)及び式(4)の両方を満たす層状組織が得られなくなる。その結果、継目無鋼管の低温靱性が低下する。したがって、Nb含有量は0.020%以下である。Nb含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%であり、さらに好ましくは0.005%である。Nb含有量はなるべく低い方が好ましい。しかしながら、Nb含有量の過剰な低減は製造コストを高める場合がある。したがって、Nb含有量の好ましい下限は0.001%である。
上述の継目無鋼管の化学組成はさらに、Feの一部に代えて、Vを含有してもよい。
バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、Vは、炭窒化物等を形成して、鋼材の強度を高める。しかしながら、V含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、穿孔圧延時において、V炭窒化物等がピンニング効果を発揮して、フェライトのL方向及び/又はC方向への延伸を阻害してしまう。その結果、所望の層状組織が得られなくなる。つまり、V含有量が0.20%を超えれば、V炭窒化物等のピンニング効果が発現することにより、式(3)及び式(4)の両方を満たす層状組織が得られなくなる。その結果、継目無鋼管の低温靱性が低下する。V含有量が0.20%を超えればさらに、炭窒化物等が粗大化して、鋼材の靱性が低下する。したがって、V含有量は0~0.20%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%である。V含有量の好ましい上限は0.20%未満であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%である。
コバルト(Co)は任意元素であり、含有されなくてもよい。つまり、Co含有量は0%であってもよい。含有される場合、Coは高温環境で鋼材(継目無鋼管)の表面に腐食被膜を形成する。これにより、鋼材内部への水素の侵入が抑制される。そのため、鋼材の耐食性が高まる。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が0.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が低下して、鋼材の強度が低下する。したがって、Co含有量は0~0.30%である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.10%であり、さらに好ましくは0.12%であり、さらに好ましくは0.14%である。Co含有量の好ましい上限は0.29%であり、さらに好ましくは0.28%であり、さらに好ましくは0.27%である。
タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wは高温環境中で鋼材(継目無鋼管)の表面に腐食被膜を形成する。これにより、鋼材内部への水素の侵入が抑制される。そのため、鋼材の耐食性が高まる。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が2.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に粗大な炭化物が生成して、鋼材の耐食性が低下する。したがって、W含有量は0~2.00%である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。W含有量の好ましい上限は1.80%であり、より好ましくは1.50%であり、さらに好ましくは1.00%であり、さらに好ましくは0.50%であり、さらに好ましくは0.40%である。
本実施形態の継目無鋼管の化学組成はさらに、式(1)を満たす。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
上述の本実施形態の継目無鋼管の化学組成はさらに、式(2)を満たす。
Ca/S≧4.0 (2)
本実施形態による継目無鋼管のミクロ組織は、次の(I)~(III)を満たす。
(I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
(II)L方向観察視野面において、L方向観察視野面をL方向に5等分する4つの線分を線分TL1~TL4と定義する。L方向観察視野面をT方向に5等分する4つの線分を線分L1~L4と定義する。フェライトとマルテンサイトとの界面をフェライト界面と定義する。このとき、線分TL1~TL4とフェライト界面との交点の数である交点数NTLが38個以上である。そして、線分L1~L4とフェライト界面との交点の数である交点数NLと、交点数NTLとが、式(3)を満たす。
NTL/NL≧1.80 (3)
(III)C方向観察視野面において、C方向観察視野面をC方向に5等分する4つの線分を線分TC1~TC4と定義する。C方向観察視野面をT方向に5等分する4つの線分を線分C1~C4と定義する。このとき、線分TC1~TC4とフェライト界面との交点の数である交点数NTCが30個以上である。そして、線分L1~L4とフェライト界面との交点の数である交点数NLと、交点数NTCとが、式(4)を満たす。
NTC/NL≧1.70 (4)
本実施形態の継目無鋼管のミクロ組織は、総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部は残留オーステナイトからなる。ここで、マルテンサイトとは、焼戻しマルテンサイトも含む。フェライト及びマルテンサイトの総体積率の好ましい下限は、82%であり、さらに好ましくは85%であり、さらに好ましくは90%であり、さらに好ましくは92%であり、さらに好ましくは95%であり、さらに好ましくは97%であり、最も好ましくは、100%である。
Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (5)
ここで、Iαはα相の積分強度である。Rαはα相の結晶学的理論計算値である。Iγはγ相の積分強度である。Rγはγ相の結晶学的理論計算値である。なお、本明細書において、α相の(200)面でのRαを15.9、α相の(211)面でのRαを29.2、γ相の(200)面でのRγを35.5、γ相の(220)面でのRγを20.8、γ相の(311)面でのRγを21.8とする。
フェライト及びマルテンサイトの総体積率=100-残留オーステナイトの体積率 (6)
本実施形態の継目無鋼管のミクロ組織のうち、図3に示すとおり、L方向とT方向とに平行な面をL方向断面1Lと定義する。そして、L方向断面1Lにおいて、継目無鋼管の肉厚中央位置に位置し、L方向に延びる辺の長さが100μmであり、T方向に延びる辺の長さが100μmである正方形の断面を、L方向観察視野面50と定義する。
(II-1)線分TL1~TL4とフェライト界面FBとの交点の数である交点数NTLが38個以上である。
(II-2)線分L1~L4とフェライト界面FBとの交点の数である交点数NLと、交点数NTLとが、式(3)を満たす。
NTL/NL≧1.80 (3)
層状指数LIL=NTL/NL≧1.80 (3)
本実施形態の継目無鋼管のミクロ組織ではさらに、層状組織がL方向に十分に発達しているだけではなく、層状組織がC方向にも十分に発達している。このL方向だけでなく、C方向に十分に発達した層状組織により、本実施形態の継目無鋼管は、862MPa以上の降伏強度を有し、かつ、優れた低温靱性を有する。以下、C方向観察視野面60での層状組織について詳述する。
(III-1)線分TC1~TC4とフェライト界面との交点の数である交点数NTCが30個以上である。
(III-2)線分C1~C4とフェライト界面との交点の数である交点数NCと、交点数NTCとが、式(4)を満たす。
NTC/NC≧1.70 (4)
層状指数LIC=NTC/NC≧1.70 (4)
本実施形態による継目無鋼管の肉厚は特に限定されない。継目無鋼管が油井用途に使用される場合、好ましい肉厚は5.0~60.0mmである。
本実施形態による鋼材の降伏強度は862MPa以上である。本明細書でいう降伏強度は、ASTM E8/E8M-16aに準拠した常温(20±15℃)、大気中での引張試験により得られた、0.2%オフセット耐力(MPa)を意味する。本実施形態の継目無鋼管の降伏強度の上限は特に限定されない。しかしながら、上述の化学組成の場合、本実施形態の継目無鋼管の降伏強度の上限はたとえば、1000MPaである。本実施形態の継目無鋼管の降伏強度の好ましい上限は990MPaであり、さらに好ましくは988MPaである。さらに好ましくは、本実施形態による継目無鋼管の降伏強度は、125ksi級であり、具体的には、862~965MPaである。
本実施形態の継目無鋼管は、上述のとおり高い降伏強度を有するだけでなく、優れた低温靱性も有する。具体的には、本実施形態の継目無鋼管では、ASTM A370-18に準拠したシャルピー衝撃試験を実施して得られた、-10℃での吸収エネルギーが150J以上となる。
上述の構成を有する本実施形態による継目無鋼管の製造方法の一例を説明する。以降に説明する継目無鋼管の製造方法は、本実施形態の継目無鋼管の製造方法のあくまでも一例である。したがって、上述の構成を有する継目無鋼管は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。つまり、本実施形態の継目無鋼管の製造方法は、以降に説明する製造方法に限定されない。しかしながら、以降に説明する製造方法は、本実施形態の継目無鋼管の製造方法の好ましい一例である。
加熱工程では、上述の化学組成を有する素材を1200~1260℃で加熱する。素材は製造して準備してもよいし、第三者から購入することにより準備してもよい。
加熱された素材に対して、穿孔圧延を実施して、素管(Hollow Shell)を製造する。具体的には、穿孔機を用いて、素材を穿孔圧延する。穿孔機は、一対の傾斜ロールと、プラグとを備える。一対の傾斜ロールは、パスライン周りに配置される。プラグは、一対の傾斜ロールの間であって、パスライン上に配置される。ここで、パスラインとは、穿孔圧延時において、素材の中心軸が通過するラインである。傾斜ロールは、バレル型であってもコーン型であってもよい。
0.057X-Y<1720 (A)
ここで、式(A)中のXは加熱条件パラメーターである。加熱条件パラメーターXは、次の式(B)で定義される。
X=(T+273)×{20+log(t)} (B)
式(B)中のTは加熱温度(℃)であり、tは、加熱温度Tでの保持時間(時間)である。
式(A)中のYは、穿孔機での断面減少率である。つまり、穿孔機での断面減少率Yには、穿孔機での穿孔圧延以降の延伸圧延での断面減少率は含まれない。穿孔機での断面減少率Y(%)は、式(C)で定義される。
Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C)
延伸圧延工程は実施しなくてもよい。実施する場合、延伸圧延工程では、穿孔圧延工程により製造された素管に対して、延伸圧延を実施する。延伸圧延は、延伸圧延機を用いて実施される。延伸圧延機は、パスラインに沿って上流から下流に向かって一列に配列された複数のロールスタンドを備える。各ロールスタンドは複数の圧延ロールを備える。延伸圧延機はたとえば、マンドレルミルである。
本実施形態の製造方法では、必要に応じて、延伸圧延工程後の素管に対して、定径圧延工程を実施してもよい。つまり、定径圧延工程は実施しなくてもよい。
累積断面減少率={1-(製管工程後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100
延伸圧延工程後、又は、定径圧延工程後の素管に対して、熱処理工程を実施する。熱処理工程は、焼入れ工程と、焼戻し工程とを備える。
焼入れ工程では、素管に対して、周知の焼入れを実施する。本実施形態の化学組成を有する素管では、焼入れ温度は850~1150℃である。この焼入れ温度域において、素管のミクロ組織はオーステナイトとフェライトとの2相組織となる。
焼戻し工程では、上述の焼入れ工程後の素管に対して焼戻しを実施する。本実施形態の化学組成を有する素管において、焼戻し温度は400~700℃である。焼戻し温度での保持時間は特に制限されないが、たとえば、15~120分である。
[ミクロ組織観察試験]
各試験番号の継目無鋼管の肉厚中央位置からサンプルを採取した。サンプルのサイズは、継目無鋼管のL方向に15mm、T方向に2mm、L方向とT方向とに垂直な方向(C方向)に15mmであった。得られたサンプルを用いて、α相(フェライト及びマルテンサイト)の(200)面、α相の(211)面、γ相(残留オーステナイト)の(200)面、γ相の(220)面、γ相の(311)面の各々のX線回折強度を測定し、各面の積分強度を算出した。X線回折装置にはブルカー社(Bruker)製の商品名:MXP3を用い、ターゲットをMoとし(MoKα線:λ=71.0730pm)、出力を50kV-40mAとした。算出後、α相の各面と、γ相の各面との組合せ(2×3=6組)ごとに式(5)を用いて残留オーステナイトの体積率Vγ(%)を算出した。そして、6組の残留オーステナイトの体積率Vγの平均値を、残留オーステナイトの体積率(%)と定義した。
Vγ=100/{1+(Iα×Rγ)/(Iγ×Rα)} (5)
なお、α相の(200)面でのRαを15.9、α相の(211)面でのRαを29.2、γ相の(200)面でのRγを35.5、γ相の(220)面でのRγを20.8、γ相の(311)面でのRγを21.8とした。
フェライト及びマルテンサイトの総体積率=100-残留オーステナイトの体積率 (6)
次の方法により、L方向観察視野面での層状組織の発達度合いと、C方向観察視野面での層状組織の発達度合いとを測定した。
各試験番号の継目無鋼管のT方向(肉厚方向)の中央位置であって、L方向及びT方向を含む断面(L方向断面)を含むサンプルを採取した。L方向断面は、L方向及びT方向を含む面とした。L方向断面の大きさは、L方向:5mm×T方向:5mmとした。L方向断面のT方向における中央位置が、継目無鋼管のT方向(肉厚方向)の中央位置とほぼ一致するように、サンプルを採取した。L方向断面を鏡面研磨した後、L方向断面をビレラ腐食液に10秒浸漬して、エッチングによる組織現出を行った。エッチングされたL方向断面を、1000倍の倍率の光学顕微鏡を用いて、層状組織確認試験を実施した。
各試験番号の継目無鋼管のT方向(肉厚方向)の中央位置であって、C方向及びT方向を含む断面(C方向断面)を含むサンプルを採取した。C方向断面は、C方向及びT方向を含む面とした。C方向断面の大きさは、C方向:5mm×T方向:5mmとした。C方向断面のT方向における中央位置が、継目無鋼管のT方向(肉厚方向)の中央位置とほぼ一致するように、サンプルを採取した。C方向断面を鏡面研磨した後、C方向断面をビレラ腐食液に10秒浸漬して、エッチングによる組織現出を行った。エッチングされたC方向断面を、1000倍の倍率の光学顕微鏡を用いて、層状組織確認試験を実施した。
各試験番号の継目無鋼管の肉厚中央位置から、丸棒引張試験片を採取した。丸棒引張試験片の平行部の直径は4mmであり、平行部の長さは35mmであった。丸棒引張試験片の長手方向は、継目無鋼管の管軸方向(L方向)と平行であった。各丸棒引張試験片を用いて、常温(20±15℃)、大気中にて引張試験を実施して、降伏強度(MPa)を求めた。具体的には、引張試験で得られた0.2%オフセット耐力を、降伏強度と定義した。得られた降伏強度(MPa)を表2の「降伏強度」欄に示す。
各試験番号の継目無鋼管の肉厚中央位置から、API 5CRA/ISO13680 TABLE A.5に準拠したVノッチ試験片を採取した。試験片を用いて、ASTM A370-18に準拠して、シャルピー衝撃試験を実施し、-10℃での吸収エネルギー(J)を求めた。得られた結果を表2の「吸収エネルギー」欄に示す。
各鋼番号の丸ビレットを用いて、熱間加工性試験(グリーブル試験)を実施した。具体的には、各鋼番号のビレットから、直径10mm、長さ130mmの試験片を複数切り出した。試験片の中心軸は、丸ビレットの中心軸と一致した。高周波誘導加熱炉を用いて、試験片を3分間で1250℃まで昇温させた後、1250℃で3分間保持した。その後、100℃/秒の速度で、鋼番号の複数の試験片のそれぞれを、1250℃、1200℃、1100℃、1000℃まで冷却し、その後、ひずみ速度10秒-1で引張試験を実施して、破断させた。各温度において(1250℃、1200℃、1100℃、1000℃)、破断した試験片の断面減少率を求めた。求めた断面減少率がいずれの温度においても70.0%以上であれば、その鋼番号の鋼材は熱間加工性に優れると判断した(表2の「熱間加工性」欄で「E」(Excellent)と表記)。一方、いずれかの温度域で断面減少率が70.0%未満であった場合、熱間加工性が低いと判断した(表2の「熱間加工性」欄で「NA」(Not Accepted)と表記)。
表2に試験結果を示す。
10 フェライト
20 マルテンサイト
50 L方向観察視野面
60 C方向観察視野面
TL1~TL4、TC1~TC4 線分
L1~L4、C1~C4 線分
FB フェライト界面
1L L方向断面
1C C方向断面
Claims (6)
- 継目無鋼管であって、
化学組成が、
質量%で、
C:0.050%以下、
Si:0.50%以下、
Mn:0.01~0.20%、
P:0.025%以下、
S:0.0150%以下、
Cu:0.09~3.00%、
Cr:15.00~18.00%、
Ni:4.00~9.00%、
Mo:1.50~4.00%、
Al:0.040%以下、
N:0.0150%以下、
Ca:0.0010~0.0040%、
Ti:0.020%以下、
Nb:0.020%以下、
V:0~0.20%、
Co:0~0.30%、
W:0~2.00%、及び
残部:Fe及び不純物からなり、式(1)及び式(2)を満たし、
前記継目無鋼管の管軸方向をL方向、肉厚方向をT方向、前記L方向及び前記T方向と垂直な方向をC方向と定義したとき、ミクロ組織が、次の(I)~(III)を満たす、
継目無鋼管。
(I)総体積率で80%以上のフェライト及びマルテンサイトを含有し、残部が残留オーステナイトからなる。
(II)前記継目無鋼管の肉厚中央位置に位置し、前記L方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のL方向観察視野面において、
前記T方向に延びる線分であって、前記L方向に等間隔に配列され、前記L方向観察視野面を前記L方向に5等分する4つの線分を線分TL1~TL4と定義し、
前記L方向に延びる線分であって、前記T方向に等間隔に配列され、前記L方向観察視野面を前記T方向に5等分する4つの線分を線分L1~L4と定義し、
前記フェライトと前記マルテンサイトとの界面をフェライト界面と定義したとき、
前記線分TL1~TL4と前記フェライト界面との交点の数である交点数NTLが38個以上であり、
前記線分L1~L4と前記フェライト界面との交点の数である交点数NLと、前記交点数NTLとが、式(3)を満たす。
(III)前記継目無鋼管の肉厚中央位置に位置し、前記C方向に延びる辺の長さが100μmであり、前記T方向に延びる辺の長さが100μmである正方形のC方向観察視野面において、
前記T方向に延びる線分であって、前記C方向に等間隔に配列され、前記C方向観察視野面を前記C方向に5等分する4つの線分を線分TC1~TC4と定義し、
前記C方向に延びる線分であって、前記T方向に等間隔に配列され、前記C方向観察視野面を前記T方向に5等分する4つの線分を線分C1~C4と定義し、
前記線分TC1~TC4と前記フェライト界面との交点の数である交点数NTCが30個以上であり、
前記線分C1~C4と前記フェライト界面との交点の数である交点数NCと、前記交点数NTCとが、式(4)を満たす。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
Ca/S≧4.0 (2)
NTL/NL≧1.80 (3)
NTC/NC≧1.70 (4)
ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。 - 請求項1に記載の継目無鋼管であって、
前記化学組成は、
V:0.01~0.20%、を含有する、
継目無鋼管。 - 請求項1又は請求項2に記載の継目無鋼管であって、
前記化学組成は、
Co:0.10~0.30%、及び、
W:0.02~2.00%、からなる群から選択される1種以上、を含有する、
継目無鋼管。 - 化学組成が、
質量%で、
C:0.050%以下、
Si:0.50%以下、
Mn:0.01~0.20%、
P:0.025%以下、
S:0.0150%以下、
Cu:0.09~3.00%、
Cr:15.00~18.00%、
Ni:4.00~9.00%、
Mo:1.50~4.00%、
Al:0.040%以下、
N:0.0150%以下、
Ca:0.0010~0.0040%、
Ti:0.020%以下、
Nb:0.020%以下、
V:0~0.20%、
Co:0~0.30%、
W:0~2.00%、及び
残部:Fe及び不純物からなり、式(1)及び式(2)を満たす素材を、1200~1260℃の加熱温度Tでt時間保持する加熱工程と、
前記加熱工程で加熱された前記素材を、式(A)を満たす条件で穿孔圧延して素管を製造する穿孔圧延工程と、
前記素管を延伸圧延する延伸圧延工程と、
前記延伸圧延工程後の前記素管に対して、850~1150℃の焼入れ温度で焼入れを実施する焼入れ工程と、
前記焼入れ工程後の前記素管に対して、400~700℃の焼戻し温度で焼戻しを実施する焼戻し工程と、を備える、
継目無鋼管の製造方法。
156Al+18Ti+12Nb+11Mn+5V+328.125N+243.75C+12.5S≦12.5 (1)
Ca/S≧4.0 (2)
0.057X-Y<1720 (A)
式(A)中のXは次の式(B)で定義される。
X=(T+273)×{20+log(t)} (B)
ここで、Tは素材の加熱温度(℃)であり、tは、加熱温度Tでの保持時間(時間)である。
式(A)中の断面減少率Y(%)は式(C)で定義される。
Y={1-(穿孔圧延後の素管の管軸方向に垂直な断面積/穿孔圧延前の素材の管軸方向に垂直な断面積)}×100 (C) - 請求項4に記載の継目無鋼管の製造方法であって、
前記化学組成は、
V:0.01~0.20%、を含有する、
継目無鋼管の製造方法。 - 請求項4又は請求項5に記載の継目無鋼管の製造方法であって、
前記化学組成は、
Co:0.10~0.30%、及び、
W:0.02~2.00%、からなる群から選択される1種以上、を含有する、
継目無鋼管の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020530208A JP7107370B2 (ja) | 2018-07-09 | 2019-07-09 | 継目無鋼管及びその製造方法 |
EP19835123.1A EP3822381A4 (en) | 2018-07-09 | 2019-07-09 | SEAMLESS STEEL TUBE AND METHOD OF MANUFACTURE THEREOF |
US17/253,222 US12043885B2 (en) | 2018-07-09 | 2019-07-09 | Seamless steel pipe and method for producing the same |
MX2021000240A MX2021000240A (es) | 2018-07-09 | 2019-07-09 | Tubo de acero sin costura y metodo para producir el mismo. |
BR112021000039-9A BR112021000039B1 (pt) | 2018-07-09 | 2019-07-09 | Tubo de aço sem costura e método para a sua produção |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018129666 | 2018-07-09 | ||
JP2018-129666 | 2018-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020013197A1 true WO2020013197A1 (ja) | 2020-01-16 |
Family
ID=69141728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/027199 WO2020013197A1 (ja) | 2018-07-09 | 2019-07-09 | 継目無鋼管及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12043885B2 (ja) |
EP (1) | EP3822381A4 (ja) |
JP (1) | JP7107370B2 (ja) |
BR (1) | BR112021000039B1 (ja) |
MX (1) | MX2021000240A (ja) |
WO (1) | WO2020013197A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020218426A1 (ja) * | 2019-04-24 | 2020-10-29 | 日本製鉄株式会社 | 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法 |
WO2021200571A1 (ja) * | 2020-04-01 | 2021-10-07 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
JP2021161503A (ja) * | 2020-04-01 | 2021-10-11 | 日本製鉄株式会社 | 継目無鋼管 |
JPWO2021206080A1 (ja) * | 2020-04-07 | 2021-10-14 | ||
JPWO2021225103A1 (ja) * | 2020-05-07 | 2021-11-11 | ||
JPWO2021256128A1 (ja) * | 2020-06-19 | 2021-12-23 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117987746B (zh) * | 2024-03-27 | 2024-10-15 | 南通市嘉业机械制造有限公司 | 一种耐磨无缝钢管穿孔顶头及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010134498A1 (ja) | 2009-05-18 | 2010-11-25 | 住友金属工業株式会社 | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 |
WO2011136175A1 (ja) * | 2010-04-28 | 2011-11-03 | 住友金属工業株式会社 | 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管 |
WO2013146046A1 (ja) * | 2012-03-26 | 2013-10-03 | 新日鐵住金株式会社 | 油井用ステンレス鋼及び油井用ステンレス鋼管 |
JP2013249516A (ja) | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | 油井管用高強度ステンレス鋼継目無管およびその製造方法 |
JP2016145372A (ja) | 2015-02-06 | 2016-08-12 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管の製造方法 |
WO2017010036A1 (ja) * | 2015-07-10 | 2017-01-19 | Jfeスチール株式会社 | 高強度ステンレス継目無鋼管およびその製造方法 |
JP2017031493A (ja) * | 2015-08-05 | 2017-02-09 | 新日鐵住金株式会社 | ステンレス鋼管の製造方法 |
WO2017122405A1 (ja) * | 2016-01-13 | 2017-07-20 | 新日鐵住金株式会社 | 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管 |
WO2018020886A1 (ja) * | 2016-07-27 | 2018-02-01 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4945946B2 (ja) * | 2005-07-26 | 2012-06-06 | 住友金属工業株式会社 | 継目無鋼管およびその製造方法 |
EP2902522B1 (en) * | 2012-09-28 | 2018-06-27 | Nippon Steel & Sumitomo Metal Corporation | Piercer plug material for producing seamless steel tube, and method for producing said material |
MX2017002975A (es) * | 2014-09-08 | 2017-06-19 | Jfe Steel Corp | Tuberia de acero sin costura de alta resistencia para productos tubulares de region petrolifera y metodo de produccion de la misma. |
US11193179B2 (en) * | 2015-01-15 | 2021-12-07 | Jfe Steel Corporation | Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same |
AU2017266359B2 (en) * | 2016-05-20 | 2019-10-03 | Nippon Steel Corporation | Steel bar for downhole member and downhole member |
-
2019
- 2019-07-09 MX MX2021000240A patent/MX2021000240A/es unknown
- 2019-07-09 BR BR112021000039-9A patent/BR112021000039B1/pt active IP Right Grant
- 2019-07-09 EP EP19835123.1A patent/EP3822381A4/en active Pending
- 2019-07-09 JP JP2020530208A patent/JP7107370B2/ja active Active
- 2019-07-09 WO PCT/JP2019/027199 patent/WO2020013197A1/ja unknown
- 2019-07-09 US US17/253,222 patent/US12043885B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010134498A1 (ja) | 2009-05-18 | 2010-11-25 | 住友金属工業株式会社 | 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 |
WO2011136175A1 (ja) * | 2010-04-28 | 2011-11-03 | 住友金属工業株式会社 | 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管 |
WO2013146046A1 (ja) * | 2012-03-26 | 2013-10-03 | 新日鐵住金株式会社 | 油井用ステンレス鋼及び油井用ステンレス鋼管 |
JP2013249516A (ja) | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | 油井管用高強度ステンレス鋼継目無管およびその製造方法 |
JP2016145372A (ja) | 2015-02-06 | 2016-08-12 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管の製造方法 |
WO2017010036A1 (ja) * | 2015-07-10 | 2017-01-19 | Jfeスチール株式会社 | 高強度ステンレス継目無鋼管およびその製造方法 |
JP2017031493A (ja) * | 2015-08-05 | 2017-02-09 | 新日鐵住金株式会社 | ステンレス鋼管の製造方法 |
WO2017122405A1 (ja) * | 2016-01-13 | 2017-07-20 | 新日鐵住金株式会社 | 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管 |
WO2018020886A1 (ja) * | 2016-07-27 | 2018-02-01 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3822381A4 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7188570B2 (ja) | 2019-04-24 | 2022-12-13 | 日本製鉄株式会社 | 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法 |
WO2020218426A1 (ja) * | 2019-04-24 | 2020-10-29 | 日本製鉄株式会社 | 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法 |
JPWO2020218426A1 (ja) * | 2019-04-24 | 2021-12-02 | 日本製鉄株式会社 | 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法 |
JP2021161503A (ja) * | 2020-04-01 | 2021-10-11 | 日本製鉄株式会社 | 継目無鋼管 |
CN115298346B (zh) * | 2020-04-01 | 2023-10-20 | 杰富意钢铁株式会社 | 油井用高强度不锈钢无缝钢管及其制造方法 |
JPWO2021200571A1 (ja) * | 2020-04-01 | 2021-10-07 | ||
WO2021200571A1 (ja) * | 2020-04-01 | 2021-10-07 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
CN115298346A (zh) * | 2020-04-01 | 2022-11-04 | 杰富意钢铁株式会社 | 油井用高强度不锈钢无缝钢管及其制造方法 |
JP7201094B2 (ja) | 2020-04-01 | 2023-01-10 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管およびその製造方法 |
JPWO2021206080A1 (ja) * | 2020-04-07 | 2021-10-14 | ||
WO2021206080A1 (ja) * | 2020-04-07 | 2021-10-14 | 日本製鉄株式会社 | マルテンサイト系ステンレス継目無鋼管 |
JP7397375B2 (ja) | 2020-04-07 | 2023-12-13 | 日本製鉄株式会社 | マルテンサイト系ステンレス継目無鋼管 |
JP7477790B2 (ja) | 2020-05-07 | 2024-05-02 | 日本製鉄株式会社 | 二相ステンレス継目無鋼管 |
CN115485406A (zh) * | 2020-05-07 | 2022-12-16 | 日本制铁株式会社 | 双相不锈钢无缝钢管 |
WO2021225103A1 (ja) * | 2020-05-07 | 2021-11-11 | 日本製鉄株式会社 | 二相ステンレス継目無鋼管 |
JPWO2021225103A1 (ja) * | 2020-05-07 | 2021-11-11 | ||
CN115485406B (zh) * | 2020-05-07 | 2023-12-19 | 日本制铁株式会社 | 双相不锈钢无缝钢管 |
JP7095811B2 (ja) | 2020-06-19 | 2022-07-05 | Jfeスチール株式会社 | 合金管およびその製造方法 |
JPWO2021256128A1 (ja) * | 2020-06-19 | 2021-12-23 |
Also Published As
Publication number | Publication date |
---|---|
JP7107370B2 (ja) | 2022-07-27 |
EP3822381A1 (en) | 2021-05-19 |
EP3822381A4 (en) | 2022-01-26 |
BR112021000039B1 (pt) | 2023-11-07 |
US20210269904A1 (en) | 2021-09-02 |
JPWO2020013197A1 (ja) | 2021-08-05 |
US12043885B2 (en) | 2024-07-23 |
BR112021000039A2 (pt) | 2021-03-30 |
MX2021000240A (es) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020013197A1 (ja) | 継目無鋼管及びその製造方法 | |
JP6859835B2 (ja) | 鋼材及び油井用継目無鋼管 | |
JP6103156B2 (ja) | 低合金油井用鋼管 | |
JP7188570B2 (ja) | 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法 | |
JP7425360B2 (ja) | マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法 | |
JP7036238B2 (ja) | サワー環境での使用に適した鋼材 | |
WO2016035316A1 (ja) | 厚肉油井用鋼管及びその製造方法 | |
WO2015064006A1 (ja) | 継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法 | |
WO2021039431A1 (ja) | サワー環境での使用に適した鋼材 | |
JP6028863B2 (ja) | サワー環境で使用されるラインパイプ用継目無鋼管 | |
JP6672620B2 (ja) | 油井用ステンレス鋼及び油井用ステンレス鋼管 | |
WO2022075405A1 (ja) | マルテンサイト系ステンレス鋼材 | |
JP7088305B2 (ja) | 鋼材、及び、鋼材の製造方法 | |
JP7036237B2 (ja) | サワー環境での使用に適した鋼材 | |
JP7135708B2 (ja) | 鋼材 | |
JP7428952B1 (ja) | マルテンサイト系ステンレス鋼材 | |
JP7364993B1 (ja) | 鋼材 | |
JP7488503B1 (ja) | マルテンサイト系ステンレス鋼材 | |
WO2023204294A1 (ja) | 鋼材 | |
JP7417181B1 (ja) | 鋼材 | |
JP7417180B1 (ja) | 鋼材 | |
JP7364955B1 (ja) | 二相ステンレス鋼材 | |
WO2021210655A1 (ja) | 鋼材 | |
JP6859836B2 (ja) | 鋼材及び油井用継目無鋼管 | |
JP2021161438A (ja) | 継目無鋼管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19835123 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020530208 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021000039 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112021000039 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210104 |