[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004195340A - 微粒子のハンドリング方法及び装置 - Google Patents

微粒子のハンドリング方法及び装置 Download PDF

Info

Publication number
JP2004195340A
JP2004195340A JP2002365780A JP2002365780A JP2004195340A JP 2004195340 A JP2004195340 A JP 2004195340A JP 2002365780 A JP2002365780 A JP 2002365780A JP 2002365780 A JP2002365780 A JP 2002365780A JP 2004195340 A JP2004195340 A JP 2004195340A
Authority
JP
Japan
Prior art keywords
fine particles
substrate
handling
ultrasonic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002365780A
Other languages
English (en)
Other versions
JP4415139B2 (ja
Inventor
Jun Aketo
純 明渡
Maxim Lebedev
マキシム レベデフ
Harumichi Sato
治道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002365780A priority Critical patent/JP4415139B2/ja
Priority to PCT/JP2003/014983 priority patent/WO2004054704A1/ja
Priority to AU2003284666A priority patent/AU2003284666A1/en
Publication of JP2004195340A publication Critical patent/JP2004195340A/ja
Application granted granted Critical
Publication of JP4415139B2 publication Critical patent/JP4415139B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00932Sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0493Specific techniques used
    • B01L2400/0496Travelling waves, e.g. in combination with electrical or acoustic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Coating Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】本発明は、超音波輻射による微粒子の凝集現象とフラットな基板上に展開された液膜の表面張力を利用し、流路やキャビティーなどのガイド無しに、基板上で超音波を用いて微粒子をハンドリングする技術を提供することを目的とする。
【解決手段】本発明の微粒子のハンドリング方法は、溶液と混合された微粒子を基板上に展開し、これに超音波を印加し、微粒子と溶液を搬送、混合、凝集、濃縮又は分離することを特徴とする。また、本発明の微粒子のハンドリング装置は、溶液と混合された微粒子を表面に展開する基板の裏面に超音波発生源を設け、前記基板の裏面側から液体と混合された微粒子に超音波を印加することを特徴とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に展開された大きさが100μm以下の微粒子、薬剤粉末及びDNA等(本明細書では、これらを総称して単に「微粒子」という。)を基板上で搬送、混合、濃縮、分離する方法及び装置に関する。
【0002】
【従来の技術】
生物学、医学、薬学の分野では、処理の高速化や機器の携帯性など様々な理由から液中に分散された極微量の試料を非接触に取り扱い、分析・診断する技術が求められている。
従来、液中に分散された微粒子をハンドリングするためにレーザーによる光輻射や加熱による液体流れによる手法が提案されている(従来例1)。
また、マイクロマシニングなどを応用した微小化学分析装置や医療用分析装置では、その携帯性を高めるため分析素子の配置された基板上に被分析試料や薬液をガイドするための微小な流路やキャビティーを設けたカード状の分析装置が提案されている(従来例2)。
【0003】
【発明が解決しようとする課題】
しかしながら、従来例1のように、熱的な効果を利用した場合、微粒子の搬送応答速度や安定性に問題があり、基板上に展開された薄い液膜内の強い表面張力に保持された大量の微粒子を一括してハンドリングする事は困難で、扱える分量も僅かで実用性に欠けていた。
また、従来例2の場合、微小な流路やキャビティーに付着した薬液やDNAなどの固体の分析試料はクリーニングが容易でなく、使い捨ての機器にならざる得なかった。従って、高度で複雑な分析を行うと高価な物になり、その用途は限定された物になる等の課題があった。
【0004】
本発明は、従来技術の有する問題点を解決すべく新しい知見に基づきなされたもので、超音波輻射による微粒子の凝集現象とフラットな基板上に展開された液膜の表面張力を利用し、流路やキャビティーなどのガイド無しに、基板上で超音波を用いて微粒子をハンドリングする技術を提供することを目的とする。
【0005】
【課題を解決するための手段】
まず、本発明の原理について説明する。
容器に入れた液中に分散された微粒子に超音波を照射すると、容器内で形成される超音波定在波節の部分の方が腹の部分より圧力が下がり、結果、液中に分散された微粒子が、節の部分に集まり濃縮される。このことは「超音波輻射圧による微粒子の凝集現象」として知られ文献(応用物理Vol.67,3号,p323-326)にも記載されている。
これに対し、基板上に展開あるいは塗布させた印加超音波の波長以下の薄い液膜中の微粒子への超音波照射の場合、液膜の厚みで微粒子の運動は擬2次元的に拘束され、また、超音波源からの距離がその波長以下であるため、後述するように液中に分散した微粒子は、上記超音波輻射圧を用いた場合と異なり、振動の腹の部分に集まる。この違いは、超音波の近接場効果や液膜の微粒子や基板との間に働く表面張力の効果などが顕著になるためと考えられる。
本発明は、この新しい超音波輻射による微粒子の凝集現象とフラットな基板上に展開された液膜の表面張力を利用し、流路やキャビティーなどのガイド無しに、基板上で超音波を用いて微粒子をハンドリングする技術を提供することを目的とする。
なお、本明細書において「超音波」は、高い周波数をもつ各種の弾性波を総称して超音波といい、およそ1kHz以上の周波数の音波をいう。
【0006】
上記目的を達成するため本発明の微粒子のハンドリング方法は、溶液と混合された微粒子を基板上に展開し、これに超音波を印加し、微粒子と溶液を搬送、混合、凝集、濃縮又は分離することを特徴とする。
また、本発明の微粒子のハンドリング方法は、溶液と微粒子とが混合されて形成する液膜の厚みが印加する超音波の波長あるいはその波長以下であることを特徴とする。
また、本発明の微粒子のハンドリング方法は、溶液と微粒子とが混合されて形成する液膜の厚みが微粒子の粒径の3〜10倍の範囲であること特徴とする。
また、本発明の微粒子のハンドリング装置は、溶液と混合された微粒子を表面に展開する基板の裏面に超音波発生源を設け、前記基板の裏面側から液体と混合された微粒子に超音波を印加することを特徴とする。
また、本発明の微粒子のハンドリング装置は、超音波発生源として基板の裏面にエアロゾルデポジション法で形成されるPZT膜から成る圧電素子を用いることを特徴とする。
また、本発明の微粒子のハンドリング装置は、基板裏面に少なくとも2カ所以上の超音波発生源を設け、これらの超音波発生源を順次動作させることを特徴とする。
また、本発明の微粒子のハンドリング装置は、微粒子が1μm以上、100μm以下であることを特徴とする。
また、本発明の微粒子のハンドリング装置は、溶液と混合された微粒子に印加される超音波が、1kHz以上であることを特徴とする。
また、本発明の微粒子のハンドリング装置は、溶液と微粒子とが混合されて形成する液膜の厚みが10mm以下であることを特徴とする。
また、本発明の微粒子のハンドリング装置は、基板の厚みが0.5〜500μmの範囲であることを特徴とする。
また、本発明の微粒子のハンドリング装置は、超音波発生源に印加する電圧振幅が30V以下であることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明による実施の形態を図面に基づき説明する。
〔実施の形態1〕
図1乃至図7は、実施の形態1を示す図である。
図1は、微粒子ハンドリング装置の概略を示す正面断面図であり、左側の図が電源OFF時を、右側の図が電源ON時を示している。
微粒子ハンドリング装置は、以下の手順で作製される。
まず、Si基板1をプラズマエッチング(ICP−RIE:誘導プラズマ結合反応性エッチング)あるいは化学エッチング(異方性エッチング)などで加工し、図1に示すような薄いSi基板の領域2を設け(結果として微小な容器(キャビティー)を構成することになる。)、この領域2の底面に超音波を発生するための超音波発生源3を設ける。
この超音波発生源3は、上部電極4、下部電極5の設けられたPZTなどの圧電素子7を上記基板1裏面の所定の位置に張り付ける。このとき、上記超音波発生発生源3である圧電素子7をエアロゾルデポジション法(例えば、特許公開2002−20878に開示されている微粒子堆積法)でPZT微粒子をPtなどの下部電極5の設けられたSi基板1に吹きつけ直接形成すると、接着剤などを介さないため、発生した超音波の吸収が最小限に抑えられ、Si基板1上に塗布された液膜内に超音波を広い周波数に渡り効率的に伝搬させることが可能となる。
さらに形成するPZT圧電素子7の厚みの下限は、微粒子をハンドリングするのに必要な超音波の発生パワーからして1μm以上、また小型デバイスとして実用に供する観点から駆動電圧を低減するために50μm以下に設定することが望ましい。また、Siなどできた基板1の厚みは、PZT圧電素子7の厚みと同様に、局所的あるは効率的な超音波の印加を考慮し、500μm以下であることが望ましい。
【0008】
次に、この様に形成された超音波発生源3を設けた基板1に、粒径500μm以下のガラス微粒子8と溶液9を混合したものを塗布あるは滴下し、薄い液膜10を形成し、前記超音波発生源3の配置された基板1底面から基板1表面に向けて1kHz以上の周波数で超音波を発生させると、基板1表面の溶液に分散していた微粒子8は、図2乃至図5に示すように圧電素子が配置され音波振動の腹の部分となる超音波源の中心部に集まり凝集、濃縮される。
【0009】
図2乃至図5に示す実験例▲1▼〜▲4▼では、微粒子8の粒径は5μm、20μm、124μmで、液膜10の厚みは1〜6mm、Si基板1厚みは65μm、100μm、圧電素子(PZT層)7厚みは10〜15μm、駆動超音波の周波数は、10kHz,13kHz,96kHz,144kHz,214kHz、駆動電圧は±10V、溶液9の種類は、水、エチレングルコール、パラフィン、シリコンオイルである。このとき液膜10面は微粒子8との間に働く表面張力により引きずられ微粒子8の凝集に伴い盛り上がり、印加している超音波振動を切ると、溶液9の熱振動や基板1との表面張力により、超音波発生源直下に濃縮、集められた微粒子8は、再び分散することになる。つまり、超音波照射のON、OFFにより、この微粒子8の凝集操作は可逆的に行うことが可能である。
また、超音波照射中に凝集した微粒子は、静的に集まったものでなく、液体との間に流れを作っており、動的に動きながら集まったものである。従って、種類の異なる微粒子を混合することも可能であり、さらに微粒子を溶液と混合、反応させることも可能である。
【0010】
微粒子8の凝集の速度は、圧電素子7に印加する駆動電圧で制御可能で、超音波源のパワー(素子の振幅)の増加に伴って、微粒子8の移動速度が増加することが確認された。また、図2乃至図4の実験▲1▼〜▲3▼にあるように、微粒子8の粒子径、溶液9の種類に関係無く、超音波により凝集操作を実現することができる。尚、このときの照射超音波の周波数は基板1の共振周波数(溶液有り:5kHz,溶液無し:20kHz)ではない。
また、微粒子8の凝集の速度は、上記した圧電素子7に印加する駆動電圧の他に、溶液の粘度、あるいは、微粒子の粒径に応じても凝集速度が変化する。 この性質を利用することにより、微粒子の分離、あるいは微粒子と溶液との分離をすることも可能である。
【0011】
さらに、図5の実験例▲4▼は、超音波の周波数を変化させたときの凝集操作の変化を調べた結果である。10kHz〜200kHzにわたり、凝集操作を実現することができた。このとき、上述した▲1▼〜▲4▼の全ての実験において、溶液中の音波波長は、7mm〜150mmで、液膜10の厚みや実験に用いた基板1に形成されたキャビティーの大きさ以上で、超音波の波長から本発明の液中微粒子の凝集現象は、近接場超音波の効果によるものと考えられ、先述した超音波輻射圧による液中微粒子の凝集現象とは、メカニズムが異なることが確認された。 また、基板振動部分の振幅(d)は、10nm(10kHz時)〜2nm(214kHz時)と非常に僅かで、単純な基板振動による粒子の凝集でも無く、超音波による効果であることが明らかになった。
【0012】
尚、確認のために超音波を印加した際の基板1の振動状態をレーザー変位計(小野測器製:LV−1610&フリンジカウンターLV−0120)で計測した結果、図6に示すように超音波印加により粒子の凝集した超音波源中央部で最大変位をする1次の振動モードであった。また、同じ超音波源を設けた基板に液体を除いた状態で微粒子8だけを載せ、超音波を照射したところ、基板1上の微粒子8はその場で振動するだけで、この様な微粒子8の凝集現象は、全く観察されなかった。つまり、本発明の微粒子のハンドリング手法は、従来、ネジ等の微小部品を搬送するのに使われるパーツフィーダーなどの様な振動と重力を用いた原理とは本質的に異なることが確認された。
【0013】
この実施例では、塗布する溶液9としては自然蒸発、乾燥を防ぐため水、エチレングルコール、パラフィン、シリコンオイルを使ったが、アルコール類などその他の液体でも同様の操作が可能で、用途により適宜選択する。また、超音波により微粒子8に働く力は、粒径に依存して小さくなり、最終的にはブラウン運動のため散乱されハンドリングできなくなる。実験的には0.5μm程度の粒子径までは操作できることが確認された。液膜10の厚みについては、本発明の場合、使用する微粒子8の粒径にも影響されるが、実験的には使用する微粒直径の3〜10倍程度が好ましい。
尚、液膜10を形成する液体9に高粘度あるいは表面張力の大きな液体を用いると、重力の影響を無視でき、基板1表面に特別なカバーを掛けなくとも、基板1上に展開された液体9や微粒子8はこぼれ落ちることなく使用することができ、装置が簡便化する利点がある。
【0014】
また、上記実施例の実験では、基板1にエッチングにより微小なキャビティーを設けたが、これは溶液9をガイドする為の物でなく、溶液9や微粒子8に局所的かつ効率的に超音波を印加するためにSi基板1を薄くし、側壁からの音波の反射を利用するためで、本装置の動作原理からも、これは必須のものでは無い。従って、Si基板1上で超音波を効率的に印加するためにエッチングを施し、厚みを薄くする箇所は、液膜10の塗布される基板1表面に設ける必要は無く、図7に示すように基板1裏面をエッチングし、超音波発生源3である圧電素子7を設けてもよい。つまり、基板1に超音波が印加されていれば、液膜10中の微粒子8は超音波発生源3近傍に拘束され、微小キャビティーや微小流路などのガイドが必要でなくフラット(平面)な基板1面上で安定した微粒子のハンドリング、分析が可能となる。また、これにより複雑な流路やキャビティーを設ける必要が無く、分析装置のクリーニングが容易になる。
尚、図7の様な構成の場合、圧電膜の形成は従来薄膜技術では困難で、エアロゾルデポジション法により、ノズルからPZT微粒子を噴射し、局所的なパターニングを行えば容易に作製できる。
【0015】
〔実施の形態2〕
図8乃び図9は、実施の形態2を示す図である。
実施の形態1の基本操作を基に、図8に示すようにフラットなSi基板1裏面上に超音波発生源3である圧電素子7を複数配列し、これを順次駆動させることで、その表面上に塗布された液膜10内の微粒子8を搬送することができる。次にその動作を説明する、まず、複数配列された圧電素子7の一つを動作させると、圧電素子7周辺に存在する粒子8は実施の形態1の原理に基づき圧電素子7の近傍に凝集する。次にこの圧電素子7の駆動を停止し、あるいは漸次弱めながら、隣接された圧電素子7を徐々に駆動すると、圧電素子7の近傍に集まっていた微粒子8は、同様の原理で圧電素子7近傍に引き寄せられ、圧電素子7近傍に凝集する。この様な動作を隣接する複数の圧電素子7にわたり順次駆動する事で、結果的に微粒子8は、基板1上に配置された圧電素子7の配列に応じて、移動することができる。
【0016】
この様な圧電素子7の配列は、従来の微小流路のパターンに対応するもので、搬送、混合、凝集などの操作の必要に応じて配置、大きさを選ぶ。また、微細な超音波源を図9に示すようにマトリックス状に配置し、一筆書きできる形で順次駆動すると、駆動する超音波源の組み合わせにより同一の素子で、基板1上の微粒子8を任意のベクトル方向にハンドリングが可能となり、様々な目的に応じて同装置を安価に提供することができる。尚、超音波源の配列間隔と各超音波源の切り替わり時間は、液体の粘性、液膜の厚み、粒子の大きさ、超音波の周波数、強度に応じて適宜調整する。
【0017】
【発明の効果】
本発明によれば、基板上に展開された薄い液膜内の強い表面張力に保持された大量の微粒子を一括してハンドリングする事が可能であり、扱える分量も実用上必要とされるに十分である。また、微粒子の搬送応答速度や安定性にも優れている。
また、本発明では、基板表面に微小流路やキャビティーを形成せず非接触で微粒子のハンドリング(搬送、凝集、混合、分散、分離など)が行えるため、液膜、微粒子の接触する表面は、フラットで装置をクリーニングすることが容易になり、また、流路などの固定されたガイドが液膜、微粒子の接触する基板表面に存在しないため、同一の装置で任意の方向への微粒子、液体の搬送、凝集、分散が可能となる。
また、本発明によれば、従来のものに比して操作が容易であり、また低廉なハンドリング装置の提供が可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る微粒子のハンドリング装置の概略を示す正面断面図である。
【図2】本発明の実施の形態1による実験例1を示すもので、微粒子のハンドリング装置の上面から撮影した写真である。
【図3】本発明の実施の形態1による実験例2を示すもので、微粒子のハンドリング装置の上面から撮影した写真である。
【図4】本発明の実施の形態1による実験例3を示すもので、微粒子のハンドリング装置の上面から撮影した写真である。
【図5】本発明の実施の形態1による実験例4を示すもので、微粒子のハンドリング装置の上面から撮影した写真である。
【図6】本発明の実施の形態1に係る超音波を印加した際の基板の振動状態をレーザー変位計で計測した結果を示す図である。
【図7】基板裏面をエッチングし、該エッチング部に超音波発生源である圧電素子を設けた例を示す正面図である。
【図8】本発明の実施の形態2に係る、フラットな基板裏面上に超音波発生源である圧電素子を複数配列し、これを順次駆動させることで、基板表面上に塗布された液膜内の微粒子を搬送する状態を示す正面図である。
【図9】本発明の実施の形態2に係る、微細な超音波源をマトリックス状に配置した例を示す説明図である。
【符号の説明】
1 基板
2 基板の薄い領域
3 超音波発生源
4 上部電極
5 下部電極
7 圧電素子
8 微粒子
9 溶液
10 液膜

Claims (11)

  1. 溶液と混合された微粒子を基板上に展開し、これに超音波を印加し、微粒子と溶液を搬送、混合、凝集、濃縮又は分離することを特徴とする微粒子のハンドリング方法。
  2. 溶液と微粒子とが混合されて形成する液膜の厚みが印加する超音波の波長あるいはその波長以下であることを特徴とする請求項1記載の超音波微粒子ハンドリング方法
  3. 溶液と微粒子とが混合されて形成する液膜の厚みが微粒子の粒径の3〜10倍の範囲であること特徴とする請求項1に記載の微粒子のハンドリング方法。
  4. 溶液と混合された微粒子を表面に展開する基板の裏面に超音波発生源を設け、前記基板の裏面側から液体と混合された微粒子に超音波を印加することを特徴とする微粒子のハンドリング装置。
  5. 超音波発生源として基板の裏面にエアロゾルデポジション法で形成されるPZT膜から成る圧電素子を用いることを特徴とする請求項4記載の微粒子のハンドリング装置。
  6. 基板裏面に少なくとも2カ所以上の超音波発生源を設け、これらの超音波発生源を順次動作させることを特徴とする請求項4又は5記載の微粒子のハンドリング装置。
  7. 微粒子が1μm以上、100μm以下であることを特徴とする請求項4乃至請求項6のいずれか1項に記載の微粒子のハンドリング装置。
  8. 溶液と混合された微粒子に印加される超音波が、1kHz以上であることを特徴とする請求項4乃至請求項7のいずれか1項に記載の微粒子のハンドリング装置。
  9. 溶液と微粒子とが混合されて形成する液膜の厚みが10mm以下であることを特徴とする請求項4乃至請求項8のいずれか1項に記載の微粒子のハンドリング装置。
  10. 基板の厚みが0.5〜500μmの範囲であることを特徴とする請求項1乃至請求項9のいずれか4項に記載の微粒子のハンドリング装置。
  11. 超音波発生源に印加する電圧振幅が30V以下であることを特徴とする請求項4乃至請求項10のいずれか1項に記載の微粒子のハンドリング装置。
JP2002365780A 2002-12-17 2002-12-17 微粒子のハンドリング方法及び装置 Expired - Lifetime JP4415139B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002365780A JP4415139B2 (ja) 2002-12-17 2002-12-17 微粒子のハンドリング方法及び装置
PCT/JP2003/014983 WO2004054704A1 (ja) 2002-12-17 2003-11-25 微粒子のハンドリング方法及び装置
AU2003284666A AU2003284666A1 (en) 2002-12-17 2003-11-25 Particles handling method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365780A JP4415139B2 (ja) 2002-12-17 2002-12-17 微粒子のハンドリング方法及び装置

Publications (2)

Publication Number Publication Date
JP2004195340A true JP2004195340A (ja) 2004-07-15
JP4415139B2 JP4415139B2 (ja) 2010-02-17

Family

ID=32588280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365780A Expired - Lifetime JP4415139B2 (ja) 2002-12-17 2002-12-17 微粒子のハンドリング方法及び装置

Country Status (3)

Country Link
JP (1) JP4415139B2 (ja)
AU (1) AU2003284666A1 (ja)
WO (1) WO2004054704A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535203A (ja) * 2006-05-02 2009-10-01 モナシュ、ユニバーシティ 音響エネルギーを使用した、小流体体積中の小粒子の集中および分散
US8636846B2 (en) 2007-06-29 2014-01-28 Brother Kogyo Kabushiki Kaisha Aerosol-generating apparatus, film-forming apparatus, and aerosol-generating method
WO2019124135A1 (ja) * 2017-12-22 2019-06-27 富士フイルム株式会社 成膜方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2028593B1 (en) * 2021-06-30 2023-01-10 Lumicks Ca Holding B V Method and system for characterizing an acoustic-based particle manipulation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024431A (ja) * 1998-07-14 2000-01-25 Hitachi Ltd 微粒子処理装置
JP2001327917A (ja) * 2000-05-19 2001-11-27 Tdk Corp 機能性膜の製造方法、および機能性膜

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535203A (ja) * 2006-05-02 2009-10-01 モナシュ、ユニバーシティ 音響エネルギーを使用した、小流体体積中の小粒子の集中および分散
JP2012130920A (ja) * 2006-05-02 2012-07-12 Monash Univ 音響エネルギーを使用した、小流体体積中の小粒子の集中および分散
US8998483B2 (en) 2006-05-02 2015-04-07 Royal Melbourne Institute Technology Concentration and dispersion of small particles in small fluid volumes using acoustic energy
US8636846B2 (en) 2007-06-29 2014-01-28 Brother Kogyo Kabushiki Kaisha Aerosol-generating apparatus, film-forming apparatus, and aerosol-generating method
WO2019124135A1 (ja) * 2017-12-22 2019-06-27 富士フイルム株式会社 成膜方法
CN111511476A (zh) * 2017-12-22 2020-08-07 富士胶片株式会社 成膜方法
JPWO2019124135A1 (ja) * 2017-12-22 2020-11-26 富士フイルム株式会社 成膜方法
JP7023984B2 (ja) 2017-12-22 2022-02-22 富士フイルム株式会社 成膜方法
CN111511476B (zh) * 2017-12-22 2022-05-03 富士胶片株式会社 成膜方法
US11369990B2 (en) 2017-12-22 2022-06-28 Fujifilm Corporation Film forming method

Also Published As

Publication number Publication date
AU2003284666A1 (en) 2004-07-09
JP4415139B2 (ja) 2010-02-17
WO2004054704A1 (ja) 2004-07-01

Similar Documents

Publication Publication Date Title
Connacher et al. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications
Yeo et al. Surface acoustic wave microfluidics
CN103492078B (zh) 用于流体样本的表面声波处理的射流装置、射流装置的用途以及制造射流装置的方法
Yeo et al. Ultrafast microfluidics using surface acoustic waves
JP4964387B2 (ja) 少量の物質を操作する装置及び方法
US8323985B2 (en) Mixing device and mixing method for mixing small amounts of liquid
Ho et al. based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry
US8425749B1 (en) Microfabricated particle focusing device
US8038337B2 (en) Method and device for blending small quantities of liquid in microcavities
CN107979352B (zh) 一种薄膜体声波微流控混合装置
Meng et al. On-chip targeted single cell sonoporation with microbubble destruction excited by surface acoustic waves
US8303778B2 (en) Method and device for generating movement in a thin liquid film
Meng et al. Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device
US12042794B2 (en) Programmable ultrasonic field driven microfluidics
JPH11347392A (ja) 攪拌装置
Cui et al. Hypersonic‐induced 3D hydrodynamic tweezers for versatile manipulations of micro/nanoscale objects
Aubert et al. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves
Luo et al. Acoustic wave based microfluidic and lab-on-chip
Aghakhani et al. Flexural wave-based soft attractor walls for trapping microparticles and cells
Li et al. Recent advances in acoustic microfluidics and its exemplary applications
JP4415139B2 (ja) 微粒子のハンドリング方法及び装置
US20070264161A1 (en) Method and Device for Generating Movement in a Thin Liquid Film
Qian et al. Low-cost laser-cut patterned chips for acoustic concentration of micro-to nanoparticles and cells by operating over a wide frequency range
Abdelghany et al. Tuning AC Electrokinetic Flow to Enhance Nanoparticle Accumulation in Low‐Conductivity Solutions
JP4063014B2 (ja) 化学分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4415139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term