WO2018053960A1 - 一种吸收电路、供电电路及液晶显示器 - Google Patents
一种吸收电路、供电电路及液晶显示器 Download PDFInfo
- Publication number
- WO2018053960A1 WO2018053960A1 PCT/CN2016/111462 CN2016111462W WO2018053960A1 WO 2018053960 A1 WO2018053960 A1 WO 2018053960A1 CN 2016111462 W CN2016111462 W CN 2016111462W WO 2018053960 A1 WO2018053960 A1 WO 2018053960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrical switch
- comparator
- voltage
- transformer
- resistor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/06—Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0038—Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0064—Magnetic structures combining different functions, e.g. storage, filtering or transformation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
- H02M1/344—Active dissipative snubbers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
- H02M1/348—Passive dissipative snubbers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to the field of display technologies, and in particular, to a voltage output control circuit and a liquid crystal display.
- the absorption circuit is connected in parallel between the primary of the transformer.
- the voltage spike and EMI problems caused by the leakage inductance of the transformer can be suppressed to some extent, but the leakage inductance of the transformer batch may be large, resulting in voltage spikes and EMI caused by leakage inductance for different batches of transformers. The problem is offset and the best results are not achieved.
- Another object of the present invention is to provide a power supply circuit.
- the invention provides an absorbing circuit, which is applied to a power supply circuit, the absorbing circuit includes a comparing unit and an adjusting unit, wherein the comparing unit is configured to receive a voltage of the same name end of the transformer primary of the power supply circuit, and the voltage is first Comparing with the second preset voltage, outputting a comparison result, the adjusting unit is configured to adjust a resistance and a capacitance connected to the transformer according to the comparison result, wherein the first preset voltage is greater than the second preset voltage .
- the comparison unit includes a first comparator, a second comparator, a first electrical switch and a first resistor, and a non-inverting input of the first comparator is connected to the same-name end of the transformer to receive the voltage Receiving, by the inverting input end of the first comparator, the first preset voltage, the first comparator
- the output terminal is connected to the adjustment circuit
- the non-inverting input terminal of the second comparator receives the second preset voltage
- the inverting input terminal of the second comparator is connected to the same-name end of the transformer Receiving the voltage
- an output of the second comparator is connected to a control end of the first switch
- a first end of the first switch is connected to a voltage terminal through the first resistor, and is connected to the And an adjustment unit, wherein the second end of the first switch is grounded.
- the adjusting unit includes a second electrical switch, a third electrical switch, a fourth electrical switch, a fifth electrical switch, a second resistor, a third resistor, a fourth resistor, a first capacitor, a second capacitor, and a third capacitor And a diode, a control end of the second electrical switch is connected to an output end of the first comparator, and a first end of the second electrical switch is connected to a different end of the transformer primary through the second resistor a second end of the second electrical switch is coupled to a cathode of the diode, an anode of the diode is coupled to a terminal of the same name of the primary of the transformer, and a control end of the third electrical switch is coupled to the first a first end of the switch, a first end of the third electrical switch being coupled to a different end of the transformer primary through the second resistor, and further coupled to a cathode of the diode by the third resistor, a second end of the third electrical switch is coupled to the cathode of
- the first to fifth electrical switches are NPN-type field effect transistors, and the control terminals, the first ends and the second ends of the first to fifth electrical switches are respectively a gate and a drain of the FET, and Source.
- the invention provides a power supply circuit comprising a transformer and an absorbing circuit, the absorbing circuit comprising a comparing unit and an adjusting unit, wherein the comparing unit is configured to receive a voltage of a transformer primary end of the power supply circuit, and the voltage and the Comparing the first preset voltage with the second preset voltage, and outputting the comparison result, the adjusting unit is configured to adjust the resistance and the capacitance of the transformer to be connected according to the comparison result, wherein the first preset voltage is greater than the second preset Voltage.
- the comparison unit includes a first comparator, a second comparator, a first electrical switch and a first resistor, and a non-inverting input of the first comparator is connected to the same-name end of the transformer to receive the voltage
- the inverting input of the first comparator receives the first predetermined voltage
- the output of the first comparator is coupled to the adjustment circuit
- the non-inverting input of the second comparator receives the Second pre Setting a voltage
- an inverting input end of the second comparator is connected to the same name end of the transformer to receive the voltage
- an output end of the second comparator is connected to a control end of the first switch
- the first end of the first switch is connected to the voltage terminal through the first resistor, and is connected to the adjusting unit, and the second end of the first switch is grounded.
- the adjusting unit includes a second electrical switch, a third electrical switch, a fourth electrical switch, a fifth electrical switch, a second resistor, a third resistor, a fourth resistor, a first capacitor, a second capacitor, and a third capacitor And a diode, a control end of the second electrical switch is connected to an output end of the first comparator, and a first end of the second electrical switch is connected to a different end of the transformer primary through the second resistor a second end of the second electrical switch is coupled to a cathode of the diode, an anode of the diode is coupled to a terminal of the same name of the primary of the transformer, and a control end of the third electrical switch is coupled to the first a first end of the switch, a first end of the third electrical switch being coupled to a different end of the transformer primary through the second resistor, and further coupled to a cathode of the diode by the third resistor, a second end of the third electrical switch is coupled to the cathode of
- the first to fifth electrical switches are NPN-type field effect transistors, and the control terminals, the first ends and the second ends of the first to fifth electrical switches are respectively a gate and a drain of the FET, and Source.
- the invention provides a display device comprising a display unit and the above-mentioned power supply circuit, wherein the power supply circuit supplies power to the display unit.
- the absorbing circuit of the present invention is applied to a power supply circuit, and the absorbing circuit includes a comparing unit and a regulating unit, wherein the comparing unit is configured to receive a voltage of the same name end of the transformer primary of the power supply circuit, and compare the voltage with the first and the The two preset voltages are compared to output a comparison result, and the adjusting unit is configured to adjust a resistance and a capacitance connected to the transformer according to the comparison result, wherein the first preset voltage is greater than the second preset voltage. Therefore, the present invention can control the resistance and capacitance of the transformer according to the leakage inductance of the transformer (ie, the voltage), thereby adaptively suppressing corresponding voltage spikes and EMI.
- the comparing unit is configured to receive a voltage of the same name end of the transformer primary of the power supply circuit, and compare the voltage with the first and the The two preset voltages are compared to output a comparison result
- the adjusting unit is configured to adjust a resistance and a capacitance connected to
- FIG. 1 is a block diagram of an absorbing circuit provided by a first aspect of the present invention.
- Figure 2 is a circuit diagram of Figure 1.
- FIG. 3 is a circuit diagram of a power supply circuit according to a second aspect of the present invention.
- FIG. 4 is a block diagram of a display device according to a third aspect of the present invention.
- connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined.
- the ground connection, or the integral connection may be a mechanical connection; it may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
- the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
- a first embodiment of the present invention provides an absorbing circuit 100.
- the absorption circuit 100 is applied to a power supply circuit.
- the snubber circuit 100 includes a comparison unit 10 and an adjustment unit 20, and the comparison unit 10 is configured to receive a voltage of the same-name end of the transformer primary of the power supply circuit, and compare the voltage with the first and second preset voltages.
- the comparison result is output, and the adjusting unit 20 is configured to adjust a resistance and a capacitance connected to the transformer according to the comparison result, wherein the first preset voltage is greater than the second preset voltage.
- the comparison unit 10 compares the voltage with the first and second preset voltages, and three comparison results appear.
- the first comparison result is that the voltage is greater than the first preset voltage
- the second comparison result is that the voltage is less than the second preset voltage
- the third comparison result is that the voltage is greater than the second preset voltage Less than the first predetermined voltage.
- the adjusting unit 20 adjusts three different resistors and capacitors to the transformer according to the first to third comparison results, so that the transformer can be controlled according to the leakage inductance of the transformer (ie, the voltage)
- the resistors and capacitors in turn, adaptively suppress corresponding voltage spikes and EMI (Electro-Magnetic Interference).
- the comparison unit 10 includes a first comparator U1, a second comparator U2, a first electrical switch Q1, and a first resistor R1.
- the non-inverting input of the first comparator U1 is connected to The transformer primary has the same name to receive the voltage VA, the inverting input end of the first comparator U1 receives the first preset voltage Vref1, and the output of the first comparator U1 is connected to the The adjusting circuit 20, the non-inverting input terminal of the second comparator U2 receives the second preset voltage Vref2, and the inverting input end of the second comparator U2 is connected to the same-name end of the transformer primary to receive the a voltage VA, the output of the second comparator U2 is connected to the control end of the first switch Q1, the first end of the first switch Q1 is connected to the voltage terminal VCC through the first resistor R1, and is connected To the adjustment unit 20, the second end of the first switch Q1 is grounded.
- the adjusting unit 20 includes a second electrical switch Q2, a third electrical switch Q3, a fourth electrical switch Q4, a fifth electrical switch Q5, a second resistor R2, a third resistor R3, a fourth resistor R4, and a first capacitor C1. a second capacitor C2, a third capacitor C3, and a diode D.
- the control end of the second electrical switch Q2 is connected to the output end of the first comparator U1, and the first end of the second electrical switch Q2 passes the Second electric a resistor R2 is coupled to the different end of the transformer primary, a second end of the second electrical switch Q2 is coupled to the cathode of the diode D, and an anode of the diode D is coupled to the same-named end of the transformer primary, a control end of the third electrical switch Q2 is connected to the first end of the first electrical switch Q1, and a first end of the third electrical switch Q3 is connected to the transformer primary by the second resistor R2
- the terminal is also connected to the cathode of the diode D through the third resistor R3, the second end of the third electrical switch Q3 is connected to the cathode of the diode D, and the control end of the fourth electrical switch Q4 is connected.
- the first end of the fourth electrical switch Q4 is connected to the different end of the transformer primary through the first capacitor C1, and the fourth electrical switch Q4
- the second end is connected to the cathode of the diode D
- the control end of the fifth electric switch Q5 is connected to the first end of the first electric switch Q1
- the first end of the fifth electric switch Q5 passes the
- the second capacitor C2 is connected to the different end of the transformer primary, and is also connected by the third capacitor C3
- a second terminal of the fifth switch Q5 is electrically connected to the cathode of the diode D.
- the leakage inductance of the transformer is larger, and the higher the voltage at point A, the worse the EMI effect.
- the leakage inductance becomes large, the first comparator U1 outputs a high level, and the second comparator U2 outputs a low level signal.
- C C1//C2 (the first capacitor C1 is connected in parallel with the second capacitor). Therefore, the capacitance C that is connected to the transformer is the largest, and the resistance R that is connected to the transformer is the smallest, so that the absorption capacity of the absorption circuit 100 becomes strong. That is, as the leakage inductance of the transformer increases, the absorption capacity of the absorption circuit 100 is correspondingly enhanced.
- the leakage inductance is within the normal range, the first comparator U1 outputs a low level, and the second comparator U2 outputs a low level signal.
- the capacitance of the transformer C C2, therefore, the capacitance C connected to the transformer and the resistance R connected to the transformer maintain the original actual value.
- the leakage inductance becomes small, the first comparator U1 outputs a low level, and the second comparator U2 outputs a high level signal.
- the absorbing circuit 100 adjusts the absorption capability by detecting the voltage of the same-name end of the transformer primary, so that the voltage spike is minimized, the EMI effect is optimal, and the loss of the power supply circuit can also be reduced.
- the first to fifth electrical switches Q1-Q5 are NPN type field effect transistors, and the control ends, the first ends, and the second ends of the first to fifth electrical switches Q1-Q5 are respectively The gate, drain and source of the FET. In other embodiments, the first to fifth electrical switches Q1-Q5 may also be other types of transistors.
- a second embodiment of the present invention provides a power supply circuit 300.
- the power supply circuit 300 includes a transformer T and an absorption circuit.
- the absorbing circuit is the absorbing circuit 100 provided by the first aspect described above. Specifically:
- the absorption circuit 100 is applied to a power supply circuit.
- the snubber circuit 100 includes a comparison unit 10 and an adjustment unit 20, and the comparison unit 10 is configured to receive a voltage of the same-name end of the transformer primary of the power supply circuit, and compare the voltage with the first and second preset voltages.
- the comparison result is output, and the adjusting unit 20 is configured to adjust a resistance and a capacitance connected to the transformer according to the comparison result, wherein the first preset voltage is greater than the second preset voltage.
- the comparison unit 10 compares the voltage with the first and second preset voltages, and three comparison results appear.
- the first comparison result is that the voltage is greater than the first preset voltage
- the second comparison result is that the voltage is less than the second preset voltage
- the third comparison result is that the voltage is greater than the second preset voltage Less than the first predetermined voltage.
- the adjusting unit 20 adjusts three different resistors and capacitors to the transformer according to the first to third comparison results, so that the transformer can be controlled according to the leakage inductance of the transformer (ie, the voltage)
- the resistors and capacitors in turn, adaptively suppress corresponding voltage spikes and EMI (Electro-Magnetic Interference).
- the comparison unit 10 includes a first comparator U1, a second comparator U2, a first electrical switch Q1, and a first resistor R1.
- the non-inverting input terminal of the first comparator U1 is connected to the transformer primary name. End, to receive the voltage VA, the inverting input terminal of the first comparator U1 receives The first preset voltage Uref1, the output end of the first comparator U1 is connected to the adjustment circuit 20, and the non-inverting input end of the second comparator U2 receives the second preset voltage Vref2, the first The inverting input terminal of the second comparator U2 is connected to the same-name end of the transformer to receive the voltage VA, and the output end of the second comparator U2 is connected to the control terminal of the first switch Q1.
- a first end of a switch Q1 is connected to the voltage terminal VCC through the first resistor R1, and is connected to the adjusting unit 20, and the second end of the first switch Q1 is grounded.
- the adjusting unit 20 includes a second electrical switch Q2, a third electrical switch Q3, a fourth electrical switch Q4, a fifth electrical switch Q5, a second resistor R2, a third resistor R3, a fourth resistor R4, and a first capacitor C1. a second capacitor C2, a third capacitor C3, and a diode D.
- the control end of the second electrical switch Q2 is connected to the output end of the first comparator U1, and the first end of the second electrical switch Q2 passes the a second resistor R2 is coupled to the different end of the transformer primary, a second end of the second electrical switch Q2 is coupled to the cathode of the diode D, and an anode of the diode D is coupled to the same end of the transformer primary
- the control end of the third electrical switch Q2 is connected to the first end of the first electrical switch Q1, and the first end of the third electrical switch Q3 is connected to the primary of the transformer through the second resistor R2
- the opposite end is also connected to the cathode of the diode D through the third resistor R3, the second end of the third electrical switch Q3 is connected to the cathode of the diode D, and the control of the fourth electrical switch Q4
- the end is connected to the output end of the first comparator U1, and the first end of the fourth electric switch Q4 is passed
- the first capacitor C1 is connected to
- the leakage inductance of the transformer is larger, and the higher the voltage at point A, the worse the EMI effect.
- the leakage inductance becomes large, the first comparator U1 outputs a high level, and the second comparator U2 outputs a low level signal.
- C C1//C2 (the first capacitor C1 is connected in parallel with the second capacitor). Therefore, the capacitance C that is connected to the transformer is the largest, and the resistance R that is connected to the transformer is the smallest, so the absorption circuit 100 The absorption capacity becomes stronger. That is, as the leakage inductance of the transformer increases, the absorption capacity of the absorption circuit 100 is correspondingly enhanced.
- the leakage inductance is within the normal range, the first comparator U1 outputs a low level, and the second comparator U2 outputs a low level signal.
- the capacitance of the transformer C C2, therefore, the capacitance C connected to the transformer and the resistance R connected to the transformer maintain the original actual value.
- the leakage inductance becomes small, the first comparator U1 outputs a low level, and the second comparator U2 outputs a high level signal.
- the capacitance C is the smallest, and the resistance R connected to the transformer is the largest, so that the absorption capacity of the absorption circuit 100 is weakened. That is, as the leakage inductance of the transformer is reduced, the absorption capacity of the absorption circuit 100 is correspondingly weakened, and the loss is reduced while the voltage spike is suppressed, and the efficiency is improved.
- the absorbing circuit 100 adjusts the absorption capability by detecting the voltage of the same-name end of the transformer primary, so that the voltage spike is minimized, the EMI effect is optimal, and the loss of the power supply circuit 300 can also be reduced.
- the first to fifth electrical switches Q1-Q5 are NPN type field effect transistors, and the control ends, the first ends, and the second ends of the first to fifth electrical switches Q1-Q5 are respectively The gate, drain and source of the FET. In other embodiments, the first to fifth electrical switches Q1-Q5 may also be other types of transistors.
- a third embodiment of the present invention provides a display device 400.
- the display device 400 includes a display unit 410 and a power supply circuit.
- the power supply circuit is the power supply circuit 300 provided by the second solution. Specifically:
- the power supply circuit 300 includes a transformer T and an absorption circuit 100.
- the absorption circuit 100 is applied to a power supply circuit.
- the snubber circuit 100 includes a comparison unit 10 and an adjustment unit 20, and the comparison unit 10 is configured to receive a voltage of the same-name end of the transformer primary of the power supply circuit, and compare the voltage with the first and second preset voltages. Outputting a comparison result, the adjusting unit 20 is configured to adjust a resistance and a capacitance connected to the transformer according to the comparison result, wherein the first preset voltage is greater than the The second preset voltage.
- the comparison unit 10 compares the voltage with the first and second preset voltages, and three comparison results appear.
- the first comparison result is that the voltage is greater than the first preset voltage
- the second comparison result is that the voltage is less than the second preset voltage
- the third comparison result is that the voltage is greater than the second preset voltage Less than the first predetermined voltage.
- the adjusting unit 20 adjusts three different resistors and capacitors to the transformer according to the first to third comparison results, so that the transformer can be controlled according to the leakage inductance of the transformer (ie, the voltage)
- the resistors and capacitors in turn, adaptively suppress corresponding voltage spikes and EMI (Electro-Magnetic Interference).
- the comparison unit 10 includes a first comparator U1, a second comparator U2, a first electrical switch Q1, and a first resistor R1.
- the non-inverting input terminal of the first comparator U1 is connected to the transformer primary name. Receiving the voltage VA, the inverting input end of the first comparator U1 receives the first preset voltage Vref1, and the output end of the first comparator U1 is connected to the adjusting circuit 20, The non-inverting input terminal of the second comparator U2 receives the second preset voltage Vref2, and the inverting input end of the second comparator U2 is connected to the same-name end of the transformer to receive the voltage VA.
- the output end of the second comparator U2 is connected to the control end of the first switch Q1, the first end of the first switch Q1 is connected to the voltage terminal VCC through the first resistor R1, and is connected to the adjusting unit 20.
- the second end of the first switch Q1 is grounded.
- the adjusting unit 20 includes a second electrical switch Q2, a third electrical switch Q3, a fourth electrical switch Q4, a fifth electrical switch Q5, a second resistor R2, a third resistor R3, a fourth resistor R4, and a first capacitor C1. a second capacitor C2, a third capacitor C3, and a diode D.
- the control end of the second electrical switch Q2 is connected to the output end of the first comparator U1, and the first end of the second electrical switch Q2 passes the a second resistor R2 is coupled to the different end of the transformer primary, a second end of the second electrical switch Q2 is coupled to the cathode of the diode D, and an anode of the diode D is coupled to the same end of the transformer primary
- the control end of the third electrical switch Q2 is connected to the first end of the first electrical switch Q1, and the first end of the third electrical switch Q3 is connected to the primary of the transformer through the second resistor R2
- the opposite end is also connected to the cathode of the diode D through the third resistor R3, the second end of the third electrical switch Q3 is connected to the cathode of the diode D, and the control of the fourth electrical switch Q4
- the end is connected to the output end of the first comparator U1, and the first end of the fourth electric switch Q4 is passed
- the first capacitor C1 is connected to
- the leakage inductance of the transformer is larger, and the higher the voltage at point A, the worse the EMI effect.
- the leakage inductance becomes large, the first comparator U1 outputs a high level, and the second comparator U2 outputs a low level signal.
- C C1//C2 (the first capacitor C1 is connected in parallel with the second capacitor). Therefore, the capacitance C that is connected to the transformer is the largest, and the resistance R that is connected to the transformer is the smallest, so that the absorption capacity of the absorption circuit 100 becomes strong. That is, as the leakage inductance of the transformer increases, the absorption capacity of the absorption circuit 100 is correspondingly enhanced.
- the leakage inductance is within the normal range, the first comparator U1 outputs a low level, and the second comparator U2 outputs a low level signal.
- the capacitance of the transformer C C2, therefore, the capacitance C connected to the transformer and the resistance R connected to the transformer maintain the original actual value.
- the leakage inductance becomes small, the first comparator U1 outputs a low level, and the second comparator U2 outputs a high level signal.
- the capacitance C is the smallest, and the resistance R connected to the transformer is the largest, so that the absorption capacity of the absorption circuit 100 is weakened. That is, as the leakage inductance of the transformer is reduced, the absorption capacity of the absorption circuit 100 is correspondingly weakened, and the loss is reduced while the voltage spike is suppressed, and the efficiency is improved.
- the absorbing circuit 100 adjusts the absorbing capability by detecting the voltage of the same name of the transformer primary, thereby minimizing the voltage spike, optimizing the EMI effect, and reducing the loss of the power supply circuit 300. The loss of the display device 400 is reduced.
- the first to fifth electrical switches Q1-Q5 are NPN type field effect transistors
- the control terminal, the first terminal and the second terminal of the first to fifth electrical switches Q1-Q5 are respectively a gate, a drain and a source of the FET.
- the first to fifth electrical switches Q1-Q5 may also be other types of transistors.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种吸收电路,应用于供电电路,该吸收电路包括比较单元(10)及调节单元(20),比较单元用于接收供电电路的变压器(T)初级同名端的电压,并将电压与第一预设电压(Vref1)及第二预设电压(Vref2)进行比较,输出比较结果,调节单元用于根据比较结果调节接入变压器的电阻(R2、R3、R4)和电容(C1、C2、C3),其中,第一预设电压大于第二预设电压。该吸收电路可以根据变压器的漏感控制接入变压器的电阻和电容,进而抑制相应的电压尖峰和EMI。
Description
本发明要求2016年9月20日递交的发明名称为“一种吸收电路、供电电路及液晶显示器”的申请号201610836167.0的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
本发明涉及一种显示技术领域,尤其是涉及一种电压输出控制电路及液晶显示器。
目前现在的供电电路架构为了抑制变压器漏感造成的电压尖峰及EMI问题,在变压器初级之间会并联吸收电路。这些方案中,变压器漏感造成的电压尖峰和EMI问题都能得到一定的抑制,但是因为变压器批次的漏感差异可能较大,导致针对不同批次的变压器由漏感造成的电压尖峰和EMI问题出现偏移,不能达到最佳效果。
发明内容
本发明的目的在于提供一种吸收电路,以适用于不同批次的变压器,来抑制相应变压器的漏感造成的电压尖峰和EMI。
本发明的另一目的在于提供一种供电电路。
为了实现上述目的,本发明实施方式提供如下技术方案:
本发明提供一种吸收电路,应用于供电电路,所述吸收电路包括比较单元及调节单元,所述比较单元用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。
其中,所述比较单元包括第一比较器、第二比较器、第一电开关及第一电阻,所述第一比较器的同相输入端连接至所述变压器初级同名端,以接收所述电压,所述第一比较器的反相输入端接收所述第一预设电压,所述第一比较器
的输出端连接至所述调节电路,所述第二比较器的同相输入端接收所述第二预设电压,所述第二比较器的反相输入端连接至所述变压器初级同名端,以接收所述电压,所述第二比较器的输出端连接至所述第一开关的控制端,所述第一开关的第一端通过所述第一电阻连接至电压端,且连接至所述调节单元,所述第一开关的第二端接地。
其中,所述调节单元包括第二电开关、第三电开关、第四电开关、第五电开关、第二电阻、第三电阻、第四电阻、第一电容、第二电容、第三电容及二极管,所述第二电开关的控制端连接至所述第一比较器的输出端,所述第二电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,所述第二电开关的第二端连接至所述二极管的阴极,所述二极管的阳极连接至所述变压器初级的同名端,所述第三电开关的控制端连接至所述第一电开关的第一端,所述第三电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,还通过所述第三电阻连接至所述二极管的阴极,所述第三电开关的第二端连接至所述二极管的阴极,所述第四电开关的控制端连接至所述第一比较器的输出端,所述第四电开关的第一端通过所述第一电容连接至所述变压器初级的异名端,所述第四电开关的第二端连接至所述二极管的阴极,所述第五电开关的控制端连接至所述第一电开关的第一端,所述第五电开关的第一端通过所述第二电容连接至所述变压器初级的异名端,还通过所述第三电容连接至所述二极管的阴极,所述第五电开关的第二端连接至所述二极管的阴极。
其中,所述第一至第五电开关为NPN型场效应管,所述第一至第五电开关的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。
本发明提供一种供电电路,包括变压器及吸收电路,所述吸收电路包括比较单元及调节单元,所述比较单元用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。
其中,所述比较单元包括第一比较器、第二比较器、第一电开关及第一电阻,所述第一比较器的同相输入端连接至所述变压器初级同名端,以接收所述电压,所述第一比较器的反相输入端接收所述第一预设电压,所述第一比较器的输出端连接至所述调节电路,所述第二比较器的同相输入端接收所述第二预
设电压,所述第二比较器的反相输入端连接至所述变压器初级同名端,以接收所述电压,所述第二比较器的输出端连接至所述第一开关的控制端,所述第一开关的第一端通过所述第一电阻连接至电压端,且连接至所述调节单元,所述第一开关的第二端接地。
其中,所述调节单元包括第二电开关、第三电开关、第四电开关、第五电开关、第二电阻、第三电阻、第四电阻、第一电容、第二电容、第三电容及二极管,所述第二电开关的控制端连接至所述第一比较器的输出端,所述第二电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,所述第二电开关的第二端连接至所述二极管的阴极,所述二极管的阳极连接至所述变压器初级的同名端,所述第三电开关的控制端连接至所述第一电开关的第一端,所述第三电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,还通过所述第三电阻连接至所述二极管的阴极,所述第三电开关的第二端连接至所述二极管的阴极,所述第四电开关的控制端连接至所述第一比较器的输出端,所述第四电开关的第一端通过所述第一电容连接至所述变压器初级的异名端,所述第四电开关的第二端连接至所述二极管的阴极,所述第五电开关的控制端连接至所述第一电开关的第一端,所述第五电开关的第一端通过所述第二电容连接至所述变压器初级的异名端,还通过所述第三电容连接至所述二极管的阴极,所述第五电开关的第二端连接至所述二极管的阴极。
其中,所述第一至第五电开关为NPN型场效应管,所述第一至第五电开关的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。
本发明提供一种显示设备,包括显示单元及上述的供电电路,所述供电电路为所述显示单元供电。
本发明实施例具有如下优点或有益效果:
本发明的吸收电路,应用于供电电路,所述吸收电路包括比较单元及调节单元,所述比较单元用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。因此,本发明可以根据所述变压器的漏感(即为所述电压)控制接入所述变压器的电阻和电容,进而适应地抑制相应的电压尖峰和EMI。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一方案提供的一种吸收电路的框图。
图2是图1的电路图。
图3是本发明第二方案提供的一种供电电路的电路图。
图4是本发明第三方案提供的一种显示设备的框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。若本说明书中出现“工序”的用语,其不仅是指独立的工序,在与其它工序
无法明确区别时,只要能实现该工序所预期的作用则也包括在本用语中。另外,本说明书中用“~”表示的数值范围是指将“~”前后记载的数值分别作为最小值及最大值包括在内的范围。在附图中,结构相似或相同的用相同的标号表示。
请参阅图1,本发明第一方案实施例提供一种吸收电路100。所述吸收电路100应用于供电电路中。所述吸收电路100包括比较单元10及调节单元20,所述比较单元10用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元20用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。
需要说明的是,所述比较单元10将所述电压与所述第一及第二预设电压进行比较,会出现三个比较结果。第一比较结果是所述电压大于所述第一预设电压,第二比较结果是所述电压小于所述第二预设电压,第三比较结果是所述电压大于所述第二预设电压小于所述第一预设电压。所述调节单元20根据第一至第三比较结果调节三种不同的电阻及电容接入所述变压器,从而可以根据所述变压器的漏感(即为所述电压)控制接入所述变压器的电阻和电容,进而适应地抑制相应的电压尖峰和EMI(Electro-Magnetic Interference,电磁干扰)。
请参阅图2,具体地,所述比较单元10包括第一比较器U1、第二比较器U2、第一电开关Q1及第一电阻R1,所述第一比较器U1的同相输入端连接至所述变压器初级同名端,以接收所述电压VA,所述第一比较器U1的反相输入端接收所述第一预设电压Vref1,所述第一比较器U1的输出端连接至所述调节电路20,所述第二比较器U2的同相输入端接收所述第二预设电压Vref2,所述第二比较器U2的反相输入端连接至所述变压器初级同名端,以接收所述电压VA,所述第二比较器U2的输出端连接至所述第一开关Q1的控制端,所述第一开关Q1的第一端通过所述第一电阻R1连接至电压端VCC,且连接至所述调节单元20,所述第一开关Q1的第二端接地。
所述调节单元20包括第二电开关Q2、第三电开关Q3、第四电开关Q4、第五电开关Q5、第二电阻R2、第三电阻R3、第四电阻R4、第一电容C1、第二电容C2、第三电容C3及二极管D,所述第二电开关Q2的控制端连接至所述第一比较器U1的输出端,所述第二电开关Q2的第一端通过所述第二电
阻R2连接至所述变压器初级的异名端,所述第二电开关Q2的第二端连接至所述二极管D的阴极,所述二极管D的阳极连接至所述变压器初级的同名端,所述第三电开关Q2的控制端连接至所述第一电开关Q1的第一端,所述第三电开关Q3的第一端通过所述第二电阻R2连接至所述变压器初级的异名端,还通过所述第三电阻R3连接至所述二极管D的阴极,所述第三电开关Q3的第二端连接至所述二极管D的阴极,所述第四电开关Q4的控制端连接至所述第一比较器U1的输出端,所述第四电开关Q4的第一端通过所述第一电容C1连接至所述变压器初级的异名端,所述第四电开关Q4的第二端连接至所述二极管D的阴极,所述第五电开关Q5的控制端连接至所述第一电开关Q1的第一端,所述第五电开关Q5的第一端通过所述第二电容C2连接至所述变压器初级的异名端,还通过所述第三电容C3连接至所述二极管D的阴极,所述第五电开关Q5的第二端连接至所述二极管D的阴极。
需要说明的是,通过侦测变压器初级的同名端的电压,即A点的电压(所述电压VA),变压器漏感越大,A点电压越高,EMI效果越差。
当VA>Vref1时,漏感变大,所述第一比较器U1输出高电平,所述第二比较器U2输出低电平信号。所述第二至第五电开关Q2-Q5均导通,则接入所述变压器的电阻R=R1//R2(第一电阻R1与第二电阻R2并联),接入所述变压器的电容C=C1//C2(第一电容C1与第二电容并联)。因此,接入所述变压器的电容C最大,接入所述变压器的电阻R最小,故,所述吸收电路100的吸收能力变强。即随着变压器的漏感增大,所述吸收电路100的吸收能力相应增强。
当Vref2<VA<Vref1时,漏感在正常范围内,所述第一比较器U1输出低电平,所述第二比较器U2输出低电平信号。所述第二电开关Q2及所述第四电开关Q4截止,所述第三电开关Q3及所述第五电开关Q5导通,则接入所述变压器的电阻R=R2,接入所述变压器的电容C=C2,因此,接入所述变压器的电容C及接入所述变压器的电阻R均维持原始实际值。
当VA<Vref2时,漏感变小,所述第一比较器U1输出低电平,所述第二比较器U2输出高电平信号。所述第二至第五电开关Q2-Q5均截止,则接入所述变压器的电阻R=R2与R3串联,入所述变压器的电容C=C2和C3串联,
因此,接入所述变压器的电容C最小,接入所述变压器的电阻R最大,故,所述吸收电路100的吸收能力减弱。即随着变压器的漏感减小,所述吸收电路100的吸收能力相应减弱,在保证抑制电压尖峰的同时降低了损耗,提高了效率。
在本实施例中,所述吸收电路100通过侦测变压器初级的同名端的电压来相应调节吸收能力,使电压尖峰达到最小,EMI效果最佳,且还可以降低供电电路的损耗。
在本实施例中,所述第一至第五电开关Q1-Q5为NPN型场效应管,所述第一至第五电开关Q1-Q5的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。在其他实施例中,所述第一至第五电开关Q1-Q5也可以为其他类型的晶体管。
请参阅图3,本发明第二方案实施例提供一种供电电路300。所述供电电路300包括变压器T及吸收电路。所述吸收电路为上述第一方案提供的吸收电路100。具体为:
所述吸收电路100应用于供电电路中。所述吸收电路100包括比较单元10及调节单元20,所述比较单元10用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元20用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。
需要说明的是,所述比较单元10将所述电压与所述第一及第二预设电压进行比较,会出现三个比较结果。第一比较结果是所述电压大于所述第一预设电压,第二比较结果是所述电压小于所述第二预设电压,第三比较结果是所述电压大于所述第二预设电压小于所述第一预设电压。所述调节单元20根据第一至第三比较结果调节三种不同的电阻及电容接入所述变压器,从而可以根据所述变压器的漏感(即为所述电压)控制接入所述变压器的电阻和电容,进而适应地抑制相应的电压尖峰和EMI(Electro-Magnetic Interference,电磁干扰)。
具体地,所述比较单元10包括第一比较器U1、第二比较器U2、第一电开关Q1及第一电阻R1,所述第一比较器U1的同相输入端连接至所述变压器初级同名端,以接收所述电压VA,所述第一比较器U1的反相输入端接收所
述第一预设电压Vref1,所述第一比较器U1的输出端连接至所述调节电路20,所述第二比较器U2的同相输入端接收所述第二预设电压Vref2,所述第二比较器U2的反相输入端连接至所述变压器初级同名端,以接收所述电压VA,所述第二比较器U2的输出端连接至所述第一开关Q1的控制端,所述第一开关Q1的第一端通过所述第一电阻R1连接至电压端VCC,且连接至所述调节单元20,所述第一开关Q1的第二端接地。
所述调节单元20包括第二电开关Q2、第三电开关Q3、第四电开关Q4、第五电开关Q5、第二电阻R2、第三电阻R3、第四电阻R4、第一电容C1、第二电容C2、第三电容C3及二极管D,所述第二电开关Q2的控制端连接至所述第一比较器U1的输出端,所述第二电开关Q2的第一端通过所述第二电阻R2连接至所述变压器初级的异名端,所述第二电开关Q2的第二端连接至所述二极管D的阴极,所述二极管D的阳极连接至所述变压器初级的同名端,所述第三电开关Q2的控制端连接至所述第一电开关Q1的第一端,所述第三电开关Q3的第一端通过所述第二电阻R2连接至所述变压器初级的异名端,还通过所述第三电阻R3连接至所述二极管D的阴极,所述第三电开关Q3的第二端连接至所述二极管D的阴极,所述第四电开关Q4的控制端连接至所述第一比较器U1的输出端,所述第四电开关Q4的第一端通过所述第一电容C1连接至所述变压器初级的异名端,所述第四电开关Q4的第二端连接至所述二极管D的阴极,所述第五电开关Q5的控制端连接至所述第一电开关Q1的第一端,所述第五电开关Q5的第一端通过所述第二电容C2连接至所述变压器初级的异名端,还通过所述第三电容C3连接至所述二极管D的阴极,所述第五电开关Q5的第二端连接至所述二极管D的阴极。
需要说明的是,通过侦测变压器初级的同名端的电压,即A点的电压(所述电压VA),变压器漏感越大,A点电压越高,EMI效果越差。
当VA>Vref1时,漏感变大,所述第一比较器U1输出高电平,所述第二比较器U2输出低电平信号。所述第二至第五电开关Q2-Q5均导通,则接入所述变压器的电阻R=R1//R2(第一电阻R1与第二电阻R2并联),接入所述变压器的电容C=C1//C2(第一电容C1与第二电容并联)。因此,接入所述变压器的电容C最大,接入所述变压器的电阻R最小,故,所述吸收电路100的
吸收能力变强。即随着变压器的漏感增大,所述吸收电路100的吸收能力相应增强。
当Vref2<VA<Vref1时,漏感在正常范围内,所述第一比较器U1输出低电平,所述第二比较器U2输出低电平信号。所述第二电开关Q2及所述第四电开关Q4截止,所述第三电开关Q3及所述第五电开关Q5导通,则接入所述变压器的电阻R=R2,接入所述变压器的电容C=C2,因此,接入所述变压器的电容C及接入所述变压器的电阻R均维持原始实际值。
当VA<Vref2时,漏感变小,所述第一比较器U1输出低电平,所述第二比较器U2输出高电平信号。所述第二至第五电开关Q2-Q5均截止,则接入所述变压器的电阻R=R2与R3串联,入所述变压器的电容C=C2和C3串联,因此,接入所述变压器的电容C最小,接入所述变压器的电阻R最大,故,所述吸收电路100的吸收能力减弱。即随着变压器的漏感减小,所述吸收电路100的吸收能力相应减弱,在保证抑制电压尖峰的同时降低了损耗,提高了效率。
在本实施例中,所述吸收电路100通过侦测变压器初级的同名端的电压来相应调节吸收能力,使电压尖峰达到最小,EMI效果最佳,且还可以降低所述供电电路300的损耗。
在本实施例中,所述第一至第五电开关Q1-Q5为NPN型场效应管,所述第一至第五电开关Q1-Q5的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。在其他实施例中,所述第一至第五电开关Q1-Q5也可以为其他类型的晶体管。
请参阅图4,本发明第三方案实施例提供一种显示设备400。所述显示设备400包括显示单元410及供电电路。所述供电电路为上述第二方案提供的供电电路300。具体为:
所述供电电路300包括变压器T及吸收电路100。所述吸收电路100应用于供电电路中。所述吸收电路100包括比较单元10及调节单元20,所述比较单元10用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元20用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述
第二预设电压。
需要说明的是,所述比较单元10将所述电压与所述第一及第二预设电压进行比较,会出现三个比较结果。第一比较结果是所述电压大于所述第一预设电压,第二比较结果是所述电压小于所述第二预设电压,第三比较结果是所述电压大于所述第二预设电压小于所述第一预设电压。所述调节单元20根据第一至第三比较结果调节三种不同的电阻及电容接入所述变压器,从而可以根据所述变压器的漏感(即为所述电压)控制接入所述变压器的电阻和电容,进而适应地抑制相应的电压尖峰和EMI(Electro-Magnetic Interference,电磁干扰)。
具体地,所述比较单元10包括第一比较器U1、第二比较器U2、第一电开关Q1及第一电阻R1,所述第一比较器U1的同相输入端连接至所述变压器初级同名端,以接收所述电压VA,所述第一比较器U1的反相输入端接收所述第一预设电压Vref1,所述第一比较器U1的输出端连接至所述调节电路20,所述第二比较器U2的同相输入端接收所述第二预设电压Vref2,所述第二比较器U2的反相输入端连接至所述变压器初级同名端,以接收所述电压VA,所述第二比较器U2的输出端连接至所述第一开关Q1的控制端,所述第一开关Q1的第一端通过所述第一电阻R1连接至电压端VCC,且连接至所述调节单元20,所述第一开关Q1的第二端接地。
所述调节单元20包括第二电开关Q2、第三电开关Q3、第四电开关Q4、第五电开关Q5、第二电阻R2、第三电阻R3、第四电阻R4、第一电容C1、第二电容C2、第三电容C3及二极管D,所述第二电开关Q2的控制端连接至所述第一比较器U1的输出端,所述第二电开关Q2的第一端通过所述第二电阻R2连接至所述变压器初级的异名端,所述第二电开关Q2的第二端连接至所述二极管D的阴极,所述二极管D的阳极连接至所述变压器初级的同名端,所述第三电开关Q2的控制端连接至所述第一电开关Q1的第一端,所述第三电开关Q3的第一端通过所述第二电阻R2连接至所述变压器初级的异名端,还通过所述第三电阻R3连接至所述二极管D的阴极,所述第三电开关Q3的第二端连接至所述二极管D的阴极,所述第四电开关Q4的控制端连接至所述第一比较器U1的输出端,所述第四电开关Q4的第一端通过所述第一电容C1连接至所述变压器初级的异名端,所述第四电开关Q4的第二端连接至所述二
极管D的阴极,所述第五电开关Q5的控制端连接至所述第一电开关Q1的第一端,所述第五电开关Q5的第一端通过所述第二电容C2连接至所述变压器初级的异名端,还通过所述第三电容C3连接至所述二极管D的阴极,所述第五电开关Q5的第二端连接至所述二极管D的阴极。
需要说明的是,通过侦测变压器初级的同名端的电压,即A点的电压(所述电压VA),变压器漏感越大,A点电压越高,EMI效果越差。
当VA>Vref1时,漏感变大,所述第一比较器U1输出高电平,所述第二比较器U2输出低电平信号。所述第二至第五电开关Q2-Q5均导通,则接入所述变压器的电阻R=R1//R2(第一电阻R1与第二电阻R2并联),接入所述变压器的电容C=C1//C2(第一电容C1与第二电容并联)。因此,接入所述变压器的电容C最大,接入所述变压器的电阻R最小,故,所述吸收电路100的吸收能力变强。即随着变压器的漏感增大,所述吸收电路100的吸收能力相应增强。
当Vref2<VA<Vref1时,漏感在正常范围内,所述第一比较器U1输出低电平,所述第二比较器U2输出低电平信号。所述第二电开关Q2及所述第四电开关Q4截止,所述第三电开关Q3及所述第五电开关Q5导通,则接入所述变压器的电阻R=R2,接入所述变压器的电容C=C2,因此,接入所述变压器的电容C及接入所述变压器的电阻R均维持原始实际值。
当VA<Vref2时,漏感变小,所述第一比较器U1输出低电平,所述第二比较器U2输出高电平信号。所述第二至第五电开关Q2-Q5均截止,则接入所述变压器的电阻R=R2与R3串联,入所述变压器的电容C=C2和C3串联,因此,接入所述变压器的电容C最小,接入所述变压器的电阻R最大,故,所述吸收电路100的吸收能力减弱。即随着变压器的漏感减小,所述吸收电路100的吸收能力相应减弱,在保证抑制电压尖峰的同时降低了损耗,提高了效率。
在本实施例中,所述吸收电路100通过侦测变压器初级的同名端的电压来相应调节吸收能力,使电压尖峰达到最小,EMI效果最佳,且还可以降低所述供电电路300的损耗,进而降低所述显示设备400的损耗。
在本实施例中,所述第一至第五电开关Q1-Q5为NPN型场效应管,所述
第一至第五电开关Q1-Q5的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。在其他实施例中,所述第一至第五电开关Q1-Q5也可以为其他类型的晶体管。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。
Claims (12)
- 一种吸收电路,应用于供电电路,其中,所述吸收电路包括比较单元及调节单元,所述比较单元用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。
- 如权利要求1所述的吸收电路,其中,所述比较单元包括第一比较器、第二比较器、第一电开关及第一电阻,所述第一比较器的同相输入端连接至所述变压器初级同名端,以接收所述电压,所述第一比较器的反相输入端接收所述第一预设电压,所述第一比较器的输出端连接至所述调节电路,所述第二比较器的同相输入端接收所述第二预设电压,所述第二比较器的反相输入端连接至所述变压器初级同名端,以接收所述电压,所述第二比较器的输出端连接至所述第一开关的控制端,所述第一开关的第一端通过所述第一电阻连接至电压端,且连接至所述调节单元,所述第一开关的第二端接地。
- 如权利要求2所述的吸收电路,其中,所述调节单元包括第二电开关、第三电开关、第四电开关、第五电开关、第二电阻、第三电阻、第四电阻、第一电容、第二电容、第三电容及二极管,所述第二电开关的控制端连接至所述第一比较器的输出端,所述第二电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,所述第二电开关的第二端连接至所述二极管的阴极,所述二极管的阳极连接至所述变压器初级的同名端,所述第三电开关的控制端连接至所述第一电开关的第一端,所述第三电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,还通过所述第三电阻连接至所述二极管的阴极,所述第三电开关的第二端连接至所述二极管的阴极,所述第四电开关的控制端连接至所述第一比较器的输出端,所述第四电开关的第一端通过所述第一电容连接至所述变压器初级的异名端,所述第四电开关的第二端连接至所述二极管的阴极,所述第五电开关的控制端连接至所述第一电开关的第一端,所述 第五电开关的第一端通过所述第二电容连接至所述变压器初级的异名端,还通过所述第三电容连接至所述二极管的阴极,所述第五电开关的第二端连接至所述二极管的阴极。
- 如权利要求3所述的吸收电路,其中,所述第一至第五电开关为NPN型场效应管,所述第一至第五电开关的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。
- 一种供电电路,包括变压器及吸收电路,所述吸收电路包括比较单元及调节单元,所述比较单元用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。
- 如权利要求5所述的供电电路,其中,所述比较单元包括第一比较器、第二比较器、第一电开关及第一电阻,所述第一比较器的同相输入端连接至所述变压器初级同名端,以接收所述电压,所述第一比较器的反相输入端接收所述第一预设电压,所述第一比较器的输出端连接至所述调节电路,所述第二比较器的同相输入端接收所述第二预设电压,所述第二比较器的反相输入端连接至所述变压器初级同名端,以接收所述电压,所述第二比较器的输出端连接至所述第一开关的控制端,所述第一开关的第一端通过所述第一电阻连接至电压端,且连接至所述调节单元,所述第一开关的第二端接地。
- 如权利要求6所述的供电电路,其中,所述调节单元包括第二电开关、第三电开关、第四电开关、第五电开关、第二电阻、第三电阻、第四电阻、第一电容、第二电容、第三电容及二极管,所述第二电开关的控制端连接至所述第一比较器的输出端,所述第二电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,所述第二电开关的第二端连接至所述二极管的阴极,所述二极管的阳极连接至所述变压器初级的同名端,所述第三电开关的控制端连接至所述第一电开关的第一端,所述第三电开关的第一端通过所述第二电阻连 接至所述变压器初级的异名端,还通过所述第三电阻连接至所述二极管的阴极,所述第三电开关的第二端连接至所述二极管的阴极,所述第四电开关的控制端连接至所述第一比较器的输出端,所述第四电开关的第一端通过所述第一电容连接至所述变压器初级的异名端,所述第四电开关的第二端连接至所述二极管的阴极,所述第五电开关的控制端连接至所述第一电开关的第一端,所述第五电开关的第一端通过所述第二电容连接至所述变压器初级的异名端,还通过所述第三电容连接至所述二极管的阴极,所述第五电开关的第二端连接至所述二极管的阴极。
- 如权利要求7所述的供电电路,其中,所述第一至第五电开关为NPN型场效应管,所述第一至第五电开关的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。
- 一种显示设备,包括显示单元及供电电路,所述供电电路为所述显示单元供电,所述供电电路包括变压器及吸收电路,所述吸收电路包括比较单元及调节单元,所述比较单元用于接收所述供电电路的变压器初级同名端的电压,并将所述电压与第一及第二预设电压进行比较,输出比较结果,所述调节单元用于根据比较结果调节接入所述变压器的电阻和电容,其中,所述第一预设电压大于所述第二预设电压。
- 如权利要求9所述的显示设备,其中,所述比较单元包括第一比较器、第二比较器、第一电开关及第一电阻,所述第一比较器的同相输入端连接至所述变压器初级同名端,以接收所述电压,所述第一比较器的反相输入端接收所述第一预设电压,所述第一比较器的输出端连接至所述调节电路,所述第二比较器的同相输入端接收所述第二预设电压,所述第二比较器的反相输入端连接至所述变压器初级同名端,以接收所述电压,所述第二比较器的输出端连接至所述第一开关的控制端,所述第一开关的第一端通过所述第一电阻连接至电压端,且连接至所述调节单元,所述第一开关的第二端接地。
- 如权利要求10所述的显示设备,其中,所述调节单元包括第二电开 关、第三电开关、第四电开关、第五电开关、第二电阻、第三电阻、第四电阻、第一电容、第二电容、第三电容及二极管,所述第二电开关的控制端连接至所述第一比较器的输出端,所述第二电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,所述第二电开关的第二端连接至所述二极管的阴极,所述二极管的阳极连接至所述变压器初级的同名端,所述第三电开关的控制端连接至所述第一电开关的第一端,所述第三电开关的第一端通过所述第二电阻连接至所述变压器初级的异名端,还通过所述第三电阻连接至所述二极管的阴极,所述第三电开关的第二端连接至所述二极管的阴极,所述第四电开关的控制端连接至所述第一比较器的输出端,所述第四电开关的第一端通过所述第一电容连接至所述变压器初级的异名端,所述第四电开关的第二端连接至所述二极管的阴极,所述第五电开关的控制端连接至所述第一电开关的第一端,所述第五电开关的第一端通过所述第二电容连接至所述变压器初级的异名端,还通过所述第三电容连接至所述二极管的阴极,所述第五电开关的第二端连接至所述二极管的阴极。
- 如权利要求11所述的显示设备,其中,所述第一至第五电开关为NPN型场效应管,所述第一至第五电开关的控制端、第一端及第二端分别为场效应管的栅极、漏极及源极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/327,612 US10320286B2 (en) | 2016-09-20 | 2016-12-22 | Absorption circuit, feed circuit and liquid crystal display |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610836167.0A CN106300946B (zh) | 2016-09-20 | 2016-09-20 | 一种吸收电路、供电电路及液晶显示器 |
CN201610836167.0 | 2016-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018053960A1 true WO2018053960A1 (zh) | 2018-03-29 |
Family
ID=57711616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/111462 WO2018053960A1 (zh) | 2016-09-20 | 2016-12-22 | 一种吸收电路、供电电路及液晶显示器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10320286B2 (zh) |
CN (1) | CN106300946B (zh) |
WO (1) | WO2018053960A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111754925A (zh) * | 2020-07-13 | 2020-10-09 | 武汉华星光电技术有限公司 | Goa电路以及显示面板 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5720631B2 (zh) * | 1978-10-21 | 1982-04-30 | ||
CN102904453A (zh) * | 2012-11-12 | 2013-01-30 | 重庆长安汽车股份有限公司 | 一种用于igbt的驱动电源 |
US20130049654A1 (en) * | 2011-08-27 | 2013-02-28 | Denso Corporation | Power conversion apparatus |
CN104009643A (zh) * | 2014-05-06 | 2014-08-27 | 苏州汇川技术有限公司 | 一种低电压应力吸收电路的反激式开关电源 |
CN104242656A (zh) * | 2013-06-17 | 2014-12-24 | Abb研究有限公司 | 用于开关转换器的自适应rcd 缓冲器及方法 |
CN105207481A (zh) * | 2015-09-23 | 2015-12-30 | 深圳市华星光电技术有限公司 | 一种环路补偿电路及开关电源电路 |
CN105515361A (zh) * | 2015-11-26 | 2016-04-20 | 深圳市华星光电技术有限公司 | 一种缓冲电路 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6088247A (en) * | 1997-10-29 | 2000-07-11 | Pi Electronics (H. K.) Limited | Voltage clamp |
EP1281238B1 (en) * | 2000-05-11 | 2008-07-09 | Multigig Limited | Electronic pulse generator and oscillator |
CN102647077A (zh) * | 2011-02-18 | 2012-08-22 | 鸿科电子实业有限公司 | Rcd吸收电路、可调光led电源系统及调光方法 |
EP2525480A1 (en) * | 2011-05-20 | 2012-11-21 | Nxp B.V. | Power converter with an rcd clamp and method of operating the same |
CN103812317B (zh) * | 2012-11-14 | 2016-08-24 | 台达电子工业股份有限公司 | 箝位吸收电路及其阻抗调节方法 |
US9391524B2 (en) * | 2012-12-07 | 2016-07-12 | Apple Inc. | Hysteretic-mode pulse frequency modulated (HM-PFM) resonant AC to DC converter |
TWI527350B (zh) * | 2013-08-22 | 2016-03-21 | 全漢企業股份有限公司 | 阻尼器電路以及用於阻尼器電路的緩衝方法 |
CN103780065B (zh) * | 2014-02-28 | 2016-07-13 | 惠州市锦湖实业发展有限公司 | 一种软关断电源变换器 |
JP2016027775A (ja) * | 2014-06-27 | 2016-02-18 | サンケン電気株式会社 | スイッチング電源装置 |
US9960673B2 (en) * | 2015-02-16 | 2018-05-01 | Tdk Corporation | Control circuit and switching power supply |
JP6544120B2 (ja) * | 2015-07-31 | 2019-07-17 | 富士電機株式会社 | スイッチング電源装置の制御回路およびスイッチング電源装置 |
CN106097992B (zh) * | 2016-05-31 | 2018-12-07 | 深圳市华星光电技术有限公司 | 直流电压转换电路及液晶显示装置 |
CN106026618B (zh) * | 2016-07-19 | 2018-10-30 | 深圳市华星光电技术有限公司 | 开关电源的控制电路 |
-
2016
- 2016-09-20 CN CN201610836167.0A patent/CN106300946B/zh not_active Expired - Fee Related
- 2016-12-22 WO PCT/CN2016/111462 patent/WO2018053960A1/zh active Application Filing
- 2016-12-22 US US15/327,612 patent/US10320286B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5720631B2 (zh) * | 1978-10-21 | 1982-04-30 | ||
US20130049654A1 (en) * | 2011-08-27 | 2013-02-28 | Denso Corporation | Power conversion apparatus |
CN102904453A (zh) * | 2012-11-12 | 2013-01-30 | 重庆长安汽车股份有限公司 | 一种用于igbt的驱动电源 |
CN104242656A (zh) * | 2013-06-17 | 2014-12-24 | Abb研究有限公司 | 用于开关转换器的自适应rcd 缓冲器及方法 |
CN104009643A (zh) * | 2014-05-06 | 2014-08-27 | 苏州汇川技术有限公司 | 一种低电压应力吸收电路的反激式开关电源 |
CN105207481A (zh) * | 2015-09-23 | 2015-12-30 | 深圳市华星光电技术有限公司 | 一种环路补偿电路及开关电源电路 |
CN105515361A (zh) * | 2015-11-26 | 2016-04-20 | 深圳市华星光电技术有限公司 | 一种缓冲电路 |
Also Published As
Publication number | Publication date |
---|---|
US10320286B2 (en) | 2019-06-11 |
US20180219475A1 (en) | 2018-08-02 |
CN106300946B (zh) | 2019-05-28 |
CN106300946A (zh) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7193866B1 (en) | Half-bridge LLC resonant converter with a synchronous rectification function | |
US9143040B2 (en) | Hold-up time enhancement circuit for LLC resonant converter | |
US20080192396A1 (en) | Over-voltage protection circuit and method thereof | |
TW202101882A (zh) | 電源供應器 | |
US20210203240A1 (en) | Switched Mode Power Supplies With Configurable Communication Addresses | |
US20190013727A1 (en) | Power conversion apparatus and synchronous rectification circuit thereof | |
US20080024105A1 (en) | Method and apparatus for adjusting a reference | |
US8242628B2 (en) | Power supply device with low standby power consumption | |
WO2018053960A1 (zh) | 一种吸收电路、供电电路及液晶显示器 | |
CN206877187U (zh) | 电子设备 | |
CN115333334A (zh) | 开关电源设备 | |
US8829877B2 (en) | Resonance frequency adjusting circuit | |
US10122280B1 (en) | Loop control coefficients in a buck converter | |
US11522532B2 (en) | Turn-off protection circuit for a switch unit and associated turn-off protection method | |
TWI501518B (zh) | 電源供應裝置 | |
WO2024060614A1 (zh) | 对流过目标电阻器的目标电流进行采样的电路 | |
CN215956275U (zh) | 一种谐振控制电路及芯片 | |
US10199857B2 (en) | Transformer circuit and method of reducing idling power consumption | |
CN113014216B (zh) | 一种运算放大器 | |
WO2012111273A1 (ja) | パワーデバイス装置 | |
JP2000184612A (ja) | Dc―dcコンバ―タの制御方法、dc―dcコンバ―タの制御回路、及び、dc―dcコンバ―タ | |
JPH11260580A (ja) | 放電灯点灯装置 | |
US20160218614A1 (en) | Active load circuit | |
WO2017092114A1 (zh) | T-con负载变化的电压控制电路、显示面板及显示装置 | |
CN106452037A (zh) | 电源控制电路和电流保护电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15327612 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16916699 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16916699 Country of ref document: EP Kind code of ref document: A1 |