WO2019124135A1 - 成膜方法 - Google Patents
成膜方法 Download PDFInfo
- Publication number
- WO2019124135A1 WO2019124135A1 PCT/JP2018/045260 JP2018045260W WO2019124135A1 WO 2019124135 A1 WO2019124135 A1 WO 2019124135A1 JP 2018045260 W JP2018045260 W JP 2018045260W WO 2019124135 A1 WO2019124135 A1 WO 2019124135A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- substrate
- aerosol
- film forming
- base material
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/06—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/12—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/32—Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2201/00—Polymeric substrate or laminate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/02—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
- B05D3/0218—Pretreatment, e.g. heating the substrate
Definitions
- the present invention relates to a deposition method by aerosol deposition.
- a raw material liquid containing a film forming material is aerosolized, and the generated aerosol is transported by a carrier gas to be supplied to a base material to vaporize a solvent in the aerosol attached to the substrate.
- a technique for forming a film forming material is known. This film formation technique is also called aerosol deposition.
- Patent Document 1 a sol-gel solution containing water, a film raw material and an organic solvent for dissolving the film raw material is sprayed by ultrasonic vibration or the like to aerosolize the sol-gel solution, and the substrate vibrates at 15 kHz to 2 MHz.
- a thin film forming method is described in which an aerosol is deposited to form a thin film layer.
- Patent Document 2 as a method for producing an organic electroluminescent thin film, a raw material liquid in which an organic material serving as a raw material of a light emitting layer or a carrier transport layer of an organic electroluminescent element is dissolved or dispersed in a solvent is aerosolized. It is described that a thin film of an organic material is formed on a substrate by depositing fine particles of the organic material generated by vaporizing a solvent in an aerosol on the substrate (substrate).
- Aerosol deposition involves deposition by means of an aerosol which is very small compared to droplets such as inkjet and spray applications. Therefore, according to the aerosol deposition, a film having a uniform thickness can be precisely formed with high followability (coverage) to the unevenness of the base material and the like.
- aerosol deposition has a problem that the deposition rate is slow, and it takes a long time to deposit a film of a target thickness even if it is a thin film.
- An object of the present invention is to solve the problems of the prior art as described above, and to provide a film forming method capable of improving a film forming rate in film formation by aerosol deposition.
- a film forming method comprising aerosolizing a raw material liquid containing a film forming material, supplying the aerosol to a substrate vibrating at a frequency of 10 kHz or less, and forming a film forming material on the substrate.
- the film forming method of the present invention it is possible to improve the film forming speed of film formation by aerosol deposition.
- FIG. 1 is a conceptual view for explaining an example of the film forming method of the present invention.
- FIG. 2 is a conceptual diagram for explaining another example of the film forming method of the present invention.
- FIG. 3 is a conceptual diagram for explaining another example of the film forming method of the present invention.
- the film forming apparatus 10 shown in FIG. 1 is an apparatus for forming a film on the base material Z by the above-described aerosol deposition, and includes an aerosol generating unit 12 and a film forming unit 14.
- the aerosol generating unit 12 and the film forming unit 14 are connected by a guiding pipe 16.
- the film forming method of the present invention is basically formed by known aerosol deposition (mist deposition) except that the substrate Z is vibrated at 10 kHz or less to supply the aerosol A to the substrate Z. It is a membrane. That is, in the film forming apparatus 10 for carrying out the film forming method of the present invention, the film forming unit 14 has the vibrating unit 34 described later, and the substrate Z is 10 kHz or less by the vibrating unit 34 while supplying the aerosol A. Basically, film formation is performed by known aerosol deposition, except for vibration at a frequency of.
- the film forming apparatus 10 is not limited to the illustrated members, but may be a supply means of the raw material liquid L, a collection means of the aerosol A (raw material liquid L) not used for the film formation, a cleaning means of the carrier gas, etc. You may have the various members which the well-known apparatus which forms into a film by deposition has.
- the aerosol generation unit 12 aerosolizes the raw material liquid L obtained by dissolving or dispersing the film forming material in a solvent or a dispersion medium, and supplies the generated aerosol A to the induction pipe 16.
- the aerosol A is sent to the film forming unit 14 through the induction pipe 16.
- the aerosol generating unit 12 includes a raw material container 20 for containing the raw material liquid L, a container 24 for containing a part of the raw material container 20, and an ultrasonic transducer 26 disposed on the bottom of the container 24.
- gas supply means 28 for supplying a carrier gas for sending the aerosol A to the film forming unit 14.
- Water W is contained in the container 24.
- the water W is accommodated in the container 24 in order to transmit the ultrasonic waves generated by the ultrasonic transducer 26 to the raw material liquid L. Therefore, the ultrasonic transducer 26 is immersed in the water W. Further, at least a part of the container 24 accommodating the raw material container 20 is also immersed in the water W.
- the ultrasonic transducer 26 vibrates, the water W propagates ultrasonic vibration to ultrasonically vibrate the raw material container 20, and ultrasonically vibrates the raw material liquid L stored in the raw material container 20.
- the raw material liquid L is aerosolized, and an aerosol A of the raw material liquid L is generated. That is, the raw material container 20, the container 24, and the ultrasonic transducer 26 constitute a so-called ultrasonic atomizer.
- the method of ultrasonically vibrating the raw material liquid L is not limited to ultrasonic vibration of the raw material liquid L by propagating ultrasonic waves using water W, that is, an intermediate solution.
- a method of disposing the ultrasonic transducer 26 on the lower surface of the raw material container 20 and ultrasonically vibrating the raw material liquid L through the raw material container 20, and disposing the ultrasonic transducer 26 on the bottom surface of the raw material container 20 A known method may be used which is used for ultrasonic vibration of the raw material liquid L in aerosol deposition, such as a method of ultrasonically vibrating the raw material liquid L directly.
- the film forming material (film to be formed) is not limited, and various materials which can be formed by aerosol deposition can be used.
- the solvent or dispersion medium used for preparation of the raw material liquid L there is no restriction on the solvent or dispersion medium used for preparation of the raw material liquid L, and various liquids can be used as long as the film forming material can be dissolved or dispersed depending on the film forming material.
- examples include amides such as methyl ethyl ketone and N, N-dimethylformamide, sulfoxides such as dimethyl sulfoxide, heterocyclic compounds such as pyridine, hydrocarbons such as benzene and oxalic acid, alkyl halides such as chloroform and dichloromethane, methyl acetate and butyl acetate And esters such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethers such as tetrahydrofuran and 1,2-dimethoxyethane, and organic solvents such as alkyl alcohols such as methanol, ethanol and
- water is also illustrated as a solvent or a dispersing agent.
- water it is preferable to use any of ion exchange water, distilled water and pure water.
- the solvent and the dispersion medium may be used as a mixture of two or more.
- the raw material liquid L may contain various binders, coupling agents, and the like for the purpose of improving the adhesion of the film after film formation, improving the film strength, and the like, as necessary. Moreover, the raw material liquid L may also contain a polymerizable monomer in order to raise the film hardness of the film formed as needed.
- the ultrasonic transducer 26 is not limited, and various types of ultrasonic transducers (means for generating ultrasonic vibrations) used for aerosolizing (forming into mist) of the raw material liquid L can be used in aerosol deposition.
- the frequency of ultrasonic vibration by the ultrasonic transducer 26 is not limited, and the frequency of ultrasonic vibration that can aerosolize the raw material liquid L may be appropriately set according to the composition of the raw material liquid L and the like.
- the frequency of ultrasonic vibration for aerosolizing the raw material liquid L is about 15 kHz to 3 MHz.
- the particle size of the aerosol A can be adjusted by adjusting the density (concentration) of the raw material liquid L, the surface tension of the raw material liquid L, and the frequency of ultrasonic vibration.
- the particle size of the aerosol A in the aerosol deposition is such that at least a part of the induction pipe 16 is formed of a light transmitting material, and the laser sheet light is made incident in the induction pipe 16 using a laser sheet light source for visualization It can also be measured by taking an image and analyzing the image. Further, aerosol A may be visualized to measure the particle size of aerosol A using a commercially available microparticle visualization system. Examples of the particle visualization system include ViEST manufactured by Shin Nippon Air Conditioning Co., Ltd., and the like. In addition, when visualizing aerosol A and measuring (calculating) a diameter, you may image-process as needed.
- the particle size of the aerosol A is not limited, but is preferably 20 to 50 ⁇ m, more preferably 10 to 20 ⁇ m, and still more preferably 1 to 10 ⁇ m.
- the particle size of the aerosol A is basically from the generation of the aerosol A to the movement in the induction pipe 16 to the adhesion to the substrate Z, except in the case where the particle size changes unexpectedly due to the collision of the aerosols A and the like. , Considered the same.
- the aerosolization of the raw material liquid L is not limited to the ultrasonic vibration of the raw material liquid L, and various known aerosolization methods of the raw material liquid L used in aerosol deposition are used. It is possible.
- a pressure type, a rotating disc type, an orifice vibration type and an electrostatic type are illustrated as an example.
- the pressurized method is a method of aerosolizing by colliding a gas whose pressure is increased and the flow rate is increased with a liquid.
- the rotating disc type is a method in which the liquid dropped onto the high speed rotating disc is aerosolized at the end of the disc by centrifugal force.
- the orifice vibration type is a method of cutting and aerosolizing a droplet by applying vibration when passing the droplet through an orifice having fine holes.
- the electrostatic type is a method of aerosolizing a liquid by applying a DC or AC voltage to a capillary through which a droplet passes.
- the gas supply means 28 is for introducing a carrier gas into the raw material container 20 via the gas supply pipe 28a.
- the aerosol A suspended in the source container 20 is transported from the source container 20 by the carrier gas supplied from the gas supply means 28, and is transported from the induction pipe 16 to the film forming unit 14.
- the gas supply means 28 is not limited, and various known gas supply means used for supply of carrier gas in aerosol deposition, such as fans, blowers, gas cylinders, and compressed air, can be used.
- the carrier gas may be supplied to the raw material container 20 by suction from the discharge port 30 a of the film forming unit 14 described later.
- the amount of gas supplied by the gas supply means 28 is also not limited.
- the gas supply means 28 supply a carrier gas so that the gas flow in the raw material container 20, the induction piping 16, and the film forming unit 14 (in the casing 30 described later) becomes a laminar flow.
- a film of uniform thickness can be formed on the surface of the substrate Z by making the gas by the carrier gas a laminar flow.
- the amount of carrier gas supplied by the gas supply means 28 is preferably 3 ⁇ 10 -3 to 5 ⁇ 10 -3 m 3 / min, and more preferably 1 ⁇ 10 -3 to 3 ⁇ 10 -3 m 3 / min.
- the carrier gas is also not limited, and inert gas such as argon and nitrogen, air, gas itself obtained by aerosolizing a film forming material, and gas formed by aerosolizing another film forming material
- inert gas such as argon and nitrogen, air, gas itself obtained by aerosolizing a film forming material, and gas formed by aerosolizing another film forming material
- gases are available, such as those used as carrier gases in aerosol deposition.
- the film forming unit 14 includes a casing 30, a support 32 that supports the base material Z, and a casing vibration device 34.
- the support 32 is disposed in the casing 30, and the vibration device 34 is fixed in contact with the lower surface of the casing 30.
- the substrate Z is not limited, and various films used as a substrate can be used in film formation by aerosol deposition.
- polyethylene PE
- polyethylene naphthalate PEN
- polyamide PA
- polyethylene terephthalate PET
- polyvinyl chloride PVC
- polyvinyl alcohol PVA
- polyacritonitrile PAN
- polyimide PI
- Transparent polyimide polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), cycloolefin copolymer
- a resin film comprising a resin material such as combined (COC), cycloolefin polymer (COP), triacetyl cellulose (TAC), and ethylene-vinyl alcohol copolymer (EVOH);
- Polylactic acid polyg
- a microchannel chip substrate such as ⁇ -TAS (micro-Total Analysis Systems), various circuit substrates on a silicon wafer, a bio-template substrate, and the like can also be used. That is, in the film forming method of the present invention, various members having irregularities on the surface can also be used as the substrate Z.
- surface treatment may be performed on the film formation surface of the base material Z, if necessary.
- Various treatments can be used for the surface treatment of the substrate Z according to the type of the solvent (dispersion medium) contained in the raw material liquid L and the film forming material.
- As surface treatment of substrate Z corona treatment and plasma treatment which improve lyophilicity (paintability) are illustrated, for example.
- hydrophilization treatment of the substrate Z by UV (ultraviolet) irradiation, ozone irradiation, UV ozone cleaning or the like is also effective.
- a rubbing process may be performed to give the substrate Z an orientation.
- a general method of rubbing treatment is described, for example, in "Liquid Crystal Handbook" (Maruzen, published on October 30, 2000).
- Such surface treatment of the base material Z may be performed by any known method.
- the formation of the base layer may be performed by a known method such as a coating method and a printing method depending on the base layer to be formed.
- the film-forming surface of the substrate Z has a region having lyophilicity to the raw material liquid L and a region having liquid repellency to the raw material liquid L. It is also good.
- having lyophilic means that the contact angle between the film-forming surface of the substrate Z and the raw material liquid L is less than 90 °.
- having liquid repellency means that the contact angle between the film-forming surface of the base material Z and the raw material liquid L is 90 ° or more.
- lyophilic region a region having lyophilicity with respect to the raw material liquid L is referred to as “lyophilic region”, and a region having liquid repellency with respect to the raw material liquid L Area], also known as.
- the aerosol A is almost uniformly supplied to the entire surface of the base material Z. That is, in aerosol deposition, selective partial film formation can not be performed on the substrate Z.
- the aerosol A is removed from the liquid repellent area, and the aerosol selectively in the lyophilic area.
- A can be deposited and patterned by aerosol deposition to form a film on the substrate Z.
- a target wiring pattern can be formed by forming a wiring pattern in a lyophilic area and forming a film by aerosol deposition with the other area as a liquid repellent area.
- the aerosol is supplied to the substrate Z while vibrating the substrate Z, the aerosol A is efficiently moved from the liquid repellent area to the lyophilic area and patterned It is possible to perform film formation suitably.
- the formation of a lyophilic area on the substrate Z, ie, the lyophilic treatment, and the formation of the liquid repellent area, ie, the liquid repellent treatment use known methods It is possible.
- the entire surface of the substrate Z is subjected to UV ozone treatment for hydrophilization treatment, and then a fluorine-based surfactant is coated on the water repellent region by micro contact printing or the like.
- the method of forming a water repellent pattern is exemplified by the following method.
- the support 32 is a support means for mounting and supporting the substrate Z.
- the support means for the base material Z is not limited to the support 32 on which the base material Z is placed, and any known sheet such as a support means for holding the end of the sheet Various means for supporting the sheet (plate, film) can be used.
- a roller for conveying the base material Z in the supply part of the aerosol A, and a drum (can) for winding and conveying the base material Z in the supply part of the aerosol A Acts as a support for the substrate Z.
- the roller which conveys the substrate Z is, for example, a conveyance roller, a conveyance roller pair, or the like.
- the vibration device 34 is for vibrating the base material Z at a frequency of 10 kHz or less when supplying the aerosol A to the base material Z.
- the support 32 is provided in contact with the bottom surface (inner wall surface) of the casing 30.
- the excitation device 34 is provided in contact with the lower surface of the casing 30. Therefore, when the vibration device 34 vibrates the casing 30, the support 32 vibrates, and the substrate Z supported by the support 32 vibrates.
- the aerosol A is supplied to the substrate Z while vibrating the substrate Z at a frequency of 10 kHz or less.
- the film formation method of the present invention improves the film formation rate by aerosol deposition by having such a configuration.
- film formation by aerosol deposition can accurately form a film of uniform thickness with high coverage (coverage).
- the film formation by aerosol deposition has a problem that the film formation rate, ie, the film formation rate, is low, and it takes time to form a film having a target thickness, resulting in low productivity.
- the aerosol A is supplied to the base material Z while vibrating the base material Z at a frequency of 10 kHz or less in the film formation by aerosol deposition.
- the film forming method of the present invention thereby improves the film forming rate in film formation by aerosol deposition.
- the reason why the film forming speed is improved by supplying the aerosol A to the substrate Z while vibrating the substrate Z at a frequency of 10 kHz or less is not clear, but is presumed as follows.
- the aerosol A adheres to the substrate Z, and the solvent evaporates, whereby the film formation by the film formation material contained in the aerosol A is performed.
- the aerosol A adheres to the substrate Z and is dried to form a film in a sea-island manner.
- the aerosol A which has not been fixed to the base material Z is discharged from the base material Z as it falls.
- the film forming method of the present invention for supplying the aerosol A while vibrating the base material Z the reciprocating movement of the base material Z can prevent the aerosol A from rolling off from the base material and the aerosol A is By moving on the material Z, the aerosols A collide with each other, the droplets of the aerosol A become large, and it becomes easy to be fixed on the substrate Z, and as a result, it is considered that the film forming speed is improved.
- the frequency of vibration of the substrate Z is 10 kHz or less.
- the aerosols A combine to form a liquid close to the raw material liquid L before the solvent evaporates.
- the base material Z is vibrated at a frequency of more than 10 kHz
- the liquid close to the raw material liquid L attached to the base material Z is ultrasonically vibrated, and is again converted into an aerosol A, from the surface of the base material Z I will leave. Therefore, when the base material Z is vibrated at a frequency of more than 10 kHz, the film forming speed becomes slow.
- the frequency of vibration of the substrate Z is preferably 10 kHz or less, more preferably 5 kHz or less, and still more preferably 1 kHz or less.
- the lower limit of the vibration frequency of the substrate Z is not limited. In order to obtain the improvement effect of the film-forming speed more suitably, 50 Hz or more is preferable, as for the frequency of a vibration of the base material Z, 100 Hz or more is more preferable, and 200 Hz or more is more preferable.
- the speed of vibration of the substrate Z is not limited. However, in order to obtain the improvement effect of the film forming rate more suitably, it is preferable to vibrate the substrate Z at a certain speed or more.
- the speed of vibration of the substrate Z is preferably 0.1 mm / sec or more, more preferably 0.5 mm / sec or more, and still more preferably 1 mm / sec or more.
- the speed of vibration of the base material Z is too fast, the load on the device increases, the load on the base material Z increases, the aerosol A easily falls from the base material Z, and before the aerosol A moves Problems such as drying out may occur. Therefore, 10 mm / sec or less is preferable, as for the amplitude of a vibration of the base material Z, 8 mm / sec or less is more preferable, and 5 mm / sec or less is more preferable.
- the vibrating device 34 is not limited, and various known vibrating means capable of vibrating the support 32 depending on the support 32 supporting the base material Z can be used.
- the support (support means) for supporting the base material Z includes a roller and the like in roll-to-roll as described above.
- the vibration device 34 may be, for example, a vibration unit using a piezo element, a vibration motor (eccentric motor), a vibration unit using a movable coil, a vibration unit using an air actuator, a hydraulic actuator or the like.
- a commercially available vibration device (vibration device) can also be suitably used as the vibration device 34.
- the method of vibrating the substrate Z is not limited to the method of vibrating the supporting means of the substrate Z.
- the aerosol A to the substrate Z
- the speaker Means etc. which irradiate a sound wave to substrate Z and vibrate it, etc., etc. are suitably usable as a vibration means of substrate Z.
- the substrate Z vibrates at a frequency of 10 kHz or less.
- the timing of starting the vibration of the substrate Z is no limitation on the timing of starting the vibration of the substrate Z, but it is preferable to start the vibration of the substrate Z before the supply of the aerosol A to the substrate Z is started.
- the driving of the ultrasonic transducer 26 is started. It is preferred to initiate aerosolization.
- the base material Z in order to suitably improve the film forming speed, in a state where the aerosol A is supplied to the base material Z, the base material Z is always vibrated at a frequency of 10 kHz or less. Is preferred. By starting vibration of the base material Z before starting supply of the aerosol A to the base material Z, when supplying the aerosol A, the base material Z can be reliably vibrated.
- the vibration of the base material Z may be in the plane direction of the main surface of the base material Z or in the direction orthogonal to the main surface of the base material Z. It may be vibration including both directions of the direction and the direction orthogonal to the main surface of the substrate Z.
- the main surface is the largest surface of the sheet (film, plate).
- the vibration of the base material Z may be a linear reciprocating motion or a vibration of a trace that draws a shape such as a circle, an ellipse, and a polygon.
- the heating temperature of the substrate Z is not limited, and the temperature at which the Leidenfrost phenomenon occurs may be appropriately set according to the solvent used for the raw material liquid L.
- the heating of the substrate Z is preferably performed such that the temperature of the surface of the substrate Z is 100 ° C. or more, and more preferably 150 ° C. or more.
- the upper limit of the heating temperature may be a temperature at which the base material Z is not damaged depending on the forming material of the base material Z.
- various known methods for heating a sheet such as a method using a heater or the like, can be used.
- the operation of the film forming apparatus 10 shown in FIG. 1 will be described.
- the ultrasonic transducer 26 when the ultrasonic transducer 26 ultrasonically vibrates in a state where the raw material liquid L is stored in the raw material container 20, the ultrasonic wave is transmitted to the raw material liquid L through the water W, and the raw material liquid L vibrates ultrasonically.
- the raw material liquid L By ultrasonic vibration of the raw material liquid L, the raw material liquid L is aerosolized.
- generated by aerosolization of the raw material liquid L will be in the state which floated above.
- the carrier gas is supplied from the gas supply means 28 into the raw material container 20 via the gas supply pipe 28a.
- the aerosol A floating in the raw material container 20 is conveyed from the raw material container 20 to the induction pipe 16 by the carrier gas, and is conveyed from the induction pipe 16 into the casing 30 of the film forming unit 14.
- the aerosol A may be concentrated, for example, by heating the induction piping 16 as necessary.
- the aerosol A is transported into the casing 30 of the film forming unit 14, the aerosol A is supplied to the substrate Z placed on the support 32.
- the solvent is evaporated from the aerosol A supplied (adhered) to the substrate Z, and the film forming material contained in the aerosol A (raw material liquid L) is deposited on the substrate Z.
- the aerosol A which has not been provided for film formation is discharged from the discharge port 30 a of the casing 30.
- the film forming speed can be improved, and compared with ordinary aerosol deposition, faster.
- a film of desired film thickness can be obtained.
- a thicker film can be obtained if the film formation time is the same.
- the film may be activated by ultraviolet light, electron beam, and radiation such as alpha rays, beta rays and gamma rays. Radiation may be emitted.
- the film forming material is a polymerizable liquid crystal compound
- the film may be formed on the substrate Z, and then the film may be irradiated with ultraviolet light to cure (polymerize) the polymerizable liquid crystal compound.
- produces an ultraviolet-ray
- a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, LED etc. are illustrated, for example.
- the film-forming method of the present invention can also utilize roll-to-roll film formation, which was difficult to use in conventional aerosol deposition.
- the roll-to-roll means that the base material Z is fed from the base material roll in which the long base material Z is wound in a roll, and the long base material Z is conveyed in the longitudinal direction.
- This is a manufacturing method in which the substrate Z is continuously subjected to a treatment such as film formation, and the treated substrate Z is wound again in a roll shape.
- productivity can be greatly improved.
- roll-to-roll is also referred to as "RtoR".
- FIG. 2 conceptually shows an example in which the film forming method of the present invention is used for RtoR.
- the film-forming apparatus shown in FIG. 2 uses many members same as the film-forming apparatus 10 shown in FIG. 1, the same code
- the long base material Z is transported by the transport roller 42 and the transport roller 46 in the longitudinal direction (arrow x direction in the figure). In addition, it may replace with a conveyance roller and may use a conveyance roller pair.
- the casing 30A of the film forming unit 14A is a rectangular casing whose lower surface is open.
- the vibration device 34 is disposed below the base material Z so as to sandwich the base material Z together with the casing 30A.
- the casing 30A is provided between the transport roller 42 and the transport roller 46 in the transport direction of the substrate Z. Accordingly, in the film forming apparatus 40, the transport roller 42 and the transport roller 46 serve as a support for the substrate Z.
- the substrate Z is transported in the longitudinal direction by the transport roller 42 and the transport roller 46, and is supplied with the aerosol A when passing under the casing 30A, and is deposited.
- the substrate Z is vibrated at a frequency of 10 kHz or less by the vibration device 34 disposed below the casing 30A. Therefore, as described above, the deposition rate by aerosol deposition can be improved, and the deposition by RtoR can be suitably coped with.
- RtoR as the vibrating device 34, an air blowing means for blowing and vibrating the base material Z and a means for irradiating and vibrating a sound wave to the base material Z such as a speaker are suitably usable as described above That's right.
- the base material Z may be vibrated by vibrating the transport roller 42 and / or the transport roller 46 as the support means.
- the vibration applying apparatus 34 vibrate the base material Z from the upstream side of the casing 30A. It is preferable to vibrate the substrate Z from immediately downstream.
- the surface treatment, the lyophilic treatment, the lyophobic treatment, and the like may be performed prior to the supply of the aerosol A to the substrate Z.
- an apparatus (processing member) for performing these treatments is disposed upstream of the casing 30A, and the substrate Z subjected to surface treatment, lyophilic treatment, lyophobic treatment, etc.
- the film formation according to the present invention may be performed.
- a water repellent pattern transfer device 54 is provided upstream of the film forming device 40 (casing 30A), and a UV ozone treatment device 52 is provided upstream of the water repellent pattern transfer device 54.
- a UV ozone treatment device 52 is provided upstream of the water repellent pattern transfer device 54.
- water is used as a solvent of the raw material liquid L.
- the whole surface of the base material Z is subjected to UV ozone treatment by the UV ozone treatment apparatus 52 to hydrophilize the whole surface of the base material Z Do.
- a water repellent pattern formed by micro contact printing or the like is transferred from the transfer roller 54 a to the surface of the base material Z whose entire surface is hydrophilized by the water repellent pattern transfer device 54. Thereby, a pattern of hydrophilic regions and water repellent regions is formed on the surface of the substrate Z. Thereafter, while the base material Z is transported, a film is formed on the base material Z on which such patterns of hydrophilic regions and water repellent regions are formed by the film forming apparatus 40 which performs the film forming method of the present invention. As a result, it is possible to pattern only the hydrophilic region and attach the aerosol A, and to pattern the film formation material to form a film.
- the substrate Z to be conveyed is sequentially subjected to hydrophilization treatment by the UV / ozone treatment device 52 and transfer of a water repellent pattern by the water repellent pattern transfer device 54 while being arranged and conveyed by the conveying means.
- the present invention is also applicable to a manufacturing method of forming a film by the film forming apparatus 40 which performs the film forming method of
- Example 1 The raw material liquid of the following composition was prepared.
- the prepared raw material liquid had a density of 0.89 g / cm 3 and a surface tension of 22 mN / m.
- the density of the raw material solution was measured in accordance with JIS Z 8804: 2012.
- the surface tension of the raw material liquid was measured by the hanging drop method (pendant drop method).
- LC-1-1 80 parts by mass Polymerizable liquid crystal compound (LC-2) 20 parts by mass Photopolymerization initiator (manufactured by Ciba Japan, Irgacure 907) 3 parts by mass Fluoropolymer (Compound 1 below) 0.3 parts by mass-Methyl ethyl ketone 170 parts by mass---------------------------------------------------------------------
- a 100 ⁇ m thick PET film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) was prepared.
- the PET film was cut into 257 ⁇ 182 mm to make a substrate.
- the substrate was subjected to rubbing treatment.
- the rubbing treatment was performed using a rayon cloth under a pressure of 0.1 kgf, a rotation speed of 1000 rpm, and a conveyance speed of 10 m / min.
- the substrate subjected to the rubbing treatment was placed on the support of the film forming unit of the film forming apparatus as shown in FIG.
- the raw material liquid prepared previously was accommodated in the raw material container of the aerosol production
- the ultrasonic transducer of the aerosol generation unit was vibrated at 1.7 MHz to start aerosolization of the raw material liquid. Therefore, in this example, the particle size of the aerosol calculated by the above equation is 2.5 ⁇ m.
- IM4-36D manufactured by Hoshi Kogakuen Co., Ltd. was used.
- the aerosol was supplied to the substrate (PET film) placed on the support for 60 seconds to perform film formation on the surface (rubbed surface) of the substrate.
- the base material was taken out of the film formation unit, and heated at a temperature of 80 ° C. and a hot air flow of 2 m / min for 60 seconds. After that, it is placed on a hot plate at 30 ° C. and irradiated with ultraviolet light for 6 seconds using an ultraviolet irradiator (Fusion UV Systems, an electrodeless lamp “D bulb”, illuminance 60 mW / cm 2 ) to fix the liquid crystal layer , A liquid crystal film was formed. The thickness of the formed liquid crystal film was 4.0 ⁇ m. The film thickness of the liquid crystal film was measured by a reflection spectroscopy film thickness meter (FE3000, manufactured by Otsuka Electronics Co., Ltd.).
- FE3000 reflection spectroscopy film thickness meter
- Example 2 The frequency of vibration of the substrate was changed to 1000 Hz (Example 2), 500 Hz (Example 3), 50 Hz (Example 4), 5 Hz (Example 5), and 15000 Hz (Comparative Example 1). A liquid crystal film was formed in the same manner as in Example 1, and the film thickness was measured. Comparative Example 2 A liquid crystal film was formed in the same manner as in Example 1 except that the substrate was not vibrated, and the film thickness was measured.
- Example 6 A liquid crystal film was formed in the same manner as in Example 1 except that the substrate was heated so that the surface temperature would be 100 ° C. by heating the support, and the film thickness was measured. As a result, the thickness of the formed liquid crystal film was 4.5 ⁇ m. That is, by heating the base material, it was possible to form a thicker liquid crystal film as compared to Example 1 in which the film formation was performed on the base material at normal temperature. The normal temperature is 25 ° C.
- Example 7 A liquid crystal film was formed in the same manner as in Example 1 in the same manner as in Example 1 except that vibration of the base material was started 20 seconds after the supply of the carrier gas, that is, the film formation was started, and the film thickness was measured. As a result, the thickness of the formed liquid crystal film was 2.8 ⁇ m. That is, after vibration of the base material was started, the ultrasonic transducer of the aerosol generation unit was vibrated to start aerosolization of the raw material solution, but a thick film could be formed although thinner than in Example 1.
- the substrate is vibrated at a frequency of 10 kHz or less at the time of supply of the aerosol, it is possible to improve the film formation rate of film formation by aerosol deposition.
- a sufficiently thick film can be formed as compared with the prior art.
- a thicker film can be formed, that is, the film formation rate by film formation by aerosol deposition can be improved.
- a thicker film can be formed by starting the vibration of the substrate before starting the aerosolization of the raw material liquid, that is, the film formation of the film formation by the aerosol deposition Speed can be improved.
- Comparative Example 1 in which the substrate was vibrated at 15000 kHz, although the aerosol attached to the substrate was considered to be separated as an aerosol again without being held as a liquid, although the substrate was vibrated.
- the film thickness of the formed liquid crystal film is very thin, that is, the film forming speed is slow.
- Comparative Example 2 in which the substrate was not vibrated, film formation at a sufficient film forming speed was not performed. From the above results, the effects of the present invention are clear.
- it can be suitably used for the production of an optical element, the production of a semiconductor element, the production of an electric element, the production of a solar cell, and the like.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
エアロゾルデポジションによる成膜において、成膜速度を向上できる成膜方法の提供を課題とする。成膜材料を含む原料液をエアロゾル化、10kHz以下の周波数で振動する基材に生成したエアロゾルを供給して、基材に成膜材料を含む膜を成膜することにより、課題を解決する。
Description
本発明は、エアロゾルデポジションによる成膜方法に関する。
薄膜の製造技術として、成膜材料を含む原料液をエアロゾル化して、生成したエアロゾルをキャリアガスで搬送することで基材に供給して、基板に付着したエアロゾル中の溶媒を気化させることにより、成膜材料を成膜する技術が知られている。この成膜技術は、エアロゾルデポジションとも呼ばれている。
例えば、特許文献1には、水、膜原料および膜原料を溶解する有機溶媒を含有するゾルゲル溶液を超音波振動等によって噴霧してゾルゲル溶液をエアロゾル化して、15kHz~2MHzで振動する基板に、エアロゾルを付着させて薄膜層とする薄膜形成方法が記載されている。
また、特許文献2には、有機エレクトロルミネッセンス薄膜の作製方法として、有機エレクトロルミネッセンス素子の発光層またはキャリア輸送層の原料となる有機材料が溶媒中に溶解または分散している原料液をエアロゾル化して、エアロゾル中の溶媒を気化させることにより生成する有機材料の微粒子を基材(基板)上に付着させることによって、基材に有機材料の薄膜を形成することが記載されている。
エアロゾルデポジションは、インクジェットおよびスプレー塗布等の液滴に比して非常に小さいエアロゾルによって成膜を行う。
そのため、エアロゾルデポジションによれば、基材の凹凸等に対して高い追従性(カバレッジ性)で、厚さが均一な膜を精密に成膜できる。
そのため、エアロゾルデポジションによれば、基材の凹凸等に対して高い追従性(カバレッジ性)で、厚さが均一な膜を精密に成膜できる。
その反面、エアロゾルデポジションは、成膜速度が遅く、薄膜であっても、目的とする厚さの膜を成膜するまでに時間がかかるという問題がある。
本発明の目的は、このような従来技術の問題点を解決することにあり、エアロゾルデポジションによる成膜において、成膜速度を向上できる成膜方法を提供することにある。
この課題を解決するために、本発明は、以下の構成を有する。
[1] 成膜材料を含む原料液をエアロゾル化して、10kHz以下の周波数で振動する基材にエアロゾルを供給して、基材に成膜材料を成膜すること特徴とする成膜方法。
[2] 基材にエアロゾルを供給する前に、基材の振動を開始する、[1]に記載の成膜方法。
[3] 基材に成膜材料を成膜した後に、成膜した膜に活性放射線を照射する、[1]または[2]に記載の成膜方法。
[4] 基材を加熱しつつ、基材にエアロゾルを供給する、[1]~[3]のいずれかに記載の成膜方法。
[5] 基材を表面の温度が100℃以上となるように加熱する、[4]に記載の成膜方法。
[6] 基材の振動の速度が0.1mm/秒以上である、[1]~[5]のいずれかに記載の成膜方法。
[7] 基材の振動を、基材への音波の照射、基材への送風、および、基材の支持手段の振動の1以上によって行う、[1]~[6]のいずれかに記載の成膜方法。
[8] 基材の被成膜面が、原料液に対する親液性を有する領域と、原料液に対する撥液性を有する領域と、を有する、[1]~[7]のいずれかに記載の成膜方法。
[9] 基材にエアロゾルを供給する前に、基材の表面処理を行う、[1]~[8]のいずれかに記載の成膜方法。
[10] 基材の表面処理が、ラビング処理、親液化処理、撥液化処理、および、下地層の形成の1以上である、[9]に記載の成膜方法。
[11] 成膜材料が液晶化合物である、[1]~[10]のいずれかに記載の成膜方法。
[1] 成膜材料を含む原料液をエアロゾル化して、10kHz以下の周波数で振動する基材にエアロゾルを供給して、基材に成膜材料を成膜すること特徴とする成膜方法。
[2] 基材にエアロゾルを供給する前に、基材の振動を開始する、[1]に記載の成膜方法。
[3] 基材に成膜材料を成膜した後に、成膜した膜に活性放射線を照射する、[1]または[2]に記載の成膜方法。
[4] 基材を加熱しつつ、基材にエアロゾルを供給する、[1]~[3]のいずれかに記載の成膜方法。
[5] 基材を表面の温度が100℃以上となるように加熱する、[4]に記載の成膜方法。
[6] 基材の振動の速度が0.1mm/秒以上である、[1]~[5]のいずれかに記載の成膜方法。
[7] 基材の振動を、基材への音波の照射、基材への送風、および、基材の支持手段の振動の1以上によって行う、[1]~[6]のいずれかに記載の成膜方法。
[8] 基材の被成膜面が、原料液に対する親液性を有する領域と、原料液に対する撥液性を有する領域と、を有する、[1]~[7]のいずれかに記載の成膜方法。
[9] 基材にエアロゾルを供給する前に、基材の表面処理を行う、[1]~[8]のいずれかに記載の成膜方法。
[10] 基材の表面処理が、ラビング処理、親液化処理、撥液化処理、および、下地層の形成の1以上である、[9]に記載の成膜方法。
[11] 成膜材料が液晶化合物である、[1]~[10]のいずれかに記載の成膜方法。
本発明の成膜方法によれば、エアロゾルデポジションによる成膜の成膜速度を向上できる。
以下、本発明の成膜方法について、添付の図面に示される好適な実施形態を基に、詳細に説明する。
なお、以下に示す実施形態は本発明の一例を例示するものであり、本発明の範囲を制限するものではない。また、各構成部材の説明を明確に行うために、図中の各構成部材の寸法は、適宜、変更している。このため、図中の縮尺は実際とは異なっている。
さらに、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
なお、以下に示す実施形態は本発明の一例を例示するものであり、本発明の範囲を制限するものではない。また、各構成部材の説明を明確に行うために、図中の各構成部材の寸法は、適宜、変更している。このため、図中の縮尺は実際とは異なっている。
さらに、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
図1に、本発明の成膜方法を実施する成膜装置の一例を概念的に示す。
図1に示す成膜装置10は、前述のエアロゾルデポジションによって基材Zに成膜を行う装置であって、エアロゾル生成部12と、成膜部14とを有する。エアロゾル生成部12と成膜部14とは、誘導配管16によって接続されている。
図1に示す成膜装置10は、前述のエアロゾルデポジションによって基材Zに成膜を行う装置であって、エアロゾル生成部12と、成膜部14とを有する。エアロゾル生成部12と成膜部14とは、誘導配管16によって接続されている。
なお、本発明の成膜方法は、基材Zを10kHz以下で振動して、基材ZにエアロゾルAを供給する以外には、基本的に、公知のエアロゾルデポジション(ミストデポジション)による成膜を行うものである。
すなわち、本発明の成膜方法を実施する成膜装置10は、成膜部14が後述する加振装置34を有し、エアロゾルAの供給中に、基材Zを加振装置34によって10kHz以下の周波数で振動する以外には、基本的に、公知のエアロゾルデポジションによる成膜を行うものである。従って、成膜装置10は、図示した部材以外にも、原料液Lの供給手段、成膜に供されなかったエアロゾルA(原料液L)の回収手段、および、キャリアガスの浄化手段等、エアロゾルデポジションによって成膜を行う公知の装置が有する各種の部材を有してもよい。
すなわち、本発明の成膜方法を実施する成膜装置10は、成膜部14が後述する加振装置34を有し、エアロゾルAの供給中に、基材Zを加振装置34によって10kHz以下の周波数で振動する以外には、基本的に、公知のエアロゾルデポジションによる成膜を行うものである。従って、成膜装置10は、図示した部材以外にも、原料液Lの供給手段、成膜に供されなかったエアロゾルA(原料液L)の回収手段、および、キャリアガスの浄化手段等、エアロゾルデポジションによって成膜を行う公知の装置が有する各種の部材を有してもよい。
エアロゾル生成部12は、溶剤または分散媒に、成膜材料を溶解または分散してなる原料液Lをエアロゾル化して、生成したエアロゾルAを誘導配管16に供給する。エアロゾルAは、誘導配管16を通って、成膜部14に送られる。
成膜装置10において、エアロゾル生成部12は、原料液Lを収容する原料容器20と、原料容器20の一部を収容する容器24と、容器24の底面に配置される超音波振動子26と、エアロゾルAを成膜部14に送るためのキャリアガスを供給するガス供給手段28と、を有する。
成膜装置10において、エアロゾル生成部12は、原料液Lを収容する原料容器20と、原料容器20の一部を収容する容器24と、容器24の底面に配置される超音波振動子26と、エアロゾルAを成膜部14に送るためのキャリアガスを供給するガス供給手段28と、を有する。
容器24内には、水Wが収容されている。水Wは、超音波振動子26が発生した超音波を原料液Lに伝達するために、容器24に収容される。従って、超音波振動子26は、水Wに浸漬されている。また、原料容器20を収容する容器24も、少なくとも一部が水Wに浸漬される。
超音波振動子26が振動すると、水Wが超音波振動を伝播して、原料容器20を超音波振動させて、原料容器20に収容される原料液Lを超音波振動させる。原料液Lが超音波振動することにより、原料液Lがエアロゾル化され、原料液LのエアロゾルAが生成される。すなわち、原料容器20、容器24および超音波振動子26は、いわゆる超音波噴霧器(Ultrasonic Atomizer)を構成する。
超音波振動子26が振動すると、水Wが超音波振動を伝播して、原料容器20を超音波振動させて、原料容器20に収容される原料液Lを超音波振動させる。原料液Lが超音波振動することにより、原料液Lがエアロゾル化され、原料液LのエアロゾルAが生成される。すなわち、原料容器20、容器24および超音波振動子26は、いわゆる超音波噴霧器(Ultrasonic Atomizer)を構成する。
本発明の成膜方法において、原料液Lを超音波振動する方法は、水Wすなわち中間溶液を使って超音波を伝播して原料液Lを超音波振動するのに制限はされない。例えば、原料容器20の下面に超音波振動子26を配置して、原料容器20を介して原料液Lを超音波振動させる方法、原料容器20の底面に超音波振動子26を配置して、原料液Lを、直接、超音波振動させる方法等、エアロゾルデポジションにおける原料液Lの超音波振動に利用される公知の方法が利用可能である。
本発明の成膜方法において、成膜材料(成膜する膜)には制限はなく、エアロゾルデポジションによって成膜が可能な材料が、各種、利用可能である。
一例として、液晶化合物、有機エレクトロルミネッセンス材料、金属アルコキシド化合物、二酸化ケイ素(シリカ)およびテトラエトキシシラン等のケイ素化合物、チタン酸ジルコン酸鉛(PZT)および酸化アルミニウム(アルミナ)等のセラミック粉、亜鉛系、アルミナ系、ジルコニア系、シリカ系およびプロブスカイト系などの金属酸化物、酸化インジウムスズ(ITO)、ハロゲン化銀および金属ナノ粒子等の透明電極材料、ゼラチン、ポリビニルアルコール、ポリビニルプロリドンおよび澱粉等の多糖類、セルロースおよびその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸およびカルボキシセルロース等の水溶性樹脂、ならびに、酸化物半導体や有機半導体となる分子やカーボンナノチューブを含む溶液等が例示される。
一例として、液晶化合物、有機エレクトロルミネッセンス材料、金属アルコキシド化合物、二酸化ケイ素(シリカ)およびテトラエトキシシラン等のケイ素化合物、チタン酸ジルコン酸鉛(PZT)および酸化アルミニウム(アルミナ)等のセラミック粉、亜鉛系、アルミナ系、ジルコニア系、シリカ系およびプロブスカイト系などの金属酸化物、酸化インジウムスズ(ITO)、ハロゲン化銀および金属ナノ粒子等の透明電極材料、ゼラチン、ポリビニルアルコール、ポリビニルプロリドンおよび澱粉等の多糖類、セルロースおよびその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸およびカルボキシセルロース等の水溶性樹脂、ならびに、酸化物半導体や有機半導体となる分子やカーボンナノチューブを含む溶液等が例示される。
原料液Lの調製に用いられる溶剤または分散媒にも制限はなく、成膜材料に応じて、成膜材料を溶解または分散できるものであれば、各種の液体が利用可能である。
一例として、メチルエチルケトン、N,N-ジメチルホルムアミド等のアミド、ジメチルスルホキシド等のスルホキシド、ピリジン等のヘテロ環化合物、ベンゼンおよび塀酸等の炭化水素、クロロホルムおよびジクロロメタン等のアルキルハライド、酢酸メチルおよび酢酸ブチル等のエステル、アセトン、メチルエチルケトン、メチルイソブチルケトンおよびシクロヘキサノン等のケトン、テトラヒドロフランおよび1,2-ジメトキシエタン等のエーテル、ならびに、メタノール、エタノールおよびプロパノール等のアルキルアルコール等の有機溶剤が例示される。また、溶剤または分散剤としては、水も例示される。なお、水は、イオン交換水、蒸留水および純水のいずれかを用いるのが好ましい。
溶剤および分散媒は、2種以上を混合して使用して用いてもよい。
一例として、メチルエチルケトン、N,N-ジメチルホルムアミド等のアミド、ジメチルスルホキシド等のスルホキシド、ピリジン等のヘテロ環化合物、ベンゼンおよび塀酸等の炭化水素、クロロホルムおよびジクロロメタン等のアルキルハライド、酢酸メチルおよび酢酸ブチル等のエステル、アセトン、メチルエチルケトン、メチルイソブチルケトンおよびシクロヘキサノン等のケトン、テトラヒドロフランおよび1,2-ジメトキシエタン等のエーテル、ならびに、メタノール、エタノールおよびプロパノール等のアルキルアルコール等の有機溶剤が例示される。また、溶剤または分散剤としては、水も例示される。なお、水は、イオン交換水、蒸留水および純水のいずれかを用いるのが好ましい。
溶剤および分散媒は、2種以上を混合して使用して用いてもよい。
原料液Lは、必要に応じて、成膜後の膜の密着性の向上および膜強度の改善等を目的として、各種のバインダーおよびカップリング剤等を含んでもよい。
また、原料液Lは、必要に応じて、成膜した膜の膜硬度を高めるために、重合性のモノマーを含んでもよい。
また、原料液Lは、必要に応じて、成膜した膜の膜硬度を高めるために、重合性のモノマーを含んでもよい。
超音波振動子26には制限はなく、エアロゾルデポジションにおいて、原料液Lのエアロゾル化(ミスト化)に用いられる超音波振動子(超音波振動の発生手段)が、各種、利用可能である。
超音波振動子26による超音波振動の周波数にも、制限はなく、原料液Lの組成等に応じて、原料液Lをエアロゾル化できる超音波振動の周波数を、適宜、設定すればよい。原料液Lをエアロゾル化するための超音波振動の周波数は、15kHz~3MHz程度である。
超音波振動子26による超音波振動の周波数にも、制限はなく、原料液Lの組成等に応じて、原料液Lをエアロゾル化できる超音波振動の周波数を、適宜、設定すればよい。原料液Lをエアロゾル化するための超音波振動の周波数は、15kHz~3MHz程度である。
エアロゾルデポジションでは、原料液Lの密度(濃度)、原料液Lの表面張力および超音波振動の周波数を調節することによって、エアロゾルAの粒径を調節できる。
具体的には、原料液Lの密度をρ、原料液Lの表面張力をσ、超音波振動の周波数をfとすると、エアロゾルの粒径dは、下記の式で求めることができる。
d=0.68[(π*σ)/(ρ*f2)]1/2
なお、この式に関しては、J.Accousticai Sot.Amer.34(1962) 6.に記載されている。
具体的には、原料液Lの密度をρ、原料液Lの表面張力をσ、超音波振動の周波数をfとすると、エアロゾルの粒径dは、下記の式で求めることができる。
d=0.68[(π*σ)/(ρ*f2)]1/2
なお、この式に関しては、J.Accousticai Sot.Amer.34(1962) 6.に記載されている。
エアロゾルデポジションにおけるエアロゾルAの粒径は、誘導配管16の少なくとも一部を光透過材料で形成して、可視化用レーザーシート光源を用いて誘導配管16内にレーザーシート光を入射し、高速カメラで撮像して画像を解析することでも、測定できる。
さらに、市販の微粒子可視化システムを用いて、エアロゾルAを可視化して、エアロゾルAの粒径を測定してもよい。微粒子可視化システムとしては、例えば、新日本空調社製のViESTなどが例示される。なお、エアロゾルAを可視化して直径を測定(算出)する際には、必要に応じて画像処理を行ってもよい。
さらに、市販の微粒子可視化システムを用いて、エアロゾルAを可視化して、エアロゾルAの粒径を測定してもよい。微粒子可視化システムとしては、例えば、新日本空調社製のViESTなどが例示される。なお、エアロゾルAを可視化して直径を測定(算出)する際には、必要に応じて画像処理を行ってもよい。
本発明の成膜方法において、エアロゾルAの粒径には制限はないが、20~50μmが好ましく、10~20μmがより好ましく、1~10μmがさらに好ましい。
なお、エアロゾルAの粒径は、エアロゾルA同士の衝突等によって不意に粒径が変わった場合を除き、エアロゾルAの生成~誘導配管16内の移動~基材Zに付着するまで、基本的に、同じと考えられる。
なお、エアロゾルAの粒径は、エアロゾルA同士の衝突等によって不意に粒径が変わった場合を除き、エアロゾルAの生成~誘導配管16内の移動~基材Zに付着するまで、基本的に、同じと考えられる。
本発明の成膜方法において、原料液Lのエアロゾル化は、原料液Lの超音波振動に制限はされず、エアロゾルデポジションで用いられる、公知の原料液Lのエアロゾル化方法が、各種、利用可能である。
エアロゾル化方法としては、一例として、加圧式、回転ディスク式、オリフィス振動式および静電式当が例示される。加圧式とは、圧力を加え流速を増加させたガスを液体と衝突させることによりエアロゾル化する方法である。回転ディスク式とは、高速回転している円盤上に滴下された液体が遠心力で円盤の端でエアロゾル化する方法である。オリフィス振動式とは、微細な孔を持つオリフィスに液滴を通す際に振動を加えることで液滴を切断しエアロゾル化する方法である。静電式とは、液滴を通す細管に直流あるいは交流の電圧を負荷して液体をエアロゾル化する方法である。
エアロゾル化方法としては、一例として、加圧式、回転ディスク式、オリフィス振動式および静電式当が例示される。加圧式とは、圧力を加え流速を増加させたガスを液体と衝突させることによりエアロゾル化する方法である。回転ディスク式とは、高速回転している円盤上に滴下された液体が遠心力で円盤の端でエアロゾル化する方法である。オリフィス振動式とは、微細な孔を持つオリフィスに液滴を通す際に振動を加えることで液滴を切断しエアロゾル化する方法である。静電式とは、液滴を通す細管に直流あるいは交流の電圧を負荷して液体をエアロゾル化する方法である。
ガス供給手段28は、ガス供給管28aを介してキャリアガスを原料容器20に導入するものである。ガス供給手段28から供給されるキャリアガスによって、原料容器20内を浮遊しているエアロゾルAが原料容器20から搬送され、誘導配管16から成膜部14に搬送される。
ガス供給手段28には制限はなく、ファン、ブロワ、ガスボンベ、および、圧縮空気等、エアロゾルデポジションにおいてキャリアガスの供給に用いられる公知のガス供給手段が、各種、利用可能である。あるいは、後述する成膜部14の排出口30aからの吸引によって、キャリアガスを原料容器20に供給してもよい。
ガス供給手段28によるガスの供給量にも制限はない。ここで、ガス供給手段28は、原料容器20、誘導配管16および成膜部14(後述するケーシング30内)におけるガス流が層流になるように、キャリアガスを供給するのが好ましい。キャリアガスによるガスを層流とすることにより、基材Zの表面に均一な厚さの膜を形成できる。
ガス供給手段28によるキャリアガスの供給量は、3×10-3~5×10-3m3/分が好ましく、1×10-3~3×10-3m3/分がより好ましい。
ガス供給手段28によるガスの供給量にも制限はない。ここで、ガス供給手段28は、原料容器20、誘導配管16および成膜部14(後述するケーシング30内)におけるガス流が層流になるように、キャリアガスを供給するのが好ましい。キャリアガスによるガスを層流とすることにより、基材Zの表面に均一な厚さの膜を形成できる。
ガス供給手段28によるキャリアガスの供給量は、3×10-3~5×10-3m3/分が好ましく、1×10-3~3×10-3m3/分がより好ましい。
本発明の成膜方法においては、キャリアガスにも制限はなく、アルゴンおよび窒素等の不活性ガス、空気、成膜材料をエアロゾル化したガスそのもの、および、別の成膜材料をエアロゾル化したガス等、エアロゾルデポジションにおいてキャリアガスとして用いられる公知のガスが、各種、利用可能である。
一方、成膜部14は、ケーシング30と、基材Zを支持する支持体32と、ケーシング加振装置34とを有する。支持体32は、ケーシング30内に配置され、加振装置34は、ケーシング30の下面に当接して固定される。
本発明の成膜方法において、基材Zには制限はなく、エアロゾルデポジションによる成膜において、基材として用いられている各種のものが利用可能である。
一例として、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、シクロオレフィン共重合体(COC)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、および、エチレン-ビニルアルコール共重合体(EVOH)等の樹脂材料からなる樹脂フィルム、ならびに、ポリ乳酸、ポリグリコール酸、キチン、および、キトサン等からなる生分解性フィルム等が例示される。
また、基材Zとしては、μTAS(micro-Total Analysis Systems)等のマイクロ流路チップ基材、シリコンウェハー上の各種回路基材、および、バイオテンプレート基材等も利用可能である。すなわち、本発明の成膜方法は、表面に凹凸を有する各種の部材も、基材Zとして利用可能である。
一例として、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、シクロオレフィン共重合体(COC)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、および、エチレン-ビニルアルコール共重合体(EVOH)等の樹脂材料からなる樹脂フィルム、ならびに、ポリ乳酸、ポリグリコール酸、キチン、および、キトサン等からなる生分解性フィルム等が例示される。
また、基材Zとしては、μTAS(micro-Total Analysis Systems)等のマイクロ流路チップ基材、シリコンウェハー上の各種回路基材、および、バイオテンプレート基材等も利用可能である。すなわち、本発明の成膜方法は、表面に凹凸を有する各種の部材も、基材Zとして利用可能である。
本発明の成膜方法においては、基材Zへの成膜に先立ち、必要に応じて、基材Zの被成膜面に表面処理を行ってもよい。
基材Zの表面処理は、原料液Lが含有する溶剤(分散媒)および成膜材料の種類等に応じて、各種の処理が利用可能である。基材Zの表面処理としては、例えば、親液性(塗れ性)を改善するコロナ処理およびプラズマ処理が例示される。原料液Lの溶剤として水を用いる場合には、UV(ultraviolet)照射、オゾン照射、およびUVオゾン洗浄等による基材Zの親水化処理も有効である。
また、液晶化合物を成膜する場合には、基材Zに配向性を付与するためのラビング処理を施してもよい。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
このような基材Zの表面処理は、いずれも、公知の方法で行えばよい。
さらに、基材Zの表面処理としては、密着性の改善、親液性の改善または付与、撥液性の改善または付与、および、表面平滑性の確保等を目的とする、下地層の形成も利用可能である。下地層の形成は、形成する下地層に応じて、塗布法および印刷法等の公知の方法で行えばよい。
基材Zの表面処理は、原料液Lが含有する溶剤(分散媒)および成膜材料の種類等に応じて、各種の処理が利用可能である。基材Zの表面処理としては、例えば、親液性(塗れ性)を改善するコロナ処理およびプラズマ処理が例示される。原料液Lの溶剤として水を用いる場合には、UV(ultraviolet)照射、オゾン照射、およびUVオゾン洗浄等による基材Zの親水化処理も有効である。
また、液晶化合物を成膜する場合には、基材Zに配向性を付与するためのラビング処理を施してもよい。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
このような基材Zの表面処理は、いずれも、公知の方法で行えばよい。
さらに、基材Zの表面処理としては、密着性の改善、親液性の改善または付与、撥液性の改善または付与、および、表面平滑性の確保等を目的とする、下地層の形成も利用可能である。下地層の形成は、形成する下地層に応じて、塗布法および印刷法等の公知の方法で行えばよい。
本発明の成膜方法においては、基材Zの被成膜面が、原料液Lに対して親液性を有する領域と、原料液Lに対して撥液性を有する領域とを有してもよい。
なお、本発明において、親液性を有するとは、基材Zの被成膜面と原料液Lとの接触角が90°未満であることを示す。他方、撥液性を有するとは、基材Zの被成膜面と原料液Lとの接触角が90°以上であることを示す。
以下の説明では、基材Zの被成膜面における、原料液Lに対して親液性を有する領域を『親液領域』、原料液Lに対して撥液性を有する領域を『撥液領域』、ともいう。
なお、本発明において、親液性を有するとは、基材Zの被成膜面と原料液Lとの接触角が90°未満であることを示す。他方、撥液性を有するとは、基材Zの被成膜面と原料液Lとの接触角が90°以上であることを示す。
以下の説明では、基材Zの被成膜面における、原料液Lに対して親液性を有する領域を『親液領域』、原料液Lに対して撥液性を有する領域を『撥液領域』、ともいう。
エアロゾルデポジションは、基本的に、基材Zの全面に、ほぼ均一にエアロゾルAが供給される。すなわち、エアロゾルデポジションでは、基材Z上に、選択的に部分的な成膜を行うことはできない。
これに対して、基材Zの成膜面に親液領域と撥液領域とをパターニングして形成することにより、撥液領域からエアロゾルAを除去し、かつ、親液領域に選択的にエアロゾルAを付着させて、エアロゾルデポジションによってパターニングして基材Zに成膜を行うことが可能になる。例えば、親液領域で配線パターンを形成し、それ以外の領域を撥液領域として、エアロゾルデポジションによって成膜を行うことにより、目的とする配線パターンを形成できる。
後述するが、特に、本発明の成膜方法では、基材Zを振動しつつエアロゾルを基材Zに供給するので、エアロゾルAを撥液領域から親液領域に効率よく移動させて、パターニングした成膜を好適に行うことが可能である。
これに対して、基材Zの成膜面に親液領域と撥液領域とをパターニングして形成することにより、撥液領域からエアロゾルAを除去し、かつ、親液領域に選択的にエアロゾルAを付着させて、エアロゾルデポジションによってパターニングして基材Zに成膜を行うことが可能になる。例えば、親液領域で配線パターンを形成し、それ以外の領域を撥液領域として、エアロゾルデポジションによって成膜を行うことにより、目的とする配線パターンを形成できる。
後述するが、特に、本発明の成膜方法では、基材Zを振動しつつエアロゾルを基材Zに供給するので、エアロゾルAを撥液領域から親液領域に効率よく移動させて、パターニングした成膜を好適に行うことが可能である。
基材Zへの親液領域の形成すなわち親液処理、および、撥液領域の形成すなわち撥液処理は、原料液Lの組成、特に原料液Lに用いる溶剤に応じて、公知の方法が利用可能である。
例えば、原料液Lの溶剤として水を用いる場合には、基材Zの表面全面をUVオゾン処理して親水化処理し、その後、撥水領域にマイクロコンタクトプリント等によってフッ素系界面活性剤をコーティングする方法等で撥水パターンを形成する方法が例示される。
例えば、原料液Lの溶剤として水を用いる場合には、基材Zの表面全面をUVオゾン処理して親水化処理し、その後、撥水領域にマイクロコンタクトプリント等によってフッ素系界面活性剤をコーティングする方法等で撥水パターンを形成する方法が例示される。
支持体32は、基材Zを載置して支持する支持手段である。
なお、本発明の成膜方法において、基材Zの支持手段は、基材Zを載置する支持体32に制限はされず、シート状物の端部を挟持する支持手段等、公知のシート状物(板状物、フィルム状物)の支持手段が、各種、利用可能である。
なお、後述するロール・トゥ・ロールの場合には、エアロゾルAの供給部において基材Zを搬送するローラ、および、エアロゾルAの供給部において基材Zを巻き掛けて搬送するドラム(キャン)等が、基材Zの支持手段として作用する。基材Zを搬送するローラとは、例えば、搬送ローラおよび搬送ローラ対などである。
なお、本発明の成膜方法において、基材Zの支持手段は、基材Zを載置する支持体32に制限はされず、シート状物の端部を挟持する支持手段等、公知のシート状物(板状物、フィルム状物)の支持手段が、各種、利用可能である。
なお、後述するロール・トゥ・ロールの場合には、エアロゾルAの供給部において基材Zを搬送するローラ、および、エアロゾルAの供給部において基材Zを巻き掛けて搬送するドラム(キャン)等が、基材Zの支持手段として作用する。基材Zを搬送するローラとは、例えば、搬送ローラおよび搬送ローラ対などである。
加振装置34は、基材ZにエアロゾルAを供給する際に、基材Zを10kHz以下の周波数で振動させるためのものである。
成膜部14において、支持体32は、ケーシング30の底面(内壁面)に当接して設けられている。加振装置34は、ケーシング30の下面に当接して設けられている。従って、加振装置34がケーシング30を振動することで、支持体32が振動し、支持体32に支持された基材Zが振動する。本発明においては、基材Zを10kHz以下の周波数で振動しつつ、基材ZにエアロゾルAを供給する。本発明の成膜方法は、このような構成を有することにより、エアロゾルデポジションによる成膜速度を向上している。
成膜部14において、支持体32は、ケーシング30の底面(内壁面)に当接して設けられている。加振装置34は、ケーシング30の下面に当接して設けられている。従って、加振装置34がケーシング30を振動することで、支持体32が振動し、支持体32に支持された基材Zが振動する。本発明においては、基材Zを10kHz以下の周波数で振動しつつ、基材ZにエアロゾルAを供給する。本発明の成膜方法は、このような構成を有することにより、エアロゾルデポジションによる成膜速度を向上している。
前述のように、エアロゾルデポジションによる成膜は、高い追従性(カバレッジ)で、均一な厚さの膜を、精密に成膜できる。
その反面、エアロゾルデポジションによる成膜は、成膜速度すなわち成膜レートが低く、目的とする厚さの膜を成膜するまでに時間がかかり、生産性が低いという問題がある。
その反面、エアロゾルデポジションによる成膜は、成膜速度すなわち成膜レートが低く、目的とする厚さの膜を成膜するまでに時間がかかり、生産性が低いという問題がある。
これに対して、本発明の成膜方法は、エアロゾルデポジションによる成膜において、基材Zを10kHz以下の周波数で振動させつつ、基材ZにエアロゾルAを供給する。
本発明の成膜方法は、これにより、エアロゾルデポジションによる成膜における成膜速度を向上している。
本発明の成膜方法は、これにより、エアロゾルデポジションによる成膜における成膜速度を向上している。
基材Zを10kHz以下の周波数で振動させつつ、基材ZにエアロゾルAを供給することによって成膜速度が向上する理由は明らかではないが、以下のように推測される。
エアロゾルデポジションによる成膜では、エアロゾルAが基材Zに付着して、溶剤が蒸発することで、エアロゾルAに含まれる成膜材料による成膜が行われる。
エアロゾルデポジションでは、エアロゾルAが基材Zに付着して、乾燥して海島状に成膜が行われる。ここで、基材Zに固定されなかったエアロゾルAは、そのまま、転げ落ちるようにして、基材Zから排出される。そのため、従来のエアロゾルデポジションでは、多くのエアロゾルAが有効に成膜に供されず、成膜速度が遅いと考えられる。
これに対して、基材Zを振動しつつエアロゾルAを供給する本発明の成膜方法では、基材Zの往復動によって、エアロゾルAが基材から転げ落ちることを抑制できると共に、エアロゾルAが基材Z上で移動して、エアロゾルA同士が衝突することで、エアロゾルAの液滴が大きくなって、基材Z上に固定されやすくなり、その結果、成膜速度が向上すると考えられる。
エアロゾルデポジションによる成膜では、エアロゾルAが基材Zに付着して、溶剤が蒸発することで、エアロゾルAに含まれる成膜材料による成膜が行われる。
エアロゾルデポジションでは、エアロゾルAが基材Zに付着して、乾燥して海島状に成膜が行われる。ここで、基材Zに固定されなかったエアロゾルAは、そのまま、転げ落ちるようにして、基材Zから排出される。そのため、従来のエアロゾルデポジションでは、多くのエアロゾルAが有効に成膜に供されず、成膜速度が遅いと考えられる。
これに対して、基材Zを振動しつつエアロゾルAを供給する本発明の成膜方法では、基材Zの往復動によって、エアロゾルAが基材から転げ落ちることを抑制できると共に、エアロゾルAが基材Z上で移動して、エアロゾルA同士が衝突することで、エアロゾルAの液滴が大きくなって、基材Z上に固定されやすくなり、その結果、成膜速度が向上すると考えられる。
本発明の成膜方法において、基材Zの振動の周波数は10kHz以下である。
エアロゾルAが基材Zに付着すると、溶剤が蒸発する前の状態では、エアロゾルA同士が結合して原料液Lに近い液体になる。ここで、基材Zを10kHz超の周波数で振動すると、基材Zに付着した原料液Lに近い液体が超音波振動された状態になり、再度、エアロゾルA化して、基材Zの表面から離脱してしまう。そのため、基材Zを10kHz超の周波数で振動すると、成膜速度が遅くなってしまう。
本発明の成膜方法において、基材Zの振動の周波数は10kHz以下が好ましく、5kHz以下がより好ましく、1kHz以下がさらに好ましい。
エアロゾルAが基材Zに付着すると、溶剤が蒸発する前の状態では、エアロゾルA同士が結合して原料液Lに近い液体になる。ここで、基材Zを10kHz超の周波数で振動すると、基材Zに付着した原料液Lに近い液体が超音波振動された状態になり、再度、エアロゾルA化して、基材Zの表面から離脱してしまう。そのため、基材Zを10kHz超の周波数で振動すると、成膜速度が遅くなってしまう。
本発明の成膜方法において、基材Zの振動の周波数は10kHz以下が好ましく、5kHz以下がより好ましく、1kHz以下がさらに好ましい。
本発明の成膜方法において、基材Zの振動の周波数の下限は制限されない。
より好適に成膜速度の向上効果を得るためには、基材Zの振動の周波数は50Hz以上が好ましく、100Hz以上がより好ましく、200Hz以上がさらに好ましい。
より好適に成膜速度の向上効果を得るためには、基材Zの振動の周波数は50Hz以上が好ましく、100Hz以上がより好ましく、200Hz以上がさらに好ましい。
本発明の成膜方法において、基材Zの振動の速度にも制限はない。
しかしながら、より好適に成膜速度の向上効果を得るためには、ある程度の速度以上で、基材Zを振動するのが好ましい。基材Zの振動の速度は、0.1mm/秒以上が好ましく、0.5mm/秒以上がより好ましく、1mm/秒以上がさらに好ましい。
逆に、基材Zの振動の速度が速すぎると、装置にかかる負担が大きくなる、基材Zにかかる負担が大きくなる、エアロゾルAが基材Zから転げ落ちやすくなる、エアロゾルAが移動する前に乾燥してしまう等の問題が生じる可能性がある。従って、基材Zの振動の振幅は、10mm/秒以下が好ましく、8mm/秒以下がより好ましく、5mm/秒以下がさらに好ましい。
しかしながら、より好適に成膜速度の向上効果を得るためには、ある程度の速度以上で、基材Zを振動するのが好ましい。基材Zの振動の速度は、0.1mm/秒以上が好ましく、0.5mm/秒以上がより好ましく、1mm/秒以上がさらに好ましい。
逆に、基材Zの振動の速度が速すぎると、装置にかかる負担が大きくなる、基材Zにかかる負担が大きくなる、エアロゾルAが基材Zから転げ落ちやすくなる、エアロゾルAが移動する前に乾燥してしまう等の問題が生じる可能性がある。従って、基材Zの振動の振幅は、10mm/秒以下が好ましく、8mm/秒以下がより好ましく、5mm/秒以下がさらに好ましい。
加振装置34には制限はなく、基材Zを支持する支持体32に応じて、支持体32を振動可能な公知の加振手段が、各種、利用可能である。なお、本発明において、基材Zを支持する支持体(支持手段)には、ロール・トゥ・ロールにおけるローラ等を含むのは、前述のとおりである。
加振装置34としては、一例として、ピエゾ素子を用いる振動手段、振動モータ(偏心モータ)、可動コイルを用いる振動手段、ならびに、空気アクチュエーターおよび油圧アクチュエーター等を用いる振動手段等が例示される。また、加振装置34は、市販の加振器(加振装置)も好適に利用可能である。
加振装置34としては、一例として、ピエゾ素子を用いる振動手段、振動モータ(偏心モータ)、可動コイルを用いる振動手段、ならびに、空気アクチュエーターおよび油圧アクチュエーター等を用いる振動手段等が例示される。また、加振装置34は、市販の加振器(加振装置)も好適に利用可能である。
本発明の成膜方法において、基材Zの振動方法は、基材Zの支持手段を振動する方法に制限はされない。
例えば、端部を挟持する支持手段で基材Zが支持されている場合、および、後述するロール・トゥ・ロールにおいて搬送ローラ対で基材Zを搬送する場合など、基材ZへのエアロゾルAの供給位置すなわち成膜位置において、基材Zが単体で振動可能な状態になっている場合には、基材Zの振動手段として、基材Zに送風して振動させる送風手段、および、スピーカーなどの基材Zに音波を照射して振動させる手段等も、基材Zの振動手段として、好適に利用可能である。
例えば、端部を挟持する支持手段で基材Zが支持されている場合、および、後述するロール・トゥ・ロールにおいて搬送ローラ対で基材Zを搬送する場合など、基材ZへのエアロゾルAの供給位置すなわち成膜位置において、基材Zが単体で振動可能な状態になっている場合には、基材Zの振動手段として、基材Zに送風して振動させる送風手段、および、スピーカーなどの基材Zに音波を照射して振動させる手段等も、基材Zの振動手段として、好適に利用可能である。
本発明の成膜方法は、基材ZにエアロゾルAを供給する際に、基材Zを10kHz以下の周波数で振動する。
基材Zの振動を開始するタイミングには制限はないが、基材ZへのエアロゾルAの供給を開始する前に、基材Zの振動を開始するのが好ましい。例えば、図1に示す成膜装置10であれば、加振装置34による基材Z(支持体32)の振動を開始した後に、超音波振動子26の駆動を開始して、原料液Lのエアロゾル化を開始するのが好ましい。
本発明の成膜方法において、成膜速度を好適に向上するためには、基材ZにエアロゾルAを供給している状態では、常に、基材Zを10kHz以下の周波数で振動しているのが好ましい。基材ZへのエアロゾルAの供給を開始する前に、基材Zの振動を開始することで、エアロゾルAの供給時には、確実に基材Zが振動している状態にできる。
基材Zの振動を開始するタイミングには制限はないが、基材ZへのエアロゾルAの供給を開始する前に、基材Zの振動を開始するのが好ましい。例えば、図1に示す成膜装置10であれば、加振装置34による基材Z(支持体32)の振動を開始した後に、超音波振動子26の駆動を開始して、原料液Lのエアロゾル化を開始するのが好ましい。
本発明の成膜方法において、成膜速度を好適に向上するためには、基材ZにエアロゾルAを供給している状態では、常に、基材Zを10kHz以下の周波数で振動しているのが好ましい。基材ZへのエアロゾルAの供給を開始する前に、基材Zの振動を開始することで、エアロゾルAの供給時には、確実に基材Zが振動している状態にできる。
なお、本発明の成膜方法において、基材Zの振動は、基材Zの主面の面方向でもよく、基材Zの主面と直交する方向でもよく、基材Zの主面の面方向と基材Zの主面と直交する方向との両方向を含む振動でもよい。主面とは、シート状物(フィルム、板状物)の最大面である。
また、基材Zの振動は、直線的な往復動でもよく、円、楕円および多角形等の形状を描くような軌跡の振動でもよい。
また、基材Zの振動は、直線的な往復動でもよく、円、楕円および多角形等の形状を描くような軌跡の振動でもよい。
本発明の成膜方法では、エアロゾルAを供給している際に、基材Zを加熱するのが好ましい。
基材Zを加熱しつつ、エアロゾルAを基材Zに供給することにより、ライデンフロスト現象(ライデンフロスト効果)によって、エアロゾルAが基材Z上を移動するので、成膜効率を向上して、成膜速度を、より向上できる。
基材Zの加熱温度には、制限はなく、原料液Lに用いる溶剤に応じて、ライデンフロスト現象が生じる温度を、適宜、設定すればよい。基材Zの加熱は、基材Zの表面の温度が100℃以上となるように行うのが好ましく、150℃以上となるように行うのがより好ましい。
なお、加熱温度の上限は、基材Zの形成材料に応じて、基材Zが損傷しない温度とすればよい。
基材Zを加熱しつつ、エアロゾルAを基材Zに供給することにより、ライデンフロスト現象(ライデンフロスト効果)によって、エアロゾルAが基材Z上を移動するので、成膜効率を向上して、成膜速度を、より向上できる。
基材Zの加熱温度には、制限はなく、原料液Lに用いる溶剤に応じて、ライデンフロスト現象が生じる温度を、適宜、設定すればよい。基材Zの加熱は、基材Zの表面の温度が100℃以上となるように行うのが好ましく、150℃以上となるように行うのがより好ましい。
なお、加熱温度の上限は、基材Zの形成材料に応じて、基材Zが損傷しない温度とすればよい。
基材Zの加熱は、ヒータ等を用いる方法等、公知のシート状物の加熱方法が、各種、利用可能である。
以下、図1に示す成膜装置10の作用を説明する。
図1に示す成膜装置10において、原料容器20に原料液Lを収容した状態で超音波振動子26が超音波振動すると、超音波が水Wを介して原料液Lに伝達され、原料液Lが超音波振動する。
原料液Lが超音波振動することにより、原料液Lがエアロゾル化する。これにより、原料容器20の内部では、原料液Lのエアロゾル化で生成されたエアロゾルAが上方で浮遊した状態になる。
なお、原料液Lのエアロゾル化すなわち超音波振動子26の駆動開始に先立ち、加振装置34を駆動して、基材Zの振動を開始するのが好ましいのは、前述のとおりである。
図1に示す成膜装置10において、原料容器20に原料液Lを収容した状態で超音波振動子26が超音波振動すると、超音波が水Wを介して原料液Lに伝達され、原料液Lが超音波振動する。
原料液Lが超音波振動することにより、原料液Lがエアロゾル化する。これにより、原料容器20の内部では、原料液Lのエアロゾル化で生成されたエアロゾルAが上方で浮遊した状態になる。
なお、原料液Lのエアロゾル化すなわち超音波振動子26の駆動開始に先立ち、加振装置34を駆動して、基材Zの振動を開始するのが好ましいのは、前述のとおりである。
次いで、原料容器20内に、ガス供給管28aを介して、ガス供給手段28からキャリアガスが供給される。原料容器20内を浮遊しているエアロゾルAは、キャリアガスによって原料容器20から誘導配管16に搬送され、誘導配管16から成膜部14のケーシング30内に搬送される。なお、必要に応じて、例えば、誘導配管16を加熱することにより、エアロゾルAを濃縮してもよい。
成膜部14のケーシング30内にエアロゾルAが搬送されると、支持体32に載置された基材ZにエアロゾルAが供給される。さらに、基材Zに供給(付着)されたエアロゾルAから、溶剤が蒸発して、エアロゾルA(原料液L)に含まれる成膜材料が基材Zに成膜される。なお、成膜に供されなかったエアロゾルAは、ケーシング30の排出口30aから排出される。
ここで、本発明の成膜方法では、基材Zが加振装置34によって10kHz以下の周波数で振動しているので、成膜速度を向上でき、通常のエアロゾルデポジションに比して、迅速に、目的とする膜厚の膜を得られる。また、同じ成膜時間であれば、より厚い膜を得られる。
成膜部14のケーシング30内にエアロゾルAが搬送されると、支持体32に載置された基材ZにエアロゾルAが供給される。さらに、基材Zに供給(付着)されたエアロゾルAから、溶剤が蒸発して、エアロゾルA(原料液L)に含まれる成膜材料が基材Zに成膜される。なお、成膜に供されなかったエアロゾルAは、ケーシング30の排出口30aから排出される。
ここで、本発明の成膜方法では、基材Zが加振装置34によって10kHz以下の周波数で振動しているので、成膜速度を向上でき、通常のエアロゾルデポジションに比して、迅速に、目的とする膜厚の膜を得られる。また、同じ成膜時間であれば、より厚い膜を得られる。
なお、本発明の成膜方法では、必要に応じて、基材Zに成膜を行った後、膜に、紫外線、電子線、ならびに、α線、β線およびγ線などの放射線等の活性放射線を照射してもよい。
例えば、成膜材料が重合性液晶化合物である場合には、基材Zに成膜を行った後、膜に紫外線を照射して、重合性液晶化合物の硬化(重合)を行ってもよい。紫外線を発生する光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、および、LED等が例示される。
例えば、成膜材料が重合性液晶化合物である場合には、基材Zに成膜を行った後、膜に紫外線を照射して、重合性液晶化合物の硬化(重合)を行ってもよい。紫外線を発生する光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、および、LED等が例示される。
前述のように、本発明の成膜方法によれば、エアロゾルデポジションの成膜速度を向上できる。そのため、本発明の成膜方法は、従来のエアロゾルデポジションでは利用が困難であった、ロール・トゥ・ロールによる成膜も利用可能である。
周知のように、ロール・トゥ・ロールとは、長尺な基材Zをロール状に巻回した基材ロールから基材Zを送り出し、長尺な基材Zを長手方向に搬送しつつ、連続的に基材Zに成膜等の処理を行い、処理済の基材Zを、再度、ロール状に巻回する製造方法である。ロール・トゥ・ロールを利用することにより、生産性を大幅に向上できる。
以下の説明では、ロール・トゥ・ロールを『RtoR』ともいう。
周知のように、ロール・トゥ・ロールとは、長尺な基材Zをロール状に巻回した基材ロールから基材Zを送り出し、長尺な基材Zを長手方向に搬送しつつ、連続的に基材Zに成膜等の処理を行い、処理済の基材Zを、再度、ロール状に巻回する製造方法である。ロール・トゥ・ロールを利用することにより、生産性を大幅に向上できる。
以下の説明では、ロール・トゥ・ロールを『RtoR』ともいう。
図2に、本発明の成膜方法をRtoRに利用した一例を概念的に示す。なお、図2に示す成膜装置は、図1に示す成膜装置10と同じ部材を多用するので、同じ部材には同じ符号を付し、説明は異なる部位を主に行う。
図2に示す成膜装置40において、長尺な基材Zは、搬送ローラ42および搬送ローラ46によって、長手方向(図中矢印x方向)に搬送される。なお、搬送ローラに代えて、搬送ローラ対を用いてもよい。
成膜部14Aのケーシング30Aは、下面が開放された矩形の筐体である。また、加振装置34は、ケーシング30Aと共に基材Zを挟むように、基材Zの下方に配置される。ケーシング30Aは、基材Zの搬送方向において、搬送ローラ42と搬送ローラ46との間に設けられる。従って、成膜装置40においては、搬送ローラ42および搬送ローラ46が、基材Zの支持手段となる。
成膜部14Aのケーシング30Aは、下面が開放された矩形の筐体である。また、加振装置34は、ケーシング30Aと共に基材Zを挟むように、基材Zの下方に配置される。ケーシング30Aは、基材Zの搬送方向において、搬送ローラ42と搬送ローラ46との間に設けられる。従って、成膜装置40においては、搬送ローラ42および搬送ローラ46が、基材Zの支持手段となる。
成膜装置40において、基材Zは、搬送ローラ42および搬送ローラ46によって、長手方向に搬送されつつ、ケーシング30Aの下方を通過する際に、エアロゾルAを供給されて、成膜される。
ここで、基材Zは、ケーシング30Aの下方に配置される加振装置34によって10kHz以下の周波数で振動される。そのため、前述のように、エアロゾルデポジションによる成膜速度を向上でき、RtoRによる成膜にも好適に対応できる。
RtoRでは、加振装置34として、基材Zに送風して振動させる送風手段、および、スピーカーなどの基材Zに音波を照射して振動させる手段が好適に利用可能であるのは、前述のとおりである。また、支持手段である搬送ローラ42および/または搬送ローラ46を振動させることにより、基材Zを振動させてもよい。
ここで、基材Zは、ケーシング30Aの下方に配置される加振装置34によって10kHz以下の周波数で振動される。そのため、前述のように、エアロゾルデポジションによる成膜速度を向上でき、RtoRによる成膜にも好適に対応できる。
RtoRでは、加振装置34として、基材Zに送風して振動させる送風手段、および、スピーカーなどの基材Zに音波を照射して振動させる手段が好適に利用可能であるのは、前述のとおりである。また、支持手段である搬送ローラ42および/または搬送ローラ46を振動させることにより、基材Zを振動させてもよい。
前述のように、本発明においては、エアロゾルAの供給を開始する前に、基材Zの振動を開始するのが好ましい。
従って、RtoRを利用する図示例の成膜装置40では、加振装置34は、ケーシング30Aよりも上流から、基材Zを振動させるのが好ましく、具体的には、上流側の搬送ローラ42の直下流から、基材Zを振動させるのが好ましい。
従って、RtoRを利用する図示例の成膜装置40では、加振装置34は、ケーシング30Aよりも上流から、基材Zを振動させるのが好ましく、具体的には、上流側の搬送ローラ42の直下流から、基材Zを振動させるのが好ましい。
前述のように、本発明の成膜方法では、基材ZへのエアロゾルAの供給に先立ち、基材の表面処理、親液化処理および撥液化処理等を行ってもよい。
本発明をRtoRに利用する場合には、ケーシング30Aの上流に、これらの処理を施す装置(処理部材)を配置して、表面処理、親液化処理および撥液化処理等を施した基材Zに、本発明による成膜を行ってもよい。
本発明をRtoRに利用する場合には、ケーシング30Aの上流に、これらの処理を施す装置(処理部材)を配置して、表面処理、親液化処理および撥液化処理等を施した基材Zに、本発明による成膜を行ってもよい。
例えば、図3に概念的に示すように、成膜装置40(ケーシング30A)の上流に、撥水パターン転写装置54を設け、さらに、撥水パターン転写装置54の上流にUVオゾン処理装置52を設ける。また、原料液Lの溶剤として、水を用いる。
この際には、基材Zを長手方向(矢印x方向)に搬送しつつ、まず、UVオゾン処理装置52によって基材Zの全面にUVオゾン処理を施して、基材Zの全面を親水化する。次いで、撥水パターン転写装置54によって、マイクロコンタクトプリント等によって形成した撥水パターンを、転写ローラ54aから全面を親水化した基材Zの表面に転写する。これにより、基材Zの表面に親水領域および撥水領域のパターンが形成される。
その後、基材Zを搬送しつつ、このような親水領域および撥水領域のパターンが形成された基材Zに、本発明の成膜方法を行う成膜装置40によって、成膜を行う。これにより、親水領域のみにパターン化してエアロゾルAを付着して、成膜材料をパターン化して成膜できる。
この際には、基材Zを長手方向(矢印x方向)に搬送しつつ、まず、UVオゾン処理装置52によって基材Zの全面にUVオゾン処理を施して、基材Zの全面を親水化する。次いで、撥水パターン転写装置54によって、マイクロコンタクトプリント等によって形成した撥水パターンを、転写ローラ54aから全面を親水化した基材Zの表面に転写する。これにより、基材Zの表面に親水領域および撥水領域のパターンが形成される。
その後、基材Zを搬送しつつ、このような親水領域および撥水領域のパターンが形成された基材Zに、本発明の成膜方法を行う成膜装置40によって、成膜を行う。これにより、親水領域のみにパターン化してエアロゾルAを付着して、成膜材料をパターン化して成膜できる。
なお、図3に示すような製造方法は、ベルトコンベアおよびローラコンベア等の搬送手段を用い、図1に示すような枚葉型(カットシート状)の基材Zを、搬送方向に、複数枚、配列して、搬送手段で搬送しつつ、搬送される基材Zに、順次、UVオゾン処理装置52による親水化処理、撥水パターン転写装置54による撥水パターンの転写を行って、本発明の成膜方法を行う成膜装置40で成膜を行う製造方法にも、利用可能である。
以上、本発明の成膜方法について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。ただし、本発明の範囲は、以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
下記の組成の原料液を調製した。
調製した原料液の密度は0.89g/cm3、表面張力は22mN/mであった。なお、原料液の密度はJIS Z 8804:2012に準拠して測定した。また、原料液の表面張力は、懸滴法(ペンダント・ドロップ法)によって測定した。
――――――――――――――――――――――――――――――――――
・重合性液晶化合物(LC-1-1) 80質量部
・重合性液晶化合物(LC-2) 20質量部
・光重合開始剤(チバ・ジャパン社製、イルガキュア907) 3質量部
・フッ素系ポリマー(下記の化合物1) 0.3質量部
・メチルエチルケトン 170質量部
――――――――――――――――――――――――――――――――――
下記の組成の原料液を調製した。
調製した原料液の密度は0.89g/cm3、表面張力は22mN/mであった。なお、原料液の密度はJIS Z 8804:2012に準拠して測定した。また、原料液の表面張力は、懸滴法(ペンダント・ドロップ法)によって測定した。
――――――――――――――――――――――――――――――――――
・重合性液晶化合物(LC-1-1) 80質量部
・重合性液晶化合物(LC-2) 20質量部
・光重合開始剤(チバ・ジャパン社製、イルガキュア907) 3質量部
・フッ素系ポリマー(下記の化合物1) 0.3質量部
・メチルエチルケトン 170質量部
――――――――――――――――――――――――――――――――――
厚さ100μmのPETフィルム(東洋紡社製、コスモシャインA4100)を用意した。このPETフィルムを257×182mmに切断して、基材とした。
基材に、ラビング処理を施した。ラビング処理は、レーヨン布を用い、圧力:0.1kgf、回転数1000rpm、搬送速度10m/分の条件で行った。
ラビング処理した基材を、図1に示すような成膜装置の成膜部の支持体に載置した。
また、先に調製した原料液を、エアロゾル生成部の原料容器に収容した。
基材に、ラビング処理を施した。ラビング処理は、レーヨン布を用い、圧力:0.1kgf、回転数1000rpm、搬送速度10m/分の条件で行った。
ラビング処理した基材を、図1に示すような成膜装置の成膜部の支持体に載置した。
また、先に調製した原料液を、エアロゾル生成部の原料容器に収容した。
成膜部の加振装置は、エア・ブラウン社製のLW139.141-75を用いた。この加振装置によって、基材(支持体)を、周波数10000Hz、振動速度2mm/秒で振動した。
基材の振動を開始した後、エアロゾル生成部の超音波振動子を1.7MHzで振動させて、原料液のエアロゾル化を開始した。従って、本例では、先の式で算出したエアロゾルの粒径は、2.5μmである。なお、超音波振動子は、星光技研社製のIM4-36Dを用いた。
基材の振動を開始した後、エアロゾル生成部の超音波振動子を1.7MHzで振動させて、原料液のエアロゾル化を開始した。従って、本例では、先の式で算出したエアロゾルの粒径は、2.5μmである。なお、超音波振動子は、星光技研社製のIM4-36Dを用いた。
次いで、ガス供給手段から原料容器に、キャリアガスとして空気を供給した。キャリアガスの供給量は流量で2.8×10-3m3/分とした。
このようにして、支持体に載置した基材(PETフィルム)に、60秒間、エアロゾルを供給して、基材の表面(ラビング処理面)に成膜を行った。
このようにして、支持体に載置した基材(PETフィルム)に、60秒間、エアロゾルを供給して、基材の表面(ラビング処理面)に成膜を行った。
60秒間の成膜を行った後、基材を成膜部から取り出し、温度80℃、風速2m/分の熱風を60秒照射して加熱した。
その後、30℃のホットプレート上に置き、紫外線照射器(フュージョンUVシステムズ社製、無電極ランプ「Dバルブ」、照度60mW/cm2)によって紫外線を6秒間、照射して、液晶層を固定し、液晶膜を形成した。
形成した液晶膜の厚さは、4.0μmであった。なお、液晶膜の膜厚は、反射分光膜厚計(大塚電子製、FE3000)によって測定した。
その後、30℃のホットプレート上に置き、紫外線照射器(フュージョンUVシステムズ社製、無電極ランプ「Dバルブ」、照度60mW/cm2)によって紫外線を6秒間、照射して、液晶層を固定し、液晶膜を形成した。
形成した液晶膜の厚さは、4.0μmであった。なお、液晶膜の膜厚は、反射分光膜厚計(大塚電子製、FE3000)によって測定した。
[実施例2~実施例5、比較例1]
基材の振動の周波数を、1000Hz(実施例2)、500Hz(実施例3)、50Hz(実施例4)、5Hz(実施例5)、および、15000Hz(比較例1)、に変更した以外は、実施例1と同様に液晶膜を形成し、膜厚を測定した。
[比較例2]
基材を振動しなかった以外は、実施例1と同様に液晶膜を形成し、膜厚を測定した。
基材の振動の周波数を、1000Hz(実施例2)、500Hz(実施例3)、50Hz(実施例4)、5Hz(実施例5)、および、15000Hz(比較例1)、に変更した以外は、実施例1と同様に液晶膜を形成し、膜厚を測定した。
[比較例2]
基材を振動しなかった以外は、実施例1と同様に液晶膜を形成し、膜厚を測定した。
[実施例6]
支持体を加熱することにより、表面の温度が100℃となるように基材を加熱した以外は、実施例1と同様に実施例1と同様に液晶膜を形成し、膜厚を測定した。
その結果、形成した液晶膜の厚さは、4.5μmであった。すなわち、基材を加熱することで、常温の基材に成膜を行った実施例1に比して厚い液晶膜を成膜できた。なお、常温とは、25℃である。
支持体を加熱することにより、表面の温度が100℃となるように基材を加熱した以外は、実施例1と同様に実施例1と同様に液晶膜を形成し、膜厚を測定した。
その結果、形成した液晶膜の厚さは、4.5μmであった。すなわち、基材を加熱することで、常温の基材に成膜を行った実施例1に比して厚い液晶膜を成膜できた。なお、常温とは、25℃である。
[実施例7]
キャリアガスの供給すなわち成膜を開始した20秒後に、基材の振動を開始した以外は、実施例1と同様に実施例1と同様に液晶膜を形成し、膜厚を測定した。
その結果、形成した液晶膜の厚さは、2.8μmであった。すなわち、基材の振動を開始した後に、エアロゾル生成部の超音波振動子を振動させて原料液のエアロゾル化を開始した実施例1に比して薄いものの、厚い膜を成膜できた。
キャリアガスの供給すなわち成膜を開始した20秒後に、基材の振動を開始した以外は、実施例1と同様に実施例1と同様に液晶膜を形成し、膜厚を測定した。
その結果、形成した液晶膜の厚さは、2.8μmであった。すなわち、基材の振動を開始した後に、エアロゾル生成部の超音波振動子を振動させて原料液のエアロゾル化を開始した実施例1に比して薄いものの、厚い膜を成膜できた。
結果を下記の表に示す。
なお、以下の評価では、液晶膜の膜厚が
3μm以上の場合を『十分に厚い(very good)』、
1μm以上3μm未満の場合を『厚い(good)』
1μm未満の場合を『薄い(bad)』
とした。
なお、以下の評価では、液晶膜の膜厚が
3μm以上の場合を『十分に厚い(very good)』、
1μm以上3μm未満の場合を『厚い(good)』
1μm未満の場合を『薄い(bad)』
とした。
表1に示されるように、エアロゾルの供給時に基材を10kHz以下の周波数で振動する本発明によれば、エアロゾルデポジションによる成膜の成膜速度を向上できる。特に、基材を50Hz以上の周波数で振動することにより、従来に比して、十分に厚い膜が形成できる。また、実施例6に示されるように、基材を加熱することにより、より厚い膜を形成でき、すなわち、エアロゾルデポジションによる成膜の成膜速度を向上できる。さらに、実施例1に示されるように、原料液のエアロゾル化を開始する前に、基材の振動を開始することにより、より厚い膜を形成でき、すなわち、エアロゾルデポジションによる成膜の成膜速度を向上できる。
これに対して、基材を15000kHzで振動した比較例1は、基材に付着したエアロゾルが液体として保持されずに、再度、エアロゾルとして離脱したと考えられ、基材を振動したにもかかわらず、本発明に比して、形成した液晶膜の膜厚が非常に薄く、すなわち、成膜速度が遅い。
また、基材を振動しなかった比較例2も、十分な成膜速度での成膜はできていない。
以上の結果より、本発明の効果は明らかである。
これに対して、基材を15000kHzで振動した比較例1は、基材に付着したエアロゾルが液体として保持されずに、再度、エアロゾルとして離脱したと考えられ、基材を振動したにもかかわらず、本発明に比して、形成した液晶膜の膜厚が非常に薄く、すなわち、成膜速度が遅い。
また、基材を振動しなかった比較例2も、十分な成膜速度での成膜はできていない。
以上の結果より、本発明の効果は明らかである。
例えば、光学素子の製造、半導体素子の製造、電気素子の製造および太陽電池の製造等に、好適に利用可能である。
10,40 成膜装置
12 エアロゾル生成部
14,14A 成膜部
16 誘導配管
20 原料容器
24 容器
26 超音波振動子
28 ガス供給手段
28a ガス供給管
30,30A ケーシング
32 支持体
34 加振装置
42,46 搬送ローラ
52 UVオゾン処理装置
54 撥水パターン転写装置
A エアロゾル
L 原料液
W 水
Z 基材
12 エアロゾル生成部
14,14A 成膜部
16 誘導配管
20 原料容器
24 容器
26 超音波振動子
28 ガス供給手段
28a ガス供給管
30,30A ケーシング
32 支持体
34 加振装置
42,46 搬送ローラ
52 UVオゾン処理装置
54 撥水パターン転写装置
A エアロゾル
L 原料液
W 水
Z 基材
Claims (11)
- 成膜材料を含む原料液をエアロゾル化して、10kHz以下の周波数で振動する基材に前記エアロゾルを供給して、前記基材に前記成膜材料を成膜すること特徴とする成膜方法。
- 前記基材にエアロゾルを供給する前に、前記基材の振動を開始する、請求項1に記載の成膜方法。
- 前記基材に前記成膜材料を成膜した後に、前記成膜した膜に活性放射線を照射する、請求項1または2に記載の成膜方法。
- 前記基材を加熱しつつ、前記基材に前記エアロゾルを供給する、請求項1~3のいずれか1項に記載の成膜方法。
- 前記基材を表面の温度が100℃以上となるように加熱する、請求項4に記載の成膜方法。
- 前記基材の振動の速度が0.1mm/秒以上である、請求項1~5のいずれか1項に記載の成膜方法。
- 前記基材の振動を、前記基材への音波の照射、前記基材への送風、および、前記基材の支持手段の振動の1以上によって行う、請求項1~6のいずれか1項に記載の成膜方法。
- 前記基材の被成膜面が、前記原料液に対する親液性を有する領域と、前記原料液に対する撥液性を有する領域と、を有する、請求項1~7のいずれか1項に記載の成膜方法。
- 前記基材に前記エアロゾルを供給する前に、前記基材の表面処理を行う、請求項1~8のいずれか1項に記載の成膜方法。
- 前記基材の表面処理が、ラビング処理、親液化処理、撥液化処理、および、下地層の形成の1以上である、請求項9に記載の成膜方法。
- 前記成膜材料が液晶化合物である、請求項1~10のいずれか1項に記載の成膜方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880082156.5A CN111511476B (zh) | 2017-12-22 | 2018-12-10 | 成膜方法 |
JP2019560979A JP7023984B2 (ja) | 2017-12-22 | 2018-12-10 | 成膜方法 |
US16/906,146 US11369990B2 (en) | 2017-12-22 | 2020-06-19 | Film forming method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017246042 | 2017-12-22 | ||
JP2017-246042 | 2017-12-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/906,146 Continuation US11369990B2 (en) | 2017-12-22 | 2020-06-19 | Film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019124135A1 true WO2019124135A1 (ja) | 2019-06-27 |
Family
ID=66992628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045260 WO2019124135A1 (ja) | 2017-12-22 | 2018-12-10 | 成膜方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11369990B2 (ja) |
JP (1) | JP7023984B2 (ja) |
CN (1) | CN111511476B (ja) |
TW (1) | TW201930419A (ja) |
WO (1) | WO2019124135A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021061309A (ja) * | 2019-10-07 | 2021-04-15 | 凸版印刷株式会社 | 印刷方法、印刷装置及び印刷物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7185067B2 (ja) * | 2019-09-27 | 2022-12-06 | 富士フイルム株式会社 | 画像記録方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003142398A (ja) * | 2001-08-20 | 2003-05-16 | Tokyo Electron Ltd | 液処理装置および液処理方法 |
JP2004046153A (ja) * | 2003-06-02 | 2004-02-12 | Seiko Epson Corp | 基板のコーティング方法、基板のコーティング装置、液晶表示体の製造方法、および面照明装置の製造方法 |
JP2004195340A (ja) * | 2002-12-17 | 2004-07-15 | National Institute Of Advanced Industrial & Technology | 微粒子のハンドリング方法及び装置 |
JP2007027536A (ja) * | 2005-07-20 | 2007-02-01 | Seiko Epson Corp | パターン形成装置 |
JP2009091604A (ja) * | 2007-10-04 | 2009-04-30 | Kansai Paint Co Ltd | 透明導電膜の製造方法 |
JP2012216411A (ja) * | 2011-03-31 | 2012-11-08 | Fujifilm Corp | ナノ粒子含有層の製造方法及びその製造装置、並びに導電性構造物の製造方法及びその製造装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08330303A (ja) | 1995-05-30 | 1996-12-13 | Mitsubishi Electric Corp | 薄膜形成方法および薄膜形成装置 |
JP3541294B2 (ja) | 2000-09-01 | 2004-07-07 | 独立行政法人 科学技術振興機構 | 有機エレクトロルミネッセンス薄膜の作製方法と作製装置 |
CN1273223C (zh) * | 2003-10-21 | 2006-09-06 | 财团法人工业技术研究院 | 微流体喷涂薄膜成形装置及其方法 |
JP2008285743A (ja) * | 2007-05-21 | 2008-11-27 | Ntn Corp | 被膜形成装置 |
US8282999B2 (en) * | 2008-04-04 | 2012-10-09 | Micron Technology, Inc. | Spin-on film processing using acoustic radiation pressure |
-
2018
- 2018-12-10 CN CN201880082156.5A patent/CN111511476B/zh active Active
- 2018-12-10 JP JP2019560979A patent/JP7023984B2/ja active Active
- 2018-12-10 WO PCT/JP2018/045260 patent/WO2019124135A1/ja active Application Filing
- 2018-12-17 TW TW107145450A patent/TW201930419A/zh unknown
-
2020
- 2020-06-19 US US16/906,146 patent/US11369990B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003142398A (ja) * | 2001-08-20 | 2003-05-16 | Tokyo Electron Ltd | 液処理装置および液処理方法 |
JP2004195340A (ja) * | 2002-12-17 | 2004-07-15 | National Institute Of Advanced Industrial & Technology | 微粒子のハンドリング方法及び装置 |
JP2004046153A (ja) * | 2003-06-02 | 2004-02-12 | Seiko Epson Corp | 基板のコーティング方法、基板のコーティング装置、液晶表示体の製造方法、および面照明装置の製造方法 |
JP2007027536A (ja) * | 2005-07-20 | 2007-02-01 | Seiko Epson Corp | パターン形成装置 |
JP2009091604A (ja) * | 2007-10-04 | 2009-04-30 | Kansai Paint Co Ltd | 透明導電膜の製造方法 |
JP2012216411A (ja) * | 2011-03-31 | 2012-11-08 | Fujifilm Corp | ナノ粒子含有層の製造方法及びその製造装置、並びに導電性構造物の製造方法及びその製造装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021061309A (ja) * | 2019-10-07 | 2021-04-15 | 凸版印刷株式会社 | 印刷方法、印刷装置及び印刷物 |
JP7408985B2 (ja) | 2019-10-07 | 2024-01-09 | Toppanホールディングス株式会社 | 印刷方法、印刷装置及び印刷物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019124135A1 (ja) | 2020-11-26 |
US11369990B2 (en) | 2022-06-28 |
JP7023984B2 (ja) | 2022-02-22 |
TW201930419A (zh) | 2019-08-01 |
CN111511476A (zh) | 2020-08-07 |
CN111511476B (zh) | 2022-05-03 |
US20200316642A1 (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020114943A (ja) | 薄膜製造装置、及び薄膜製造方法 | |
TWI764479B (zh) | 霧氣產生裝置、霧氣成膜裝置、及霧氣產生方法 | |
US8007874B2 (en) | Method and apparatus for curing coated film | |
JP5778376B2 (ja) | コーティングプロセスにおいて材料を噴霧化する方法 | |
JP7260006B2 (ja) | ミスト成膜装置及びミスト成膜方法 | |
US20210023581A1 (en) | Ultrasonic material applicators and methods of use thereof | |
US12096678B2 (en) | Film forming apparatus including a sprayer port and exhaust port on a supply pipe | |
WO2019124135A1 (ja) | 成膜方法 | |
WO2019124151A1 (ja) | 成膜方法 | |
JP6885863B2 (ja) | パターン形成方法、成膜方法およびシート状物 | |
JP2011200843A (ja) | 塗布方法及び塗布装置並びに積層体の製造方法 | |
JP2003051499A (ja) | 薄膜形成方法及び装置 | |
TWI328046B (en) | Coating method of nanoparticles thin film and green fabricating method of nanoparticles coated and antibacterial paper thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18890617 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019560979 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18890617 Country of ref document: EP Kind code of ref document: A1 |