[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018037530A1 - Semiconductor device and production method therefor - Google Patents

Semiconductor device and production method therefor Download PDF

Info

Publication number
WO2018037530A1
WO2018037530A1 PCT/JP2016/074818 JP2016074818W WO2018037530A1 WO 2018037530 A1 WO2018037530 A1 WO 2018037530A1 JP 2016074818 W JP2016074818 W JP 2016074818W WO 2018037530 A1 WO2018037530 A1 WO 2018037530A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
channel layer
type impurity
barrier layer
Prior art date
Application number
PCT/JP2016/074818
Other languages
French (fr)
Japanese (ja)
Inventor
南條 拓真
哲郎 林田
古川 彰彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/074818 priority Critical patent/WO2018037530A1/en
Priority to JP2017507451A priority patent/JPWO2018037530A1/en
Publication of WO2018037530A1 publication Critical patent/WO2018037530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a structure of a semiconductor device such as a field effect transistor made of a semiconductor containing nitride, and a manufacturing method thereof.
  • a GaN channel layer and an AlGaN barrier layer are sequentially formed on a substrate, and a source electrode, a drain electrode, and a gate electrode are formed thereon.
  • High-concentration n-type impurity regions are formed in the channel layer and the barrier layer located below the source electrode and the drain electrode.
  • a gate insulating film made of AlGa x O y is formed on the AlN barrier layer sandwiched between the high-concentration n-type impurity regions where the high-concentration n-type impurity regions are not formed so as to cover the regions.
  • a gate electrode is formed on the film.
  • a heterojunction field effect transistor made of a nitride semiconductor described in Patent Document 1 has the above structure.
  • the gate insulating film made of AlGa x O y or the like If an ideal interface having no interface trap exists at the interface with the AlGaN barrier layer, a sufficient drain current can be obtained in the normally-off operation.
  • Patent Document 1 when a transistor is manufactured by a simple process in which a gate insulating film is deposited on an AlGaN barrier layer, a high concentration is formed at the interface between the gate insulating film and the barrier layer. An interface trap level is formed. As a result, the controllability of the drain current by the gate voltage is lowered, and there is a problem that a sufficient drain current cannot be obtained in the normally-off operation.
  • an object of the present invention is to provide a technique capable of obtaining a sufficiently large drain current in a normally-off operation in a semiconductor device.
  • a semiconductor device is formed with a channel layer made of Al x1 In y1 Ga 1 -x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1) and spaced from each other on the surface side of the channel layer.
  • the first and second n-type electrodes are formed so as to be spaced apart from each other toward the inside of the channel layer from at least the lower part of the first and second electrodes on the surface of the channel layer.
  • the controllability of the drain current by the gate electrode is improved, and a sufficient drain current is obtained in the normally-off operation. It becomes possible.
  • FIG. 1 is a diagram illustrating an example of a structure of a semiconductor device according to a first embodiment.
  • 8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device fabricated without performing heat treatment.
  • FIG. 6 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after depositing a gate insulating film.
  • 4 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after forming a gate electrode.
  • 4 is a graph showing the heat treatment temperature dependence of drain current in a semiconductor device fabricated by performing heat treatment at a temperature of 0 ° C. to 800 ° C.
  • FIG. 6 is a diagram illustrating an example of a structure of a semiconductor device according to a second embodiment.
  • FIG. 6 is a diagram illustrating an example of a structure of a semiconductor device according to a third embodiment.
  • FIG. 6 is a diagram illustrating an example of a structure of a semiconductor device according to a fourth embodiment.
  • FIG. 10 is a diagram showing an example of a structure of a semiconductor device according to a sixth embodiment.
  • FIG. 10 is a diagram illustrating an example of a structure of a semiconductor device according to a seventh embodiment.
  • FIG. 20 is a diagram showing another example of the structure of the semiconductor device according to the seventh embodiment.
  • FIG. 20 is a diagram showing an example of a structure of a semiconductor device according to an eighth embodiment.
  • FIG. 20 is a diagram showing another example of the structure of the semiconductor device according to the eighth embodiment.
  • FIG. 20 is a diagram showing another example of the structure of the semiconductor device according to the eighth embodiment.
  • FIG. 20 illustrates an example of a structure of a semiconductor device according to a ninth embodiment.
  • FIG. 38 shows an example of a structure of a semiconductor device according to a tenth embodiment.
  • FIG. 38 shows another example of the structure of the semiconductor device according to the tenth embodiment. It is a figure which shows an example of the structure of the semiconductor device which concerns on Embodiment 11.
  • FIG. 38 shows another example of the structure of the semiconductor device according to the eleventh embodiment.
  • FIG. 38 shows another example of the structure of the semiconductor device according to the eleventh embodiment. It is a figure which shows an example of the structure of the semiconductor device which concerns on Embodiment 12.
  • FIG. 38 shows another example of the structure of the semiconductor device according to the twelfth embodiment.
  • FIG. 38 shows another example of the structure of the semiconductor device according to the twelfth embodiment. It is a figure which shows an example of the structure of the semiconductor device which concerns on a modification.
  • FIG. 1 is a diagram illustrating an example of the structure of the semiconductor device according to the first embodiment.
  • the semiconductor device is, for example, a heterojunction field effect transistor made of a nitride semiconductor.
  • the semiconductor device includes a substrate 1, a buffer layer 2, a channel layer 3a made of Al x1 In y1 Ga 1 -x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1), Al x2 Barrier layer 4a made of In y2 Ga 1-x2-y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1), source electrode 5 as the first electrode, drain electrode 6 as the second electrode, first n-type impurity A high-concentration n-type impurity region 7 as a region, a high-concentration n-type impurity region 8 as a second n-type impurity region, a gate insulating film layer 9a, a gate electrode 10, and an element isolation region 11 are provided.
  • the lowermost layer is the substrate 1, and a channel layer 3 a made of non-doped GaN and a barrier layer 4 a made of non-doped AlN that forms a heterojunction with the channel layer 3 a are formed on the surface of the substrate 1 through the buffer layer 2.
  • a source electrode 5 and a drain electrode 6 are formed on the surface side of the channel layer 3a so as to be separated from each other. More specifically, the source electrode 5 is formed on the left side of the surface of the channel layer 3a toward the paper surface of FIG. A drain electrode 6 is formed on the right side of the surface of the channel layer 3a as viewed in FIG. Further, a gate electrode 10 is formed at the central portion toward the paper surface of FIG.
  • a high-concentration n-type impurity region 7 and a high-concentration n-type impurity region 8 containing Si at a high concentration are formed to a position deeper than the barrier layer 4a. That is, the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are separated from each other toward the inside of the channel layer 3a from at least a portion below the source electrode 5 and the drain electrode 6 on the surface of the channel layer 3a. Is formed.
  • Barrier layer 4 a is formed on the surface of channel layer 3 a between high-concentration n-type impurity region 7 and high-concentration n-type impurity region 8.
  • the element isolation regions 11 are formed on the left and right ends of the surface of the substrate 1 through the buffer layer 2 with respect to the paper surface of FIG.
  • the gate insulating film layer 9 a is made of AlO a and is formed so as to cover the surface of the channel layer 3 a between the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8.
  • the gate insulating film layer 9 a is formed so as to cover the entire surface of the channel layer 3 a and the surface of the element isolation region 11.
  • the gate electrode 10 is formed so as to cover the entire surface of the barrier layer 4 a sandwiched between the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8.
  • the equilibrium state In the equilibrium state, the energy at the lower end of the conduction band at the heterointerface between the channel layer 3a on the lower side of the gate electrode 10 and the barrier layer 4a is higher than the Fermi energy.
  • the equilibrium state is a state in which no voltage is applied to each electrode.
  • the electrodes are the source electrode 5, the drain electrode 6, and the gate electrode 10.
  • the thickness of the barrier layer 4a made of non-doped AlN is 1 nm
  • the energy at the lower end of the belt is higher than the Fermi energy.
  • the channel region is a region sandwiched between the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 below the gate electrode 10.
  • 2 to 7 are views showing a method of manufacturing the semiconductor device according to the first embodiment.
  • the buffer layer 2, the channel layer 3a, and the barrier layer 4a are grown in order from the bottom.
  • the step of growing the channel layer 3a shown in FIG. 2 is called a channel layer generation step
  • the step of growing the barrier layer 4a is called a barrier layer generation step.
  • Si ions are implanted in a desired region under the conditions of an implantation dose of 1 ⁇ 10 15 (cm ⁇ 2 ) and an implantation energy of 50 (keV). Type in. Thereafter, heat treatment is performed at a temperature of 1150 ° C. using a rapid thermal annealing (RTA) method to activate the doped Si ions, thereby forming the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8.
  • RTA rapid thermal annealing
  • a source electrode 5 and a drain electrode 6 made of a metal multilayer film are formed on the surfaces of the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8, respectively, using a vapor deposition / lift-off method.
  • the process shown in FIG. 4 is called the 1st, 2nd electrode production
  • the element isolation region 11 is formed in the channel layer 3a and the barrier layer 4a outside the region where the transistor is manufactured using an ion implantation method.
  • a gate insulating film layer 9a made of AlO a is deposited using an atomic layer deposition method using oxygen plasma as an oxygen supply source. Note that the process shown in FIG. 6 is referred to as a gate insulating film layer forming process.
  • a gate electrode 10 made of a metal film is formed using a vapor deposition / lift-off method. Note that the process shown in FIG. 7 is referred to as a gate electrode generation process. In the above description, only the minimum necessary elements that operate as a transistor are described, but the element is finally used as a device through a formation process of a protective film, a field plate electrode, a wiring, an air bridge, a via hole, and the like. . Further, heat treatment is further performed in order to manufacture the semiconductor device shown in FIG. 1, and details thereof will be described later.
  • FIG. 8 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured without performing heat treatment.
  • the manufactured element is a single finger type, and the gate electrode width and the channel length are 100 ⁇ m and 1 ⁇ m, respectively.
  • the channel length is the distance between the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8.
  • the obtained drain current was a very small value less than 50 ⁇ A / mm. This is thought to be because the controllability of the drain current by a sufficiently high gate voltage is not obtained because a high concentration interface trap level is formed at the interface between the barrier layer 4a and the gate insulating film layer 9a. It is done.
  • the manufacturing method of the semiconductor device according to the present embodiment is characterized in that a heat treatment such as an RTA method is performed after depositing the gate insulating film layer 9a shown in FIG. That is, heat treatment is performed after the gate insulating film layer 9a is deposited or after the gate electrode 10 is formed. This process is called a heat treatment process.
  • a heat treatment process Asinafter, details of the heat treatment step will be described.
  • FIG. 9 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after depositing the gate insulating film layer 9a. . Note that the gate electrode width and the channel length are the same as those in FIG.
  • a drain current exceeding 10 mA / mm was obtained by performing a heat treatment at 700 ° C. after the deposition of the gate insulating film layer 9a. In this case, normally-off operation is performed.
  • the cause of the increase in the drain current is that the interface trap level formed at the interface between the barrier layer 4a and the gate insulating film layer 9a in the channel region is reduced by the heat treatment. If it is assumed that the interface trap level is formed by the dangling bond at the interface, it can be explained that the dangling bond is recombined by the heat treatment, thereby reducing the interface trap level.
  • FIG. 10 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after forming the gate electrode 10.
  • FIG. 11 is a graph showing the heat treatment temperature dependence of the drain current in a semiconductor device fabricated by performing heat treatment at a temperature of 0 ° C. to 800 ° C. 10 and 11, the gate electrode width and channel length are the same as those in FIG.
  • the drain current As shown in FIG. 10, by performing a heat treatment at 700 ° C. after forming the gate electrode 10, the drain current further increased, and a sufficiently high current value of 0.4 A / mm was obtained. In this case, normally-off operation is performed. Further, a sufficiently high drain current can be obtained in the case of heat treatment at a temperature higher than 650 ° C., and a sufficiently high drain current cannot be obtained at a temperature higher than 750 ° C.
  • the cause of the increase in the drain current due to the heat treatment at 650 ° C. to 750 ° C. can be explained by the decrease in the interface trap level as in the case of the heat treatment after the gate insulating film layer 9a is deposited. It can be said that the amount of increase in the drain current is larger in the heat treatment after the formation of the gate electrode 10 because the amount of the reduced interface trap level is larger.
  • the gate electrode 10 By forming the gate electrode 10, the energy band structure of the barrier layer 4a and the gate insulating film layer 9a on the lower side of the gate electrode 10 is changed, and the recombination of dangling bonds is promoted. It is thought that the amount of decrease increased. Note that the cause of the decrease in the drain current when heat-treated at a temperature higher than 750 ° C. is not only due to the interaction between these bulks but also the interface between the gate insulating film layer 9a and the barrier layer 4a. It is thought that the trap levels in the interface and bulk increased. In general, in a semiconductor device using Si or GaAs, when a structure in which an insulating film is sandwiched between a gate electrode and a semiconductor layer as shown in FIG. When implemented, the insulating film and the semiconductor layer react with each other, thereby causing adverse effects such as an increase in gate leakage current. Therefore, heat treatment at a high temperature exceeding 500 ° C. is rarely performed after depositing the insulating film.
  • the heat treatment at 650 ° C. to 750 ° C. did not show any significant changes in other characteristics except that the drain current was improved. This is because wide-gap semiconductors such as nitride semiconductors have strong interatomic bonding forces, and the change in state due to heat treatment occurs only near the interface between the insulating film where the interface states are formed and the semiconductor. It is done. In other words, it can be said that the effect of such heat treatment is unique to the nitride semiconductor.
  • the heat treatment is performed either after the gate insulating film layer 9a is deposited or after the gate electrode 10 is formed. However, both after the gate insulating film layer 9a is deposited and after the gate electrode 10 is formed. Heat treatment may be performed.
  • FIG. 12 shows a drain current-gate voltage measured at a drain voltage of 5 V in a semiconductor device manufactured without performing a heat treatment after depositing AlO x by an atomic deposition method using ozone as an oxygen supply source. It is a graph which shows a characteristic. Note that the gate electrode width and the channel length are the same as those in FIG. As shown in FIG. 12, compared with the characteristics shown in FIG. 8, although the current value was large, the obtained current value was a small value less than 3 mA / mm.
  • FIG. 13 shows a drain voltage measured at 5 V in a semiconductor device manufactured by performing AlO x deposition by atomic deposition using ozone as an oxygen supply source and then performing heat treatment at a temperature of 500 ° C. It is a graph which shows a drain current-gate voltage characteristic. Note that the gate electrode width and the channel length are the same as those in FIG. As in the case where oxygen plasma was used as the oxygen supply source, the drain current increased by performing the heat treatment, and a value of about 60 mA / mm was obtained.
  • FIG. 14 shows a semiconductor device manufactured by performing AlO x deposition by an atomic deposition method using ozone as an oxygen supply source, and then performing heat treatment at a temperature of 500 ° C. after forming the gate electrode 10.
  • FIG. 15 shows the drain current in a semiconductor device manufactured by depositing AlO x by atomic deposition using ozone as an oxygen supply source and then performing heat treatment at a temperature of 0 ° C. to 800 ° C. It is a graph which shows heat processing temperature dependence. 14 and 15, the gate electrode width and channel length are the same as those in FIG.
  • the drain current is further increased by performing the heat treatment after the formation of the gate electrode 10, and a sufficient current of about 0.3 A / mm is obtained. A high value was obtained.
  • the temperature range in which the drain current increases is different, even when ozone is used as the oxygen supply source, the drain current increases as a result of heat treatment at a temperature of 400 ° C. to 500 ° C.
  • the drain current is increased by a heat treatment at a high temperature of 400 ° C. or higher. Therefore, the effect of this heat treatment is a universal effect independent of the deposition method. .
  • the drain current is There is a high concentration of the two-dimensional electron gas generated at the hetero interface to be carried. Therefore, the drain current amount hardly depends on the amount of the interface trap level between the barrier layer 4a and the gate insulating film layer 9. Therefore, the heat treatment performed after the gate insulating film layer 9 is deposited or after the gate electrode 10 is formed is a conduction band at the heterointerface between the channel layer 3a below the gate electrode 10 and the barrier layer 4a in an equilibrium state. It can be said that the energy at the lower end is extremely effective for increasing the drain current in the structure in which the normally-off operation is higher than the Fermi energy.
  • the manufacturing method of the semiconductor device according to the first embodiment includes the channel layer generation step, the first and second n-type impurity region formation steps, the first and second electrode generation steps, and the gate insulating film layer.
  • a heat treatment step of performing a heat treatment on the gate insulating film layer is provided.
  • the current density between the source electrode 5 and the drain electrode 6 when turned on is 10 mA / mm or more.
  • the interface trap level formed between the channel layer 3a and the gate insulating film layer 9 is reduced, the controllability of the drain current by the gate electrode 10 is improved, and a sufficient drain can be obtained by the normally-off operation. A current can be obtained.
  • the semiconductor device is configured using a wide gap semiconductor, it is possible to reduce the size of the semiconductor device and reduce energy consumption.
  • the heterogeneity of the channel layer 3a and the barrier layer 4a between the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8 is achieved. Since the energy at the lower end of the conduction band at the interface is higher than the Fermi energy, the semiconductor device can be normally-off operated.
  • the semiconductor device can be operated at a high voltage and the drain current can be increased.
  • the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are formed by ion implantation, so that the surface of the channel layer 3a can be easily formed with a uniform high thickness.
  • the concentration n-type impurity region 7 and the high concentration n-type impurity region 8 can be formed.
  • FIG. 16 is a diagram illustrating an example of the structure of the semiconductor device according to the second embodiment.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the effect of the heat treatment performed after deposition of the gate insulating film layer 9a or after formation of the gate electrode 10 shown in the first embodiment is not limited to the semiconductor device shown in FIG. A structure in which an interface between a film and a layer made of a nitride semiconductor is formed is considered to be obtained similarly.
  • the semiconductor device according to the second embodiment is replaced with Al x1 In y1 Ga 1 -x1-y1 N in place of the channel layer 3a made of GaN and the barrier layer 4a made of AlN shown in FIG. and a channel layer 3 and the Al x2 in y2 Ga barrier layer 4 made of 1-x2-y2 N consisting of. It is assumed that Al x2 In y2 Ga 1-x2-y2 N constituting the barrier layer 4 has a larger band gap than Al x1 In y1 Ga 1-x1-y1 N constituting the channel layer 3.
  • Al x1 In y1 Ga 1 -x1-y1 N which is a material constituting the barrier layer 4 is used instead of the gate insulating film layer 9a made of AlO a shown in FIG.
  • a gate insulating film layer 9 made of an insulator or a semiconductor having a band gap larger than the band gap is provided.
  • the energy at the lower end of the conduction band at the heterointerface between the channel layer 3 below the gate electrode 10 and the barrier layer 4 in the equilibrium state is higher than the Fermi energy. If normally, a normally-off operation is realized, and if the interface trap level between the barrier layer 4 and the gate insulating film layer 9 is sufficiently low, a sufficiently large drain current can be obtained.
  • the buffer layer 2, the channel layer 3, and the barrier layer 4 shown in FIG. 2 of the first embodiment are grown, In z Al x Ga 1-xz N (0 ⁇ x ⁇
  • the growth conditions such as flow rate, pressure, and temperature of trimethylindium, trimethylaluminum, trimethylgallium, ammonia, etc., which are source gases of 1, 0 ⁇ z ⁇ 1), are adjusted, and buffer layer 2, channel layer 3, and barrier
  • the layer 4 can be produced with a desired composition.
  • the semiconductor device according to the second embodiment is formed on the surface of channel layer 3a between high-concentration n-type impurity region 7 and high-concentration n-type impurity region 8, and constitutes channel layer 3a.
  • Al x1 in y1 Ga 1-x1 -y1 N Al x2 in y2 Ga 1-x2-y2 further comprising a barrier layer 4a made of N, the gate insulating film layer 9 having a larger band gap than the band gap of the a barrier
  • the surface of the channel layer 3a is covered via the layer 4a and is made of an insulator or a semiconductor having a band gap larger than the band gap of the barrier layer 4a. Therefore, the interface trap level formed between the channel layer 3a and the gate insulating film layer 9 is reduced, and a sufficiently large drain current can be obtained.
  • FIG. 17 is a diagram illustrating an example of the structure of the semiconductor device according to the third embodiment.
  • the same components as those described in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor device according to the third embodiment has a structure that does not include the barrier layer 4 made of Al x2 In y2 Ga 1 -x2-y2 N shown in FIG.
  • the normally-off operation is realized if electrons are not generated at the interface between the channel layer 3 and the gate insulating film layer 9 in an equilibrium state, and the channel layer 3 and the gate insulating film layer 9 are realized. If the interface trap level between and is sufficiently low, a sufficiently large drain current can be obtained. Even in such a structure, since it is considered that an interface trap level is formed between the channel layer 3 and the gate insulating film layer 9, after the deposition of the gate insulating film layer 9 shown in the first embodiment, Or the effect of the heat processing implemented after formation of the gate electrode 10 is acquired.
  • the structure in which the barrier layers 4 and 4a shown in FIGS. 1 to 7 and FIG. 16 are formed is more suitable because a large drain current is easily obtained.
  • the semiconductor device according to the third embodiment can be manufactured unless the barrier layer 4 shown in FIG. 2 of the first embodiment is grown.
  • FIG. 18 is a diagram illustrating an example of the structure of the semiconductor device according to the fourth embodiment. Note that in the fourth embodiment, the same components as those described in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the semiconductor device according to the fourth embodiment has a barrier layer below gate electrode 10 in place of high concentration n-type impurity region 7 and high concentration n-type impurity region 8 shown in FIG. From Al x3 In y3 Ga 1-x3-y3 N (0 ⁇ x3 ⁇ 1, 0 ⁇ y3 ⁇ 1) having a band gap smaller than the band gap of Al x2 In y2 Ga 1-x2-y2 N constituting 4 The high concentration n-type impurity region 7a and the high concentration n-type impurity region 8a are provided.
  • the nitride semiconductor constituting the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 is a band of Al x2 In y2 Ga 1 -x2-y2 N constituting the barrier layer 4.
  • the resistance between the channel layer 3 and the source electrode 5 and the drain electrode 6 is reduced as compared with the case where the gap is equal to or larger than the gap, and a sufficiently large drain current can be obtained even in the normally-off operation.
  • the two-dimensional electron gas in addition to the doped n-type impurity, also acts as a carrier, and therefore, between the channel region and the source and drain electrodes. Is not so high that a sufficiently large drain current cannot be obtained.
  • the state is higher than the Fermi energy. No two-dimensional electron gas is generated at this hetero interface. Therefore, even if the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 have a structure in which the heterointerface consisting of the channel layer 3 and the barrier layer 4 is left as it is, as described above, No two-dimensional electron gas is generated at the heterointerface in this region.
  • the high-concentration n-type impurity region 7a and the high-concentration n-type impurity region 8a have a band smaller than the band gap of Al x2 In y2 Ga 1 -x2-y2 N constituting the lower barrier layer 4 of the gate electrode 10.
  • the effect of reducing the resistance by the semiconductor device according to the fourth embodiment which is composed of Al x3 In y3 Ga 1-x3-y3 N having a gap, is obtained at the heterointerface between the channel layer 3 and the barrier layer 4 in an equilibrium state.
  • the energy at the lower end of the conduction band is higher than the Fermi energy, the energy is further increased.
  • the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are formed in a band smaller than the band gap of Al x2 In y2 Ga 1 -x2-y2 N constituting the lower barrier layer 4 of the gate electrode 10.
  • the effect of reducing the resistance by the semiconductor device according to the fourth embodiment, which is composed of Al x3 In y3 Ga 1-x3-y3 N having a gap, is that Al x2 In y2 Ga 1-x2-y2 constituting the barrier layer 4
  • the larger the band gap of N the larger. This is because the larger the band gap, the lower the activation rate of the doped n-type impurity, and the more difficult it is to make the region resistant.
  • the region on the surface side thicker than the barrier layer 4 is Al x2 In y2 Ga 1 -x2-y2 N constituting the barrier layer 4.
  • the above effect can be obtained if it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of the high-concentration n-type in a region deeper than the thickness of the barrier layer 4.
  • a nitride semiconductor having a band gap larger than the band gap of Al x2 In y2 Ga 1 -x2-y2 N constituting the barrier layer 4 may exist in the impurity region 7a and the high-concentration n-type impurity region 8a. Absent. Thereby, the resistance of the high concentration n-type impurity region 7a and the high concentration n-type impurity region 8a is reduced, and a large drain current is obtained.
  • the regions on the surface side of the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are composed of an interdiffusion layer of the barrier layer 4 and the channel layer 3. This will be described in detail.
  • the thickness of the barrier layer 4 in the manufacturing method shown in FIGS. 2 to 7 of the first embodiment is such that the ion implantation energy in the ion implantation step of FIG. Can be produced when it is thin enough to disappear.
  • a layer made of a nitride semiconductor having a thickness of 1 nm is extinguished by ion implantation as described in Non-Patent Documents Jpn. J. Appl. Phys. 50, 064101 (2011).
  • the barrier layer 4 is not completely extinguished, but the ion-implanted region is formed by interdiffusion of constituent elements between the barrier layer 4 and the channel layer 3 by the implantation energy during ion implantation.
  • an interdiffusion layer is formed on the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8 on the barrier layer 3 side.
  • the interdiffusion layer is also called a mixing layer.
  • the band gap of the nitride semiconductor in this region that is, the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 on the barrier layer 3 side constitutes the nitridation constituting the barrier layer 4 below the gate electrode.
  • the band gap is smaller than that of a physical semiconductor, and a semiconductor device similar to the structure shown in FIG. 18 is manufactured. Therefore, the thickness of the barrier layer 4 that can produce a semiconductor device similar to the structure shown in FIG. 18 by ion implantation is determined by the energy at the time of ion implantation and the binding energy of the elements constituting the barrier layer 4 and the channel layer 3. 3 can be said to be thinner than 2 nm.
  • the thickness of the barrier layer 4 is 2 nm or less, and the regions on the surface side of the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are composed of interdiffusion layers of the barrier layer 4 and the channel layer 3. Therefore, the resistance of the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8 is reduced, and a large drain current is obtained.
  • the band gap is distributed so that the band gap is large on the surface side, and the band gap becomes smaller as the depth increases in the depth direction.
  • the barrier layer 4 is made of AlN and the channel layer 3 is made of GaN
  • the surface side is made of AlGaN having a relatively high Al composition, and the Al composition decreases as the depth increases.
  • the Al composition is distributed.
  • FIG. 19 is a diagram illustrating an example of the structure of the semiconductor device according to the sixth embodiment.
  • FIG. 20 is a diagram illustrating another example of the structure of the semiconductor device according to the sixth embodiment. Note that in the sixth embodiment, the same components as those described in the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • a part of the high-concentration n-type impurity region 7 on the lower side of the source electrode 5 has a structure overlapping with the gate electrode 10, but as shown in FIG.
  • the high-concentration n-type impurity region 7 below the source electrode 5 has a structure that does not overlap the gate electrode 10.
  • the high-concentration n-type impurity region 7 below the source electrode 5 is formed of Al x2 constituting the barrier layer 4 below the gate electrode 10 as shown in the fourth embodiment. If it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of In y2 Ga 1-x2-y2 N, Al x2 In y2 Ga 1-x2 constituting the barrier layer 4 The resistance of the high-concentration n-type impurity region 7 is reduced and a large drain current can be obtained as compared with the case where the band gap is equal to or larger than the band gap of -y2N .
  • the region between the high-concentration n-type impurity region 7 on the lower side of the source electrode 5 and the gate electrode 10 becomes a high resistance region because no carrier exists, and the longer this distance, the higher the resistance. As a result, the drain current decreases. Therefore, a larger drain current can be obtained in the structure shown in FIG. 16 than in the structure shown in FIG.
  • the gate electrode 10 has a structure that covers a part of the high-concentration n-type impurity region 7, and the high-concentration n-type impurity region 7 and the gate electrode 10 overlap in this way. In this case, parasitic capacitance is generated in this region, which hinders high-frequency operation. Therefore, it is preferable to reduce the overlapping region as much as possible.
  • the optimum structure is the structure shown in FIG. 20 in which the end of the gate electrode 10 coincides with the end of the high-concentration n-type impurity region 7.
  • the semiconductor device shown in FIGS. 19 and 20 can be manufactured by changing the mask pattern at the time of ion implantation shown in FIG. 3 of the first embodiment.
  • FIG. 21 is a diagram illustrating an example of the structure of the semiconductor device according to the seventh embodiment.
  • FIG. 22 shows another example of the structure of the semiconductor device according to the seventh embodiment. Note that in the seventh embodiment, the same components as those described in the first to sixth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • a part of the high-concentration n-type impurity region 8 on the lower side of the drain electrode 6 has a structure overlapping the gate electrode 10, but as shown in FIG.
  • the high-concentration n-type impurity region 8 below the drain electrode 6 has a structure that does not overlap the gate electrode 10.
  • the high-concentration n-type impurity region 7 below the source electrode 5 is formed of Al x2 constituting the barrier layer 4 below the gate electrode 10 as shown in the fourth embodiment. If it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of In y2 Ga 1-x2-y2 N, Al x2 In y2 Ga 1-x2 constituting the barrier layer 4 The resistance of the high-concentration n-type impurity region 7 is reduced and a large drain current can be obtained as compared with the case where the band gap is equal to or larger than the band gap of -y2N .
  • the region between the high concentration n-type impurity region 8 on the lower side of the drain electrode 6 and the gate electrode 10 becomes a high resistance region because no carrier exists, and the longer this distance is, the higher the resistance is. Increased, drain current decreases. Therefore, a larger drain current can be obtained in the structure shown in FIG. 16 than in the structure shown in FIG.
  • the gate electrode 10 has a structure that covers a part of the high-concentration n-type impurity region 8, and the high-concentration n-type impurity region 8 and the gate electrode 10 overlap in this way. In this case, parasitic capacitance is generated in this region, which hinders high-frequency operation. Therefore, it is preferable to reduce the overlapping region as much as possible.
  • the optimum structure is the structure shown in FIG. 22 in which the end of the gate electrode 10 coincides with the end of the high-concentration n-type impurity region 8.
  • the semiconductor device having the structure shown in FIGS. 21 and 22 can be manufactured by changing the mask pattern at the time of ion implantation shown in FIG. 3 of the first embodiment.
  • FIG. 23 shows an example of the structure of the semiconductor device according to the eighth embodiment.
  • FIG. 24 shows another example of the structure of the semiconductor device according to the eighth embodiment.
  • FIG. 25 is a diagram illustrating another example of the structure of the semiconductor device according to the eighth embodiment. Note that in the eighth embodiment, the same components as those described in the first to seventh embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the semiconductor device according to the eighth embodiment is different from the structure shown in FIGS. 16, 21, and 22 in the high-concentration n-type impurity region 8 below the drain electrode 6. And a structure in which a low-concentration n-type impurity region 12 having an n-type impurity concentration lower than that of the high-concentration n-type impurity region 8 is formed between the channel layer 3 and the barrier layer 4 below the gate electrode 10. It has become. With such a structure, when a high voltage is applied to the drain electrode 6, the electric field generated between the gate electrode 10 and the high-concentration n-type impurity region 8 below the drain electrode 6 is relaxed. A higher voltage can be applied to the drain electrode 6.
  • the high-concentration n-type impurity region 7 below the source electrode 5 is formed of Al x2 constituting the barrier layer 4 below the gate electrode 10 as shown in the fourth embodiment. If it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of In y2 Ga 1-x2-y2 N, Al x2 In y2 Ga 1-x2 constituting the barrier layer 4 The resistance of the high-concentration n-type impurity region 7 is reduced and a large drain current can be obtained compared to the case where the band gap is equal to or larger than the band gap of -y2N .
  • the gate electrode 10 covers a part of the low-concentration n-type impurity region 12, but when the low-concentration n-type impurity region 12 and the gate electrode 10 overlap in this way, Since parasitic capacitance is generated in this region and hinders high-frequency operation, it is preferable to reduce the overlapping region as much as possible. Therefore, the optimum structure is the structure shown in FIG. 25 where the end of the gate electrode 10 coincides with the end of the low-concentration n-type impurity region 12.
  • the semiconductor device having the structure shown in FIGS. 23 to 25 can be manufactured by performing the ion implantation shown in FIG. 3 of the first embodiment twice with changing the ion implantation conditions and the mask pattern.
  • FIG. 26 is a diagram illustrating an example of the structure of the semiconductor device according to the ninth embodiment. Note that in the ninth embodiment, the same components as those described in the first to eighth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the semiconductor device includes a substrate 1a made of n-type Al x3 In y3 Ga 1-x3-y3 N, instead of the substrate 1.
  • a drift layer 13 made of n-type low concentration than the substrate 1a Al x4 In y4 Ga 1- x4-y4 N (0 ⁇ x4 ⁇ 1,0 ⁇ y4 ⁇ 1) is formed Yes.
  • a constriction layer 14 made of p-type Al x5 In y5 Ga 1-x5-y5 N (0 ⁇ x5 ⁇ 1, 0 ⁇ y5 ⁇ 1) having a lower concentration than the substrate 1 a is formed. ing.
  • the drain electrode 6 is formed on the lower side of the substrate 1a. That is, the drain electrode 6 is formed on the back side of the channel layer 3. Further, a p-type impurity region 15 containing a p-type impurity with respect to the nitride semiconductor is formed below the source electrode 5 to a depth reaching the constriction layer 14. In this structure, the low-concentration n-type impurity region 12 is formed to a depth from the barrier layer 4 to the drift layer 13.
  • the gate insulating film layer 9 and the gate electrode 10 are formed so as to cover a channel region sandwiched between the high-concentration n-type impurity region 7 and the low-concentration n-type impurity region 12.
  • this structure the drain current flows from the source electrode 5 to the high-concentration n-type impurity region 7, the channel region sandwiched between the high-concentration n-type impurity region 7 and the low-concentration n-type impurity region 12, the low-concentration n-type impurity region 12, It flows to the drain electrode 6 through the drift layer 13 and the substrate 1a. Therefore, this structure can be said to be a vertical transistor. With such a vertical transistor structure, the drain current per area can be increased by devising the arrangement of each component.
  • the channel region sandwiched between the high-concentration n-type impurity region 7 and the low-concentration n-type impurity region 12 is equivalent to the structure shown in the first to eighth embodiments, and these are the same. The effect of can be obtained.
  • the positional relationship between the high-concentration n-type impurity region 7 and the gate electrode 10 is the same as in FIG. 16 of the second embodiment, FIG. 19 of the sixth embodiment, and FIG.
  • the positional relationship between the low-concentration n-type impurity region 12 and the gate electrode 10 is the same as the positional relationship shown in FIGS. 23 to 25 of the eighth embodiment. Any positional relationship is acceptable.
  • FIG. 27 is a diagram illustrating an example of the structure of the semiconductor device according to the tenth embodiment.
  • FIG. 28 shows another example of the structure of the semiconductor device according to the tenth embodiment.
  • the same components as those described in the first to ninth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor device has a channel made of Al x1 Ga 1 -x1 N instead of the channel layer 3 made of Al x1 In y1 Ga 1 -x1-y1 N in FIG.
  • the layer 3b is provided.
  • the channel layer 3b made of Al x1 Ga 1-x1 N in this way, the alloy scattering is suppressed as compared with Al x1 In y1 Ga 1-x1-y1 N made of 4 elements.
  • the mobility of electrons in the channel formed in the channel is improved, and the drain current can be increased.
  • the band gap becomes large, so that even when a high voltage is applied, it is difficult to break, and a high voltage operation is possible.
  • the semiconductor device shown in FIG. 28 includes a channel layer 3a made of GaN instead of the channel layer 3b made of Al x1 Ga 1-x1 N shown in FIG.
  • the materials constituting the channel layers 3a and 3b are described so as to compare FIG. 23 with FIG. 27 and FIG. 28, but the same effects as the contents described in the present embodiment are obtained. This extends to all structures described in other embodiments.
  • a source material of In z Al x Ga 1 -xz N (0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1) is obtained when the channel layer 3 shown in FIG.
  • the channel layer 3 can be made to have a desired composition by adjusting the growth conditions such as the flow rate, pressure, and temperature of gases such as trimethylindium, trimethylaluminum, trimethylgallium, and ammonia.
  • FIG. 29 shows an example of the structure of the semiconductor device according to the eleventh embodiment.
  • FIG. 30 shows another example of the structure of the semiconductor device according to the eleventh embodiment.
  • FIG. 31 is a diagram showing another example of the structure of the semiconductor device according to the eleventh embodiment.
  • the same components as those described in the first to tenth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor device according to the eleventh embodiment is made of Al x2 Ga 1-x2 N instead of the barrier layer 4 made of Al x2 In y2 Ga 1-x2-y2 N shown in FIG.
  • the barrier layer 4b is provided.
  • the barrier layer 4b and the Al x2 Ga 1-x2 N the electron alloy scattering receive running the hetero-interface as a carrier between the channel layer 3 and the barrier layer 4b is reduced, the mobility As a result, the drain current can be increased.
  • the semiconductor device shown in FIG. 30 includes a barrier layer 4c made of In y2 Al y2 N in place of the barrier layer 4 made of Al x2 In y2 Ga 1 -x2-y2 N shown in FIG.
  • the barrier layer 4c is made of In y2 Al y2 N, the alloy scattering received by electrons traveling as carriers at the heterointerface between the channel layer 3 and the barrier layer 4c is reduced, so that the mobility is increased.
  • the drain current can be increased.
  • the semiconductor device shown in FIG. 31 includes a barrier layer 4a made of AlN instead of the barrier layer 4 made of Al x2 In y2 Ga 1 -x2-y2 N shown in FIG.
  • the materials constituting the barrier layers 4a, 4b, and 4c are described so as to compare FIG. 23 with FIGS. 29 to 31, but the same contents as described in the present embodiment are described.
  • the effect extends to all the structures described in the other embodiments.
  • a source material of In z Al x Ga 1-xz N (0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1) is obtained when the barrier layer 4 shown in FIG.
  • the barrier layer 4 can be made to have a desired composition by adjusting the growth conditions such as the flow rate, pressure, and temperature of gases such as trimethylindium, trimethylaluminum, trimethylgallium, and ammonia.
  • FIG. 32 shows an example of the structure of the semiconductor device according to the twelfth embodiment.
  • FIG. 33 shows another example of the structure of the semiconductor device according to the twelfth embodiment.
  • FIG. 34 shows another example of the structure of the semiconductor device according to the twelfth embodiment. Note that in the twelfth embodiment, the same components as those described in the first to eleventh embodiments are denoted by the same reference numerals and the description thereof is omitted.
  • the semiconductor device is a gate made of an insulator or a semiconductor having a band gap larger than the band gap of Al x1 In y1 Ga 1-x1-y1 N shown in FIG. instead of the insulating film layer 9, and a gate insulating film layer 9b made of AlGa c O a N b. Since AlGa c O a N b is the same as the constituent elements of the semiconductor constituting the barrier layer 4 except for oxygen, the barrier layer 4 and the gate insulating film layer 9b are compared with materials such as SiO 2 having different constituent elements. It is easy to reduce the interface trap level generated at the interface with and to obtain a large drain current.
  • a gate insulating layer 9c formed of AlO a N b. Since AlO a N b has a larger band gap than AlGa c O a N b , such a structure makes it possible to apply a larger positive voltage to the gate electrode and obtain a larger drain current. It becomes like this.
  • a gate insulating film layer 9a made of AlO a. Since AlO a has a larger band gap than AlO a N b , such a structure makes it possible to apply a larger positive voltage to the gate electrode and obtain a larger drain current. .
  • the materials constituting the gate insulating film layers 9a, 9b, and 9c are described so as to compare FIG. 23 with FIGS. 32 to 34.
  • the contents described in the present embodiment The same effect extends to all the structures described in the other embodiments.
  • the gate insulating film layer 9 can be made to have a desired composition by adjusting growth conditions such as flow rate, pressure, and temperature.
  • the structure of the semiconductor device according to the first to twelfth embodiments may be the following structure, and is not necessarily the same as the structure of the semiconductor device according to the first to twelfth embodiments.
  • the buffer layer 2 When SiC or Si different from the channel layer is used as the substrate, the buffer layer 2 is required. However, when GaN, AlGaN, or InAlGaN of the same material as the channel layer is used as the substrate, the buffer layer 2 is not necessarily provided. Not necessary. Further, it is not always necessary to be non-doped. However, in the case of a vertical structure as shown in Embodiment 9, the substrate is preferably n-type.
  • a channel for operating the transistor is formed at the interface between the channel layer and the barrier layer, and the transistor operates.
  • a plurality of other layers may be formed in addition to the above three layers as long as the transistor operates.
  • a nitride semiconductor layer having a composition different from that of the channel layer and the barrier layer may be formed below the channel layer.
  • these nitride semiconductor layers including the channel layer and the barrier layer do not necessarily need to be non-doped and contain impurities such as Si, Mg, Fe, C, or Ge as long as the amount does not hinder transistor operation. It does not matter.
  • n-type impurities doped in the high-concentration n-type impurity region, the low-concentration n-type impurity region, the n-type drift layer, and the n-type substrate include n in a nitride semiconductor such as Si, Ge, oxygen, or a nitrogen vacancy. Any impurity that behaves as a type dopant may be used.
  • the p-type impurity doped in the p-type impurity region and the p-type constriction layer may be any impurity that acts as a p-type dopant in a nitride semiconductor such as Mg or Fe.
  • the gate insulating film layer has a structure deposited on the entire surface of the semiconductor device.
  • the gate insulating film layer 9 may be structured not to be deposited between the gate electrode 10 and the source electrode 5 and between the gate electrode 10 and the drain electrode 6.
  • the gate insulating film layer 9 is not necessarily composed of one layer, AlGa c O a N b, AlO a N b, AlO a, be composed of a plurality of layers such as SiO 2, Si 3 N 4 I do not care.
  • FIG. 35 is a diagram illustrating an example of a structure of a semiconductor device according to a modification.
  • Embodiments 1 to 12 only the minimum necessary elements that operate as a transistor are described, but finally, a protective film, a field plate electrode, a wiring, an air bridge, a via hole, and the like are formed. Used as a device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The objective of the invention is to provide a technique allowing a sufficiently large drain current to be obtained for a semiconductor device in normally-OFF operation. This semiconductor device comprises: a channel layer 3a containing Alx1Iny1Ga1-x1-y1N (0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 1); a source electrode 5 and a drain electrode 6 formed in such a manner as to be separated from one another on the surface side of the channel layer 3a; high-concentration n-type impurity regions 7, 8 formed in such a manner as to be separated from one another and oriented from the surface of the channel layer 3a to the interior of the channel layer 3, at least in the portions that are under the source electrode 5 and the drain electrode 6, respectively; a gate insulation film layer 9a formed in such a manner as to cover the surface of the channel layer 3a between the high-concentration n-type impurity regions 7, 8; and a gate electrode 10 formed on the surface of the gate insulation film layer 9a. During the ON state, the current density between the source electrode 5 and the drain electrode 6 is 10 mA/mm or higher.

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、窒化物を含む半導体からなる電界効果型トランジスタなどの半導体装置の構造、およびその製造方法に関するものである。 The present invention relates to a structure of a semiconductor device such as a field effect transistor made of a semiconductor containing nitride, and a manufacturing method thereof.
 従来の窒化物を含む半導体からなる電界効果型トランジスタでは、基板上にGaNチャネル層、AlGaNバリア層が順に形成され、その上にソース電極、ドレイン電極、およびゲート電極が形成されている。ソース電極およびドレイン電極の下側に位置する、チャネル層およびバリア層には高濃度n型不純物領域が形成されている。その高濃度n型不純物領域に挟まれた高濃度n型不純物領域が形成されていないAlNバリア層上には、その領域を覆うようにAlGaxyからなるゲート絶縁膜が形成され、さらに絶縁膜上にゲート電極が形成されている。例えば、特許文献1に記載の窒化物半導体からなるヘテロ接合電界効果型トランジスタが、上記の構造である。 In a conventional field effect transistor made of a semiconductor containing a nitride, a GaN channel layer and an AlGaN barrier layer are sequentially formed on a substrate, and a source electrode, a drain electrode, and a gate electrode are formed thereon. High-concentration n-type impurity regions are formed in the channel layer and the barrier layer located below the source electrode and the drain electrode. A gate insulating film made of AlGa x O y is formed on the AlN barrier layer sandwiched between the high-concentration n-type impurity regions where the high-concentration n-type impurity regions are not formed so as to cover the regions. A gate electrode is formed on the film. For example, a heterojunction field effect transistor made of a nitride semiconductor described in Patent Document 1 has the above structure.
特開2008-305816号公報JP 2008-305816 A
 窒化物半導体からなるヘテロ接合電界効果型トランジスタをスイッチング素子等に用いる場合には、ノーマリオフ動作することが望ましい。特許文献1に記載された構造でも、ゲート電極の下側のAlGaNバリア層とGaNチャネル層のヘテロ界面に、二次元電子ガスが発生しないようにすることができれば、ノーマリオフ動作にて十分なドレイン電流を得ることが可能となる。つまり、ゲート電極の下側のチャネル層とバリア層とのヘテロ界面における伝導帯下端のエネルギーがフェルミエネルギーよりも高い状態になるように設計した上で、AlGaxy等からなるゲート絶縁膜とAlGaNバリア層との界面に界面トラップが存在しない理想的な界面を形成できれば、ノーマリオフ動作にて十分なドレイン電流を得ることが可能となる。 When a heterojunction field effect transistor made of a nitride semiconductor is used for a switching element or the like, it is desirable to perform a normally-off operation. Even in the structure described in Patent Document 1, if the two-dimensional electron gas can be prevented from being generated at the heterointerface between the AlGaN barrier layer and the GaN channel layer on the lower side of the gate electrode, sufficient drain current can be obtained in the normally-off operation. Can be obtained. That is, after designing the energy at the bottom of the conduction band at the heterointerface between the channel layer below the gate electrode and the barrier layer to be higher than the Fermi energy, the gate insulating film made of AlGa x O y or the like If an ideal interface having no interface trap exists at the interface with the AlGaN barrier layer, a sufficient drain current can be obtained in the normally-off operation.
 しかしながら、特許文献1に記載されたように、AlGaNバリア層上にゲート絶縁膜を堆積しただけの単純なプロセスでトランジスタを作製した場合には、ゲート絶縁膜とバリア層との界面に高濃度の界面トラップ準位が形成される。これにより、ゲート電圧によるドレイン電流の制御性が落ちることから、ノーマリオフ動作にて十分なドレイン電流が得られないという問題がある。 However, as described in Patent Document 1, when a transistor is manufactured by a simple process in which a gate insulating film is deposited on an AlGaN barrier layer, a high concentration is formed at the interface between the gate insulating film and the barrier layer. An interface trap level is formed. As a result, the controllability of the drain current by the gate voltage is lowered, and there is a problem that a sufficient drain current cannot be obtained in the normally-off operation.
 そこで、本発明は、半導体装置において、ノーマリオフ動作にて十分に大きなドレイン電流を得ることが可能な技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique capable of obtaining a sufficiently large drain current in a normally-off operation in a semiconductor device.
 本発明に係る半導体装置は、Alx1Iny1Ga1-x1-y1N(0≦x1≦1、0≦y1≦1)からなるチャネル層と、前記チャネル層の表面側に互いに離間して形成された第1,第2電極と、前記チャネル層の表面のうちの少なくとも前記第1,第2電極の下方部分から前記チャネル層内部に向けて互いに離間して形成された第1,第2n型不純物領域と、前記第1,第2n型不純物領域間における前記チャネル層の表面を覆うように形成され、かつ、前記チャネル層を構成するAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなるゲート絶縁膜層と、前記ゲート絶縁膜層の表面に形成されたゲート電極とを備え、オン時の前記第1,第2電極間の電流密度が10mA/mm以上である。 A semiconductor device according to the present invention is formed with a channel layer made of Al x1 In y1 Ga 1 -x1-y1 N (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1) and spaced from each other on the surface side of the channel layer. The first and second n-type electrodes are formed so as to be spaced apart from each other toward the inside of the channel layer from at least the lower part of the first and second electrodes on the surface of the channel layer. From the band gap of Al x1 In y1 Ga 1 -x1-y1 N that is formed so as to cover the surface of the channel layer between the impurity region and the first and second n-type impurity regions and that constitutes the channel layer A gate insulating film layer made of an insulator or a semiconductor having a large band gap and a gate electrode formed on the surface of the gate insulating film layer, and the current density between the first and second electrodes when turned on is 10 mA / mm or more.
 本発明によれば、オン時の第1,第2電極間の電流密度が10mA/mm以上であるため、ゲート電極によるドレイン電流の制御性が向上し、ノーマリオフ動作にて十分なドレイン電流を得ることが可能となる。 According to the present invention, since the current density between the first and second electrodes when turned on is 10 mA / mm or more, the controllability of the drain current by the gate electrode is improved, and a sufficient drain current is obtained in the normally-off operation. It becomes possible.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態1に係る半導体装置の構造の一例を示す図である。1 is a diagram illustrating an example of a structure of a semiconductor device according to a first embodiment. 実施の形態1に係る半導体装置の製造方法を示す図である。8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造方法を示す図である。8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造方法を示す図である。8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造方法を示す図である。8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造方法を示す図である。8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造方法を示す図である。8 is a diagram showing a method for manufacturing the semiconductor device according to the first embodiment. FIG. 熱処理を実施せずに作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。6 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device fabricated without performing heat treatment. ゲート絶縁膜を堆積した後に、700℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。6 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after depositing a gate insulating film. ゲート電極の形成後に、700℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。4 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after forming a gate electrode. 0℃~800℃の温度にて熱処理を実施して作製された半導体装置におけるドレイン電流の熱処理温度依存性を示すグラフである。4 is a graph showing the heat treatment temperature dependence of drain current in a semiconductor device fabricated by performing heat treatment at a temperature of 0 ° C. to 800 ° C. FIG. オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、熱処理を実施せずに作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。A graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured without performing heat treatment after depositing AlO x by atomic deposition using ozone as an oxygen supply source It is. オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、500℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。Drain current-gate measured at a drain voltage of 5 V in a semiconductor device fabricated by depositing AlO x by atomic deposition using ozone as an oxygen source and then performing heat treatment at a temperature of 500 ° C. It is a graph which shows a voltage characteristic. オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、ゲート電極の形成後に、500℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。After draining AlO x by an atomic deposition method using ozone as an oxygen supply source, a drain voltage is set to 5 V in a semiconductor device fabricated by performing heat treatment at a temperature of 500 ° C. after forming a gate electrode. It is a graph which shows the measured drain current-gate voltage characteristic. オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、0℃~800℃の温度にて熱処理を実施して作製された半導体装置におけるドレイン電流の熱処理温度依存性を示すグラフである。Shows the heat treatment temperature dependence of the drain current in a semiconductor device fabricated by depositing AlO x by atomic deposition using ozone as an oxygen source and then performing heat treatment at a temperature of 0 ° C. to 800 ° C. It is a graph. 実施の形態2に係る半導体装置の構造の一例を示す図である。6 is a diagram illustrating an example of a structure of a semiconductor device according to a second embodiment. FIG. 実施の形態3に係る半導体装置の構造の一例を示す図である。6 is a diagram illustrating an example of a structure of a semiconductor device according to a third embodiment. FIG. 実施の形態4に係る半導体装置の構造の一例を示す図である。FIG. 6 is a diagram illustrating an example of a structure of a semiconductor device according to a fourth embodiment. 実施の形態6に係る半導体装置の構造の一例を示す図である。FIG. 10 is a diagram showing an example of a structure of a semiconductor device according to a sixth embodiment. 実施の形態6に係る半導体装置の構造の他の例を示す図である。It is a figure which shows the other example of the structure of the semiconductor device which concerns on Embodiment 6. FIG. 実施の形態7に係る半導体装置の構造の一例を示す図である。FIG. 10 is a diagram illustrating an example of a structure of a semiconductor device according to a seventh embodiment. 実施の形態7に係る半導体装置の構造の他の例を示す図である。FIG. 20 is a diagram showing another example of the structure of the semiconductor device according to the seventh embodiment. 実施の形態8に係る半導体装置の構造の一例を示す図である。FIG. 20 is a diagram showing an example of a structure of a semiconductor device according to an eighth embodiment. 実施の形態8に係る半導体装置の構造の他の例を示す図である。FIG. 20 is a diagram showing another example of the structure of the semiconductor device according to the eighth embodiment. 実施の形態8に係る半導体装置の構造の他の例を示す図である。FIG. 20 is a diagram showing another example of the structure of the semiconductor device according to the eighth embodiment. 実施の形態9に係る半導体装置の構造の一例を示す図である。FIG. 20 illustrates an example of a structure of a semiconductor device according to a ninth embodiment. 実施の形態10に係る半導体装置の構造の一例を示す図である。FIG. 38 shows an example of a structure of a semiconductor device according to a tenth embodiment. 実施の形態10に係る半導体装置の構造の他の例を示す図である。FIG. 38 shows another example of the structure of the semiconductor device according to the tenth embodiment. 実施の形態11に係る半導体装置の構造の一例を示す図である。It is a figure which shows an example of the structure of the semiconductor device which concerns on Embodiment 11. FIG. 実施の形態11に係る半導体装置の構造の他の例を示す図である。FIG. 38 shows another example of the structure of the semiconductor device according to the eleventh embodiment. 実施の形態11に係る半導体装置の構造の他の例を示す図である。FIG. 38 shows another example of the structure of the semiconductor device according to the eleventh embodiment. 実施の形態12に係る半導体装置の構造の一例を示す図である。It is a figure which shows an example of the structure of the semiconductor device which concerns on Embodiment 12. FIG. 実施の形態12に係る半導体装置の構造の他の例を示す図である。FIG. 38 shows another example of the structure of the semiconductor device according to the twelfth embodiment. 実施の形態12に係る半導体装置の構造の他の例を示す図である。FIG. 38 shows another example of the structure of the semiconductor device according to the twelfth embodiment. 変形例に係る半導体装置の構造の一例を示す図である。It is a figure which shows an example of the structure of the semiconductor device which concerns on a modification.
 <実施の形態1>
 本発明の実施の形態1について、図面を用いて以下に説明する。図1は、実施の形態1に係る半導体装置の構造の一例を示す図である。半導体装置は、例えば、窒化物半導体からなるヘテロ接合電界効果型トランジスタである。
<Embodiment 1>
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating an example of the structure of the semiconductor device according to the first embodiment. The semiconductor device is, for example, a heterojunction field effect transistor made of a nitride semiconductor.
 図1に示すように、半導体装置は、基板1、バッファ層2、Alx1Iny1Ga1-x1-y1N(0≦x1≦1、0≦y1≦1)からなるチャネル層3a、Alx2Iny2Ga1-x2-y2N(0≦x2≦1、0≦y2≦1)からなるバリア層4a、第1電極としてのソース電極5、第2電極としてのドレイン電極6、第1n型不純物領域としての高濃度n型不純物領域7、第2n型不純物領域としての高濃度n型不純物領域8、ゲート絶縁膜層9a、ゲート電極10、および素子分離領域11を備えている。 As shown in FIG. 1, the semiconductor device includes a substrate 1, a buffer layer 2, a channel layer 3a made of Al x1 In y1 Ga 1 -x1-y1 N (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1), Al x2 Barrier layer 4a made of In y2 Ga 1-x2-y2 N (0 ≦ x2 ≦ 1, 0 ≦ y2 ≦ 1), source electrode 5 as the first electrode, drain electrode 6 as the second electrode, first n-type impurity A high-concentration n-type impurity region 7 as a region, a high-concentration n-type impurity region 8 as a second n-type impurity region, a gate insulating film layer 9a, a gate electrode 10, and an element isolation region 11 are provided.
 最下層は基板1であり、基板1の表面にバッファ層2を介して、ノンドープのGaNからなるチャネル層3aと、チャネル層3aとヘテロ接合を形成するノンドープのAlNからなるバリア層4aが形成されている。なお、GaNは、Alx1Ga1-x1Nにおいてx1=0、y1=0としたものである。AlNは、Alx2Iny2Ga1-x2-y2Nにおいてx2=1、y2=0としたものである。 The lowermost layer is the substrate 1, and a channel layer 3 a made of non-doped GaN and a barrier layer 4 a made of non-doped AlN that forms a heterojunction with the channel layer 3 a are formed on the surface of the substrate 1 through the buffer layer 2. ing. GaN is Al x1 Ga 1-x1 N with x1 = 0 and y1 = 0. AlN is Al x2 In y2 Ga 1 -x2-y2 N with x2 = 1 and y2 = 0.
 チャネル層3aの表面側に互いに離間してソース電極5およびドレイン電極6が形成されている。より具体的には、チャネル層3aの表面側における、図1の紙面に向かって左側部分にソース電極5が形成されている。また、チャネル層3aの表面側における、図1の紙面に向かって右側部分にドレイン電極6が形成されている。また、図1の紙面に向かって中央部分にゲート電極10が形成されている。 A source electrode 5 and a drain electrode 6 are formed on the surface side of the channel layer 3a so as to be separated from each other. More specifically, the source electrode 5 is formed on the left side of the surface of the channel layer 3a toward the paper surface of FIG. A drain electrode 6 is formed on the right side of the surface of the channel layer 3a as viewed in FIG. Further, a gate electrode 10 is formed at the central portion toward the paper surface of FIG.
 ソース電極5およびドレイン電極6の下側には、Siが高濃度で含まれる高濃度n型不純物領域7と高濃度n型不純物領域8がそれぞれバリア層4aよりも深い位置まで形成されている。すなわち、高濃度n型不純物領域7と高濃度n型不純物領域8は、チャネル層3aの表面のうちの少なくともソース電極5およびドレイン電極6の下方部分からチャネル層3aの内部に向けて互いに離間して形成されている。バリア層4aは、高濃度n型不純物領域7と高濃度n型不純物領域8との間におけるチャネル層3aの表面に形成されている。 Under the source electrode 5 and the drain electrode 6, a high-concentration n-type impurity region 7 and a high-concentration n-type impurity region 8 containing Si at a high concentration are formed to a position deeper than the barrier layer 4a. That is, the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are separated from each other toward the inside of the channel layer 3a from at least a portion below the source electrode 5 and the drain electrode 6 on the surface of the channel layer 3a. Is formed. Barrier layer 4 a is formed on the surface of channel layer 3 a between high-concentration n-type impurity region 7 and high-concentration n-type impurity region 8.
 素子分離領域11は、基板1の表面にバッファ層2を介して、図1の紙面に向かって左右両端部に形成されている。ゲート絶縁膜層9aは、AlOaからなり、高濃度n型不純物領域7と高濃度n型不純物領域8との間におけるチャネル層3aの表面を覆うように形成されている。本構造において、ゲート絶縁膜層9aは、チャネル層3aの表面全体および素子分離領域11の表面を覆うように形成されている。また、ゲート電極10は、高濃度n型不純物領域7と高濃度n型不純物領域8との間に挟まれたバリア層4aの表面全体を覆うように形成されている。 The element isolation regions 11 are formed on the left and right ends of the surface of the substrate 1 through the buffer layer 2 with respect to the paper surface of FIG. The gate insulating film layer 9 a is made of AlO a and is formed so as to cover the surface of the channel layer 3 a between the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8. In this structure, the gate insulating film layer 9 a is formed so as to cover the entire surface of the channel layer 3 a and the surface of the element isolation region 11. The gate electrode 10 is formed so as to cover the entire surface of the barrier layer 4 a sandwiched between the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8.
 また、平衡状態における、ゲート電極10の下側のチャネル層3aとバリア層4aとのヘテロ界面における伝導帯下端のエネルギーは、フェルミエネルギーよりも高い状態となっている。ここで、平衡状態とは、各電極に電圧が印加されていない状態である。また、各電極とは、ソース電極5、ドレイン電極6、およびゲート電極10である。図1に示す構造では、例えば、ノンドープのAlNからなるバリア層4aの厚さを1nmとすれば、平衡状態において、ゲート電極10の下側のチャネル層3aとバリア層4aとのヘテロ界面における伝導帯下端のエネルギーは、フェルミエネルギーよりも高い状態となる。 In the equilibrium state, the energy at the lower end of the conduction band at the heterointerface between the channel layer 3a on the lower side of the gate electrode 10 and the barrier layer 4a is higher than the Fermi energy. Here, the equilibrium state is a state in which no voltage is applied to each electrode. The electrodes are the source electrode 5, the drain electrode 6, and the gate electrode 10. In the structure shown in FIG. 1, for example, if the thickness of the barrier layer 4a made of non-doped AlN is 1 nm, the conduction at the heterointerface between the channel layer 3a below the gate electrode 10 and the barrier layer 4a in an equilibrium state. The energy at the lower end of the belt is higher than the Fermi energy.
 本構造において、チャネル領域におけるバリア層4aとゲート絶縁膜層9aとの界面の界面トラップ準位の濃度が低い理想的な状態である場合には、このような構造にすることによって、ノーマリオフ動作が実現される。この界面トラップ準位の濃度が低ければ低いほど、ゲート電圧によるドレイン電流の制御性が向上し、大きなドレイン電流が得られる。ここで、チャネル領域とは、ゲート電極10の下側の高濃度n型不純物領域7と高濃度n型不純物領域8との間に挟まれた領域である。 In this structure, in the ideal state where the concentration of the interface trap level at the interface between the barrier layer 4a and the gate insulating film layer 9a in the channel region is low, such a structure allows the normally-off operation to be performed. Realized. As the concentration of the interface trap level is lower, the controllability of the drain current by the gate voltage is improved, and a larger drain current can be obtained. Here, the channel region is a region sandwiched between the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 below the gate electrode 10.
 次に、実施の形態1に係る半導体装置の製造方法について説明する。図2~図7は、実施の形態1に係る半導体装置の製造方法を示す図である。 Next, a method for manufacturing the semiconductor device according to the first embodiment will be described. 2 to 7 are views showing a method of manufacturing the semiconductor device according to the first embodiment.
 最初に、図2に示すように、基板1の表面にMOCVD法またはMBE法などのエピタキシャル成長法を用いることで、バッファ層2、チャネル層3a、およびバリア層4aをそれぞれ下から順に成長させる。なお、図2に示すチャネル層3aを成長させる工程をチャネル層生成工程、バリア層4aを成長させる工程をバリア層生成工程という。 First, as shown in FIG. 2, by using an epitaxial growth method such as MOCVD method or MBE method on the surface of the substrate 1, the buffer layer 2, the channel layer 3a, and the barrier layer 4a are grown in order from the bottom. Note that the step of growing the channel layer 3a shown in FIG. 2 is called a channel layer generation step, and the step of growing the barrier layer 4a is called a barrier layer generation step.
 図3に示すように、レジストパターン等をマスクとして、イオン注入法を用いて、注入ドーズ量1×1015(cm-2)、注入エネルギー50(keV)の条件で、Siイオンを所望の領域に打ち込む。その後、RTA(Rapid Thermal Annealing)法を用いて1150℃の温度で熱処理を行ない、ドーピングしたSiイオンを活性化させて、高濃度n型不純物領域7および高濃度n型不純物領域8を形成する。なお、図3に示す工程を第1,第2n型不純物領域形成工程という。 As shown in FIG. 3, using a resist pattern or the like as a mask, Si ions are implanted in a desired region under the conditions of an implantation dose of 1 × 10 15 (cm −2 ) and an implantation energy of 50 (keV). Type in. Thereafter, heat treatment is performed at a temperature of 1150 ° C. using a rapid thermal annealing (RTA) method to activate the doped Si ions, thereby forming the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8. The process shown in FIG. 3 is referred to as a first and second n-type impurity region forming process.
 図4に示すように、蒸着/リフトオフ法を用いて金属の多層膜からなるソース電極5およびドレイン電極6を高濃度n型不純物領域7および高濃度n型不純物領域8の表面にそれぞれ形成する。なお、図4に示す工程を第1,第2電極生成工程という。 As shown in FIG. 4, a source electrode 5 and a drain electrode 6 made of a metal multilayer film are formed on the surfaces of the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8, respectively, using a vapor deposition / lift-off method. In addition, the process shown in FIG. 4 is called the 1st, 2nd electrode production | generation process.
 図5に示すように、トランジスタを作製する領域外のチャネル層3aおよびバリア層4aに、イオン注入法を用いて素子分離領域11を形成する。 As shown in FIG. 5, the element isolation region 11 is formed in the channel layer 3a and the barrier layer 4a outside the region where the transistor is manufactured using an ion implantation method.
 図6に示すように、酸素プラズマを酸素供給源とした原子層堆積法を用いてAlOaからなるゲート絶縁膜層9aを堆積する。なお、図6に示す工程をゲート絶縁膜層形成工程という。 As shown in FIG. 6, a gate insulating film layer 9a made of AlO a is deposited using an atomic layer deposition method using oxygen plasma as an oxygen supply source. Note that the process shown in FIG. 6 is referred to as a gate insulating film layer forming process.
 図7に示すように、蒸着/リフトオフ法を用いて金属膜からなるゲート電極10を形成する。なお、図7に示す工程をゲート電極生成工程という。以上の説明では、トランジスタとして動作する必要最小限の要素しか記載していないが、最終的には保護膜、フィールドプレート電極、配線、エアブリッジ、およびバイアホール等の形成プロセスを経てデバイスとして用いられる。また、図1に示す半導体装置を作製するためにさらに熱処理が実施されるが、その詳細については後述する。 As shown in FIG. 7, a gate electrode 10 made of a metal film is formed using a vapor deposition / lift-off method. Note that the process shown in FIG. 7 is referred to as a gate electrode generation process. In the above description, only the minimum necessary elements that operate as a transistor are described, but the element is finally used as a device through a formation process of a protective film, a field plate electrode, a wiring, an air bridge, a via hole, and the like. . Further, heat treatment is further performed in order to manufacture the semiconductor device shown in FIG. 1, and details thereof will be described later.
 次に、熱処理を実施しない場合と実施した場合に作製された半導体装置におけるドレイン電流-ゲート電圧特性、およびドレイン電流の熱処理温度依存性について説明する。図8は、熱処理を実施せずに作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。なお、作製された素子は単フィンガー型であり、ゲート電極幅およびチャネル長はそれぞれ100μm、1μmである。また、チャネル長とは、高濃度n型不純物領域7と高濃度n型不純物領域8との間の距離である。 Next, the drain current-gate voltage characteristics and the heat treatment temperature dependence of the drain current in the semiconductor device manufactured when the heat treatment is not performed and when the heat treatment is performed will be described. FIG. 8 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured without performing heat treatment. The manufactured element is a single finger type, and the gate electrode width and the channel length are 100 μm and 1 μm, respectively. The channel length is the distance between the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8.
 図8に示すように、この製造プロセスにて作製された半導体装置では、ノーマリオフ型の動作はするものの、得られたドレイン電流は50μA/mmにも満たない非常に小さな値であった。これは、バリア層4aとゲート絶縁膜層9aとの界面に高濃度の界面トラップ準位が形成されているために、十分に高いゲート電圧によるドレイン電流の制御性が得られていないためと考えられる。 As shown in FIG. 8, in the semiconductor device manufactured by this manufacturing process, although the normally-off type operation was performed, the obtained drain current was a very small value less than 50 μA / mm. This is thought to be because the controllability of the drain current by a sufficiently high gate voltage is not obtained because a high concentration interface trap level is formed at the interface between the barrier layer 4a and the gate insulating film layer 9a. It is done.
 本実施の形態に係る半導体装置の製造方法は、図6に示すゲート絶縁膜層9aを堆積後にRTA法等の熱処理を行うことを特徴とする。すなわち、ゲート絶縁膜層9aの堆積後またはゲート電極10の形成後に熱処理を実施する。なお、この工程を熱処理工程という。以下、熱処理工程の詳細について説明する。 The manufacturing method of the semiconductor device according to the present embodiment is characterized in that a heat treatment such as an RTA method is performed after depositing the gate insulating film layer 9a shown in FIG. That is, heat treatment is performed after the gate insulating film layer 9a is deposited or after the gate electrode 10 is formed. This process is called a heat treatment process. Hereinafter, details of the heat treatment step will be described.
 図9は、ゲート絶縁膜層9aを堆積した後に、700℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。なお、ゲート電極幅とチャネル長は、図8の場合と同じである。 FIG. 9 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after depositing the gate insulating film layer 9a. . Note that the gate electrode width and the channel length are the same as those in FIG.
 図9に示すように、ゲート絶縁膜層9aの堆積後に700℃の熱処理を実施することによって、10mA/mmを超えるドレイン電流が得られた。なお、この場合もノーマリオフ動作している。このようにドレイン電流が増加した要因として、チャネル領域におけるバリア層4aとゲート絶縁膜層9aとの界面に形成された界面トラップ準位が熱処理によって低減されたことが挙げられる。界面トラップ準位が界面のダングリングボンドによって形成されていると仮定すると、熱処理によってダングリングボンドが再結合化し、それによって界面トラップ準位が減少したと説明できる。 As shown in FIG. 9, a drain current exceeding 10 mA / mm was obtained by performing a heat treatment at 700 ° C. after the deposition of the gate insulating film layer 9a. In this case, normally-off operation is performed. The cause of the increase in the drain current is that the interface trap level formed at the interface between the barrier layer 4a and the gate insulating film layer 9a in the channel region is reduced by the heat treatment. If it is assumed that the interface trap level is formed by the dangling bond at the interface, it can be explained that the dangling bond is recombined by the heat treatment, thereby reducing the interface trap level.
 図10は、ゲート電極10の形成後に、700℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。図11は、0℃~800℃の温度にて熱処理を実施して作製された半導体装置におけるドレイン電流の熱処理温度依存性を示すグラフである。なお、図10と図11において、ゲート電極幅とチャネル長は、図8の場合と同じである。 FIG. 10 is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5 V in a semiconductor device manufactured by performing heat treatment at a temperature of 700 ° C. after forming the gate electrode 10. FIG. 11 is a graph showing the heat treatment temperature dependence of the drain current in a semiconductor device fabricated by performing heat treatment at a temperature of 0 ° C. to 800 ° C. 10 and 11, the gate electrode width and channel length are the same as those in FIG.
 図10に示すように、ゲート電極10の形成後に700℃の熱処理を実施することによって、ドレイン電流はさらに増加し、0.4A/mmという十分に高い電流値が得られた。なお、この場合もノーマリオフ動作している。また、このように十分に高いドレイン電流が得られるのは、650℃よりも高温で熱処理した場合であり、さらに750℃よりも高温では十分に高いドレイン電流は得られなかった。このように650℃~750℃の熱処理によってドレイン電流が増加した要因としては、上記のゲート絶縁膜層9a堆積後の熱処理の場合と同様に界面トラップ準位の減少で説明できる。ゲート電極10の形成後の熱処理の方がドレイン電流の増加量が大きいのは、減少した界面トラップ準位の量が多いためと言える。 As shown in FIG. 10, by performing a heat treatment at 700 ° C. after forming the gate electrode 10, the drain current further increased, and a sufficiently high current value of 0.4 A / mm was obtained. In this case, normally-off operation is performed. Further, a sufficiently high drain current can be obtained in the case of heat treatment at a temperature higher than 650 ° C., and a sufficiently high drain current cannot be obtained at a temperature higher than 750 ° C. The cause of the increase in the drain current due to the heat treatment at 650 ° C. to 750 ° C. can be explained by the decrease in the interface trap level as in the case of the heat treatment after the gate insulating film layer 9a is deposited. It can be said that the amount of increase in the drain current is larger in the heat treatment after the formation of the gate electrode 10 because the amount of the reduced interface trap level is larger.
 ゲート電極10を形成することによって、ゲート電極10の下側のバリア層4aおよびゲート絶縁膜層9aのエネルギーバンド構造が変化し、ダングリングボンドの再結合化が促進されたために、界面トラップ準位の減少量が増えたと考えられる。なお、750℃よりも高温で熱処理した場合にドレイン電流が減少した要因としては、ゲート絶縁膜層9aおよびバリア層4a間の界面だけではなく、これらのバルク間で相互反応が起きたことで逆に界面およびバルク中のトラップ準位が増加したことが考えられる。一般的に、SiまたはGaAsを用いた半導体装置では、図1に示すようなゲート電極と半導体層との間に絶縁膜を挟んだ構造とした場合に、500℃を超えるような高温で熱処理を実施すると、絶縁膜と半導体層が相互に反応し、それによってゲートリーク電流の増加といった悪影響が生じる。そのため、絶縁膜を堆積した後に500℃を超えるような高温での熱処理が実施されることは少ない。 By forming the gate electrode 10, the energy band structure of the barrier layer 4a and the gate insulating film layer 9a on the lower side of the gate electrode 10 is changed, and the recombination of dangling bonds is promoted. It is thought that the amount of decrease increased. Note that the cause of the decrease in the drain current when heat-treated at a temperature higher than 750 ° C. is not only due to the interaction between these bulks but also the interface between the gate insulating film layer 9a and the barrier layer 4a. It is thought that the trap levels in the interface and bulk increased. In general, in a semiconductor device using Si or GaAs, when a structure in which an insulating film is sandwiched between a gate electrode and a semiconductor layer as shown in FIG. When implemented, the insulating film and the semiconductor layer react with each other, thereby causing adverse effects such as an increase in gate leakage current. Therefore, heat treatment at a high temperature exceeding 500 ° C. is rarely performed after depositing the insulating film.
 しかしながら、本構造では、650℃~750℃の熱処理では、ドレイン電流が向上したことを除き、その他の特性に大きな変化は見られなかった。これは窒化物半導体のようなワイドギャップ半導体では、原子間の結合力が強く、熱処理による状態の変化が、界面準位が形成される絶縁膜と半導体の界面近傍でのみ生じているためと考えられる。つまり、このような熱処理の効果は、窒化物半導体に特有であると言える。 However, in this structure, the heat treatment at 650 ° C. to 750 ° C. did not show any significant changes in other characteristics except that the drain current was improved. This is because wide-gap semiconductors such as nitride semiconductors have strong interatomic bonding forces, and the change in state due to heat treatment occurs only near the interface between the insulating film where the interface states are formed and the semiconductor. It is done. In other words, it can be said that the effect of such heat treatment is unique to the nitride semiconductor.
 なお、上記ではゲート絶縁膜層9aの堆積後またはゲート電極10の形成後のいずれかに熱処理を行う場合について示したが、ゲート絶縁膜層9aの堆積後およびゲート電極10の形成後の両方で熱処理を行ってもよい。 In the above description, the heat treatment is performed either after the gate insulating film layer 9a is deposited or after the gate electrode 10 is formed. However, both after the gate insulating film layer 9a is deposited and after the gate electrode 10 is formed. Heat treatment may be performed.
 熱処理によるドレイン電流の増加は、オゾンを酸素供給源とした原子堆積法を用いてAlOxを堆積した場合にも、以下に示すように得られた。図12は、オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、熱処理を実施せずに作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。なお、ゲート電極幅とチャネル長は、図8の場合と同じである。図12に示すように、図8に示した特性と比べると、電流値は多いものの、得られた電流値は3mA/mmに満たない小さな値であった。 The increase in drain current due to the heat treatment was also obtained as shown below when AlO x was deposited using an atomic deposition method using ozone as an oxygen supply source. FIG. 12 shows a drain current-gate voltage measured at a drain voltage of 5 V in a semiconductor device manufactured without performing a heat treatment after depositing AlO x by an atomic deposition method using ozone as an oxygen supply source. It is a graph which shows a characteristic. Note that the gate electrode width and the channel length are the same as those in FIG. As shown in FIG. 12, compared with the characteristics shown in FIG. 8, although the current value was large, the obtained current value was a small value less than 3 mA / mm.
 図13は、オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、500℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。なお、ゲート電極幅とチャネル長は、図8の場合と同じである。酸素プラズマを酸素供給源とした場合と同様に、熱処理を実施することによってドレイン電流は増加し、60mA/mm程度の値が得られた。 FIG. 13 shows a drain voltage measured at 5 V in a semiconductor device manufactured by performing AlO x deposition by atomic deposition using ozone as an oxygen supply source and then performing heat treatment at a temperature of 500 ° C. It is a graph which shows a drain current-gate voltage characteristic. Note that the gate electrode width and the channel length are the same as those in FIG. As in the case where oxygen plasma was used as the oxygen supply source, the drain current increased by performing the heat treatment, and a value of about 60 mA / mm was obtained.
 さらに、図14は、オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、ゲート電極10の形成後に、500℃の温度にて熱処理を実施して作製された半導体装置における、ドレイン電圧を5Vとして測定したドレイン電流-ゲート電圧特性を示すグラフである。また、図15は、オゾンを酸素供給源とした原子堆積法にてAlOxの堆積を実施した後、0℃~800℃の温度にて熱処理を実施して作製された半導体装置におけるドレイン電流の熱処理温度依存性を示すグラフである。なお、図14と図15において、ゲート電極幅とチャネル長は、図8の場合と同じである。 Further, FIG. 14 shows a semiconductor device manufactured by performing AlO x deposition by an atomic deposition method using ozone as an oxygen supply source, and then performing heat treatment at a temperature of 500 ° C. after forming the gate electrode 10. Is a graph showing drain current-gate voltage characteristics measured at a drain voltage of 5V. FIG. 15 shows the drain current in a semiconductor device manufactured by depositing AlO x by atomic deposition using ozone as an oxygen supply source and then performing heat treatment at a temperature of 0 ° C. to 800 ° C. It is a graph which shows heat processing temperature dependence. 14 and 15, the gate electrode width and channel length are the same as those in FIG.
 図14と図15に示すように、酸素プラズマを酸素供給源とした場合と同様に、ゲート電極10の形成後に熱処理を実施することによってドレイン電流はさらに増加し、0.3A/mm程度の十分に高い値が得られた。また、ドレイン電流が増加する温度範囲は異なるものの、オゾンを酸素供給源とした場合にも、400℃~500℃の温度にて熱処理することによってドレイン電流が増加する結果が得られている。異なる2つの堆積法にて作製した2種類の半導体装置において、400℃以上の高温の熱処理によってドレイン電流が増加していることから、本熱処理の効果は堆積法に依らない普遍的な効果と言える。 As shown in FIGS. 14 and 15, as in the case where oxygen plasma is used as the oxygen supply source, the drain current is further increased by performing the heat treatment after the formation of the gate electrode 10, and a sufficient current of about 0.3 A / mm is obtained. A high value was obtained. Further, although the temperature range in which the drain current increases is different, even when ozone is used as the oxygen supply source, the drain current increases as a result of heat treatment at a temperature of 400 ° C. to 500 ° C. In two types of semiconductor devices manufactured by two different deposition methods, the drain current is increased by a heat treatment at a high temperature of 400 ° C. or higher. Therefore, the effect of this heat treatment is a universal effect independent of the deposition method. .
 なお、平衡状態における、ゲート電極10の下側のチャネル層3aとバリア層4aのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも低い状態としたノーマリオン動作する構造においては、ドレイン電流を担うヘテロ界面に発生する二次元電子ガスが高濃度で存在する。そのため、ドレイン電流量は、バリア層4aとゲート絶縁膜層9との間の界面トラップ準位の量にはほとんど依存しない。従って、上記のゲート絶縁膜層9の堆積後、またはゲート電極10の形成後に実施される熱処理は、平衡状態における、ゲート電極10の下側のチャネル層3aとバリア層4aのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも高いノーマリオフ動作する構造におけるドレイン電流の増加に対して、極めて効果的であると言える。 In the normally-on structure in which the energy at the lower end of the conduction band at the heterointerface between the channel layer 3a below the gate electrode 10 and the barrier layer 4a in the equilibrium state is lower than the Fermi energy, the drain current is There is a high concentration of the two-dimensional electron gas generated at the hetero interface to be carried. Therefore, the drain current amount hardly depends on the amount of the interface trap level between the barrier layer 4a and the gate insulating film layer 9. Therefore, the heat treatment performed after the gate insulating film layer 9 is deposited or after the gate electrode 10 is formed is a conduction band at the heterointerface between the channel layer 3a below the gate electrode 10 and the barrier layer 4a in an equilibrium state. It can be said that the energy at the lower end is extremely effective for increasing the drain current in the structure in which the normally-off operation is higher than the Fermi energy.
 以上のように、実施の形態1に係る半導体装置の製造方法は、チャネル層生成工程と、第1,第2n型不純物領域形成工程と、第1,第2電極生成工程と、ゲート絶縁膜層形成工程と、ゲート電極生成工程と、ゲート絶縁膜層形成工程またはゲート電極生成工程の後、ゲート絶縁膜層に対して熱処理を実施する熱処理工程とを備えた。そして、上記の工程を経て得られた実施の形態1に係る半導体装置では、オン時のソース電極5とドレイン電極6との間の電流密度が10mA/mm以上である。 As described above, the manufacturing method of the semiconductor device according to the first embodiment includes the channel layer generation step, the first and second n-type impurity region formation steps, the first and second electrode generation steps, and the gate insulating film layer. After the forming step, the gate electrode generating step, and the gate insulating film layer forming step or the gate electrode generating step, a heat treatment step of performing a heat treatment on the gate insulating film layer is provided. In the semiconductor device according to the first embodiment obtained through the above steps, the current density between the source electrode 5 and the drain electrode 6 when turned on is 10 mA / mm or more.
 このように、チャネル層3aとゲート絶縁膜層9との間に形成される界面トラップ準位が低減されるため、ゲート電極10によるドレイン電流の制御性が向上し、ノーマリオフ動作にて十分なドレイン電流を得ることが可能となる。 As described above, since the interface trap level formed between the channel layer 3a and the gate insulating film layer 9 is reduced, the controllability of the drain current by the gate electrode 10 is improved, and a sufficient drain can be obtained by the normally-off operation. A current can be obtained.
 また、半導体装置はワイドギャップ半導体を用いて構成されたため、半導体装置の小型化およびエネルギー消費量の削減を図ることが可能となる。 In addition, since the semiconductor device is configured using a wide gap semiconductor, it is possible to reduce the size of the semiconductor device and reduce energy consumption.
 ソース電極5、ドレイン電極6、およびゲート電極10に電圧が印加されていない状態において、高濃度n型不純物領域7と高濃度n型不純物領域8との間におけるチャネル層3aとバリア層4aのヘテロ界面における伝導帯下端のエネルギーは、フェルミエネルギーよりも高い状態であるため、半導体装置をノーマリオフ動作させることができる。 In a state where no voltage is applied to the source electrode 5, the drain electrode 6, and the gate electrode 10, the heterogeneity of the channel layer 3a and the barrier layer 4a between the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8 is achieved. Since the energy at the lower end of the conduction band at the interface is higher than the Fermi energy, the semiconductor device can be normally-off operated.
 チャネル層3aはGaNからなり、バリア層4aはAlNからなり、ゲート絶縁膜層9はAlOからなるため、半導体装置を高電圧で動作できるようになり、また、ドレイン電流を増加させることができる。 Since the channel layer 3a is made of GaN, the barrier layer 4a is made of AlN, and the gate insulating film layer 9 is made of AlO, the semiconductor device can be operated at a high voltage and the drain current can be increased.
 第1,第2n型不純物領域形成工程において、高濃度n型不純物領域7および高濃度n型不純物領域8はイオン注入法により形成されたため、チャネル層3aの表面に簡易に均一な厚さの高濃度n型不純物領域7および高濃度n型不純物領域8を形成することができる。 In the first and second n-type impurity region forming steps, the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are formed by ion implantation, so that the surface of the channel layer 3a can be easily formed with a uniform high thickness. The concentration n-type impurity region 7 and the high concentration n-type impurity region 8 can be formed.
 <実施の形態2>
 次に、実施の形態2に係る半導体装置について説明する。図16は、実施の形態2に係る半導体装置の構造の一例を示す図である。なお、実施の形態2において、実施の形態1で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 2>
Next, a semiconductor device according to the second embodiment will be described. FIG. 16 is a diagram illustrating an example of the structure of the semiconductor device according to the second embodiment. In the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 実施の形態1において示した、ゲート絶縁膜層9aの堆積後、またはゲート電極10の形成後に実施する熱処理の効果は、図1に示した半導体装置以外にも、ゲート電極の下側にゲート絶縁膜と窒化物半導体からなる層の界面が形成されている構造であれば、同様に得られると考えられる。 The effect of the heat treatment performed after deposition of the gate insulating film layer 9a or after formation of the gate electrode 10 shown in the first embodiment is not limited to the semiconductor device shown in FIG. A structure in which an interface between a film and a layer made of a nitride semiconductor is formed is considered to be obtained similarly.
 図16に示すように、実施の形態2に係る半導体装置は、図1に示したGaNからなるチャネル層3aとAlNからなるバリア層4aに代えて、Alx1Iny1Ga1-x1-y1Nからなるチャネル層3とAlx2Iny2Ga1-x2-y2Nからなるバリア層4を備えている。なお、バリア層4を構成するAlx2Iny2Ga1-x2-y2Nは、チャネル層3を構成するAlx1Iny1Ga1-x1-y1Nよりもバンドギャップが大きいものとする。 As shown in FIG. 16, the semiconductor device according to the second embodiment is replaced with Al x1 In y1 Ga 1 -x1-y1 N in place of the channel layer 3a made of GaN and the barrier layer 4a made of AlN shown in FIG. and a channel layer 3 and the Al x2 in y2 Ga barrier layer 4 made of 1-x2-y2 N consisting of. It is assumed that Al x2 In y2 Ga 1-x2-y2 N constituting the barrier layer 4 has a larger band gap than Al x1 In y1 Ga 1-x1-y1 N constituting the channel layer 3.
 また、実施の形態2に係る半導体装置は、図1に示したAlOaからなるゲート絶縁膜層9aに代えて、バリア層4を構成する材料であるAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなるゲート絶縁膜層9を備えている。 Further, in the semiconductor device according to the second embodiment, Al x1 In y1 Ga 1 -x1-y1 N which is a material constituting the barrier layer 4 is used instead of the gate insulating film layer 9a made of AlO a shown in FIG. A gate insulating film layer 9 made of an insulator or a semiconductor having a band gap larger than the band gap is provided.
 実施の形態2に係る半導体装置の構造においても、平衡状態における、ゲート電極10の下側のチャネル層3とバリア層4とのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも高い状態となっていれば、ノーマリオフ動作は実現され、バリア層4とゲート絶縁膜層9との間の界面トラップ準位が十分に低ければ、十分に大きなドレイン電流が得られる。 Also in the structure of the semiconductor device according to the second embodiment, the energy at the lower end of the conduction band at the heterointerface between the channel layer 3 below the gate electrode 10 and the barrier layer 4 in the equilibrium state is higher than the Fermi energy. If normally, a normally-off operation is realized, and if the interface trap level between the barrier layer 4 and the gate insulating film layer 9 is sufficiently low, a sufficiently large drain current can be obtained.
 また、このような構造においても、バリア層4とゲート絶縁膜層9との間には界面トラップ準位は形成されると考えられるため、実施の形態1に示したゲート絶縁膜層9の堆積後、またはゲート電極10の形成後に実施する熱処理の効果は得られる。 Also in such a structure, since it is considered that an interface trap level is formed between the barrier layer 4 and the gate insulating film layer 9, the deposition of the gate insulating film layer 9 described in the first embodiment is performed. The effect of heat treatment performed after or after the formation of the gate electrode 10 can be obtained.
 実施の形態2に係る半導体装置は、実施の形態1の図2に示したバッファ層2、チャネル層3、およびバリア層4の成長時に、InzAlxGa1-x-zN(0<x≦1、0<z≦1)の原料ガスとなるトリメチルインジウム、トリメチルアルミニウム、トリメチルガリウム、アンモニア等の流量、圧力、および温度などの成長条件を調整して、バッファ層2、チャネル層3、およびバリア層4を所望の組成とすることで作製できる。 In the semiconductor device according to the second embodiment, when the buffer layer 2, the channel layer 3, and the barrier layer 4 shown in FIG. 2 of the first embodiment are grown, In z Al x Ga 1-xz N (0 <x ≦ The growth conditions such as flow rate, pressure, and temperature of trimethylindium, trimethylaluminum, trimethylgallium, ammonia, etc., which are source gases of 1, 0 <z ≦ 1), are adjusted, and buffer layer 2, channel layer 3, and barrier The layer 4 can be produced with a desired composition.
 以上のように、実施の形態2に係る半導体装置は、高濃度n型不純物領域7と高濃度n型不純物領域8との間におけるチャネル層3aの表面に形成され、かつ、チャネル層3aを構成するAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有するAlx2Iny2Ga1-x2-y2Nからなるバリア層4aをさらに備え、ゲート絶縁膜層9は、バリア層4aを介してチャネル層3aの表面を覆い、かつ、バリア層4aのバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなる。従って、チャネル層3aとゲート絶縁膜層9との間に形成される界面トラップ準位が低減され、十分に大きなドレイン電流が得られる。 As described above, the semiconductor device according to the second embodiment is formed on the surface of channel layer 3a between high-concentration n-type impurity region 7 and high-concentration n-type impurity region 8, and constitutes channel layer 3a. Al x1 in y1 Ga 1-x1 -y1 N Al x2 in y2 Ga 1-x2-y2 further comprising a barrier layer 4a made of N, the gate insulating film layer 9 having a larger band gap than the band gap of the a barrier The surface of the channel layer 3a is covered via the layer 4a and is made of an insulator or a semiconductor having a band gap larger than the band gap of the barrier layer 4a. Therefore, the interface trap level formed between the channel layer 3a and the gate insulating film layer 9 is reduced, and a sufficiently large drain current can be obtained.
 <実施の形態3>
 次に、実施の形態3に係る半導体装置について説明する。図17は、実施の形態3に係る半導体装置の構造の一例を示す図である。なお、実施の形態3において、実施の形態1,2で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 3>
Next, a semiconductor device according to the third embodiment will be described. FIG. 17 is a diagram illustrating an example of the structure of the semiconductor device according to the third embodiment. In the third embodiment, the same components as those described in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図17に示すように、実施の形態3に係る半導体装置は、図16に示したAlx2Iny2Ga1-x2-y2Nからなるバリア層4を備えていない構造となっている。 As shown in FIG. 17, the semiconductor device according to the third embodiment has a structure that does not include the barrier layer 4 made of Al x2 In y2 Ga 1 -x2-y2 N shown in FIG.
 実施の形態3に係る半導体装置の構造においても、平衡状態でチャネル層3とゲート絶縁膜層9の界面に電子が発生しなければ、ノーマリオフ動作は実現され、チャネル層3とゲート絶縁膜層9との間の界面トラップ準位が十分に低ければ、十分に大きなドレイン電流が得られる。このような構造においても、チャネル層3とゲート絶縁膜層9との間には界面トラップ準位は形成されると考えられるため、実施の形態1に示したゲート絶縁膜層9の堆積後、またはゲート電極10の形成後に実施する熱処理の効果は得られる。 Also in the structure of the semiconductor device according to the third embodiment, the normally-off operation is realized if electrons are not generated at the interface between the channel layer 3 and the gate insulating film layer 9 in an equilibrium state, and the channel layer 3 and the gate insulating film layer 9 are realized. If the interface trap level between and is sufficiently low, a sufficiently large drain current can be obtained. Even in such a structure, since it is considered that an interface trap level is formed between the channel layer 3 and the gate insulating film layer 9, after the deposition of the gate insulating film layer 9 shown in the first embodiment, Or the effect of the heat processing implemented after formation of the gate electrode 10 is acquired.
 ただし、Alx2Iny2Ga1-x2-y2Nからなるバリア層4を形成した場合と比べると、ヘテロ界面に形成されるチャネルにおける電子の移動度が低下し、ドレイン電流は減少することが懸念される。従って、図1~図7、および図16に示したバリア層4,4aが形成された構造の方が大きなドレイン電流が得られやすく、適した構造と言える。実施の形態3に係る半導体装置は、実施の形態1の図2に示したバリア層4を成長させなければ作製できる。 However, compared with the case where the barrier layer 4 made of Al x2 In y2 Ga 1-x2-y2 N is formed, there is a concern that the mobility of electrons in the channel formed at the heterointerface is lowered and the drain current is reduced. Is done. Therefore, it can be said that the structure in which the barrier layers 4 and 4a shown in FIGS. 1 to 7 and FIG. 16 are formed is more suitable because a large drain current is easily obtained. The semiconductor device according to the third embodiment can be manufactured unless the barrier layer 4 shown in FIG. 2 of the first embodiment is grown.
 <実施の形態4>
 次に、実施の形態4に係る半導体装置について説明する。図18は、実施の形態4に係る半導体装置の構造の一例を示す図である。なお、実施の形態4において、実施の形態1~3で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 4>
Next, a semiconductor device according to the fourth embodiment will be described. FIG. 18 is a diagram illustrating an example of the structure of the semiconductor device according to the fourth embodiment. Note that in the fourth embodiment, the same components as those described in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
 図18に示すように、実施の形態4に係る半導体装置は、図16に示した高濃度n型不純物領域7および高濃度n型不純物領域8に代えて、ゲート電極10の下側のバリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも小さなバンドギャップを有するAlx3Iny3Ga1-x3-y3N(0≦x3≦1、0≦y3≦1)からなる高濃度n型不純物領域7aおよび高濃度n型不純物領域8aを備えている。 As shown in FIG. 18, the semiconductor device according to the fourth embodiment has a barrier layer below gate electrode 10 in place of high concentration n-type impurity region 7 and high concentration n-type impurity region 8 shown in FIG. From Al x3 In y3 Ga 1-x3-y3 N (0 ≦ x3 ≦ 1, 0 ≦ y3 ≦ 1) having a band gap smaller than the band gap of Al x2 In y2 Ga 1-x2-y2 N constituting 4 The high concentration n-type impurity region 7a and the high concentration n-type impurity region 8a are provided.
 このような構造にすることによって、高濃度n型不純物領域7および高濃度n型不純物領域8を構成する窒化物半導体がバリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップと同等、または大きい場合に比べて、チャネル層3とソース電極5およびドレイン電極6の間の抵抗が低減され、ノーマリオフ動作においても、十分に大きなドレイン電流が得られる。 With such a structure, the nitride semiconductor constituting the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 is a band of Al x2 In y2 Ga 1 -x2-y2 N constituting the barrier layer 4. The resistance between the channel layer 3 and the source electrode 5 and the drain electrode 6 is reduced as compared with the case where the gap is equal to or larger than the gap, and a sufficiently large drain current can be obtained even in the normally-off operation.
 なお、平衡状態において、ゲート電極10の下側のチャネル層3とバリア層4のヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも低い状態としたノーマリオン動作する構造においては、このヘテロ界面に高濃度の二次元電子ガスが発生するため、高濃度n型不純物領域7および高濃度n型不純物領域8を、ゲート電極10の下側と同様にチャネル層3とバリア層4とのヘテロ界面をそのまま残した構造としても、この領域のヘテロ界面にも高濃度の二次元電子ガスが発生する。従って、高濃度n型不純物領域7および高濃度n型不純物領域8においては、ドーピングしたn型の不純物に加えて、二次元電子ガスもキャリアとして働くため、チャネル領域とソース電極およびドレイン電極の間の抵抗が、十分に大きなドレイン電流が得られなくなるほど高くなることはない。 It should be noted that in a normally operated structure in which the energy at the lower end of the conduction band at the heterointerface between the channel layer 3 and the barrier layer 4 below the gate electrode 10 is lower than the Fermi energy in an equilibrium state, this heterointerface Since a high-concentration two-dimensional electron gas is generated in the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 at the heterointerface between the channel layer 3 and the barrier layer 4 in the same manner as the lower side of the gate electrode 10 Even if the structure is left as it is, a high-concentration two-dimensional electron gas is generated at the heterointerface in this region. Accordingly, in the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8, in addition to the doped n-type impurity, the two-dimensional electron gas also acts as a carrier, and therefore, between the channel region and the source and drain electrodes. Is not so high that a sufficiently large drain current cannot be obtained.
 しかしながら、平衡状態において、チャネル層3とバリア層4とのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも高い状態としたノーマリオフ動作する実施の形態1~4に係る半導体装置の構造においては、このヘテロ界面に二次元電子ガスが発生しない。そのため、高濃度n型不純物領域7および高濃度n型不純物領域8を、上記のようにゲート電極10の下側と同様にチャネル層3とバリア層4からなるヘテロ界面をそのまま残した構造でも、この領域のヘテロ界面に二次元電子ガスは発生しない。よって、高濃度n型不純物領域7および高濃度n型不純物領域8においては、ドーピングしたn型不純物のみがキャリアとして働くことになる。従って、二次元電子ガスがヘテロ界面に発生する構造と比べて、この領域、つまり、チャネル層3とソース電極5およびドレイン電極6との間の低抵抗化が困難となり、十分に大きなドレイン電流が得られにくい。そのため、高濃度n型不純物領域7aおよび高濃度n型不純物領域8aを、ゲート電極10の下側のバリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも小さなバンドギャップを有するAlx3Iny3Ga1-x3-y3Nで構成する、実施の形態4に係る半導体装置による低抵抗化の効果は、平衡状態において、チャネル層3とバリア層4とのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも高い状態としたノーマリオフ動作する場合において、さらに大きくなる。 However, in the structure of the semiconductor device according to the first to fourth embodiments in which the energy at the lower end of the conduction band at the heterointerface between the channel layer 3 and the barrier layer 4 is normally off in an equilibrium state, the state is higher than the Fermi energy. No two-dimensional electron gas is generated at this hetero interface. Therefore, even if the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 have a structure in which the heterointerface consisting of the channel layer 3 and the barrier layer 4 is left as it is, as described above, No two-dimensional electron gas is generated at the heterointerface in this region. Therefore, in the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8, only the doped n-type impurity works as a carrier. Therefore, compared with the structure in which the two-dimensional electron gas is generated at the hetero interface, it is difficult to reduce the resistance between this region, that is, between the channel layer 3 and the source electrode 5 and the drain electrode 6, and a sufficiently large drain current is generated. It is difficult to obtain. Therefore, the high-concentration n-type impurity region 7a and the high-concentration n-type impurity region 8a have a band smaller than the band gap of Al x2 In y2 Ga 1 -x2-y2 N constituting the lower barrier layer 4 of the gate electrode 10. The effect of reducing the resistance by the semiconductor device according to the fourth embodiment, which is composed of Al x3 In y3 Ga 1-x3-y3 N having a gap, is obtained at the heterointerface between the channel layer 3 and the barrier layer 4 in an equilibrium state. In the case of normally-off operation in which the energy at the lower end of the conduction band is higher than the Fermi energy, the energy is further increased.
 また、高濃度n型不純物領域7と高濃度n型不純物領域8を、ゲート電極10の下側のバリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも小さなバンドギャップを有するAlx3Iny3Ga1-x3-y3Nで構成する、実施の形態4に係る半導体装置による低抵抗化の効果は、バリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップが大きいほど大きくなる。これはバンドギャップが大きいほど、ドーピングしたn型不純物の活性化率が低くなり、その領域の抵抗化が困難になるためである。 Further, the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are formed in a band smaller than the band gap of Al x2 In y2 Ga 1 -x2-y2 N constituting the lower barrier layer 4 of the gate electrode 10. The effect of reducing the resistance by the semiconductor device according to the fourth embodiment, which is composed of Al x3 In y3 Ga 1-x3-y3 N having a gap, is that Al x2 In y2 Ga 1-x2-y2 constituting the barrier layer 4 The larger the band gap of N, the larger. This is because the larger the band gap, the lower the activation rate of the doped n-type impurity, and the more difficult it is to make the region resistant.
 なお、高濃度n型不純物領域7aおよび高濃度n型不純物領域8aのうち、少なくともバリア層4よりも厚い表面側の領域が、バリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも小さなバンドギャップを有するAlx3Iny3Ga1-x3-y3Nで構成されていれば、上記の効果は得られるため、バリア層4の厚さよりも深い領域の高濃度n型不純物領域7aおよび高濃度n型不純物領域8aには、バリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも大きなバンドギャップを有する窒化物半導体が存在しても構わない。これにより、高濃度n型不純物領域7aおよび高濃度n型不純物領域8aの抵抗が低減され、大きなドレイン電流が得られる。 Of the high-concentration n-type impurity region 7 a and the high-concentration n-type impurity region 8 a, at least the region on the surface side thicker than the barrier layer 4 is Al x2 In y2 Ga 1 -x2-y2 N constituting the barrier layer 4. The above effect can be obtained if it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of the high-concentration n-type in a region deeper than the thickness of the barrier layer 4. In the impurity region 7a and the high-concentration n-type impurity region 8a, a nitride semiconductor having a band gap larger than the band gap of Al x2 In y2 Ga 1 -x2-y2 N constituting the barrier layer 4 may exist. Absent. Thereby, the resistance of the high concentration n-type impurity region 7a and the high concentration n-type impurity region 8a is reduced, and a large drain current is obtained.
 <実施の形態5>
 次に、実施の形態5に係る半導体装置について説明する。なお、実施の形態5において、実施の形態1~4で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 5>
Next, a semiconductor device according to the fifth embodiment will be described. Note that in the fifth embodiment, the same components as those described in the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted.
 実施の形態5においては、高濃度n型不純物領域7および高濃度n型不純物領域8の表面側の領域は、バリア層4とチャネル層3との相互拡散層からなっている。このことについて詳細に説明する。 In the fifth embodiment, the regions on the surface side of the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are composed of an interdiffusion layer of the barrier layer 4 and the channel layer 3. This will be described in detail.
 実施の形態4の図18に示した半導体装置は、実施の形態1の図2~図7に示した製造方法において、バリア層4の厚さが、図2のイオン注入工程におけるイオン注入のエネルギーによって、消滅する程度に薄い場合に、作製することができる。例えば1nmの厚さの窒化物半導体からなる層は、非特許文献Jpn. J. Appl. Phys. 50, 064101 (2011).に記載のようにイオン注入によって消滅する。なお、実際にはバリア層4が完全に消滅しているわけではなく、イオン注入時の注入エネルギーによってバリア層4とチャネル層3との間で構成元素が相互拡散することでイオン注入した領域、すなわち、高濃度n型不純物領域7および高濃度n型不純物領域8のバリア層3側で相互拡散層が形成される。なお、相互拡散層はミキシング層ともいう。結果として、この領域、すなわち、高濃度n型不純物領域7および高濃度n型不純物領域8のバリア層3側における窒化物半導体のバンドギャップが、ゲート電極の下側のバリア層4を構成する窒化物半導体よりもバンドギャップよりも小さくなり、図18に示す構造と同様の半導体装置が作製される。従って、イオン注入によって図18に示す構造と同様の半導体装置を作製できるバリア層4の厚さは、イオン注入時のエネルギーとバリア層4とチャネル層3を構成する元素の結合エネルギーによって決まり、図3に示したイオン注入条件では、2nmよりも薄い場合と言える。 In the semiconductor device shown in FIG. 18 of the fourth embodiment, the thickness of the barrier layer 4 in the manufacturing method shown in FIGS. 2 to 7 of the first embodiment is such that the ion implantation energy in the ion implantation step of FIG. Can be produced when it is thin enough to disappear. For example, a layer made of a nitride semiconductor having a thickness of 1 nm is extinguished by ion implantation as described in Non-Patent Documents Jpn. J. Appl. Phys. 50, 064101 (2011). Actually, the barrier layer 4 is not completely extinguished, but the ion-implanted region is formed by interdiffusion of constituent elements between the barrier layer 4 and the channel layer 3 by the implantation energy during ion implantation. That is, an interdiffusion layer is formed on the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8 on the barrier layer 3 side. The interdiffusion layer is also called a mixing layer. As a result, the band gap of the nitride semiconductor in this region, that is, the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 on the barrier layer 3 side constitutes the nitridation constituting the barrier layer 4 below the gate electrode. The band gap is smaller than that of a physical semiconductor, and a semiconductor device similar to the structure shown in FIG. 18 is manufactured. Therefore, the thickness of the barrier layer 4 that can produce a semiconductor device similar to the structure shown in FIG. 18 by ion implantation is determined by the energy at the time of ion implantation and the binding energy of the elements constituting the barrier layer 4 and the channel layer 3. 3 can be said to be thinner than 2 nm.
 バリア層4の厚さは2nm以下であり、高濃度n型不純物領域7および高濃度n型不純物領域8の表面側の領域は、バリア層4とチャネル層3との相互拡散層からなる。従って、高濃度n型不純物領域7および高濃度n型不純物領域8の抵抗が低減され、大きなドレイン電流が得られる。 The thickness of the barrier layer 4 is 2 nm or less, and the regions on the surface side of the high-concentration n-type impurity region 7 and the high-concentration n-type impurity region 8 are composed of interdiffusion layers of the barrier layer 4 and the channel layer 3. Therefore, the resistance of the high concentration n-type impurity region 7 and the high concentration n-type impurity region 8 is reduced, and a large drain current is obtained.
 なお、この相互拡散層では、表面側でバンドギャップが大きく、深さ方向に深いほどバンドギャップが小さくなるように、バンドギャップが分布していることになる。例えば、バリア層4がAlNからなり、チャネル層3がGaNからなる構造の場合には、表面側では比較的Al組成が高いAlGaNから構成され、深さ方向に深くなるに従って、Al組成が低くなるようにAl組成が分布した構造となっていることになる。 In this interdiffusion layer, the band gap is distributed so that the band gap is large on the surface side, and the band gap becomes smaller as the depth increases in the depth direction. For example, when the barrier layer 4 is made of AlN and the channel layer 3 is made of GaN, the surface side is made of AlGaN having a relatively high Al composition, and the Al composition decreases as the depth increases. Thus, the Al composition is distributed.
 <実施の形態6>
 次に、実施の形態6に係る半導体装置について説明する。図19は、実施の形態6に係る半導体装置の構造の一例を示す図である。図20は、実施の形態6に係る半導体装置の構造の他の例を示す図である。なお、実施の形態6において、実施の形態1~5で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 6>
Next, a semiconductor device according to the sixth embodiment will be described. FIG. 19 is a diagram illustrating an example of the structure of the semiconductor device according to the sixth embodiment. FIG. 20 is a diagram illustrating another example of the structure of the semiconductor device according to the sixth embodiment. Note that in the sixth embodiment, the same components as those described in the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted.
 図16に示した半導体装置では、ソース電極5の下側の高濃度n型不純物領域7の一部の領域が、ゲート電極10と重なり合う構造となっているが、図19に示すように、実施の形態6に係る半導体装置では、ソース電極5の下側の高濃度n型不純物領域7は、ゲート電極10と重なり合わない構造となっている。 In the semiconductor device shown in FIG. 16, a part of the high-concentration n-type impurity region 7 on the lower side of the source electrode 5 has a structure overlapping with the gate electrode 10, but as shown in FIG. In the semiconductor device according to the sixth embodiment, the high-concentration n-type impurity region 7 below the source electrode 5 has a structure that does not overlap the gate electrode 10.
 このような構造においても、平衡状態における、ゲート電極10の下側のチャネル層3とバリア層4とのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも高い状態となっていれば、ノーマリオフ動作は実現され、バリア層4とゲート絶縁膜層9との間の界面トラップ準位が十分に低ければ、ドレイン電流は得られる。従って、このような構造においても、実施の形態1において示したゲート絶縁膜層9の堆積後、またはゲート電極10の形成後に実施する熱処理の効果は得られる。 Even in such a structure, if the energy at the lower end of the conduction band at the heterointerface between the channel layer 3 below the gate electrode 10 and the barrier layer 4 in an equilibrium state is higher than the Fermi energy, it is normally off. If the operation is realized and the interface trap level between the barrier layer 4 and the gate insulating film layer 9 is sufficiently low, a drain current can be obtained. Therefore, even in such a structure, the effect of heat treatment performed after the deposition of the gate insulating film layer 9 or the formation of the gate electrode 10 shown in the first embodiment can be obtained.
 また、このような構造においても、ソース電極5の下側の高濃度n型不純物領域7は、実施の形態4で示したように、ゲート電極10の下側のバリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも小さなバンドギャップを有するAlx3Iny3Ga1-x3-y3Nから構成されれば、バリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップと同等、または大きい場合に比べて、この高濃度n型不純物領域7の抵抗が低減され、大きなドレイン電流が得られる。 Also in such a structure, the high-concentration n-type impurity region 7 below the source electrode 5 is formed of Al x2 constituting the barrier layer 4 below the gate electrode 10 as shown in the fourth embodiment. If it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of In y2 Ga 1-x2-y2 N, Al x2 In y2 Ga 1-x2 constituting the barrier layer 4 The resistance of the high-concentration n-type impurity region 7 is reduced and a large drain current can be obtained as compared with the case where the band gap is equal to or larger than the band gap of -y2N .
 ただし、この場合、ソース電極5の下側の高濃度n型不純物領域7とゲート電極10の間の領域はキャリアが存在しないために高抵抗領域となり、この距離が長くなればなるほど、抵抗が高くなり、ドレイン電流が減少する。従って、図16に示した構造の方が図19に示す構造に比べると大きなドレイン電流が得られる。 However, in this case, the region between the high-concentration n-type impurity region 7 on the lower side of the source electrode 5 and the gate electrode 10 becomes a high resistance region because no carrier exists, and the longer this distance, the higher the resistance. As a result, the drain current decreases. Therefore, a larger drain current can be obtained in the structure shown in FIG. 16 than in the structure shown in FIG.
 なお、図16に示した構造では、ゲート電極10が、高濃度n型不純物領域7の一部を覆う構造となっており、このように高濃度n型不純物領域7とゲート電極10が重なる場合には、この領域に寄生容量が発生し、高周波動作の妨げになる。従って、重なる領域は極力少なくした方が好ましく、最適な構造は、ゲート電極10の端が、高濃度n型不純物領域7の端と一致する図20に示す構造である。図19と図20に示す半導体装置は、実施の形態1の図3に示したイオン注入時のマスクパターンを変えることにより作製できる。 In the structure shown in FIG. 16, the gate electrode 10 has a structure that covers a part of the high-concentration n-type impurity region 7, and the high-concentration n-type impurity region 7 and the gate electrode 10 overlap in this way. In this case, parasitic capacitance is generated in this region, which hinders high-frequency operation. Therefore, it is preferable to reduce the overlapping region as much as possible. The optimum structure is the structure shown in FIG. 20 in which the end of the gate electrode 10 coincides with the end of the high-concentration n-type impurity region 7. The semiconductor device shown in FIGS. 19 and 20 can be manufactured by changing the mask pattern at the time of ion implantation shown in FIG. 3 of the first embodiment.
 <実施の形態7>
 次に、実施の形態7に係る半導体装置について説明する。図21は、実施の形態7に係る半導体装置の構造の一例を示す図である。図22は、実施の形態7に係る半導体装置の構造の他の例を示す図である。なお、実施の形態7において、実施の形態1~6で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 7>
Next, a semiconductor device according to the seventh embodiment will be described. FIG. 21 is a diagram illustrating an example of the structure of the semiconductor device according to the seventh embodiment. FIG. 22 shows another example of the structure of the semiconductor device according to the seventh embodiment. Note that in the seventh embodiment, the same components as those described in the first to sixth embodiments are denoted by the same reference numerals, and description thereof is omitted.
 図16に示した半導体装置では、ドレイン電極6の下側の高濃度n型不純物領域8の一部の領域が、ゲート電極10と重なり合う構造となっているが、図21に示すように、実施の形態7に係る半導体装置では、ドレイン電極6の下側の高濃度n型不純物領域8は、ゲート電極10と重なり合わない構造となっている。 In the semiconductor device shown in FIG. 16, a part of the high-concentration n-type impurity region 8 on the lower side of the drain electrode 6 has a structure overlapping the gate electrode 10, but as shown in FIG. In the semiconductor device according to Embodiment 7, the high-concentration n-type impurity region 8 below the drain electrode 6 has a structure that does not overlap the gate electrode 10.
 このような構造においても、平衡状態における、ゲート電極10の下側のチャネル層3とバリア層4とのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも高い状態となっていれば、ノーマリオフ動作は実現され、バリア層4とゲート絶縁膜層9との間の界面トラップ準位が十分に低ければ、ドレイン電流は得られる。従って、このような構造においても、実施の形態1において示したゲート絶縁膜層9の堆積後、またはゲート電極10の形成後に実施する熱処理の効果は得られる。 Even in such a structure, if the energy at the lower end of the conduction band at the heterointerface between the channel layer 3 below the gate electrode 10 and the barrier layer 4 in an equilibrium state is higher than the Fermi energy, it is normally off. If the operation is realized and the interface trap level between the barrier layer 4 and the gate insulating film layer 9 is sufficiently low, a drain current can be obtained. Therefore, even in such a structure, the effect of heat treatment performed after the deposition of the gate insulating film layer 9 or the formation of the gate electrode 10 shown in the first embodiment can be obtained.
 また、このような構造においても、ソース電極5の下側の高濃度n型不純物領域7は、実施の形態4で示したように、ゲート電極10の下側のバリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも小さなバンドギャップを有するAlx3Iny3Ga1-x3-y3Nから構成されれば、バリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップと同等、または大きい場合に比べて、この高濃度n型不純物領域7の抵抗が低減され、大きなドレイン電流が得られる。 Also in such a structure, the high-concentration n-type impurity region 7 below the source electrode 5 is formed of Al x2 constituting the barrier layer 4 below the gate electrode 10 as shown in the fourth embodiment. If it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of In y2 Ga 1-x2-y2 N, Al x2 In y2 Ga 1-x2 constituting the barrier layer 4 The resistance of the high-concentration n-type impurity region 7 is reduced and a large drain current can be obtained as compared with the case where the band gap is equal to or larger than the band gap of -y2N .
 ただし、この場合、ドレイン電極6の下側の高濃度n型不純物領域8とゲート電極10との間の領域はキャリアが存在しないために高抵抗領域となり、この距離が長くなればなるほど、抵抗が高くなり、ドレイン電流が減少する。従って、図16に示した構造の方が図21に示す構造に比べると大きなドレイン電流が得られる。 However, in this case, the region between the high concentration n-type impurity region 8 on the lower side of the drain electrode 6 and the gate electrode 10 becomes a high resistance region because no carrier exists, and the longer this distance is, the higher the resistance is. Increased, drain current decreases. Therefore, a larger drain current can be obtained in the structure shown in FIG. 16 than in the structure shown in FIG.
 なお、図16に示した構造では、ゲート電極10が、高濃度n型不純物領域8の一部を覆う構造となっており、このように高濃度n型不純物領域8とゲート電極10が重なる場合には、この領域に寄生容量が発生し、高周波動作の妨げになる。従って、重なる領域は極力少なくした方が好ましく、最適な構造は、ゲート電極10の端が、高濃度n型不純物領域8の端と一致する図22に示す構造である。 In the structure shown in FIG. 16, the gate electrode 10 has a structure that covers a part of the high-concentration n-type impurity region 8, and the high-concentration n-type impurity region 8 and the gate electrode 10 overlap in this way. In this case, parasitic capacitance is generated in this region, which hinders high-frequency operation. Therefore, it is preferable to reduce the overlapping region as much as possible. The optimum structure is the structure shown in FIG. 22 in which the end of the gate electrode 10 coincides with the end of the high-concentration n-type impurity region 8.
 図21と図22に示す構造の半導体装置は、実施の形態1の図3に示したイオン注入時のマスクパターンを変えることにより作製できる。 The semiconductor device having the structure shown in FIGS. 21 and 22 can be manufactured by changing the mask pattern at the time of ion implantation shown in FIG. 3 of the first embodiment.
 <実施の形態8>
 次に、実施の形態8に係る半導体装置について説明する。図23は、実施の形態8に係る半導体装置の構造の一例を示す図である。図24は、実施の形態8に係る半導体装置の構造の他の例を示す図である。図25は、実施の形態8に係る半導体装置の構造の他の例を示す図である。なお、実施の形態8において、実施の形態1~7で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Eighth embodiment>
Next, a semiconductor device according to the eighth embodiment will be described. FIG. 23 shows an example of the structure of the semiconductor device according to the eighth embodiment. FIG. 24 shows another example of the structure of the semiconductor device according to the eighth embodiment. FIG. 25 is a diagram illustrating another example of the structure of the semiconductor device according to the eighth embodiment. Note that in the eighth embodiment, the same components as those described in the first to seventh embodiments are denoted by the same reference numerals and description thereof is omitted.
 図23~図25に示すように、実施の形態8に係る半導体装置は、図16、図21および図22に示した構造に対して、ドレイン電極6の下側の高濃度n型不純物領域8とゲート電極10の下側のチャネル層3とバリア層4の領域との間に、高濃度n型不純物領域8よりもn型不純物濃度が低い、低濃度n型不純物領域12を形成した構造となっている。このような構造にすることによって、ドレイン電極6に高電圧を印加した際に、ゲート電極10とドレイン電極6の下側の高濃度n型不純物領域8との間に発生する電界が緩和され、ドレイン電極6により高い電圧を印加できるようになる。 As shown in FIGS. 23 to 25, the semiconductor device according to the eighth embodiment is different from the structure shown in FIGS. 16, 21, and 22 in the high-concentration n-type impurity region 8 below the drain electrode 6. And a structure in which a low-concentration n-type impurity region 12 having an n-type impurity concentration lower than that of the high-concentration n-type impurity region 8 is formed between the channel layer 3 and the barrier layer 4 below the gate electrode 10. It has become. With such a structure, when a high voltage is applied to the drain electrode 6, the electric field generated between the gate electrode 10 and the high-concentration n-type impurity region 8 below the drain electrode 6 is relaxed. A higher voltage can be applied to the drain electrode 6.
 このような構造においても、平衡状態における、ゲート電極10の下側のチャネル層3とバリア層4とのヘテロ界面における伝導帯下端のエネルギーが、フェルミエネルギーよりも高い状態となっていれば、ノーマリオフ動作は実現され、バリア層4とゲート絶縁膜層9との間の界面トラップ準位が十分に低ければ、ドレイン電流は得られる。従って、このような構造においても、実施の形態1において示したゲート絶縁膜層9の堆積後、またはゲート電極10の形成後に実施する熱処理の効果は得られる。 Even in such a structure, if the energy at the lower end of the conduction band at the heterointerface between the channel layer 3 below the gate electrode 10 and the barrier layer 4 in an equilibrium state is higher than the Fermi energy, it is normally off. If the operation is realized and the interface trap level between the barrier layer 4 and the gate insulating film layer 9 is sufficiently low, a drain current can be obtained. Therefore, even in such a structure, the effect of heat treatment performed after the deposition of the gate insulating film layer 9 or the formation of the gate electrode 10 shown in the first embodiment can be obtained.
 また、このような構造においても、ソース電極5の下側の高濃度n型不純物領域7は、実施の形態4で示したように、ゲート電極10の下側のバリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップよりも小さなバンドギャップを有するAlx3Iny3Ga1-x3-y3Nから構成されれば、バリア層4を構成するAlx2Iny2Ga1-x2-y2Nのバンドギャップと同等、または大きい場合に比べて、この高濃度n型不純物領域7の抵抗が低減され、大きなドレイン電流が得られる。 Also in such a structure, the high-concentration n-type impurity region 7 below the source electrode 5 is formed of Al x2 constituting the barrier layer 4 below the gate electrode 10 as shown in the fourth embodiment. If it is made of Al x3 In y3 Ga 1-x3-y3 N having a band gap smaller than that of In y2 Ga 1-x2-y2 N, Al x2 In y2 Ga 1-x2 constituting the barrier layer 4 The resistance of the high-concentration n-type impurity region 7 is reduced and a large drain current can be obtained compared to the case where the band gap is equal to or larger than the band gap of -y2N .
 なお、図24に示す構造では、低濃度n型不純物領域12とゲート電極10が重なる領域がない。この場合には、ゲート電極10と低濃度n型不純物領域が重ならない領域の寄生抵抗が高くなるため、十分に大きなドレイン電流を得るためには、ゲート電極10と低濃度n型不純物領域12が重なる図23に示す構造の方が、寄生抵抗を低減できるために好ましい。さらに、図23に示す構造では、ゲート電極10が、低濃度n型不純物領域12の一部を覆っているが、このように低濃度n型不純物領域12とゲート電極10が重なる場合には、この領域に寄生容量が発生し、高周波動作の妨げになるため、重なる領域は極力少なくした方が好ましい。よって、最適な構造は、ゲート電極10の端が低濃度n型不純物領域12の端と一致する図25に示す構造である。 In the structure shown in FIG. 24, there is no region where the low-concentration n-type impurity region 12 and the gate electrode 10 overlap. In this case, since the parasitic resistance of the region where the gate electrode 10 and the low-concentration n-type impurity region do not overlap with each other increases, the gate electrode 10 and the low-concentration n-type impurity region 12 must be connected to obtain a sufficiently large drain current. The overlapping structure shown in FIG. 23 is preferable because parasitic resistance can be reduced. Further, in the structure shown in FIG. 23, the gate electrode 10 covers a part of the low-concentration n-type impurity region 12, but when the low-concentration n-type impurity region 12 and the gate electrode 10 overlap in this way, Since parasitic capacitance is generated in this region and hinders high-frequency operation, it is preferable to reduce the overlapping region as much as possible. Therefore, the optimum structure is the structure shown in FIG. 25 where the end of the gate electrode 10 coincides with the end of the low-concentration n-type impurity region 12.
 図23~図25に示す構造の半導体装置は、実施の形態1の図3に示したイオン注入を、イオン注入条件およびマスクパターンを変えて、2回にわたり実施することにより作製できる。 The semiconductor device having the structure shown in FIGS. 23 to 25 can be manufactured by performing the ion implantation shown in FIG. 3 of the first embodiment twice with changing the ion implantation conditions and the mask pattern.
 <実施の形態9>
 次に、実施の形態9に係る半導体装置について説明する。図26は、実施の形態9に係る半導体装置の構造の一例を示す図である。なお、実施の形態9において、実施の形態1~8で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 9>
Next, a semiconductor device according to the ninth embodiment will be described. FIG. 26 is a diagram illustrating an example of the structure of the semiconductor device according to the ninth embodiment. Note that in the ninth embodiment, the same components as those described in the first to eighth embodiments are denoted by the same reference numerals and description thereof is omitted.
 図26に示すように、実施の形態9に係る半導体装置は、基板1に代えて、n型Alx3Iny3Ga1-x3-y3Nからなる基板1aを備えている。基板1aの表面には、基板1aに比べて低濃度のn型Alx4Iny4Ga1-x4-y4N(0≦x4≦1、0≦y4≦1)からなるドリフト層13が形成されている。ドリフト層13の表面には、基板1aに比べて低濃度のp型Alx5Iny5Ga1-x5-y5N(0≦x5≦1、0≦y5≦1)からなる狭窄層14が形成されている。 As shown in FIG. 26, the semiconductor device according to the ninth embodiment includes a substrate 1a made of n-type Al x3 In y3 Ga 1-x3-y3 N, instead of the substrate 1. On the surface of the substrate 1a, a drift layer 13 made of n-type low concentration than the substrate 1a Al x4 In y4 Ga 1- x4-y4 N (0 ≦ x4 ≦ 1,0 ≦ y4 ≦ 1) is formed Yes. On the surface of the drift layer 13, a constriction layer 14 made of p-type Al x5 In y5 Ga 1-x5-y5 N (0 ≦ x5 ≦ 1, 0 ≦ y5 ≦ 1) having a lower concentration than the substrate 1 a is formed. ing.
 また、ドレイン電極6は基板1aの下側に形成されている。すなわち、ドレイン電極6は、チャネル層3の裏面側に形成されている。さらに、ソース電極5の下側には、窒化物半導体に対してp型となる不純物が含まれるp型不純物領域15が狭窄層14に至る深さまで形成されている。また、本構造において、低濃度n型不純物領域12は、バリア層4からドリフト層13に至る深さまで形成されている。また、ゲート絶縁膜層9とゲート電極10は、高濃度n型不純物領域7と低濃度n型不純物領域12に挟まれたチャネル領域を覆うように形成されている。 The drain electrode 6 is formed on the lower side of the substrate 1a. That is, the drain electrode 6 is formed on the back side of the channel layer 3. Further, a p-type impurity region 15 containing a p-type impurity with respect to the nitride semiconductor is formed below the source electrode 5 to a depth reaching the constriction layer 14. In this structure, the low-concentration n-type impurity region 12 is formed to a depth from the barrier layer 4 to the drift layer 13. The gate insulating film layer 9 and the gate electrode 10 are formed so as to cover a channel region sandwiched between the high-concentration n-type impurity region 7 and the low-concentration n-type impurity region 12.
 本構造において、ドレイン電流はソース電極5から、高濃度n型不純物領域7、高濃度n型不純物領域7と低濃度n型不純物領域12に挟まれたチャネル領域、低濃度n型不純物領域12、ドリフト層13、基板1aを介して、ドレイン電極6に流れる。従って、本構造は縦型トランジスタと言える。このような縦型のトランジスタ構造とすることによって、各構成要素の配置を工夫することによって、面積当たりのドレイン電流を大きくすることが可能となる。 In this structure, the drain current flows from the source electrode 5 to the high-concentration n-type impurity region 7, the channel region sandwiched between the high-concentration n-type impurity region 7 and the low-concentration n-type impurity region 12, the low-concentration n-type impurity region 12, It flows to the drain electrode 6 through the drift layer 13 and the substrate 1a. Therefore, this structure can be said to be a vertical transistor. With such a vertical transistor structure, the drain current per area can be increased by devising the arrangement of each component.
 このような縦型トランジスタにおいても、高濃度n型不純物領域7と低濃度n型不純物領域12に挟まれたチャネル領域は、実施の形態1~8に示した構造と同等であり、これらと同様の効果を得ることができる。 Also in such a vertical transistor, the channel region sandwiched between the high-concentration n-type impurity region 7 and the low-concentration n-type impurity region 12 is equivalent to the structure shown in the first to eighth embodiments, and these are the same. The effect of can be obtained.
 なお、図26に示す実施の形態9に係る半導体装置の構造においても、高濃度n型不純物領域7とゲート電極10の位置関係は実施の形態2の図16、実施の形態6の図19および図20に示した位置関係と同様であり、低濃度n型不純物領域12とゲート電極10の位置関係は、実施の形態8の図23~図25に示した位置関係と同様であり、これらのどの位置関係となっても構わない。 Also in the structure of the semiconductor device according to the ninth embodiment shown in FIG. 26, the positional relationship between the high-concentration n-type impurity region 7 and the gate electrode 10 is the same as in FIG. 16 of the second embodiment, FIG. 19 of the sixth embodiment, and FIG. The positional relationship between the low-concentration n-type impurity region 12 and the gate electrode 10 is the same as the positional relationship shown in FIGS. 23 to 25 of the eighth embodiment. Any positional relationship is acceptable.
 <実施の形態10>
 次に、実施の形態10に係る半導体装置について説明する。図27は、実施の形態10に係る半導体装置の構造の一例を示す図である。図28は、実施の形態10に係る半導体装置の構造の他の例を示す図である。なお、実施の形態10において、実施の形態1~9で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 10>
Next, a semiconductor device according to the tenth embodiment will be described. FIG. 27 is a diagram illustrating an example of the structure of the semiconductor device according to the tenth embodiment. FIG. 28 shows another example of the structure of the semiconductor device according to the tenth embodiment. In the tenth embodiment, the same components as those described in the first to ninth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図27に示すように、実施の形態10に係る半導体装置は、図23におけるAlx1Iny1Ga1-x1-y1Nからなるチャネル層3に代えて、Alx1Ga1-x1Nからなるチャネル層3bを備えている。なお、Alx1Ga1-x1Nは、Alx1Iny1Ga1-x1-y1Nにおいてy1=0としたものである。このようにAlx1Ga1-x1Nからなるチャネル層3bを採用することによって、4元素からなるAlx1Iny1Ga1-x1-y1Nと比較して合金散乱が抑制されるため、ヘテロ界面に形成されるチャネルにおける電子の移動度が向上し、ドレイン電流の増加を図ることができる。さらに、比較的Al組成が大きい材料を用いれば、バンドギャップが大きくなるため、高電圧を印加しても壊れにくくなり、高電圧動作が可能となる。 As shown in FIG. 27, the semiconductor device according to the tenth embodiment has a channel made of Al x1 Ga 1 -x1 N instead of the channel layer 3 made of Al x1 In y1 Ga 1 -x1-y1 N in FIG. The layer 3b is provided. Al x1 Ga 1 -x1 N is obtained by setting y1 = 0 in Al x1 In y1 Ga 1 -x1-y1 N. By adopting the channel layer 3b made of Al x1 Ga 1-x1 N in this way, the alloy scattering is suppressed as compared with Al x1 In y1 Ga 1-x1-y1 N made of 4 elements. Thus, the mobility of electrons in the channel formed in the channel is improved, and the drain current can be increased. Furthermore, if a material having a relatively large Al composition is used, the band gap becomes large, so that even when a high voltage is applied, it is difficult to break, and a high voltage operation is possible.
 さらに、図28に示す半導体装置は、図27に示したAlx1Ga1-x1Nからなるチャネル層3bに代えて、GaNからなるチャネル層3aを備えている。なお、GaNは、Alx1Ga1-x1Nにおいてx1=0、y1=0としたものである。このようにチャネル層3aをGaNとすることによって、3元素からなるAlx1Ga1-x1Nと比較して、さらに合金散乱が抑制されるため、ヘテロ界面に形成されるチャネルにおける電子の移動度がさらに向上し、更なるドレイン電流の増加を図ることができる。さらに、結晶成長も容易となり、チャネル層3aに意図せずに混入する不純物も低減できるため、これらの不純物による電子トラップが要因となって生じる電流コラプスを抑制することが可能となる。 Furthermore, the semiconductor device shown in FIG. 28 includes a channel layer 3a made of GaN instead of the channel layer 3b made of Al x1 Ga 1-x1 N shown in FIG. GaN is Al x1 Ga 1-x1 N with x1 = 0 and y1 = 0. By using GaN as the channel layer 3a in this way, since the alloy scattering is further suppressed as compared with Al x1 Ga 1-x1 N composed of three elements, the mobility of electrons in the channel formed at the heterointerface is reduced. Thus, the drain current can be further increased. Furthermore, crystal growth is facilitated, and impurities that are unintentionally mixed into the channel layer 3a can be reduced, so that current collapse caused by electron traps caused by these impurities can be suppressed.
 なお、本実施の形態では、図23と、図27および図28とを対比するようにチャネル層3a,3bを構成する材料について記載したが、本実施の形態に記載の内容と同様の効果は、他の実施の形態に記載された全ての構造に対して及ぶものである。 In the present embodiment, the materials constituting the channel layers 3a and 3b are described so as to compare FIG. 23 with FIG. 27 and FIG. 28, but the same effects as the contents described in the present embodiment are obtained. This extends to all structures described in other embodiments.
 このような構造の半導体装置は、実施の形態1の図2に示したチャネル層3の成長時に、InzAlxGa1-x-zN(0<x≦1、0<z≦1)の原料ガスとなるトリメチルインジウム、トリメチルアルミニウム、トリメチルガリウム、アンモニア等の流量、圧力、および温度などの成長条件を調整して、チャネル層3を所望の組成とすることで作製できる。 In the semiconductor device having such a structure, a source material of In z Al x Ga 1 -xz N (0 <x ≦ 1, 0 <z ≦ 1) is obtained when the channel layer 3 shown in FIG. The channel layer 3 can be made to have a desired composition by adjusting the growth conditions such as the flow rate, pressure, and temperature of gases such as trimethylindium, trimethylaluminum, trimethylgallium, and ammonia.
 <実施の形態11>
 次に、実施の形態11に係る半導体装置について説明する。図29は、実施の形態11に係る半導体装置の構造の一例を示す図である。図30は、実施の形態11に係る半導体装置の構造の他の例を示す図である。図31は、実施の形態11に係る半導体装置の構造の他の例を示す図である。なお、実施の形態11において、実施の形態1~10で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 11>
Next, a semiconductor device according to the eleventh embodiment will be described. FIG. 29 shows an example of the structure of the semiconductor device according to the eleventh embodiment. FIG. 30 shows another example of the structure of the semiconductor device according to the eleventh embodiment. FIG. 31 is a diagram showing another example of the structure of the semiconductor device according to the eleventh embodiment. In the eleventh embodiment, the same components as those described in the first to tenth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図29に示すように、実施の形態11に係る半導体装置は、図23に示したAlx2Iny2Ga1-x2-y2Nからなるバリア層4に代えて、Alx2Ga1-x2Nからなるバリア層4bを備えている。なお、Alx2Ga1-x2Nは、Alx2Iny2Ga1-x2-y2Nにおいてy2=0としたものである。このように、バリア層4bをAlx2Ga1-x2Nとすることによって、チャネル層3とバリア層4bとの間のヘテロ界面をキャリアとして走行する電子が受ける合金散乱が減少するため、移動度が向上し、ドレイン電流の増加を図ることができる。 As shown in FIG. 29, the semiconductor device according to the eleventh embodiment is made of Al x2 Ga 1-x2 N instead of the barrier layer 4 made of Al x2 In y2 Ga 1-x2-y2 N shown in FIG. The barrier layer 4b is provided. Al x2 Ga 1 -x2 N is obtained by setting y2 = 0 in Al x2 In y2 Ga 1 -x2-y2 N. Thus, by making the barrier layer 4b and the Al x2 Ga 1-x2 N, the electron alloy scattering receive running the hetero-interface as a carrier between the channel layer 3 and the barrier layer 4b is reduced, the mobility As a result, the drain current can be increased.
 また、図30に示す半導体装置は、図23に示したAlx2Iny2Ga1-x2-y2Nからなるバリア層4に代えて、Iny2Aly2Nからなるバリア層4cを備えている。なお、Iny2Aly2Nは、Alx2Iny2Ga1-x2-y2Nにおいてx2+y2=1としたものである。このように、バリア層4cをIny2Aly2Nとすることによっても、チャネル層3とバリア層4cとの間のヘテロ界面をキャリアとして走行する電子が受ける合金散乱が減少するため、移動度が向上し、ドレイン電流の増加を図ることができる。 The semiconductor device shown in FIG. 30 includes a barrier layer 4c made of In y2 Al y2 N in place of the barrier layer 4 made of Al x2 In y2 Ga 1 -x2-y2 N shown in FIG. In y2 Al y2 N is obtained by setting x2 + y2 = 1 in Al x2 In y2 Ga 1 -x2-y2 N. As described above, even when the barrier layer 4c is made of In y2 Al y2 N, the alloy scattering received by electrons traveling as carriers at the heterointerface between the channel layer 3 and the barrier layer 4c is reduced, so that the mobility is increased. The drain current can be increased.
 さらに、図31に示す半導体装置は、図23に示したAlx2Iny2Ga1-x2-y2Nからなるバリア層4に代えて、AlNからなるバリア層4aを備えている。なお、AlNは、Alx2Iny2Ga1-x2-y2Nにおいてx2=1、y2=0としたものである。このように、バリア層4aをAlNとすることによって、チャネル層3とバリア層4aとの間のヘテロ界面をキャリアとして走行する電子が受ける合金散乱がさらに減少するため、移動度がさらに向上し、さらなるドレイン電流の増加を図ることができる。 Further, the semiconductor device shown in FIG. 31 includes a barrier layer 4a made of AlN instead of the barrier layer 4 made of Al x2 In y2 Ga 1 -x2-y2 N shown in FIG. AlN is Al x2 In y2 Ga 1 -x2-y2 N with x2 = 1 and y2 = 0. Thus, by using AlN as the barrier layer 4a, the alloy scattering received by electrons traveling as carriers at the heterointerface between the channel layer 3 and the barrier layer 4a is further reduced, so that the mobility is further improved. The drain current can be further increased.
 なお、本実施の形態では、図23と、図29~図31とを対比するようにバリア層4a,4b、4cを構成する材料について記載したが、本実施の形態に記載の内容と同様の効果は、他の実施の形態に記載された全ての構造に対して及ぶものである。 In the present embodiment, the materials constituting the barrier layers 4a, 4b, and 4c are described so as to compare FIG. 23 with FIGS. 29 to 31, but the same contents as described in the present embodiment are described. The effect extends to all the structures described in the other embodiments.
 このような構造の半導体装置は、実施の形態1の図2に示したバリア層4の成長時に、InzAlxGa1-x-zN(0<x≦1、0<z≦1)の原料ガスとなるトリメチルインジウム、トリメチルアルミニウム、トリメチルガリウム、アンモニア等の流量、圧力、および温度などの成長条件を調整して、バリア層4を所望の組成とすることで作製できる。 In the semiconductor device having such a structure, a source material of In z Al x Ga 1-xz N (0 <x ≦ 1, 0 <z ≦ 1) is obtained when the barrier layer 4 shown in FIG. The barrier layer 4 can be made to have a desired composition by adjusting the growth conditions such as the flow rate, pressure, and temperature of gases such as trimethylindium, trimethylaluminum, trimethylgallium, and ammonia.
 <実施の形態12>
 次に、実施の形態12に係る半導体装置について説明する。図32は、実施の形態12に係る半導体装置の構造の一例を示す図である。図33は、実施の形態12に係る半導体装置の構造の他の例を示す図である。図34は、実施の形態12に係る半導体装置の構造の他の例を示す図である。なお、実施の形態12において、実施の形態1~11で説明したものと同一の構成要素については同一符号を付して説明は省略する。
<Embodiment 12>
Next, a semiconductor device according to Embodiment 12 will be described. FIG. 32 shows an example of the structure of the semiconductor device according to the twelfth embodiment. FIG. 33 shows another example of the structure of the semiconductor device according to the twelfth embodiment. FIG. 34 shows another example of the structure of the semiconductor device according to the twelfth embodiment. Note that in the twelfth embodiment, the same components as those described in the first to eleventh embodiments are denoted by the same reference numerals and the description thereof is omitted.
 図32に示すように、実施の形態12に係る半導体装置は、図23に示したAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなるゲート絶縁膜層9に代えて、AlGacabからなるゲート絶縁膜層9bを備えている。AlGacab は、酸素を除きバリア層4を構成する半導体の構成元素と同じであるため、構成元素が異なるSiO2のような材料と比べて、バリア層4とゲート絶縁膜層9bとの界面に発生する界面トラップ準位を低減しやすく、大きなドレイン電流が得られやすい。 As shown in FIG. 32, the semiconductor device according to the twelfth embodiment is a gate made of an insulator or a semiconductor having a band gap larger than the band gap of Al x1 In y1 Ga 1-x1-y1 N shown in FIG. instead of the insulating film layer 9, and a gate insulating film layer 9b made of AlGa c O a N b. Since AlGa c O a N b is the same as the constituent elements of the semiconductor constituting the barrier layer 4 except for oxygen, the barrier layer 4 and the gate insulating film layer 9b are compared with materials such as SiO 2 having different constituent elements. It is easy to reduce the interface trap level generated at the interface with and to obtain a large drain current.
 さらに、図33に示す半導体装置は、図32に示すAlGacabからなるゲート絶縁膜層9bに代えて、AlOabからなるゲート絶縁膜層9cを備えている。AlOabはAlGacabよりもバンドギャップが大きいため、このような構造とすることによって、ゲート電極にさらに大きな正の電圧を印加できるようになり、さらに大きなドレイン電流が得られるようになる。 Furthermore, the semiconductor device shown in FIG. 33, instead of the gate insulating film layer 9b made of AlGa c O a N b shown in FIG. 32, a gate insulating layer 9c formed of AlO a N b. Since AlO a N b has a larger band gap than AlGa c O a N b , such a structure makes it possible to apply a larger positive voltage to the gate electrode and obtain a larger drain current. It becomes like this.
 さらに、図34に示す半導体装置は、図33に示すAlOabからなるゲート絶縁膜層9cに代えて、AlOaからなるゲート絶縁膜層9aを備えている。AlOaはAlOabよりもさらにバンドギャップが大きいため、このような構造とすることによって、ゲート電極にさらに大きな正の電圧を印加できるようになり、さらに大きなドレイン電流が得られるようになる。 Furthermore, the semiconductor device shown in FIG. 34, instead of the gate insulating layer 9c formed of AlO a N b shown in FIG. 33, a gate insulating film layer 9a made of AlO a. Since AlO a has a larger band gap than AlO a N b , such a structure makes it possible to apply a larger positive voltage to the gate electrode and obtain a larger drain current. .
 なお、本実施の形態では、図23と、図32~図34とを対比するようにゲート絶縁膜層9a,9b、9cを構成する材料について記載したが、本実施の形態に記載の内容と同様の効果は、他の実施の形態に記載された全ての構造に対して及ぶものである。 In the present embodiment, the materials constituting the gate insulating film layers 9a, 9b, and 9c are described so as to compare FIG. 23 with FIGS. 32 to 34. However, the contents described in the present embodiment The same effect extends to all the structures described in the other embodiments.
 このような構造の半導体装置は、実施の形態2の図6に示したゲート絶縁膜層9の堆積時に、ゲート絶縁膜の原料ガスとなる、トリメチルアルミニウム、トリメチルガリウム、酸素、オゾン、窒素等の流量、圧力、および温度などの成長条件を調整して、ゲート絶縁膜層9を所望の組成とすることで作製できる。 In the semiconductor device having such a structure, trimethylaluminum, trimethylgallium, oxygen, ozone, nitrogen, or the like, which becomes a source gas of the gate insulating film when the gate insulating film layer 9 shown in FIG. The gate insulating film layer 9 can be made to have a desired composition by adjusting growth conditions such as flow rate, pressure, and temperature.
 <その他の変形例>
 実施の形態1~12に係る半導体装置の構造を、以下に示すような構造としてもよく、必ずしも実施の形態1~12に係る半導体装置の構造と同じである必要はない。
<Other variations>
The structure of the semiconductor device according to the first to twelfth embodiments may be the following structure, and is not necessarily the same as the structure of the semiconductor device according to the first to twelfth embodiments.
 基板としてチャネル層と異なるSiCまたはSiを用いる場合には、バッファ層2が必要となるが、基板として、チャネル層と同一材料のGaN、AlGaN、またはInAlGaNを用いる場合には、バッファ層2は必ずしも必要ではない。また、必ずしもノンドープとする必要はない。ただし、実施の形態9に示すような縦型の構造とする場合には、基板はn型とすることが望ましい。 When SiC or Si different from the channel layer is used as the substrate, the buffer layer 2 is required. However, when GaN, AlGaN, or InAlGaN of the same material as the channel layer is used as the substrate, the buffer layer 2 is not necessarily provided. Not necessary. Further, it is not always necessary to be non-doped. However, in the case of a vertical structure as shown in Embodiment 9, the substrate is preferably n-type.
 また、基板上にチャネル層、バリア層、およびゲート絶縁膜層の3層が形成されていれば、チャネル層とバリア層との界面にトランジスタを動作させる際のチャネルが形成され、トランジスタとして動作する。上記には、そのトランジスタとして動作する最小限の半導体層しか記載していないが、トランジスタとして動作すれば、上記の3層に加えて複数の他の層が形成されていても構わない。例えば、チャネル層の下側にチャネル層およびバリア層とは組成が異なる窒化物半導体層が形成されていても構わない。また、チャネル層およびバリア層を含むこれらの窒化物半導体層は、必ずしもノンドープである必要はなく、トランジスタ動作に支障がない量であればSi、Mg、Fe、C、またはGeなどの不純物が含まれていても構わない。 Further, if three layers of a channel layer, a barrier layer, and a gate insulating film layer are formed on the substrate, a channel for operating the transistor is formed at the interface between the channel layer and the barrier layer, and the transistor operates. . Although only the minimum semiconductor layer that operates as the transistor is described above, a plurality of other layers may be formed in addition to the above three layers as long as the transistor operates. For example, a nitride semiconductor layer having a composition different from that of the channel layer and the barrier layer may be formed below the channel layer. Further, these nitride semiconductor layers including the channel layer and the barrier layer do not necessarily need to be non-doped and contain impurities such as Si, Mg, Fe, C, or Ge as long as the amount does not hinder transistor operation. It does not matter.
 また、高濃度n型不純物領域、低濃度n型不純物領域、n型ドリフト層、n型基板にドーピングするn型不純物としては、Si、Ge、酸素、または窒素空孔などの窒化物半導体においてn型のドーパントとして振舞う不純物であればよい。 Further, n-type impurities doped in the high-concentration n-type impurity region, the low-concentration n-type impurity region, the n-type drift layer, and the n-type substrate include n in a nitride semiconductor such as Si, Ge, oxygen, or a nitrogen vacancy. Any impurity that behaves as a type dopant may be used.
 また、p型不純物領域、p型狭窄層にドーピングするp型不純物としては、Mg、Feなどの窒化物半導体においてp型のドーパントとして振舞う不純物であればよい。 The p-type impurity doped in the p-type impurity region and the p-type constriction layer may be any impurity that acts as a p-type dopant in a nitride semiconductor such as Mg or Fe.
 また、ゲート絶縁膜層は、上記では、半導体装置の表面全面に堆積された構造としているが、少なくともバリア層とゲート電極との間に形成されていれば、上記の効果が得られるため、必ずしも全面に堆積された構造とする必要はない。例えば、図35に示すように、ゲート絶縁膜層9は、ゲート電極10とソース電極5との間、ゲート電極10とドレイン電極6との間には堆積されていない構造としてもよい。また、ゲート絶縁膜層9は必ずしも1層からなる必要はなく、AlGacab、AlOab、AlOa、SiO2、Si34等の複数の層で構成されていても構わない。図35は、変形例に係る半導体装置の構造の一例を示す図である。 Further, in the above, the gate insulating film layer has a structure deposited on the entire surface of the semiconductor device. However, if the gate insulating film layer is formed at least between the barrier layer and the gate electrode, the above effect can be obtained. It is not necessary to have a structure deposited on the entire surface. For example, as shown in FIG. 35, the gate insulating film layer 9 may be structured not to be deposited between the gate electrode 10 and the source electrode 5 and between the gate electrode 10 and the drain electrode 6. Further, the gate insulating film layer 9 is not necessarily composed of one layer, AlGa c O a N b, AlO a N b, AlO a, be composed of a plurality of layers such as SiO 2, Si 3 N 4 I do not care. FIG. 35 is a diagram illustrating an example of a structure of a semiconductor device according to a modification.
 また、実施の形態1~12では、トランジスタとして動作する必要最小限の要素しか記載していないが、最終的には、保護膜、フィールドプレート電極、配線、エアブリッジ、およびバイアホール等が形成された構造においてデバイスとして用いられる。 In Embodiments 1 to 12, only the minimum necessary elements that operate as a transistor are described, but finally, a protective film, a field plate electrode, a wiring, an air bridge, a via hole, and the like are formed. Used as a device.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
 3,3a チャネル層、4,4a,4b,4c バリア層、5 ソース電極、6 ドレイン電極、7,7a,8,8a 高濃度n型不純物領域、9,9a,9b,9c ゲート絶縁膜層、10 ゲート電極。 3, 3a channel layer, 4, 4a, 4b, 4c barrier layer, 5 source electrode, 6 drain electrode, 7, 7a, 8, 8a high concentration n-type impurity region, 9, 9a, 9b, 9c gate insulating film layer, 10 Gate electrode.

Claims (12)

  1.  Alx1Iny1Ga1-x1-y1N(0≦x1≦1、0≦y1≦1)からなるチャネル層と、
     前記チャネル層の表面側に互いに離間して形成された第1,第2電極と、
     前記チャネル層の表面のうちの少なくとも前記第1,第2電極の下方部分から前記チャネル層内部に向けて互いに離間して形成された第1,第2n型不純物領域と、
     前記第1,第2n型不純物領域間における前記チャネル層の表面を覆うように形成され、かつ、前記チャネル層を構成するAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなるゲート絶縁膜層と、
     前記ゲート絶縁膜層の表面に形成されたゲート電極と、
     を備え、
     オン時の前記第1,第2電極間の電流密度が10mA/mm以上である、半導体装置。
    A channel layer made of Al x1 In y1 Ga 1-x1-y1 N (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1),
    First and second electrodes formed on the surface side of the channel layer so as to be spaced apart from each other;
    First and second n-type impurity regions formed at a distance from the lower part of the surface of the channel layer toward the inside of the channel layer from the lower part of the first and second electrodes;
    A band gap that is formed so as to cover the surface of the channel layer between the first and second n-type impurity regions and is larger than the band gap of Al x1 In y1 Ga 1 -x1-y1 N constituting the channel layer A gate insulating film layer made of an insulator or semiconductor having
    A gate electrode formed on the surface of the gate insulating layer;
    With
    A semiconductor device, wherein a current density between the first and second electrodes when turned on is 10 mA / mm or more.
  2.  Alx1Iny1Ga1-x1-y1N(0≦x1≦1、0≦y1≦1)からなるチャネル層と、
     前記チャネル層の表面側と裏面側に互いに離間して形成された第1,第2電極と、
     前記チャネル層の表面のうちの少なくとも前記第1電極の下方部分から前記チャネル層内部に向けて形成された第1n型不純物領域と、
     前記チャネル層の表面のうちの前記第1n型不純物領域に隣接する部分を覆うように形成され、かつ、前記チャネル層を構成するAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなるゲート絶縁膜層と、
     前記ゲート絶縁膜層の表面に形成されたゲート電極と、
     を備え、
     オン時の前記第1,第2電極間の電流密度が10mA/mm以上である、半導体装置。
    A channel layer made of Al x1 In y1 Ga 1-x1-y1 N (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1),
    First and second electrodes formed spaced apart from each other on the front surface side and the back surface side of the channel layer;
    A first n-type impurity region formed from at least a portion of the surface of the channel layer toward the inside of the channel layer from a lower portion of the first electrode;
    The surface of the channel layer is formed so as to cover a portion adjacent to the first n-type impurity region, and is larger than the band gap of Al x1 In y1 Ga 1 -x1-y1 N constituting the channel layer. A gate insulating film layer made of an insulator or semiconductor having a band gap; and
    A gate electrode formed on the surface of the gate insulating layer;
    With
    A semiconductor device, wherein a current density between the first and second electrodes when turned on is 10 mA / mm or more.
  3.  前記第1,第2n型不純物領域間における前記チャネル層の表面に形成され、かつ、前記チャネル層を構成するAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有するAlx2Iny2Ga1-x2-y2N(0≦x2≦1、0≦y2≦1)からなるバリア層をさらに備え、
     前記ゲート絶縁膜層は、前記バリア層を介して前記チャネル層の表面を覆い、かつ、前記バリア層のバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなる、請求項1記載の半導体装置。
    Al formed on the surface of the channel layer between the first and second n-type impurity regions and having a band gap larger than the band gap of Al x1 In y1 Ga 1 -x1-y1 N constituting the channel layer x2 In y2 Ga 1-x2- y2 N (0 ≦ x2 ≦ 1,0 ≦ y2 ≦ 1) further comprising a barrier layer consisting of,
    The semiconductor device according to claim 1, wherein the gate insulating film layer is made of an insulator or a semiconductor that covers a surface of the channel layer through the barrier layer and has a band gap larger than a band gap of the barrier layer. .
  4.  前記第1,第2n型不純物領域のうちの少なくとも前記バリア層よりも厚い表面側の領域は、前記バリア層のバンドギャップよりも小さなバンドギャップを有する窒化物半導体からなる、請求項3記載の半導体装置。 4. The semiconductor according to claim 3, wherein at least a region on a surface side thicker than the barrier layer of the first and second n-type impurity regions is made of a nitride semiconductor having a band gap smaller than a band gap of the barrier layer. apparatus.
  5.  前記バリア層の厚さは2nm以下である、請求項3または請求項4記載の半導体装置。 The semiconductor device according to claim 3 or 4, wherein the thickness of the barrier layer is 2 nm or less.
  6.  前記第1,第2n型不純物領域の表面側の領域は、前記バリア層と前記チャネル層との相互拡散層からなる、請求項3記載の半導体装置。 4. The semiconductor device according to claim 3, wherein a region on the surface side of the first and second n-type impurity regions is composed of an interdiffusion layer of the barrier layer and the channel layer.
  7.  前記第1,第2電極および前記ゲート電極に電圧が印加されていない状態において、前記第1,第2n型不純物領域間における前記チャネル層と前記バリア層とのヘテロ界面における伝導帯下端のエネルギーは、フェルミエネルギーよりも高い状態である、請求項3から請求項6のいずれか1項に記載の半導体装置。 In a state where no voltage is applied to the first and second electrodes and the gate electrode, the energy at the lower end of the conduction band at the heterointerface between the channel layer and the barrier layer between the first and second n-type impurity regions is The semiconductor device according to claim 3, wherein the semiconductor device is in a state higher than Fermi energy.
  8.  前記チャネル層はGaNからなり、
     前記バリア層はAlNからなり、
     前記ゲート絶縁膜層はAlOからなる、請求項3から請求項7のいずれか1項に記載の半導体装置。
    The channel layer is made of GaN;
    The barrier layer is made of AlN,
    The semiconductor device according to claim 3, wherein the gate insulating film layer is made of AlO.
  9.  基板上にAlx1Iny1Ga1-x1-y1N(0≦x1≦1、0≦y1≦1)からなるチャネル層を生成するチャネル層生成工程と、
     前記チャネル層の表面から前記チャネル層内部に向けて互いに離間して第1,第2n型不純物領域を形成する第1,第2n型不純物領域形成工程と、
     前記第1,第2n型不純物領域の表面に第1,第2電極をそれぞれ形成する第1,第2電極生成工程と、
     前記第1,第2n型不純物領域間における前記チャネル層の表面を覆うように形成され、かつ、前記チャネル層を構成するAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなるゲート絶縁膜層を形成するゲート絶縁膜層形成工程と、
     前記ゲート絶縁膜層の表面にゲート電極を生成するゲート電極生成工程と、
     前記ゲート絶縁膜層形成工程または前記ゲート電極生成工程の後、前記ゲート絶縁膜層に対して熱処理を実施する熱処理工程と、
     を備えた、半導体装置の製造方法。
    A channel layer generating step for generating a channel layer made of Al x1 In y1 Ga 1-x1-y1 N (0 ≦ x1 ≦ 1, 0 ≦ y1 ≦ 1) on the substrate;
    Forming first and second n-type impurity regions spaced apart from each other from the surface of the channel layer toward the inside of the channel layer; and
    First and second electrode generation steps for forming first and second electrodes on the surfaces of the first and second n-type impurity regions, respectively;
    A band gap that is formed so as to cover the surface of the channel layer between the first and second n-type impurity regions and is larger than the band gap of Al x1 In y1 Ga 1 -x1-y1 N constituting the channel layer A gate insulating film layer forming step of forming a gate insulating film layer made of an insulator or a semiconductor having
    A gate electrode generation step of generating a gate electrode on the surface of the gate insulating film layer;
    A heat treatment step of performing a heat treatment on the gate insulating film layer after the gate insulating film layer forming step or the gate electrode generating step;
    A method for manufacturing a semiconductor device, comprising:
  10.  前記半導体装置の製造方法は、
     前記第1,第2n型不純物領域間における前記チャネル層の表面に形成され、かつ、前記チャネル層を構成するAlx1Iny1Ga1-x1-y1Nのバンドギャップよりも大きなバンドギャップを有するAlx2Iny2Ga1-x2-y2Nからなるバリア層を生成するバリア層生成工程をさらに備え、
     前記ゲート絶縁膜層は、前記バリア層を介して前記チャネル層の表面を覆い、かつ、前記バリア層のバンドギャップよりも大きなバンドギャップを有する絶縁体または半導体からなる、請求項9記載の半導体装置の製造方法。
    The method for manufacturing the semiconductor device includes:
    Al formed on the surface of the channel layer between the first and second n-type impurity regions and having a band gap larger than the band gap of Al x1 In y1 Ga 1 -x1-y1 N constituting the channel layer further comprising a barrier layer forming step of generating a barrier layer made of x2 In y2 Ga 1-x2- y2 N,
    The semiconductor device according to claim 9, wherein the gate insulating film layer is made of an insulator or a semiconductor that covers a surface of the channel layer through the barrier layer and has a band gap larger than a band gap of the barrier layer. Manufacturing method.
  11.  前記チャネル層はGaNからなり、
     前記バリア層はAlNからなり、
     前記ゲート絶縁膜層はAlOからなる、請求項10記載の半導体装置の製造方法。
    The channel layer is made of GaN;
    The barrier layer is made of AlN,
    The method of manufacturing a semiconductor device according to claim 10, wherein the gate insulating film layer is made of AlO.
  12.  前記第1,第2n型不純物領域形成工程において、前記第1,第2n型不純物領域はイオン注入法により形成された、請求項9から請求項11のいずれか1項に記載の半導体装置の製造方法。 12. The manufacturing of a semiconductor device according to claim 9, wherein in the first and second n-type impurity region forming steps, the first and second n-type impurity regions are formed by an ion implantation method. Method.
PCT/JP2016/074818 2016-08-25 2016-08-25 Semiconductor device and production method therefor WO2018037530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/074818 WO2018037530A1 (en) 2016-08-25 2016-08-25 Semiconductor device and production method therefor
JP2017507451A JPWO2018037530A1 (en) 2016-08-25 2016-08-25 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074818 WO2018037530A1 (en) 2016-08-25 2016-08-25 Semiconductor device and production method therefor

Publications (1)

Publication Number Publication Date
WO2018037530A1 true WO2018037530A1 (en) 2018-03-01

Family

ID=61245651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074818 WO2018037530A1 (en) 2016-08-25 2016-08-25 Semiconductor device and production method therefor

Country Status (2)

Country Link
JP (1) JPWO2018037530A1 (en)
WO (1) WO2018037530A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007609T5 (en) 2019-08-06 2022-04-21 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
US12142675B2 (en) 2019-08-06 2024-11-12 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260140A (en) * 2003-02-06 2004-09-16 Toyota Central Res & Dev Lab Inc Semiconductor device having group iii nitride semiconductor
JP2007305630A (en) * 2006-05-08 2007-11-22 Furukawa Electric Co Ltd:The Field effect transistor and manufacturing method thereof
JP2013041976A (en) * 2011-08-15 2013-02-28 Advanced Power Device Research Association Nitride semiconductor device
JP2013187461A (en) * 2012-03-09 2013-09-19 Nagoya Institute Of Technology Semiconductor element and manufacturing method of the same
JP2014107566A (en) * 2012-11-26 2014-06-09 Triquint Semiconductor Inc Group iii-nitride-based transistor with gate dielectric including fluoride- or chloride-based compound

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206886A (en) * 1986-03-07 1987-09-11 Toshiba Corp Manufacture of compound-semiconductor field-effect transistor
JPH0249437A (en) * 1989-03-18 1990-02-19 Fujitsu Ltd Manufacture of semiconductor device
JP2008305816A (en) * 2007-06-05 2008-12-18 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2011210751A (en) * 2010-03-26 2011-10-20 Nec Corp Group iii nitride semiconductor element, method of manufacturing group iii nitride semiconductor element, and electronic device
JP5776217B2 (en) * 2011-02-24 2015-09-09 富士通株式会社 Compound semiconductor device
KR101890749B1 (en) * 2011-10-27 2018-08-23 삼성전자주식회사 Electrode structure, gallium nitride based semiconductor device including the same and methods of manufacturing the same
JP5957994B2 (en) * 2012-03-16 2016-07-27 富士通株式会社 Manufacturing method of semiconductor device
JP5888064B2 (en) * 2012-03-29 2016-03-16 富士通株式会社 Compound semiconductor device and manufacturing method thereof
JP2015035534A (en) * 2013-08-09 2015-02-19 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260140A (en) * 2003-02-06 2004-09-16 Toyota Central Res & Dev Lab Inc Semiconductor device having group iii nitride semiconductor
JP2007305630A (en) * 2006-05-08 2007-11-22 Furukawa Electric Co Ltd:The Field effect transistor and manufacturing method thereof
JP2013041976A (en) * 2011-08-15 2013-02-28 Advanced Power Device Research Association Nitride semiconductor device
JP2013187461A (en) * 2012-03-09 2013-09-19 Nagoya Institute Of Technology Semiconductor element and manufacturing method of the same
JP2014107566A (en) * 2012-11-26 2014-06-09 Triquint Semiconductor Inc Group iii-nitride-based transistor with gate dielectric including fluoride- or chloride-based compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007609T5 (en) 2019-08-06 2022-04-21 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
US12142675B2 (en) 2019-08-06 2024-11-12 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2018037530A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP5566618B2 (en) GaN-based semiconductor devices
US8338862B2 (en) Semiconductor device
WO2009081584A1 (en) Semiconductor device
JP6771669B2 (en) Manufacturing method of semiconductor devices
JP2008227356A (en) Semiconductor device and method for manufacturing the same
JP2017059671A (en) High electron mobility transistor and method for manufacturing high electron mobility transistor
JP2012114320A (en) Nitride semiconductor field effect transistor
JP6772729B2 (en) Manufacturing method of high electron mobility transistor and high electron mobility transistor
WO2021024502A1 (en) Semiconductor device and manufacturing method therefor
JP5300514B2 (en) Semiconductor device
WO2014097526A1 (en) Field effect transistor and method for producing same
JP5510325B2 (en) Field effect transistor
JP5510324B2 (en) Method for manufacturing field effect transistor
JP5991000B2 (en) Semiconductor device and manufacturing method thereof
JP2013149732A (en) Hetero junction field effect transistor and manufacturing method of the same
JP2013229458A (en) Heterojunction field-effect transistor and method of manufacturing the same
JP2010153748A (en) Method of manufacturing field effect semiconductor device
WO2018037530A1 (en) Semiconductor device and production method therefor
JP2005217361A (en) High electron mobility transistor
JP2015008244A (en) Heterojunction field-effect transistor, and method of manufacturing the same
JP2009289827A (en) Semiconductor device having heterojunction and manufacturing method thereof
KR20190112523A (en) Heterostructure Field Effect Transistor and production method thereof
JP6433390B2 (en) Semiconductor device
JP2015204425A (en) Field effect transistor and method of manufacturing the same
JP2009038200A (en) Semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017507451

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914204

Country of ref document: EP

Kind code of ref document: A1