[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017122448A9 - 表面被覆切削工具およびその製造方法 - Google Patents

表面被覆切削工具およびその製造方法 Download PDF

Info

Publication number
WO2017122448A9
WO2017122448A9 PCT/JP2016/085501 JP2016085501W WO2017122448A9 WO 2017122448 A9 WO2017122448 A9 WO 2017122448A9 JP 2016085501 W JP2016085501 W JP 2016085501W WO 2017122448 A9 WO2017122448 A9 WO 2017122448A9
Authority
WO
WIPO (PCT)
Prior art keywords
flank
cutting edge
tialn layer
rake face
region
Prior art date
Application number
PCT/JP2016/085501
Other languages
English (en)
French (fr)
Other versions
WO2017122448A1 (ja
Inventor
聡 小野
今村 晋也
隆典 出谷
アノンサック パサート
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to CN201680066342.0A priority Critical patent/CN108367363B/zh
Priority to EP16885051.9A priority patent/EP3357614B1/en
Priority to US15/550,513 priority patent/US10603726B2/en
Priority to KR1020187013308A priority patent/KR102160349B1/ko
Publication of WO2017122448A1 publication Critical patent/WO2017122448A1/ja
Publication of WO2017122448A9 publication Critical patent/WO2017122448A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/242Cross section of the cutting edge bevelled or chamfered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/245Cross section of the cutting edge rounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/247Cross section of the cutting edge sharp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/24Titanium aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Definitions

  • the present invention relates to a surface-coated cutting tool and a manufacturing method thereof.
  • the present application claims priority based on Japanese Patent Application No. 2016-004572, which is a Japanese patent application filed on January 13, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • TiAlN coating As a cutting tool used for cutting of steel or cast iron, there is a surface-coated cutting tool in which a hard coating is provided on the surface of a base material.
  • a coating made of TiAlN having a NaCl type crystal structure which is a compound of titanium (Ti), aluminum (Al), and nitrogen (N) (hereinafter referred to as “TiAlN coating”) is known.
  • This TiAlN coating has been produced by a PVD (Physical Vapor Deposition) method so far, and attempts have been made to improve its composition and the like so as to exhibit desired physical properties.
  • Patent Document 1 discloses a surface-coated cutting tool in which the composition of a TiAlN film produced by the PVD method is changed for each part of the tool. Further, it is known that the hardness can be increased by increasing the Al content ratio of the TiAlN coating, and various studies have been made for its realization. However, in the TiAlN film produced by the PVD method, if the Al compounding ratio exceeds 0.65, Wurtz-type AlN precipitates, and as a result, sufficient hardness as expected cannot be exhibited. Was the actual situation.
  • Patent Document 2 discloses that a TiAlN film having an Al ratio of more than 0.75 and not more than 0.93 is manufactured by a CVD method.
  • Patent Document 3 and Patent Document 4 disclose that wurtzite AlN is intentionally deposited in the TiAlN coating to suppress an excessive increase in hardness, thereby reducing the fracture resistance. It is disclosed to suppress.
  • a surface-coated cutting tool has a surface, the surface includes a rake face and a flank face, and a boundary portion of the rake face and the flank face forms a cutting edge, A base material and a coating film covering the surface of the base material, the coating film having a NaCl type crystal structure TiAlN layer, and the composition of the cutting edge region located at the cutting edge of the TiAlN layer is Ti 1 ⁇
  • the composition of the rake face region located on the rake face is Ti 1-XR Al XR N
  • the composition of the flank face region located on the flank face is Ti 1-XF Al XF N, 0.65 ⁇ XR ⁇ 0.9, 0.65 ⁇ XF ⁇ 0.9, 0.4 ⁇ XE ⁇ 0.7, XR-XE ⁇ 0.2, And XF-XE ⁇ 0.2.
  • a method for manufacturing a surface-coated cutting tool is a method for manufacturing the surface-coated cutting tool described above, in which a TiAlN layer is formed on a base material disposed in a reaction furnace by a CVD method.
  • the TiAlN layer forming step includes a first step of supplying a first source gas containing Ti and Al and a second source gas containing ammonia into a reaction furnace in which a substrate is disposed;
  • the amount of Al reaching the surface of the base material corresponding to the cutting edge region is the amount of Al reaching the surface of the base material corresponding to the rake face region and the surface of the base material corresponding to the flank surface region. Less than each amount of Al reached.
  • FIG. 1 is a perspective view illustrating an example of a surface-coated cutting tool according to an embodiment of the present disclosure.
  • 2 is a cross-sectional view of the surface-coated cutting tool of FIG. 1, and is a cross-sectional view seen from the direction of arrows II-II in FIG.
  • FIG. 3 is a diagram showing a hatched portion of FIG. 1, and is a cross-sectional perspective view showing a region III.
  • FIG. 4 is a partial view when the cutting edge is subjected to honing in the cross-sectional view shown in FIG.
  • FIG. 5 is a cross-sectional perspective view in the case where honing is applied to the cutting edge in the cross-sectional perspective view shown in FIG. 3.
  • FIG. 1 is a perspective view illustrating an example of a surface-coated cutting tool according to an embodiment of the present disclosure.
  • 2 is a cross-sectional view of the surface-coated cutting tool of FIG. 1, and is a cross-sectional view seen from the direction
  • FIG. 6 is a partial view when the negative cutting is applied to the cutting edge in the cross-sectional view shown in FIG. 2.
  • FIG. 7 is a cross-sectional perspective view when the negative cutting is applied to the cutting edge in the cross-sectional perspective view shown in FIG. 3.
  • FIG. 8 is a partial view when the cutting edge is subjected to honing processing and negative land processing in the cross-sectional view shown in FIG. 2.
  • FIG. 9 is a cross-sectional perspective view when the cutting edge is subjected to honing and negative land processing in the cross-sectional perspective view shown in FIG. 3.
  • FIG. 10 is a schematic diagram for explaining the arrangement of the base material in the reaction furnace of the CVD apparatus.
  • An object of the present disclosure is to provide a surface-coated cutting tool excellent in both properties of hardness and fracture resistance. [Effects of the present disclosure] According to the above, it is possible to provide a surface-coated cutting tool that is excellent in both properties of hardness and fracture resistance.
  • the present inventors have difficulty in controlling the hardness and resistance to resistance with a conventional method in which wurtzite AlN is deposited. We thought that it was difficult to actually provide a film with excellent defectability. Therefore, as a method that is significantly different from the conventional method, attention was focused on a method of changing the composition of the TiAlN film for each position in the tool.
  • the CVD method is originally a method for forming a uniform film, and thus there have been many difficulties in establishing the above method. It has been found that the above method can be realized by making the method of supplying each source gas to each surface a characteristic aspect. And based on this knowledge, the present invention was completed by repeating earnest examination further.
  • a surface-coated cutting tool is a surface-coated cutting tool that has a surface, the surface includes a rake face and a flank face, and a boundary portion between the rake face and the flank face forms a cutting edge.
  • the composition of the rake face region located on the rake face is Ti 1-XR Al XR N
  • the composition of the flank face area located on the flank face is Ti 1-XF Al XF N
  • the flank face and the rake face can exhibit a remarkably high hardness, and the cutting edge with the highest load has an excellent balance between toughness and hardness. For this reason, the whole tool can exhibit high fracture resistance while maintaining high hardness. Therefore, the surface-coated cutting tool is excellent in hardness and fracture resistance.
  • the orientation index TC (111) of the (111) plane in the TiAlN layer preferably satisfies 1 ⁇ TC (111) ⁇ 4. In this case, the wear resistance is further improved.
  • the TiAlN layer preferably has a thickness of 1 to 10 ⁇ m. In this case, the above characteristics are further excellent.
  • the coating preferably has a thickness of 3 to 15 ⁇ m. In this case, it is excellent in suitability as a cutting tool.
  • a method for manufacturing a surface-coated cutting tool is the above-described method for manufacturing a surface-coated cutting tool, in which a TiAlN layer is formed on a substrate disposed in a reaction furnace by a CVD method.
  • the amount of Al reaching the surface of the base material corresponding to the cutting edge region is the amount of Al reaching the surface of the base material corresponding to the rake face region and the base material corresponding to the flank surface region Less than each of the amounts of Al reaching the surface.
  • the above manufacturing method it is possible to control so that each composition of the TiAlN layer in a portion corresponding to each region (cutting edge region, rake surface region, and flank region) is changed. Therefore, the above surface-coated cutting tool can be manufactured.
  • this embodiment one embodiment of the present invention (hereinafter referred to as “this embodiment”) will be described, but the present embodiment is not limited thereto.
  • the surface-coated cutting tool 1 (hereinafter, also simply referred to as “tool 1”) of the present embodiment has a surface including an upper surface, a lower surface, and four side surfaces. It is a square column shape that is slightly thin in the direction. Further, the tool 1 is formed with a through-hole penetrating the upper and lower surfaces, and in the boundary portion of the four side surfaces of the tool 1, adjacent side surfaces are connected by an arc surface.
  • the upper surface and the lower surface form a rake face 11, and the four side surfaces (and the arc surface connecting them) form a flank 12. Further, the boundary portion between the rake face 11 and the flank 12 functions as the cutting edge 13.
  • the tool 1 of the present embodiment has a surface (upper surface, lower surface, four side surfaces, an arc surface connecting these side surfaces, and an inner peripheral surface of the through hole), and the surface is a rake surface 11 and a flank surface. 12, and a boundary portion between the rake face 11 and the flank face 12 forms a cutting edge 13.
  • the boundary portion between the rake face 11 and the flank 12 is “a ridge line E that forms a boundary between the rake face 11 and the flank 12, and a part of the rake face 11 and the flank 12 that is near the ridge line E; Means a combined part.
  • the portion of the rake face 11 and the flank 12 near the ridge line E” is determined by the shape of the cutting edge 13 of the tool 1. Below, the case where the tool 1 is a sharp edge shaped tool, a honing shaped tool subjected to honing, and a negative land shaped tool subjected to negative land processing will be described.
  • a portion of the rake face 11 and the flank 12 near the ridge line E is a region having a distance (straight line distance) D from the ridge line E of 50 ⁇ m or less (in FIG. 3). , A region to which point hatching is applied). Therefore, the cutting edge 13 in the sharp-edged tool 1 is a portion corresponding to a region to which point hatching is applied in FIG.
  • FIGS. 4 and 5 show a honing-shaped tool 1 that has been subjected to honing. 4 and 5, in addition to each part of the tool 1, a virtual plane R including the rake face 11, a virtual plane F including the flank 12, a virtual ridge EE formed by intersecting the virtual plane R and the virtual plane F, A virtual boundary line ER serving as a boundary between the rake face 11 and the virtual plane R and a virtual boundary line EF serving as a boundary between the flank 12 and the virtual plane F are illustrated.
  • the above “ridge line E” is read as “virtual edge line EE”.
  • a portion of the rake face 11 and the flank 12 near the virtual ridge line EE is an area between the virtual boundary line ER and the virtual boundary line EF (point hatching in FIG. 5). Area). Therefore, the cutting edge 13 in the honing-shaped tool 1 is a portion corresponding to a region to which point hatching is applied in FIG.
  • FIGS. 6 and 7 show the negative land shaped tool 1 that has been subjected to negative land processing. 6 and 7, in addition to each part of the tool 1, a virtual plane R including the rake face 11, a virtual plane F including the flank 12, a virtual ridge line EE formed by intersecting the virtual plane R and the virtual plane F, A virtual boundary line ER serving as a boundary between the rake face 11 and the virtual plane R and a virtual boundary line EF serving as a boundary between the flank 12 and the virtual plane F are illustrated.
  • the above “ridge line E” is read as “virtual edge line EE”.
  • a portion of the rake face 11 and the flank 12 near the virtual ridge line EE” is an area sandwiched between the virtual boundary line ER and the virtual boundary line EF (point hatching in FIG. 7). Area). Therefore, the cutting edge 13 in the negative land-shaped tool 1 is a portion corresponding to a region to which point hatching is applied in FIG.
  • 8 and 9 show the tool 1 having a shape subjected to machining in which honing and negative land are combined.
  • a virtual boundary line ER serving as a boundary between the rake face 11 and the virtual plane R and a virtual boundary line EF serving as a boundary between the flank 12 and the virtual plane F are illustrated.
  • the above “ridge line E” is read as “virtual edge line EE”.
  • the virtual plane R is a plane including a plane close to the cutting edge 13 in the rake face 11.
  • a portion of the rake face 11 and the flank 12 near the virtual ridge line EE is an area between the virtual boundary line ER and the virtual boundary line EF (point hatching in FIG. 9). Defined area). Therefore, the cutting edge 13 in the tool 1 is a portion corresponding to a region where point hatching is performed in FIG.
  • FIG. 1 shows a tool 1 as a cutting edge replaceable cutting tip for turning, but the tool 1 is not limited to this, and a drill, an end mill, a cutting edge replaceable cutting tip for a drill, and an end mill cutting edge.
  • Examples include exchangeable cutting tips, cutting edge exchangeable cutting tips for milling, metal saws, gear cutting tools, reamers, and taps.
  • the tool 1 When the tool 1 is a cutting edge exchange type cutting tip or the like, the tool 1 includes those having a chip breaker and those having no chip breaker, and the cutting edge 13 has a sharp edge (a rake face and a rake face). Edge that intersects the flank) (see Fig. 1 to Fig. 3), Honing (Rounded sharp edge) (See Fig. 4 and Fig. 5) Processed, Negative land (Chamfered) (Refer to FIG. 6 and FIG. 7) Any of the processed one and the combination of the honing process and the negative land process (see FIG. 8 and FIG. 9) can be included.
  • the tool 1 includes a base material 2 and a coating 3 that covers the surface of the base material 2.
  • the coating 3 preferably covers the entire surface of the substrate 2, but a part of the substrate 2 is not coated with the coating 3 or the configuration of the coating 3 is partially different. Even so, it does not depart from the scope of the present embodiment.
  • the base material 2 of the present embodiment has a rake face 2a and a flank face 2b. Further, the boundary portion between the rake face 2a and the flank face 2b forms a cutting edge 2c.
  • the “boundary portion between the rake face 2a and the flank 2b” is similar to the above-mentioned “boundary portion between the rake face 11 and the flank 12” and “the ridge line that forms the boundary between the rake face 2a and the flank 2b”. , "The portion of the rake face 2a and the flank 2b that are in the vicinity of the ridge line”.
  • the portion of the rake face 2a and the flank 2b that is in the vicinity of the ridge line is described above depending on whether the shape of the cutting edge 13 of the tool 1 is a sharp edge shape, a honing shape, or a negative land shape. Will be defined as follows.
  • any conventionally known substrate of this type can be used.
  • cemented carbide for example, WC-based cemented carbide, including WC, including Co, or including carbonitrides such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.) Component
  • high-speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, or diamond sintered body preferable.
  • the film 3 of this embodiment may or may not include other layers.
  • the other layer include a TiN layer, a TiCN layer, a TiBNO layer, a TiCNO layer, an Al 2 O 3 layer, a TiB 2 layer, a TiAlCN layer, a TiAlON layer, and a TiAlONC layer.
  • the order of the lamination is not particularly limited.
  • Such a coating 3 of the present embodiment has an effect of improving various properties such as hardness and fracture resistance by coating the substrate 2.
  • the coating 3 preferably has a thickness of 3 to 15 ⁇ m. If the thickness is less than 3 ⁇ m, the tool life may be insufficient, and if it exceeds 15 ⁇ m, peeling or breakage of the coating 3 may occur when a large stress is applied between the coating 3 and the substrate 2 in intermittent processing. It may occur frequently.
  • the thickness is more preferably 5 to 15 ⁇ m, still more preferably 7 to 15 ⁇ m.
  • the coating 3 of this embodiment includes a TiAlN layer.
  • the TiAlN layer can be included in the coating 3 by one layer or two or more layers.
  • One of the features of the TiAlN layer of this embodiment is that it has a NaCl-type crystal structure.
  • “having a NaCl type crystal structure” means that when an X-ray diffraction spectrum of the TiAlN layer is measured, a peak derived from the NaCl type crystal structure is observed, and a crystal structure other than the NaCl type crystal structure (for example, a wurtz type). It means that no peak derived from (crystal structure) is observed (that is, below the detection limit).
  • Such an X-ray diffraction spectrum is measured as follows.
  • an arbitrary flat portion of the flank 12 of the tool 1 is cut out, fixed to a holder, a sample is prepared, and the surface to be measured is smoothed by polishing as necessary.
  • the surface of the TiAlN layer is smoothed after removing the layer by polishing or the like.
  • X-ray diffraction of the TiAlN layer is performed using an X-ray diffractometer (XRD) to obtain an X-ray diffraction spectrum.
  • XRD X-ray diffractometer
  • X-ray diffraction can be measured under the following conditions using, for example, an X-ray diffraction apparatus (SmartLab (registered trademark), manufactured by Rigaku Corporation).
  • Diffraction method ⁇ -2 ⁇ method
  • X-ray source Cu-K ⁇ ray (1.541862 mm)
  • Detector D / Tex Ultra250
  • Tube voltage 45 kV
  • Tube current 200 mA
  • Scan speed 20 ° / min
  • Scan range 15-85 ° Slit: 2.0 mm.
  • the composition of the cutting edge region located in the cutting edge 13 of the TiAlN layer is Ti 1-XE Al XE N
  • the rake face region located in the rake face 11 is
  • the composition is Ti 1-XR Al XR N and the composition of the flank region located on the flank 12 is Ti 1-XF Al XF N
  • the following (1) to (5) are satisfied.
  • the above XR, XF, and XE are obtained by using a scanning electron microscope (SEM-EDS) equipped with an energy dispersive X-ray spectrometer, and each region (cutting edge region, rake face region, and flank face region) of the TiAlN layer. It can obtain
  • SEM-EDS scanning electron microscope
  • a measurement sample including a cross section of the TiAlN layer in the cutting edge region is prepared.
  • This measurement sample is obtained, for example, by cutting the tool 1 along the thickness direction of the coating 3 (so that a cross section substantially perpendicular to the TiAlN layer is obtained).
  • the exposed cut surface is polished to smooth the cross section of the TiAlN layer in the cutting edge region included in the cut surface.
  • the cross section of the central portion of the cutting edge region not the vicinity of the boundary between the cutting edge region and the rake face region, of the cutting edge region. This is because the characteristics of the central portion of the cutting edge region have a greater influence on the characteristics of the tool 1 as the cutting edge 13 than the characteristics of the cutting edge region near the boundary.
  • the measurement sample prepared using SEM-EDS is observed, the composition ratio of Al and Ti in the TiAlN layer is analyzed, and the ratio of Al in the TiAlN layer is calculated.
  • the ratio of Al is calculated with three or more measurement points, and the average of these values is XE.
  • a measurement sample including a cross section of the TiAlN layer in the rake face region is prepared, and the composition ratio between Al and Ti in the TiAlN layer is analyzed using SEM-EDS. Also in calculating XR, in one tool 1, the ratio of Al is calculated with three or more measurement points, and the average value of these values is XR.
  • the cross section of the rake face area that is 50 to 100 ⁇ m away from the boundary between the cutting edge area and the rake face area.
  • the “boundary between the cutting edge region and the rake face region” refers to the area where the point hatching is applied and the area where the point hatching is not applied in the rake face 11 of FIGS. 3, 5, 7, and 9. Corresponds to the boundary.
  • a measurement sample including a section of the TiAlN layer in the flank region is prepared, and the composition ratio of Al and Ti in the TiAlN layer is analyzed using SEM-EDS. Also in calculating XF, in one tool 1, the ratio of Al is calculated with three or more measurement points, and the average of these values is XF.
  • the cross section of the flank area that is 50 to 200 ⁇ m away from the boundary between the cutting edge area and the flank area.
  • the “boundary between the cutting edge region and the flank region” refers to the region where the point hatching is performed and the region where the point hatching is not performed in the flank 12 of FIGS. 3, 5, 7, and 9. Corresponds to the boundary.
  • the SEM-EDS analysis described above can be measured under the following conditions using, for example, a scanning electron microscope (S-3400N type, manufactured by Hitachi High-Technologies Corporation). Acceleration voltage: 15 kV Process time: 5 Spectral range: 0 to 20 keV Number of channels: 1K Number of frames: 150 X-ray extraction angle: 30 °.
  • the position of the cross-section of the TiAlN layer used as the measurement sample in view of the actual usage of the tool 1.
  • the tool 1 is used to cut a workpiece with the cutting edge 13 at the corner portion (vertical angle portion that draws an arc)
  • the TiAlN layer located in the cutting edge region of the corner portion It is preferable to use the cross section as a measurement sample.
  • the tool 1 is used to cut the work material with the cutting edge 13 of the straight portion (part that draws a straight line)
  • the cross section of the TiAlN layer located in the cutting edge region of the straight portion is used as the measurement sample. It is preferable to do. This is because it is directly connected to the actual tool characteristics when the tool 1 is used as a cutting tool.
  • calculating XR it is preferable to determine the position of the cross section of the TiAlN layer used as a measurement sample in view of the actual usage of the tool 1. Specifically, when the tool 1 is used to cut a workpiece with the cutting edge 13 in the corner portion, the cross section of the TiAlN layer located in the rake face region near the cutting edge region in the corner portion is measured. It is preferable to use a sample. This is because the characteristics of the rake face 11 near the corner portion are directly connected to the actual tool characteristics when the tool 1 is used as a cutting tool.
  • the cross section of the TiAlN layer located in the rake face region near the cutting edge region of the straight portion Is preferably used as a measurement sample. The same applies to the calculation of XF.
  • a TiAlN layer having a NaCl-type crystal structure and satisfying the above (1) to (5) can have high hardness and high fracture resistance, and therefore has excellent hardness and fracture resistance. Therefore, the tool 1 having such a TiAlN layer can be excellent in hardness and fracture resistance.
  • the present inventors consider this reason as follows.
  • the TiAlN layer of this embodiment has a region where the Al ratio exceeds 0.65, as defined in (1) to (3) above. Nevertheless, the crystal structure maintains the NaCl type crystal structure. Such a TiAlN layer cannot be produced by a conventional PVD method, and can thereby have a high hardness. Further, the TiAlN layer has a ratio of Al in the cutting edge 13 (cutting edge area) of the rake face 11 (rake face area) and flank face 12 (flank face) as defined in (4) and (5) above. Smaller than each region).
  • the TiAlN layer can exhibit a remarkably high hardness on the rake face 11 and the flank face 12, and in the cutting edge 13 that is most loaded (that is, is likely to be damaged). Can be excellent in balance between toughness and hardness. Therefore, the tool 1 as a whole can exhibit high hardness suitable for actual use and high fracture resistance.
  • the above (3) is preferably 0.4 ⁇ XE ⁇ 0.55. In this case, the above effect is further excellent.
  • the upper limit value is not particularly limited, but from the viewpoint of the balance between hardness and fracture resistance, it is preferably 0.4 or less, and is 0.38 or less. It is more preferable.
  • the orientation index TC (111) of the (111) plane preferably satisfies 1.0 ⁇ TC (111) ⁇ 4.0, and 2.0 ⁇ TC (111). It is more preferable to satisfy ⁇ 4.0. In this case, the wear resistance is further improved.
  • orientation index is generally represented by the orientation index TC (hkl), and is represented by the following formula (1).
  • I (hkl) represents the X-ray diffraction intensity of the (hkl) reflecting surface
  • I 0 (hkl) represents the standard intensity according to the ICDD database 00-046-1200.
  • n in Formula (1) shows the number of reflection used for calculation, and is 5 in this embodiment.
  • the (hkl) plane used for reflection is (111), (200), (220), (311) and (222). Therefore, TC (111) in the TiAlN layer of the present embodiment can be expressed by the following formula (2).
  • the orientation index TC (111) of the (111) plane of the TiAlN layer represented by the above formula (2) can be obtained by analysis using XRD.
  • the measurement can be performed under the following conditions using an X-ray diffractometer (SmartLab (registered trademark), manufactured by Rigaku Corporation).
  • Diffraction method ⁇ -2 ⁇ method
  • X-ray source Cu-K ⁇ ray (1.541862 mm)
  • Detector D / Tex Ultra250
  • Tube voltage 45kV
  • Tube current 200 mA
  • Scan speed 20 ° / min
  • Scan range 15-85 ° Slit: 2.0 mm.
  • the TiAlN layer of this embodiment preferably has a thickness of 1 to 10 ⁇ m. If the thickness is less than 1 ⁇ m, the hardness and fracture resistance may not be sufficiently exhibited. If the thickness exceeds 10 ⁇ m, the TiAlN layer may be peeled off. The thickness is more preferably 2 to 10 ⁇ m, and further preferably 5 to 7 ⁇ m.
  • the TiAlN layer of the present embodiment may contain impurities as long as the above effects are obtained.
  • Impurities include chlorine (Cl), oxygen (O), carbon (C), argon (Ar), and hydrogen (H).
  • Cl is a unique element that can be contained in a TiAlN layer produced by the CVD method, and cannot be mixed into the TiAlN layer produced by the PVD method.
  • the concentration of Cl in the TiAlN layer is 0.05 to 0.20 atomic%.
  • the film 3 of the present embodiment may include other layers.
  • the other layers are listed above.
  • a TiCN layer or a TiN layer is suitable as the base layer in contact with the surface of the substrate 2.
  • the adhesion between the substrate 2 and the coating 3 is excellent.
  • the surface layer located on the outermost surface of the film 3 TiCNO layer or the Al 2 O 3 layer is preferred. In this case, the oxidation resistance of the coating 3 is more excellent.
  • the manufacturing method of the surface covering cutting tool of this embodiment includes the TiAlN layer formation process which forms a TiAlN layer by CVD method on the substrate arranged in the reaction furnace.
  • the TiAlN layer forming step includes a first step of supplying a first source gas containing Ti and Al and a second source gas containing ammonia into the reaction furnace in which the base material is disposed.
  • the amount of Al reaching the surface of the substrate corresponding to the cutting edge region corresponds to the amount of Al reaching the surface of the substrate corresponding to the rake face region and the flank region. Less than each of the amounts of Al reaching the surface of the substrate.
  • the surface of the substrate corresponding to the cutting edge region means the surface of the surface of the substrate on which the TiAlN layer corresponding to the cutting edge region is to be disposed.
  • the surface of the base material corresponding to the rake face region means a surface on which the TiAlN layer corresponding to the rake face region is to be disposed, and “the base corresponding to the flank face region”.
  • the “surface of the material” means a surface on which a TiAlN layer corresponding to the flank region is to be disposed among the surfaces of the base material.
  • the coating of the surface-coated cutting tool of this embodiment can be manufactured by a CVD method.
  • a layer other than the TiAlN layer is formed in the coating, these layers are formed under conventionally known conditions. be able to.
  • the TiAlN layer can be formed by the specific CVD method described above.
  • a CVD apparatus capable of performing the above specific CVD method
  • a CVD apparatus having a reaction furnace shown in FIG.
  • a first pipe 51 and a second pipe 52 are arranged in the reaction furnace shown in FIG.
  • the first pipe 51 and the second pipe 52 have through holes 51a to 51c and through holes 52a to 52c, respectively.
  • the first pipe 51 and the inside of the reaction furnace communicate with each other through through holes 51a to 51c
  • the second pipe 52 and the inside of the reaction furnace communicate with each other through through holes 52a to 52c.
  • the through holes 51a to 51c and the through holes 52a to 52c are shown to have slightly different heights (up and down directions in the figure), but this is for ease of understanding. It is a figure and it is preferable that each height corresponds. That is, it is preferable that the through hole 51a and the through hole 52a, the through hole 51b and the through hole 52b, and the through hole 51c and the through hole 52c are arranged at the same height.
  • the substrate 2 is placed in a reaction furnace. At this time, a shielding plate is provided between the two so that the surface of the cutting edge 2c of the base material 2 (the surface of the base material corresponding to the cutting edge region) and the through holes (51a to 51c, 52a to 52c) do not directly face each other. 53 and 54 are arranged. Further, the pressure and temperature in the reactor can be controlled to 0.5 to 3.0 kPa and 600 to 900 ° C., respectively. Furthermore, it is preferable that the base material 2 is rotating as indicated by a rotation arrow in the figure.
  • the first raw material gas containing Ti and Al is supplied to the first pipe 51, and the second raw material gas containing ammonia (NH 3 ) is supplied to the second pipe 52.
  • the first source gas include a mixed gas composed of AlCl 3 , TiCl 4 , HCl, N 2 and Ar.
  • the second source gas include a mixed gas composed of NH 3 , N 2 and Ar.
  • the ratio of Ti and Al in the first source gas is not particularly limited, but when forming the TiAlN layer of this embodiment, for example, when using AlCl 3 and TiCl 4 , AlCl 3 / TiCl 4 (volume ratio) is It is derived from various experiments that 1 to 5 is preferable and 2 to 4 is more preferable. Further, in forming the TiAlN layer of the present embodiment, when the total amount (volume) of gas supplied into the reaction furnace is 100%, the flow rate ratio (volume ratio) of NH 3 is 2.3. It is also derived from various experiments that ⁇ 2.9% is preferable.
  • the first source gas supplied to the first pipe 51 is jetted into the reaction furnace through the through holes 51a to 51c.
  • the second source gas supplied to the second pipe 52 is jetted into the reaction furnace through the through holes 52a to 52c.
  • the flow of the first raw material gas and the flow of the second raw material gas in each pipe are indicated by solid line arrows and dotted line arrows. Thereby, a TiAlN layer is formed on the surface of the substrate 2.
  • the present inventors consider the reason why the TiAlN layer according to the present embodiment is produced by the CVD method as described above as follows.
  • each gas ejected from each through hole in the first step diffuses from the ejection hole to the base material 2 side, thereby forming a TiAlN layer on the surface of the base material. More specifically, each gas flows in a flow channel having the through hole side as an upstream and the base material side as a downstream, and causes a chemical reaction on the surface of the substrate located in the flow channel. As a result of this chemical reaction, a TiAlN layer is formed on the surface.
  • the cutting edge 2 c of the base material 2 (the surface of the base material corresponding to the cutting edge region) is blocked between each gas ejected from the through hole. Plates 53 and 54 are arranged. For this reason, a part of each gas flows so as to go around the shielding plates 53 and 54, as indicated by white arrows in the figure.
  • the gas flowing in this way (hereinafter referred to as “around gas”) first reaches the surface corresponding to the rake face region of the rake face 2a or the surface corresponding to the flank face area of the flank 2b, A chemical reaction is caused on these surfaces, and then the behavior reaches that the cutting edge 2c is reached and a chemical reaction is caused on the surface corresponding to the cutting edge region.
  • the length of the flow path from each ejection hole to the surface corresponding to the cutting edge area is determined by the surface corresponding to the rake face area from each ejection hole and It will become larger than the length of each flow path until it reaches the surface corresponding to a flank area.
  • the surrounding gas contains AlCl 3 , TiCl 4 and NH 3, but the reactivity of AlCl 3 and NH 3 is higher than the reactivity of TiCl 4 and NH 3 . Therefore, since AlCl 3 is consumed more than TiCl 4 on the surface corresponding to the rake face region and the surface corresponding to the flank surface region, Al and Ti in the wraparound gas reaching the surface corresponding to the cutting edge region
  • the atomic ratio (AlCl 3 / TiCl 4 ) is smaller than the atomic ratio in the entrained gas that reaches the surface corresponding to the rake face region and the surface corresponding to the flank face region. For this reason, the amount of Al reaching the surface corresponding to the cutting edge region is smaller than each amount of Al reaching the surface corresponding to the rake face region and the surface corresponding to the flank region.
  • the Al content rate of the TiAlN layer corresponding to the cutting edge region is smaller than the Al content rate of each TiAlN layer corresponding to the rake face region and the flank face region.
  • Such a TiAlN layer is formed.
  • the amount of Al reaching the surface of the base material corresponding to the cutting edge region is determined based on the surface of the base material corresponding to the rake face region and the flank surface region.
  • the present invention is not limited to this.
  • the surface of the base material corresponding to the rake face region and the surface of the base material corresponding to the flank surface region are made more through holes than the surface of the base material corresponding to the cutting edge region.
  • the distance between the surface of the base material corresponding to the rake face region and the surface of the base material corresponding to the flank surface region and the ejection hole is made closer to the distance between the surface of the base material corresponding to the cutting edge region and the ejection hole.
  • the substrate 2 may be arranged in the reaction furnace so as to be shorter.
  • TiAlN layer containing Wurtz-type AlN may also be simply referred to as “TiAlN layer”.
  • a film was formed on the surface of each substrate obtained above. Specifically, a film was formed on the base material by chemical vapor deposition by setting the base material in a reaction furnace of a chemical vapor deposition apparatus.
  • Table 2 shows the conditions for forming each layer other than the TiAlN layer
  • Table 3 shows the conditions for forming the TiAlN layer.
  • Total gas amount indicates the total flow rate introduced into the chemical vapor deposition apparatus per unit time with the gas in the standard state (0 ° C., 1 atm) as an ideal gas (the same applies to Table 3). ).
  • TiAlN layer formation conditions there are 15 TiAlN layer formation conditions, a to j and k to o, of which a to j are the conditions of the example and k to o are the conditions of the comparative example. is there.
  • a shielding plate was arranged in the reaction furnace so as to have the same arrangement as in FIG.
  • the “shielding plate width” in Table 3 means the vertical width of the shielding plates 53 and 54 in FIG. 10, and the “shielding plate distance” means the shielding plates 53 and 54 and the base material in the horizontal direction in FIG. This means the shortest value of the space length between the two cutting edges 2c.
  • the formation conditions m, n, and o in Table 3 are the same as the formation conditions of each TiAlN layer disclosed in Patent Documents 2, 3, and 4 described above.
  • the surface-coated cutting tool No. 1 employs the base material K shown in Table 1 as the base material, and a 0.5 ⁇ m thick TiN layer and an 8.5 ⁇ m thick TiCN layer are laminated on the surface of the base material K in this order.
  • the formed underlayer is formed under the conditions shown in Table 2, and a TiAlN layer having a thickness of 5.0 ⁇ m is formed on the underlayer under the formation conditions a shown in Table 3, so that a coating having a total thickness of 14.0 ⁇ m is formed on the substrate. It is shown that the configuration is formed.
  • a blank in Table 4 indicates that the corresponding layer is not formed.
  • the “Wurz-type detection” column shows the result of confirming the crystal structure of the TiAlN layer by the above-described X-ray diffraction spectrum measurement method. “No” means that no peak derived from the wurtzite crystal structure was observed, but only a peak derived from the NaCl type crystal structure was observed. “Yes” means that a peak derived from the wurtzite crystal structure was observed.
  • each column of “Al ratio” in Table 5 indicates the Al ratio in the TiAlN layer corresponding to each of the cutting edge region, the rake face region, and the flank face region.
  • the ratio of Al in each region was an average value of three or more measurement points.
  • the corner portion of the surface-coated cutting tool was used as a cutting edge.
  • the cross section of the TiAlN layer in the cutting edge region of the corner portion was used as a measurement sample of the cutting edge region.
  • the cross section of the TiAlN layer in the rake face area 50 to 100 ⁇ m away from the boundary between the cutting edge area and the rake face area in the corner portion is used as a measurement sample of the rake face region, and the cutting edge area and the relief in the corner portion are measured.
  • the cross section of the TiAlN layer in the flank region 50 to 200 ⁇ m away from the boundary with the surface region was used as a measurement sample of the flank region.
  • TC (111) shows the result of the orientation index TC (111).
  • Each value was calculated by the method described above, and was an average value of three measurement points.
  • Each hardness and Young's modulus shown in Table 5 were determined by pushing an indenter with a load of 3000 mgf perpendicular to the thickness direction of the TiAlN layer using an ultra-fine indentation hardness tester (manufactured by Elionix).
  • “edge”, “rake”, and “flank” mean “cutting edge region”, “rake face region”, and “flank surface region”.
  • the TiAlN layer produced under the formation conditions a to j is the highest at the cutting edge, and each value of the rake face and the flank face is 0.005 or more smaller than the value of the cutting edge. It was.
  • the surface-coated cutting tool of the example has higher wear resistance and chipping resistance than the surface-coated cutting tool of the comparative example. It was confirmed to be excellent.
  • the surface-coated cutting tool of the example was superior in chipping resistance as compared with the surface-coated cutting tool of the comparative example.
  • the surface-coated cutting tool of the example has both wear resistance and chipping resistance compared to the surface-coated cutting tool of the comparative example, so both characteristics of hardness and fracture resistance are achieved. It was confirmed to be excellent.
  • the surface-coated cutting tool of the example was superior in fracture resistance as compared with the surface-coated cutting tool of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Abstract

表面を有し、表面は、すくい面および逃げ面を含み、すくい面および逃げ面の境界部分が切れ刃を成す表面被覆切削工具であって、基材と、基材の表面を被覆する被膜と、を備え、被膜は、NaCl型結晶構造のTiAlN層を有し、TiAlN層のうち、切れ刃に位置する切れ刃領域の組成をTi1-XEAlXENとし、すくい面に位置するすくい面領域の組成をTi1-XRAlXRNとし、かつ逃げ面に位置する逃げ面領域の組成をTi1-XFAlXFNとした場合に、0.65<XR≦0.9、0.65<XF≦0.9、0.4≦XE≦0.7、XR-XE≧0.2、およびXF-XE≧0.2を満たす。

Description

表面被覆切削工具およびその製造方法
 本発明は、表面被覆切削工具およびその製造方法に関する。本出願は、2016年1月13日に出願した日本特許出願である特願2016-004572号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 鋼や鋳鉄などの切削加工に用いられる切削工具として、基材の表面に硬質被膜が設けられた表面被覆切削工具がある。この硬質被膜の一つとして、チタン(Ti)とアルミニウム(Al)と窒素(N)との化合物であるNaCl型結晶構造のTiAlNからなる被膜(以下、「TiAlN被膜」という)が知られている。このTiAlN被膜は、これまでPVD(Physical Vapor Deposition)法によって作製されており、所望の物性を発揮し得るように、その組成等の改良が試みられていた。
 たとえば、特許文献1には、PVD法によって作製されるTiAlN被膜の組成を、工具における各部位ごとに変化させた表面被覆切削工具が開示されている。また、TiAlN被膜のAlの含有割合を高めることによって、その硬度が高められることが知られており、その実現に向けて様々な検討がなされていた。しかし、PVD法によって作製されたTiAlN被膜では、Alの配合割合を0.65超にすると、ウルツ型のAlNが析出してしまい、結果的に、期待されるような十分な硬度を発揮できないのが実情であった。
 これに対し、近年、CVD(Chemical Vapor Deposition)法によってTiAlN被膜を作製することで、NaCl型結晶構造を維持したまま、Alの配合割合を0.65超とすることが可能となった。たとえば、特許文献2には、CVD法によって、Alの割合が0.75超0.93以下のTiAlN被膜が製造される旨が開示されている。
 しかし、CVD法によってAlの配合割合を高めたTiAlN被膜の作製が可能となることによって、「Alの含有割合を高め過ぎることによる耐欠損性の低下」という新たな問題点が浮かび上がった。これは、TiAlN被膜の硬度が高くなり過ぎることによって、TiAlN被膜の靱性が低くなり、結果的にTiAlN被膜が欠損してしまうためである。
 上記の問題点に対し、特許文献3および特許文献4には、TiAlN被膜中に、敢えてウルツ型のAlNを析出させることによって、硬度の過剰な高まりを抑制し、これによって耐欠損性の低下を抑制する旨が開示されている。
特開平8-267306号公報 特表2008-545063号公報 国際公開第2012/126030号公報 独国特許発明第102007000512号明細書
 本開示の一態様に係る表面被覆切削工具は、表面を有し、表面は、すくい面および逃げ面を含み、すくい面および逃げ面の境界部分が切れ刃を成す表面被覆切削工具であって、基材と、基材の表面を被覆する被膜と、を備え、被膜は、NaCl型結晶構造のTiAlN層を有し、TiAlN層のうち、切れ刃に位置する切れ刃領域の組成をTi1-XEAlXENとし、すくい面に位置するすくい面領域の組成をTi1-XRAlXRNとし、かつ逃げ面に位置する逃げ面領域の組成をTi1-XFAlXFNとした場合に、
 0.65<XR≦0.9、
 0.65<XF≦0.9、
 0.4≦XE≦0.7、
 XR-XE≧0.2、
 およびXF-XE≧0.2を満たす。
 本開示の一態様に係る表面被覆切削工具の製造方法は、上述の表面被覆切削工具の製造方法であって、反応炉内に配置された基材上に、CVD法によりTiAlN層を形成するTiAlN層形成工程を含み、TiAlN層形成工程は、TiおよびAlを含む第1原料ガスおよびアンモニアを含む第2原料ガスを、基材が配置された反応炉内に供給する第1工程を含み、第1工程において、切れ刃領域に対応する基材の表面に到達するAlの量は、すくい面領域に対応する基材の表面に到達するAlの量および逃げ面領域に対応する基材の表面に到達するAlの量の各々よりも少ない。
図1は、本開示の一実施形態に係る表面被覆切削工具の一例を示す斜視図である。 図2は、図1の表面被覆切削工具の断面図であり、図1のII-II線矢視方向から見た断面図である。 図3は、図1の斜線部分を示す図であり、III領域を示す断面斜視図である。 図4は、図2に示す断面図において、切れ刃にホーニング加工が施されている場合の部分図である。 図5は、図3に示す断面斜視図において、切れ刃にホーニング加工が施されている場合の断面斜視図である。 図6は、図2に示す断面図において、切れ刃にネガランド加工が施されている場合の部分図である。 図7は、図3に示す断面斜視図において、切れ刃にネガランド加工が施されている場合の断面斜視図である。 図8は、図2に示す断面図において、切れ刃にホーニング加工とネガランド加工とが施されている場合の部分図である。 図9は、図3に示す断面斜視図において、切れ刃にホーニング加工とネガランド加工とが施されている場合の断面斜視図である。 図10は、CVD装置の反応炉内における基材の配置を説明するための模式図である。
[本開示が解決しようとする課題]
 しかし、CVD法において、TiAlN被膜中にAlNを析出させるに当たって、その割合や析出位置等の制御は難しい。このため、特許文献3および特許文献4に開示されるようなTiAlN被膜を有する表面被覆切削工具を工業的に生産することは実質的に困難である。このような理由から、NaCl型結晶構造のTiAlN被膜に由来する高い硬度を有すると共に、高い耐欠損性を発揮し得る表面被覆切削工具の開発が求められる。
 本開示の目的は、硬度および耐欠損性の両特性に優れた表面被覆切削工具を提供することである。
[本開示の効果]
 上記によれば、硬度および耐欠損性の両特性に優れた表面被覆切削工具を提供することができる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。なお、本明細書の結晶学的記載においては、個別面を()で示す。また、本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味しており、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。また本明細書において、「TiAlN」、「TiN」、「TiCN」等の化学式において特に原子比を特定していないものは、各元素の原子比が「1」のみであることを示すものではなく、従来公知の原子比が全て含まれるものとする。
 本発明者らは、上述のように、CVD法によってAlの配合割合の高いTiAlN被膜を作製する場合に、ウルツ型のAlNを析出させるような従来の手法では、その制御が難しく、硬度および耐欠損性に優れた被膜を実際に提供することは難しいと考えた。そこで、従来の手法とは大きく異なる手法として、TiAlN被膜の組成を工具における位置毎に変化させる手法に着眼した。
 CVD法とは、本来一様の被膜を成膜するための手法であるため、上記手法の確立には多くの困難があったが、上記着眼点に基づいて種々の検討を重ね、基材の各表面への各原料ガスの供給方法を特徴的な態様とすることによって、上記手法を実現できることを知見した。そして、この知見に基づいて更に鋭意検討を重ねることにより、本発明を完成させた。
 〔1〕本発明の一態様に係る表面被覆切削工具は、表面を有し、表面は、すくい面および逃げ面を含み、すくい面および逃げ面の境界部分が切れ刃を成す表面被覆切削工具であって、基材と、基材の表面を被覆する被膜と、を備え、被膜は、NaCl型結晶構造のTiAlN層を有し、TiAlN層のうち、切れ刃に位置する切れ刃領域の組成をTi1-XEAlXENとし、すくい面に位置するすくい面領域の組成をTi1-XRAlXRNとし、かつ逃げ面に位置する逃げ面領域の組成をTi1-XFAlXFNとした場合に、
 0.65<XR≦0.9、
 0.65<XF≦0.9、
 0.4≦XE≦0.7、
 XR-XE≧0.2、
 およびXF-XE≧0.2を満たす。
 上記表面被覆切削工具によれば、逃げ面およびすくい面においては、顕著に高い硬度を発揮することができ、最も負荷のかかる切れ刃においては、靱性と硬度とのバランスに優れる。このため、工具全体として、高い硬度を維持しつつ、高い耐欠損性を発揮することができる。したがって、上記表面被覆切削工具は、硬度および耐欠損性に優れることとなる。
 〔2〕上記表面被覆切削工具において、TiAlN層における(111)面の配向性指数TC(111)は、1<TC(111)≦4を満たすことが好ましい。この場合、さらに耐摩耗性に優れる。
 〔3〕上記表面被覆切削工具において、TiAlN層は、1~10μmの厚みを有することが好ましい。この場合、さらに上記特性に優れる。
 〔4〕上記表面被覆切削工具において、被膜は、3~15μmの厚みを有することが好ましい。この場合、切削工具としての適性に優れる。
 〔5〕本発明の一態様に係る表面被覆切削工具の製造方法は、上述の表面被覆切削工具の製造方法であって、反応炉内に配置された基材上に、CVD法によりTiAlN層を形成するTiAlN層形成工程を含み、TiAlN層形成工程は、TiおよびAlを含む第1原料ガスおよびアンモニアを含む第2原料ガスを、基材が配置された反応炉内に供給する第1工程を含み、第1工程において、切れ刃領域に対応する基材の表面に到達するAlの量は、すくい面領域に対応する基材の表面に到達するAlの量および逃げ面領域に対応する基材の表面に到達するAlの量の各々よりも少ない。
 上記製造方法によれば、各領域(切れ刃領域、すくい面領域、および逃げ面領域)に対応する部分のTiAlN層の各組成が変化するように制御することができる。したがって、上述の表面被覆切削工具を製造することができる。
 [本発明の実施形態の詳細]
 以下、本発明の一実施形態(以下「本実施形態」と記す)について説明するが、本実施形態はこれらに限定されるものではない。
 <表面被覆切削工具>
 図1に示されるように、本実施形態の表面被覆切削工具1(以下、単に「工具1」とも記す)は、上面、下面および四つの側面を含む表面を有しており、全体として、上下方向にやや薄い四角柱形状である。また、工具1には、上下面を貫通する貫通孔が形成されており、工具1の4つの側面の境界部分においては、隣り合う側面同士が円弧面で繋がれている。
 本実施形態の工具1では、上面および下面がすくい面11を成し、4つの側面(およびこれらを繋ぐ円弧面)が逃げ面12を成す。また、すくい面11と逃げ面12の境界部分が切れ刃13として機能する。換言すれば、本実施形態の工具1は、表面(上面、下面、四つの側面、これらの側面を繋ぐ円弧面、および貫通孔の内周面)を有し、表面はすくい面11および逃げ面12を含み、すくい面11および逃げ面12の境界部分が切れ刃13を成す。
 ここで、すくい面11および逃げ面12の境界部分とは、「すくい面11と逃げ面12との境界を成す稜線Eと、すくい面11および逃げ面12のうち稜線E近傍となる部分と、を併せた部分」を意味する。「すくい面11および逃げ面12のうち稜線E近傍となる部分」とは、工具1の切れ刃13の形状によって決定される。以下に、工具1が、シャープエッジ形状の工具、ホーニング加工が施されたホーニング形状の工具、およびネガランド加工が施されたネガランド形状の工具の場合について説明する。
 図2および図3に、シャープエッジ形状の工具1を示す。このようなシャープエッジ形状の工具1において、「すくい面11および逃げ面12のうち稜線E近傍となる部分」は、稜線Eからの距離(直線距離)Dが、50μm以下の領域(図3において、点ハッチングが施される領域)と定義される。したがって、シャープエッジ形状の工具1における切れ刃13とは、図3において点ハッチングが施される領域に対応する部分となる。
 図4および図5に、ホーニング加工が施されたホーニング形状の工具1を示す。図4および図5においては、工具1の各部の他、すくい面11を含む仮想平面R、逃げ面12を含む仮想平面F、仮想平面Rと仮想平面Fとが交差してなる仮想稜線EE、すくい面11と仮想平面Rとの乖離の境界となる仮想境界線ER、および逃げ面12と仮想平面Fとの乖離の境界となる仮想境界線EFが示されている。なお、ホーニング形状の工具1において、上記の「稜線E」は、「仮想稜線EE」と読み替える。
 このようなホーニング形状の工具1において、「すくい面11および逃げ面12のうち仮想稜線EE近傍となる部分」は、仮想境界線ERおよび仮想境界線EFとに挟まれる領域(図5において点ハッチングが施される領域)と定義される。したがって、ホーニング形状の工具1における切れ刃13とは、図5において点ハッチングが施される領域に対応する部分となる。
 図6および図7に、ネガランド加工が施されたネガランド形状の工具1を示す。図6および図7においても、工具1の各部の他、すくい面11を含む仮想平面R、逃げ面12を含む仮想平面F、仮想平面Rと仮想平面Fとが交差してなる仮想稜線EE、すくい面11と仮想平面Rとの乖離の境界となる仮想境界線ER、および逃げ面12と仮想平面Fとの乖離の境界となる仮想境界線EFが示されている。なお、ネガランド形状の工具1においても、上記の「稜線E」は、「仮想稜線EE」と読み替える。
 このようなネガランド形状の工具1において、「すくい面11および逃げ面12のうち仮想稜線EE近傍となる部分」は、仮想境界線ERおよび仮想境界線EFとに挟まれる領域(図7において点ハッチングが施される領域)と定義される。したがって、ネガランド形状の工具1における切れ刃13とは、図7において点ハッチングが施される領域に対応する部分となる。
 図8および図9に、ホーニングとネガランドとが組み合された加工が施された形状の工具1を示す。図8および図9においても、工具1の各部の他、すくい面11を含む仮想平面R、逃げ面12を含む仮想平面F、仮想平面Rと仮想平面Fとが交差してなる仮想稜線EE、すくい面11と仮想平面Rとの乖離の境界となる仮想境界線ER、および逃げ面12と仮想平面Fとの乖離の境界となる仮想境界線EFが示されている。なお、ネガランド形状の工具1においても、上記の「稜線E」は、「仮想稜線EE」と読み替える。なお、仮想平面Rは、すくい面11のうち切れ刃13に近い平面を含む面とする。
[規則91に基づく訂正 13.06.2017] 
 このような形状の工具1において、「すくい面11および逃げ面12のうち仮想稜線EE近傍となる部分」は、仮想境界線ERおよび仮想境界線EFとに挟まれる領域(図9において点ハッチングが施される領域)と定義される。したがって、当該工具1における切れ刃13とは、図9において点ハッチングが施される領域に対応する部分となる。
 図1に戻り、図1には、旋削加工用刃先交換型切削チップとしての工具1が示されるが、工具1はこれに限られず、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどを例示できる。
 また、工具1が刃先交換型切削チップ等である場合、工具1は、チップブレーカを有するものも、有さないものも含まれ、また、切れ刃13は、その形状がシャープエッジ(すくい面と逃げ面とが交差する稜)(図1~図3参照)、ホーニング(シャープエッジに対してアールを付与したもの)(図4および図5参照)加工されたもの、ネガランド(面取りをしたもの)(図6および図7参照)加工されたもの、ホーニング加工とネガランド加工とが組み合されたもの(図8および図9参照)のいずれをも含み得る。
 図2に示されるように、上記工具1は、基材2と、該基材2の表面を被覆する被膜3とを有する。工具1において、被膜3は、基材2の全面を被覆することが好ましいが、基材2の一部がこの被膜3で被覆されていなかったり、被膜3の構成が部分的に異なったりしていたとしても本実施形態の範囲を逸脱するものではない。
 <基材>
 図2および図3に示されるように、本実施形態の基材2は、すくい面2aと、逃げ面2bとを有する。また、すくい面2aと逃げ面2bとの境界部分が切れ刃2cを成す。「すくい面2aと逃げ面2bとの境界部分」とは、上述の「すくい面11と逃げ面12との境界部分」と同様に、「すくい面2aと逃げ面2bとの境界を成す稜線と、すくい面2aおよび逃げ面2bのうち稜線近傍となる部分と、を併せた部分」を意味する。また「すくい面2aと逃げ面2bのうち稜線近傍となる部分」とは、工具1の切れ刃13の形状がシャープエッジ形状であるか、ホーニング形状であるか、ネガランド形状であるかによって、上述のように定義されることとなる。
 基材2としては、この種の基材として従来公知のものであればいずれのものも使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化硼素焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。これらの各種基材の中でも、特にWC基超硬合金、サーメット(特にTiCN基サーメット)を選択することが好ましい。これは、これらの基材が特に高温における硬度と強度とのバランスに優れ、表面被覆切削工具の基材として優れた特性を有するためである。
[規則91に基づく訂正 13.06.2017] 
 <被膜>
 本実施形態の被膜3は、TiAlN層を有する限り、他の層を含んでも良いし、含まなくても良い。他の層としては、たとえばTiN層、TiCN層、TiBNO層、TiCNO層、Al23層、TiB2層、TiAlCN層、TiAlON層、TiAlONC層等を挙げることができる。その積層の順も特に限定されない。
 このような本実施形態の被膜3は、基材2を被覆することにより、硬度、耐欠損性等の諸特性を向上させる作用を有するものである。
 被膜3は、3~15μmの厚みを有することが好ましい。その厚みが3μm未満では、工具寿命が不十分となる場合があり、15μmを超えると、断続加工において被膜3と基材2との間に大きな応力が加わった際に被膜3の剥離または破壊が高頻度に発生する場合がある。上記厚みは、より好ましくは5~15μmであり、さらに好ましくは7~15μmである。
 <TiAlN層>
 本実施形態の被膜3は、TiAlN層を含む。このTiAlN層は、当該被膜3中に1層または2層以上含まれることができる。
 本実施形態のTiAlN層の特徴の一つは、NaCl型結晶構造を有する点にある。ここで「NaCl型結晶構造を有する」とは、TiAlN層のX線回折スペクトルを測定した場合に、NaCl型結晶構造由来のピークが観察され、NaCl型結晶構造以外の結晶構造(たとえば、ウルツ型結晶構造)由来のピークが観察されない(すなわち、検出限界以下である)ことを意味する。このようなX線回折スペクトルは、以下のようにして測定される。
 まず、工具1の逃げ面12の平坦な任意の一部分を切り出して、これをホルダーに固定し、サンプルを準備し、必要に応じて研磨処理することにより、測定対象とする表面を平滑にする。なお、TiAlN層上に他の層が形成されている場合には、その層を研磨等により除去した上で、TiAlN層の表面を平滑にする。次に、X線回折装置(XRD)を用いてTiAlN層のX線回折を行い、X線回折スペクトルを得る。
 上述のX線回折は、たとえば、X線回折装置(SmartLab(登録商標)、リガク株式会社製)を用いて、以下の条件で測定することができる。
回折法     :θ-2θ法
X線源     :Cu-Kα線(1.541862Å)
検出器     :D/Tex Ultra250
管電圧     :45kV
管電流     :200mA
スキャンスピード:20°/分
スキャン範囲  :15~85°
スリット    :2.0mm。
 また、本実施形態のTiAlN層の他の特徴は、TiAlN層のうち、切れ刃13に位置する切れ刃領域の組成をTi1-XEAlXENとし、すくい面11に位置するすくい面領域の組成をTi1-XRAlXRNとし、逃げ面12に位置する逃げ面領域の組成をTi1-XFAlXFNとした場合に、以下(1)~(5)を満たすことにある。
(1)0.65<XR≦0.9;
(2)0.65<XF≦0.9;
(3)0.4≦XE≦0.7;
(4)XR-XE≧0.2;
(5)およびXF-XE≧0.2。
 上記XR、XF、およびXEは、エネルギー分散型X線分光器を備える走査型電子顕微鏡(SEM-EDS)を用いて、TiAlN層の各領域(切れ刃領域、すくい面領域、および逃げ面領域)における各組成を測定することにより、求めることができる。
 XEの算出方法について説明する。まず、切れ刃領域のTiAlN層の断面を含む測定試料を準備する。この測定試料は、たとえば、工具1を、被膜3の厚み方向に沿って(TiAlN層に略垂直な断面が得られるように)切断することにより得られる。また、必要に応じて、露出する切断面を研磨処理して、該切断面に含まれる切れ刃領域のTiAlN層の断面を平滑にする。
 なお、測定試料用の断面作製にあたって、切れ刃領域のうち、切れ刃領域とすくい面領域との境界近傍ではなく、切れ刃領域の中央部分の断面を用いることが好ましい。切れ刃領域のうちの上記境界近傍の特性よりも、切れ刃領域のうちの上記中央部分の特性のほうが、工具1の切れ刃13としての特性に大きく影響するためである。
 次に、SEM-EDSを用いて準備された測定試料を観察し、TiAlN層におけるAlとTiとの組成比を分析し、TiAlN層におけるAlの割合を算出する。1つの工具1において、測定点を3箇所以上としてAlの割合を算出し、これらの値の平均値をXEとする。
 XRについても同様に、すくい面領域のTiAlN層の断面を含む測定試料を準備し、SEM-EDSを用いて、TiAlN層におけるAlとTiとの組成比を分析する。XRの算出に際しても、1つの工具1において、測定点を3箇所以上としてAlの割合を算出し、これらの値の平均値をXRとする。
 なお、測定試料用の断面作製にあたって、すくい面領域のうち、切れ刃領域とすくい面領域との境界から50~100μm離れた領域の断面を用いることが好ましい。「切れ刃領域とすくい面領域との境界」は、図3、図5、図7および図9のすくい面11において、点ハッチングが施された領域と、点ハッチングが施されていない領域との境界に相当する。
 XFについても同様に、逃げ面領域のTiAlN層の断面を含む測定試料を準備し、SEM-EDSを用いて、TiAlN層におけるAlとTiとの組成比を分析する。XFの算出に際しても、1つの工具1において、測定点を3箇所以上としてAlの割合を算出し、これらの値の平均値をXFとする。
[規則91に基づく訂正 13.06.2017] 
 なお、測定試料用の断面作製にあたって、逃げ面領域のうち、切れ刃領域と逃げ面領域との境界から50~200μm離れた領域の断面を用いることが好ましい。「切れ刃領域と逃げ面領域との境界」は、図3、図5、図7および図9の逃げ面12において、点ハッチングが施された領域と、点ハッチングが施されていない領域との境界に相当する。
 上述のSEM-EDS解析は、たとえば走査型電子顕微鏡(S-3400N型、日立ハイテクノロジーズ社製)を用いて、以下の条件で測定することができる。
加速電圧    :15kV
プロセスタイム :5
スペクトルレンジ:0~20keV
チャンネル数  :1K
フレーム数   :150
X線取り出し角度:30°。
 ここで、XEを算出するに当たっては、工具1の実際の使用状況を鑑みて、測定試料とするTiAlN層の断面の位置を決定することが好ましい。具体的には、工具1が、コーナー部分(円弧を描く頂角の部分)の切れ刃13によって被削材を切削すべく使用される場合には、コーナー部分の切れ刃領域に位置するTiAlN層の断面を測定試料とすることが好ましい。一方、工具1が、ストレート部分(直線を描く部分)の切れ刃13によって被削材を切削すべく使用される場合には、ストレート部分の切れ刃領域に位置するTiAlN層の断面を測定試料とすることが好ましい。工具1を切削工具として用いた場合の実際の工具特性に直結するためである。
 また、XRを算出するに当たっても、工具1の実際の使用状況を鑑みて、測定試料とするTiAlN層の断面の位置を決定することが好ましい。具体的には、工具1が、コーナー部分の切れ刃13によって被削材を切削すべく使用される場合には、コーナー部分の切れ刃領域近傍のすくい面領域に位置するTiAlN層の断面を測定試料とすることが好ましい。コーナー部分近傍のすくい面11の特性が、工具1を切削工具として用いた場合の実際の工具特性に直結するためである。一方、同様の理由により、工具1が、ストレート部分の切れ刃13によって被削材を切削すべく使用される場合には、ストレート部分の切れ刃領域近傍のすくい面領域に位置するTiAlN層の断面を測定試料とすることが好ましい。XFを算出するにあたっても同様である。
 NaCl型結晶構造を有し、かつ上記(1)~(5)を満たすTiAlN層は、高い硬度と高い耐欠損性とを有することができ、もって、硬度および耐欠損性に優れることとなる。したがって、このようなTiAlN層を有する工具1は、硬度および耐欠損性に優れることができる。この理由について、本発明者らは、次のように考察する。
 本実施形態のTiAlN層は、上記(1)~(3)に規定されるように、Al割合が0.65超となる領域を有している。それにも関わらず、その結晶構造はNaCl型結晶構造を維持している。このようなTiAlN層は、従来のPVD法によっては作製し得なかったものであり、これによって、高い硬度を有することができる。さらに、TiAlN層は、さらに上記(4)および(5)に規定されるように、切れ刃13(切れ刃領域)におけるAl割合が、すくい面11(すくい面領域)および逃げ面12(逃げ面領域)の各々と比して小さい。このような構成を有することにより、TiAlN層は、すくい面11および逃げ面12においては、顕著に高い硬度を発揮することができ、最も負荷のかかる(すなわち、欠損が生じ易い)切れ刃13においては、靱性と硬度とのバランスに優れることができる。したがって、工具1全体として、実際の使用に適した高い硬度と高い耐欠損性とを発揮できる。
 以上詳述した本実施形態のTiAlN層において、上記(3)は0.4<XE<0.55が好ましい。この場合、さらに上記効果に優れる。また、上記(4)および(5)に関し、その上限値は特に限定されないが、硬度と耐欠損性とのバランスの観点からは、0.4以下であることが好ましく、0.38以下であることがより好ましい。
 また、本実施形態のTiAlN層において、(111)面の配向性指数TC(111)は、1.0<TC(111)≦4.0を満たすことが好ましく、2.0<TC(111)≦4.0を満たすことがより好ましい。この場合、さらに耐摩耗性に優れる。
 ここで「配向性指数」とは、一般的に配向性指数TC(hkl)で表記され、下記式(1)で示される。
Figure JPOXMLDOC01-appb-M000001
 式(1)中、I(hkl)は、(hkl)反射面のX線回折強度を示し、I0(hkl)は、ICDDのデータベース00-046-1200による標準強度を示す。また、式(1)中のnは、計算に用いた反射数を示し、本実施形態では5である。反射に用いた(hkl)面は、(111)、(200)、(220)、(311)および(222)である。したがって、本実施形態のTiAlN層におけるTC(111)は、下記式(2)で示すことができる。
Figure JPOXMLDOC01-appb-M000002
 本実施形態において、上記式(2)で示されるTiAlN層の(111)面の配向性指数TC(111)は、XRDを用いた分析により求めることができる。
 たとえば、X線回折装置(SmartLab(登録商標)、リガク株式会社製)を用いて、以下の条件で測定することができる。
回折法:θ-2θ法
X線源:Cu-Kα線(1.541862Å)
検出器:D/Tex Ultra250
管電圧:45kV
管電流:200mA
スキャンスピード:20°/分
スキャン範囲:15~85°
スリット:2.0mm。
 また、本実施形態のTiAlN層は、1~10μmの厚みを有することが好ましい。その厚みが1μm未満では、硬度および耐欠損性を十分に発揮できない恐れがあり、10μmを超えると、TiAlN層の剥離が発生する場合がある。上記厚みは、より好ましくは2~10μmであり、さらに好ましくは5~7μmである。
 また、本実施形態のTiAlN層は、上記効果を奏する限り、不純物を含んでいていも良い。不純物としては、塩素(Cl)、酸素(O)、炭素(C)、アルゴン(Ar)および水素(H)が挙げられる。なかでもClは、CVD法によって作製されたTiAlN層に含まれ得る特有の元素であって、PVD法によって作製されたTiAlN層中には混入し得ない。TiAlN層におけるClの濃度は、0.05~0.20原子%である。
 <他の層>
 本実施形態の被膜3は、上述のように、他の層を含んでも良い。他の層の例示は上記において列挙したが、たとえば、基材2の表面に接する下地層としては、TiCN層またはTiN層が好適である。この場合、基材2と被膜3との密着性に優れる。また、被膜3の最表面に位置する表面層としては、TiCNO層またはAl23層が好適である。この場合、被膜3の耐酸化性がより優れることとなる。
[規則91に基づく訂正 13.06.2017] 
 <製造方法>
 本実施形態の表面被覆切削工具の製造方法は、反応炉内に配置された基材上に、CVD法によりTiAlN層を形成するTiAlN層形成工程を含む。TiAlN層形成工程は、TiおよびAlを含む第1原料ガスおよびアンモニアを含む第2原料ガスを、基材が配置された反応炉内に供給する第1工程を含む。そして、この第1工程においては、切れ刃領域に対応する基材の表面に到達するAlの量は、すくい面領域に対応する基材の表面に到達するAlの量および逃げ面領域に対応する基材の表面に到達するAlの量の各々よりも少ない。
 ここで、「切れ刃領域に対応する基材の表面」とは、基材の表面のうち、切れ刃領域に対応するTiAlN層が配置されるべき表面を意味する。同様に、「すくい面領域に対応する基材の表面」は、基材の表面のうち、すくい面領域に対応するTiAlN層が配置されるべき表面を意味し、「逃げ面領域に対応する基材の表面」とは、基材の表面のうち、逃げ面領域に対応するTiAlN層が配置されるべき表面を意味する。
 本実施形態の表面被覆切削工具の被膜は、CVD法によって製造することができるのであり、被膜のうち、TiAlN層以外の層が形成される場合、それらの層は、従来公知の条件で形成することができる。一方、TiAlN層は、上記の特異的なCVD法によって形成することができるものである。
 上記の特異的なCVD法を実施可能なCVD装置の一例として、図10に示される反応炉を有するCVD装置が挙げられる。図10に示される反応炉内には、第1配管51と、第2配管52とが配置されている。第1配管51および第2配管52は、それぞれ貫通孔51a~51cおよび貫通孔52a~52cを有している。第1配管51と反応炉内とは、貫通孔51a~51cを介して連通しており、第2配管52と反応炉内とは、貫通孔52a~52cを介して連通している。
 なお、図10において、貫通孔51a~51cと、貫通孔52a~52cは、それぞれわずかに高さ(図の上下方向)が異なっているように示されるが、これは理解を容易とするための図であり、各高さは一致していることが好ましい。すなわち、貫通孔51aと貫通孔52a、貫通孔51bと貫通孔52b、貫通孔51cと貫通孔52cとは、それぞれ同じ高さに配置されていることが好ましい。
 TiAlN層形成工程において、基材2は反応炉内に配置される。このとき、基材2の切れ刃2cの表面(切れ刃領域に対応する基材の表面)と、貫通孔(51a~51c、52a~52c)とが直接対峙しないように、両者間に遮蔽板53および54が配置される。また、反応炉内の圧力および温度は、それぞれ0.5~3.0kPaおよび600~900℃に制御することができる。さらに基材2は、図中回転矢印で示すように、自転していることが好ましい。
 第1工程において、第1配管51には、TiおよびAlを含む第1原料ガスが供給され、第2配管52には、アンモニア(NH3)を含む第2原料ガスが供給される。第1原料ガスの具体例としては、AlCl3、TiCl4、HCl、N2およびArからなる混合ガスが挙げられる。第2原料ガスの具体例としては、NH3、N2およびArからなる混合ガスが挙げられる。第1原料ガスと第2原料ガスとを各々異なる配管に流すことにより、反応炉内に噴出される前に、AlCl3またはTiCl4と、NH3とが反応してしまうことを抑制することができる。
 第1原料ガスにおけるTiおよびAlの割合は特に制限されないが、本実施形態のTiAlN層を成膜するに当たっては、たとえば、AlCl3およびTiCl4を用いる場合、AlCl3/TiCl4(体積比)は、1~5が好ましく、2~4がさらに好ましいことが各種実験から導かれている。また、本実施形態のTiAlN層を成膜するに当たって、反応炉内に供給されるガスの総量(体積)を100%とした場合に、NH3の流量の割合(体積割合)は、2.3~2.9%が好ましいことも、各種実験から導かれている。
[規則91に基づく訂正 13.06.2017] 
 第1配管51に供給された第1原料ガスは、貫通孔51a~51cを介して反応炉内に噴出される。一方、第2配管52に供給された第2原料ガスは、貫通孔52a~52cを介して反応炉内に噴出される。なお、図10においては、各配管内における第1原料ガスの流れ、および第2原料ガスの流れを実線矢印および点線矢印で示す。これにより、基材2の表面にTiAlN層が形成される。
 上記のようなCVD法によって本実施形態に係るTiAlN層が作製される理由について、本発明者らは次のように考察する。
 図10を参照し、第1工程において各貫通孔から噴出された各ガスは、噴出孔から基材2側へ拡散していき、これにより、基材の表面にTiAlN層が形成される。より具体的には、各ガスは、貫通孔側を上流とし、かつ基材側を下流とする流路内を流れていき、該流路内に位置する基材の表面にて化学反応を起こし、この化学反応の結果物として、該表面においてTiAlN層が形成される。
 ここで、本実施形態においては、図10に示されるように、基材2の切れ刃2c(切れ刃領域に対応する基材の表面)と貫通孔から噴出された各ガスとの間に遮断板53,54が配置されている。このため、各ガスの一部は、図中白抜きの矢印で示すように、遮蔽板53,54をまわり込むように流れる。このように流れるガス(以下、「廻り込みガス」という)は、まず、すくい面2aのうちのすくい面領域に対応する表面または逃げ面2bのうちの逃げ面領域に対応する表面に到達し、これらの表面にて化学反応を起こし、その後、切れ刃2cに到達し、切れ刃領域に対応する表面にて化学反応を起こす、という挙動を示すこととなる。換言すれば、廻り込みガスの流路に関し、各噴出孔から切れ刃領域に対応する表面に到達するまでの流路の長さは、各ガスが各噴出孔からすくい面領域に対応する表面および逃げ面領域に対応する表面に到達するまでの各流路の長さよりも大きくなることとなる。
 ところで、廻り込みガスには、AlCl3、TiCl4およびNH3が含まれるが、TiCl4とNH3との反応性よりも、AlCl3とNH3との反応性のほうが高い。したがって、すくい面領域に対応する表面および逃げ面領域に対応する表面においてAlCl3がTiCl4よりも多く消費されるために、切れ刃領域に対応する表面に到達する廻り込みガスにおけるAlとTiとの原子比(AlCl3/TiCl4)は、すくい面領域に対応する表面および逃げ面領域に対応する表面に到達する廻り込みガスにおける同原子比よりも小さくなる。このため、切れ刃領域に対応する表面に到達するAlの量は、すくい面領域に対応する表面および逃げ面領域に対応する表面に到達するAlの各量よりも少なくなる。
 以上の理由により、切れ刃領域に対応するTiAlN層のAl含有割合は、すくい面領域および逃げ面領域に対応する各TiAlN層の各Al含有割合よりも小さくなり、結果的に、本実施形態に係るTiAlN層が形成される。
 上述の製造方法においては、遮蔽板を用いることによって、切れ刃領域に対応する基材の表面に到達するAlの量を、すくい面領域に対応する基材の表面および逃げ面領域に対応する基材の表面に到達するAlの各量よりも少なくすることを可能としたが、本発明はこれに限定されない。たとえば、貫通孔との位置関係について、すくい面領域に対応する基材の表面および逃げ面領域に対応する基材の表面を、切れ刃領域に対応する基材の表面よりも、より貫通孔に近づけることにより、すくい面領域に対応する基材の表面および逃げ面領域に対応する基材の表面と噴出孔との各距離を、切れ刃領域に対応する基材の表面と噴出孔との距離よりも短くするように基材2を反応炉内に配置してもよい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下において、ウルツ型のAlNを含有するTiAlN層についても、単に「TiAlN層」と記載する場合がある。
 <基材の調製>
 以下の表1に記載の基材Kおよび基材Lの2種類の基材を準備した。具体的には、表1に記載の配合組成からなる原料粉末を均一に混合し、所定の形状に加圧成形した後、1300~1500℃で1~2時間焼結することにより、形状がCNMG120408N-GU(住友電気工業製)(基材K)およびSEET13T3AGSN-G(住友電気工業製)(基材L)の超硬合金製の基材を得た。
Figure JPOXMLDOC01-appb-T000003
 <被膜の形成>
 上記で得られた各基材に対してその表面に被膜を形成した。具体的には、基材を化学気相蒸着装置の反応炉内にセットすることにより、基材上に化学気相蒸着法により被膜を形成した。
 被膜の形成条件は、以下の表2および表3に記載した通りである。表2はTiAlN層以外の各層の形成条件を示し、表3はTiAlN層の形成条件を示している。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2中の「残り」とは、H2が原料ガスの残部を占めることを示している。また、「全ガス量」とは、標準状態(0℃、1気圧)における気体を理想気体とし、単位時間当たりに化学気相蒸着装置に導入された全体積流量を示す(表3についても同じ)。
 また、表3に示すように、TiAlN層の形成条件はa~jとk~oの15通りであり、このうちa~jが実施例の条件であり、k~oが比較例の条件である。特に、形成条件a~jにおいては、図10と同様の配置となるように、反応炉内に遮蔽板を配置した。表3の「遮蔽板幅」とは、図10における遮蔽板53,54の上下方向の幅を意味し、「遮蔽板距離」とは、図10の左右方向における遮蔽板53,54と基材2の切れ刃2cとの間の空間長さの最短値を意味する。なお、表3の形成条件m,n,oは、それぞれ、上述の特許文献2、3および4に開示される各TiAlN層の形成条件と同様である。
 <表面被覆切削工具の作製>
 上記の表2および表3の条件により、基材上に被膜を形成することにより、以下の表4に示した試料No.1~36の表面被覆切削工具を作製した。
Figure JPOXMLDOC01-appb-T000006
 表4に関し、たとえば試料No.1の表面被覆切削工具は、基材として表1に記載の基材Kを採用し、その基材Kの表面に、厚み0.5μmのTiN層および厚み8.5μmのTiCN層がこの順に積層された下地層を、表2の条件で形成し、その下地層上に厚み5.0μmのTiAlN層を表3の形成条件aで形成することにより、基材上に合計厚み14.0μmの被膜を形成した構成であることを示している。なお、表4中の空欄は、該当する層が形成されていないことを示す。
 <TiAlN層の特性>
 TiAlN層の特性評価用として、基材K上に、形成条件a~oの各方法でTiAlN層を作製し、該TiAlN層の各種特性を評価した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表5において、「ウルツ型検出」の欄には、上述のX線回折スペクトルの測定方法にて、TiAlN層の結晶構造を確認した結果を示す。「無」とは、ウルツ型結晶構造由来のピークが観察されず、NaCl型結晶構造由来のピークのみが観察されたことを意味し、「有」とは、ウルツ型結晶構造由来のピークが観察されたことを意味する。
 また、表5の「Al割合」の各欄には、切れ刃領域、すくい面領域、および逃げ面領域のそれぞれに対応するTiAlN層におけるAlの割合を示す。各領域のAlの割合は、それぞれ、3箇所以上の測定点の平均値とした。
 また、後述する切削試験において、表面被覆切削工具のコーナー部分を切れ刃として使用した。このため、コーナー部分の切れ刃領域におけるTiAlN層の断面を、切れ刃領域の測定試料とした。同様の理由から、コーナー部分の切れ刃領域とすくい面領域との境界から50~100μm離れたすくい面領域におけるTiAlN層の断面を、すくい面領域の測定試料とし、コーナー部分の切れ刃領域と逃げ面領域との境界から50~200μm離れた逃げ面領域におけるTiAlN層の断面を、逃げ面領域の測定試料とした。
 また「TC(111)」の欄には、配向性指数TC(111)の結果を示す。なお、各値は、上述の方法により算出し、かつ3つの測定点の平均値とした。表5に示される各硬度およびヤング率は、超微小押し込み硬さ試験機(エリオニクス社製)を用いて、TiAlN層の厚み方向に垂直に3000mgfの荷重で圧子を押し込むことにより求めた。なお、表中の「edge」、「rake」および「flank」は、「切れ刃領域」、「すくい面領域」および「逃げ面領域」を意味する。
 表5に示されるように、形成条件a~jで作製されたTiAlN層は、NaCl型結晶構造からなり、かつ、上記(1)~(5)を満たすことが確認された。一方、形成条件k~oで作製されたTiAlN層は、これらを満たしていなかった。
 また、Hv/Eに関し、形成条件a~jで作製されたTiAlN層は、切れ刃で最も高く、すくい面および逃げ面の各値は、切れ刃の値よりも0.005以上小さい値であった。
 <切削試験1>
 以下の表6に記載した実施例および比較例の表面被覆切削工具について、以下の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに切れ刃の最終損傷形態を観察した。その結果を表6に示す。切削時間が長いもの程、硬度に優れ、工具寿命が長くなっていることを示す。また、最終損傷形態が「摩耗」であるものは、切れ刃が欠損することなく摩耗したことを意味し、最終損傷形態が「チッピング」であるものは、切れ刃にチッピングが生じたことを意味する。
 <切削条件>
被削材:FCD600丸棒外周切削
周速:200m/min
送り速度:0.15mm/rev
切込み量:1.0mm
切削液:あり。
Figure JPOXMLDOC01-appb-T000008
 表6より明らかなように実施例の表面被覆切削工具は、比較例の表面被覆切削工具に比し、耐摩耗性および耐チッピング性の両者が高いことから、硬度および耐欠損性の両特性に優れていることが確認された。
 <切削試験2>
 以下の表7に記載した実施例および比較例の表面被覆切削工具について、以下の切削条件により、切れ刃が欠損するまでの切削時間を測定した。その結果を表7に示す。切削時間が長いもの程、耐欠損性に優れていることを示す。
 <切削条件>
被削材:SCM435溝材
周速:200m/min
送り速度:0.20mm/rev
切込み量:1.0mm
切削液:あり。
Figure JPOXMLDOC01-appb-T000009
 表7より明らかなように実施例の表面被覆切削工具は、比較例の表面被覆切削工具に比し、耐チッピング性に優れていたことから、耐欠損性に優れていることが確認された。
 <切削試験3>
 以下の表8に記載した実施例および比較例の表面被覆切削工具について、以下の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削距離を測定するとともに切れ刃の最終損傷形態を観察した。その結果を表8に示す。切削距離が長いもの程、硬度に優れ、工具寿命が長くなっていることを示す。また、最終損傷形態が「欠損」であるものは、切れ刃に欠損が生じたことを意味する。「欠損」とは、「チッピング」が微小な欠けであるのに対し、「欠損」とは切れ刃の生じた大きな欠けを意味する。
 <切削条件>
被削材:FCD700ブロック材
周速:350m/min
送り速度:0.30mm/rev
切込み量:2.0mm
切削液:あり
カッタ:WGC4160(住友電工ハードメタル株式会社製)。
Figure JPOXMLDOC01-appb-T000010
 表8より明らかなように実施例の表面被覆切削工具は、比較例の表面被覆切削工具に比し、耐摩耗性および耐チッピング性の両者が高いことから、硬度および耐欠損性の両特性に優れていることが確認された。
 <切削試験4>
 以下の表9に記載した実施例および比較例の表面被覆切削工具について、以下の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削距離を測定するとともに切れ刃の最終損傷形態を観察した。その結果を表9に示す。切削距離が長いもの程、耐欠損性に優れ、工具寿命が長くなっていることを示す。
 <切削条件>
被削材:S450Cブロック材
周速:160m/min
送り速度:0.30mm/rev
切込み量:2.0mm
切削液:なし
カッタ:WGC4160(住友電工ハードメタル株式会社製)。
Figure JPOXMLDOC01-appb-T000011
 表9より明らかなように実施例の表面被覆切削工具は、比較例の表面被覆切削工具に比し、耐欠損性に優れていた。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 表面被覆切削工具、2 基材、2a すくい面、2b 逃げ面、2c 切れ刃、3 被膜、11 すくい面、12 逃げ面、13 切れ刃、E 稜線、F,R 仮想平面、EE 仮想稜線、EF,ER 仮想境界線、51 第1配管、52 第2配管、51a~51c,52a~52c 貫通孔、53,54 遮蔽板。

Claims (5)

  1.  表面を有し、前記表面は、すくい面および逃げ面を含み、前記すくい面および前記逃げ面の境界部分が切れ刃を成す表面被覆切削工具であって、
     基材と、
     前記基材の表面を被覆する被膜と、を備え、
     前記被膜は、NaCl型結晶構造のTiAlN層を有し、
     前記TiAlN層のうち、前記切れ刃に位置する切れ刃領域の組成をTi1-XEAlXENとし、前記すくい面に位置するすくい面領域の組成をTi1-XRAlXRNとし、かつ前記逃げ面に位置する逃げ面領域の組成をTi1-XFAlXFNとした場合に、
     0.65<XR≦0.9、0.65<XF≦0.9、0.4≦XE≦0.7、XR-XE≧0.2、およびXF-XE≧0.2を満たす、表面被覆切削工具。
  2.  前記TiAlN層において、(111)面の配向性指数TC(111)は、1.0<TC(111)≦4.0を満たす、請求項1に記載の表面被覆切削工具。
  3.  前記TiAlN層は、1μm以上10μm以下の厚みを有する、請求項1または請求項2に記載の表面被覆切削工具。
  4.  前記被膜は、3μm以上15μm以下の厚みを有する、請求項1から請求項3のいずれか1項に記載の表面被覆切削工具。
  5.  請求項1から請求項4のいずれか1項に記載の表面被覆切削工具の製造方法であって、
     反応炉内に配置された前記基材上に、CVD法により前記TiAlN層を形成するTiAlN層形成工程を含み、
     前記TiAlN層形成工程は、
     TiおよびAlを含む第1原料ガスおよびアンモニアを含む第2原料ガスを、前記基材が配置された前記反応炉内に供給する第1工程を含み、
     前記第1工程において、
     前記切れ刃領域に対応する前記基材の表面に到達する前記Alの量は、前記すくい面領域に対応する基材の表面に到達する前記Alの量および前記逃げ面領域に対応する基材の表面に到達する前記Alの量の各々よりも少ない、表面被覆切削工具の製造方法。
PCT/JP2016/085501 2016-01-13 2016-11-30 表面被覆切削工具およびその製造方法 WO2017122448A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680066342.0A CN108367363B (zh) 2016-01-13 2016-11-30 表面被覆切削工具及其制造方法
EP16885051.9A EP3357614B1 (en) 2016-01-13 2016-11-30 Surface-coated cutting tool and method for producing same
US15/550,513 US10603726B2 (en) 2016-01-13 2016-11-30 Surface coated cutting tool and method for manufacturing the same
KR1020187013308A KR102160349B1 (ko) 2016-01-13 2016-11-30 표면 피복 절삭 공구 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-004572 2016-01-13
JP2016004572A JP6638936B2 (ja) 2016-01-13 2016-01-13 表面被覆切削工具およびその製造方法

Publications (2)

Publication Number Publication Date
WO2017122448A1 WO2017122448A1 (ja) 2017-07-20
WO2017122448A9 true WO2017122448A9 (ja) 2017-09-08

Family

ID=59311123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085501 WO2017122448A1 (ja) 2016-01-13 2016-11-30 表面被覆切削工具およびその製造方法

Country Status (6)

Country Link
US (1) US10603726B2 (ja)
EP (1) EP3357614B1 (ja)
JP (1) JP6638936B2 (ja)
KR (1) KR102160349B1 (ja)
CN (1) CN108367363B (ja)
WO (1) WO2017122448A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870331B2 (ja) * 2016-09-26 2021-05-12 株式会社Moldino 硬質皮膜被覆工具及びその製造方法
JP7520286B2 (ja) * 2018-12-27 2024-07-23 三菱マテリアル株式会社 表面被覆切削工具
US20220111446A1 (en) * 2018-12-27 2022-04-14 Mitsubishi Materials Corporation Surface-coated cutting tool
JP7243013B2 (ja) * 2019-03-28 2023-03-22 三菱マテリアル株式会社 耐欠損性にすぐれた表面被覆切削工具
WO2020213261A1 (ja) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 切削工具
WO2020213260A1 (ja) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 切削工具
WO2020213262A1 (ja) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 切削工具
CN113874144A (zh) * 2019-08-06 2021-12-31 住友电工硬质合金株式会社 切削工具
US11103944B2 (en) 2019-08-12 2021-08-31 Deere & Company Self-sharpening cutting tooth for a felling apparatus
KR20220110274A (ko) * 2020-01-20 2022-08-05 교세라 가부시키가이샤 피복 공구
JP7412679B2 (ja) * 2020-03-26 2024-01-15 三菱マテリアル株式会社 耐欠損性にすぐれた表面被覆切削工具

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277558B2 (ja) * 1992-06-11 2002-04-22 住友電気工業株式会社 被覆切削チップの製造方法
JPH08267306A (ja) * 1995-04-04 1996-10-15 Mitsubishi Materials Corp 硬質層被覆切削工具およびその製造方法
US5722803A (en) * 1995-07-14 1998-03-03 Kennametal Inc. Cutting tool and method of making the cutting tool
SE519005C2 (sv) * 1999-03-26 2002-12-17 Sandvik Ab Belagt hårdmetallskär
DE10002861A1 (de) * 2000-01-24 2001-08-09 Walter Ag Zerspannungswerkzeug mit Carbonitrid-Beschichtung
JP2001341008A (ja) * 2000-06-02 2001-12-11 Hitachi Tool Engineering Ltd 窒化チタンアルミニウム膜被覆工具及びその製造方法
KR100885177B1 (ko) 2004-04-12 2009-02-23 학교법인 포항공과대학교 표적 dna 또는 rna 탐지용 올리고뉴클레오티드
CN1648284A (zh) * 2004-11-25 2005-08-03 西南师范大学 采用金属有机化学气相沉积法制备功能梯度材料的方法
DE102005032860B4 (de) 2005-07-04 2007-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung
JP4703392B2 (ja) 2005-12-20 2011-06-15 トッキ株式会社 蒸着装置
JP4783153B2 (ja) * 2006-01-06 2011-09-28 住友電工ハードメタル株式会社 刃先交換型切削チップ
KR101073414B1 (ko) * 2006-04-10 2011-10-17 오에스지 가부시키가이샤 경질 피막의 탈막 방법
JP5046726B2 (ja) 2007-04-24 2012-10-10 京セラ株式会社 表面被覆切削工具
JP5383019B2 (ja) * 2007-09-11 2014-01-08 京セラ株式会社 エンドミル
DE102007000512B3 (de) * 2007-10-16 2009-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung
US8623525B2 (en) * 2010-03-29 2014-01-07 Kyocera Corporation Cutting tool
KR101831014B1 (ko) * 2010-11-23 2018-02-21 쎄코 툴스 에이비 코팅된 절삭 공구 인서트
AT510963B1 (de) 2011-03-18 2012-08-15 Boehlerit Gmbh & Co Kg Beschichteter körper und verfahren zu dessen herstellung
JP5618429B2 (ja) 2012-12-28 2014-11-05 住友電工ハードメタル株式会社 表面被覆部材およびその製造方法
JP6331003B2 (ja) * 2013-11-07 2018-05-30 三菱マテリアル株式会社 表面被覆切削工具
JP6548071B2 (ja) 2014-04-23 2019-07-24 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
CN104073776A (zh) * 2014-07-04 2014-10-01 深圳市华星光电技术有限公司 一种化学气相沉积设备

Also Published As

Publication number Publication date
KR20180066200A (ko) 2018-06-18
KR102160349B1 (ko) 2020-09-25
EP3357614A1 (en) 2018-08-08
JP2017124463A (ja) 2017-07-20
EP3357614B1 (en) 2019-07-31
CN108367363A (zh) 2018-08-03
WO2017122448A1 (ja) 2017-07-20
US10603726B2 (en) 2020-03-31
EP3357614A4 (en) 2018-08-08
CN108367363B (zh) 2019-12-13
US20180029144A1 (en) 2018-02-01
JP6638936B2 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2017122448A9 (ja) 表面被覆切削工具およびその製造方法
USRE49475E1 (en) Coated cutting tool
JP6635340B2 (ja) 表面被覆切削工具およびその製造方法
WO2012144088A1 (ja) 表面被覆切削工具およびその製造方法
WO2022230362A1 (ja) 切削工具
WO2012153438A1 (ja) 表面被覆切削工具
JP2017221992A (ja) 表面被覆切削工具
US9777367B2 (en) Surface coated member and method for manufacturing same
JP6786763B1 (ja) 切削工具
JP2022171412A (ja) 切削工具
WO2019176202A1 (ja) 表面被覆切削工具及びその製造方法
KR101688346B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
WO2019176201A1 (ja) 表面被覆切削工具及びその製造方法
JPWO2019176202A1 (ja) 表面被覆切削工具及びその製造方法
WO2022230360A1 (ja) 切削工具
WO2022230361A1 (ja) 切削工具
JP6992231B1 (ja) 切削工具
JP7401850B2 (ja) 表面被覆切削工具
JP7009718B1 (ja) 切削工具
WO2021245878A1 (ja) 切削工具
JP2022171409A (ja) 切削工具
JP2022171410A (ja) 切削工具
JP2022171411A (ja) 切削工具
KR101688345B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
JPWO2019176201A1 (ja) 表面被覆切削工具及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016885051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187013308

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE