WO2018028162A1 - 一种去耦组件、多天线系统及终端 - Google Patents
一种去耦组件、多天线系统及终端 Download PDFInfo
- Publication number
- WO2018028162A1 WO2018028162A1 PCT/CN2017/073811 CN2017073811W WO2018028162A1 WO 2018028162 A1 WO2018028162 A1 WO 2018028162A1 CN 2017073811 W CN2017073811 W CN 2017073811W WO 2018028162 A1 WO2018028162 A1 WO 2018028162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna unit
- antenna
- decoupling
- unit
- dielectric substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
- H01Q1/523—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
- H01Q1/525—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
Definitions
- the embodiments of the present invention relate to the field of communications technologies, and in particular, to a decoupling component, a multiple antenna system, and a terminal.
- each antenna in the receiving end is isolated from each other when transmitting and receiving signals, but for a receiving end such as a mobile phone, the size thereof is generally strictly limited, and multiple antennas are concentrated in a limited small space. It will cause more serious coupling phenomenon when different antennas are radiated, which will reduce the isolation between the antennas.
- a decoupling network for example, an LC decoupling circuit
- a neutralization line for example, a neutralization line
- a notch groove is usually built between the antennas at the receiving end to neutralize the coupling current between the antennas, thereby achieving Coupling effect.
- the above decoupling method can only achieve decoupling effect for one or more fixed frequency bands.
- the corresponding decoupling network, neutralization line, or notch groove needs to be redesigned, for example
- the neutralization line with the width D1 between the antennas can achieve the decoupling effect, but the neutralization line with the width D1 may only have the decoupling effect in the frequency band 1, then, with The working frequency band of the future antenna will be more and more, and the antenna can select different frequency bands to transmit and receive signals.
- the neutralization line with the width D1 cannot achieve the decoupling effect.
- Embodiments of the present invention provide a decoupling component, a multi-antenna system, and a terminal that can change the radiation direction of electromagnetic waves to achieve a decoupling effect over a large frequency range.
- an embodiment of the present invention provides a multi-antenna system, where the multi-antenna system includes: an adjacent first antenna unit and a second antenna unit, and the first antenna unit and the second antenna unit are disposed between a decoupling assembly; wherein the decoupling assembly is constructed of an electromagnetic material having electrical anisotropy or electromagnetic double anisotropy to reduce coupling between the first antenna unit and the second antenna unit.
- the decoupling component when the decoupling component is not disposed between the first antenna unit and the second antenna unit, taking the first antenna unit as an example, the first antenna unit can radiate electromagnetic waves in a certain direction, and the electromagnetic wave in the direction enters the free space.
- the degree of difficulty in radiating in all directions is uniform, and therefore, the radiating regions of the two antenna elements create an intersection in the space between the two antenna elements, resulting in coupling, which reduces the isolation between the antenna elements, and
- the decoupling component can change the radiation direction of the electromagnetic wave at the position where it is located in a larger frequency range, and reduce the energy of the electromagnetic wave radiated from the first antenna unit and the second antenna unit toward the region where they are located, thereby reducing
- the intersection of the radiated regions generated by the two antenna elements reduces the coupling between the first antenna unit and the second antenna unit to achieve a
- the decoupling component comprises N first decoupling units, N being an integer greater than 0;
- the first decoupling unit comprises: an insulating dielectric substrate, and at least disposed on the dielectric substrate a closed conductive ring, wherein the plane in which the closed conductive ring is located intersects the ground plate on which the first antenna unit and the second antenna unit are disposed.
- the normal to the closed conductive ring points to the first antenna unit and the second antenna unit, respectively.
- the relative magnetic permeability of the first decoupling unit perpendicular to the direction of the dielectric substrate is much smaller than the relative magnetic permeability parallel to the direction of the dielectric substrate; the relative dielectric constant of the first decoupling unit perpendicular to the direction of the dielectric substrate is much smaller than parallel to
- the relative dielectric constant of the dielectric substrate direction that is, the first decoupling unit has significant electromagnetic double anisotropy, and since the first decoupling unit has a small dispersion in the range of 1 GHz to 6 GHz,
- the equivalent electromagnetic parameters of a decoupling unit in the range of 1 GHz to 6 GHz ie, the relative magnetic permeability and dielectric constant in the above-mentioned directions) are relatively stable.
- two adjacent first decoupling units are in contact with each other; wherein the thickness of the dielectric substrate is less than 0.5 medium wavelength, and the medium wavelength is radiation when the first antenna unit is in operation The wavelength of the electromagnetic wave in the electromagnetic material, the operating frequency of the first antenna unit being greater than or equal to the operating frequency of the second antenna unit.
- a spacing is provided between two adjacent first decoupling units, wherein the sum of the thickness of the dielectric substrate and the spacing is less than 0.5 medium wavelength, and the medium wavelength refers to the first The wavelength of the electromagnetic wave radiated by an antenna unit in the electromagnetic material, the operating frequency of the first antenna unit being greater than or equal to the operating frequency of the second antenna unit.
- the length of any side of the dielectric substrate is less than 0.5 of the wavelength of the medium.
- the first decoupling unit in the above decoupling assembly can be approximated as a uniform electromagnetic medium.
- the dielectric substrate includes: a first surface opposite the first antenna unit, and a second surface opposite the second antenna unit, the closed conductive ring is disposed on the first surface and/or Or the second surface.
- the decoupling component includes M second decoupling units, M is an integer greater than 0;
- the second decoupling unit includes: a first dielectric substrate and a second dielectric substrate disposed in parallel, A plane where the first dielectric substrate is located intersects a ground plate on which the first antenna unit and the second antenna unit are disposed, wherein a dielectric constant of the first dielectric substrate is different from a dielectric constant of the second dielectric substrate.
- the dielectric constant of the first antenna unit is equal to the dielectric constant of the second antenna unit; wherein a dielectric constant of the first dielectric substrate is greater than a dielectric constant of the first antenna unit The dielectric constant of the second dielectric substrate is smaller than the dielectric constant of the first antenna unit.
- the first antenna unit and the second antenna unit each include: an antenna bracket, and a radiation body mounted on the antenna bracket; the radiation body is disposed between the radiation component and the decoupling component There is a gap.
- the multi-antenna system further includes a ground plane disposed opposite the decoupling assembly.
- the multi-antenna system includes: a first antenna group and a second antenna group symmetrically disposed along two ends of the ground plate, the first antenna group including a third antenna unit sequentially arranged along an edge of the ground plate The first antenna unit, the second antenna unit, and the fourth antenna unit, wherein the decoupling component is disposed between the first antenna unit and the second antenna unit.
- the multi-antenna system includes: four sets of antenna pairs disposed along four vertices of the ground plate, each set of antenna pairs including the first antenna unit and the second antenna unit, the first antenna unit
- the decoupling component is disposed between the second antenna unit and the second antenna unit.
- an embodiment of the present invention provides a decoupling component disposed between adjacent first antenna elements and second antenna elements, wherein the decoupling component is electrically anisotropic or An electromagnetic double anisotropic electromagnetic material is constructed to reduce coupling between the first antenna unit and the second antenna unit.
- an embodiment of the present invention provides a terminal, the terminal comprising the multiple antenna system of any of the first aspects.
- the names of the above decoupling components, multi-antenna systems, and terminals are not limited to the devices themselves. In actual implementation, these devices may appear under other names. As long as the functions of the respective devices are similar to the present invention, they are within the scope of the claims and the equivalents thereof.
- FIG. 1 is a schematic diagram 1 of an application scenario of a decoupling component according to an embodiment of the present disclosure
- FIG. 2 is an enlarged schematic view 1 of a first decoupling unit according to an embodiment of the present invention
- FIG. 3 is an enlarged schematic diagram 2 of a first decoupling unit according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram 2 of an application scenario of a decoupling component according to an embodiment of the present disclosure
- FIG. 5 is a schematic structural diagram 1 of a multi-antenna system according to an embodiment of the present disclosure
- FIG. 6 is a schematic diagram of a decoupling principle according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of comparison of antenna radiation directions between a first antenna unit and a second antenna unit before and after decoupling according to an embodiment of the present disclosure
- FIG. 8 is a schematic diagram 3 of an application scenario of a decoupling component according to an embodiment of the present disclosure.
- FIG. 9 is a schematic structural diagram 2 of a multi-antenna system according to an embodiment of the present disclosure.
- FIG. 10 is a schematic diagram showing changes in equivalent relative magnetic permeability and equivalent relative dielectric constant of a first decoupling unit according to an embodiment of the present invention
- FIG. 11 is a schematic diagram of comparison of S parameters of a first antenna unit and a second antenna unit before and after decoupling according to an embodiment of the present invention
- FIG. 12 is a schematic diagram of radiation efficiency of each antenna unit in a first antenna group before and after decoupling according to an embodiment of the present invention
- FIG. 13 is a schematic structural diagram 3 of a multi-antenna system according to an embodiment of the present disclosure.
- FIG. 14 is a schematic diagram of a coupling between a first antenna unit and a second antenna unit before and after decoupling according to an embodiment of the present disclosure
- FIG. 15 is a schematic diagram of radiation efficiency of a first antenna unit and a second antenna unit before and after decoupling according to an embodiment of the present invention.
- first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, "a plurality” means two or more unless otherwise stated.
- Embodiments of the present invention provide a decoupling component.
- the decoupling component can be disposed between adjacent first antenna elements and second antenna elements, wherein the decoupling component is electrically anisotropic or An electromagnetic double anisotropic electromagnetic material is constructed to reduce coupling between the first antenna unit and the second antenna unit.
- anisotropy means that the constitutive parameters (for example, dielectric constant, magnetic permeability, etc.) of the material that propagates the electromagnetic field are not completely the same in all directions.
- the anisotropy may be specific. Including: electrical anisotropy (ie, the components of the dielectric constant in all directions are not identical), magnetic anisotropy (ie, the components of magnetic permeability in all directions are not identical), and electromagnetic double anisotropy (ie The components of the dielectric constant in all directions are not completely the same, and the components of the magnetic permeability in various directions are not completely the same).
- the component of the dielectric constant in any one direction and the component of the dielectric constant in other directions are numerically different, that is, have electrical anisotropy; as long as the component of the magnetic permeability in any one direction and other directions
- the components of the magnetic permeability are numerically different, that is, have magnetic anisotropy; as long as the component of the dielectric constant in any one direction is different in value from the component of the dielectric constant in other directions, and magnetic in any one direction
- the component of the conductivity and the component of the magnetic permeability in other directions are numerically different, that is, have electromagnetic double anisotropy.
- the subsequent invention is a decoupling of the decoupling component in the embodiment by using the relative permittivity and the relative permeability as the equivalent electromagnetic parameters of the decoupling component. principle.
- the first antenna unit can radiate electromagnetic waves in a certain direction, and electromagnetic waves in the direction enter the free space ( After Free Space), the difficulty in radiating in all directions is the same, so the radiation area of the two antenna elements creates an intersection between the two antenna elements.
- the decoupling component can change the radiation direction of the electromagnetic waves generated by the first antenna unit and the second antenna unit at the location thereof, and reduce the electromagnetic waves radiated by the first antenna unit and the second antenna unit toward each other.
- the energy of the propagation thereby reducing the intersection of the radiation regions produced by the two antenna elements, ie reducing the coupling between the first antenna unit and the second antenna unit, to achieve a decoupling effect.
- free space is a definition in electromagnetics, generally refers to the theoretically perfect vacuum, and sometimes also refers to the reference medium of electromagnetic wave propagation, the freedom involved in the subsequent embodiments of the present invention.
- Space refers to the air.
- the above decoupling method can lower the first antenna unit in a larger frequency range.
- FIG. 1 a schematic diagram of an application scenario of a decoupling component 100 according to an embodiment of the present invention, where the decoupling component 100 specifically includes N (N is an integer greater than 0) first decoupling units. 10.
- the N first decoupling units 10 are stacked between the first antenna unit 11 and the second antenna unit 12.
- the first decoupling unit 10 has electromagnetic double anisotropy, and the first decoupling unit 10 includes An insulating dielectric substrate 21, and at least one closed conductive ring 22 disposed on the dielectric substrate 21, and a plane in which the closed conductive ring 22 is located intersects the ground plate 13 on which the antenna unit 11 and the antenna unit 12 are disposed, that is, It is said that the dielectric substrate 21 on which the conductive ring 22 is closed cannot be parallel or coincident with the ground plate 13.
- the angle between the plane in which the closed conductive ring 22 is located and the ground plate may be between 45° and 90°.
- both ends of the normal line of the closed conductive ring 22 are directed to the first antenna unit 11 and the second antenna, respectively.
- the unit 12, for example, the dielectric substrate 21 may be vertically disposed on the ground plate, and the closed conductive ring 22 on the dielectric substrate 21 is parallel to the side surface of the first antenna unit 11 (or the second antenna unit 12). Both ends of the normal of the ring 22 point to the center of the first antenna unit 11 and the center of the second antenna unit 12, respectively.
- first antenna unit 11 and the second antenna unit 12 are three-dimensional, when the conductive ring is closed When the normals of 22 point to arbitrary positions on the first antenna unit 11 and the second antenna unit 12, respectively, it can be considered that the normal lines of the closed conductive rings 22 are directed to the first antenna unit 11 and the second antenna unit 12, respectively.
- the dielectric substrate 21 may be a flat surface or a curved surface, which is not limited in the embodiment of the present invention.
- the adjacent two first decoupling units 10 may be in contact with each other or may be disposed at a certain interval.
- the thickness of the dielectric substrate 21 may be smaller than 0.5 medium wavelength (the medium wavelength refers to an antenna unit with a large operating frequency, for example, An antenna unit 11 having a wavelength of electromagnetic waves radiated at an operating frequency in the electromagnetic material, that is, a thickness of the dielectric substrate 21 is in a subwavelength range.
- the dielectric substrate 21 may have a thickness of 0.1 medium.
- the wavelength that is, the thickness of the dielectric substrate 21 is in the range of deep subwavelength; when a certain interval is provided between the adjacent two first decoupling units 10, the thickness of the dielectric substrate 21 and the sum of the pitches Should be less than 0.5 media wavelengths.
- any side of the dielectric substrate 21 may be less than 0.5 dielectric wavelengths.
- any side length of the dielectric substrate 21 is 0.2 dielectric wavelengths.
- the first decoupling unit 10 in the decoupling assembly 100 can be approximated as a uniform electromagnetic medium.
- J*K integrated numbers of J and K each greater than 1
- the plane in which the conductive ring 22 is closed in each of the first decoupling units 10 still intersects the ground plate 13, and the thickness of the dielectric substrate 21 in each of the first decoupling units 10 can still be less than 0.5 dielectric wavelengths, and the dielectric substrate 21 Any side length can still be less than 0.5 medium wavelengths, and in the J*K first decoupling units 10, the adjacent two first decoupling units 10 can be in contact with each other, and a certain gap can also be set.
- the embodiment of the invention does not limit this.
- each of the first decoupling units 10 is square, assuming that each side of the first decoupling unit 10 has a length of 0.25. a medium wavelength, and no gap is disposed between adjacent first decoupling units 10.
- the side length of the rectangle formed by the 2*2 first decoupling units 10 is equal to 0.5 medium wavelengths;
- the side length of the coupling unit 10 is 0.25 medium wavelengths, but the adjacent first decoupling unit 10 is provided with a slit.
- the side length of the rectangle formed by the 2*2 first decoupling units 10 is greater than 0.5 medium wavelength.
- each side of the first decoupling unit 10 has a length of 0.1 medium wavelengths, and no gap is provided between adjacent first decoupling units 10, at this time, the 2*2 first decoupling units
- the sides of the 10-shaped rectangle have a length of 0.2 medium wavelengths and less than 0.5 medium wavelengths.
- the dielectric substrate 21 may specifically include a first surface 201 opposite to the first antenna unit 11 and a second surface 202 opposite to the second antenna unit 12, and the closed conductive ring 22 may be disposed at The first surface 201 may be disposed on the second surface 202 or may be disposed on the first surface 201 and the second surface 202 at the same time.
- the number of the conductive rings 22 in one first decoupling unit 10 may be one or more, and the shape of the closed conductive ring 22 may be any closed shape such as a rectangle, a circle, an ellipse or the like. That is, in order to construct a closed magnetic flux ring, thereby achieving electromagnetic double anisotropy, and the cross-sectional area of the closed conductive ring 22 may be the same as that of the first antenna unit 11 (or the second antenna unit 12), or The size of the first antenna unit 11 (or the second antenna unit 12) is larger or smaller than that of the first antenna unit 11 (or the second antenna unit 12). As shown in FIG.
- a first decoupling unit 10 includes 4 Close the conductive ring 22, and the width and height of the first decoupling unit 10 are greater than the width and height of the cross section of the first antenna unit 11 (or the second antenna unit 12); as shown in (b) of FIG. It is shown that a first decoupling unit 10 includes a closed conductive ring 22, and the width of the first decoupling unit 10 is equal to the width of the cross section of the first antenna unit 11 (or the second antenna unit 12), but The height of a decoupling unit 10 is lower than the height of the cross section of the first antenna unit 11 (or the second antenna unit 12); or, as shown in (c) of FIG.
- a first decoupling unit 10 Two closed conductive rings 22 are included, and the width of the first decoupling unit 10 is slightly narrower than the width of the cross section of the first antenna unit 11 (or the second antenna unit 12), but the height of the first decoupling unit 10 is high. The height of the cross section of the first antenna unit 11 (or the second antenna unit 12).
- the N first decoupling units 10 disposed between the first antenna unit 11 and the second antenna unit 12 may be in contact with each other, or may be disposed with a certain spacing, and the N first decoupling units 10
- the volume of the space between the first antenna unit 11 and the second antenna unit 12 may be smaller than or equal to the volume of the space between the first antenna unit 11 and the second antenna unit 12, which is not limited in this embodiment of the present invention.
- the embodiment of the present invention further provides a multi-antenna system, the system includes at least: an adjacent first antenna unit 11 and a second antenna unit 12, wherein the first antenna unit 11 and Any of the above-described decoupling assemblies 100 are disposed between the second antenna elements 12 to reduce the coupling generated between the first antenna elements 11 and the second antenna elements 12.
- the first antenna unit 11 and the second antenna unit 12 each include: an antenna bracket, and a radiation body mounted on the antenna bracket, the radiation body can radiate electromagnetic waves at a certain operating frequency, so that the first antenna unit 11 and the first antenna unit
- the two antenna unit 12 transmits and receives data by using electromagnetic waves radiated from the radiation body as a carrier.
- the radiation body may be a PIFA (Planar Invert F Antenna), a PILA (Planar Invert L Antenna), an IFA (Invert F Antenna), and an ILA (Invert L Antenna
- PIFA Planar Invert F Antenna
- PILA Planar Invert L Antenna
- IFA Invert F Antenna
- ILA Invert L Antenna
- a spacing may be provided between the radiating body and the decoupling assembly 100, that is, the radiating body does not directly contact the closed conductive ring 22 in the decoupling assembly 100, thereby avoiding a short circuit between the decoupling assembly 100 and the radiating body.
- the multi-antenna system may further include a grounding plate 13 disposed opposite to the decoupling component 100, and the grounding plate 13 may be in contact with the decoupling component 100 or may be coupled to the decoupling component 100. Set a certain distance between them.
- the decoupling principle of the decoupling component 100 provided by the embodiment of the present invention is explained by taking a multi-antenna system composed of two antenna elements in FIG. 5 as an example.
- a plurality of first decoupling units 10 are filled between the first antenna unit 11 and the second antenna unit 12, and the sizes of the first antenna unit 11 and the second antenna unit 12 are: 8.2 mm * 5 mm * 4 mm (ie, length * width * height), the distance between the first antenna unit 11 and the second antenna unit 12 is 5 mm, and the dielectric substrate 21 in each of the first decoupling units 10 is polytetrafluoroethylene.
- a vinyl glass cloth dielectric plate (having a relative dielectric constant of 2.55), the dielectric substrate 21 has a size of 5 mm ⁇ 5 mm ⁇ 0.25 mm, and one side of the dielectric substrate 21 is printed with a side length of 4.7 mm and a line width of 0.15 mm.
- the square metal closes the conductive ring 22, the normal direction of the closed conductive ring 22 being directed to the first antenna unit 11 and the second antenna unit 12.
- the first decoupling unit 10 can be equivalent to a uniform electromagnetic medium, and the first decoupling unit is in the range of 1 GHz to 6 GHz.
- the dispersion of 10 is small, and its equivalent electromagnetic parameters are: ⁇ ⁇ ⁇ 0.13, ⁇
- ⁇ is the relative magnetic permeability
- ⁇ is the relative dielectric constant
- ⁇ ⁇ is the relative magnetic permeability of the first decoupling unit 10 in the direction perpendicular to the dielectric substrate 21
- is the first decoupling unit 10 in parallel
- the relative magnetic permeability in the direction of the dielectric substrate 21 is similar
- ⁇ ⁇ is the relative dielectric constant of the first decoupling unit 10 in the direction perpendicular to the dielectric substrate 21
- is the first decoupling unit 10 parallel to the dielectric
- the first decoupling means 10 shown in FIG. 5 the relative magnetic permeability of the first decoupling unit 10 is electrically perpendicular to the direction of ⁇ ⁇ the dielectric substrate 21 is much smaller than the relative permeability of the dielectric substrate parallel to a direction 21 of the electric [mu]
- first decoupling unit 10 has electromagnetic double anisotropy in a large frequency range, and therefore has an effect of changing the radiation directions of the first antenna unit 11 and the second antenna unit 12.
- the first antenna unit 11 is For example, the material around the first antenna unit 11 is air (also referred to as free space), and its dispersion curve is circular in a plane, that is, after the first antenna unit 11 radiates electromagnetic waves in a certain direction, the electromagnetic wave is in a free space.
- the degree of difficulty in radiation in all directions is the same.
- the electromagnetic waves radiated by the first antenna unit 11 can be radiated in different directions, resulting in adjacent first antennas.
- the radiation directions of the unit 11 and the second antenna unit 12 have an intersection, resulting in a large coupling.
- the decoupling component 100 is filled between the first antenna unit 11 and the second antenna unit 12, as shown in (b) of FIG. 6, at this time, the area between the first antenna unit 11 and the second antenna unit 12
- the dispersion curve is elliptical in the plane, and the propagation direction of the electromagnetic wave in the region is as shown in (d) of FIG. 6, that is, the propagation of electromagnetic waves in the region is limited, mainly focusing on (b) in FIG.
- the direction of the minor axis of the ellipse propagates, and the direction of the minor axis of the ellipse is the direction perpendicular to the normal direction of the closed conductive ring 22 in FIG. 2, and therefore, the radiation of the first antenna unit 11 and the second antenna unit 12 at this time
- the intersection of the directions is reduced, thereby reducing the coupling between the first antenna unit 11 and the second antenna unit 12, achieving a decoupling effect.
- FIG. 7 is a schematic diagram of comparison of antenna radiation directions between the first antenna unit 11 and the second antenna unit 12 before and after decoupling.
- the radiation directions between the first antenna unit 11 and the second antenna unit 12 intersect, and the two antenna elements radiate in directions opposite to each other, resulting in coupling.
- the radiation direction between the first antenna unit 11 and the second antenna unit 12 hardly overlaps, and the two antenna units do not radiate in directions facing each other, thereby reducing the first antenna unit 11 Coupling with the second antenna unit 12.
- FIG. 8 a schematic diagram of an application scenario of the decoupling component 100 according to the embodiment of the present invention.
- the decoupling component 100 specifically includes M (M is an integer greater than 0) second decoupling units. 20.
- the M second decoupling units 20 are also stacked between the first antenna unit 11 and the second antenna unit 12.
- the second decoupling unit 20 has electrical anisotropy.
- the second decoupling unit 20 includes: a first dielectric substrate disposed in parallel. 23 and the second dielectric substrate 24, the plane in which the first dielectric substrate 23 is located intersects the ground plate 13 on which the first antenna unit 11 and the second antenna unit 12 are disposed.
- the relative dielectric constant of the first dielectric substrate 23 is different from the relative dielectric constant of the second dielectric substrate 24.
- the relative dielectric constant of the first antenna unit 11 is equal to the relative dielectric constant of the second antenna unit 12
- the relative dielectric constant of the first dielectric substrate 23 is greater than the relative dielectric constant of the first antenna unit 11.
- the relative dielectric constant of the second dielectric substrate 24 is smaller than the relative dielectric constant of the first antenna unit 11.
- the sum of the thicknesses of the first dielectric substrate 23 and the second dielectric substrate 23 may be set to be less than 0.5. Media wavelength.
- the sum of the thicknesses of the first dielectric substrate 23 and the second dielectric substrate 23 may be set to be less than 0.2 dielectric wavelengths.
- the first antenna unit 11 and the second antenna unit 12 are filled with a plurality of second decoupling units 20, and the sizes of the first antenna unit 11 and the second antenna unit 12 are : 10 mm * 5 mm * 5 mm, the relative dielectric constant is 4.4, the distance between the first antenna unit 11 and the second antenna unit 12 is 8 mm, and each of the second decoupling units 10 includes the first dielectric substrate 23 and the The two dielectric substrates 24, wherein the first dielectric substrate 23 has a relative dielectric constant of 2.55, the second dielectric substrate 23 has a relative dielectric constant of 40, and the first dielectric substrate 23 and the second dielectric substrate 24 have a size of 5 mm. ⁇ 5 mm ⁇ 0.5 mm.
- the equivalent electromagnetic parameter of the second decoupling unit 20 is: ⁇ ⁇ ⁇ 4.8, ⁇
- the decoupling principle provided by the embodiment of the present invention can also be applied to a multi-antenna system composed of two or more antenna elements, for example, MIMO (Multiple-Input). Multiple-Output, multiple input multiple output) antenna system.
- MIMO Multiple-Input
- Multiple-Output multiple input multiple output
- An embodiment of the present invention provides a multi-antenna system. As shown in FIG. 9, the system includes a first antenna group 31 and a second antenna group 32 symmetrically disposed along both ends of the ground plate 13.
- the first antenna group 31 includes: a third antenna unit 33, a first antenna unit 11, a second antenna unit 12, and a fourth antenna unit 34 arranged in sequence along the edge of the ground plate 13;
- the second antenna group 32 is symmetrically disposed with the first antenna group 31, and therefore will not be described herein.
- any one of the above-described decoupling components 100 is disposed between the first antenna unit 11 and the second antenna unit 12 to reduce the coupling generated between the first antenna unit 11 and the second antenna unit 12.
- the grounding plate 13 comprises a FR-4 epoxy glass cloth laminate and a metal copper skin printed on one side of the FR-4 epoxy glass cloth laminate.
- the size of the FR-4 epoxy glass cloth laminate is 136 mm. ⁇ 68 mm and a thickness of 1 mm, and its relative dielectric constant is about 4.4.
- the dimensions of the third antenna unit 33 and the fourth antenna unit 34 are both 4.2 mm ⁇ 4.2 mm ⁇ 1.6 mm, and the sizes of the first antenna unit 11 and the second antenna unit 12 are both 8.2 mm ⁇ 5mm ⁇ 4mm, it can be seen that the distance between the first antenna unit 11 and the second antenna unit 12 is 5 mm, which is in the sub-wavelength range, so that coupling between the first antenna unit 11 and the second antenna unit 12 is easy. .
- a decoupling component 100 may be disposed between the first antenna unit 11 and the second antenna unit 12, and the decoupling component 100 is composed of a plurality of first decoupling units 10 as shown in FIG. 2.
- the dielectric substrate 21 of the first decoupling unit 10 may be a Teflon glass cloth dielectric plate (relative dielectric constant of 2.55) having a size of 5 mm ⁇ 5 mm ⁇ 0.25 mm, and one side of the dielectric substrate 21 is printed with a side.
- a square metal closed conductive ring 22 having a length of 4.7 mm and a line width of 0.15 mm, wherein the normal to the closed conductive ring 22 is directed to the first antenna unit 11 and the second antenna unit 12, respectively.
- of the first decoupling unit 10 approaches 1, and the equivalent relative permittivity ⁇ ⁇ is approximately equal to 2.55, and ⁇ ⁇ and ⁇
- is shown in Fig. 10.
- the value of the real part of ⁇ ⁇ is in the range of 0.1-0.15 , and the value of the imaginary part of ⁇ ⁇ approaches 0.
- The value of the imaginary part of ⁇
- the relative dielectric constant and relative permeability can be expressed by a constant.
- the material used is anisotropic, for example, the first decoupling unit 10 described above
- its relative dielectric constant and relative magnetic permeability may be expressed in the form of a tensor
- a material with a relatively low loss In the design of a multi-antenna system, it is generally preferred to use a material with a relatively low loss. This is because once the electromagnetic wave propagates in a material with a relatively large loss, part of the energy radiated by the antenna unit will The loss is among the materials, thereby reducing the radiation efficiency of the antenna unit.
- FIG. 1 A comparison diagram of S parameters (S parameters, scattering parameters) of the first antenna unit 11 and the second antenna unit 12 before and after coupling, it can be seen that the coupling between the first antenna unit 11 and the second antenna unit 12 before decoupling is greater than -10 dB, and the coupling between the first antenna unit 11 and the second antenna unit 12 after decoupling is less than -10 dB, the coupling is reduced by about 7 dB, and the first antenna unit 11 and the second antenna unit 12 are decoupled. The return loss between them is below -10 dB in the corresponding frequency band.
- the radiation efficiency of each antenna unit in the first antenna group can be improved, as shown in FIG. 12, in the frequency range of 4.25 GHz to 4.9 GHz. Within, the radiation efficiency of each antenna unit exceeds 50%.
- the adjacent antenna can be effectively reduced in a large frequency range.
- the coupling between the units increases the radiation efficiency of the antenna unit.
- Embodiments of the present invention provide a multi-antenna system, as shown in FIG. 13, which includes four sets of antenna pairs disposed along four vertices of the ground plane 13.
- Each of the antenna pairs includes a first antenna unit 11 and a second antenna unit 12, and any one of the above-described decoupling components 100 is disposed between the first antenna unit 11 and the second antenna unit 12 to reduce the first antenna unit 11 The coupling generated between the second antenna unit 12 and the second antenna unit 12.
- the ground plate 13 comprises an FR-4 epoxy glass cloth laminate, and a metal copper skin printed on one side of the FR-4 epoxy glass cloth laminate.
- the dimensions of the FR-4 epoxy glass cloth laminate are: 136 mm x 68 mm and a thickness of 1 mm with a relative dielectric constant of about 4.4.
- the sizes of the first antenna unit 11 and the second antenna unit 12 are both 5 mm ⁇ 5 mm ⁇ 2.5 mm, and the spacing between the first antenna unit 11 and the second antenna unit 12 is 16 mm, and the spacing is at In the range of the sub-wavelength, at this time, the coupling between the first antenna unit 11 and the second antenna unit 12 is large, affecting the radiation efficiency of the first antenna unit 11 and the second antenna unit 12.
- a decoupling component 100 can be disposed between the first antenna unit 11 and the second antenna unit 12, the decoupling component 100 being composed of a plurality of first decoupling units 10 as shown in FIG. 2, the first decoupling
- the size of the dielectric substrate 21 in the unit 10 is 7 mm ⁇ 7 mm ⁇ 0.25 mm, and the material thereof is a PTFE glass cloth dielectric plate (relative dielectric constant: 2.55) substrate, and the one side of the dielectric substrate 21 is printed with a side length of 6.6 mm.
- a square metal closed conductive ring 22 having a line width of 0.15 mm, wherein the normal to the closed conductive ring 22 is directed to the first antenna unit 11 and the second antenna unit 12, respectively.
- the decoupling component 100 when the decoupling component 100 is not disposed between the first antenna unit 11 and the second antenna unit 12, the first The coupling between the antenna unit 11 and the second antenna unit 12 is in the frequency band of 4.23 GHz - 5.58 GHz If the range is greater than -10 dB, the radiation efficiency of the first antenna unit 11 and the second antenna unit 12 is greatly reduced; and after the decoupling component 100 is disposed between the first antenna unit 11 and the second antenna unit 12, the first antenna The coupling between unit 11 and second antenna unit 12 is less than -10 dB in all frequency bands.
- decoupling assembly 100 is capable of coupling from -7.5 over a wide frequency range (within 3 GHz to 6 GHz). The dB is reduced to -14dB with a reduction of approximately 6.5dB.
- the decoupling assembly 100 can significantly reduce the coupling generated between the first antenna unit 11 and the second antenna unit 12.
- the radiation efficiency of the first antenna unit 11 and the second antenna unit 12 can be improved, as shown in FIG. 15, when the first antenna unit 11 When the decoupling component 100 is not disposed between the second antenna unit 12 (ie, before decoupling), the first antenna unit 11 and the second antenna unit 12 can only achieve effective radiation in a single frequency band of 4.4 GHz to 5.9 GHz (ie, The radiation efficiency is greater than 50%), and after the decoupling component 100 is disposed between the first antenna unit 11 and the second antenna unit 12 (ie, after decoupling), the first antenna unit 11 and the second antenna unit 12 are at 3.64 GHz- The radiation efficiencies in both the 3.86 GHz and 4.52 GHz-5.06 GHz bands are greater than 50%.
- an embodiment of the present invention provides a terminal, which may include any one of the multiple antenna systems described in the foregoing embodiments, to reduce coupling between antenna units in the terminal.
- the terminal may be a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), or the like, which is not limited by the embodiment of the present invention.
- PDA Personal Digital Assistant
- embodiments of the present invention provide a decoupling component, a multi-antenna system, and a terminal, the multi-antenna system including an adjacent first antenna unit and a second antenna unit, between the first antenna unit and the second antenna unit Provided with a decoupling component; wherein the decoupling component is composed of an electromagnetic material having electromagnetic double anisotropy or electrical anisotropy, and based on the electromagnetic double anisotropy or anisotropic, the decoupling component can change its position
- the radiation direction of the electromagnetic wave reduces the energy of the electromagnetic waves radiated by the first antenna unit and the second antenna unit toward the region where they are located, thereby reducing the intersection of the radiation regions generated by the two antenna elements, and, due to the above
- the coupling component has a small dispersion in a wide frequency range, that is, the above-mentioned decoupling component is relatively stable in a wide frequency range, so that the decoupling effect can be achieved in a wide frequency range.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明的实施例提供一种去耦组件、多天线系统及终端,涉及通信技术领域,可改变电磁波的辐射方向,从而在较大的频率范围内达到去耦效果。该多天线系统包括:相邻的第一天线单元和第二天线单元,所述第一天线单元和所述第二天线单元之间设置有去耦组件;其中,所述去耦组件由具有电各向异性或电磁双各向异性的电磁材料构成,以降低所述第一天线单元和所述第二天线单元之间产生的耦合。
Description
本申请要求于2016年08月08日提交中国专利局、申请号为201610648456.8、发明名称为“一种去耦组件、多天线系统及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明实施例涉及通信技术领域,尤其涉及一种去耦组件、多天线系统及终端。
通常,为保证通信质量,接收端内的各个天线在收发信号时是相互隔离的,但是对于手机等接收端,其尺寸一般是有严格限制的,将多个天线集中在有限的小空间内,将导致不同天线进行辐射时产生较为严重的耦合现象,使天线之间的隔离度降低。
对此,现有技术中通常在接收端的天线之间搭建去耦网络(例如增设LC去耦电路)、中和线、或者陷波凹槽,来中和天线之间的耦合电流,从而达到去耦效果。
但是,上述去耦方式只能针对一个或多个固定的频段达到去耦效果,一旦天线工作的频段发生改变,相应的去耦网络、中和线、或者陷波凹槽需要重新进行设计,例如,天线工作的频段为频段1时,天线之间设置宽度为D1的中和线即可达到去耦效果,但宽度为D1的中和线可能仅在频段1内具有去耦效果,那么,随着未来天线的工作频段将越来越多,天线可以选择不同的频段收发信号,当天线在频段2工作时,宽度为D1的中和线便无法达到去耦效果。
发明内容
本发明的实施例提供一种去耦组件、多天线系统及终端,可改变电磁波的辐射方向,从而在较大的频率范围内达到去耦效果。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明的实施例提供一种多天线系统,该多天线系统包括:相邻的第一天线单元和第二天线单元,该第一天线单元和该第二天线单元之间设置有去耦组件;其中,该去耦组件由具有电各向异性或电磁双各向异性的电磁材料构成,以降低该第一天线单元和该第二天线单元之间产生的耦合。
其中,当上述第一天线单元和第二天线单元之间未设置去耦组件时,以第一天线单元为例,第一天线单元可以朝一定方向辐射电磁波,该方向的电磁波进入自由空间后,在各个方向上辐射的难易程度一致,因此,这两个天线单元的辐射区域在这两个天线单元之间的空间产生了交集,产生了耦合,使天线单元之间的隔离度降低,而在第一天线单元和第二天线单元之间设置上述去耦组件之后,由于上述去耦组件具有电磁双各向异性或电各向异性,
因此,去耦组件可以在较大的频率范围内改变其所在位置处电磁波的辐射方向,降低第一天线单元和第二天线单元辐射出的电磁波朝着彼此所在的区域传播的能量,从而减小这两个天线单元产生的辐射区域的交集,即降低第一天线单元和第二天线单元之间的耦合,达到去耦效果。
在一种可能的设计中,该去耦组件包括N个第一去耦单元,N为大于0的整数;该第一去耦单元包括:绝缘的电介质基板,以及设置在该电介质基板上的至少一个闭合导电环,其中,该闭合导电环所在的平面,与设置该第一天线单元和该第二天线单元的接地板相交。
在一种可能的设计中,该闭合导电环的法线分别指向该第一天线单元和该第二天线单元。
此时,第一去耦单元垂直于电介质基板方向的相对磁导率远小于平行于电介质基板方向的相对磁导率;第一去耦单元垂直于电介质基板方向的相对介电常数远小于平行于电介质基板方向的相对介电常数,也就是说,第一去耦单元具有显著的电磁双各向异性,并且,由于上述第一去耦单元在1GHz-6GHz范围内的色散较小,因此,第一去耦单元在1GHz-6GHz范围内等效的电磁参数(即上述各方向上的相对磁导率和介电常数)都是比较稳定的。
在一种可能的设计中,相邻两个该第一去耦单元之间相互接触;其中,该电介质基板的厚度小于0.5个介质波长,该介质波长是指该第一天线单元工作时辐射的电磁波在该电磁材料中的波长,该第一天线单元的工作频率大于或等于该第二天线单元的工作频率。
在一种可能的设计中,相邻两个该第一去耦单元之间设置有间距,其中,该电介质基板的厚度与该间距大小之和小于0.5个介质波长,该介质波长是指该第一天线单元工作时辐射的电磁波在该电磁材料中的波长,该第一天线单元的工作频率大于或等于该第二天线单元的工作频率。
在一种可能的设计中,该电介质基板的任意边长小于0.5个该介质波长。
此时,上述去耦组件中的第一去耦单元可近似被视为均匀的电磁介质。
在一种可能的设计中,该电介质基板包括:与该第一天线单元相对的第一表面,以及与该第二天线单元相对的第二表面,该闭合导电环设置在该第一表面和/或该第二表面。
在一种可能的设计中,该去耦组件包括M个第二去耦单元,M为大于0的整数;该第二去耦单元包括:平行设置的第一介质基板和第二介质基板,该第一介质基板所在的平面与设置该第一天线单元和该第二天线单元的接地板相交,其中,该第一介质基板的介电常数与该第二介质基板的介电常数不同。
在一种可能的设计中,该第一天线单元的介电常数与该第二天线单元的介电常数相等;其中,该第一介质基板的介电常数大于该第一天线单元的介电常数,该第二介质基板的介电常数小于该第一天线单元的介电常数。
在一种可能的设计中,该第一天线单元和该第二天线单元均包括:天线支架,以及安装在天线支架上的辐射主体;该辐射主体与该去耦组件之间设
有间距。
在一种可能的设计中,该多天线系统还包括与该去耦组件相对设置的接地板。
在一种可能的设计中,该多天线系统包括:沿接地板两端对称设置的第一天线组和第二天线组,该第一天线组包括沿该接地板边缘依次排列的第三天线单元、该第一天线单元、该第二天线单元以及第四天线单元,其中,在该第一天线单元和该第二天线单元之间设置有该去耦组件。
在一种可能的设计中,该多天线系统包括:沿接地板的4个顶点设置的四组天线对,每组天线对包括该第一天线单元和该第二天线单元,该第一天线单元和该第二天线单元之间设置有该去耦组件。
第二方面,本发明的实施例提供一种去耦组件,该去耦组件设置于相邻的第一天线单元和第二天线单元之间,其中,该去耦组件由具有电各向异性或电磁双各向异性的电磁材料构成,以降低该第一天线单元和该第二天线单元之间的耦合。
第三方面,本发明的实施例提供一种终端,该终端包括如第一方面中任一项所述的多天线系统。
本发明中,上述去耦组件、多天线系统及终端的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本发明类似,即属于本发明权利要求及其等同技术的范围之内。
另外,第二方面至第三方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
图1为本发明实施例提供的一种去耦组件的应用场景示意图一;
图2为本发明实施例提供的一种第一去耦单元的放大示意图一;
图3为本发明实施例提供的一种第一去耦单元的放大示意图二;
图4为本发明实施例提供的一种去耦组件的应用场景示意图二;
图5为本发明实施例提供的一种多天线系统的结构示意图一;
图6为本发明实施例提供的一种去耦原理的示意图;
图7为本发明实施例提供的去耦前后第一天线单元与第二天线单元之间的天线辐射方向的对比示意图;
图8为本发明实施例提供的一种去耦组件的应用场景示意图三;
图9为本发明实施例提供的一种多天线系统的结构示意图二;
图10为本发明实施例提供的第一去耦单元的等效相对磁导率和等效相对介电常数的变化示意图;
图11为本发明实施例提供的去耦前后第一天线单元和第二天线单元的S参数的对比示意图;
图12为本发明实施例提供的去耦前后第一天线组内各个天线单元的辐射效率的示意图;
图13为本发明实施例提供的一种多天线系统的结构示意图三;
图14为本发明实施例提供的去耦前后第一天线单元和第二天线单元之间发生耦合的对比示意图;
图15为本发明实施例提供的去耦前后第一天线单元和第二天线单元的辐射效率的示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述。
另外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明的实施例提供一种去耦组件,具体的,该去耦组件可设置于相邻的第一天线单元和第二天线单元之间,其中,该去耦组件由具有电各向异性或电磁双各向异性的电磁材料构成,以降低第一天线单元和第二天线单元之间产生的耦合。
其中,各向异性(Anisotropy或Anisotropic),是指传播电磁场的物质的本构参数(例如,介电常数、磁导率等)在各个方向上的分量不完全相同,例如,各向异性可以具体包括:电各向异性(即介电常数在各个方向上的分量不完全相同),磁各向异性(即磁导率在各个方向上的分量不完全相同),以及电磁双各向异性(即介电常数在各个方向上的分量不完全相同,且磁导率在各个方向上的分量不完全相同)。
也就是说,只要任意一个方向上介电常数的分量和其他方向上该介电常数的分量在数值上不同,即具有电各向异性;只要任意一个方向上磁导率的分量和其他方向上该磁导率的分量在数值上不同,即具有磁各向异性;只要任意一个方向上介电常数的分量和其他方向上该介电常数的分量在数值上不同,并且,任意一个方向上磁导率的分量和其他方向上该磁导率的分量在数值上不同,即具有电磁双各向异性。
需要说明的是,后续本发明是实施例中将以相对介电常数(relative permittivity)和相对磁导率(relative permeability),作为去耦组件的等效电磁参数来详细阐述去耦组件的去耦原理。
其中,相对介电常数是指:介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与介质中电场的比值,并且,介电常数=相对介电常数*真空介电常数ε0,ε0=8.854187817×10-12F/m(近似值);类似的,磁导率=相对磁导率*真空磁导率μ0,μ0=4π×10-7H/m(近似值)。
具体的,当上述第一天线单元和第二天线单元之间未设置去耦组件时,以第一天线单元为例,第一天线单元可以朝一定方向辐射电磁波,该方向的电磁波进入自由空间(Free Space)后,在各个方向上辐射的难易程度一致,因此,这两个天线单元的辐射区域在这两个天线单元之间的空间产生了交集,
产生了自由空间耦合,使天线单元之间的隔离度降低,而在第一天线单元和第二天线单元之间设置上述去耦组件之后,由于上述去耦组件具有电磁双各向异性或电各向异性,因此,去耦组件可以改变其所在位置处第一天线单元和第二天线单元产生的电磁波的辐射方向,降低第一天线单元和第二天线单元辐射出的电磁波朝着彼此所在的区域传播的能量,从而减小这两个天线单元产生的辐射区域的交集,即降低第一天线单元和第二天线单元之间的耦合,达到去耦效果。
其中,自由空间是电磁学中的一个定义,一般指理论上的完美真空(theoretically perfect vacuum),有时也指电磁波传播的参考介质(a reference medium),本发明的后续实施例中涉及到的自由空间统一指代空气。
同时,由于去耦组件的电磁双各向异性或电各向异性通常在较大的频率范围内都是较为稳定的,因此,上述去耦方式可在较大的频率范围内降低第一天线单元和第二天线单元在之间产生的耦合现象。
示例性的,如图1所示,为本发明实施例提供的一种去耦组件100的应用场景示意图,上述去耦组件100具体包括N(N为大于0的整数)个第一去耦单元10,这N个第一去耦单元10堆叠在第一天线单元11和第二天线单元12之间。
其中,如图2中的(a)所示,为图1中任一个第一去耦单元10的放大示意图,第一去耦单元10具有电磁双各向异性,该第一去耦单元10包括:绝缘的电介质基板21,以及设置在电介质基板21上的至少一个闭合导电环22,并且,该闭合导电环22所在的平面,与设置天线单元11和天线单元12的接地板13相交,也就是说,闭合导电环22所在的电介质基板21不能与接地板13平行或重合。
示例性的,该闭合导电环22所在的平面与接地板之间的夹角可以在45°-90°之间。
优选的,如图2中的(a)所示,该闭合导电环22的法线(即垂直于闭合导电环22所在平面的直线)的两端,分别指向第一天线单元11和第二天线单元12,例如,电介质基板21可以垂直设置于上述接地板上,且电介质基板21上的闭合导电环22与第一天线单元11(或第二天线单元12)的侧面平行,此时,闭合导电环22的法线的两端分别指向第一天线单元11的中心和第二天线单元12的中心,当然,由于第一天线单元11和第二天线单元12是立体的,因此,当闭合导电环22的法线分别指向第一天线单元11和第二天线单元12上的任意位置时,均可认为闭合导电环22的法线分别指向第一天线单元11和第二天线单元12。
其中,电介质基板21可以为平面,也可以为曲面,本发明实施例对此不做限定。
可选的,相邻两个第一去耦单元10之间可以相互接触,也可以设置一定间距,当相邻两个第一去耦单元10之间相互接触时,电介质基板21的厚度可小于0.5个介质波长(该介质波长是指工作频率较大的天线单元,例如第
一天线单元11,在工作频率工作时辐射的电磁波在上述电磁材料中的波长),即电介质基板21的厚度位于亚波长(Subwavelength)的范围内,例如,电介质基板21的厚度可以为0.1个介质波长,即电介质基板21的厚度位于深亚波长(Deep Subwavelength)的范围内;当相邻两个第一去耦单元10之间设置有一定间距时,电介质基板21的厚度与该间距大小之和应小于0.5个介质波长。
类似的,电介质基板21的任意边长也可以小于0.5个介质波长,例如,电介质基板21的任意边长为0.2个介质波长。
此时,该去耦组件100中的第一去耦单元10可近似被视为均匀的电磁介质。
或者,如图2中的(b)所示,在电介质基板21所在的平面内,还可以设置J*K(J和K均为大于1的整数)个第一去耦单元10,此时,每个第一去耦单元10内闭合导电环22所在的平面仍与接地板13相交,并且,每一个第一去耦单元10中电介质基板21的厚度仍然可以小于0.5个介质波长,电介质基板21的任意边长仍然可以小于0.5个介质波长,而这J*K个第一去耦单元10中,相邻的两个第一去耦单元10之间可以相互接触,也可以设置一定缝隙,本发明实施例对此不作任何限定。
例如,在图2中(b)所示的2*2个第一去耦单元10中,每个第一去耦单元10为正方形,假设每个第一去耦单元10的边长为0.25个介质波长,且相邻第一去耦单元10之间不设置缝隙,此时,这2*2个第一去耦单元10组成的矩形的边长等于0.5个介质波长;假设每个第一去耦单元10的边长为0.25个介质波长,但相邻第一去耦单元10设置缝隙,此时,这2*2个第一去耦单元10组成的矩形的边长则大于0.5个介质波长;又或者,假设每个第一去耦单元10的边长为0.1个介质波长,且相邻第一去耦单元10之间不设置缝隙,此时,这2*2个第一去耦单元10组成的矩形的边长为0.2个介质波长,小于0.5个介质波长。
另外,如图3所示,电介质基板21具体可包括与第一天线单元11相对的第一表面201,以及与第二天线单元12相对的第二表面202,而该闭合导电环22可设置在第一表面201上,也可以设置在第二表面202上,或者,还可以同时设置在第一表面201和第二表面202上,本发明实施例对此不做限定。
并且,如图4所示,一个第一去耦单元10内闭合导电环22的个数可以为一个或多个,闭合导电环22的形状可以为矩形、圆形、椭圆等等任意的封闭性状即可,以便构造出闭合磁流环,从而实现电磁双各向异性,并且,闭合导电环22的横截面积可以和第一天线单元11(或第二天线单元12)的尺寸一致,也可以大于或小于第一天线单元11(或第二天线单元12)的尺寸,本发明实施例对此不做限定,如图4中的(a)所示,一个第一去耦单元10内包括4个闭合导电环22,且第一去耦单元10的宽度和高度均大于第一天线单元11(或第二天线单元12)的横截面的宽度和高度;如图4中的(b)所
示,一个第一去耦单元10内包括1个闭合导电环22,且第一去耦单元10的宽度与第一天线单元11(或第二天线单元12)的横截面的宽度相等,但第一去耦单元10的高度低于第一天线单元11(或第二天线单元12)的横截面的高度;又或者,如图4中的(c)所示,一个第一去耦单元10内包括2个闭合导电环22,且第一去耦单元10的宽度略窄于与第一天线单元11(或第二天线单元12)的横截面的宽度,但第一去耦单元10的高度高于第一天线单元11(或第二天线单元12)的横截面的高度。
需要说明的是,设置在第一天线单元11和第二天线单元12之间的N个第一去耦单元10可以相互接触,也可以设置一定间距,并且,这N个第一去耦单元10的体积,可以小于、大于或等于第一天线单元11和第二天线单元12之间的空间的体积,本发明实施例对此不做限定。
基于上述任一种去耦组件100,本发明实施例还提供一种多天线系统,该系统至少包括:相邻的第一天线单元11和第二天线单元12,其中,第一天线单元11和第二天线单元12之间设置有上述任一种去耦组件100,以降低第一天线单元11和第二天线单元12之间产生的耦合。
其中,第一天线单元11和第二天线单元12均包括:天线支架,以及安装在天线支架上的辐射主体,该辐射主体在一定工作频率下可辐射电磁波,以使得第一天线单元11和第二天线单元12以辐射主体辐射出的电磁波为载体进行数据收发。
例如,该辐射主体可以为PIFA(Planar Invert F Antenna,平面倒F天线),PILA(Planar Invert L Antenna,平面倒L天线),IFA(Invert F Antenna,倒F天线),ILA(Invert L Antenna,倒L天线),单极子天线(monopole antenna),或者回路天线(loop antenna)等,本发明实施例对此不做限定。
另外,该辐射主体与去耦组件100之间可设有间距,即辐射主体不与去耦组件100中的闭合导电环22直接接触,避免去耦组件100与辐射主体发生短路。
进一步地,如图5所示,上述多天线系统中还可以包括与去耦组件100相对设置的接地板13,该接地板13可与去耦组件100相接触,也可以与去耦组件100之间设置一定间距。
以下,将以图5中的2个天线单元构成的多天线系统为例,解释本发明实施例提供的去耦组件100的去耦原理。
示例性的,如图5所示,第一天线单元11和第二天线单元12之间填充有多个第一去耦单元10,设第一天线单元11和第二天线单元12的尺寸为:8.2mm*5mm*4mm(即长*宽*高),第一天线单元11和第二天线单元12之间的距离为5mm,每个第一去耦单元10中的电介质基板21为聚四氟乙烯玻璃布介质板(其相对介电常数为2.55)基板,电介质基板21的尺寸为:5mm×5mm×0.25mm,电介质基板21的一侧印刷有边长为4.7mm,线宽为0.15mm的正方形金属闭合导电环22,该闭合导电环22的法线方向指向第一天线单元11和第二天线单元12。
由于该介质基板21的厚度为0.25mm,该厚度远小于0.5个介质波长,因此,该第一去耦单元10可以等效为均匀的电磁介质,在1GHz-6GHz范围内,第一去耦单元10的色散较小,其等效的电磁参数为:μ⊥≈0.13,μ||≈1,ε⊥≈2.55,ε||≈32。
其中,μ为相对磁导率,ε为相对介电常数,μ⊥为第一去耦单元10在垂直于介质基板21方向的相对磁导率,μ||为第一去耦单元10在平行于电介质基板21方向的相对磁导率,类似的,ε⊥为第一去耦单元10在垂直于电介质基板21方向的相对介电常数,ε||为第一去耦单元10在平行于电介质基板21方向的相对介电常数。
可以看出,在图5所示的第一去耦单元10中,第一去耦单元10垂直于电介质基板21方向的相对磁导率μ⊥远小于平行于电介质基板21方向的相对磁导率μ||;第一去耦单元10垂直于电介质基板21方向的相对介电常数ε⊥远小于平行于电介质基板21方向的相对介电常数ε||,也就是说,第一去耦单元10具有显著的电磁双各向异性,并且,由于上述第一去耦单元10在1GHz-6GHz范围内的色散较小,因此,第一去耦单元10在1GHz-6GHz范围内等效的电磁参数(即上述μ⊥、μ||、ε⊥以及ε||)都是比较稳定的。
正是因为上述第一去耦单元10在较大的频率范围内具有电磁双各向异性,因此,其具有改变第一天线单元11和第二天线单元12的辐射方向的作用。
这是因为:如图6中的(a)所示,如果第一天线单元11和第二天线单元12之间不设置具有电磁双各向异性的去耦组件100,以第一天线单元11为例,第一天线单元11周围的物质是空气(也可称为自由空间),其色散曲线在平面内呈现圆形,即表示第一天线单元11朝一定方向辐射电磁波后,该电磁波在自由空间内的各个方向上辐射的难易程度一致,此时,如图6中的(c)所示,第一天线单元11辐射的电磁波可以沿着不同的方向进行辐射,导致相邻的第一天线单元11与第二天线单元12的辐射方向具有交集,从而产生了较大的耦合。
如果在第一天线单元11与第二天线单元12之间填充去耦组件100,如图6中的(b)所示,此时,第一天线单元11与第二天线单元12之间的区域的色散曲线在平面内呈椭圆状,电磁波在该区域的传播方向如图6中的(d)所示,即电磁波在该区域的传播受到一定限制,主要集中朝着图6中的(b)中椭圆短轴的方向传播,而椭圆短轴的方向,即为图2中与闭合导电环22的法线方向垂直的方向,因此,此时第一天线单元11与第二天线单元12的辐射方向的交集减小,从而降低了第一天线单元11与第二天线单元12之间的耦合,实现去耦效果。
进一步地,图7为去耦前后第一天线单元11与第二天线单元12之间的天线辐射方向的对比示意图。如图7中的(a)所示,在去耦前,第一天线单元11与第二天线单元12之间的辐射方向有交集,两个天线单元会朝着彼此相对的方向辐射,导致耦合;在第一天线单元11与第二天线单元12之间添
加去耦组件100后,第一天线单元11与第二天线单元12之间的辐射方向几乎没有交集,两个天线单元不会朝着彼此正对的方向辐射,从而降低了第一天线单元11与第二天线单元12之间的耦合。
又或者,如图8所示,为本发明实施例提供的又一种去耦组件100的应用场景示意图,上述去耦组件100具体包括M(M为大于0的整数)个第二去耦单元20,这M个第二去耦单元20也堆叠在第一天线单元11和第二天线单元12之间。
与图1所示的第一去耦单元10不同的是,第二去耦单元20具有电各向异性,仍如图8所示,第二去耦单元20包括:平行设置的第一介质基板23和第二介质基板24,第一介质基板23所在的平面与设置第一天线单元11和第二天线单元12的接地板13相交。
其中,第一介质基板23的相对介电常数与第二介质基板24的相对介电常数不同。
可选的,当第一天线单元11的相对介电常数与第二天线单元12的相对介电常数相等时,第一介质基板23的相对介电常数大于第一天线单元11的相对介电常数,而第二介质基板24的相对介电常数小于第一天线单元11的相对介电常数。
进一步地,为了使第二去耦单元20可近似被视为均匀的电磁介质,与第一去耦单元10类似的,可以设置第一介质基板23和第二介质基板23的厚度之和小于0.5个介质波长。
优选的,可以设置第一介质基板23和第二介质基板23的厚度之和小于0.2个介质波长。
示例性的,仍如图8所示,第一天线单元11和第二天线单元12之间填充有多个第二去耦单元20,设第一天线单元11和第二天线单元12的尺寸为:10mm*5mm*5mm,其相对介电常数均为4.4,第一天线单元11和第二天线单元12之间的距离为8mm,每个第二去耦单元10包括第一介质基板23和第二介质基板24,其中,第一介质基板23的相对介电常数为2.55,第二介质基板23的相对介电常数为40,第一介质基板23和第二介质基板24的尺寸均为:5mm×5mm×0.5mm。
此时,第二去耦单元20等效的电磁参数为:ε⊥≈4.8,ε||≈21.3,可以看出,第二去耦单元20垂直于第一介质基板23方向的相对介电常数ε⊥远小于平行于第一介质基板23方向的相对介电常数ε||,但第二去耦单元20在各个方向上的相对磁导率相同,也就是说,第一去耦单元10具有显著的电各向异性。
那么,与图6类似的,在第一天线单元11与第二天线单元12之间填充第二去耦单元20之后,第一天线单元11与第二天线单元12产生的电磁波,在填充第二去耦单元20的区域的传播受到一定限制,此时,第一天线单元11与第二天线单元12的辐射方向的交集减小,从而降低了第一天线单元11与第二天线单元12之间的耦合,实现去耦效果。
基于上述2个天线单元构成的多天线系统中的去耦原理,本发明实施例提供的去耦原理还可以应用在2个以上的天线单元构成的多天线系统中,例如,MIMO(Multiple-Input Multiple-Output,多输入多输出)天线系统中。
以下,将分别使用上述去耦原理,阐述对以下两种8个天线单元构成的多天线系统实现去耦的设计方式。
实施例1
本发明的实施例提供一种多天线系统,如图9所示,该系统包括:沿接地板13两端对称设置的第一天线组31和第二天线组32。
以第一天线组31为例,该第一天线组31包括:沿接地板13边缘依次排列的第三天线单元33、第一天线单元11、第二天线单元12以及第四天线单元34;类似的,第二天线组32与第一天线组31对称设置,故此处不再赘述。
其中,在第一天线单元11和第二天线单元12之间设置有上述任一种去耦组件100,以降低第一天线单元11和第二天线单元12之间产生的耦合。
示例性的,接地板13包括FR-4环氧玻璃布层压板以及在FR-4环氧玻璃布层压板的一面印刷的金属铜皮,FR-4环氧玻璃布层压板的尺寸为:136mm×68mm,且厚度为1mm,其相对介电常数约为4.4。在第一天线组31中,第三天线单元33和第四天线单元34的尺寸均为4.2mm×4.2mm×1.6mm,第一天线单元11和第二天线单元12的尺寸均为8.2mm×5mm×4mm,可以看出,第一天线单元11和第二天线单元12之间的距离为5mm,处于亚波长的范围内,使第一天线单元11和第二天线单元12之间容易产生耦合。
那么,如图9所示,可以在第一天线单元11和第二天线单元12之间可设置去耦组件100,去耦组件100由多个如图2所示的第一去耦单元10组成,第一去耦单元10中电介质基板21可以为聚四氟乙烯玻璃布介质板(相对介电常数为2.55),其尺寸为:5mm×5mm×0.25mm,电介质基板21的单侧印刷有边长为4.7mm,线宽为0.15mm的正方形金属闭合导电环22,其中,闭合导电环22的法线分别指向第一天线单元11和第二天线单元12。
此时,在1GHz-6GHz的频率范围内,第一去耦单元10的等效相对磁导率μ||趋近于1,等效相对介电常数ε⊥约等于2.55,而μ⊥和ε||的取值如图10所示,其中,μ⊥的实部的取值在0.1-0.15范围内,μ⊥的虚部的取值趋近于0,相应的,ε||的实部的取值大于30,ε||的虚部的取值趋近于0,即第一去耦单元10在1GHz-6GHz的频率范围内具有显著的电磁双各向异性。
其中,需要说明的是,一般自然界中大多数材料都是各向同性的,此时,在每个固定的频率上,其相对介电常数和相对磁导率可以用常数来表示。
但是,当使用的材料为各向异性时,例如,上述第一去耦单元10,其相对介电常数和相对磁导率可以用张量(tensor)的形式来表示,并且,无论是各向同性还是各向异性的材料,其相对介电常数的虚部和实部的比值可定义为损耗正切(loss tangent),可用来表示材料的损耗。
在多天线系统的设计中,一般要选用损耗比较低的材料为佳,这是因为:一旦电磁波在损耗比较大的材料中传播,天线单元辐射出去的能量一部分会
损耗在材料当中,从而使天线单元的辐射效率降低。
而在上述实施例中,由于相对介电常数ε||的虚部趋近于0,因此,与之相对应的损耗正切值趋近于0,那么,天线单元辐射出的电磁波的损耗很小,从而可以降低对天线单元的辐射效率的不利影响。
对上述结构的多天线系统进行仿真后,可以得到第一天线组31中第一天线单元11和第二天线单元12之间的回波损耗和耦合的仿真结果,如图11所示,为去耦前后第一天线单元11和第二天线单元12的S参数(S parameter,散射参数)的对比示意图,可以看出,去耦前第一天线单元11和第二天线单元12之间的耦合大于-10dB,而去耦后第一天线单元11和第二天线单元12之间的耦合小于-10dB,耦合降低了约7个dB,并且,去耦后第一天线单元11和第二天线单元12之间的回波损耗在相应频带内低于-10dB。
进一步的,由于第一天线单元11和第二天线单元12之间的耦合降低,可提高第一天线组内各个天线单元的辐射效率,如图12所示,在4.25GHz-4.9GHz的频带范围内,各天线单元的辐射效率均超过50%。
可以看出,对于图9所示的单频段的多天线系统,通过在第一天线单元和第二天线单元之间设置上述去耦组件100,可在较大的频率范围内有效降低相邻天线单元之间的耦合,从而提高天线单元的辐射效率。
实施例2
本发明的实施例提供一种多天线系统,如图13所示,该系统包括:沿接地板13的4个顶点设置的四组天线对。
其中,每组天线对包括第一天线单元11和第二天线单元12,第一天线单元11和第二天线单元12之间设置有上述任一种去耦组件100,以降低第一天线单元11和第二天线单元12之间产生的耦合。
示例性的,接地板13包括FR-4环氧玻璃布层压板,以及在FR-4环氧玻璃布层压板的一面印刷的金属铜皮,FR-4环氧玻璃布层压板的尺寸为:136mm×68mm,且厚度为1mm,其相对介电常数约为4.4。在每组天线对中,第一天线单元11和第二天线单元12的尺寸均为5mm×5mm×2.5mm,第一天线单元11和第二天线单元12之间的间距为16mm,该间距处于亚波长的范围内,此时,第一天线单元11和第二天线单元12之间的耦合较大,影响第一天线单元11和第二天线单元12的辐射效率。
对此,可在第一天线单元11和第二天线单元12之间设置去耦组件100,该去耦组件100由多个如图2所示的第一去耦单元10组成,第一去耦单元10中电介质基板21的尺寸:7mm×7mm×0.25mm,其材料为聚四氟乙烯玻璃布介质板(相对介电常数为2.55)基板,电介质基板21的单侧印刷有边长为6.6mm,线宽为0.15mm的正方形金属闭合导电环22,其中,闭合导电环22的法线分别指向第一天线单元11和第二天线单元12。
对上述结构的多天线系统进行仿真后,以任一组天线对为例,如图14所示,当第一天线单元11和第二天线单元12之间没有设置去耦组件100时,第一天线单元11和第二天线单元12之间的耦合在4.23GHz-5.58GHz的频带
范围内大于-10dB,导致第一天线单元11和第二天线单元12的辐射效率大为降低;而在第一天线单元11和第二天线单元12之间设置去耦组件100后,第一天线单元11和第二天线单元12之间的耦合在所有频段内均小于-10dB,如图14所示,去耦组件100能够在较宽的频率范围内(3GHz-6GHz内)将耦合从-7.5dB降低到-14dB,降低幅度约为6.5dB。
可以看出,去耦组件100能够显著降低第一天线单元11和第二天线单元12之间产生的耦合。
进一步地,由于第一天线单元11和第二天线单元12之间的耦合降低,可提高第一天线单元11和第二天线单元12的辐射效率,如图15所示,当第一天线单元11和第二天线单元12之间没有设置去耦组件100时(即去耦前),第一天线单元11和第二天线单元12只能在4.4GHz-5.9GHz的单频段内实现有效辐射(即辐射效率大于50%),而在第一天线单元11和第二天线单元12之间设置去耦组件100后(即去耦后),第一天线单元11和第二天线单元12在3.64GHz-3.86GHz和4.52GHz-5.06GHz这两个频段内的辐射效率均大于50%。
可以看出,对于图13所示的双频段的多天线系统,通过在天线对的第一天线单元11和第二天线单元12之间设置上述去耦组件100,可在较大的频率范围内有效降低相邻天线单元之间的耦合,从而提高天线单元的辐射效率。
进一步地,本发明实施例提供一种终端,该终端可包括上述实施例中描述的任一种多天线系统,以降低终端内天线单元之间的耦合。
其中,该终端可以是手机、平板电脑、PDA(Personal Digital Assistant,掌上电脑)等,本发明实施例对此不做限定。
至此,本发明的实施例提供一种去耦组件、多天线系统及终端,该多天线系统包括相邻的第一天线单元和第二天线单元,该第一天线单元和第二天线单元之间设置有去耦组件;其中,该去耦组件由具有电磁双各向异性或电各向异性的电磁材料构成,基于这种电磁双各向异性或电向异性,去耦组件可以改变其所在位置处电磁波的辐射方向,降低第一天线单元和第二天线单元辐射出的电磁波朝着彼此所在的区域传播的能量,从而减小这两个天线单元产生的辐射区域的交集,并且,由于上述去耦组件在较宽的频率范围内色散较小,即上述去耦组件在较宽的频率范围内等效的电磁参数都是比较稳定的,因此,可以在较宽的频率范围内达到去耦效果。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (15)
- 一种多天线系统,其特征在于,所述多天线系统包括:相邻的第一天线单元和第二天线单元,所述第一天线单元和所述第二天线单元之间设置有去耦组件;其中,所述去耦组件由具有电各向异性或电磁双各向异性的电磁材料构成,以降低所述第一天线单元和所述第二天线单元之间产生的耦合。
- 根据权利要求1所述的多天线系统,其特征在于,所述去耦组件包括N个第一去耦单元,N为大于0的整数;所述第一去耦单元包括:绝缘的电介质基板,以及设置在所述电介质基板上的至少一个闭合导电环,其中,所述闭合导电环所在的平面,与设置所述第一天线单元和所述第二天线单元的接地板相交。
- 根据权利要求2所述的多天线系统,其特征在于,所述闭合导电环的法线分别指向所述第一天线单元和所述第二天线单元。
- 根据权利要求2或3所述的多天线系统,其特征在于,相邻两个所述第一去耦单元之间相互接触;其中,所述电介质基板的厚度小于0.5个介质波长,所述介质波长是指所述第一天线单元工作时辐射的电磁波在所述电磁材料中的波长,所述第一天线单元的工作频率大于或等于所述第二天线单元的工作频率。
- 根据权利要求2或3所述的多天线系统,其特征在于,相邻两个所述第一去耦单元之间设置有间距,其中,所述电介质基板的厚度与所述间距大小之和小于0.5个介质波长,所述介质波长是指所述第一天线单元工作时辐射的电磁波在所述电磁材料中的波长,所述第一天线单元的工作频率大于或等于所述第二天线单元的工作频率。
- 根据权利要求4或5所述的多天线系统,其特征在于,所述电介质基板的任意边长小于0.5个所述介质波长。
- 根据权利要求2-6中任一项所述的多天线系统,其特征在于,所述电介质基板包括:与所述第一天线单元相对的第一表面,以及与所述第二天线单元相对的第二表面,所述闭合导电环设置在所述第一表面和/或所述第二表面。
- 根据权利要求1所述的多天线系统,其特征在于,所述去耦组件包括M个第二去耦单元,M为大于0的整数;所述第二去耦单元包括:平行设置的第一介质基板和第二介质基板,所述第一介质基板所在的平面与设置所述第一天线单元和所述第二天线单元的接地板相交,其中,所述第一介质基板的介电常数与所述第二介质基板的介电常数不同。
- 根据权利要求8所述的多天线系统,其特征在于,所述第一天线单元的介电常数与所述第二天线单元的介电常数相等;其中,所述第一介质基板的介电常数大于所述第一天线单元的介电常数,所述第二介质基板的介电常数小于所述第一天线单元的介电常数。
- 根据权利要求1-9中任一项所述的多天线系统,其特征在于,所述第一天线单元和所述第二天线单元均包括:天线支架,以及安装在天线支架上的辐射主体;所述辐射主体与所述去耦组件之间设有间距。
- 根据权利要求1-10中任一项所述的多天线系统,其特征在于,所述多天线系统还包括与所述去耦组件相对设置的接地板。
- 根据权利要求1-11中任一项所述的多天线系统,其特征在于,所述多天线系统包括:沿接地板两端对称设置的第一天线组和第二天线组,所述第一天线组包括沿所述接地板边缘依次排列的第三天线单元、所述第一天线单元、所述第二天线单元以及第四天线单元,其中,在所述第一天线单元和所述第二天线单元之间设置有所述去耦组件。
- 根据权利要求1-11中任一项所述的多天线系统,其特征在于,所述多天线系统包括:沿接地板的4个顶点设置的四组天线对,每组天线对包括所述第一天线单元和所述第二天线单元,所述第一天线单元和所述第二天线单元之间设置有所述去耦组件。
- 一种去耦组件,其特征在于,所述去耦组件设置于相邻的第一天线单元和第二天线单元之间,其中,所述去耦组件由具有电各向异性或电磁双各向异性的电磁材料构成,以降低所述第一天线单元和所述第二天线单元之间的耦合。
- 一种终端,其特征在于,所述终端包括如权利要求1-13中任一项所述的多天线系统。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17838299.0A EP3487001A4 (en) | 2016-08-08 | 2017-02-16 | DECOUPLING ARRANGEMENT, MULTI-DISPLAY SYSTEM AND END DEVICE |
US16/263,923 US10950933B2 (en) | 2016-08-08 | 2019-01-31 | Decoupling assembly, multiple-antenna system, and terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610648456.8 | 2016-08-08 | ||
CN201610648456.8A CN107706529B (zh) | 2016-08-08 | 2016-08-08 | 一种去耦组件、多天线系统及终端 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/263,923 Continuation US10950933B2 (en) | 2016-08-08 | 2019-01-31 | Decoupling assembly, multiple-antenna system, and terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018028162A1 true WO2018028162A1 (zh) | 2018-02-15 |
Family
ID=61161641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/073811 WO2018028162A1 (zh) | 2016-08-08 | 2017-02-16 | 一种去耦组件、多天线系统及终端 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10950933B2 (zh) |
EP (1) | EP3487001A4 (zh) |
CN (1) | CN107706529B (zh) |
WO (1) | WO2018028162A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110233349A (zh) * | 2019-04-24 | 2019-09-13 | 西安易朴通讯技术有限公司 | 多输入多输出天线及终端设备 |
CN114843760A (zh) * | 2022-04-12 | 2022-08-02 | 上海大学 | 一种基于超材料的5g双频高隔离mimo天线 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021000079A1 (zh) * | 2019-06-29 | 2021-01-07 | 瑞声声学科技(深圳)有限公司 | 一种天线模组及移动终端 |
CN112803146A (zh) * | 2019-11-14 | 2021-05-14 | 惠州硕贝德无线科技股份有限公司 | 一种具备同频互耦效应降低装置的基站天线 |
CN111446550B (zh) * | 2020-02-27 | 2022-02-01 | Oppo广东移动通信有限公司 | 吸波结构、天线组件及电子设备 |
CN111600128A (zh) * | 2020-05-27 | 2020-08-28 | 西安朗普达通信科技有限公司 | 一种新型去耦表面覆层 |
CN112510368B (zh) * | 2020-10-19 | 2023-06-09 | 西安朗普达通信科技有限公司 | 一种可调谐双频去耦芯片 |
CN112510366A (zh) * | 2020-10-19 | 2021-03-16 | 西安朗普达通信科技有限公司 | 一种级联式去耦芯片 |
CN116706539A (zh) | 2022-02-25 | 2023-09-05 | 富泰京精密电子(烟台)有限公司 | 多频段天线及电子装置 |
CN114725679A (zh) * | 2022-04-21 | 2022-07-08 | 深圳大学 | 适用于紧凑环境的多天线混合解耦装置及无线通信系统 |
CN114976602B (zh) * | 2022-07-13 | 2022-12-20 | 荣耀终端有限公司 | 一种平面倒f天线对及电子设备 |
FR3143219A1 (fr) * | 2022-12-07 | 2024-06-14 | Thales | Système antennaire amélioré et dispositif de découplage associé |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020101388A1 (en) * | 2000-11-17 | 2002-08-01 | Ems Technologies | Radio frequency isolation card |
CN1768448A (zh) * | 2003-02-01 | 2006-05-03 | 秦内蒂克有限公司 | 相控阵天线和单元间互耦控制方法 |
CN101160690A (zh) * | 2005-01-21 | 2008-04-09 | 洛塔尼股份有限公司 | 用于无线电收发器的方法和装置 |
CN203607543U (zh) * | 2013-12-13 | 2014-05-21 | 深圳光启创新技术有限公司 | 阵列天线 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007166115A (ja) * | 2005-12-12 | 2007-06-28 | Matsushita Electric Ind Co Ltd | アンテナ装置 |
GB0611983D0 (en) * | 2006-06-16 | 2006-07-26 | Qinetiq Ltd | Electromagnetic radiation decoupler |
JP2008245132A (ja) * | 2007-03-28 | 2008-10-09 | Toshiba Corp | 無線装置 |
US7773033B2 (en) * | 2008-09-30 | 2010-08-10 | Raytheon Company | Multilayer metamaterial isolator |
KR101638798B1 (ko) * | 2010-01-21 | 2016-07-13 | 삼성전자주식회사 | 무선통신 시스템에서 다중 안테나 장치 |
US8816921B2 (en) * | 2011-04-27 | 2014-08-26 | Blackberry Limited | Multiple antenna assembly utilizing electro band gap isolation structures |
TWI511378B (zh) * | 2012-04-03 | 2015-12-01 | Ind Tech Res Inst | 多頻多天線系統及其通訊裝置 |
TW201442340A (zh) * | 2013-04-18 | 2014-11-01 | Ind Tech Res Inst | 多天線系統 |
CN104218317A (zh) * | 2013-06-03 | 2014-12-17 | 中兴通讯股份有限公司 | 一种印刷电路板及采用多入多出天线技术的无线终端 |
US9541678B2 (en) * | 2013-11-13 | 2017-01-10 | Arc Technologies, Inc. | Multi-layer absorber |
US9774079B2 (en) * | 2014-04-08 | 2017-09-26 | Microsoft Technology Licensing, Llc | Capacitively-coupled isolator assembly |
CN104269614B (zh) * | 2014-09-12 | 2017-01-11 | 电子科技大学 | 基于时间反演的sierpinski分形MIMO天线 |
CN204558648U (zh) * | 2015-04-30 | 2015-08-12 | 深圳光启高等理工研究院 | 阵列天线 |
-
2016
- 2016-08-08 CN CN201610648456.8A patent/CN107706529B/zh not_active Expired - Fee Related
-
2017
- 2017-02-16 EP EP17838299.0A patent/EP3487001A4/en not_active Withdrawn
- 2017-02-16 WO PCT/CN2017/073811 patent/WO2018028162A1/zh unknown
-
2019
- 2019-01-31 US US16/263,923 patent/US10950933B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020101388A1 (en) * | 2000-11-17 | 2002-08-01 | Ems Technologies | Radio frequency isolation card |
CN1768448A (zh) * | 2003-02-01 | 2006-05-03 | 秦内蒂克有限公司 | 相控阵天线和单元间互耦控制方法 |
CN101160690A (zh) * | 2005-01-21 | 2008-04-09 | 洛塔尼股份有限公司 | 用于无线电收发器的方法和装置 |
CN203607543U (zh) * | 2013-12-13 | 2014-05-21 | 深圳光启创新技术有限公司 | 阵列天线 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3487001A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110233349A (zh) * | 2019-04-24 | 2019-09-13 | 西安易朴通讯技术有限公司 | 多输入多输出天线及终端设备 |
CN114843760A (zh) * | 2022-04-12 | 2022-08-02 | 上海大学 | 一种基于超材料的5g双频高隔离mimo天线 |
CN114843760B (zh) * | 2022-04-12 | 2023-08-22 | 上海大学 | 一种基于超材料的5g双频高隔离mimo天线 |
Also Published As
Publication number | Publication date |
---|---|
CN107706529B (zh) | 2021-01-15 |
CN107706529A (zh) | 2018-02-16 |
US10950933B2 (en) | 2021-03-16 |
US20190165468A1 (en) | 2019-05-30 |
EP3487001A1 (en) | 2019-05-22 |
EP3487001A4 (en) | 2019-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018028162A1 (zh) | 一种去耦组件、多天线系统及终端 | |
US11973280B2 (en) | Antenna element and terminal device | |
US10923808B2 (en) | Antenna system | |
US11387568B2 (en) | Millimeter-wave antenna array element, array antenna, and communications product | |
Ramachandran et al. | A four-port MIMO antenna using concentric square-ring patches loaded with CSRR for high isolation | |
WO2020233478A1 (zh) | 天线单元及终端设备 | |
KR102614892B1 (ko) | 안테나 유닛 및 단말 장비 | |
WO2021104191A1 (zh) | 天线单元及电子设备 | |
JP7228720B2 (ja) | ハウジングアセンブリ、アンテナデバイス及び電子機器 | |
WO2020119657A1 (zh) | 天线和通信设备 | |
US11201394B2 (en) | Antenna device and electronic device | |
Kamal et al. | Printed meander line MIMO antenna integrated with air gap, DGS and RIS: A low mutual coupling design for LTE applications | |
WO2021083214A1 (zh) | 天线单元及电子设备 | |
WO2021083223A1 (zh) | 天线单元及电子设备 | |
Mohsen et al. | Performance of microstrip patch antenna for single and array element with and without EBG | |
Xia et al. | Rectangular dielectric resonator antenna fed by offset tapered copper and graphene microstrip lines for 5G communications | |
CN108808264A (zh) | 一种介质谐振器天线及基站 | |
TWI515961B (zh) | 指向性天線及用於指向性天線之輻射場型調整方法 | |
CN107196050B (zh) | 一种加载电磁超材料的小型化双频带圆极化天线 | |
WO2021083220A1 (zh) | 天线单元及电子设备 | |
WO2021083213A1 (zh) | 天线单元及电子设备 | |
WO2021083212A1 (zh) | 天线单元及电子设备 | |
WO2021083218A1 (zh) | 天线单元及电子设备 | |
Sun et al. | Wideband dual circularly polarized coplanar waveguide‐fed slot antenna with an arrow‐shaped strip | |
WO2021000780A1 (zh) | 天线组件及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17838299 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017838299 Country of ref document: EP Effective date: 20190213 |