[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020005025A1 - 전류 센서 진단 장치 및 방법 - Google Patents

전류 센서 진단 장치 및 방법 Download PDF

Info

Publication number
WO2020005025A1
WO2020005025A1 PCT/KR2019/007915 KR2019007915W WO2020005025A1 WO 2020005025 A1 WO2020005025 A1 WO 2020005025A1 KR 2019007915 W KR2019007915 W KR 2019007915W WO 2020005025 A1 WO2020005025 A1 WO 2020005025A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
voltage
current
measured
cell assembly
Prior art date
Application number
PCT/KR2019/007915
Other languages
English (en)
French (fr)
Inventor
장호연
이상진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/964,272 priority Critical patent/US11340301B2/en
Priority to ES19825793T priority patent/ES2969299T3/es
Priority to JP2020538699A priority patent/JP7078293B2/ja
Priority to EP19825793.3A priority patent/EP3748388B1/en
Priority to PL19825793.3T priority patent/PL3748388T3/pl
Priority to CN201980014176.3A priority patent/CN111758042A/zh
Publication of WO2020005025A1 publication Critical patent/WO2020005025A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/12Measuring rate of change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and method for diagnosing a current sensor, and more particularly, to an apparatus and method for diagnosing a current sensor that can effectively diagnose whether a current sensor included in a battery pack is normal.
  • a battery assembly made of one module by connecting a plurality of secondary batteries, a battery management system (BMS) that controls charge and discharge of the cell assembly and monitors the state of each secondary battery, and a cell assembly and a BMS are made into one pack.
  • BMS battery management system
  • Research on various components and devices such as battery packs and current sensors that measure charge and discharge currents flowing through cell assemblies is being conducted.
  • a current sensor is provided on the charge / discharge path and is a sensor for measuring charge / discharge current.
  • it is important to transmit accurate current measurements to the BMS in order to prevent overcharging or overdischarging the battery.
  • the current sensor in order for the BMS to estimate the state of charge (SOC) or state of health (SOH) of the battery, and to perform an effective cell balancing operation, the current sensor must deliver accurate current measurements to the BMS.
  • the present invention has been made under the background of the prior art as described above, and based on the error between the change value of the voltage reference state of charge and the change value of the current reference state of charge, it is possible to effectively diagnose the failure of the current sensor provided in the battery pack.
  • An improved current sensor diagnostic apparatus and method are disclosed.
  • An apparatus for diagnosing a current sensor for achieving the above object is an apparatus for diagnosing a current sensor provided on a charge / discharge path for supplying charge / discharge current to a cell assembly.
  • a voltage measurer connected to the voltage measurer configured to measure a voltage across the cell assembly;
  • a current measurement unit electrically connected to the current sensor and configured to receive an electrical signal from the current sensor and measure a current flowing through the charge / discharge path based on the electrical signal; And calculating a change value of the voltage reference charging charge based on the measured voltage measured at each of at least two reference times preset by the voltage measuring unit, and measured and accumulated during the reference time by the current measuring unit.
  • the processor may include a processor configured to calculate a change value of the current reference charge charge amount, and to diagnose the current sensor based on the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount.
  • the processor compares the change value of the voltage reference charge charge amount with the change value of the current reference charge charge amount, and the error rate between the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount is within a normal range. It can be configured to diagnose that the current sensor is in a normal state.
  • the current sensor diagnostic apparatus may further include a temperature measuring unit electrically connected to the cell assembly and configured to measure the temperature of the cell assembly.
  • the processor calculates a change value of the voltage reference charge charge amount based on the measured temperature measured at each of the reference time by the measured voltage and the temperature measuring unit, and measures the cell assembly measured at each of the preset reference times. Can be configured to change the normal range according to the difference between the measured temperatures of.
  • the processor is configured to calculate a change value of the voltage reference charge charge amount by comparing the charge charge amount corresponding to the measured voltage at the start of charging of the cell assembly with the charge charge amount corresponding to the measured voltage at the completion of charging of the cell assembly. Can be.
  • the processor may be configured to calculate a change value of the current reference charging charge amount by integrating the measured current from the start of charging of the cell assembly to the completion of charging.
  • the current sensor diagnostic apparatus may further include a memory device configured to prestore a look-up table that defines the voltage across the cell assembly or the amount of charge charge corresponding to the voltage and temperature across the cell assembly.
  • BMS may include a current sensor diagnostic apparatus according to an aspect of the present invention.
  • the battery pack according to another aspect of the present invention may include a current sensor diagnostic apparatus according to an aspect of the present invention.
  • a method of diagnosing a current sensor is a method of diagnosing a current sensor provided on a charge / discharge path for supplying charge / discharge current to a cell assembly. Measuring a voltage at both ends and measuring a current flowing through a charge / discharge path provided with the current sensor during the reference time; And calculating a change value of the voltage reference charge charge amount based on the measured voltage of the cell assembly measured at the reference time, and calculating a change value of the current reference charge charge amount based on the measured current measured during the preset reference time. And diagnosing the current sensor based on the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount.
  • the diagnosing of the current sensor may include comparing a change value of the voltage reference charge charge amount with a change value of the current reference charge charge amount, so that an error rate between the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount is determined. If in the normal range, it may include diagnosing that the current sensor is in a normal state.
  • the measuring may further include measuring a temperature of the cell assembly at each of the preset reference times.
  • the diagnosing of the current sensor may include calculating a change value of the voltage reference charging charge based on the measured voltage and the measured temperature measured at each of the preset reference times, and calculating the change of the voltage reference charge charge amount of the cell assembly measured at the preset reference time. And changing the normal range according to the difference between the measurement temperatures.
  • the diagnosing of the current sensor may include comparing the charge charge amount corresponding to the measured voltage at the start of charging of the cell assembly with the charge charge amount corresponding to the measured voltage at the completion of charging of the cell assembly, thereby changing the voltage-based charge charge amount. Calculating a value.
  • the diagnosing of the current sensor may include calculating a change value of the current reference charging charge by integrating the measured current from the start of charging of the cell assembly to the completion of charging.
  • an improved current sensor diagnostic apparatus and method capable of measuring the accuracy of the current sensor by calculating the error of the current sensor can be provided.
  • FIG. 1 is a view schematically showing the functional configuration of a current sensor diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a configuration in which a current sensor diagnostic apparatus according to an embodiment of the present invention is connected to some components of a battery pack.
  • FIG. 3 shows measured voltages referenced by a processor according to an embodiment of the present invention.
  • FIG. 4 shows a voltage-charged charge amount lookup table referenced by a processor according to an embodiment of the present invention.
  • FIG. 5 is a flowchart schematically illustrating a current sensor diagnosis method according to another embodiment of the present invention.
  • FIG. 6 is a flow chart schematically showing a current sensor diagnostic method according to another embodiment of the present invention.
  • An apparatus for diagnosing a current sensor may be an apparatus for diagnosing a current sensor included in a battery pack including one or more secondary batteries.
  • the current sensor may be provided on a charge / discharge path for supplying charge / discharge current to the cell assembly provided in the battery pack. More specifically, as shown in the configuration of Figure 2, the current sensor according to an embodiment of the present invention, may be provided between the negative terminal of the cell assembly and the negative terminal of the battery pack.
  • FIG. 1 is a view schematically showing a functional configuration of a current sensor diagnostic apparatus according to an embodiment of the present invention
  • Figure 2 is a current sensor diagnostic apparatus according to an embodiment of the present invention and some components of the battery pack
  • the current sensor diagnostic apparatus 1 includes a voltage measuring unit 100, a current measuring unit 200, and a processor 300.
  • the voltage measuring unit 100 may be electrically connected to the cell assembly 10.
  • the voltage measuring unit 100 may be electrically connected to both ends of the cell assembly 10 so as to transmit and receive electrical signals.
  • the voltage measuring unit 100 may be electrically connected to both ends of each cell provided in the cell assembly 10 so as to transmit and receive electrical signals.
  • the voltage measuring unit 100 may be configured to measure the voltage across the cell assembly 10. More specifically, the voltage measuring unit 100 may measure voltages at both ends of the cell assembly 10 based on electrical signals received from both ends of the cell assembly 10. In addition, the voltage measuring unit 100 may measure voltages at both ends of each cell based on electrical signals received from both ends of each cell.
  • the voltage measuring unit 100 may be electrically connected to the processor 300 to exchange electrical signals.
  • the voltage measuring unit 100 measures the potential difference between the positive terminal of the cell assembly 10 and the negative terminal of the cell assembly 10 at time intervals under the control of the processor 300, and measures the magnitude of the measured voltage.
  • the signal may be output to the processor 300.
  • the voltage measuring unit 100 may be implemented using a voltage measuring circuit generally used in the art.
  • the current measuring unit 200 may be electrically connected to the current sensor 30 to receive an electrical signal from the current sensor 30.
  • the current measuring unit 200 may be configured to measure the current flowing through the charge / discharge path based on the electrical signal received from the current sensor 30.
  • the current measuring unit 200 may be electrically connected to both ends of the current sensor 30.
  • one end of the current sensor 30 may be electrically connected to the negative terminal of the cell assembly 10.
  • the current measuring unit 200 may measure the voltage across the current sensor 30 and measure the current flowing through the charge / discharge path based on the voltage across the current sensor 30.
  • the current measuring unit 200 may measure the current flowing through the charge / discharge path using Ohm's law.
  • the current measuring unit 200 may be electrically connected to the processor 300 to transmit and receive electrical signals.
  • the current measuring unit 200 repeatedly measures the magnitude of the charging current or the discharging current of the cell assembly 10 at a time interval under the control of the processor 300, and outputs a signal indicating the magnitude of the measured current.
  • the current sensor 30 may be implemented using a hall sensor or sense resistor generally used in the art. Hall sensors or sense resistors can be installed on the current-carrying lines.
  • the processor 300 may receive the measured voltage from the voltage measuring unit 100.
  • the processor 300 may receive voltages across the cell assembly 10 from the voltage measuring unit 100.
  • the processor 300 may calculate a change value of the voltage reference charge charge amount based on the measured voltage measured at least two preset reference times. More specifically, the processor 300 may receive the measured voltage with a time difference from the voltage measuring unit 100.
  • the time difference may be a difference between at least two preset reference times. That is, the reference time may mean at least two different times.
  • the reference time may mean at least two different time periods. For example, the reference time may mean t0 and t1, and the reference time may mean during t0 to t1.
  • the processor 300 may receive the measured voltage measured at t0 from the voltage measuring unit 100. In addition, the processor 300 may receive the measured voltage measured at t1 from the voltage measuring unit 100. In addition, the processor 300 may calculate a change value of the voltage reference charge charge amount based on the charge charge amount corresponding to the measured voltage measured at t0 and the charge charge amount corresponding to the measured voltage measured at t1. A detailed description of a process of calculating a change value of the voltage reference charging charge will be given later.
  • the processor 300 may receive a measurement current from the current measuring unit 200.
  • the processor 300 may receive the measurement current flowing through the charge / discharge path from the current measuring unit 200.
  • the processor 300 may calculate a change value of the current reference charging charge amount based on the measured current accumulated during the preset reference time. More specifically, the processor 300 may calculate the accumulated measured current value by integrating the measured current for a reference time based on the measured current received from the current measuring unit 200.
  • the reference time may be set in advance. For example, when the preset reference times are t0 and t1, the processor 300 may receive the measured current measured from t0 to t1 from the current measuring unit 200.
  • the processor 300 may calculate a change value of the current reference charge charge amount based on the charge charge amount corresponding to the measurement current accumulated from t0 to t1. A detailed description of the process of calculating the change value of the current reference charge charge amount will be given later.
  • the processor 300 may be configured to diagnose the current sensor 30 based on the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount. More specifically, the processor 300 may diagnose that the current sensor 30 is normal when the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount fall within a normal range. In contrast, the processor 300 may diagnose that the current sensor 30 is in an abnormal state when the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount do not fall within the normal range.
  • the normal range is a preset range and may be a reference range in which the processor 300 may diagnose the state of the current sensor 30 as a normal state.
  • the current sensor diagnostic apparatus 1 may further include a temperature measuring unit 500, as shown in the configuration of FIGS. 1 and 2.
  • the temperature measuring unit 500 may be electrically connected to the cell assembly 10 to transmit and receive an electrical signal. Alternatively, the temperature measuring unit 500 may be mounted on the cell assembly 10 and electrically connected to the cell assembly 10. Through such a configuration, the temperature measuring unit 500 may measure the temperature of each cell included in the cell assembly 10 and the cell assembly 10.
  • the temperature measuring unit 500 may be electrically coupled with the processor 300 to transmit and receive electrical signals.
  • the temperature measuring unit 500 may repeatedly measure the temperature of the cell assembly 10 at a time interval and output a signal indicating the magnitude of the measured temperature to the processor 300.
  • the temperature measuring unit 500 may be implemented using a thermocouple generally used in the art.
  • the current sensor diagnostic apparatus 1 may further include a memory device 400.
  • the memory device 400 may be electrically connected to the processor 300 to transmit and receive electrical signals.
  • the memory device 400 may previously store a look-up table that defines a charge amount corresponding to a voltage and / or a temperature across the cell assembly 10.
  • the lookup table stored in the memory device 400 may be a table in which charge charge amounts corresponding to voltages and temperatures across the cell assembly 10 are defined.
  • the processor 300 may include a voltage measurement value for the cell assembly 10 received from the voltage measuring unit 100, the current measuring unit 200, and the temperature measuring unit 500.
  • the current measurement and the temperature measurement can be used to estimate the state of charge (eg, charge amount) of the cell assembly 10 and to monitor the estimated state of charge. That is, the processor 300 may estimate the state of charge while the cell assembly 10 is being charged or discharged and monitor the estimated state of charge using the lookup table stored in the memory device 400.
  • the processor 300 may estimate the state of charge of the cell assembly 10 by integrating the charge current and the discharge current of the cell assembly 10.
  • the initial value of the state of charge when the charging or discharging of the cell assembly 10 starts may be determined using an open circuit voltage (OCV) of the cell assembly 10 measured before the charging or discharging starts.
  • OCV open circuit voltage
  • the processor 300 may estimate the state of charge corresponding to the open voltage of the cell assembly 10 using a lookup table that defines the state of charge for each cell temperature and the open voltage of the cell assembly 10.
  • the lookup table stored in the memory device 400 may be a table in which charge charge amounts corresponding to the temperature and the open voltage of the cell assembly 10 are defined.
  • the processor 300 may estimate the state of charge of the cell assembly 10 using an extended Kalman filter.
  • Extended Kalman filter refers to a mathematical algorithm that adaptively estimates the state of charge of the cell assembly 10 using the voltage, current and temperature of the battery cell.
  • the estimation of the state of charge using the Extended Kalman filter is, for example, Gregory L. Plett's article "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Parts 1, 2 and 3". (Journal of Power Source 134, 2004, p. 252-261).
  • the state of charge of the cell assembly 10 may be determined by other known methods capable of estimating the state of charge by selectively utilizing the voltage, current, and temperature of the cell assembly 10 in addition to the above-described current integration method or the extended Kalman filter. .
  • the processor 300 compares the change value of the voltage reference charge charge amount with the change value of the current reference charge charge amount, and compares the change value of the voltage reference charge charge amount and the current reference charge charge amount.
  • the difference in the change value is an error within the normal range
  • it may be diagnosed that the current sensor 30 is in a normal state. That is, the processor 300 may diagnose that the current sensor 30 is in a normal state when the difference between the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount is in the normal range.
  • the processor 300 calculates a measurement error of the current sensor 30 by using a difference between a change value of the voltage reference charge charge amount and a change value of the current reference charge charge amount. Can be.
  • ⁇ SOC (V) is the change value [Ah] of the voltage reference charge charge amount
  • ⁇ SOC (I) is the change value [Ah] of the current reference charge charge amount
  • is the change value of the voltage reference charge charge amount and the current reference charge charge amount. Means the error rate between changes.
  • the units of ⁇ SOC (V) and ⁇ SOC (I) may be [Ah]
  • the unit of ⁇ may be [%].
  • ⁇ SOC (V) may be a difference between the voltage-based charge charge amount measured at t 1 and the voltage-based charge charge amount measured at t 0.
  • ⁇ SOC (I) may be a current reference charge charge accumulated cumulatively during t0 to t1.
  • the processor 300 may diagnose that the current sensor 30 is in a normal state when the error rate ⁇ falls within the normal range. In addition, when the error rate ⁇ does not fall within the normal range, the processor 300 may diagnose that the current sensor 30 is in a failure state.
  • the normal range is a preset reference range
  • the processor 300 determines that the current depends on whether the error rate ⁇ , which is a difference between the calculated change in voltage-based charging charge and the change in current-based charging charge, falls within the normal range.
  • the state of the sensor 30 can be diagnosed.
  • the normal range can be increased or decreased based on the temperature of the cell assembly 10 measured during the time the current is measured.
  • the processor 300 may include a charge charge amount corresponding to a measured voltage at the start of charging of the cell assembly 10 and a charge charge amount corresponding to a measured voltage at the completion of charging of the cell assembly 10. By comparison, the change value of the voltage-based charging charge can be calculated.
  • ⁇ SOC (V) is a change value of the voltage reference charge charge amount
  • t0 is a charge start time point
  • t1 is a charge completion time point
  • SOC (t0) is a value of the cell assembly 10 measured at the charge start time point t0.
  • the charge charge amount corresponds to the measured voltage
  • SOC t1 is the charge charge amount corresponding to the measured voltage of the cell assembly 10 measured at the charge completion time t1.
  • the processor 300 integrates the measurement current from the charging start time point t0 to the charging completion time point t1 of the cell assembly 10 to determine the amount of current-based charging charge.
  • the change value can be calculated.
  • the processor 300 may determine the charge amount corresponding to the measured voltage and the measured temperature at the start of charging the cell assembly 10 and the charge voltage corresponding to the measured voltage and the measured temperature at the completion of the charging of the cell assembly 10. By comparison, the change value of the voltage-based charging charge can be calculated.
  • SOC (t0) of Equation 2 is the charge charge amount corresponding to the measured voltage and the measured temperature of the cell assembly 10 measured at the charge start time (t0)
  • SOC (t1) is the charge completion time (t1) The charge charge amount corresponding to the measured voltage and measured temperature of the cell assembly 10 measured at.
  • ⁇ SOC (I) is a change value of the current reference charge charge amount
  • t0 is a charge start time point
  • t1 is a charge completion point
  • I is a measurement current.
  • the charging device 50 is electrically connected to the positive terminal of the battery pack and the negative terminal of the battery pack, so that the cell assembly 10 is charged from the charging device 50.
  • the processor 300 may calculate a change value of the current reference charge charge amount by integrating the measurement current from the charge start time point t0 of the cell assembly 10 to the charge completion time point t1.
  • the processor 300 may calculate the change value ⁇ SOC (V) of the voltage-based charged charge amount calculated through Equation 2 and the change value ⁇ SOC (I) of the current reference charge charge amount calculated through Equation 3. By substituting into Equation 1, the error rate ⁇ can be calculated.
  • the processor 300 may diagnose the state of the current sensor 30 based on whether the calculated error rate ⁇ falls within a normal range.
  • the processor 300 is electrically connected to the upper control device 70, the electrical signal with the upper control device 70 You can give and receive.
  • the processor 300 may transmit a diagnosis result of the current sensor 30 to the host controller 70. More specifically, the processor 300 may transmit an alarm to the higher level controller 70 when the current sensor 30 is in a failure state.
  • the processor 300 may include a processor 300, an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a register, a communication modem, and / or data known in the art in order to perform the above-described operation. It may be implemented in a form that optionally includes a processing device.
  • ASIC application-specific integrated circuit
  • the memory device 400 is not particularly limited as long as it is a storage medium capable of recording and erasing information.
  • the memory device 400 may be a RAM, a ROM, a register, a hard disk, an optical recording medium, or a magnetic recording medium.
  • the memory device 400 may also be electrically connected to the processor 300, for example, via a data bus or the like so as to be accessible by the processor 300, respectively.
  • the memory device 400 may also store and / or update and / or erase and / or transmit a program including various control logics that the processor 300 performs, and / or data generated when the control logic is executed. have.
  • FIG. 3 shows a measured voltage referenced by a processor according to an embodiment of the present invention
  • FIG. 4 shows a voltage-charged charge lookup table referenced by a processor according to an embodiment of the present invention.
  • the unit of voltage is [V]
  • the unit of time t is [h]
  • the unit of charge charge amount is [Ah].
  • the processor 300 may calculate a change value of the voltage-based charging charge amount based on the received measured voltage with a time difference for a preset reference time. . More specifically, the processor 300 may receive the measured voltage with a time difference from the voltage measuring unit 100. Here, the time difference may be a difference of a preset reference time.
  • the processor 300 receives the measured voltage a [V] measured at t0 from the voltage measuring unit 100, as shown in the graph of FIG. 3. can do.
  • the processor 300 may receive the measured voltage b [V] measured at t1 from the voltage measuring unit 100.
  • the processor 300 corresponds to the charge amount 10 [Ah] corresponding to the measured voltage 3.2 [V] measured at t0 and the measured voltage 4.0 [V] measured at t1. Based on the charge charge amount 40 [Ah], 30 [Ah] which is a change value of the voltage reference charge charge amount can be calculated.
  • the processor 300 may calculate a change value of the current-based charging charge amount by integrating the amount of current flowing through the cell assembly 10 from t0 to t1. In this case, the processor 300 may calculate a change value of the current reference charge charge amount by using Equation 3 described above.
  • the change value of the voltage reference charge charge amount calculated by the processor 300 is 30 [Ah] at the preset reference times t0 and t1, as in the previous embodiment.
  • the change value of the current reference charge charge amount calculated by the processor 300 during t0 to t1 using Equation 3 is 27 [Ah].
  • the error rate? Is calculated to be 10 [%]. Can be.
  • the processor 300 determines that the current sensor 30 is in an abnormal state. can do.
  • the change value of the voltage reference charge amount calculated by the processor 300 is 30 [Ah] at the preset reference times t0 and t1 as in the above example.
  • the change value of the current reference charge charge amount calculated by the processor 300 during t0 to t1 using Equation 3 is 29 [Ah].
  • the error rate? Is calculated to be 3.3 [%]. Can be.
  • the processor 300 is configured to perform the current sensor 30. It can be determined that the steady state.
  • the processor 300 may estimate the voltage-based charging charge based on the measured voltage and the measured temperature of the cell assembly 10.
  • the processor 300 uses the lookup table in which the charge charge amount corresponding to the voltage and temperature stored in the memory device 400 is defined, and the voltage reference charge charge amount corresponding to the measurement voltage and the measurement temperature of the cell assembly 10. Can be estimated. That is, the processor 300 estimates the voltage-based charge charge amount according to the voltage and temperature of the cell assembly 10 measured at least at two preset reference times, calculates the difference between the estimated voltage-based charge charges, and calculates the voltage-based charge. The change value of the charge amount can be calculated.
  • each preset reference time is t0 and t1.
  • the voltage measuring unit 100 may measure the voltage of the cell assembly 10 at t0 and t1, respectively.
  • the temperature measuring unit 500 may measure the temperature of the cell assembly 10 at t0 and t1, respectively.
  • the processor 300 may estimate the voltage-based charging charge according to the voltage and temperature of the cell assembly 10 measured at t0 using the lookup table stored in the memory device 400.
  • the processor 300 may estimate the voltage-based charge charge amount according to the voltage and temperature of the cell assembly 10 measured at t1 using the lookup table stored in the memory device 400.
  • the processor 300 may calculate a change value of the voltage reference charge charge amount by calculating a difference between the voltage reference charge charge amount at t0 and the voltage reference charge charge amount at t1.
  • the processor 300 estimates the charge voltage amount 10 [Ah] corresponding to the measurement voltage 3.2 [V] and the measurement temperature of the cell assembly 10 measured at t0. Can be.
  • the processor 300 may estimate the charge voltage 40 [Ah] corresponding to the measured voltage 4.0 [V] and the measured temperature of the cell assembly 10 measured at t1.
  • the processor 300 may calculate 30 [Ah], which is a change value of the voltage-based charged charge amount, based on the estimated charge amount 10 [Ah] at t0 and charge amount 40 [Ah] at t1. Can be.
  • the processor 300 may set the normal range in consideration of the temperature of the cell assembly 10.
  • the processor 300 increases or decreases the normal range according to the temperature of the cell assembly 10, thereby viewing the state of the current sensor based on the difference between the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount. It can be diagnosed accurately.
  • the processor 300 may be changed according to the difference between the temperatures of the cell assembly 10 measured at a preset reference time. That is, the normal range may be changed according to the temperature of the cell assembly 10 measured at the preset reference time.
  • the charge amount of the cell assembly 10 may be estimated based on the temperature and voltage of the cell assembly 10.
  • the processor 300 may change the size of the normal range according to the measured temperature of the cell assembly 10 in order to correct the change in the change value of the voltage-based charging charge according to the temperature. This will be described in detail with reference to Table 1.
  • the memory device 400 may store a reference table as shown in Table 1 below.
  • Table 1 is a lookup table in which voltages according to temperature and charge states of battery cells stored by the memory device 400 according to an exemplary embodiment are mapped. That is, Table 1 is a result of measuring the voltage of the cell assembly 10 while varying the state of charge (%) in the temperature range (-20 [° C.] to 35 [° C.]) where battery cells are generally used.
  • the cell assembly 10 may be configured to include one battery cell.
  • the processor 300 sets the state of charge of the cell assembly 10 to 76 [%] when the temperature of the cell assembly 10 is 35 [° C] and the voltage is 3.97 [V]. It can be estimated. In addition, when the temperature of the cell assembly 10 is -20 [° C] and the voltage is 3.968 [V], the processor 300 may estimate the state of charge of the cell assembly 10 to 78%.
  • the processor 300 may estimate the state of charge of the cell assembly 10 as the temperature of the cell assembly 10 increases. In other words, even if the voltage of the cell assembly 10 is the same at both time points, the processor 300 may estimate the state of charge of the cell assembly 10 higher as the temperature of the cell assembly 10 is lower.
  • each preset reference time is t0 and t1.
  • the measured temperature of the cell assembly 10 measured by the temperature measuring unit 500 is ⁇ 20 [° C.]
  • the measured voltage of the cell assembly 10 measured by the voltage measuring unit 100 is 3.932 [ V]
  • the processor 300 may estimate the state of charge of the cell assembly 10 as 74 [%] with reference to Table 1.
  • the processor 300 may estimate the state of charge of the cell assembly 10 as 78 [%] with reference to Table 1. In this case, the difference between the state of charge at t0 and the state of charge at t1 of the cell assembly 10 is 4 [%].
  • the state of charge may be estimated differently according to the measured voltage of the cell assembly 10.
  • the measured temperature of the cell assembly 10 measured at t0 is -20 [° C] and the measured voltage is 3.932 [V], which is the same as in the previous embodiment.
  • the measured temperature of the cell assembly 10 measured by the temperature measuring unit 500 is 35 [° C.]
  • the measured voltage of the cell assembly 10 measured by the voltage measuring unit 100 is 3.7 [V].
  • the processor 300 may estimate the state of charge of the cell assembly 10 to 76 [%] with reference to Table 1. In this case, the difference between the state of charge at t0 of the cell assembly 10 and the state of charge at t1 is 2 [%].
  • the difference between the states of charge when the temperature of the cell assembly 10 is -20 [° C] at t0 and t1 is t0 at the temperature of the cell assembly 10 is -20 [° C] and at t1. It can be seen that the difference between the states of charge when the temperature of the cell assembly 10 is 35 [° C.]. That is, since the charging state may be lowered even though the measured voltage is the same as the measured temperature of the cell assembly 10 is higher, the greater the difference between the measured temperatures of the cell assembly 10 at a preset reference time (at least two times) is increased. The change value of the voltage-based charging charge of the cell assembly 10 may be small.
  • the processor 300 may change the size of the normal range according to the difference between the temperatures of the cell assembly 10 measured at each preset reference time, in order to correct the change in the change in the voltage reference charge charge amount according to the temperature. Can be.
  • the processor 300 may set the size of the normal range as the reference size. For example, the processor 300 may set the range of -5 [%] to 5 [%] as the reference size of the normal range. In this case, when the error rate between the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount is within a normal range, the processor 300 may diagnose that the current sensor is in a normal state.
  • the processor 300 may reduce the size of the normal range than the reference size. For example, if the temperature of the cell assembly 10 measured at t0 is -20 [° C] and the temperature of the cell assembly 10 measured at t1 is 35 [° C], the processor 300 is based on the size of the normal range. It can be reduced in size.
  • the processor 300 may increase the size of the normal range than the reference size. For example, if the temperature of the cell assembly 10 measured at t0 is 35 [° C.] and the temperature of the cell assembly 10 measured at t1 is ⁇ 20 [° C.], the processor 300 is based on the size of the normal range. Can be larger than size.
  • the processor 300 may be in a normal range. You can increase the size. In contrast, the processor 300 may have a normal range size if the measured temperature of the cell assembly 10 measured at the completion time (eg, t1) is higher than the measured temperature of the cell assembly 10 measured at the start time (eg, t0). Can be reduced.
  • the current sensor diagnostic apparatus is a normal range based on the temperature of the cell assembly 10 even if the temperature of the cell assembly 10 changes while the cell assembly 10 is being charged or discharged. Since it changes, the state of the current sensor can be diagnosed more accurately.
  • the current sensor diagnosis apparatus can be applied to a BMS. That is, the BMS according to the present invention may include the above-described current sensor diagnosis apparatus according to the present invention. In such a configuration, at least some of the components of the current sensor diagnostic apparatus according to the present invention may be implemented by supplementing or adding a function of the configuration included in the conventional BMS.
  • the processor 300 and the memory device 400 of the current sensor diagnosis apparatus according to the present invention may be implemented as a component of a battery management system (BMS).
  • BMS battery management system
  • the current sensor diagnostic apparatus may be provided in the battery pack. That is, the battery pack according to the present invention may include the above-described current sensor diagnosis apparatus according to the present invention.
  • the battery pack may include one or more secondary batteries, the current sensor diagnostic apparatus, electrical equipment (with BMS, relay, fuse, etc.), a case, and the like.
  • FIG. 5 is a flowchart schematically illustrating a current sensor diagnosis method according to another embodiment of the present invention.
  • the performing agent of each step may be referred to as each component of the current sensor diagnosis apparatus according to the present invention described above.
  • the current sensor diagnostic method As shown in Figure 5, the current sensor diagnostic method according to the invention, the voltage measuring step (S100), the current measuring step (S110), the step of calculating the change value of the voltage reference charge charge amount (S120), the current reference charge charge amount The change value calculation step S130 and the current sensor diagnosis step S140 are included.
  • the voltage measuring step S100 is a step of measuring the voltage across the cell assembly 10. That is, in the voltage measuring step S100, voltages at both ends of the cell assembly 10 may be measured at each preset reference time. For example, referring to the embodiment of FIG. 3, in the voltage measuring step S100, the voltage across the cell assembly 10 at each time t0 and t1 may be measured.
  • the current measuring step S110 is a step in which a current flowing in the charge / discharge path is measured.
  • the charge / discharge path is a large current path to which the cell assembly 10 is connected, and may be a path in which a current sensor to be diagnosed is installed. That is, in the current measuring step S110, the current flowing through the charge / discharge path with the current sensor may be measured for the preset reference time. For example, referring to the embodiment of FIG. 3, in the current measuring step S110, a current flowing in the charge / discharge path for t0 to t1 time may be measured.
  • the step of calculating a change value of the voltage reference charge charge amount (S120) is a step of calculating a change value of the voltage-based charge charge amount based on voltages at both ends of the cell assembly 10 measured at each preset reference time.
  • the charge charge amount corresponding to the measured voltage at the start of charging of the cell assembly is compared with the charge charge amount corresponding to the measured voltage at the completion of charging of the cell assembly.
  • the change value of the voltage reference charging charge may be calculated.
  • the voltage-based charging charge amount at t0 may be estimated based on the voltage across the cell assembly 10 measured at t0. Then, the voltage reference charge charge amount at t1 may be estimated based on the voltage across the cell assembly 10 measured at t1. Then, the change value of the voltage reference charge charge amount may be calculated according to the difference between the estimated voltage reference charge charge amount at t0 and the estimated voltage reference charge charge amount at t1.
  • the change value of the current reference charge charge amount is calculated based on the current measured during the preset reference time.
  • the change value of the current reference charge charge amount may be calculated based on the current accumulated during the preset reference time.
  • a change value of the current reference charge charge amount may be calculated based on the amount of current accumulated from t0 to t1.
  • the current sensor diagnosis step S140 is a step of diagnosing the current sensor by comparing an error rate between the calculated change value of the voltage reference charge charge amount and the calculated change value of the current reference charge charge amount with a normal range.
  • an error rate between a change value of the voltage reference charge charge amount and a change value of the current reference charge charge amount may be calculated.
  • the state of the current sensor may be diagnosed according to whether the calculated error rate falls within a normal range.
  • the calculated error rate falls within the normal range, it can be diagnosed that the current sensor is in a normal state. Conversely, if the calculated error rate does not fall within the normal range, it can be diagnosed that the current sensor is in a fault state.
  • FIG. 6 is a flow chart schematically showing a current sensor diagnostic method according to another embodiment of the present invention.
  • the performing agent of each step may be referred to as each component of the current sensor diagnosis apparatus according to the present invention described above.
  • the current sensor diagnostic method according to another embodiment of the present invention voltage and temperature measurement step (S200), the current measurement step (S210), the step of calculating the change value of the voltage reference charge charge amount (S220), the current The calculation of the change value of the reference charging charge amount (S230), the normal range change step (S240), and the current sensor diagnosis step (S250) may be included.
  • Voltage and temperature measurement step (S200) is a step in which the voltage and temperature at both ends of the cell assembly 10 is measured. That is, the voltage and temperature measurement step S200 is a step of further measuring the temperature of the cell assembly 10 in the voltage measurement step S100 of FIG. 5.
  • the voltage and the temperature at both ends of the cell assembly 10 at the time t0 and t1 may be measured.
  • the current measuring step S210 is a step in which a current flowing in the charge / discharge path is measured. That is, the current measuring step S210 is the same as the current measuring step S110 of FIG. 5, and the current flowing through the charge / discharge path with the current sensor may be measured for a preset reference time. For example, referring to the embodiment of FIG. 3, in the current measuring step S110, a current flowing in the charge / discharge path for t0 to t1 time may be measured.
  • the change value of the voltage reference charge charge amount is calculated based on the voltage and the temperature at both ends of the cell assembly 10 measured at each preset reference time.
  • step S220 of calculating the change value of the voltage reference charge charge amount of FIG. 6 unlike the step of calculating the change value of the voltage reference charge charge amount of FIG. 5 (S120), the voltage is based on the voltage and temperature at both ends of the cell assembly 10. The change value of the charge amount can be calculated.
  • the voltage-based charging charge at t0 may be estimated based on the voltage and the temperature across the cell assembly 10 measured at t0. Then, the voltage-based charging charge amount at t1 may be estimated based on the voltage and the temperature at both ends of the cell assembly 10 measured at t1. Then, the change value of the voltage reference charge charge amount may be calculated according to the difference between the estimated voltage reference charge charge amount at t0 and the estimated voltage reference charge charge amount at t1.
  • the lookup table stored in the memory device 400 is used.
  • the lookup table stored in the memory device 400 may be a table in which charge charge amounts corresponding to both voltages and temperatures are defined.
  • a change value of the current reference charge charge amount is calculated based on a current measured during a preset reference time.
  • the step of calculating the change value of the current reference charge charge amount (S230) of FIG. 6 is the same step as the step of calculating the change value of the current reference charge charge amount (S130) of FIG. 5, and based on the current accumulated in the preset reference time.
  • the change value of the reference charge amount can be calculated.
  • the normal range changing step S240 is a step of changing the normal range based on the measured temperature, and the normal range may be changed according to the temperature of the cell assembly 10 measured at each preset reference time.
  • the normal range when the temperature of the cell assembly 10 measured at t0 and the temperature of the cell assembly 10 measured at t1 are different from each other, the normal range may be changed.
  • the normal range is a preset range and may be a reference range in which the processor 300 may diagnose the state of the current sensor 30 as a normal state.
  • the normal range may be set to a reference size if the temperatures of the cell assembly 10 measured at each of the at least two preset reference times are the same.
  • the normal range may be set to -5 [%] to 5 [%]. Wherein -5 [%] to 5 [%] may be the reference size.
  • the size of the normal range may be smaller than the reference size. For example, if the temperature of the cell assembly 10 measured at t0 is -20 [° C] and the temperature of the cell assembly 10 measured at t1 is 35 [° C], the temperature of the cell assembly 10 measured at t0 Since is lower than the temperature of the cell assembly 10 measured at t1, the size of the normal range may be smaller than the reference size.
  • the size of the normal range may be increased than the reference size. For example, if the temperature of the cell assembly 10 measured at t0 is 35 [° C.] and the temperature of the cell assembly 10 measured at t1 is ⁇ 20 [° C.], the size of the normal range may be greater than the reference size. .
  • the current sensor diagnosis step S250 is a step of diagnosing the current sensor by comparing an error rate between the calculated change value of the voltage reference charge charge amount and the calculated change value of the current reference charge charge amount with a normal range. That is, the current sensor diagnosis step S250 may be performed based on whether the error rate between the change value of the voltage reference charge charge amount and the change value of the current reference charge charge amount calculated in the normal range set in the normal range change step S240 is included. The condition is diagnosed.
  • the state of the current sensor may be diagnosed as a normal state.
  • the state of the current sensor may be diagnosed as a fault condition.
  • the state of the current sensor is more accurately diagnosed according to the temperature change of the cell assembly 10. Can be.
  • control logic such as the current sensor diagnostic method according to an embodiment of the present invention
  • the processor may be implemented as a set of program modules.
  • the program module may be stored in the memory device and executed by the processor.
  • control logics of the processor may be combined with at least one, and the combined control logics are not limited in kind as long as they are written in a computer readable code system and accessible to the computer.
  • the recording medium includes at least one selected from the group consisting of a ROM, a RAM, a register, a CD-ROM, a magnetic tape, a hard disk, a floppy disk, and an optical data recording device.
  • the code system may be distributed and stored and executed in a networked computer.
  • functional programs, code, and segments for implementing the combined control logics can be easily inferred by programmers in the art to which the present invention pertains.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 배터리 팩에 구비된 전류 센서를 진단하는 과정에서 효과적으로 전류 센서를 진단할 수 있는 전류 센서 진단 장치 및 방법에 관한 것이다. 본 발명의 일 실시예에 따른 전류 센서 진단 장치는, 셀 어셈블리의 양단 전압을 측정하도록 구성된 전압 측정부; 충방전 경로를 흐르는 전류를 측정하도록 구성된 전류 측정부; 및 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값을 기초로 상기 전류 센서를 진단하도록 구성된 프로세서를 포함한다.

Description

전류 센서 진단 장치 및 방법
본 출원은 2018년 06월 28일자로 출원된 한국 특허 출원번호 제10-2018-0074998호에 대한 우선주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 전류 센서 진단 장치 및 방법에 관한 것으로서, 보다 상세하게는 배터리 팩에 구비된 전류 센서가 정상인지 여부를 효과적으로 진단할 수 있는 전류 센서 진단 장치 및 방법에 관한 것이다.
근래에 들어서, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
이에 따라 모바일 기기, 전기차, 하이브리드 자동차, 전력 저장 장치, 무정전 전원 장치 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있다. 특히 전기차나 하이브리드 자동차에 사용되는 이차 전지는 고출력, 대용량 이차 전지로서, 이에 대한 많은 연구가 진행되고 있다.
또한, 이차 전지에 대한 많은 수요와 함께 이차 전지와 관련된 주변 부품이나 장치에 대한 연구도 함께 이루어지고 있다. 즉, 복수의 이차 전지를 연결하여 하나의 모듈로 만든 셀 어셈블리, 셀 어셈블리의 충방전을 제어하고 각 이차 전지의 상태를 모니터링하는 BMS(Battery Management System), 셀 어셈블리와 BMS를 하나의 팩으로 만든 배터리 팩, 셀 어셈블리를 흐르는 충방전 전류를 측정하는 전류 센서 등 다양한 부품과 장치에 대한 연구가 진행되고 있다.
특히, 전류 센서는 충방전 경로상에 구비되어 충방전 전류를 측정하는 센서로서 이에 대한 많은 연구가 진행되고 있다. 이러한 전류 센서는, 배터리의 과충전 또는 과방전을 방지하기 위하여 정확한 전류 측정값을 BMS로 전달하는 것이 중요하다. 또한, BMS가 배터리의 SOC(State of Charge) 또는 SOH(State of Health)를 추정하고, 효과적인 셀 밸런싱 동작을 수행하기 위해서는 전류 센서가 정확한 전류 측정값을 BMS로 전달해야 한다.
이러한, 전류 센서의 정확도는 진단이 어렵다. 따라서, 당업계에서는 전류 센서의 정확도를 진단할 수 있는 기술이 요구되고 있다. 하지만, 이러한 요구 조건은 진단 회로의 복잡성을 증가시키는 문제점이 있다.
본 발명은 위와 같은 종래 기술의 배경하에 창안된 것으로서, 전압기준 충전 상태의 변화값과 전류기준 충전 상태의 변화값 간의 오차에 기반하여, 배터리 팩에 구비된 전류 센서의 고장 여부를 효과적으로 진단할 수 있는 개선된 전류 센서 진단 장치 및 방법에 관한 것이다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 전류 센서 진단 장치는, 셀 어셈블리로 충방전 전류를 공급하는 충방전 경로 상에 구비된 전류 센서를 진단하는 장치로서, 상기 셀 어셈블리와 전기적으로 연결되어, 상기 셀 어셈블리의 양단 전압을 측정하도록 구성된 전압 측정부; 상기 전류 센서와 전기적으로 연결되어, 상기 전류 센서로부터 전기적 신호를 수신하고, 상기 전기적 신호를 기초로 상기 충방전 경로를 흐르는 전류를 측정하도록 구성된 전류 측정부; 및 상기 전압 측정부에 의해 미리 설정된 적어도 2개의 기준시간 각각에서 측정된 측정 전압을 기초로 전압기준 충전 전하량의 변화값을 연산하고, 상기 전류 측정부에 의해 상기 기준시간 동안 누적하여 측정된 측정 전류를 기초로 전류기준 충전 전하량의 변화값을 연산하며, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 기초로 상기 전류 센서를 진단하도록 구성된 프로세서를 포함할 수 있다.
상기 프로세서는, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 비교하여, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값 간의 오차율이 정상 범위에 속하는 경우 상기 전류 센서가 정상 상태인 것으로 진단하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 전류 센서 진단 장치는 상기 셀 어셈블리와 전기적으로 연결되어, 상기 셀 어셈블리의 온도를 측정하도록 구성된 온도 측정부를 더 포함할 수 있다.
상기 프로세서는, 상기 측정 전압 및 상기 온도 측정부에 의해 상기 기준시간 각각에서 측정된 측정 온도를 기초로 상기 전압기준 충전 전하량의 변화값을 연산하고, 상기 미리 설정된 기준시간 각각에서 측정된 상기 셀 어셈블리의 측정 온도 간의 차이에 따라 상기 정상 범위를 변경시키도록 구성될 수 있다.
상기 프로세서는, 상기 셀 어셈블리의 충전 시작 시의 측정 전압에 대응하는 충전 전하량과 상기 셀 어셈블리의 충전 완료 시의 측정 전압에 대응하는 충전 전하량을 비교하여 상기 전압기준 충전 전하량의 변화값을 연산하도록 구성될 수 있다.
상기 프로세서는, 상기 셀 어셈블리의 충전 시작 시로부터 충전 완료 시까지 상기 측정 전류를 적산하여 상기 전류기준 충전 전하량의 변화값을 연산하도록 구성될 수 있다.
본 발명의 또 다른 측면에 따른 전류 센서 진단 장치는 상기 셀 어셈블리의 양단 전압 또는 상기 양단 전압 및 온도에 대응하는 충전 전하량을 정의하는 룩업 테이블을 미리 저장하도록 구성된 메모리 디바이스를 더 포함할 수 있다.
본 발명의 또 다른 측면에 따른 BMS는 본 발명의 일 측면에 따른 전류 센서 진단 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 팩은 본 발명의 일 측면에 따른 전류 센서 진단 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 전류 센서 진단 방법은 셀 어셈블리로 충방전 전류를 공급하는 충방전 경로 상에 구비된 전류 센서를 진단하는 방법으로서, 적어도 2개의 미리 설정된 기준시간 각각에서 상기 셀 어셈블리의 양단 전압을 측정하고, 상기 기준시간 동안 상기 전류 센서가 구비된 충방전 경로를 흐르는 전류를 측정하는 단계; 및 상기 기준시간에서 측정된 셀 어셈블리의 측정 전압을 기초로 전압기준 충전 전하량의 변화값을 연산하고, 상기 미리 설정된 기준시간 동안 측정된 측정 전류를 기초로 전류기준 충전 전하량의 변화값을 연산하며, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 기초로 상기 전류 센서를 진단하는 단계를 포함할 수 있다.
상기 전류 센서를 진단하는 단계는, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 비교하여, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값 간의 오차율이 정상 범위에 속하는 경우, 상기 전류 센서가 정상 상태인 것으로 진단하는 단계를 포함할 수 있다.
상기 측정하는 단계는, 상기 미리 설정된 기준시간 각각에서, 상기 셀 어셈블리의 온도를 측정하는 단계를 더 포함할 수 있다.
상기 전류 센서를 진단하는 단계는, 상기 미리 설정된 기준시간 각각에서 측정된 측정 전압 및 측정 온도를 기초로 상기 전압기준 충전 전하량의 변화값을 연산하고, 상기 미리 설정된 기준시간에서 측정된 상기 셀 어셈블리의 측정 온도 간의 차이에 따라 상기 정상 범위를 변경시키는 단계를 포함할 수 있다.
상기 전류 센서를 진단하는 단계는, 상기 셀 어셈블리의 충전 시작 시의 측정 전압에 대응하는 충전 전하량과 상기 셀 어셈블리의 충전 완료 시의 측정 전압에 대응하는 충전 전하량을 비교하여 상기 전압기준 충전 전하량의 변화값을 연산하는 단계를 포함할 수 있다.
상기 전류 센서를 진단하는 단계는, 상기 셀 어셈블리의 충전 시작 시로부터 충전 완료 시까지 상기 측정 전류를 적산하여 상기 전류기준 충전 전하량의 변화값을 연산하는 단계를 포함할 수 있다.
본 발명의 일 측면에 의하면, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값을 이용하여, 효과적으로 전류 센서를 진단할 수 있는 장점이 있다.
특히, 본 발명의 일 실시예에 의하면, 전류 센서의 오차를 연산함으로써, 전류 센서의 정확도를 측정할 수 있는 개선된 전류 센서 진단 장치 및 방법이 제공될 수 있다.
이외에도 본 발명은 다른 다양한 효과를 가질 수 있으며, 이러한 본 발명의 다른 효과들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 알 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 전류 센서 진단 장치의 기능적 구성을 개략적으로 나타내는 도면이다.
도 2는, 본 발명의 일 실시예에 따른 전류 센서 진단 장치가 배터리 팩의 일부 구성 요소와 연결된 구성을 개략적으로 나타내는 도면이다.
도 3은, 본 발명의 일 실시예에 따른 프로세서가 참조하는 측정 전압을 보여준다.
도 4는, 본 발명의 일 실시예에 따른 프로세서가 참조하는 전압-충전 전하량 룩업 테이블을 보여준다.
도 5는, 본 발명의 다른 실시예에 따른 전류 센서 진단 방법을 개략적으로 도시한 순서도이다.
도 6은, 본 발명의 또 다른 실시예에 따른 전류 센서 진단 방법을 개략적으로 도시한 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판정되는 경우에는 그 상세한 설명은 생략한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 '프로세서'와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
본 발명의 일 실시예에 따른 전류 센서 진단 장치는, 하나 이상의 이차 전지를 구비하는 배터리 팩에 구비된 전류 센서를 진단하는 장치일 수 있다. 여기서, 전류 센서는, 배터리 팩에 구비된 셀 어셈블리로 충방전 전류를 공급하는 충방전 경로 상에 구비될 수 있다. 보다 구체적으로, 도 2의 구성에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전류 센서는, 셀 어셈블리의 음극 단자와 배터리 팩의 음극 단자 사이에 구비될 수 있다.
도 1은, 본 발명의 일 실시예에 따른 전류 센서 진단 장치의 기능적 구성을 개략적으로 나타내는 도면이고, 도 2는, 본 발명의 일 실시예에 따른 전류 센서 진단 장치가 배터리 팩의 일부 구성 요소와 연결된 구성을 개략적으로 나타내는 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 전류 센서 진단 장치(1)는, 전압 측정부(100), 전류 측정부(200) 및 프로세서(300)를 포함한다.
상기 전압 측정부(100)는, 셀 어셈블리(10)와 전기적으로 연결될 수 있다. 예를 들어, 도 2의 구성에 도시된 바와 같이, 전압 측정부(100)는, 전기적 신호를 주고 받을 수 있도록 셀 어셈블리(10)의 양단과 각각 전기적으로 연결될 수 있다. 또한, 전압 측정부(100)는, 전기적 신호를 주고 받을 수 있도록 셀 어셈블리(10)에 구비된 각 셀의 양단과 각각 전기적으로 연결될 수 있다.
또한, 전압 측정부(100)는, 셀 어셈블리(10)의 양단 전압을 측정하도록 구성될 수 있다. 보다 구체적으로, 전압 측정부(100)는, 셀 어셈블리(10)의 양단으로부터 수신한 전기적 신호를 기초로 셀 어셈블리(10)의 양단 전압을 측정할 수 있다. 또한, 전압 측정부(100)는, 각 셀의 양단으로부터 수신한 전기적 신호를 기초로 각 셀의 양단 전압을 측정할 수 있다.
바람직하게는, 전압 측정부(100)는, 전기적 신호를 주고 받을 수 있도록 프로세서(300)와 전기적으로 연결될 수 있다. 또한, 전압 측정부(100)는, 프로세서(300)의 통제 하에 시간 간격을 두고 셀 어셈블리(10)의 양극 단자와 셀 어셈블리(10)의 음극 단자 사이의 전위차를 측정하고 측정된 전압의 크기를 나타내는 신호를 프로세서(300)로 출력할 수 있다. 예를 들어, 전압 측정부(100)는, 당업계에서 일반적으로 사용되는 전압 측정 회로를 이용하여 구현될 수 있다.
상기 전류 측정부(200)는, 전류 센서(30)와 전기적으로 연결되어, 전류 센서(30)로부터 전기적 신호를 수신할 수 있다. 또한, 전류 측정부(200)는, 전류 센서(30)로부터 수신한 전기적 신호를 기초로 충방전 경로를 흐르는 전류를 측정하도록 구성될 수 있다.
예를 들어, 도 2의 구성에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전류 측정부(200)는, 전류 센서(30)의 양단과 전기적으로 연결될 수 있다. 여기서, 전류 센서(30)의 일단은, 셀 어셈블리(10)의 음극 단자와 전기적으로 연결될 수 있다. 또한, 전류 측정부(200)는, 전류 센서(30)의 양단 전압을 측정하고, 전류 센서(30)의 양단 전압을 기초로 충방전 경로를 흐르는 전류를 측정할 수 있다. 예를 들어, 전류 측정부(200)는, 옴의 법칙을 이용하여 충방전 경로를 흐르는 전류를 측정할 수 있다.
바람직하게는, 전류 측정부(200)는, 전기적 신호를 주고 받을 수 있도록 프로세서(300)와 전기적으로 연결될 수 있다. 또한, 전류 측정부(200)는, 프로세서(300)의 통제하에 시간 간격을 두고 셀 어셈블리(10)의 충전 전류 또는 방전 전류의 크기를 반복 측정하고 측정된 전류의 크기를 나타내는 신호를 프로세서(300)로 출력할 수 있다. 예를 들어, 전류 센서(30)는, 당업계에서 일반적으로 사용되는 홀 센서 또는 센스 저항을 이용하여 구현될 수 있다. 홀 센서 또는 센스 저항은 전류가 흐르는 선로에 설치될 수 있다.
상기 프로세서(300)는, 전압 측정부(100)로부터 측정 전압을 수신할 수 있다. 예를 들어, 프로세서(300)는, 전압 측정부(100)로부터 셀 어셈블리(10)의 양단 전압을 수신할 수 있다.
또한, 프로세서(300)는, 적어도 2개의 미리 설정된 기준시간에서 측정된 측정 전압을 기초로 전압기준 충전 전하량의 변화값을 연산할 수 있다. 보다 구체적으로, 프로세서(300)는, 전압 측정부(100)로부터 시간차를 두고 측정 전압을 수신할 수 있다. 여기서, 시간차는, 적어도 2개의 미리 설정된 기준시간 간의 차이일 수 있다. 즉, 기준시간이란 적어도 2개의 서로 다른 시각을 의미할 수 있다. 그리고, 기준시간 동안이란 적어도 2개의 서로 다른 시각 동안을 의미할 수 있다. 예컨대, 기준시간은 t0 및 t1을 의미할 수 있고, 기준시간 동안은 t0 내지 t1 동안을 의미할 수 있다.
예를 들어, 미리 설정된 기준시간이 t0 및 t1인 경우, 프로세서(300)는, t0에 측정된 측정 전압을 전압 측정부(100)로부터 수신할 수 있다. 또한, 프로세서(300)는, t1에 측정된 측정 전압을 전압 측정부(100)로부터 수신할 수 있다. 또한, 프로세서(300)는, t0에 측정된 측정 전압에 대응하는 충전 전하량과 t1에 측정된 측정 전압에 대응하는 충전 전하량을 기초로 전압기준 충전 전하량의 변화값을 연산할 수 있다. 전압기준 충전 전하량의 변화값을 연산하는 과정에 대한 자세한 설명은 후술하도록 한다.
또한, 프로세서(300)는, 전류 측정부(200)로부터 측정 전류를 수신할 수 있다. 예를 들어, 프로세서(300)는, 전류 측정부(200)로부터 충방전 경로를 흐르는 측정 전류를 수신할 수 있다.
또한, 프로세서(300)는, 미리 설정된 기준시간 동안 누적된 측정 전류를 기초로 전류기준 충전 전하량의 변화값을 연산할 수 있다. 보다 구체적으로, 프로세서(300)는, 전류 측정부(200)로부터 수신한 측정 전류를 기초로 기준시간 동안 측정 전류를 적산하여 누적된 측정 전류값을 연산할 수 있다. 여기서, 기준시간은 미리 설정될 수 있다. 예를 들어, 미리 설정된 기준시간이 t0 및 t1인 경우, 프로세서(300)는, t0로부터 t1까지 측정된 측정 전류를 전류 측정부(200)로부터 수신할 수 있다. 또한, 프로세서(300)는, t0로부터 t1까지 누적된 측정 전류에 대응하는 충전 전하량을 기초로 전류기준 충전 전하량의 변화값을 연산할 수 있다. 전류기준 충전 전하량의 변화값을 연산하는 과정에 대한 자세한 설명은 후술하도록 한다.
또한, 프로세서(300)는, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값을 기초로 전류 센서(30)를 진단하도록 구성될 수 있다. 보다 구체적으로, 프로세서(300)는, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값을 비교한 결과가 정상 범위에 속하는 경우 전류 센서(30)가 정상인 것으로 진단할 수 있다. 반대로, 프로세서(300)는 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값을 비교한 결과가 정상 범위에 속하지 않으면, 전류 센서(30)가 비정상 상태인 것으로 진단할 수 있다. 여기서 정상 범위는 미리 설정된 범위로서, 프로세서(300)가 전류 센서(30)의 상태를 정상 상태라고 진단할 수 있는 기준 범위일 수 있다.
바람직하게는, 본 발명의 일 실시예에 따른 전류 센서 진단 장치(1)는, 도 1 및 도 2의 구성에 도시된 바와 같이, 온도 측정부(500)를 더 포함할 수 있다.
상기 온도 측정부(500)는, 전기적 신호를 주고 받을 수 있도록 셀 어셈블리(10)와 전기적으로 연결될 수 있다. 또는, 온도 측정부(500)는, 셀 어셈블리(10)에 장착되어 셀 어셈블리(10)와 전기적으로 연결될 수 있다. 이와 같은 구성을 통해, 온도 측정부(500)는, 셀 어셈블리(10) 및 셀 어셈블리(10)에 구비된 각 셀의 온도를 측정할 수 있다.
바람직하게는, 온도 측정부(500)는, 전기적 신호를 주고 받을 수 있도록 프로세서(300)와 전기적으로 결합할 수 있다. 또한, 온도 측정부(500)는, 시간 간격을 두고 셀 어셈블리(10)의 온도를 반복 측정하고 측정된 온도의 크기를 나타내는 신호를 프로세서(300)로 출력할 수 있다. 예를 들어, 온도 측정부(500)는, 당업계에서 일반적으로 사용되는 열전대(thermocouple)를 이용하여 구현될 수 있다.
바람직하게는, 본 발명의 일 실시예에 따른 전류 센서 진단 장치(1)는, 메모리 디바이스(400)를 더 포함할 수 있다.
상기 메모리 디바이스(400)는, 전기적 신호를 주고 받을 수 있도록 프로세서(300)와 전기적으로 연결될 수 있다. 또한, 메모리 디바이스(400)는, 셀 어셈블리(10)의 양단 전압 및/또는 온도에 대응되는 충전 전하량을 정의한 룩업 테이블을 미리 저장할 수 있다. 바람직하게, 메모리 디바이스(400)에 저장된 룩업 테이블은 셀 어셈블리(10)의 양단 전압 및 온도에 대응되는 충전 전하량이 정의된 테이블일 수 있다.
예컨대, 본 발명의 일 실시예에 따른 프로세서(300)는, 전압 측정부(100), 전류 측정부(200) 및 온도 측정부(500)로부터 수신한 셀 어셈블리(10)에 대한 전압 측정값, 전류 측정값 및 온도 측정값을 이용하여, 셀 어셈블리(10)의 충전 상태(예컨대, 충전 전하량)를 추정하고, 추정된 충전 상태를 모니터링할 수 있다. 즉, 프로세서(300)는, 메모리 디바이스(400)에 저장된 룩업 테이블을 이용하여, 셀 어셈블리(10)가 충전 또는 방전되는 동안 충전 상태를 추정하고, 추정된 충전 상태를 모니터링할 수 있다.
또한, 프로세서(300)는, 셀 어셈블리(10)의 충전 전류 및 방전 전류를 적산하여 셀 어셈블리(10)의 충전 상태를 추정할 수 있다. 여기서, 셀 어셈블리(10)의 충전 또는 방전이 시작될 때 충전 상태의 초기값은 충전 또는 방전이 시작되기 전에 측정한 셀 어셈블리(10)의 개방 전압(Open Circuit Voltage, OCV)을 이용하여 결정할 수 있다. 이를 위해, 프로세서(300)는 셀 어셈블리(10)의 온도 및 개방 전압 별로 충전 상태를 정의한 룩업 테이블을 이용하여 셀 어셈블리(10)의 개방 전압에 대응되는 충전 상태를 추정할 수 있다. 예컨대, 메모리 디바이스(400)에 저장된 룩업 테이블은 셀 어셈블리(10)의 온도 및 개방 전압에 대응되는 충전 전하량이 정의된 테이블일 수 있다.
다른 측면에서, 프로세서(300)는, 확장 칼만 필터를 이용하여 셀 어셈블리(10)의 충전 상태를 추정할 수 있다. 확장 칼만 필터는 배터리 셀의 전압, 전류 및 온도를 이용하여 셀 어셈블리(10)의 충전 상태를 적응적으로 추정하는 수학적 알고리즘을 말한다. 여기서, 확장 칼만 필터를 이용한 충전 상태의 추정은, 일 예로서 그레고리 엘 플레트(Gregory L. Plett)의 논문 "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Parts 1, 2 and 3" (Journal of Power Source 134, 2004, p. 252-261)을 참조할 수 있다.
셀 어셈블리(10)의 충전 상태는 전술한 전류 적산법 또는 확장 칼만 필터 이외에도 셀 어셈블리(10)의 전압, 전류 및 온도를 선택적으로 활용하여 충전 상태를 추정할 수 있는 다른 공지의 방법에 의해서도 결정할 수 있다.
바람직하게는, 본 발명의 일 실시예에 따른 프로세서(300)는, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값을 비교하여, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값의 차이가 정상 범위 내의 오차인 경우 전류 센서(30)가 정상 상태인 것으로 진단할 수 있다. 즉, 프로세서(300)는 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값의 차이가 정상 범위에 속하면, 전류 센서(30)가 정상 상태인 것으로 진단할 수 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(300)는, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값의 차이를 이용하여 전류 센서(30)의 측정 오차를 연산할 수 있다.
<수학식 1>
Figure PCTKR2019007915-appb-img-000001
여기서, ΔSOC(V)는 전압기준 충전 전하량의 변화값[Ah]이고, ΔSOC(I)는 전류기준 충전 전하량의 변화값[Ah]이고, ε는 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값 간의 오차율을 의미한다. 여기서, ΔSOC(V) 및 ΔSOC(I)의 단위는 [Ah]이고, ε의 단위는 [%]일 수 있다.
예컨대, ΔSOC(V)는 t1에서 측정된 전압기준 충전 전하량과 t0에서 측정된 전압기준 충전 전하량 간의 차이일 수 있다. ΔSOC(I)는 t0 내지 t1동안 누적 적산된 전류기준 충전 전하량일 수 있다.
프로세서(300)는, 오차율(ε)이 정상 범위에 속하는 경우, 전류 센서(30)가 정상 상태인 것으로 진단할 수 있다. 또한, 프로세서(300)는, 오차율율(ε)이 정상 범위에 속하지 않는 경우, 전류 센서(30)가 고장 상태인 것으로 진단할 수 있다.
여기서, 정상 범위는 미리 설정된 기준 범위로서, 프로세서(300)는 산출된 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값 간의 차이인 오차율(ε)이 정상 범위 내에 속하는지 여부에 따라 전류 센서(30)의 상태를 진단할 수 있다.
정상 범위는 전류가 측정되는 시간 동안 측정된 셀 어셈블리(10)의 온도에 기반하여 범위가 늘어나거나 줄어들 수 있다.
본 발명의 일 실시예에 따른 프로세서(300)는, 셀 어셈블리(10)의 충전 시작 시의 측정 전압에 대응되는 충전 전하량과 셀 어셈블리(10)의 충전 완료 시의 측정 전압에 대응되는 충전 전하량을 비교하여 전압기준 충전 전하량의 변화값을 연산할 수 있다.
<수학식 2>
Figure PCTKR2019007915-appb-img-000002
여기서, ΔSOC(V)는 전압기준 충전 전하량의 변화값이고, t0는 충전 시작 시점이고, t1은 충전 완료 시점이고, SOC(t0)는 충전 시작 시점(t0)에서 측정된 셀 어셈블리(10)의 측정 전압에 대응되는 충전 전하량이고, SOC(t1)는 충전 완료 시점(t1)에서 측정된 셀 어셈블리(10)의 측정 전압에 대응되는 충전 전하량이다.
또한, 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(300)는, 셀 어셈블리(10)의 충전 시작 시점(t0)으로부터 충전 완료 시점(t1)까지 측정 전류를 적산하여 전류기준 충전 전하량의 변화값을 연산할 수 있다.
한편, 프로세서(300)는, 셀 어셈블리(10)의 충전 시작 시의 측정 전압 및 측정 온도에 대응되는 충전 전하량과 셀 어셈블리(10)의 충전 완료 시의 측정 전압 및 측정 온도에 대응되는 충전 전하량을 비교하여 전압기준 충전 전하량의 변화값을 연산할 수 있다. 이 경우, 수학식 2의 SOC(t0)는 충전 시작 시점(t0)에서 측정된 셀 어셈블리(10)의 측정 전압 및 측정 온도에 대응되는 충전 전하량이고, SOC(t1)는 충전 완료 시점(t1)에서 측정된 셀 어셈블리(10)의 측정 전압 및 측정 온도에 대응하는 충전 전하량이다.
<수학식 3>
Figure PCTKR2019007915-appb-img-000003
여기서, ΔSOC(I)는 전류기준 충전 전하량의 변화값이고, t0는 충전 시작 시점이고, t1은 충전 완료 시점이고, I는 측정 전류이다.
예를 들어, 도 2의 구성에 도시된 바와 같이, 배터리 팩의 양극 단자와 배터리 팩의 음극 단자에 충전 장치(50)가 전기적으로 연결되어, 셀 어셈블리(10)가 충전 장치(50)로부터 충전될 수 있다. 이 경우, 프로세서(300)는, 셀 어셈블리(10)의 충전 시작 시점(t0)으로부터 충전 완료 시점(t1)까지 측정 전류를 적산하여 전류기준 충전 전하량의 변화값을 연산할 수 있다.
그리고, 프로세서(300)는 수학식 2를 통해서 산출된 전압기준 충전 전하량의 변화값(ΔSOC(V))과 수학식 3을 통해서 산출된 전류기준 충전 전하량의 변화값(ΔSOC(I))을 수학식 1에 대입함으로써, 오차율(ε)을 산출할 수 있다.
프로세서(300)는 산출한 오차율(ε)이 정상 범위에 속하는지 여부에 기반하여, 전류 센서(30)의 상태를 진단할 수 있다.
바람직하게는, 본 발명의 일 실시예에 따른 프로세서(300)는, 도 2의 구성에 도시된 바와 같이, 상위제어장치(70)와 전기적으로 연결되어, 상위제어장치(70)와 전기적 신호를 주고 받을 수 있다. 예를 들어, 프로세서(300)는, 전류 센서(30)의 진단 결과를 상위제어장치(70)로 전송할 수 있다. 보다 구체적으로, 프로세서(300)는, 전류 센서(30)가 고장 상태인 경우, 상위제어장치(70)로 알람을 전송할 수 있다.
한편, 프로세서(300)는, 상술한 바와 같은 동작을 수행하기 위해, 당업계에 알려진 프로세서(300), ASIC(Application-Specific Integrated Circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀 및/또는 데이터 처리 장치 등을 선택적으로 포함하는 형태로 구현될 수 있다.
한편, 메모리 디바이스(400)는, 정보를 기록하고 소거할 수 있는 저장 매체라면 그 종류에 특별한 제한이 없다. 예를 들어, 메모리 디바이스(400)는, RAM, ROM, 레지스터, 하드디스크, 광기록 매체 또는 자기기록 매체일 수 있다. 메모리 디바이스(400)는, 또한 프로세서(300)에 의해 각각 접근이 가능하도록 예컨대 데이터 버스 등을 통해 프로세서(300)와 각각 전기적으로 연결될 수 있다. 메모리 디바이스(400)는, 또한 프로세서(300)가 각각 수행하는 각종 제어 로직을 포함하는 프로그램, 및/또는 제어 로직이 실행될 때 발생되는 데이터를 저장 및/또는 갱신 및/또는 소거 및/또는 전송할 수 있다.
도 3은, 본 발명의 일 실시예에 따른 프로세서가 참조하는 측정 전압을 보여주고, 도 4는, 본 발명의 일 실시예에 따른 프로세서가 참조하는 전압-충전 전하량 룩업 테이블을 보여준다. 도 3 및 도 4에서, 전압의 단위는 [V], 시간(t)의 단위는 [h], 충전 전하량의 단위는 [Ah]이다.
도 3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 프로세서(300)는, 미리 설정된 기준시간 동안 시간차를 두고 수신된 측정 전압을 기초로 전압기준 충전 전하량의 변화값을 연산할 수 있다. 보다 구체적으로, 프로세서(300)는, 전압 측정부(100)로부터 시간차를 두고 측정 전압을 수신할 수 있다. 여기서, 시간차는, 미리 설정된 기준시간의 차이일 수 있다.
예를 들어, 프로세서(300)는, 미리 설정된 기준시간이 t0 및 t1인 경우, 도 3의 그래프에 도시된 바와 같이, t0에 측정된 측정 전압 a[V]를 전압 측정부(100)로부터 수신할 수 있다. 또한, 프로세서(300)는, t1에 측정된 측정 전압 b[V]를 전압 측정부(100)로부터 수신할 수 있다.
또한, 프로세서(300)는, 도 4의 테이블에 도시된 바와 같이, t0에 측정된 측정 전압 3.2[V]에 대응되는 충전 전하량 10[Ah]와 t1에 측정된 측정 전압 4.0[V]에 대응되는 충전 전하량 40[Ah]를 기초로 전압기준 충전 전하량의 변화값인 30[Ah]를 연산할 수 있다.
또한, 프로세서(300)는 t0에서 t1동안 셀 어셈블리(10)에 흐르는 전류량을 적산하여, 전류기준 충전 전하량의 변화값을 연산할 수 있다. 이 경우, 프로세서(300)는 전술한 수학식 3을 이용하여, 전류기준 충전 전하량의 변화값을 산출할 수 있다.
예컨대, 앞선 실시예와 같이, 미리 설정된 기준시간인 t0 및 t1에서, 프로세서(300)에 의해 연산된 전압기준 충전 전하량의 변화값이 30[Ah]이라고 가정한다. 그리고, 프로세서(300)가 수학식 3을 이용하여 t0 내지 t1 동안 연산한 전류기준 충전 전하량의 변화값이 27[Ah]라고 가정한다. 이 경우, 전압기준 충전 전하량의 변화값(30[Ah])과 전류기준 충전 전하량의 변화값(27[Ah])을 수학식 1에 대입하면, 오차율(ε)이 10[%]로 산출될 수 있다. 여기서, 정상 범위가 -5[%] 내지 +5[%]로 설정되었다면, 산출된 오차율(ε)이 정상 범위에 속하지 않기 때문에, 프로세서(300)는 전류 센서(30)가 비정상 상태인 것으로 판단할 수 있다.
다른 예로, 앞선 예시와 같이, 미리 설정된 기준시간인 t0 및 t1에서, 프로세서(300)에 의해 연산된 전압기준 충전 전하량의 변화값이 30[Ah]이라고 가정한다. 그리고, 프로세서(300)가 수학식 3을 이용하여 t0 내지 t1 동안 연산한 전류기준 충전 전하량의 변화값이 29[Ah]라고 가정한다. 이 경우, 전압기준 충전 전하량의 변화값(30[Ah])과 전류기준 충전 전하량의 변화값(29[Ah])을 수학식 1에 대입하면, 오차율(ε)이 3.3[%]로 산출될 수 있다. 앞선 실시예와 같이, 정상 범위가 -5[%] 내지 +5[%]로 설정되었을 때, 산출된 오차율(ε)이 정상 범위에 속하기 때문에, 프로세서(300)는 전류 센서(30)가 정상 상태인 것으로 판단할 수 있다.
한편, 프로세서(300)는 셀 어셈블리(10)의 측정 전압 및 측정 온도에 기반하여 전압기준 충전 전하량을 추정할 수 있다.
구체적으로, 프로세서(300)는 메모리 디바이스(400)에 저장된 전압 및 온도에 대응되는 충전 전하량이 정의된 룩업 테이블을 이용하여, 셀 어셈블리(10)의 측정 전압 및 측정 온도에 대응되는 전압기준 충전 전하량을 추정할 수 있다. 즉, 프로세서(300)는 적어도 2개의 미리 설정된 기준시간에서 측정된 셀 어셈블리(10)의 전압 및 온도에 따라 전압기준 충전 전하량을 추정하고, 추정된 전압기준 충전 전하량 간의 차이를 연산하여 전압기준 충전 전하량의 변화값을 산출할 수 있다.
예컨대, 미리 설정된 기준시간 각각이 t0 및 t1이라고 가정한다. 전압 측정부(100)는 t0 및 t1 각각에서 셀 어셈블리(10)의 전압을 측정할 수 있다. 마찬가지로, 온도 측정부(500)도 t0 및 t1 각각에서 셀 어셈블리(10)의 온도를 측정할 수 있다. 프로세서(300)는 메모리 디바이스(400)에 저장된 룩업 테이블을 이용하여, t0에서 측정된 셀 어셈블리(10)의 전압과 온도에 따른 전압기준 충전 전하량을 추정할 수 있다. 또한, 프로세서(300)는 메모리 디바이스(400)에 저장된 룩업 테이블을 이용하여, t1에서 측정된 셀 어셈블리(10)의 전압과 온도에 따른 전압기준 충전 전하량을 추정할 수 있다. 그리고, 프로세서(300)는 t0에서의 전압기준 충전 전하량과 t1에서의 전압기준 충전 전하량 간의 차이를 연산하여, 전압기준 충전 전하량의 변화값을 산출할 수 있다.
구체적으로, 도 3 및 도 4의 실시예에서, 프로세서(300)는, t0에 측정된 셀 어셈블리(10)의 측정 전압 3.2[V] 및 측정 온도에 대응되는 충전 전하량 10[Ah]을 추정할 수 있다. 그리고, 프로세서(300)는 t1에 측정된 셀 어셈블리(10)의 측정 전압 4.0[V] 및 측정 온도에 대응되는 충전 전하량 40[Ah]을 추정할 수 있다. 그리고, 프로세서(300)는 추정된 t0에서의 충전 전하량(10[Ah])과 t1에서의 충전 전하량(40[Ah])을 기초로 전압기준 충전 전하량의 변화값인 30[Ah]를 연산할 수 있다.
또한, 프로세서(300)는 상기 정상 범위를 셀 어셈블리(10)의 온도를 고려하여 설정할 수 있다.
즉, 프로세서(300)는 정상 범위를 셀 어셈블리(10)의 온도에 따라 늘리거나 줄임으로써, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값 간의 차이에 기반하여 전류 센서의 상태를 보다 정확하게 진단할 수 있다.
바람직하게, 프로세서(300)는 미리 설정된 기준시간에서 측정된 셀 어셈블리(10)의 온도 간의 차이에 따라서 변경될 수 있다. 즉, 정상 범위는 상기 미리 설정된 기준시간에서 측정된 셀 어셈블리(10)의 온도에 따라서 변경될 수 있다.
앞서서 설명한 바와 같이, 셀 어셈블리(10)의 충전 전하량은 셀 어셈블리(10)의 온도 및 전압에 기반하여 추정될 수 있다. 그리고, 미리 설정된 기준시간 각각에서 측정된 셀 어셈블리(10)의 온도는 각각의 경우에서 서로 상이할 수 있기 때문에, 셀 어셈블리(10)의 온도에 따라 전압기준 충전 전하량의 변화값이 변경될 수 있다. 따라서, 프로세서(300)는 프로세서(300)는 온도에 따라 전압기준 충전 전하량의 변화값이 변경되는 것을 보정하기 위하여, 측정된 셀 어셈블리(10)의 온도에 따라 정상 범위의 크기를 변경할 수 있다. 이에 대해서는 표 1을 참조하여 구체적으로 설명한다.
예를 들어, 상기 메모리 디바이스(400)는, 다음의 표 1과 같은 참조 테이블을 저장할 수 있다.
[표 1]
Figure PCTKR2019007915-appb-img-000004
표 1은 본 발명의 일 실시예에 따른 메모리 디바이스(400)에 의해 저장된 배터리 셀의 온도 및 충전 상태에 따른 전압이 맵핑된 룩업 테이블이다. 즉, 표 1은 일반적으로 배터리 셀이 사용되는 온도 범위(-20[℃] 내지 35[℃])에서 충전 상태(%)를 달리하며 셀 어셈블리(10)의 전압을 측정한 결과이다. 여기서, 셀 어셈블리(10)는 하나의 배터리 셀을 포함하도록 구성될 수 있다.
예컨대, 표 1을 참조하면, 프로세서(300)는 셀 어셈블리(10)의 온도가 35[℃]이고, 전압이 3.97[V]일 때, 셀 어셈블리(10)의 충전 상태를 76[%]로 추정할 수 있다. 또한, 프로세서(300)는 셀 어셈블리(10)의 온도가 -20[℃]이고, 전압이 3.968[V]일 때, 셀 어셈블리(10)의 충전 상태를 78%로 추정할 수 있다.
즉, 프로세서(300)는 양 시점에서 셀 어셈블리(10)의 전압이 동일하다고 하더라도, 셀 어셈블리(10)의 온도가 높아질수록, 셀 어셈블리(10)의 충전 상태를 낮게 추정할 수 있다. 바꿔서 말하면, 프로세서(300)는 양 시점에서 셀 어셈블리(10)의 전압이 동일하다고 하더라도, 셀 어셈블리(10)의 온도가 낮을수록, 셀 어셈블리(10)의 충전 상태를 높게 추정할 수 있다.
예컨대, 미리 설정된 기준시간 각각이 t0 및 t1이라고 가정한다. t0에서, 온도 측정부(500)에 의해 측정된 셀 어셈블리(10)의 측정 온도가 -20[℃]이고, 전압 측정부(100)에 의해 측정된 셀 어셈블리(10)의 측정 전압이 3.932[V]일 때, 프로세서(300)는 표 1을 참조하여 셀 어셈블리(10)의 충전 상태를 74[%]로 추정할 수 있다.
또한, t1에서, 온도 측정부(500)에 의해 측정된 셀 어셈블리(10)의 측정 온도가 -20[℃]이고, 전압 측정부(100)에 의해 측정된 셀 어셈블리(10)의 측정 전압이 3.968[V]일 때, 프로세서(300)는 표 1을 참조하여 셀 어셈블리(10)의 충전 상태를 78[%]로 추정할 수 있다. 이 경우, 셀 어셈블리(10)의 t0에서의 충전 상태와 t1에서의 충전 상태 간의 차이는 4[%]이다.
즉, 셀 어셈블리(10)의 온도가 t0 및 t1에서 동일할 경우, 측정된 셀 어셈블리(10)의 전압에 따라 충전 상태가 다르게 추정될 수 있다.
한편, t0에서 측정된 셀 어셈블리(10)의 측정 온도는 -20[℃]이고, 측정 전압은 3.932[V]로 앞선 실시예와 동일하다고 가정한다. t1에서, 온도 측정부(500)에 의해 측정된 셀 어셈블리(10)의 측정 온도가 35[℃]이고, 전압 측정부(100)에 의해 측정된 셀 어셈블리(10)의 측정 전압이 3.7[V]일 때, 프로세서(300)는 표 1을 참조하여 셀 어셈블리(10)의 충전 상태를 76[%]로 추정할 수 있다. 이 경우, 셀 어셈블리(10)의 t0에서의 충전 상태와 t1에서의 충전 상태 간의 차이는 2[%]이다.
앞선 실시예를 참조하면, t0 및 t1에서 셀 어셈블리(10)의 온도가 -20[℃]일 때의 충전 상태 간의 차이가 t0에서 셀 어셈블리(10)의 온도가 -20[℃]이고 t1에서 셀 어셈블리(10)의 온도가 35[℃]일 때의 충전 상태 간의 차이보다 크다는 것을 알 수 있다. 즉, 셀 어셈블리(10)의 측정 온도가 높아질수록 측정 전압이 동일하더라도 충전 상태는 낮아질 수 있기 때문에, 미리 설정된 기준시간(적어도 2개의 시각)에서 측정된 셀 어셈블리(10) 온도 간의 차이가 커질수록, 셀 어셈블리(10)의 전압기준 충전 전하량의 변화값은 작아질 수 있다.
따라서, 프로세서(300)는 온도에 따라 전압기준 충전 전하량의 변화값이 변경되는 것을 보정하기 위하여, 미리 설정된 기준시간 각각에서 측정된 셀 어셈블리(10)의 온도 간의 차이에 따라 정상 범위의 크기를 변경할 수 있다.
바람직하게, 프로세서(300)는 적어도 2개의 미리 설정된 기준시간 각각에서 측정된 셀 어셈블리(10)의 온도가 동일하면, 정상 범위의 크기를 기준 크기로 설정할 수 있다. 예컨대, 프로세서(300)는 -5[%] 내지 5[%] 범위를 정상 범위의 기준 크기로 설정할 수 있다. 이 경우, 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값 간의 오차율이 정상 범위 내에 속하면, 프로세서(300)는 전류 센서가 정상 상태인 것으로 진단할 수 있다.
그리고, 이전 시각에서 측정된 셀 어셈블리(10)의 측정 온도가 이후 시각에서 측정된 셀 어셈블리(10)의 측정 온도보다 작으면, 프로세서(300)는 정상 범위의 크기를 기준 크기보다 줄일 수 있다. 예컨대, t0에서 측정된 셀 어셈블리(10)의 온도가 -20[℃]이고, t1에서 측정된 셀 어셈블리(10)의 온도가 35[℃]이면, 프로세서(300)는 정상 범위의 크기를 기준 크기보다 줄일 수 있다.
반대로, 이전 시각에서 측정된 셀 어셈블리(10)의 측정 온도가 이후 시각에서 측정된 셀 어셈블리(10)의 측정 온도보다 크면, 프로세서(300)는 정상 범위의 크기를 기준 크기보다 늘릴 수 있다. 예컨대, t0에서 측정된 셀 어셈블리(10)의 온도가 35[℃]이고, t1에서 측정된 셀 어셈블리(10)의 온도가 -20[℃]이면, 프로세서(300)는 정상 범위의 크기를 기준 크기보다 늘릴 수 있다.
즉, 프로세서(300)는 완료 시점(예컨대, t1)에서 측정된 셀 어셈블리(10)의 측정 온도가 시작 시점(예컨대, t0)에서 측정된 셀 어셈블리(10)의 측정 온도보다 낮으면 정상 범위의 크기를 늘릴 수 있다. 반대로, 프로세서(300)는 완료 시점(예컨대, t1)에서 측정된 셀 어셈블리(10)의 측정 온도가 시작 시점(예컨대, t0)에서 측정된 셀 어셈블리(10)의 측정 온도보다 높으면 정상 범위의 크기를 줄일 수 있다.
따라서, 본 발명의 일 실시예에 따른 전류 센서 진단 장치는 셀 어셈블리(10)가 충전 또는 방전되는 과정에서, 셀 어셈블리(10)의 온도가 변하더라도 셀 어셈블리(10)의 온도에 기반하여 정상 범위를 변경하기 때문에, 전류 센서의 상태를 보다 정확하게 진단할 수 있는 장점이 있다.
본 발명에 따른 전류 센서 진단 장치는, BMS에 적용될 수 있다. 즉, 본 발명에 따른 BMS는, 상술한 본 발명에 따른 전류 센서 진단 장치를 포함할 수 있다. 이러한 구성에 있어서, 본 발명에 따른 전류 센서 진단 장치의 각 구성요소 중 적어도 일부는, 종래 BMS에 포함된 구성의 기능을 보완하거나 추가함으로써 구현될 수 있다. 예를 들어, 본 발명에 따른 전류 센서 진단 장치의 프로세서(300) 및 메모리 디바이스(400)는, BMS(Battery Management System)의 구성요소로서 구현될 수 있다.
또한, 본 발명에 따른 전류 센서 진단 장치는, 배터리 팩에 구비될 수 있다. 즉, 본 발명에 따른 배터리 팩은, 상술한 본 발명에 따른 전류 센서 진단 장치를 포함할 수 있다. 여기서, 배터리 팩은, 하나 이상의 이차 전지, 상기 전류 센서 진단 장치, 전장품(BMS나 릴레이, 퓨즈 등 구비) 및 케이스 등을 포함할 수 있다.
도 5는, 본 발명의 다른 실시예에 따른 전류 센서 진단 방법을 개략적으로 도시한 순서도이다. 도 5에서, 각 단계의 수행 주체는, 앞서 설명한 본 발명에 따른 전류 센서 진단 장치의 각 구성요소라 할 수 있다.
도 5에 도시된 바와 같이, 본 발명에 따른 전류 센서 진단 방법은, 전압 측정 단계(S100), 전류 측정 단계(S110), 전압기준 충전 전하량의 변화값 산출 단계(S120), 전류기준 충전 전하량의 변화값 산출 단계(S130) 및 전류 센서 진단 단계(S140)를 포함한다.
전압 측정 단계(S100)는 셀 어셈블리(10)의 양단 전압이 측정되는 단계이다. 즉, 전압 측정 단계(S100)에서는 미리 설정된 기준시간 각각에서 상기 셀 어셈블리(10)의 양단 전압이 측정될 수 있다. 예컨대, 도 3의 실시예를 참조하면, 전압 측정 단계(S100)에서는, t0 및 t1 각각의 시간에서의 셀 어셈블리(10)의 양단 전압이 측정될 수 있다.
전류 측정 단계(S110)는 충방전 경로에 흐르는 전류가 측정되는 단계이다. 여기서, 충방전 경로는 셀 어셈블리(10)가 연결된 대전류 경로로서, 진단의 대상이 되는 전류 센서가 설치된 경로일 수 있다. 즉, 전류 측정 단계(S110)에서는 상기 미리 설정된 기준시간 동안 상기 전류 센서가 구비된 충방전 경로를 흐르는 전류가 측정될 수 있다. 예컨대, 도 3의 실시예를 참조하면, 전류 측정 단계(S110)에서는, t0 내지 t1 시간 동안 충방전 경로에 흐르는 전류가 측정될 수 있다.
전압기준 충전 전하량의 변화값 산출 단계(S120)는 미리 설정된 기준시간 각각에서 측정된 셀 어셈블리(10)의 양단 전압에 기초하여 전압기반 충전 전하량의 변화값이 산출되는 단계이다.
바람직하게, 전압기준 충전 전하량의 변화값 산출단계(S120)에서는, 상기 셀 어셈블리의 충전 시작 시의 측정 전압에 대응하는 충전 전하량과 상기 셀 어셈블리의 충전 완료 시의 측정 전압에 대응하는 충전 전하량을 비교하여 상기 전압기준 충전 전하량의 변화값이 산출될 수 있다.
예컨대, 도 3의 실시예를 참조하면, t0에서 측정된 셀 어셈블리(10)의 양단 전압에 기반하여 t0에서의 전압기준 충전 전하량이 추정될 수 있다. 그리고, t1에서 측정된 셀 어셈블리(10)의 양단 전압에 기반하여 t1에서의 전압기준 충전 전하량이 추정될 수 있다. 그리고, 추정된 t0에서의 전압기준 충전 전하량과 추정된 t1에서의 전압기준 충전 전하량 간의 차이에 따라 전압기준 충전 전하량의 변화값이 산출될 수 있다.
전류기준 충전 전하량의 변화값 산출 단계(S130)는 미리 설정된 기준시간 동안 측정된 전류에 기초하여 전류기준 충전 전하량의 변화값이 산출되는 단계이다.
바람직하게, 전류기준 충전 전하량의 변화값 산출 단계(S130)에서는, 미리 설정된 기준시간 동안 적산된 전류에 기초하여 전류기준 충전 전하량의 변화값이 산출될 수 있다.
예컨대, 도 3의 실시예를 참조하면, t0에서부터 t1에 이를 때까지 적산된 전류량에 기초하여 전류기준 충전 전하량의 변화값이 산출될 수 있다.
전류 센서 진단 단계(S140)는 산출된 전압기준 충전 전하량의 변화값과 산출된 전류기준 충전 전하량의 변화값 간의 오차율을 정상 범위와 비교하여 전류 센서를 진단하는 단계이다.
먼저, 전류 센서 진단 단계(S140)에서, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값 간의 오차율이 산출될 수 있다.
그리고, 전류 센서 진단 단계(S140)에서, 산출된 오차율이 정상 범위에 속하는지 여부에 따라서 전류 센서의 상태가 진단될 수 있다.
예컨대, 산출된 오차율이 정상 범위에 속하는 경우, 전류 센서가 정상 상태인 것으로 진단될 수 있다. 반대로, 산출된 오차율이 정상 범위에 속하지 않는 경우, 전류 센서가 고장 상태인 것으로 진단될 수 있다.
도 6은, 본 발명의 또 다른 실시예에 따른 전류 센서 진단 방법을 개략적으로 도시한 순서도이다. 도 6에서, 각 단계의 수행 주체는, 앞서 설명한 본 발명에 따른 전류 센서 진단 장치의 각 구성요소라 할 수 있다.
도 6을 참조하면, 본 발명의 또 다른 실시예에 따른 전류 센서 진단 방법은 전압 및 온도 측정 단계(S200), 전류 측정 단계(S210), 전압기준 충전 전하량의 변화값 산출 단계(S220), 전류기준 충전 전하량의 변화값 산출 단계(S230), 정상 범위 변경 단계(S240) 및 전류 센서 진단 단계(S250)가 포함될 수 있다.
전압 및 온도 측정 단계(S200)는 셀 어셈블리(10)의 양단 전압 및 온도가 측정되는 단계이다. 즉, 전압 및 온도 측정 단계(S200)는 도 5의 전압 측정 단계(S100)에서 셀 어셈블리(10)의 온도를 더 측정하는 단계이다.
예컨대, 도 3의 실시예를 참조하면, 전압 및 온도 측정 단계(S200)에서는, t0 및 t1 각각의 시간에서의 셀 어셈블리(10)의 양단 전압 및 온도가 측정될 수 있다.
전류 측정 단계(S210)는 충방전 경로에 흐르는 전류가 측정되는 단계이다. 즉, 전류 측정 단계(S210)는 도 5의 전류 측정 단계(S110)와 동일한 단계로서, 미리 설정된 기준시간 동안 상기 전류 센서가 구비된 충방전 경로를 흐르는 전류가 측정될 수 있다. 예컨대, 도 3의 실시예를 참조하면, 전류 측정 단계(S110)에서는, t0 내지 t1 시간 동안 충방전 경로에 흐르는 전류가 측정될 수 있다.
전압기준 충전 전하량의 변화값 산출 단계(S220)는 미리 설정된 기준시간 각각에서 측정된 셀 어셈블리(10)의 양단 전압 및 온도에 기초하여 전압기반 충전 전하량의 변화값이 산출되는 단계이다.
즉, 도 6의 전압기준 충전 전하량의 변화값 산출 단계(S220)에서는 도 5의 전압기준 충전 전하량의 변화값 산출 단계(S120)와 달리 셀 어셈블리(10)의 양단 전압 및 온도에 기초하여 전압기반 충전 전하량의 변화값이 산출될 수 있다.
예컨대, 도 3의 실시예를 참조하면, t0에서 측정된 셀 어셈블리(10)의 양단 전압 및 온도에 기반하여 t0에서의 전압기준 충전 전하량이 추정될 수 있다. 그리고, t1에서 측정된 셀 어셈블리(10)의 양단 전압 및 온도에 기반하여 t1에서의 전압기준 충전 전하량이 추정될 수 있다. 그리고, 추정된 t0에서의 전압기준 충전 전하량과 추정된 t1에서의 전압기준 충전 전하량 간의 차이에 따라 전압기준 충전 전하량의 변화값이 산출될 수 있다.
구체적으로, 전압기준 충전 전하량의 변화값 산출 단계(S120)에서, 셀 어셈블리(10)의 양단 전압 및 온도에 기초하여 전압기준 충전 전하량이 추정될 때, 메모리 디바이스(400)에 저장된 룩업 테이블이 이용될 수 있다. 여기서, 메모리 디바이스(400)에 저장된 룩업 테이블은 양단 전압 및 온도에 대응하는 충전 전하량을 정의된 테이블일 수 있다.
전류기준 충전 전하량의 변화값 산출 단계(S230)는 미리 설정된 기준시간 동안 측정된 전류에 기초하여 전류기준 충전 전하량의 변화값이 산출되는 단계이다.
즉, 도 6의 전류기준 충전 전하량의 변화값 산출 단계(S230)는 도 5의 전류기준 충전 전하량의 변화값 산출 단계(S130)와 동일한 단계로서, 미리 설정된 기준시간 동안 적산된 전류에 기초하여 전류기준 충전 전하량의 변화값이 산출될 수 있다.
정상 범위 변경 단계(S240)는 측정된 온도에 기반하여 정상 범위를 변경시키는 단계로서, 정상 범위는 미리 설정된 기준시간 각각에서 측정된 셀 어셈블리(10)의 온도에 따라 변경될 수 있다.
예컨대, 도 3의 실시예를 참조하면, t0에서 측정된 셀 어셈블리(10)의 온도와 t1에서 측정된 셀 어셈블리(10)의 온도가 차이날 경우, 정상 범위는 변경 설정될 수 있다.
여기서 정상 범위는 미리 설정된 범위로서, 프로세서(300)가 전류 센서(30)의 상태를 정상 상태라고 진단할 수 있는 기준 범위일 수 있다.
바람직하게, 정상 범위는 적어도 2개의 미리 설정된 기준시간 각각에서 측정된 셀 어셈블리(10)의 온도가 동일하면, 기준 크기로 설정될 수 있다. 예컨대, 정상 범위는 -5[%] 내지 5[%]로 설정할 수 있다. 여기서 -5[%] 내지 5[%]가 기준 크기일 수 있다.
만약, 이전 시각에서 측정된 셀 어셈블리(10)의 측정 온도가 이후 시각에서 측정된 셀 어셈블리(10)의 측정 온도보다 낮으면, 정상 범위의 크기가 기준 크기보다 줄어들 수 있다. 예컨대, t0에서 측정된 셀 어셈블리(10)의 온도가 -20[℃]이고, t1에서 측정된 셀 어셈블리(10)의 온도가 35[℃]이면, t0에서 측정된 셀 어셈블리(10)의 온도가 t1에서 측정된 셀 어셈블리(10)의 온도보다 낮기 때문에, 정상 범위의 크기가 기준 크기보다 줄어들 수 있다.
반대로, 이전 시각에서 측정된 셀 어셈블리(10)의 측정 온도가 이후 시각에서 측정된 셀 어셈블리(10)의 측정 온도보다 높으면, 정상 범위의 크기가 기준 크기보다 늘어날 수 있다. 예컨대, t0에서 측정된 셀 어셈블리(10)의 온도가 35[℃]이고, t1에서 측정된 셀 어셈블리(10)의 온도가 -20[℃]이면, 정상 범위의 크기가 기준 크기보다 늘어날 수 있다.
전류 센서 진단 단계(S250)는 산출된 전압기준 충전 전하량의 변화값과 산출된 전류기준 충전 전하량의 변화값 간의 오차율을 정상 범위와 비교하여 전류 센서를 진단하는 단계이다. 즉, 전류 센서 진단 단계(S250)는 정상 범위 변경 단계(S240)에서 설정된 정상 범위에 산출된 전압기준 충전 전하량의 변화값과 전류기준 충전 전하량의 변화값 간의 오차율이 속하는지 여부에 따라 전류 센서의 상태가 진단되는 단계이다.
도 6의 전류 센서 진단 단계(S250)에서는, 도 5의 전류 센서 진단 단계(S140)와 마찬가지로, 산출된 오차율이 정상 범위에 속하면 전류 센서의 상태가 정상 상태로 진단될 수 있다. 또한, 산출된 오차율이 정상 범위에 속하지 않으면 전류 센서의 상태가 고장 상태로 진단될 수 있다.
즉, 본 발명의 또 다른 실시예에 따르면, 정상 범위는 셀 어셈블리(10)의 온도에 따라 설정이 변경될 수 있기 때문에, 셀 어셈블리(10)의 온도 변화에 따라서 전류 센서의 상태가 보다 정확하게 진단될 수 있다.
또한, 본 발명의 일 실시예에 따른 전류 센서 진단 방법과 같은 제어 로직이 소프트웨어로 구현될 때, 프로세서는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리 장치에 저장되고 프로세서에 의해 실행될 수 있다.
또한, 프로세서의 다양한 제어 로직들은 적어도 하나 이상이 조합되고, 조합된 제어 로직들은 컴퓨터가 읽을 수 있는 코드 체계로 작성되어 컴퓨터가 읽을 수 있는 접근이 가능한 것이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 상기 기록 매체는, ROM, RAM, 레지스터, CD-ROM, 자기 테이프, 하드 디스크, 플로피디스크 및 광 데이터 기록장치를 포함하는 군에서 선택된 적어도 하나 이상을 포함한다. 또한, 상기 코드 체계는 네트워크로 연결된 컴퓨터에 분산되어 저장되고 실행될 수 있다. 또한, 상기 조합된 제어 로직들을 구현하기 위한 기능적인 프로그램, 코드 및 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
(부호의 설명)
1: 전류 센서 진단 장치.
10: 셀 어셈블리
30: 전류 센서
50: 충전 장치
70: 상위제어장치
100: 전압 측정부
200: 전류 측정부
300: 프로세서
400: 메모리 디바이스
500: 온도 측정부

Claims (13)

  1. 셀 어셈블리로 충방전 전류를 공급하는 충방전 경로 상에 구비된 전류 센서를 진단하는 장치에 있어서,
    상기 셀 어셈블리와 전기적으로 연결되어, 상기 셀 어셈블리의 양단 전압을 측정하도록 구성된 전압 측정부;
    상기 전류 센서와 전기적으로 연결되어, 상기 전류 센서로부터 전기적 신호를 수신하고, 상기 전기적 신호를 기초로 상기 충방전 경로를 흐르는 전류를 측정하도록 구성된 전류 측정부; 및
    상기 전압 측정부에 의해 적어도 2개의 미리 설정된 기준시간 각각에서 측정된 측정 전압을 기초로 전압기준 충전 전하량의 변화값을 연산하고, 상기 전류 측정부에 의해 상기 미리 설정된 기준시간 동안 누적하여 측정된 측정 전류를 기초로 전류기준 충전 전하량의 변화값을 연산하며, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 기초로 상기 전류 센서를 진단하도록 구성된 프로세서를 포함하는 것을 특징으로 하는 전류 센서 진단 장치.
  2. 제1항에 있어서,
    상기 프로세서는,
    상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 비교하여, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값 간의 오차율이 정상 범위에 속하는 경우 상기 전류 센서가 정상 상태인 것으로 진단하도록 구성된 것을 특징으로 하는 전류 센서 진단 장치.
  3. 제2항에 있어서,
    상기 셀 어셈블리와 전기적으로 연결되어, 상기 셀 어셈블리의 온도를 측정하도록 구성된 온도 측정부를 더 포함하고,
    상기 프로세서는,
    상기 측정 전압 및 상기 온도 측정부에 의해 상기 미리 설정된 기준시간 각각에서 측정된 측정 온도를 기초로 상기 전압기준 충전 전하량의 변화값을 연산하고, 상기 미리 설정된 기준시간 각각에서 측정된 상기 셀 어셈블리의 측정 온도 간의 차이에 따라 상기 정상 범위를 변경시키도록 구성된 것을 특징으로 하는 전류 센서 진단 장치.
  4. 제1항에 있어서,
    상기 프로세서는,
    상기 셀 어셈블리의 충전 시작 시의 측정 전압에 대응하는 충전 전하량과 상기 셀 어셈블리의 충전 완료 시의 측정 전압에 대응하는 충전 전하량을 비교하여 상기 전압기준 충전 전하량의 변화값을 연산하도록 구성된 것을 특징으로 하는 전류 센서 진단 장치.
  5. 제1항에 있어서,
    상기 프로세서는,
    상기 셀 어셈블리의 충전 시작 시로부터 충전 완료 시까지 상기 측정 전류를 적산하여 상기 전류기준 충전 전하량의 변화값을 연산하도록 구성된 것을 특징으로 하는 전류 센서 진단 장치.
  6. 제1항에 있어서,
    상기 셀 어셈블리의 양단 전압 또는 상기 양단 전압 및 온도에 대응하는 충전 전하량을 정의하는 룩업 테이블을 미리 저장하도록 구성된 메모리 디바이스를 더 포함하는 것을 특징으로 하는 전류 센서 진단 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 전류 센서 진단 장치를 포함하는 BMS.
  8. 제1항 내지 제6항 중 어느 한 항에 따른 전류 센서 진단 장치를 포함하는 배터리 팩.
  9. 셀 어셈블리로 충방전 전류를 공급하는 충방전 경로 상에 구비된 전류 센서를 진단하는 방법에 있어서,
    적어도 2개의 미리 설정된 기준시간 각각에서 상기 셀 어셈블리의 양단 전압을 측정하고, 상기 미리 설정된 기준시간 동안 상기 전류 센서가 구비된 충방전 경로를 흐르는 전류를 측정하는 단계; 및
    상기 기준시간에서 측정된 셀 어셈블리의 측정 전압을 기초로 전압기준 충전 전하량의 변화값을 연산하고, 상기 미리 설정된 기준시간 동안 측정된 측정 전류를 기초로 전류기준 충전 전하량의 변화값을 연산하며, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 기초로 상기 전류 센서를 진단하는 단계를 포함하는 것을 특징으로 하는 전류 센서 진단 방법.
  10. 제9항에 있어서,
    상기 전류 센서를 진단하는 단계는,
    상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값을 비교하여, 상기 전압기준 충전 전하량의 변화값과 상기 전류기준 충전 전하량의 변화값 간의 오차율이 정상 범위에 속하는 경우, 상기 전류 센서가 정상 상태인 것으로 진단하는 단계를 포함하는 것을 특징으로 하는 전류 센서 진단 방법.
  11. 제10항에 있어서,
    상기 측정하는 단계는,
    상기 미리 설정된 기준시간 각각에서, 상기 셀 어셈블리의 온도를 측정하는 단계를 더 포함하고,
    상기 전류 센서를 진단하는 단계는,
    상기 미리 설정된 기준시간 각각에서 측정된 측정 전압 및 측정 온도를 기초로 상기 전압기준 충전 전하량의 변화값을 연산하고, 상기 미리 설정된 기준시간 각각에서 측정된 상기 셀 어셈블리의 측정 온도 간의 차이에 따라 상기 정상 범위를 변경시키는 단계를 포함하는 것을 특징으로 하는 전류 센서 진단 방법.
  12. 제9항에 있어서,
    상기 전류 센서를 진단하는 단계는,
    상기 셀 어셈블리의 충전 시작 시의 측정 전압에 대응하는 충전 전하량과 상기 셀 어셈블리의 충전 완료 시의 측정 전압에 대응하는 충전 전하량을 비교하여 상기 전압기준 충전 전하량의 변화값을 연산하는 단계를 포함하는 것을 특징으로 하는 전류 센서 진단 방법.
  13. 제9항에 있어서,
    상기 전류 센서를 진단하는 단계는,
    상기 셀 어셈블리의 충전 시작 시로부터 충전 완료 시까지 상기 측정 전류를 적산하여 상기 전류기준 충전 전하량의 변화값을 연산하는 단계를 포함하는 것을 특징으로 하는 전류 센서 진단 방법.
PCT/KR2019/007915 2018-06-28 2019-06-28 전류 센서 진단 장치 및 방법 WO2020005025A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/964,272 US11340301B2 (en) 2018-06-28 2019-06-28 Apparatus and method for diagnosing current sensor
ES19825793T ES2969299T3 (es) 2018-06-28 2019-06-28 Aparato y método para diagnosticar sensor de corriente
JP2020538699A JP7078293B2 (ja) 2018-06-28 2019-06-28 電流センサ診断装置及び方法
EP19825793.3A EP3748388B1 (en) 2018-06-28 2019-06-28 Apparatus and method for diagnosing current sensor
PL19825793.3T PL3748388T3 (pl) 2018-06-28 2019-06-28 Aparat i sposób diagnozowania czujnika prądu
CN201980014176.3A CN111758042A (zh) 2018-06-28 2019-06-28 诊断电流传感器的设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180074998 2018-06-28
KR10-2018-0074998 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020005025A1 true WO2020005025A1 (ko) 2020-01-02

Family

ID=68987488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007915 WO2020005025A1 (ko) 2018-06-28 2019-06-28 전류 센서 진단 장치 및 방법

Country Status (9)

Country Link
US (1) US11340301B2 (ko)
EP (1) EP3748388B1 (ko)
JP (1) JP7078293B2 (ko)
KR (1) KR102427331B1 (ko)
CN (1) CN111758042A (ko)
ES (1) ES2969299T3 (ko)
HU (1) HUE064850T2 (ko)
PL (1) PL3748388T3 (ko)
WO (1) WO2020005025A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210104457A (ko) * 2020-02-17 2021-08-25 주식회사 엘지에너지솔루션 배터리 장치 및 전류 센서 진단 방법
CN113848524A (zh) * 2021-09-06 2021-12-28 中国第一汽车股份有限公司 一种电池管理系统诊断电流传感器故障的方法、装置、终端及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068366A (ja) * 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd センサ異常検出装置
JP2004251744A (ja) * 2003-02-20 2004-09-09 Toyota Motor Corp 二次電池の制御装置および制御方法
JP2010200574A (ja) * 2009-02-27 2010-09-09 Panasonic Corp 自己診断回路、及び電源装置
JP2010252594A (ja) * 2009-04-20 2010-11-04 Panasonic Corp 蓄電装置
JP2010286445A (ja) * 2009-06-15 2010-12-24 Honda Motor Co Ltd 電池状態推定装置
KR20180074998A (ko) 2016-12-26 2018-07-04 한전케이피에스 주식회사 배관 삽입형 오리피스 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246074A (ja) 2001-02-13 2002-08-30 Japan Storage Battery Co Ltd 組電池
JP2007335352A (ja) 2006-06-19 2007-12-27 Sony Corp 非水電解質二次電池及び電池制御システム
KR101511275B1 (ko) 2007-10-30 2015-04-10 삼성전자주식회사 충전배터리 콘택트모듈, 그 충전배터리 콘택트모듈을구비하는 휴대용 전자기기 및 그 충전배터리 콘택트모듈을이용한 충전배터리 폭발 방지 방법
KR101099811B1 (ko) 2009-03-03 2011-12-27 주식회사 엘지화학 배터리 팩의 전류측정부 이상 진단 방법 및 장치
JP5644080B2 (ja) 2009-09-25 2014-12-24 日産自動車株式会社 バッテリの異常判定装置及び方法
KR101249347B1 (ko) 2010-11-04 2013-04-01 주식회사 엘지화학 온도 측정 패드가 부착된 이차 전지 및 그 보호 장치
KR101223735B1 (ko) * 2011-04-07 2013-01-21 로베르트 보쉬 게엠베하 배터리 관리 시스템 및 이의 제어 방법
JP2013250078A (ja) * 2012-05-30 2013-12-12 Denso Corp 異常判定装置
KR101473397B1 (ko) 2012-06-07 2014-12-16 주식회사 엘지화학 배터리 팩의 전류센서 이상 진단 장치 및 방법
WO2014167644A1 (ja) * 2013-04-09 2014-10-16 三菱電機株式会社 電圧センサの故障検出装置
US10124789B2 (en) * 2013-08-30 2018-11-13 Ford Global Technologies, Llc In-range current sensor fault detection
JP6295858B2 (ja) * 2014-07-02 2018-03-20 日産自動車株式会社 バッテリ管理装置
KR101810658B1 (ko) 2015-03-16 2017-12-19 주식회사 엘지화학 션트센서 보정장치 및 방법
US10353007B2 (en) 2015-05-28 2019-07-16 Mitsubishi Electric Corporation Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method for calculating first and second coefficients which are partial derivatives of an estimated value of the battery state-of-charge
JP6376069B2 (ja) * 2015-07-30 2018-08-22 トヨタ自動車株式会社 車両の電源装置
US10338147B2 (en) * 2016-10-31 2019-07-02 Semiconductor Components Industries, Llc Methods and apparatus for determining a relative state of charge of a battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068366A (ja) * 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd センサ異常検出装置
JP2004251744A (ja) * 2003-02-20 2004-09-09 Toyota Motor Corp 二次電池の制御装置および制御方法
JP2010200574A (ja) * 2009-02-27 2010-09-09 Panasonic Corp 自己診断回路、及び電源装置
JP2010252594A (ja) * 2009-04-20 2010-11-04 Panasonic Corp 蓄電装置
JP2010286445A (ja) * 2009-06-15 2010-12-24 Honda Motor Co Ltd 電池状態推定装置
KR20180074998A (ko) 2016-12-26 2018-07-04 한전케이피에스 주식회사 배관 삽입형 오리피스 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Parts 1, 2 and 3", JOURNAL OF POWER SOURCE, vol. 134, 2004, pages 252 - 261
See also references of EP3748388A4

Also Published As

Publication number Publication date
PL3748388T3 (pl) 2024-04-02
CN111758042A (zh) 2020-10-09
HUE064850T2 (hu) 2024-04-28
EP3748388A4 (en) 2021-04-21
JP2021511495A (ja) 2021-05-06
JP7078293B2 (ja) 2022-05-31
US11340301B2 (en) 2022-05-24
KR102427331B1 (ko) 2022-07-29
ES2969299T3 (es) 2024-05-17
KR20200002016A (ko) 2020-01-07
EP3748388A1 (en) 2020-12-09
US20210033679A1 (en) 2021-02-04
EP3748388B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2020017817A1 (ko) 스위치 진단 장치 및 방법
WO2019088440A1 (ko) 배터리의 내부 저항을 최적화하기 위한 배터리 관리 시스템 및 방법
WO2010016647A1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
WO2019117606A1 (ko) 배터리 팩의 양극 컨택터 진단 장치 및 방법
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2019117607A1 (ko) 배터리 팩의 음극 컨택터 진단 장치 및 방법
WO2022098096A1 (ko) 배터리 진단 장치 및 방법
WO2019074221A1 (ko) 이차 전지의 충전 상태를 추정하기 위한 장치 및 그 방법
WO2021107655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2020005020A1 (ko) 배터리 관리 시스템, 그것을 포함하는 배터리팩 및 전류 측정 회로의 고장 판정 방법
WO2020153637A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2016068652A2 (ko) 개방전압 추정 장치 및 방법
WO2019199057A1 (ko) 배터리 진단 장치 및 방법
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2021118118A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2019156377A1 (ko) 배터리를 위한 등가 회로 모델의 파라미터를 추정하기 위한 방법 및 배터리 관리 시스템
WO2020145768A1 (ko) 배터리 팩 진단 장치
WO2021060900A1 (ko) 배터리 관리 장치 및 방법
WO2018194225A1 (ko) 배터리 모니터링 및 보호 시스템
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2022108344A1 (ko) 배터리 관리 장치 및 방법
WO2022019664A1 (ko) 병렬 멀티 팩 모듈의 출력 제어 장치 및 방법
WO2022215962A1 (ko) 배터리 진단 장치 및 방법
WO2020005025A1 (ko) 전류 센서 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538699

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019825793

Country of ref document: EP

Effective date: 20200902

NENP Non-entry into the national phase

Ref country code: DE