[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019130533A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019130533A1
WO2019130533A1 PCT/JP2017/047170 JP2017047170W WO2019130533A1 WO 2019130533 A1 WO2019130533 A1 WO 2019130533A1 JP 2017047170 W JP2017047170 W JP 2017047170W WO 2019130533 A1 WO2019130533 A1 WO 2019130533A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
temperature
threshold voltage
electrode
voltage
Prior art date
Application number
PCT/JP2017/047170
Other languages
English (en)
French (fr)
Inventor
鈴木 健一
亘 宮澤
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to US16/957,722 priority Critical patent/US11323032B2/en
Priority to PCT/JP2017/047170 priority patent/WO2019130533A1/ja
Priority to CN201780097963.XA priority patent/CN111512528B/zh
Priority to JP2019561519A priority patent/JP6934071B2/ja
Publication of WO2019130533A1 publication Critical patent/WO2019130533A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power converter.
  • Patent Document 1 a power module that controls on / off operation of a switching element is known (see, for example, Patent Document 1).
  • the conventional power module 900 includes a switching element 800 having a first electrode, a second electrode, and a gate electrode, and a gate for controlling a gate voltage to control the on / off operation of the switching element 800. And a voltage control unit 910.
  • the on / off operation of the switching element 800 can be controlled by controlling the gate voltage by the gate voltage control unit 910.
  • the threshold voltage Vth at the time of operation is due to the operating temperature T of the switching element at the time of operation becoming higher than the initial temperature T 0 of the switching element when the initial threshold voltage (the threshold voltage at shipping) is measured. Since it fluctuates from the initial threshold voltage Vth 0 (see FIG. 3), it is difficult to apply a voltage slightly higher than the threshold voltage Vth during operation to the gate electrode to shorten the turn-on and turn-off periods, thereby reducing switching loss. There is a problem that it is difficult to do.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to reduce the switching loss of the switching element, and also to operate the apparatus by connecting a plurality of power modules in parallel. It is an object of the present invention to provide a power converter capable of prolonging the life of the power converter.
  • a power conversion device controls a third electrode voltage to control on / off operation of a switching element having a first electrode, a second electrode, and a third electrode, and the switching element. It is a power converter provided with two or more sets of power modules which have a 3rd electrode voltage control part and a switching element control circuit which has a temperature detection part which detects operation temperature of the above-mentioned switching element, and the power modules Connected in parallel, the switching element control circuit calculates an average operating temperature of all the switching elements in the power conversion device, and calculates an operating temperature of the corresponding switching element and the average operating temperature.
  • the third electrode voltage control unit further includes a temperature comparison unit to be compared, and the third electrode voltage control unit detects the average operating temperature by the temperature detection unit. Operating temperature of the switching element, and, and controls the third electrode voltage based on the information including the threshold voltage during operation which is calculated on the basis of the operating temperature.
  • the temperature comparison unit outputs a signal for increasing the third electrode voltage to the third electrode when the operating temperature of the switching element is lower than the average operating temperature.
  • a signal is sent to the voltage control unit, and a signal for reducing the third electrode voltage is sent to the third electrode voltage control unit when the operating temperature of the switching element is higher than the average operating temperature.
  • the temperature comparison unit determines the temperature of the operating temperature of the switching element and the average operating temperature when the operating temperature of the switching element is lower than the average operating temperature.
  • a signal for increasing the third electrode voltage by an amount corresponding to the difference is transmitted to the third electrode voltage control unit, and when the operating temperature of the switching element is higher than the average operating temperature, It is preferable that a signal for reducing the third electrode voltage by a reduction amount corresponding to the temperature difference between the operating temperature and the average operating temperature is transmitted to the third electrode voltage control unit.
  • a thermistor be used as a temperature detection element in the temperature detection unit.
  • each of the switching element control circuits includes an initial threshold voltage of the switching element and information including an initial temperature of the switching element when the initial threshold voltage is measured, and A storage unit for storing information on temperature characteristics of a threshold voltage in the switching element, the operating temperature of the switching element detected by the temperature detection unit, an initial threshold voltage of the switching element, and the initial threshold voltage A threshold voltage calculating unit for calculating a threshold voltage at the time of operation of the switching element based on the information including the initial temperature of the switching element at the time of measurement and the information on the temperature characteristic of the threshold voltage in the switching element And the third electrode voltage control unit is calculated based on the operating temperature. As the threshold voltage during operation has, it is preferable to control the third electrode voltage based on the information including the threshold voltage during the operation calculated by the threshold voltage calculation unit.
  • each of the switching element control circuits measures an initial threshold voltage measurement mode for measuring the initial threshold voltage of the corresponding switching element, and on / off operation of the corresponding switching element
  • a switching element control circuit for performing a control mode for controlling the threshold voltage, wherein each switching element control circuit is a threshold voltage measurement power supply for supplying a threshold voltage measurement current to the first electrode of the switching element;
  • the device further includes a first electrode current detection unit that detects a first electrode current flowing through the switching element, and an on / off state determination unit that determines an on / off state of the switching element, in the initial threshold voltage measurement mode
  • the third electrode voltage control unit controls the third electrode voltage such that the third electrode voltage increases stepwise.
  • the on / off state determination unit determines whether or not the switching element is turned on based on the first electrode current detected by the first electrode current detection unit, and the storage unit is configured to perform the on / off operation.
  • the state determination unit determines that the switching element is turned on, the temperature of the switching element is stored, and the third electrode voltage applied to the third electrode is used as the initial threshold value of the switching element. It is preferred to store as a voltage.
  • each of the switching element control circuits further implements a temperature characteristic measurement mode for measuring the temperature characteristic of the threshold voltage of the switching elements after performing the control mode for a predetermined time.
  • each of the switching element control circuits further includes a temperature characteristic calculation unit that calculates a temperature characteristic of a threshold voltage in the switching element, and in the temperature characteristic measurement mode, the third electrode voltage control The control unit controls the third electrode voltage such that the third electrode voltage increases stepwise, and the on / off state determination unit determines the switching current based on the switching current detected by the switching current detection unit. It is determined whether or not the switching element is turned on, and the storage unit is controlled by the on / off state determination unit.
  • the temperature characteristic calculation unit stores the initial threshold voltage, the initial temperature of the switching element when the initial threshold voltage is measured, and the temperature of the switching element detected by the temperature detection unit in the temperature characteristic measurement mode. It is preferable to calculate the temperature characteristic of the threshold voltage in the switching element based on information including the operating temperature and the threshold voltage at the time of measuring the temperature characteristic.
  • each of the switching element control circuits implements a temperature characteristic measurement mode for measuring the temperature characteristic of the threshold voltage of the corresponding switching element after performing the control mode for a predetermined time.
  • a switching voltage control circuit for supplying a threshold voltage measurement current to the first electrode of the switching device; a switching current detection unit detecting a switching current flowing through the switching device;
  • the temperature characteristic measurement mode further includes an on / off state determination unit that determines an on / off state of the switching element, and a temperature characteristic calculation unit that calculates a temperature characteristic of a threshold voltage of the switching element.
  • the electrode voltage control unit may be configured to increase the third electrode voltage step by step.
  • the electrode voltage is controlled, and the on / off state determination unit determines whether the switching element is turned on based on the switching current detected by the switching current detection unit, and the storage unit is configured to turn on the on state.
  • the third electrode voltage applied to the third electrode is stored as a threshold voltage at the time of temperature characteristic measurement of the switching element when it is determined by the / off state determination unit that the switching element is turned on,
  • the temperature characteristic calculation unit includes: the initial threshold voltage; an initial temperature of the switching element when the initial threshold voltage is measured; the operating temperature of the switching element detected by the temperature detection unit in the temperature characteristic measurement mode; Temperature characteristics of the threshold voltage of the switching element based on information including the threshold voltage at the time of temperature characteristic measurement It is preferable to leave.
  • the switching element is preferably a MOSFET, an IGBT or a HEMT.
  • the switching element is preferably made of a material containing GaN, SiC or Ga 2 O 3 .
  • Another power converter according to the present invention comprises a switching element having a first electrode, a second electrode, and a third electrode, and a third electrode voltage for controlling the on / off operation of the switching element. It is a power converter provided with two or more sets of power modules which have a 3rd electrode voltage control part to control, and a switching element control circuit which has a temperature detection part which detects operating temperature of the above-mentioned switching element, Are connected in parallel with one another, and the power converter calculates an average operating temperature of all the switching elements in the power converter, and calculates an operating temperature of the corresponding switching element and the average operating temperature.
  • the third electrode voltage control unit further includes a temperature comparison unit to be compared, and the third electrode voltage control unit is configured to detect the average operating temperature and the voltage detected by the temperature detection unit. Operating temperature of quenching elements, and, and controls the third electrode voltage based on the information including the threshold voltage during operation which is calculated on the basis of the operating temperature.
  • the third electrode voltage control unit of each switching element control circuit operates at the time of operation calculated based on the operating temperature of the switching element detected by the temperature detection unit and the operating temperature
  • the operation temperature of the switching element during operation becomes higher than the initial temperature of the switching element when the initial threshold voltage is measured
  • a voltage slightly exceeding the threshold voltage at the time of operation can be applied to the gate electrode. Therefore, the turn-on period and the turn-off period can be shortened, and the switching loss can be reduced, as compared with the case where the third electrode voltage is controlled using the threshold voltage at design time.
  • the third electrode voltage control unit may calculate the average operating temperature, the operating temperature of the switching element detected by the temperature detecting unit, and the threshold voltage calculated based on the operating temperature. And control the third electrode voltage based on the information including, even if variations occur in the operating temperature of each switching element, based on the temperature difference between the average operating temperature and the operating temperature of the corresponding switching element. Therefore, the third electrode voltage can be controlled, and variations in the balance of the currents shared by the switching elements are less likely to occur. Therefore, it is possible to prevent the high temperature switching element from being rapidly deteriorated, and as a result, even when a plurality of power modules are connected in parallel and operated, the lifetime as the device can be extended.
  • FIG. 1 is a circuit diagram of a power conversion device 1 according to a first embodiment.
  • 5 is a block diagram of a control mode in Embodiment 1.
  • FIG. It is a schematic diagram of the graph which shows the relationship between the threshold voltage Vth and the operating temperature T of a switching element.
  • It is a schematic diagram of the graph of the time change of gate voltage (voltage between gate source) Vgs shown in order to demonstrate the effect in the case of applying the gate voltage which slightly exceeds a threshold voltage to a gate electrode.
  • FIG. 4A is a schematic view of a graph showing a time change of a gate-source voltage Vgs in the case of applying a gate voltage to a gate electrode in a power module of a comparative example, and FIG. FIG.
  • FIG. 6 is a schematic diagram showing a time change of a gate-source voltage Vgs in the case where a gate voltage slightly exceeding a threshold voltage is applied to a gate electrode in the power conversion device 1. It is a schematic diagram of the graph shown in order to demonstrate the time change of the temperature of switching element, and voltage Vgs between gate source.
  • FIG. 6 is a circuit diagram of a power conversion device 2 according to a second embodiment.
  • FIG. 16 is a block diagram of an initial threshold voltage measurement mode in the power module PM1 of the second embodiment.
  • FIG. 17 is a schematic view of a graph of a gate-source voltage Vgs shown to explain an initial threshold voltage measurement mode in the power module PM1 of the second embodiment.
  • FIG. 16 is a block diagram of a temperature characteristic measurement mode in the power module PM1 of the third embodiment.
  • FIG. 10 is a circuit diagram of a power conversion device 3 according to a fourth embodiment. It is a schematic diagram of the graph shown in order to demonstrate the initial stage threshold voltage measurement mode of the power converter device which concerns on a modification. It is a figure shown in order to demonstrate the conventional power module 900.
  • FIG. 10 is a circuit diagram of a power conversion device 3 according to a fourth embodiment. It is a schematic diagram of the graph shown in order to demonstrate the initial stage threshold voltage measurement mode of the power converter device which concerns on a modification. It is a figure shown in order to demonstrate the conventional power module 900.
  • Embodiment 1 Configuration of Power Converter 1 According to Embodiment 1
  • the power converter 1 according to Embodiment 1 is, as shown in FIG. 1, a power module having two sets of power modules (switching element 200 and switching element control circuit 100).
  • a power module PM2 having a PM1, a switching element 202, and a switching element control circuit 102, and a power circuit 400 are provided.
  • the power conversion device 1 according to the first embodiment is covered with a package formed of a high heat resistance and high insulation resin, ceramic or the like.
  • Each power module PM1 receives a DC power supply voltage V DD (+) side input terminal T11 (T21), ground side (-) side input terminal T12 (T22), (+) side output terminal T13 (T23), ( ⁇ ) side output terminal on the ground side T14 (T24), control terminal T15 (T25) to which a drive signal Pg (for example, a gate pulse) is input, and terminal T16 to which a temperature comparison signal is input / output T26) is provided.
  • V DD (+) side input terminal T11 (T21), ground side (-) side input terminal T12 (T22), (+) side output terminal T13 (T23), ( ⁇ ) side output terminal on the ground side T14 (T24), control terminal T15 (T25) to which a drive signal Pg (for example, a gate pulse) is input, and terminal T16 to which a temperature comparison signal is input / output T26) is provided.
  • a gate drive power supply 300 for applying a power supply voltage V DD is connected between the (+) side input terminal T11 (T21) and the ( ⁇ ) side input terminal T12 (T22).
  • the gate drive power supply 300 is connected to the gate electrode of the switching element 200 (202) through the gate voltage control unit 10 (12), and supplies a voltage to the gate electrode.
  • a power circuit 400 is connected to the (+) side output terminal T13 (T23) and the ( ⁇ ) side output terminal T14 (T24). That is, two sets of power modules PM1 and PM2 are connected in parallel between the power supply 300 for the gate drive for applying the power supply voltage V DD and the power circuit 400.
  • the power circuit 400 is connected in series to the switching elements 200 and 202.
  • the power circuit 400 has a load resistance 410 and a DC drive power supply 420.
  • the load resistance 410 and the DC drive power supply 420 are between the (+) side output terminals T13 and T23 and the ( ⁇ ) side output terminals T14 and T24. Connected in series.
  • the ( ⁇ ) side output terminals T14 and T24 are grounded.
  • the switching elements 200 and 202 of the power modules PM1 and PM2 are MOSFETs each having a source electrode (second electrode), a drain electrode (first electrode), and a gate electrode (third electrode).
  • the switching elements 200 and 202 are turned on when a gate voltage (third electrode voltage) exceeding the threshold voltage is applied to the gate electrode, and turned off when the gate voltage is lower than the threshold voltage.
  • the gate voltage is supplied from the power supply voltage V DD and controlled by the gate voltage control units 10 and 12.
  • As the switching elements 200 and 202 although MOSFETs are used in the first embodiment, appropriate switching elements can be used.
  • the switching elements 200 and 202 are formed of a material containing GaN. In the switching elements 200 and 202, when GaN is included, the difference between the absolute maximum rated voltage of the gate electrode and the threshold voltage is reduced.
  • the drain electrodes of the switching elements 200 and 202 are connected to the power circuit 400 via the (+) side output terminals T13 and T23.
  • the gate electrodes of the switching elements 200 and 202 are connected to the gate voltage control units 10 and 12.
  • the source electrodes of the switching elements 200 and 202 are connected to the ( ⁇ ) side output terminals T14 and T24 via resistors.
  • the power module PM1 includes a gate voltage control unit 10 (third electrode voltage control unit), a temperature detection unit 20, a temperature comparison unit 30, a storage unit 40, and a threshold voltage calculation unit 50 (see FIG. 1). ).
  • the gate voltage control unit 10 is connected to the threshold voltage calculation unit 50, the storage unit 40, and the temperature comparison unit 30.
  • the gate voltage control unit 10 controls a gate voltage to control on / off of the switching element 200 based on the input drive signal Pg.
  • the temperature detection unit 20 has a temperature detection element TD, and is connected to the threshold voltage calculation unit 50 and the temperature comparison unit 30.
  • TD an appropriate temperature detection element such as a diode or a thermistor can be used.
  • the temperature comparison unit 30 will be described later.
  • the storage unit 40 is connected to the gate voltage control unit 10 and the threshold voltage calculation unit 50.
  • initial threshold voltage Vth 01 of switching element 200 (a preset lower limit value of threshold voltage of switching element 200 to be used), and an initial stage of switching element 200 when initial threshold voltage Vth 01 is measured.
  • Information including temperature T 01 (preset, initial threshold voltage measurement temperature) and information on temperature characteristics of the threshold voltage of switching element 200 are stored in advance. Therefore, there is no need to measure the initial threshold voltage Vth 01 and the initial temperature T 01 after the switching element 200 is incorporated into the power module PM 1.
  • the temperature coefficient of the threshold voltage in the switching element 200
  • Vth the threshold voltage during operation
  • Vth 0 the initial threshold voltage
  • the temperature comparison unit 30 calculates the average operating temperature aveT of all the switching elements 200 and 202 (all switching elements controlled by the switching element control circuit) in the power conversion device 1, and operates the corresponding switching element 200. Compare the temperature T 1 with the average operating temperature aveT. Specifically, the temperature comparing section 30 transmits the operating temperature T 1 of the switching element 200 detected by the temperature detecting section 20 to the temperature comparing section 32 of the power module PM2, the temperature comparing unit 32 of the power module PM2 receives the operating temperature T 2 of the switching element 202 that is transmitted to calculate the average operating temperature Avet, calculates the difference between the operating temperature T 1 of the average operating temperature Avet and the switching element 200.
  • Temperature comparing section 30 when the operating temperature T 1 of the switching element 200 is lower than the average operating temperature aveT a gate in increment corresponding to the temperature difference between the operating temperature T 1 of the switching element 200 and the average operating temperature aveT transmits a signal for increasing a voltage to the gate voltage control unit 10, the operating temperature T 1 of the switching element 200 is higher than the average operating temperature aveT is the operating temperature T 1 of the switching element 200 and the average operating temperature aveT A signal for reducing the gate voltage by a reduction amount corresponding to the temperature difference is sent to the gate voltage control unit 10.
  • the power module PM2 includes a gate voltage control unit 12 (third electrode voltage control unit), a temperature detection unit 22, a temperature comparison unit 32, a storage unit 42, and a threshold voltage calculation unit 52 (see FIG. 1). ).
  • the configurations of the gate voltage control unit 12 (third electrode voltage control unit), the temperature detection unit 22, the storage unit 42, and the threshold voltage calculation unit 52 are the same as those of the power module PM1, and thus the description thereof is omitted.
  • Temperature comparing unit 32 to calculate all the average operating temperature Avet of the switching elements 200, 202 of the power conversion apparatus 1, compared with the operating temperature T 2 of the corresponding switching element 202 and the average operating temperature Avet.
  • the temperature comparing section 32 sends an operating temperature T 2 of the switching element 202 detected by the temperature detecting section 22 to the temperature comparing section 30 of the power module PM1, the temperature comparing section 30 of the power module PM1 receives the operating temperature T 1 of the switching element 200 that is transmitted to calculate the average operating temperature Avet, calculates the difference between the operating temperature T 2 of the average operating temperature Avet and the switching element 202.
  • Temperature comparing section 32 when the operating temperature T 2 of the switching element 202 is lower than the average operating temperature aveT a gate in increment corresponding to the temperature difference between the operating temperature T 2 of the switching element 202 and the average operating temperature aveT transmits a signal for increasing a voltage to the gate voltage control unit 12, the operating temperature T 2 of the switching element 202 is higher than the average operating temperature aveT is the operating temperature T 2 of the switching element 202 and the average operating temperature aveT A signal for reducing the gate voltage by a reduction amount corresponding to the temperature difference is sent to the gate voltage control unit 12.
  • the power conversion device 1 determines the gate voltage applied to the gate electrode as follows. Although the case of the power module PM1 will be described here, the same operation is performed for the power module PM2.
  • the temperature detection unit 20 detects the operating temperature T 1 of the switching element 200 through the temperature detection element TD.
  • the temperature comparing section 30 transmits the operating temperature T 1 of the switching element 200 detected by the temperature detecting section 20 to the temperature comparing section 32 of the power module PM2, the temperature comparing unit 32 of the power module PM2 receives the operating temperature T 2 of the switching element 202 that is transmitted to calculate the average operating temperature Avet, calculates the difference between the operating temperature T 1 of the average operating temperature Avet and the switching element 200.
  • the gate voltage control unit 10 calculates the threshold voltage Vth 1 at the time of operation calculated by the threshold voltage calculation unit 50 and the average operation temperature aveT and the operation temperature T 1 of the switching element 200 transmitted from the temperature comparison unit 30. based on the increase or signal for increasing or decreasing the gate voltage decrease amount corresponding to the temperature difference, based on the threshold voltage Vth 1, and the increase amount corresponding to the temperature difference between the average operating temperature aveT and operating temperatures T 1 Alternatively, the gate voltage corrected by the decrease amount is applied to the gate electrode (see FIG. 4B and FIG. 5).
  • the gate voltage may be controlled to follow the temperature of switching elements 200 and 202 sequentially, or the operating temperature of switching elements 200 and 202 is detected at predetermined time intervals to determine the threshold value at the time of operation.
  • the voltage may be calculated, and the gate voltage may be controlled based on the threshold voltage at the time of the operation.
  • the gate voltage control unit 10, 12 of the switching element control circuit 100, 102 detected by the temperature detection unit 20, 22 Based on information including the operating temperatures T 1 and T 2 of the switching elements 200 and 202 and the threshold voltages Vth 1 and Vth 2 at the time of operation calculated based on the operating temperatures T 1 and T 2
  • the initial temperatures T 01 and T 02 of the switching elements 200 and 202 when the operating temperatures T 1 and T 2 of the switching elements 200 and 202 in operation measure the initial threshold voltages Vth 01 and Vth 02.
  • each of the gate voltage control units 10 and 12 has the average operating temperature aveT and the operating temperatures T 1 and T 2 of the switching elements detected by the temperature detection units 20 and 22. And, in order to control the gate voltage based on the information including the threshold voltages Vth 1 and Vth 2 calculated based on the operating temperatures T 1 and T 2 , an average operating temperature aveT and an operating temperature T of each switching element The gate voltage can be controlled based on the temperature difference between T 1 and T 2 . Therefore, even if the operating temperatures of the switching elements 200 and 202 vary, the balance of the currents shared by the switching elements 200 and 202 does not easily vary. Therefore, it is possible to prevent the high temperature switching element from being rapidly deteriorated, and as a result, even when a plurality of power modules are connected in parallel and operated, the lifetime as the device can be extended.
  • the temperature comparators 30 and 32 increase the gate voltage.
  • the on resistance is reduced and the amount of current flowing through the corresponding switching element is increased. Therefore, the temperature is high, and the amount of current flow is balanced with the other switching elements having a large amount of current flow. Therefore, it is possible to prevent the specific switching element (high temperature switching element) from being rapidly deteriorated, and it becomes easy to prolong the life as the device.
  • the temperature comparators 30 and 32 decrease the gate voltage. Since the signal is transmitted to the gate voltage control units 10 and 12 and the gate voltage is lowered (see the broken line in FIG. 5), the on resistance is increased and the amount of current flowing through the corresponding switching element is decreased. Therefore, the current amount is balanced with the other switching elements whose temperature is low and the amount of current flowing is small. Therefore, it is possible to prevent the specific switching element (high temperature switching element) from being rapidly deteriorated, and it becomes easy to prolong the life as the device.
  • each of the temperature comparison units 30 and 32 A signal for increasing the gate voltage by an amount corresponding to the temperature difference between the operating temperatures T 1 and T 2 of the corresponding switching element and the average operating temperature aveT is sent to the gate voltage control unit to operate the switching elements 200 and 202
  • the gate voltage is decreased by an amount corresponding to the temperature difference between the operating temperatures T 1 and T 2 of the switching elements 200 and 202 and the average operating temperature aveT Signal to the gate voltage control units 10 and 12 so that the difference in the amount of current between switching elements other than the corresponding switching element is small. . Therefore, it is possible to reliably prevent the specific switching element (high temperature switching element) from deteriorating quickly (that is, it becomes easy to match the life of the switching element), and as a result, the life of
  • the temperature detection units 20 and 22 detect the operating temperature of the switching element with high accuracy and simplicity because the temperature detection element uses a thermistor. Can.
  • the threshold voltage calculation unit 50 operates the switching device 200 based on the information including the operating temperature T 1 of the switching device 200 detected by the temperature detection unit 20.
  • threshold voltage Vth 1 is calculated, and the gate voltage control unit 10 of, when the switching element 200 on, the control gate voltage based on the threshold voltage Vth 1 during operation calculated by the threshold voltage calculation unit 50 to reason, the operating temperature T 1 is the threshold voltage Vth 1 during operation due to be higher than the initial temperature T 01 of the switching element 200 when measuring the initial threshold voltage Vth 01 of the switching device 200 in operation even when varying the initial threshold voltage Vth 01, mark a voltage exceeding the threshold voltage Vth 1 during operation to slightly gate electrode It can be. Therefore, the turn-on period and the turn-off period can be shortened, and as a result, the switching loss can be reduced (the same applies to the power module PM2).
  • the information regarding the temperature characteristic of the threshold voltage in the switching element is ⁇
  • the temperature coefficient of the threshold voltage in the switching element 200 is Vth
  • the threshold voltage during operation is Vth.
  • the threshold voltage is Vth 0
  • the operating temperature of the switching element detected by the temperature detecting unit is T
  • the initial temperature of the switching element when measuring the initial threshold voltage is taken as T
  • Vth Vth 0 - ⁇ Since the characteristic equation satisfies the relationship of (T ⁇ T 0 ), the threshold voltage Vth during operation of the switching element 200 can be calculated relatively easily (the same applies to the power module PM 2).
  • the operation is performed even when the difference between the absolute maximum rated voltage of the gate electrode and the threshold voltage is small as in a switching element formed of a material containing GaN.
  • a voltage slightly exceeding the threshold voltage Vth can be applied to the gate electrode. Therefore, the turn-on and turn-off periods can be shortened, and as a result, the switching loss can be reduced.
  • a gate voltage slightly exceeding the threshold voltage the designed threshold voltage
  • it is possible to prevent the phenomenon that the switching elements 200 and 202 are not turned on can be prevented.
  • the on / off operation of the elements 200 and 202 can be reliably controlled.
  • the switching elements 200 and 202 are formed of a material containing GaN, the on resistance of the switching elements 200 and 202 is low, and the conduction loss is small. A power converter can be made.
  • the power conversion device 2 according to the second embodiment basically has the same configuration as the power conversion device 1 according to the first embodiment, but the power conversion device according to the first embodiment differs in that the configuration of the switching element control circuit is different. It differs from the case of 1. That is, in the power conversion device 2 according to the second embodiment, the switching element control circuits 100 and 102 include threshold voltage measurement power supplies 60 and 62, switching current detection units 70 and 72, and on / off state determination unit 80.82. Furthermore, an initial threshold voltage measurement mode for measuring the initial threshold voltages Vth 01 and Vth 02 of the switching elements 200 and 202 and a control mode for controlling the on / off operation of the switching elements 200 and 202 are switched and implemented (FIG. 6 and 7)).
  • the switching element control circuit 100 of the power module PM1 will be described here, the switching element control circuit 102 of the power module PM2 has the same configuration and performs the same operation.
  • the threshold voltage measurement power supply 60 is connected to the drain electrode of the switching element 200, and in the initial threshold voltage measurement mode, the drain electrode (first electrode of the switching element 200 (first electrode) is turned on by turning on the threshold voltage measurement switch SW1. Supply a current for threshold voltage measurement.
  • An appropriate switch can be used as the threshold voltage measurement switch SW1, and for example, a photocoupler can be used.
  • the switching current detection unit (first electrode current detection unit) 70 is connected to the source electrode of the switching element 200, and in the initial threshold voltage measurement mode, the switching current (first electrode current, drain current, source current) of the switching element 200 Detect Id. Further, the switching current detection unit 70 is connected to an on / off state determination unit 80 described later.
  • On / off state determination unit 80 determines the on / off state of switching element 200 based on the detection result received from switching current detection unit 70 in the initial threshold voltage measurement mode.
  • the on / off state determination unit 80 is connected to the switching current detection unit 70 and the gate voltage control unit 10.
  • the storage unit 40 is connected not only to the gate voltage control unit 10 and the threshold voltage calculation unit 50 but also to the temperature detection unit 20.
  • each power module performs the following operation.
  • the case of the power module PM1 will be described as an example.
  • the initial threshold voltage measuring mode initial threshold voltage measuring mode is a mode for measuring the initial threshold voltage Vth 01 of the switching device 200. This mode is performed before driving the switching element control circuit 100 and the switching element 200.
  • the threshold voltage measurement power supply 60 supplies a current for threshold voltage measurement to the drain electrode of the switching element 200 while no current is supplied from the drive power supply 420 (see FIGS. 6 and 7).
  • the gate voltage control unit 10 controls the gate voltage to apply a voltage lower than the assumed initial threshold voltage to the gate electrode.
  • the on / off state determination unit 80 determines that the switching element 200 is in the off state.
  • the gate voltage control unit 10 controls the gate voltage so that the gate voltage becomes higher by one step (see FIG. 8).
  • the on / off state determination unit 80 determines that the switching element 200 is in the on state.
  • the operating temperature of the switching element 200 detected by the temperature detection unit 20 is transmitted to the storage unit 40 as the initial temperature T 01 , and the gate voltage control unit 10 receives the gate-source voltage Vgs applied to the gate electrode. It transmits to the storage unit 40 as the initial threshold voltage Vth 01 .
  • the storage unit 40 stores the voltage Vgs between the gate and source as the initial threshold voltage Vth 01.
  • the power conversion device 2 according to the second embodiment differs from the power conversion device 1 according to the first embodiment in that the configuration of the switching element control circuit is different, but the power conversion device 1 according to the first embodiment Similarly to the above case, the gate voltage control units 10 and 12 of the switching element control circuits 100 and 102 operate the operating temperatures T 1 and T 2 of the switching elements 200 and 202 detected by the temperature detection units 20 and 22, and In order to control the gate voltage based on information including the threshold voltages Vth 1 and Vth 2 at the time of operation calculated based on the operating temperatures T 1 and T 2 , the operating temperature T 1 of the switching elements 200 and 202 at the time of operation , T 2 become higher than the initial temperatures T 01 , T 02 of the switching elements 200, 202 when the initial threshold voltages Vth 01 , Vth 02 are measured.
  • the gate voltage control units 10 and 12 calculate the average operating temperature aveT and the operating temperatures T 1 and T 2 of the switching elements detected by the temperature detection units 20 and 22. And, in order to control the gate voltage based on the information including the threshold voltage calculated based on the operating temperatures T 1 and T 2 , the average operating temperature aveT and the operating temperatures T 1 and T 2 of the corresponding switching elements The gate voltage can be controlled based on the temperature difference of Even when the operating temperatures T 1 and T 2 of the switching elements 200 and 202 vary, the balance of the current shared by the switching elements 200 and 202 does not easily vary. Therefore, it is possible to prevent the high temperature switching element from being rapidly deteriorated, and as a result, even when a plurality of power modules are connected in parallel and operated, the lifetime as the device can be extended.
  • the actual threshold voltage of each of the switching elements 200 and 202 can be measured in the initial threshold voltage measurement mode, the actual threshold voltage corresponds to the manufacture of the switching elements. Even when the variation from the designed threshold voltage is caused by the variation, when the switching elements 200 and 202 are turned on, a gate voltage slightly exceeding the actual threshold voltage is applied to the gate electrode based on the actual threshold voltage. can do. Therefore, in order to control the on / off operation of the switching elements 200 and 202, a gate voltage largely exceeding the threshold voltage is applied to the gate electrodes of the switching elements 200 and 202 (comparative example; see FIG. 4A). In comparison, since the turn-on period and the turn-off period can be shortened, the switching speed can be increased, and as a result, the switching loss can be reduced.
  • the gate voltage slightly exceeding the actual threshold voltage is obtained based on the actual threshold voltage. Since the threshold voltage can be applied to the gate electrode, even if the actual threshold voltage fluctuates in a direction higher than the designed threshold voltage due to manufacturing variations of the switching element 200, the actual threshold voltage is slightly An overlying gate voltage can be applied to the gate electrode. Therefore, it is possible to prevent the phenomenon that the switching elements 200 and 202 are not turned on even when the gate voltage slightly exceeding the threshold voltage (the designed threshold voltage) is applied to the gate electrode. The on / off operation of the element 200 can be reliably controlled.
  • the switching elements 200 and 202 gate the gate voltage slightly exceeding the actual threshold voltage. Since the voltage can be applied to the electrodes, it is possible to prevent the phenomenon that the switching elements 200 and 202 are not turned on even when the gate voltage is applied to the gate electrode slightly exceeding the threshold voltage (the designed threshold voltage). As a result, the on / off operation of the switching elements 200 and 202 can be reliably controlled.
  • the actual threshold voltage can be measured in the initial threshold voltage measurement mode, and in the control mode, when the switching element is turned on, the actual threshold voltage can be measured. Since the gate voltage applied to the gate electrode can be controlled based on the information including the threshold voltage, the switching element control circuits 100 and 102 are connected to the switching elements 200 and 202 even if the switching elements 200 and 202 are mass-produced. It is not necessary to measure the threshold voltage of each of the manufactured switching elements before doing so. Therefore, the work does not become complicated and it becomes easy to increase the productivity.
  • the gate voltage control units 10 and 12 increase the gate voltage so that the gate voltage increases stepwise as time passes.
  • the threshold voltage of the switching elements 200 and 202 can be measured efficiently and reliably.
  • the power conversion device 2 according to the second embodiment has the same configuration as the power conversion device 1 in the first embodiment except that the configuration of the switching element control circuit is different, so the power conversion according to the first embodiment is performed. Among the effects of the device 1, the corresponding effects are provided.
  • the power conversion device (not shown) according to the third embodiment basically has the same configuration as the power conversion device 2 according to the second embodiment, but the second embodiment is further provided with a temperature characteristic calculation unit. It differs from the case of the power converter 2 which concerns.
  • each switching element control circuit performs a temperature characteristic measurement mode in which the temperature characteristic of the threshold voltage in switching element 200 is measured after implementing the control mode for a predetermined time. carry out.
  • the switching element control circuit 100 of the power module PM1 will be described, but the switching element control circuit 102 of the power module PM2 has a similar configuration, and the same operation I do.
  • the temperature characteristic calculation unit 90 is connected to the temperature detection unit 20 and the storage unit 40, and calculates the temperature characteristic of the threshold voltage in the switching element.
  • the threshold voltage measurement power supply 60 supplies a current for threshold voltage measurement to the drain electrode of the switching element 200 in a state where current is not supplied from the drive power supply 420 (see FIG. 9).
  • the gate voltage control unit 10 controls the gate voltage such that a voltage lower than the assumed (operational) threshold voltage is applied to the gate electrode.
  • the on / off state determination unit 80 determines that the switching element 200 is in the off state.
  • the gate voltage control unit 10 controls the gate voltage so that the gate voltage becomes higher by one step (see FIG. 8). This is repeated so that the gate voltage increases stepwise (specifically, it increases stepwise) and the switching current is detected by the switching current detection unit 70 (the value of the switching current is (When it is not 0), the on / off state determination unit 80 determines that the switching element 200 is in the on state. At this time, the operating temperature T M of the switching element 200 detected by the temperature detection unit 20 is transmitted to the storage unit 40, and the storage unit 40 stores it.
  • the gate voltage control unit 10 transmits the gate-source voltage Vgs applied to the gate electrode to the storage unit 40 as the threshold voltage Vth M at the time of temperature characteristic measurement, and the storage unit 40 transmits the gate-source voltage Vgs.
  • the temperature characteristic measurement threshold voltage Vth M is stored.
  • temperature characteristic calculation unit 90 includes initial temperature T 01 of switching element 200 when measuring initial threshold voltage Vth 01 and initial threshold voltage Vth 01 from storage unit 40 and threshold voltage Vth M at the time of temperature characteristic measurement.
  • the calculated temperature coefficient ⁇ is stored in the storage unit 40.
  • the threshold voltage calculation unit 50 calculates the temperature coefficient ⁇ calculated in the temperature characteristic measurement mode, the operating temperature T of the switching element 200 detected by the temperature detection unit 20, and the initial threshold stored in the storage unit 40. It calculates a threshold voltage Vth 1 based on the initial temperature T 01 of the switching element 200 when the measured voltage Vth 0 and the initial threshold voltage Vth 01.
  • the power conversion device according to the third embodiment differs from the power conversion device 2 according to the second embodiment in that the power conversion device according to the second embodiment is different in that the power conversion device according to the second embodiment Similarly to the above, the gate voltage control units 10 and 12 of the switching element control circuits 100 and 102 operate the operating temperatures T 1 and T 2 of the switching elements 200 and 202 detected by the temperature detection units 20 and 22, respectively.
  • a voltage slightly exceeding the threshold voltages Vth 1 and Vth 2 in operation can be applied to the gate electrode. Therefore, the turn-on period and the turn-off period can be shortened, and the switching loss can be reduced, as compared with the case where the third electrode voltage is controlled using the threshold voltage at design time.
  • the gate voltage control units 10 and 12 calculate the average operating temperature aveT, the operating temperatures T 1 and T 2 of the switching elements detected by the temperature detection units 20 and 22, and In order to control the gate voltage based on information including the threshold voltage calculated based on the operating temperature, based on the temperature difference between the average operating temperature aveT and the operating temperatures T 1 and T 2 of the corresponding switching elements.
  • the gate voltage can be controlled. Even when the operating temperatures of the switching elements 200 and 202 vary, the balance of the current shared by the switching elements 200 and 202 does not easily vary. Therefore, it is possible to prevent the high temperature switching element from being rapidly deteriorated, and as a result, even when a plurality of power modules are connected in parallel and operated, the lifetime as the device can be extended.
  • the temperature characteristic calculation unit 90 measures the initial threshold voltage Vth 01 and the initial threshold voltage Vth 01, and the initial temperature T 0 of the switching element 200 and the temperature characteristic measurement mode.
  • the threshold voltage at the time of operation can be accurately calculated. Therefore, it is possible to apply accurately to the gate electrode a voltage exceeding the threshold voltage Vth 1 during operation slightly. Therefore, the turn-on period and the turn-off period can be reliably shortened, and as a result, the switching loss can be reliably reduced (the same applies to the power module PM2).
  • the power conversion device according to the third embodiment has the same configuration as that of the power conversion device 2 according to the second embodiment except that the power conversion device according to the third embodiment further includes the temperature characteristic calculation unit. Among the effects that 2 has, it has the corresponding effect.
  • the power conversion device 3 according to the fourth embodiment basically has the same configuration as that of the power conversion device 1 according to the first embodiment, but the configuration of the temperature comparison unit is the case of the power conversion device 1 according to the first embodiment Is different. That is, in the power conversion device 3 according to the fourth embodiment, the temperature comparison unit is not provided for each power module (switching element control circuit) but only one is provided in the power conversion device (FIG. 10). reference.).
  • the temperature comparison unit 500 receives the operating temperatures of the switching elements 200 and 202 of the power modules PM1 and PM2, calculates the average operating temperature aveT of all the switching elements in the power conversion device, and corresponds to the corresponding switching element 200. , 202 and the average operating temperature aveT, and transmits the comparison results to the gate voltage control units 10 and 12 of the power modules PM1 and PM2, respectively.
  • the power conversion device 3 according to the fourth embodiment is the same as the power conversion device 1 according to the first embodiment although the configuration of the temperature comparison unit is different from that of the power conversion device 1 according to the first embodiment.
  • the gate voltage control units 10 and 12 of the switching element control circuits 100 and 102 operate the operating temperatures T 1 and T 2 of the switching elements 200 and 202 detected by the temperature detecting units 20 and 22, and the operating temperature T 1, for controlling the gate voltage based on the threshold voltage Vth 1, information including the Vth 2 during operation which is calculated on the basis of the T 2, operating temperature T 1, T 2 of the switching elements 200, 202 during operation
  • the threshold voltage V at the time of operation due to the initial temperatures T 01 and T 02 of the switching elements 200 and 202 becoming higher when the initial threshold voltages Vth 01 and Vth 02 are measured.
  • the gate voltage control units 10 and 12 calculate the average operating temperature aveT and the operating temperatures T 1 and T 2 of the switching elements detected by the temperature detection units 20 and 22. And, in order to control the gate voltage based on the information including the threshold voltage calculated based on the operating temperature, based on the temperature difference between the average operating temperature aveT and the operating temperatures T 1 and T 2 of the corresponding switching elements. Gate voltage can be controlled. Even when the operating temperatures of the switching elements 200 and 202 vary, the balance of the current shared by the switching elements 200 and 202 does not easily vary. Therefore, it is possible to prevent the high temperature switching element from being rapidly deteriorated, and as a result, even when a plurality of power modules are connected in parallel and operated, the lifetime as the device can be extended.
  • a temperature comparison is made to calculate the average operating temperature of all the switching elements in the power conversion device, and to compare the operating temperature and the average operating temperature of the corresponding switching elements. Since each power module has a temperature comparison unit, the ground area can be smaller than in the case where a temperature comparison unit is provided for each power module, and miniaturization can be achieved.
  • the power conversion device 3 according to the fourth embodiment has the same configuration as the power conversion device 1 according to the first embodiment except for the configuration of the temperature comparison unit. It has the corresponding effect among the effects it has.
  • a signal for increasing the gate voltage by an increase (decrease) corresponding to the temperature difference between the operating temperature of the switching element and the average operating temperature is transmitted to the gate voltage control unit
  • the present invention is not limited to this.
  • a signal that increases (decreases) the gate voltage by an increase (decrease) determined using elements other than the increase (decrease) corresponding to the temperature difference between the operating temperature of the switching element and the average operating temperature may be sent to the gate voltage control unit.
  • each switching element control circuit is the power conversion device that implements the initial threshold voltage measurement mode, the control mode, and the temperature characteristic measurement mode, but the present invention is not limited to this.
  • each switching element control circuit may be a power conversion device that implements only the initial control mode and the temperature characteristic measurement mode.
  • the initial threshold voltages Vth 01 and Vth 02 and the initial temperatures T 01 and T 02 are stored in advance in the storage unit.
  • the information on the temperature characteristic of the threshold voltage in the switching element may be another characteristic formula, or may be data indicating the temperature-threshold voltage relationship (one to one) stored in advance in the storage unit.
  • the gate voltage control unit controls the gate voltage so that the gate voltage increases stepwise as time passes, but the present invention It is not limited.
  • the gate voltage control unit may control the gate voltage so that the gate voltage becomes a pulse-like voltage that becomes a pulse with large amplitude as time passes (see FIG. 11).
  • each power module includes one switching element, but the present invention is not limited to this.
  • the power module may comprise a plurality of switching elements. In this case, the power module may control the plurality of switching elements.
  • the switching element is formed of a material containing GaN, but the present invention is not limited to this.
  • the switching element may be formed of a material containing a wide gap semiconductor such as SiC or Ga 2 O 3 or a material containing silicon.
  • the MOSFET is used as the switching element in the above embodiment, the present invention is not limited to this.
  • a switching element other than the MOSFET for example, HEMT, IGBT, etc. may be used.
  • control circuit and the power circuit of the power module may be formed on separate semiconductor substrates, or the control circuit and the power circuit of the power module may be formed on the same semiconductor substrate Good.
  • switching element and the circuit portion other than the switching element may be formed on separate semiconductor substrates, or the switching element (for example, a semiconductor element of lateral structure of GaN) and the circuit portion other than the switching element may be the same semiconductor It may be formed on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

本発明の電力変換装置1は、スイッチング素子200,202と、第3電極電圧制御部10,12及び温度検出部20,22を有するスイッチング素子制御回路100,102とを有するパワーモジュールを2組以上備え、パワーモジュールPM1,PM2は並列に接続されており、スイッチング素子制御回路100,102は、スイッチング素子200,202の平均動作温度を算出するとともに、対応するスイッチング素子200,202の動作温度と平均動作温度とを比較する温度比較部30,32を有し、第3電極電圧制御部10,12は、平均動作温度、スイッチング素子200,202の動作温度、及び、動作時の閾値電圧を含む情報に基づいて第3電極電圧を制御することを特徴とする。 本発明の電力変換装置1によれば、スイッチング損失を小さくすることができ、かつ、装置としての寿命を長くすることができる。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 従来、スイッチング素子のオン/オフ動作を制御するパワーモジュールが知られている(例えば、特許文献1参照。)。
 従来のパワーモジュール900は、図12に示すように、第1電極、第2電極及びゲート電極を有するスイッチング素子800と、スイッチング素子800のオン/オフ動作を制御するためにゲート電圧を制御するゲート電圧制御部910とを有する。
 従来のパワーモジュール900によれば、ゲート電圧制御部910によってゲート電圧を制御することによりスイッチング素子800のオン/オフ動作を制御することができる。
国際公開第2012/153459号
 ところで、近年、スイッチング損失を小さくすることが可能なパワーモジュールが求められている。これを実現するための方法の一つとして、閾値電圧をわずかに超えるゲート電圧をゲート電極に印加してターンオン期間及びターンオフ期間を短くすることによって、スイッチング損失を小さくすることが考えられる。
 しかしながら、動作時のスイッチング素子の動作温度Tが初期閾値電圧(出荷時の閾値電圧)を測定したときのスイッチング素子の初期温度Tよりも高くなることに起因して動作時の閾値電圧Vthが初期閾値電圧Vthから変動するため(図3参照。)、動作時の閾値電圧Vthをわずかに超える電圧をゲート電極に印加してターンオン期間及びターンオフ期間を短くすることが難しく、スイッチング損失を小さくすることが難しい、という問題がある。
 また、一般的に、複数のパワーモジュールを並列に接続した電力変換装置を動作させる場合には、各パワーモジュールのスイッチング素子に流れる電流をオン抵抗Ronの温度特性を利用して分担している。しかしながら、スイッチング素子の動作温度にバラツキが生じた場合には、各スイッチング素子に分担される電流のバランスにもバラツキが生じ、特定のスイッチング素子(高温のスイッチング素子)が早く劣化してしまうため、装置としての寿命が短くなってしまう、という問題もある。
 そこで、本発明は、上記した問題を解決するためになされたものであり、スイッチング素子のスイッチング損失を小さくすることができ、かつ、複数のパワーモジュールを並列に接続させて動作させる場合でも、装置としての寿命を長くすることができる電力変換装置を提供することを目的とする。
[1]本発明の電力変換装置は、第1電極、第2電極、及び、第3電極を有するスイッチング素子と、前記スイッチング素子のオン/オフ動作を制御するために第3電極電圧を制御する第3電極電圧制御部、及び、前記スイッチング素子の動作温度を検出する温度検出部を有するスイッチング素子制御回路と、を有するパワーモジュールを2組以上備える電力変換装置であって、前記パワーモジュールは互いに並列に接続されており、前記スイッチング素子制御回路はそれぞれ、前記電力変換装置内の全ての前記スイッチング素子の平均動作温度を算出するとともに、対応する前記スイッチング素子の動作温度と前記平均動作温度とを比較する温度比較部をさらに有し、前記第3電極電圧制御部は、前記平均動作温度、前記温度検出部で検出された前記スイッチング素子の動作温度、及び、当該動作温度に基づいて算出された動作時の閾値電圧を含む情報に基づいて前記第3電極電圧を制御することを特徴とする。
[2]本発明の電力変換装置においては、前記温度比較部は、前記スイッチング素子の動作温度が前記平均動作温度よりも低い場合には、前記第3電極電圧を増加させる信号を前記第3電極電圧制御部に送信し、前記スイッチング素子の動作温度が前記平均動作温度よりも高い場合には、前記第3電極電圧を減少させる信号を前記第3電極電圧制御部に送信することが好ましい。
[3]本発明の電力変換装置においては、前記温度比較部は、前記スイッチング素子の動作温度が前記平均動作温度よりも低い場合には、前記スイッチング素子の動作温度と前記平均動作温度との温度差に対応した増加量で前記第3電極電圧を増加させる信号を前記第3電極電圧制御部に送信し、前記スイッチング素子の動作温度が前記平均動作温度よりも高い場合には、前記スイッチング素子の動作温度と前記平均動作温度との温度差に対応した減少量で前記第3電極電圧を減少させる信号を前記第3電極電圧制御部に送信することが好ましい。
[4]本発明の電力変換装置において、前記温度検出部においては、温度検出素子として、サーミスタを用いることが好ましい。
[5]本発明の電力変換装置においては、前記各スイッチング素子制御回路は、前記スイッチング素子の初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報を記憶する記憶部と、前記温度検出部によって検出された前記スイッチング素子の前記動作温度、前記スイッチング素子の初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報に基づいて前記スイッチング素子の動作時の閾値電圧を算出する閾値電圧算出部とをさらに有し、前記第3電極電圧制御部は、当該動作温度に基づいて算出された動作時の閾値電圧として、前記閾値電圧算出部によって算出された前記動作時の閾値電圧を含む情報に基づいて前記第3電極電圧を制御することが好ましい。
[6]本発明の電力変換装置においては、前記スイッチング素子における閾値電圧の温度特性に関する情報は、前記スイッチング素子における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、前記初期閾値電圧をVthとし前記温度検出部によって検出された前記スイッチング素子の前記動作温度をTとし、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度をTとしたときに、Vth=Vth-α(T-T)の関係を満たす特性式であることが好ましい。
[7]本発明の電力変換装置においては、前記各スイッチング素子制御回路は、対応する前記スイッチング素子の前記初期閾値電圧を測定する初期閾値電圧測定モードと、対応する前記スイッチング素子のオン/オフ動作を制御する制御モードとを実施するスイッチング素子制御回路であって、前記各スイッチング素子制御回路は、前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、前記スイッチング素子を流れる第1電極電流を検出する第1電極電流検出部と、前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部とをさらに有し、前記初期閾値電圧測定モードにおいて、前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の温度を記憶するとともに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の前記初期閾値電圧として記憶することが好ましい。
[8]本発明の電力変換装置においては、前記各スイッチング素子制御回路は、前記制御モードを所定時間実施した後に、前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードをさらに実施するスイッチング素子制御回路であって、前記各スイッチング素子制御回路は、前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部をさらに有し、前記温度特性測定モードにおいて、前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、前記オン/オフ状態判定部は、前記スイッチング電流検出部で検出された前記スイッチング電流に基づいて前記スイッチング素子がオンしたか否かを判定し、前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の前記動作温度を記憶するとともに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することが好ましい。
[9]本発明の電力変換装置においては、前記各スイッチング素子制御回路は、前記制御モードを所定時間実施した後に、対応する前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードを実施するスイッチング素子制御回路であって、前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、前記スイッチング素子を流れるスイッチング電流を検出するスイッチング電流検出部と、前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部と、前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部とをさらに備え、前記温度特性測定モードにおいては、前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、前記オン/オフ状態判定部は、前記スイッチング電流検出部で検出された前記スイッチング電流に基づいて前記スイッチング素子がオンしたか否かを判定し、前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することが好ましい。
[10]本発明の電力変換装置においては、前記スイッチング素子は、MOSFET、IGBT又はHEMTであることが好ましい。
[11]本発明の電力変換装置においては、前記スイッチング素子は、GaN、SiC又はGaを含む材料により形成されたものであることが好ましい。
[12]本発明の他の電力変換装置は、第1電極、第2電極、及び、第3電極を有するスイッチング素子と、前記スイッチング素子のオン/オフ動作を制御するために第3電極電圧を制御する第3電極電圧制御部、及び、前記スイッチング素子の動作温度を検出する温度検出部を有するスイッチング素子制御回路と、を有するパワーモジュールを2組以上備える電力変換装置であって、前記パワーモジュールは互いに並列に接続されており、前記電力変換装置は、前記電力変換装置内の全ての前記スイッチング素子の平均動作温度を算出するとともに、対応する前記スイッチング素子の動作温度と前記平均動作温度とを比較する温度比較部をさらに備え、前記第3電極電圧制御部は、前記平均動作温度、前記温度検出部で検出された前記スイッチング素子の動作温度、及び、当該動作温度に基づいて算出された動作時の閾値電圧を含む情報に基づいて前記第3電極電圧を制御することを特徴とする。
 本発明の電力変換装置によれば、各スイッチング素子制御回路の第3電極電圧制御部は、温度検出部で検出されたスイッチング素子の動作温度、及び、当該動作温度に基づいて算出された動作時の閾値電圧を含む情報に基づいて第3電極電圧を制御するため、動作時のスイッチング素子の動作温度が初期閾値電圧を測定したときのスイッチング素子の初期温度よりも高くなることに起因して動作時の閾値電圧が初期閾値電圧から変動する場合でも、動作時の閾値電圧をわずかに超える電圧をゲート電極に印加することができる。従って、設計時の閾値電圧を用いて第3電極電圧を制御した場合と比較して、ターンオン期間及びターンオフ期間を短くすることができ、スイッチング損失を小さくすることができる。
 また、本発明の電力変換装置によれば、第3電極電圧制御部は、平均動作温度、温度検出部で検出されたスイッチング素子の動作温度、及び、当該動作温度に基づいて算出された閾値電圧を含む情報に基づいて第3電極電圧を制御するため、各スイッチング素子の動作温度にバラツキが生じた場合であっても、平均動作温度と、対応するスイッチング素子の動作温度との温度差に基づいて第3電極電圧を制御することができ、各スイッチング素子に分担される電流のバランスにバラツキが生じ難くなる。従って、高温のスイッチング素子が速く劣化することを防ぐことができ、その結果、複数のパワーモジュールを並列に接続させて動作させる場合でも、装置としての寿命を長くすることができる。
実施形態1に係る電力変換装置1の回路図である。 実施形態1における制御モードのブロック図である。 スイッチング素子の閾値電圧Vth・動作温度Tの関係を示すグラフの模式図である。 閾値電圧をわずかに超えるゲート電圧をゲート電極に印加する場合の効果について説明するために示すゲート電圧(ゲート・ソース間電圧)Vgsの時間変化のグラフの模式図である。図4(a)は比較例のパワーモジュールにおいてゲート電極にゲート電圧を印加する場合のゲート・ソース間電圧Vgsの時間変化を示すグラフの模式図であり、図4(b)は実施形態1の電力変換装置1において閾値電圧をわずかに超えるゲート電圧をゲート電極に印加する場合のゲート・ソース間電圧Vgsの時間変化を示すグラフの模式図である。 スイッチング素子の温度とゲート・ソース間電圧Vgsの時間変化を説明するために示すグラフの模式図である。 実施形態2に係る電力変換装置2の回路図である。 実施形態2のパワーモジュールPM1における初期閾値電圧測定モードのブロック図である。 実施形態2のパワーモジュールPM1における初期閾値電圧測定モードを説明するために示すゲート・ソース間電圧Vgsのグラフの模式図である。 実施形態3のパワーモジュールPM1における温度特性測定モードのブロック図である。 実施形態4に係る電力変換装置3の回路図である。 変形例に係る電力変換装置の初期閾値電圧測定モードを説明するために示すグラフの模式図である。 従来のパワーモジュール900を説明するために示す図である。
 以下、本発明の電力変換装置について、図に示す実施形態に基づいて説明する。なお、各図面は模式図であり、必ずしも実際の回路構成やグラフを厳密に反映したものではない。
[実施形態1]
1.実施形態1に係る電力変換装置1の構成
 実施形態1に係る電力変換装置1は、図1に示すように、2組のパワーモジュール(スイッチング素子200と、スイッチング素子制御回路100とを有するパワーモジュールPM1と、スイッチング素子202と、スイッチング素子制御回路102とを有するパワーモジュールPM2)と、パワー回路400とを備える。実施形態1に係る電力変換装置1は、高耐熱性・高絶縁性の樹脂やセラミックス等により形成されたパッケージで覆われている。各パワーモジュールPM1(PM2)には、直流の電源電圧VDDを入力する(+)側入力端子T11(T21)、接地側の(-)側入力端子T12(T22)、(+)側出力端子T13(T23)、接地側の(-)側出力端子T14(T24)、駆動信号Pg(例えば、ゲートパルス)を入力する制御端子T15(T25)、及び、温度比較信号を入出力する端子T16(T26)が設けられている。
 (+)側入力端子T11(T21)と(-)側入力端子T12(T22)との間には、電源電圧VDDを印加するためのゲートドライブ用電源300が接続されている。ゲートドライブ用電源300は、ゲート電圧制御部10(12)を介してスイッチング素子200(202)のゲート電極と接続されており、ゲート電極に電圧を供給する。(+)側出力端子T13(T23)及び(-)側出力端子T14(T24)には、パワー回路400が接続されている。すなわち、2組のパワーモジュールPM1,PM2は、電源電圧VDDを印加するためのゲートドライブ用電源300と、パワー回路400との間で並列に接続されている。
 パワー回路400は、スイッチング素子200,202と直列に接続されている。パワー回路400は、負荷抵抗410及び直流の駆動電源420を有し、負荷抵抗410及び直流の駆動電源420が(+)側出力端子T13,T23と(-)側出力端子T14,T24との間に直列に接続されている。なお、(-)側出力端子T14,T24は接地されている。
 各パワーモジュールPM1,PM2のスイッチング素子200,202は、それぞれソース電極(第2電極)、ドレイン電極(第1電極)及びゲート電極(第3電極)を備えるMOSFETである。スイッチング素子200,202は、ゲート電極に閾値電圧を超えるゲート電圧(第3電極電圧)を印加するとオン状態となり、ゲート電圧が閾値電圧を下回るとオフ状態となる。ゲート電圧は、電源電圧VDDから供給され、ゲート電圧制御部10,12によって制御される。なお、スイッチング素子200,202は、実施形態1においてはMOSFETを用いるが、適宜のスイッチング素子を用いることができる。また、スイッチング素子200,202は、GaNを含む材料により形成されたものである。スイッチング素子200,202においては、GaNを含む場合、ゲート電極の絶対最大定格電圧と閾値電圧との差が小さくなる。
 スイッチング素子200,202のドレイン電極は、(+)側出力端子T13,T23を介してパワー回路400と接続されている。スイッチング素子200,202のゲート電極は、ゲート電圧制御部10,12と接続されている。スイッチング素子200,202のソース電極は抵抗を介して(-)側出力端子T14,T24と接続されている。
 パワーモジュールPM1は、ゲート電圧制御部10(第3電極電圧制御部)と、温度検出部20と、温度比較部30と、記憶部40と、閾値電圧算出部50とを備える(図1参照。)。
 ゲート電圧制御部10は、閾値電圧算出部50、記憶部40及び温度比較部30と接続されている。ゲート電圧制御部10は、入力された駆動信号Pgに基づいてスイッチング素子200のオン/オフを制御するためにゲート電圧を制御する。
 温度検出部20は、温度検出素子TDを有し、閾値電圧算出部50及び温度比較部30と接続されている。温度検出素子TDとしては、ダイオードやサーミスタ等適宜の温度検出素子を用いることができる。
 温度比較部30については後述する。
 記憶部40は、ゲート電圧制御部10及び閾値電圧算出部50と接続されている。記憶部40においては、スイッチング素子200の初期閾値電圧Vth01(あらかじめ設定した、使用するスイッチング素子200の閾値電圧の下限値)、及び、初期閾値電圧Vth01を測定したときのスイッチング素子200の初期温度T01(あらかじめ設定した、初期閾値電圧測定温度)を含む情報、並びに、スイッチング素子200における閾値電圧の温度特性に関する情報が、あらかじめ記憶されている。このため、スイッチング素子200をパワーモジュールPM1に組み込んだ後に初期閾値電圧Vth01、及び、初期温度T01を計測する必要がない。
 スイッチング素子200における閾値電圧の温度特性に関する情報は、スイッチング素子200における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、初期閾値電圧をVthとし温度検出部20によって検出されたスイッチング素子200の動作温度をTとし、初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度をTとしたときに、Vth=Vth-α(T-T)の関係を満たす特性式である(図3参照。)。すなわち、閾値電圧Vthとスイッチング素子200の動作温度Tとの関係は、傾きが負の1次関数となっている。
 閾値電圧算出部50は、記憶部40から、スイッチング素子200の初期閾値電圧Vth01、初期閾値電圧Vth01を測定したときのスイッチング素子200の初期温度T01を含む情報、並びに、スイッチング素子200における閾値電圧の温度特性に関する情報を読み取るとともに、温度検出部20からスイッチング素子200の動作温度Tを読み取り、Vth=Vth01、Vth=Vth,T=T01としてVth=Vth-α(T-T)の特性式に代入し、動作時の閾値電圧Vthを算出する。
 温度比較部30は、電力変換装置1内の全てのスイッチング素子200,202(スイッチング素子制御回路で制御されるすべてのスイッチング素子)の平均動作温度aveTを算出するとともに、対応するスイッチング素子200の動作温度Tと平均動作温度aveTとを比較する。具体的には、温度比較部30は、温度検出部20で検出されたスイッチング素子200の動作温度TをパワーモジュールPM2の温度比較部32に送信するとともに、パワーモジュールPM2の温度比較部32から送信されたスイッチング素子202の動作温度Tを受信して平均動作温度aveTを算出し、平均動作温度aveTとスイッチング素子200の動作温度Tとの差を算出する。
 温度比較部30は、スイッチング素子200の動作温度Tが平均動作温度aveTよりも低い場合には、スイッチング素子200の動作温度Tと平均動作温度aveTとの温度差に対応した増加量でゲート電圧を増加させる信号をゲート電圧制御部10に送信し、スイッチング素子200の動作温度Tが平均動作温度aveTよりも高い場合には、スイッチング素子200の動作温度Tと平均動作温度aveTとの温度差に対応した減少量でゲート電圧を減少させる信号をゲート電圧制御部10に送信する。
 パワーモジュールPM2は、ゲート電圧制御部12(第3電極電圧制御部)と、温度検出部22と、温度比較部32と、記憶部42と、閾値電圧算出部52とを備える(図1参照。)。ゲート電圧制御部12(第3電極電圧制御部)、温度検出部22、記憶部42、及び、閾値電圧算出部52の構成は、パワーモジュールPM1と同様であるので説明を省略する。
 温度比較部32は、電力変換装置1内の全てのスイッチング素子200,202の平均動作温度aveTを算出するとともに、対応するスイッチング素子202の動作温度Tと平均動作温度aveTとを比較する。具体的には、温度比較部32は、温度検出部22で検出されたスイッチング素子202の動作温度TをパワーモジュールPM1の温度比較部30に送信するとともに、パワーモジュールPM1の温度比較部30から送信されたスイッチング素子200の動作温度Tを受信して平均動作温度aveTを算出し、平均動作温度aveTとスイッチング素子202の動作温度Tとの差を算出する。
 温度比較部32は、スイッチング素子202の動作温度Tが平均動作温度aveTよりも低い場合には、スイッチング素子202の動作温度Tと平均動作温度aveTとの温度差に対応した増加量でゲート電圧を増加させる信号をゲート電圧制御部12に送信し、スイッチング素子202の動作温度Tが平均動作温度aveTよりも高い場合には、スイッチング素子202の動作温度Tと平均動作温度aveTとの温度差に対応した減少量でゲート電圧を減少させる信号をゲート電圧制御部12に送信する。
 スイッチング素子200をオン状態とするとき、実施形態1に係る電力変換装置1は、ゲート電極に印加するゲート電圧を以下のようにして決定する。ここでは、パワーモジュールPM1の場合について説明するが、パワーモジュールPM2についても同様の動作を行う。
(1)動作時の閾値電圧算出
 まず、温度検出部20が温度検出素子TDを介してスイッチング素子200の動作温度Tを検出する。
 閾値電圧算出部50は、記憶部40から、スイッチング素子200の初期閾値電圧Vth01、初期閾値電圧Vth01を測定したときのスイッチング素子200の初期温度T01を含む情報、並びに、スイッチング素子200における閾値電圧の温度特性に関する情報を読み取るとともに、温度検出部20からスイッチング素子200の動作温度Tを読み取り、Vth=Vth01、Vth=Vth,T=T01としてVth=Vth-α(T-T)の特性式に代入し、動作時の閾値電圧Vthを算出する。
(2)温度比較
 温度比較部30は、電力変換装置1内の全てのスイッチング素子200,202の平均動作温度aveTを算出するとともに、対応するスイッチング素子200の動作温度Tと平均動作温度aveTとを比較する。具体的には、温度比較部30は、温度検出部20で検出されたスイッチング素子200の動作温度TをパワーモジュールPM2の温度比較部32に送信するとともに、パワーモジュールPM2の温度比較部32から送信されたスイッチング素子202の動作温度Tを受信して平均動作温度aveTを算出し、平均動作温度aveTとスイッチング素子200の動作温度Tとの差を算出する。
 温度比較部30は、スイッチング素子200の動作温度Tが平均動作温度aveTよりも低い場合には、スイッチング素子200の動作温度Tと平均動作温度aveTとの温度差に対応した増加量でゲート電圧を増加させる信号(ゲート電圧Vgsを補正する信号)をゲート電圧制御部10に送信し、スイッチング素子200の動作温度Tが平均動作温度aveTよりも高い場合には、スイッチング素子200の動作温度Tと平均動作温度aveTとの温度差に対応した減少量でゲート電圧を減少させる信号をゲート電圧制御部10に送信する。
 ゲート電圧制御部10は、閾値電圧算出部50によって算出された動作時の閾値電圧Vth、及び、温度比較部30から送信された、平均動作温度aveTとスイッチング素子200の動作温度Tとの温度差に対応した増加量又は減少量でゲート電圧を増加又は減少させる信号に基づいて、閾値電圧Vthに基づき、かつ、動作温度Tと平均動作温度aveTとの温度差に対応した増加量又は減少量で補正したゲート電圧をゲート電極に印加する(図4(b)及び図5参照。)。
 なお、各パワーモジュールにおいては、逐次スイッチング素子200,202の温度に追従してゲート電圧を制御してもよいし、所定時間ごとにスイッチング素子200,202の動作温度を検出して動作時の閾値電圧を算出し、当該動作時の閾値電圧に基づいてゲート電圧を制御してもよい。
2.実施形態1に係る電力変換装置1の効果
 実施形態1に係る電力変換装置1によれば、各スイッチング素子制御回路100,102のゲート電圧制御部10,12は、温度検出部20,22で検出されたスイッチング素子200,202の動作温度T,T、及び、当該動作温度T,Tに基づいて算出された動作時の閾値電圧Vth,Vthを含む情報に基づいてゲート電圧を制御するため、動作時のスイッチング素子200,202の動作温度T,Tが初期閾値電圧Vth01,Vth02を測定したときのスイッチング素子200,202の初期温度T01,T02よりも高くなることに起因して動作時の閾値電圧Vth,Vthが初期閾値電圧Vth01,Vth02から変動する場合でも、動作時の閾値電圧Vth,Vthをわずかに超える電圧をゲート電極に印加することができる。従って、設計時の閾値電圧を用いてゲート電圧を制御した場合と比較して、ターンオン期間及びターンオフ期間を短くすることができ、スイッチング損失を小さくすることができる。
 また、実施形態1に係る電力変換装置1によれば、各ゲート電圧制御部10,12は、平均動作温度aveT、温度検出部20,22で検出されたスイッチング素子の動作温度T,T、及び、当該動作温度T,Tに基づいて算出された閾値電圧Vth,Vthを含む情報に基づいてゲート電圧を制御するため、平均動作温度aveTと、各スイッチング素子の動作温度T,Tとの温度差に基づいてゲート電圧を制御することができる。従って、各スイッチング素子200,202の動作温度にバラツキが生じた場合であっても、各スイッチング素子200,202に分担される電流のバランスにバラツキが生じ難くなる。従って、高温のスイッチング素子が速く劣化することを防ぐことができ、その結果、複数のパワーモジュールを並列に接続させて動作させる場合でも、装置としての寿命を長くすることができる。
 また、実施形態1に係る電力変換装置1によれば、対応するスイッチング素子の動作温度T,Tが平均動作温度aveTよりも低い場合に温度比較部30,32は、ゲート電圧を増加させる信号をゲート電圧制御部10,12に送信し、ゲート電圧を高くするため(図5の一点鎖線参照。)、オン抵抗が小さくなり、対応するスイッチング素子を流れる電流量が大きくなる。従って、温度が高く、流れる電流量が大きい他のスイッチング素子との電流量のバランスが取れた状態となる。従って、特定のスイッチング素子(高温のスイッチング素子)が早く劣化することを防ぐことができ、装置としての寿命を長くし易くなる。
 また、実施形態1に係る電力変換装置1によれば、対応するスイッチング素子の動作温度T,Tが平均動作温度aveTよりも高い場合に温度比較部30,32は、ゲート電圧を減少させる信号をゲート電圧制御部10,12に送信し、ゲート電圧を低くするため(図5の破線参照。)、オン抵抗が大きくなり、対応するスイッチング素子を流れる電流量が小さくなる。従って、温度が低く、流れる電流量が小さい他のスイッチング素子との電流量のバランスが取れた状態となる。従って、特定のスイッチング素子(高温のスイッチング素子)が早く劣化することを防ぐことができ、装置としての寿命を長くし易くなる。
 また、実施形態1に係る電力変換装置1によれば、各温度比較部30,32は、対応するスイッチング素子200,202の動作温度T,Tが平均動作温度aveTよりも低い場合には、対応するスイッチング素子の動作温度T,Tと平均動作温度aveTとの温度差に対応した増加量でゲート電圧を増加させる信号をゲート電圧制御部に送信し、スイッチング素子200,202の動作温度T,Tが平均動作温度aveTよりも高い場合には、スイッチング素子200,202の動作温度T,Tと平均動作温度aveTとの温度差に対応した減少量でゲート電圧を減少させる信号をゲート電圧制御部10,12に送信するため、対応するスイッチング素子以外のスイッチング素子との電流量の差が小さい状態となる。従って、特定のスイッチング素子(高温のスイッチング素子)が早く劣化することを確実に防ぐことができ(すなわち、スイッチング素子の寿命が揃いやすくなり)、その結果、装置としての寿命をより長くすることができる。
 また、実施形態1に係る電力変換装置1によれば、温度検出部20,22は、温度検出素子として、サーミスタを用いるため、高い精度で、かつ、簡便にスイッチング素子の動作温度を検出することができる。
 また、実施形態1に係る電力変換装置1によれば、閾値電圧算出部50は、温度検出部20によって検出されたスイッチング素子200の動作温度Tを含む情報に基づいてスイッチング素子200の動作時の閾値電圧Vthを算出し、ゲート電圧制御部10は、スイッチング素子200をオン状態とするときに、閾値電圧算出部50によって算出された動作時の閾値電圧Vthに基づいてゲート電圧を制御するため、動作時のスイッチング素子200の動作温度Tが初期閾値電圧Vth01を測定したときのスイッチング素子200の初期温度T01よりも高くなることに起因して動作時の閾値電圧Vthが初期閾値電圧Vth01から変動する場合でも、動作時の閾値電圧Vthをわずかに超える電圧をゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる(パワーモジュールPM2においても同様である。)。
 また、実施形態1に係る電力変換装置1によれば、スイッチング素子における閾値電圧の温度特性に関する情報は、スイッチング素子200における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、初期閾値電圧をVthとし温度検出部によって検出されたスイッチング素子の動作温度をTとし、初期閾値電圧を測定したときのスイッチング素子の初期温度をTとしたときに、Vth=Vth-α(T-T)の関係を満たす特性式であるため、比較的容易にスイッチング素子200の動作時の閾値電圧Vthを算出することができる(パワーモジュールPM2においても同様である。)。
 また、実施形態1に係る電力変換装置1によれば、GaNを含む材料により形成されたスイッチング素子のようにゲート電極の絶対最大定格電圧と閾値電圧との差が小さい場合であっても、動作時の閾値電圧Vthをわずかに超える電圧をゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる。また、閾値電圧(設計上の閾値電圧)をわずかに超えるゲート電圧をゲート電極に印加してもスイッチング素子200,202がオン状態にならない現象が発生することを防ぐことができ、その結果、スイッチング素子200,202のオン/オフ動作を確実に制御することができる。
 また、実施形態1に係る電力変換装置1によれば、スイッチング素子200,202がGaNを含む材料により形成されたものであるため、スイッチング素子200,202のオン抵抗が低くなり、導通損失が小さい電力変換装置とすることができる。
[実施形態2]
 実施形態2に係る電力変換装置2は、基本的には実施形態1に係る電力変換装置1と同様の構成を有するが、スイッチング素子制御回路の構成が異なる点で実施形態1に係る電力変換装置1の場合とは異なる。すなわち、実施形態2に係る電力変換装置2において、各スイッチング素子制御回路100,102は、閾値電圧測定用電源60,62、スイッチング電流検出部70,72及びオン/オフ状態判定部80.82をさらに備え、スイッチング素子200,202の初期閾値電圧Vth01,Vth02を測定する初期閾値電圧測定モードと、スイッチング素子200,202のオン/オフ動作を制御する制御モードとを切り替えて実施する(図6及び図7参照。)。
 ここでは、パワーモジュールPM1のスイッチング素子制御回路100について説明するが、パワーモジュールPM2のスイッチング素子制御回路102も同様の構成を有し、同様の動作を行う。
 閾値電圧測定用電源60は、スイッチング素子200のドレイン電極と接続されており、初期閾値電圧測定モードにおいては、閾値電圧測定用スイッチSW1をオンすることにより、スイッチング素子200のドレイン電極(第1電極)に閾値電圧測定用電流を供給する。
 閾値電圧測定用スイッチSW1としては、適宜のスイッチを用いることができ、例えば、フォトカプラを用いることができる。
 スイッチング電流検出部(第1電極電流検出部)70は、スイッチング素子200のソース電極と接続され、初期閾値電圧測定モードにおいて、スイッチング素子200のスイッチング電流(第1電極電流、ドレイン電流、ソース電流)Idを検出する。また、スイッチング電流検出部70は、後述するオン/オフ状態判定部80と接続されている。なお、スイッチング電流検出部70は、スイッチング素子200のソース電極に接続した抵抗に電流を流して電圧に変換することによって計測しているが、適宜の検出装置を用いてもよい。
 オン/オフ状態判定部80は、初期閾値電圧測定モードにおいて、スイッチング電流検出部70から受信した検出結果に基づいてスイッチング素子200のオン/オフ状態を判定する。オン/オフ状態判定部80は、スイッチング電流検出部70及びゲート電圧制御部10と接続されている。
 記憶部40は、ゲート電圧制御部10及び閾値電圧算出部50だけでなく、温度検出部20とも接続されている。
 実施形態2に係る電力変換装置2において、各パワーモジュールは、以下のような動作を行う。ここでは、パワーモジュールPM1の場合を例にとって説明する。
(1)初期閾値電圧測定モード
 初期閾値電圧測定モードは、スイッチング素子200の初期閾値電圧Vth01を測定するモードである。このモードは、スイッチング素子制御回路100及びスイッチング素子200を駆動させる前に行う。
 まず、駆動電源420から電流供給をしない状態で閾値電圧測定用電源60からスイッチング素子200のドレイン電極に閾値電圧測定用の電流を供給する(図6及び図7参照。)。
 次に、ゲート電圧制御部10は、想定されている初期閾値電圧よりも低い電圧をゲート電極に印加するようにゲート電圧を制御する。このとき、スイッチング電流検出部70によってスイッチング電流は検出されない(スイッチング電流の値が0である)ため、オン/オフ状態判定部80は、スイッチング素子200がオフ状態であると判定する。オン/オフ状態判定部80によってスイッチング素子200がオフ状態であると判定すると、ゲート電圧制御部10は、ゲート電圧が一段階高くなるようにゲート電圧を制御する(図8参照。)。
 これを繰り返してゲート電圧を段階的に高くしていき(具体的には階段状に高くしていき)、スイッチング電流検出部70によってスイッチング電流が検出されたとき(スイッチング電流の値が0でなくなったとき)、オン/オフ状態判定部80は、スイッチング素子200がオン状態であると判定する。このとき、温度検出部20によって検出されたスイッチング素子200の動作温度を初期温度T01として記憶部40へ送信するとともに、ゲート電圧制御部10は、ゲート電極に印加したゲート・ソース間電圧Vgsを初期閾値電圧Vth01として記憶部40へ送信する。そして、記憶部40では、当該ゲート・ソース間電圧Vgsを初期閾値電圧Vth01として記憶する。
(2)制御モード
 制御モードにおいては、スイッチング素子200をオン状態とするときに、初期閾値電圧測定モードにおいて測定された初期閾値電圧Vth01及びスイッチング素子200の初期温度T01、温度検出部20によって検出されたスイッチング素子200の動作温度T、あらかじめ記憶部40に記憶されているスイッチング素子における閾値電圧の温度特性に関する情報(温度係数α)に基づいて(Vth=Vth01-α(T-T01)の特性式に代入して)動作時の閾値電圧Vthを算出し、ゲート電圧制御部10は、閾値電圧算出部50によって算出された動作時の閾値電圧Vth、及び、平均動作温度aveTとスイッチング素子200の動作温度Tとの温度差に対応した増加量又は減少量でゲート電圧を増加又は減少させる信号に基づいて、閾値電圧Vthに基づき(図4(b)参照。)、かつ、動作温度Tと平均動作温度aveTとの温度差に対応した増加量又は減少量で補正したゲート電圧をゲート電極に印加する。
 このように、実施形態2に係る電力変換装置2は、スイッチング素子制御回路の構成が異なる点で実施形態1に係る電力変換装置1の場合とは異なるが、実施形態1に係る電力変換装置1の場合と同様に、各スイッチング素子制御回路100,102のゲート電圧制御部10,12は、温度検出部20,22で検出されたスイッチング素子200,202の動作温度T,T、及び、当該動作温度T,Tに基づいて算出された動作時の閾値電圧Vth,Vthを含む情報に基づいてゲート電圧を制御するため、動作時のスイッチング素子200,202の動作温度T,Tが初期閾値電圧Vth01,Vth02を測定したときのスイッチング素子200,202の初期温度T01,T02よりも高くなることに起因して動作時の閾値電圧Vth,Vthが初期閾値電圧Vth01,Vth02から変動する場合でも、動作時の閾値電圧Vth,Vthをわずかに超える電圧をゲート電極に印加することができる。従って、設計時の閾値電圧を用いて第3電極電圧を制御した場合と比較して、ターンオン期間及びターンオフ期間を短くすることができ、スイッチング損失を小さくすることができる。
 また、実施形態2に係る電力変換装置2によれば、ゲート電圧制御部10,12は、平均動作温度aveT、温度検出部20,22で検出されたスイッチング素子の動作温度T,T、及び、当該動作温度T,Tに基づいて算出された閾値電圧を含む情報に基づいてゲート電圧を制御するため、平均動作温度aveTと、対応するスイッチング素子の動作温度T,Tとの温度差に基づいてゲート電圧を制御することができる。各スイッチング素子200,202の動作温度T,Tにバラツキが生じた場合であっても、各スイッチング素子200,202に分担される電流のバランスにバラツキが生じ難くなる。従って、高温のスイッチング素子が速く劣化することを防ぐことができ、その結果、複数のパワーモジュールを並列に接続させて動作させる場合でも、装置としての寿命を長くすることができる。
 また、実施形態2に係る電力変換装置2によれば、初期閾値電圧測定モードにおいて、各スイッチング素子200,202の実際の閾値電圧を測定することができるため、実際の閾値電圧がスイッチング素子の製造バラツキによって設計上の閾値電圧から変動していた場合でも、スイッチング素子200,202をオン状態とするときに、実際の閾値電圧に基づいて実際の閾値電圧をわずかに超えるゲート電圧をゲート電極に印加することができる。従って、スイッチング素子200,202のオン/オフ動作を制御するために閾値電圧を大きく超えるゲート電圧をスイッチング素子200,202のゲート電極に印加する場合(比較例。図4(a)参照。)と比較して、ターンオン期間及びターンオフ期間を短くすることができるため、スイッチング速度を速くすることができ、その結果、スイッチング損失を小さくすることができる。
 また、実施形態2に係る電力変換装置2によれば、上記したようにスイッチング素子200,202をオン状態とするときに、実際の閾値電圧に基づいて実際の閾値電圧をわずかに超えるゲート電圧をゲート電極に印加することができるため、実際の閾値電圧がスイッチング素子200の製造バラツキによって設計上の閾値電圧よりも高くなる方向に変動していた場合であっても、実際の閾値電圧をわずかに超えるゲート電圧をゲート電極に印加することができる。従って、閾値電圧(設計上の閾値電圧)をわずかに超えるゲート電圧をゲート電極に印加してもスイッチング素子200,202がオン状態にならない現象が発生することを防ぐことができ、その結果、スイッチング素子200のオン/オフ動作を確実に制御することができる。
 特に、スイッチング素子200,202が(GaNを含む場合のように)ゲート電極の絶対最大定格電圧と閾値電圧との差が小さい場合であっても、実際の閾値電圧をわずかに超えるゲート電圧をゲート電極に印加することができるため、閾値電圧(設計上の閾値電圧)をわずかに超えるゲート電圧をゲート電極に印加してもスイッチング素子200,202がオン状態にならない現象が発生することを防ぐことができ、その結果、スイッチング素子200,202のオン/オフ動作を確実に制御することができる。
 また、実施形態2に係る電力変換装置2によれば、初期閾値電圧測定モードにおいて、実際の閾値電圧を測定することができ、制御モードにおいては、スイッチング素子をオン状態とするときに、実際の閾値電圧を含む情報に基づいてゲート電極に印加するゲート電圧を制御することができるため、スイッチング素子200,202を大量生産したとしても、スイッチング素子制御回路100,102にスイッチング素子200,202を接続する前に、製造されたスイッチング素子それぞれの閾値電圧を測定する必要がない。従って、作業が煩雑にならず、生産性を高くすることが容易となる。
 また、実施形態2に係る電力変換装置2によれば、ゲート電圧制御部10、12は、初期閾値電圧測定モードにおいては、ゲート電圧が時間経過に伴って階段状に高くなるようにゲート電圧を制御するため、スイッチング素子200,202の閾値電圧を効率的に、かつ、確実に測定することができる。
 なお、実施形態2に係る電力変換装置2は、スイッチング素子制御回路の構成が異なる点以外の点においては実施形態1に電力変換装置1と同様の構成を有するため、実施形態1に係る電力変換装置1が有する効果のうち該当する効果を有する。
[実施形態3]
 実施形態3に係る電力変換装置(図示せず。)は、基本的には実施形態2に係る電力変換装置2と同様の構成を有するが、温度特性算出部をさらに備える点で実施形態2に係る電力変換装置2の場合とは異なる。実施形態3に係る電力変換装置において、各スイッチング素子制御回路は、図9に示すように、制御モードを所定時間実施した後に、スイッチング素子200における閾値電圧の温度特性を測定する温度特性測定モードを実施する。
 なお、ここでは、説明を簡便なものとするために、パワーモジュールPM1のスイッチング素子制御回路100についてのみ説明するが、パワーモジュールPM2のスイッチング素子制御回路102も同様の構成を有し、同様の動作を行う。
 温度特性算出部90は、温度検出部20及び記憶部40と接続されており、スイッチング素子における閾値電圧の温度特性を算出する。
 温度特性測定モードにおいては、以下のような動作を行う。
 制御モードを所定時間実施した後に、駆動電源420から電流供給をしない状態で閾値電圧測定用電源60からスイッチング素子200のドレイン電極に閾値電圧測定用の電流を供給する(図9参照。)。
 次に、ゲート電圧制御部10は、想定されている(動作時の)閾値電圧よりも低い電圧をゲート電極に印加するようにゲート電圧を制御する。このとき、スイッチング電流検出部70によってスイッチング電流は検出されない(スイッチング電流の値が0である)ため、オン/オフ状態判定部80は、スイッチング素子200がオフ状態であると判定する。オン/オフ状態判定部80によってスイッチング素子200がオフ状態であると判定すると、ゲート電圧制御部10は、ゲート電圧が一段階高くなるようにゲート電圧を制御する(図8参照。)。
 これを繰り返してゲート電圧が段階的に高くなるように(具体的には階段状に高くなるように)していき、スイッチング電流検出部70によってスイッチング電流が検出されたとき(スイッチング電流の値が0でなくなったとき)、オン/オフ状態判定部80は、スイッチング素子200がオン状態であると判定する。このとき、温度検出部20で検出されたスイッチング素子200の動作温度Tを記憶部40へ送信し、記憶部40が記憶する。また、ゲート電圧制御部10は、ゲート電極に印加したゲート・ソース間電圧Vgsを温度特性測定時閾値電圧Vthとして記憶部40へ送信し、記憶部40は、当該ゲート・ソース間電圧Vgsを温度特性測定時閾値電圧Vthとして記憶する。
 次に、温度特性算出部90は、記憶部40から、初期閾値電圧Vth01、初期閾値電圧Vth01を測定したときのスイッチング素子200の初期温度T01及び温度特性測定時閾値電圧Vthを含む情報を読み取るとともに、温度特性測定モードにおいて温度検出部20から検出されたスイッチング素子200の動作温度Tを読み取り、Vth=Vth-α(T-T)の特性式にVth=Vth、及び、T=Tをそれぞれ代入して、温度特性(具体的には温度係数α)を算出する。算出された温度係数αは記憶部40に記憶される。
 制御モードにおいては、閾値電圧算出部50は、温度特性測定モードで算出された温度係数α、温度検出部20で検出されたスイッチング素子200の動作温度T、記憶部40に記憶されている初期閾値電圧Vth及び初期閾値電圧Vth01を測定したときのスイッチング素子200の初期温度T01に基づいて閾値電圧Vthを算出する。
 このように、実施形態3に係る電力変換装置は、温度特性算出部をさらに備える点で実施形態2に係る電力変換装置2の場合とは異なるが、実施形態2に係る電力変換装置2の場合と同様に、各スイッチング素子制御回路100,102のゲート電圧制御部10,12は、温度検出部20,22で検出されたスイッチング素子200,202の動作温度T,T、及び、当該動作温度T,Tに基づいて算出された動作時の閾値電圧Vth,Vthを含む情報に基づいてゲート電圧を制御するため、動作時のスイッチング素子200,202の動作温度T,Tが初期閾値電圧Vth01,Vth02を測定したときのスイッチング素子200,202の初期温度T01,T02よりも高くなることに起因して動作時の閾値電圧Vth,Vthが初期閾値電圧Vth01,Vth02から変動する場合でも、動作時の閾値電圧Vth,Vthをわずかに超える電圧をゲート電極に印加することができる。従って、設計時の閾値電圧を用いて第3電極電圧を制御した場合と比較して、ターンオン期間及びターンオフ期間を短くすることができ、スイッチング損失を小さくすることができる。
 また、実施形態3に係る電力変換装置によれば、ゲート電圧制御部10,12は、平均動作温度aveT、温度検出部20,22で検出されたスイッチング素子の動作温度T,T、及び、当該動作温度に基づいて算出された閾値電圧を含む情報に基づいてゲート電圧を制御するため、平均動作温度aveTと、対応するスイッチング素子の動作温度T,Tとの温度差に基づいてゲート電圧を制御することができる。各スイッチング素子200,202の動作温度にバラツキが生じた場合であっても、各スイッチング素子200,202に分担される電流のバランスにバラツキが生じ難くなる。従って、高温のスイッチング素子が速く劣化することを防ぐことができ、その結果、複数のパワーモジュールを並列に接続させて動作させる場合でも、装置としての寿命を長くすることができる。
 また、実施形態3に係る電力変換装置によれば、温度特性算出部90は、初期閾値電圧Vth01、初期閾値電圧Vth01を測定したときのスイッチング素子200の初期温度T、温度特性測定モードにおいて、温度検出部20によって検出されたスイッチング素子200の動作温度T、温度特性測定時閾値電圧Vthを含む情報に基づいてスイッチング素子200における閾値電圧の温度特性を算出するため、実際の温度特性がスイッチング素子200の製造バラツキによって設計上の温度特性から変動していた場合であっても、動作時の閾値電圧を正確に算出することができる。従って、動作時の閾値電圧Vthをわずかに超える電圧を正確にゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を確実に短くすることができ、その結果、スイッチング損失を確実に小さくすることができる(パワーモジュールPM2においても同様である。)。
 なお、実施形態3に係る電力変換装置は、温度特性算出部をさらに備える点以外の点においては実施形態2に係る電力変換装置2と同様の構成を有するため、実施形態2に係る電力変換装置2が有する効果のうち該当する効果を有する。
[実施形態4]
 実施形態4に係る電力変換装置3は、基本的には実施形態1に係る電力変換装置1と同様の構成を有するが、温度比較部の構成が実施形態1に係る電力変換装置1の場合とは異なる。すなわち、実施形態4に係る電力変換装置3において、温度比較部は、各パワーモジュール(スイッチング素子制御回路)毎に設けられておらず、電力変換装置内に1つだけ設けられている(図10参照。)。
 温度比較部500は、各パワーモジュールPM1,PM2のスイッチング素子200,202の動作温度を受信して、電力変換装置内の全てのスイッチング素子の平均動作温度aveTを算出するとともに、対応するスイッチング素子200,202の動作温度と平均動作温度aveTとを比較し、比較した結果を各パワーモジュールPM1,PM2のゲート電圧制御部10,12へそれぞれ送信する。
 このように、実施形態4に係る電力変換装置3は、温度比較部の構成が実施形態1に係る電力変換装置1の場合とは異なるが、実施形態1に係る電力変換装置1の場合と同様に、各スイッチング素子制御回路100,102のゲート電圧制御部10,12は、温度検出部20,22で検出されたスイッチング素子200,202の動作温度T,T、及び、当該動作温度T,Tに基づいて算出された動作時の閾値電圧Vth,Vthを含む情報に基づいてゲート電圧を制御するため、動作時のスイッチング素子200,202の動作温度T,Tが初期閾値電圧Vth01,Vth02を測定したときのスイッチング素子200,202の初期温度T01,T02よりも高くなることに起因して動作時の閾値電圧Vth,Vthが初期閾値電圧Vth01,Vth02から変動する場合でも、動作時の閾値電圧Vth,Vthをわずかに超える電圧をゲート電極に印加することができる。従って、設計時の閾値電圧を用いて第3電極電圧を制御した場合と比較して、ターンオン期間及びターンオフ期間を短くすることができ、スイッチング損失を小さくすることができる。
 また、実施形態4に係る電力変換装置3によれば、ゲート電圧制御部10,12は、平均動作温度aveT、温度検出部20,22で検出されたスイッチング素子の動作温度T,T、及び、当該動作温度に基づいて算出された閾値電圧を含む情報に基づいてゲート電圧を制御するため、平均動作温度aveTと、対応するスイッチング素子の動作温度T,Tとの温度差に基づいてゲート電圧を制御することができる。各スイッチング素子200,202の動作温度にバラツキが生じた場合であっても、各スイッチング素子200,202に分担される電流のバランスにバラツキが生じ難くなる。従って、高温のスイッチング素子が速く劣化することを防ぐことができ、その結果、複数のパワーモジュールを並列に接続させて動作させる場合でも、装置としての寿命を長くすることができる。
 また、実施形態4に係る電力変換装置3によれば、電力変換装置内の全てのスイッチング素子の平均動作温度を算出するとともに、対応するスイッチング素子の動作温度と平均動作温度とを比較する温度比較部を備えるため、各パワーモジュール毎に温度比較部を備えた場合よりも接地面積が小さくて済み、小型化が可能となる。
 なお、実施形態4に係る電力変換装置3は、温度比較部の構成以外の点においては実施形態1に係る電力変換装置1と同様の構成を有するため、実施形態1に係る電力変換装置1が有する効果のうち該当する効果を有する。
 以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
(1)上記実施形態において記載した構成要素の数等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。
(2)上記各実施形態においては、2組のパワーモジュールを備えることとしたが、本発明はこれに限定されるものではない。3組以上のパワーモジュールを備えてもよい。
(3)上記各実施形態においては、スイッチング素子の動作温度と平均動作温度との温度差に対応した増加量(減少量)でゲート電圧を増加させる信号をゲート電圧制御部に送信することとしたが、本発明はこれに限定されるものではない。スイッチング素子の動作温度と平均動作温度との温度差に対応した増加量(減少量)以外の要素を用いて決定された増加量(減少量)でゲ―ト電圧を増加(減少)させる信号をゲート電圧制御部に送信してもよい。
(4)上記実施形態3においては、各スイッチング素子制御回路が初期閾値電圧測定モード、制御モード及び温度特性測定モードを実施する電力変換装置としたが、本発明はこれに限定されるものではない。例えば、各スイッチング素子制御回路が初制御モード及び温度特性測定モードのみを実施する電力変換装置であってもよい。このとき、初期閾値電圧Vth01、Vth02及び初期温度T01,02はあらかじめ記憶部に記憶されている。
(5)上記各実施形態においては、スイッチング素子における閾値電圧の温度特性に関する情報は、Vth=Vth-α(T-T)の関係を満たす特性式であるとしたが、本発明はこれに限定されるものではない。例えば、スイッチング素子における閾値電圧の温度特性に関する情報を、別の特性式としてもよいし、あらかじめ記憶部に記憶された温度-閾値電圧の関係(1対1)を示すデータであるとしてもよい。
(6)上記各実施形態においては、初期閾値電圧定モードにおいて、ゲート電圧制御部は、ゲート電圧が時間経過に伴って階段状に高くなるようにゲート電圧を制御したが、本発明はこれに限定されるものではない。例えば、ゲート電圧制御部は、ゲート電圧が時間経過に伴って振幅の大きなパルスとなるパルス状の電圧になるようにゲート電圧を制御してもよい(図11参照。)。
(7)上記各実施形態において、各パワーモジュールが1つのスイッチング素子を備えることとしたが、本発明はこれに限定されるものではない。パワーモジュールが複数のスイッチング素子を備えてもよい。この場合、パワーモジュールは当該複数のスイッチング素子を制御してもよい。
(8)上記各実施形態において、スイッチング素子は、GaNを含む材料により形成されたものであるが、本発明はこれに限定されるものではない。スイッチング素子は、SiCやGa等のワイドギャップ半導体を含む材料や、シリコンを含む材料により形成されたものであってもよい。
(9)上記実施形態においては、スイッチング素子として、MOSFETを用いたが、本発明はこれに限定されるものではない。スイッチング素子として、MOSFET以外のスイッチング素子(例えば、HEMT、IGBT等)を用いてもよい。
(10)上記各実施形態において、パワーモジュールの制御回路とパワー回路とを別々の半導体基体に形成してもよいし、パワーモジュールの制御回路とパワー回路とを同一の半導体基体に形成してもよい。また、スイッチング素子とスイッチング素子以外の回路部とを別々の半導体基体に形成してもよいし、スイッチング素子(例えば、GaNの横型構造の半導体素子)とスイッチング素子以外の回路部とを同一の半導体基体に形成してもよい。
 1,2,3…電力変換装置、10,12,910…ゲート電圧制御部、20,22…温度検出部、30,32,500…温度比較部、40、42…記憶部、50、52…閾値電圧算出部、60、62…閾値電圧測定用電源、70、72…スイッチング電流検出部、80、82…オン/オフ状態判定部、90…温度特性算出部、100,102…スイッチング素子制御回路、200,202,800…スイッチング素子、300…ゲートドライブ用電源、400…パワー回路、410…負荷抵抗、420…駆動電源、PM1,PM2,900…パワーモジュール、T,T01,T02…初期温度、T,T,T…動作温度、T11,T21…(+)側入力端子、T12,T22…(-)側入力端子、T13,T23…(+)側出力端子、T14,T24…(-)側出力端子、T15,T25…制御端子、T16,T26…端子、VDD…電源電圧、Vth…閾値電圧、Vth0、Vth01、Vth02…初期閾値電圧、Vth1、Vth…(動作時の)閾値電圧、Vth…温度特性測定時閾値電圧、aveT…平均動作温度、α…温度係数

Claims (12)

  1.  第1電極、第2電極、及び、第3電極を有するスイッチング素子と、前記スイッチング素子のオン/オフ動作を制御するために第3電極電圧を制御する第3電極電圧制御部、及び、前記スイッチング素子の動作温度を検出する温度検出部を有するスイッチング素子制御回路と、を有するパワーモジュールを2組以上備える電力変換装置であって、
     前記パワーモジュールは互いに並列に接続されており、
     前記スイッチング素子制御回路はそれぞれ、
     前記電力変換装置内の全ての前記スイッチング素子の平均動作温度を算出するとともに、対応する前記スイッチング素子の動作温度と前記平均動作温度とを比較する温度比較部をさらに有し、
     前記第3電極電圧制御部は、前記平均動作温度、前記温度検出部で検出された前記スイッチング素子の動作温度、及び、当該動作温度に基づいて算出された動作時の閾値電圧を含む情報に基づいて前記第3電極電圧を制御することを特徴とする電力変換装置。
  2.  前記温度比較部は、前記スイッチング素子の動作温度が前記平均動作温度よりも低い場合には、前記第3電極電圧を増加させる信号を前記第3電極電圧制御部に送信し、前記スイッチング素子の動作温度が前記平均動作温度よりも高い場合には、前記第3電極電圧を減少させる信号を前記第3電極電圧制御部に送信することを特徴とする請求項1に記載の電力変換装置。
  3.  前記温度比較部は、前記スイッチング素子の動作温度が前記平均動作温度よりも低い場合には、前記スイッチング素子の動作温度と前記平均動作温度との温度差に対応した増加量で前記第3電極電圧を増加させる信号を前記第3電極電圧制御部に送信し、前記スイッチング素子の動作温度が前記平均動作温度よりも高い場合には、前記スイッチング素子の動作温度と前記平均動作温度との温度差に対応した減少量で前記第3電極電圧を減少させる信号を前記第3電極電圧制御部に送信することを特徴とする請求項1に記載の電力変換装置。
  4.  前記温度検出部においては、温度検出素子として、サーミスタを用いることを特徴とする請求項1~3のいずれかに記載の電力変換装置。
  5.  前記各スイッチング素子制御回路は、
     前記スイッチング素子の初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報を記憶する記憶部と、
     前記温度検出部によって検出された前記スイッチング素子の前記動作温度、前記スイッチング素子の初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報に基づいて前記スイッチング素子の動作時の閾値電圧を算出する閾値電圧算出部とをさらに有し、
     前記第3電極電圧制御部は、当該動作温度に基づいて算出された動作時の閾値電圧として、前記閾値電圧算出部によって算出された前記動作時の閾値電圧を含む情報に基づいて前記第3電極電圧を制御することを特徴とする請求項1~4のいずれかに記載の電力変換装置。
  6.  前記スイッチング素子における閾値電圧の温度特性に関する情報は、前記スイッチング素子における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、前記初期閾値電圧をVthとし前記温度検出部によって検出された前記スイッチング素子の前記動作温度をTとし、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度をTとしたときに、Vth=Vth-α(T-T)の関係を満たす特性式であることを特徴とする請求項5に記載の電力変換装置。
  7.  前記各スイッチング素子制御回路は、対応する前記スイッチング素子の前記初期閾値電圧を測定する初期閾値電圧測定モードと、対応する前記スイッチング素子のオン/オフ動作を制御する制御モードとを実施するスイッチング素子制御回路であって、
     前記各スイッチング素子制御回路は、
     前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、
     前記スイッチング素子を流れる第1電極電流を検出する第1電極電流検出部と、
     前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部とをさらに有し、
     前記初期閾値電圧測定モードにおいて、
     前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、
     前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、
     前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の温度を記憶するとともに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の前記初期閾値電圧として記憶することを特徴とする請求項5又は6に記載の電力変換装置。
  8.  前記各スイッチング素子制御回路は、前記制御モードを所定時間実施した後に、前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードをさらに実施するスイッチング素子制御回路であって、
     前記各スイッチング素子制御回路は、
     前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部をさらに有し、
     前記温度特性測定モードにおいて、
     前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、
     前記オン/オフ状態判定部は、前記スイッチング電流検出部で検出された前記スイッチング電流に基づいて前記スイッチング素子がオンしたか否かを判定し、
     前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の前記動作温度を記憶するとともに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、
     前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することを特徴とする請求項7に記載の電力変換装置。
  9.  前記各スイッチング素子制御回路は、前記制御モードを所定時間実施した後に、対応する前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードを実施するスイッチング素子制御回路であって、
     前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、
     前記スイッチング素子を流れるスイッチング電流を検出するスイッチング電流検出部と、
     前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部と、
     前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部とをさらに備え、
     前記温度特性測定モードにおいては、
     前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、
     前記オン/オフ状態判定部は、前記スイッチング電流検出部で検出された前記スイッチング電流に基づいて前記スイッチング素子がオンしたか否かを判定し、
     前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、
     前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することを特徴とする請求項5又は6に記載の電力変換装置。
  10.  前記スイッチング素子は、MOSFET、IGBT又はHEMTであることを特徴とする請求項1~9のいずれかに記載の電力変換装置。
  11.  前記スイッチング素子は、GaN、SiC又はGaを含む材料により形成されたものであることを特徴とする請求項1~10のいずれかに記載の電力変換装置。
  12.  第1電極、第2電極、及び、第3電極を有するスイッチング素子と、前記スイッチング素子のオン/オフ動作を制御するために第3電極電圧を制御する第3電極電圧制御部、及び、前記スイッチング素子の動作温度を検出する温度検出部を有するスイッチング素子制御回路と、を有するパワーモジュールを2組以上備える電力変換装置であって、
     前記パワーモジュールは互いに並列に接続されており、
     前記電力変換装置は、
     前記電力変換装置内の全ての前記スイッチング素子の平均動作温度を算出するとともに、対応する前記スイッチング素子の動作温度と前記平均動作温度とを比較する温度比較部をさらに備え、
     前記第3電極電圧制御部は、前記平均動作温度、前記温度検出部で検出された前記スイッチング素子の動作温度、及び、当該動作温度に基づいて算出された動作時の閾値電圧を含む情報に基づいて前記第3電極電圧を制御することを特徴とする電力変換装置。
PCT/JP2017/047170 2017-12-28 2017-12-28 電力変換装置 WO2019130533A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/957,722 US11323032B2 (en) 2017-12-28 2017-12-28 Plural power modules conversion device with switch element control
PCT/JP2017/047170 WO2019130533A1 (ja) 2017-12-28 2017-12-28 電力変換装置
CN201780097963.XA CN111512528B (zh) 2017-12-28 2017-12-28 电力转换装置
JP2019561519A JP6934071B2 (ja) 2017-12-28 2017-12-28 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/047170 WO2019130533A1 (ja) 2017-12-28 2017-12-28 電力変換装置

Publications (1)

Publication Number Publication Date
WO2019130533A1 true WO2019130533A1 (ja) 2019-07-04

Family

ID=67066881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047170 WO2019130533A1 (ja) 2017-12-28 2017-12-28 電力変換装置

Country Status (4)

Country Link
US (1) US11323032B2 (ja)
JP (1) JP6934071B2 (ja)
CN (1) CN111512528B (ja)
WO (1) WO2019130533A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590128A (en) * 2019-10-28 2021-06-23 Sansha Electric Mfg Co Ltd Gate drive circuit
WO2022085495A1 (ja) * 2020-10-21 2022-04-28 ローム株式会社 パワートランジスタのコントローラおよび制御方法
JP7540392B2 (ja) 2021-05-26 2024-08-27 株式会社明電舎 並列接続半導体素子の温度バランス制御装置および温度バランス制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019213073A1 (de) * 2019-08-30 2021-03-04 Robert Bosch Gmbh Verfahren zum Betrieb parallel geschalteter Spannungswandler
CN112332648B (zh) * 2020-11-13 2022-09-27 山特电子(深圳)有限公司 一种主动平衡并联功率器件的热性能的装置和方法
CN114257087B (zh) * 2021-12-22 2023-09-19 中船重工黄冈水中装备动力有限公司 一种恒流供电装置及其均衡控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252896A (ja) * 1998-02-25 1999-09-17 Toshiba Corp Iegtのゲート制御装置
JP2014057006A (ja) * 2012-09-13 2014-03-27 Fuji Electric Co Ltd 半導体装置
WO2016125712A1 (ja) * 2015-02-04 2016-08-11 株式会社オートネットワーク技術研究所 電流検出回路、電流検出装置及び切替え装置
WO2017073150A1 (ja) * 2015-10-29 2017-05-04 株式会社日立製作所 電源装置及びその制御方法
JP2017225227A (ja) * 2016-06-14 2017-12-21 住友電気工業株式会社 電源装置及びコンピュータプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449174B1 (en) * 2001-08-06 2002-09-10 Fairchild Semiconductor Corporation Current sharing in a multi-phase power supply by phase temperature control
WO2009010476A1 (en) * 2007-07-13 2009-01-22 Powervation Limited A power converter
US8378656B2 (en) * 2008-09-19 2013-02-19 General Electric Company Quasi-AC, photovoltaic module for unfolder photovoltaic inverter
JP5443946B2 (ja) * 2009-11-02 2014-03-19 株式会社東芝 インバータ装置
CN103004092B (zh) 2011-05-11 2016-10-26 富士电机株式会社 绝缘栅开关元件的驱动电路
JP2014054042A (ja) * 2012-09-06 2014-03-20 Furukawa Electric Co Ltd:The 過電流保護回路
CN105052030B (zh) * 2013-03-15 2017-09-29 三菱电机株式会社 功率模块
CN105850019B (zh) * 2013-11-29 2018-04-06 新电元工业株式会社 电源装置以及电源装置的控制方法
JP2017184298A (ja) * 2016-03-28 2017-10-05 株式会社日立製作所 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252896A (ja) * 1998-02-25 1999-09-17 Toshiba Corp Iegtのゲート制御装置
JP2014057006A (ja) * 2012-09-13 2014-03-27 Fuji Electric Co Ltd 半導体装置
WO2016125712A1 (ja) * 2015-02-04 2016-08-11 株式会社オートネットワーク技術研究所 電流検出回路、電流検出装置及び切替え装置
WO2017073150A1 (ja) * 2015-10-29 2017-05-04 株式会社日立製作所 電源装置及びその制御方法
JP2017225227A (ja) * 2016-06-14 2017-12-21 住友電気工業株式会社 電源装置及びコンピュータプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590128A (en) * 2019-10-28 2021-06-23 Sansha Electric Mfg Co Ltd Gate drive circuit
US11901882B2 (en) 2019-10-28 2024-02-13 Sansha Electric Manufacturing Co., Ltd. Gate drive circuit
GB2590128B (en) * 2019-10-28 2024-05-29 Sansha Electric Mfg Co Ltd Gate drive circuit
WO2022085495A1 (ja) * 2020-10-21 2022-04-28 ローム株式会社 パワートランジスタのコントローラおよび制御方法
JP7540392B2 (ja) 2021-05-26 2024-08-27 株式会社明電舎 並列接続半導体素子の温度バランス制御装置および温度バランス制御方法

Also Published As

Publication number Publication date
JPWO2019130533A1 (ja) 2020-11-19
US20200373826A1 (en) 2020-11-26
US11323032B2 (en) 2022-05-03
JP6934071B2 (ja) 2021-09-08
CN111512528B (zh) 2024-02-09
CN111512528A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2019130533A1 (ja) 電力変換装置
US10979043B2 (en) Switching element control circuit and power module
JP6924277B2 (ja) パワーモジュール
NL2020745B1 (en) Switching element control circuit and power module
WO2019123643A1 (ja) パワーモジュール
JP6894978B2 (ja) スイッチング素子制御回路及びパワーモジュール
US11381149B2 (en) Switching element control circuit and power module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936525

Country of ref document: EP

Kind code of ref document: A1