[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020213262A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2020213262A1
WO2020213262A1 PCT/JP2020/008146 JP2020008146W WO2020213262A1 WO 2020213262 A1 WO2020213262 A1 WO 2020213262A1 JP 2020008146 W JP2020008146 W JP 2020008146W WO 2020213262 A1 WO2020213262 A1 WO 2020213262A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
layer
interface
gas
cutting edge
Prior art date
Application number
PCT/JP2020/008146
Other languages
English (en)
French (fr)
Inventor
保樹 城戸
アノンサック パサート
晋 奥野
今村 晋也
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to US17/051,463 priority Critical patent/US11203068B2/en
Priority to JP2020542469A priority patent/JP6834111B1/ja
Publication of WO2020213262A1 publication Critical patent/WO2020213262A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/24Titanium aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Definitions

  • the cutting tool according to this disclosure is A cutting tool including a rake face, a flank surface, and a cutting edge portion connecting the rake face and the flank surface.
  • a base material and an AlTiN layer provided on the base material are provided.
  • the AlTiN layer contains cubic Al x Ti 1-x N crystal grains.
  • the atomic ratio x of Al in the above Al x Ti 1-x N is 0.7 or more and less than 0.95.
  • the AlTiN layer includes a central portion and includes a central portion. The central portion has a virtual plane D parallel to the first interface passing through a point 1 ⁇ m away from the first interface on the side of the base material and a thickness direction from the second interface opposite to the side of the base material.
  • the first interface is parallel to the second interface and Electron backscatter using an electric field radiation scanning microscope with respect to the cross section when the AlTiN layer is cut on the plane including the normal of the second interface on the rake face and the normal of the second interface on the flank surface.
  • the central portion of the rake face is a crystal grain of Al x Ti 1-x N whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the second interface on the rake face.
  • the area ratio occupied by the crystal grains of the Al x Ti 1-x N having the normal direction of the (200) plane within ⁇ 15 ° with respect to the normal direction of the cutting edge portion is 80% or more
  • the normal direction of the cutting edge portion is the virtual plane C including the boundary line between the rake face and the cutting edge portion of the base material and the boundary line between the flank surface and the cutting edge portion of the base material. Normal direction.
  • FIG. 1 is a perspective view illustrating one aspect of a cutting tool.
  • FIG. 2 is a cross-sectional view taken along the line XX of FIG.
  • FIG. 3 is a partially enlarged view of FIG.
  • FIG. 4 is a cross-sectional view illustrating another shape of the cutting edge portion.
  • FIG. 5 is a cross-sectional view further illustrating another shape of the cutting edge portion.
  • FIG. 6 is a schematic cross-sectional view illustrating one aspect of a cutting tool.
  • FIG. 7 is a schematic cross-sectional view illustrating another aspect of the cutting tool.
  • FIG. 8 is a schematic cross-sectional view further illustrating another aspect of the cutting tool.
  • FIG. 9 is a schematic view of a color map created based on the cross section of the AlTiN layer.
  • FIG. 10 is a schematic cross-sectional view of a CVD apparatus used for manufacturing a cutting tool according to the present embodiment.
  • FIG. 11 is a schematic cross-sectional view of a gas introduction pipe of a CVD apparatus used for manufacturing a cutting tool according to the present embodiment.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a cutting tool having excellent heat-resistant cracking properties.
  • the cutting tool according to the present disclosure is A cutting tool including a rake face, a flank surface, and a cutting edge portion connecting the rake face and the flank surface.
  • a base material and an AlTiN layer provided on the base material are provided.
  • the AlTiN layer contains cubic Al x Ti 1-x N crystal grains.
  • the atomic ratio x of Al in the above Al x Ti 1-x N is 0.7 or more and less than 0.95.
  • the AlTiN layer includes a central portion and includes a central portion. The central portion has a virtual plane D parallel to the first interface passing through a point 1 ⁇ m away from the first interface on the side of the base material and a thickness direction from the second interface opposite to the side of the base material.
  • the first interface is parallel to the second interface and Electron backscatter using an electric field radiation scanning microscope with respect to the cross section when the AlTiN layer is cut on the plane including the normal of the second interface on the rake face and the normal of the second interface on the flank surface.
  • the central portion of the rake face is a crystal grain of Al x Ti 1-x N whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the second interface on the rake face.
  • the area ratio occupied by the crystal grains of the Al x Ti 1-x N having the normal direction of the (200) plane within ⁇ 15 ° with respect to the normal direction of the cutting edge portion is 80% or more
  • the normal direction of the cutting edge portion is the virtual plane C including the boundary line between the rake face and the cutting edge portion of the base material and the boundary line between the flank surface and the cutting edge portion of the base material. Normal direction.
  • the cutting tool has excellent heat-resistant cracking properties by having the above-mentioned configuration.
  • heat-resistant crack resistance means resistance to the occurrence of cracks due to the difference in thermal expansion between the cutting edge portion and the portion other than the cutting edge portion in the cutting process in which the cutting edge portion becomes hot.
  • the thickness of the AlTiN layer is 2.5 ⁇ m or more and 20 ⁇ m or less.
  • the underlayer is at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and at least one selected from the group consisting of carbon, nitrogen, oxygen and boron. It consists of a compound consisting of elements.
  • the surface layer has at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum in the periodic table, and at least one selected from the group consisting of carbon, nitrogen, oxygen and boron. It consists of a compound consisting of elements.
  • the present embodiment is not limited to this.
  • the notation in the form of "X to Y” means the upper and lower limits of the range (that is, X or more and Y or less), and when the unit is not described in X and the unit is described only in Y, X The unit of and the unit of Y are the same.
  • the compound is represented by a chemical formula such as "TiN" in which the composition ratio of the constituent elements is not limited, the chemical formula is any conventionally known composition ratio (element ratio). Shall include.
  • the above chemical formula shall include not only the stoichiometric composition but also the non-stoichiometric composition.
  • the chemical formula of "TiN” includes not only the stoichiometric composition “Ti 1 N 1 " but also a non-stoichiometric composition such as “Ti 1 N 0.8 ". This also applies to the description of compounds other than "TiN”.
  • the cutting tool according to this disclosure is A cutting tool including a rake face, a flank surface, and a cutting edge portion connecting the rake face and the flank surface.
  • a base material and an AlTiN layer provided on the base material are provided.
  • the AlTiN layer contains cubic Al x Ti 1-x N crystal grains.
  • the atomic ratio x of Al in the above Al x Ti 1-x N is 0.7 or more and less than 0.95.
  • the AlTiN layer includes a central portion and includes a central portion. The central portion has a virtual plane D parallel to the first interface passing through a point 1 ⁇ m away from the first interface on the side of the base material and a thickness direction from the second interface opposite to the side of the base material.
  • the first interface is parallel to the second interface and Electron backscatter using an electric field radiation scanning microscope with respect to the cross section when the AlTiN layer is cut on the plane including the normal of the second interface on the rake face and the normal of the second interface on the flank surface.
  • the central portion of the rake face is a crystal grain of Al x Ti 1-x N whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the second interface on the rake face.
  • the area ratio occupied by the crystal grains of the Al x Ti 1-x N having the normal direction of the (200) plane within ⁇ 15 ° with respect to the normal direction of the cutting edge portion is 80% or more
  • the normal direction of the cutting edge portion is the virtual plane C including the boundary line between the rake face and the cutting edge portion of the base material and the boundary line between the flank surface and the cutting edge portion of the base material. Normal direction.
  • "parallel" is a concept that includes not only geometric parallelism but also substantially parallelism.
  • the surface-coated cutting tool 1 of the present embodiment includes a base material 10 and an AlTiN layer 11 provided on the base material 10 (hereinafter, may be simply referred to as a “cutting tool”) (for example, FIG. 6).
  • the cutting tool 1 may further include a base layer 12 provided between the base material 10 and the AlTiN layer 11 (FIG. 7).
  • the cutting tool 1 may further include a surface layer 13 provided on the AlTiN layer 11 (FIG. 8). Other layers such as the base layer 12 and the surface layer 13 will be described later.
  • each of the above-mentioned layers provided on the base material 10 may be collectively referred to as a "coating". That is, the cutting tool 1 includes a coating film 14 provided on the base material 10, and the coating film includes the AlTiN layer 11. Further, the coating film 14 may further include the base layer 12 or the surface layer 13.
  • the above-mentioned cutting tools include, for example, a drill, an end mill (for example, a ball end mill), a cutting edge exchangeable cutting tip for a drill, a cutting edge exchangeable cutting tip for an end mill, a cutting edge exchangeable cutting tip for milling, and a cutting edge exchangeable cutting tip for turning. , Metal saws, cutting tools, reamers, taps, etc.
  • the cutting tool includes a rake face, a flank, and a cutting edge portion connecting the rake face and the flank.
  • the "scooping surface” means a surface for scooping out chips scraped from a work material.
  • “Fleeing surface” means a surface whose part is in contact with the work material.
  • FIG. 1 is a perspective view illustrating one aspect of a cutting tool.
  • FIG. 2 is a cross-sectional view taken along the line XX of FIG.
  • a cutting tool having such a shape is used as a cutting edge exchangeable cutting tip such as a cutting edge exchangeable cutting tip for turning.
  • the cutting tool 1 shown in FIGS. 1 and 2 has a surface including an upper surface, a lower surface, and four side surfaces, and has a quadrangular prism shape that is slightly thin in the vertical direction as a whole. Further, the cutting tool 1 is formed with through holes penetrating the upper and lower surfaces, and at the boundary portions of the four side surfaces, the adjacent side surfaces are connected by an arc surface.
  • the upper surface and the lower surface form a rake face 1a
  • the four side surfaces (and the arc surface connecting them to each other) form a flank surface 1b
  • the arc surface connecting the rake face 1a and the flank surface 1b Form the cutting edge portion 1c (FIG. 2).
  • FIG. 3 is a partially enlarged view of FIG.
  • a virtual plane A, a virtual boundary line AA, a virtual plane B, and a virtual boundary line BB are shown.
  • the virtual plane A corresponds to an extension of the rake face 1a.
  • the boundary line AA is a boundary line between the rake face 1a and the cutting edge surface 1c.
  • the virtual plane B corresponds to an extension of the flank surface 1b.
  • the boundary line BB is a boundary line between the flank surface 1b and the cutting edge surface 1c.
  • the cutting edge portion 1c is an arc surface (honing), and the rake face 1a and the flank surface 1b are connected via the cutting edge portion 1c.
  • the virtual plane A and the virtual plane B are shown in a line shape, and the boundary line AA and the boundary line BB are shown in a dot shape.
  • the cutting edge portion 1c is an arc surface (honing)
  • the shape of the cutting edge portion 1c is not limited to this.
  • the cutting edge portion 1c may have a flat shape (negative land).
  • the cutting edge portion 1c may have a shape in which a flat surface and an arc surface are mixed (a shape in which a honing and a negative land are combined).
  • the rake face 1a and the flank surface 1b are connected via the cutting edge portion 1c, and the virtual plane A, the boundary line AA, the virtual plane B, And the boundary line BB is set.
  • the cutting edge portion 1c can be determined only from that shape. This is because the cutting edge portion 1c in this case is not included in either the virtual plane A or the virtual plane B, and can be visually distinguished from the rake face 1a and the flank surface 1b.
  • the cutting edge portion 1c is generally the surface of the base material 10 in the cutting tool 1 described later, and may be a surface formed by subjecting the ridges of the intersecting surfaces to a machining process. ..
  • the base material 10 is formed by machining at least a part of the surface of the base material precursor made of a sintered body or the like, and the cutting edge portion 1c is chamfered by the machining treatment. It may include a surface formed through.
  • the base material 10 in the cutting tool has a rake face 1a, a flank surface 1b, and a cutting edge portion 1c connecting the rake face 1a and the flank surface 1b.
  • the base material of the present embodiment any base material conventionally known as this type of base material can be used.
  • the base material is a cemented carbide (for example, a tungsten carbide (WC) -based cemented carbide, a cemented carbide containing Co in addition to WC, and a carbide such as Cr, Ti, Ta, Nb in addition to WC.
  • a cemented carbide for example, a tungsten carbide (WC) -based cemented carbide, a cemented carbide containing Co in addition to WC, and a carbide such as Cr, Ti, Ta, Nb in addition to WC.
  • Cemented carbide, etc. cermet (mainly composed of TiC, TiN, TiCN, etc.), high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic crystal It is preferable to contain at least one selected from the group consisting of a type boron nitride sintered body (cBN sintered body) and a diamond sintered body.
  • cBN sintered body type boron nitride sintered body
  • diamond sintered body a type boron nitride sintered body
  • cemented carbide particularly WC-based cemented carbide
  • cermet particularly TiCN-based cermet
  • a cemented carbide When a cemented carbide is used as a base material, the effect of this embodiment is shown even if such a cemented carbide contains an abnormal phase called a free carbon or an ⁇ phase in the structure.
  • the base material used in the present embodiment may have a modified surface.
  • a de ⁇ layer may be formed on the surface thereof, or in the case of cermet, a surface hardened layer may be formed, and even if the surface is modified in this way, the present embodiment The effect of is shown.
  • the coating film according to the present embodiment includes an AlTiN layer provided on the base material.
  • the "coating” covers at least a part of the above-mentioned base material (for example, a rake surface in contact with chips during cutting, a flank surface in contact with a work material, etc.), thereby causing fracture resistance and abrasion resistance in a cutting tool. It has the effect of improving various properties such as (crater wear resistance, flank wear resistance, etc.), peel resistance, and heat crack resistance.
  • the coating is not limited to a part of the base material, but preferably covers the entire surface of the base material. However, even if a part of the base material is not coated with the coating film or the composition of the coating film is partially different, it does not deviate from the scope of the present embodiment.
  • the thickness of the coating film is preferably 2.5 ⁇ m or more and 30 ⁇ m or less, and more preferably 3 ⁇ m or more and 25 ⁇ m or less.
  • the thickness of the coating means the total thickness of each of the layers constituting the coating.
  • the "layer constituting the coating film” include an AlTiN layer, a base layer, and a surface layer, which will be described later.
  • the thickness of the coating film is, for example, measured at any 10 points in a cross-sectional sample parallel to the normal direction of the surface of the base material using a scanning transmission electron microscope (STEM), and the thickness of the 10 points measured. It can be calculated by taking the average value. The same applies to the case of measuring the thickness of each of the AlTiN layer, the base layer, the surface layer and the like, which will be described later.
  • the scanning transmission electron microscope include JEM-2100F (trade name) manufactured by JEOL Ltd.
  • AlTiN layer contains cubic Al x Ti 1-x N crystal grains (hereinafter, may be simply referred to as “crystal grains”). That is, the AlTiN layer is a layer containing polycrystalline Al x Ti 1-x N.
  • the "crystal grains of Al x Ti 1-x N” are composed of a layer made of AlN (aluminum nitride) (hereinafter, may be referred to as "AlN layer”) and TiN (titanium nitride). It means a crystal grain of a composite crystal in which layers (hereinafter, may be referred to as “TiN layer”) are alternately laminated.
  • the AlN layer includes a part in which Al is replaced with Ti.
  • the TiN layer includes a part of which Ti is replaced with Al.
  • both the AlN layer and the TiN layer have an FCC structure (Face-Centered Cubic structure).
  • both the AlN layer and the TiN layer have an HCP structure (Hexagonal Close-Packed structure).
  • the atomic ratio x of Al (aluminum) in the above Al x Ti 1-x N is 0.7 or more and less than 0.95, and preferably 0.8 or more and 0.9 or less.
  • the above x uses a scanning electron microscope (SEM) or an energy dispersive X-ray analysis (EDX: Energy Dispersive X-ray spectroscopy) device attached to the TEM for the crystal grains in the AlTiN layer appearing in the above cross-sectional sample. It is possible to obtain it by analyzing it.
  • the atomic ratio x of Al obtained at this time is a value obtained as the average of all the crystal grains of Al x Ti 1-x N. Specifically, each of the 10 arbitrary points in the AlTiN layer of the cross-sectional sample is measured to obtain the value of the above x, and the average value of the obtained 10 points is defined as x in the Al x Ti 1-x N. To do.
  • the "arbitrary 10 points" are selected from crystal grains different from each other in the AlTiN layer.
  • Examples of the EDX device include JED-2300 (trade name) manufactured by JEOL Ltd. Not only Al, but also the atomic ratios of Ti and N can be calculated by the above method.
  • the AlTiN layer may be provided directly above the base material as long as the effect of the cutting tool according to the present embodiment is not impaired, or may be provided via another layer such as a base layer described later. It may be provided on the base material.
  • the state of being "provided on the base material” can be grasped as the state of being "arranged on the base material”. That is, it is understood that the AlTiN layer may be arranged directly above the base material, or may be arranged on the base material via another layer such as a base layer described later. You can also.
  • the AlTiN layer may be provided with another layer such as a surface layer on the AlTiN layer. Further, the AlTiN layer may be the outermost surface of the coating film.
  • the AlTiN layer has the following characteristics. That is, the AlTiN layer includes a central portion, and the central portion includes a virtual plane D parallel to the first interface passing through a point 1 ⁇ m away from the first interface on the base material side in the thickness direction, and the base. It is a region sandwiched between the virtual plane E parallel to the second interface, which passes through a point 1 ⁇ m away from the second interface opposite to the material side in the thickness direction. The first interface is parallel to the second interface. Electron backscatter using an electric field radiation scanning microscope with respect to the cross section when the AlTiN layer is cut on the plane including the normal of the second interface on the rake face and the normal of the second interface on the flank surface.
  • the central portion of the rake face is a crystal grain of Al x Ti 1-x N whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the second interface on the rake face. (Hereinafter, also referred to as "(200) plane-oriented crystal grains”) occupies an area ratio of 50% or more and less than 80%.
  • the area ratio occupied by the crystal grains of the Al x Ti 1-x N having the normal direction of the (200) plane within ⁇ 15 ° with respect to the normal direction of the cutting edge portion is It is 80% or more.
  • the normal direction of the base material at the cutting edge is the boundary line between the rake surface and the cutting edge portion of the base material, and the boundary line between the flank surface and the cutting edge portion of the base material. Is the normal direction of the virtual plane C including.
  • the central portion of the flank face, said Al x comprised within ⁇ 15 ° with respect to the normal direction of the second surface in the normal direction the flank face (200) plane It is preferable that the area ratio occupied by the crystal grains of Ti 1-x N is 50% or more and less than 80%.
  • the first interface 11a of the AlTiN layer 11 shown in FIG. 9 is an interface located on the side of the base material 10, and the second interface 11b is an interface located opposite to the side of the base material 10.
  • the first interface 11a is parallel to the second interface 11b.
  • the second interface 11b is the surface of the AlTiN layer 11.
  • the first interface 11a is a straight line L1 that passes through the point farthest from the base material on the base material side and is parallel to the main surface of the base material in the normal direction of the main surface of the base material in the color map.
  • the second interface 11b passes through the farthest point from the base material on the side opposite to the base material and parallel to the main surface of the base material in the normal direction of the main surface of the base material in the color map. It is a straight line passing through the center of the straight line M1 and the straight line M2 on the side opposite to the base material and passing through the point closest to the base material and parallel to the main surface of the base material.
  • the AlTiN layer is formed on the base material based on the manufacturing method described later. Then, the formed AlTiN layer is cut so as to obtain a cross section perpendicular to the AlTiN layer including the base material. That is, the AlTiN layer is cut so as to be exposed on a plane including the normal of the second interface on the rake face and the normal of the second interface on the flank. Then, the cut surface is polished with water-resistant abrasive paper (one containing a SiC abrasive grain abrasive as an abrasive).
  • water-resistant abrasive paper one containing a SiC abrasive grain abrasive as an abrasive.
  • the surface of the AlTiN layer 11 (or the surface of the coating film when another layer is formed on the AlTiN layer 11) is adhered and fixed on a sufficiently large holding flat plate using wax or the like. After that, it shall be cut in the direction perpendicular to the flat plate with a rotary blade cutting machine (cut so that the rotary blade and the flat plate are as perpendicular as possible).
  • This cutting can be performed at any portion of the AlTiN layer 11 as long as it is performed in such a vertical direction, but it is preferable to cut the vicinity of the cutting edge portion 1c as described later.
  • the above polishing shall be performed using the above water resistant abrasive paper (# 400, # 800, # 1500 shall be used in order).
  • the number (#) of the water-resistant abrasive paper means the difference in the particle size of the abrasive, and the larger the number, the smaller the particle size of the abrasive.
  • the polished surface is further smoothed by an ion milling treatment with Ar ions.
  • the conditions for the ion milling process are as follows. Acceleration voltage: 6kV
  • the above-mentioned smoothed cross section is subjected to a field emission scanning electron microscope (FE-SEM) (product name: "SU6600", Hitachi) equipped with an electron backscatter diffraction device (EBSD device). Observe using (manufactured by High Technologies America), and perform EBSD analysis on the obtained observation image.
  • FE-SEM field emission scanning electron microscope
  • EBSD device electron backscatter diffraction device
  • the high current mode is used in combination with the aperture diameter of 60 ⁇ m or 120 ⁇ m.
  • Data collection is performed in 0.1 ⁇ m / step steps for 100 ⁇ 500 points corresponding to a surface region (observation region) of 10 ⁇ m (thickness direction of the AlTiN layer) ⁇ 50 ⁇ m (direction parallel to the interface of the AlTiN layer) on the cross section. Do it at.
  • the number of measurement fields at this time is 3 or more.
  • the above EBSD analysis result is analyzed using commercially available software (trade name: "orientation Imaging microscopic Ver 6.2", manufactured by EDAX), and the above color map is created. Specifically, first, the crystal orientation of each crystal grain contained in the cross section of the AlTiN layer 11 is specified.
  • the crystal orientation of each crystal grain specified here is a crystal observed when each crystal grain appearing in the cross section of the AlTiN layer 11 is viewed in a plan view from the normal direction of the cross section (the direction penetrating the paper surface in FIG. 9). The orientation.
  • the crystal orientation of each crystal grain in the normal direction of the surface of the AlTiN layer 11 that is, the second interface 11b
  • a color map is created based on the specified crystal orientation.
  • the method of "Cristal Direction MAP" included in the above software can be used.
  • the color map is created over the entire area in the thickness direction of the AlTiN layer 11 observed on the cut surface.
  • crystal grains whose part is out of the measurement field of view are also counted as one.
  • each region surrounded by a solid line and having hatched diagonal lines is each (200) plane-oriented crystal grain 11d. Further, each region surrounded by a solid line and having no hatching is a crystal grain that does not correspond to the (200) plane-oriented crystal grain. That is, in FIG. 9, the crystal grains 11d whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the second interface 11b of the AlTiN layer 11 are hatched with diagonal lines.
  • the color map is originally expressed in color, it is schematically expressed in monotone in the present specification for convenience. Further, although there is a region shown in black in FIG. 9, this is regarded as a region of crystal grains whose crystal orientation has not been specified in the above method.
  • the crystal orientation of the crystal grains of Al x Ti 1-x N is determined at the central portion 11c of the AlTiN layer 11 as shown in FIG.
  • the central portion 11c has a virtual plane D parallel to the first interface 11a passing through a point 1 ⁇ m away from the first interface 11a on the base material side and a second interface opposite to the base material side. It is a region sandwiched between the virtual plane E parallel to the second interface 11b passing through a point 1 ⁇ m away from 11b in the thickness direction.
  • the virtual plane D and the virtual plane E can be set on the created color map based on the distance from the first interface 11a or the second interface 11b.
  • the central portion 11c of the cutting edge portion 1c is set by the following method. First, the AlTiN layer is divided into a plurality of regions for each range in which the curves showing each of the first interface 11a and the second interface 11b in the color map can be approximated to a straight line. Next, the central portion 11c is set for each divided region according to the above method. The set of the central portion 11c for each of the divided regions set in this way is referred to as the central portion 11c of the cutting edge portion 1c.
  • the (200) plane-oriented crystal grains in the cutting edge portion 1c are the boundary line AA between the rake face and the cutting edge portion in the base material and the base material.
  • it means a crystal grain whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the virtual plane C including the boundary line BB between the flank surface and the cutting edge portion.
  • the central portion of the rake face, said Al x Ti comprised within ⁇ 15 ° with respect to the normal direction of the second surface in the normal direction the rake face (200) plane 1-
  • the area ratio occupied by the crystal grains of xN is 50% or more and less than 80%, preferably 60% or more and 80% or less, and more preferably 65% or more and 77% or less.
  • the area ratio is an area ratio based on the entire area of the central portion 11c in the color map.
  • the normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the second interface on the flank.
  • Al x Ti 1- The area ratio of the xN crystal grains is preferably 50% or more and less than 80%, more preferably 60% or more and 79% or less, and further preferably 65% or more and 79% or less.
  • the area ratio is an area ratio based on the entire area of the central portion 11c in the color map.
  • the central portion of the cutting edge portion is a crystal grain of Al x Ti 1-x N in which the normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the cutting edge portion.
  • the area ratio occupied by is 80% or more, preferably 81% or more and 98% or less, and more preferably 81% or more and 95% or less.
  • the normal direction of the cutting edge portion 1c is the boundary line AA between the rake face 1a and the cutting edge portion 1c of the base material 10 and the boundary between the flank surface 1b and the cutting edge portion 1c of the base material 10. It is the normal direction of the virtual plane C including the line BB (FIGS. 3 to 5).
  • the area ratio is an area ratio based on the entire area of the central portion 11c in the color map.
  • the area ratio of the (200) plane-oriented crystal grains in the central portion of the AlTiN layer at the cutting edge portion is 80% or more.
  • the plane-oriented crystal grains are strong against stress in the in-plane direction and have high toughness. Therefore, the cutting tool is excellent in heat crack resistance.
  • the cutting tool can be particularly suitably used for high-speed machining of alloy steel (for example, SCM415).
  • the AlTiN layer contains cubic Al x Ti 1-x N crystal grains.
  • the AlTiN layer may further contain hexagonal Al x Ti 1-x N crystal grains as long as the effects of the present disclosure are not impaired.
  • the cubic Al x Ti 1-x N crystal grains and the hexagonal Al x Ti 1-x N crystal grains are distinguished by, for example, a pattern of diffraction peaks obtained by X-ray diffraction.
  • the hexagonal Al Based on the total amount of the cubic Al x Ti 1-x N (c) crystal grains and the hexagonal Al x Ti 1-x N (h) crystal grains, the hexagonal Al
  • the content ratio (h / (c + h)) of the crystal grains of x Ti 1-x N is preferably 0 to 15% by volume, and more preferably 0 to 10% by volume.
  • the content ratio can be obtained, for example, by analyzing the pattern of the diffraction peak obtained by X-ray diffraction. The specific method is as follows.
  • An X-ray spectrum of the AlTiN layer in the above-mentioned cross-sectional sample is obtained by using an X-ray diffractometer (“MiniFlex 600” (trade name) manufactured by Rigaku).
  • the conditions of the X-ray diffractometer at this time are as follows, for example.
  • Characteristic X-ray Cu-K ⁇ (wavelength 1.54 ⁇ ) Tube voltage: 45kV Tube current: 40mA
  • Filter Multi-layer mirror
  • Optical system Concentrated method X-ray diffraction method: ⁇ -2 ⁇ method.
  • the peak intensity of Al x Ti 1-x N of the cubic (Ic) the peak intensity of Al x Ti 1-x N of hexagonal and (Ih).
  • the "peak intensity” means the height (cps) of the peak in the X-ray spectrum.
  • the peak intensity shall be the value excluding the background.
  • the content ratio of the hexagonal Al x Ti 1-x N based on the total amount of the cubic Al x Ti 1-x N and the hexagonal Al x Ti 1-x N ( Volume%) is calculated by the following formula.
  • Content ratio (volume%) of the hexagonal Al x Ti 1-x N Ih / (Ih + Ic) ⁇ 100
  • the thickness of the AlTiN layer is preferably 2.5 ⁇ m or more and 20 ⁇ m or less, more preferably 3 ⁇ m or more and 20 ⁇ m or less, and further preferably 5 ⁇ m or more and 15 ⁇ m or less. As a result, the above-mentioned excellent effects can be exhibited.
  • the thickness of the AlTiN layer is less than 2.5 ⁇ m, the degree of improvement in heat-resistant cracking property due to the presence of the AlTiN layer tends to be low.
  • the thickness of the AlTiN layer exceeds 20 ⁇ m, the interfacial stress due to the difference in the coefficient of linear expansion between the AlTiN layer and the other layers increases, and the Al x Ti 1-x N crystal grains may fall off from the AlTiN layer. is there.
  • the coating film further includes a base layer provided between the base material and the AlTiN layer, and the base layer is composed of Group 4 elements, Group 5 elements, Group 6 elements and aluminum (Al) of the periodic table. It is preferably composed of a compound consisting of at least one element selected from the group and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron.
  • Group 4 elements of the periodic table include titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • Group 5 elements of the periodic table include vanadium (V), niobium (Nb), tantalum (Ta) and the like.
  • Examples of the Group 6 element of the periodic table include chromium (Cr), molybdenum (Mo), and tungsten (W).
  • the underlayer is preferably made of a compound represented by TiCN. Such a base layer exerts a strong adhesion to the AlTiN layer. As a result, the peeling resistance of the coating film is improved.
  • the thickness of the base layer is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, and more preferably 1 ⁇ m or more and 15 ⁇ m or less. Such a thickness can be confirmed by observing the vertical cross section of the base material and the coating film using a scanning transmission electron microscope (STEM) or the like as described above.
  • STEM scanning transmission electron microscope
  • the coating further includes a surface layer provided on the AlTiN layer.
  • the surface layer is at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and aluminum (Al) of the periodic table, and at least selected from the group consisting of carbon, nitrogen, oxygen and boron. It is preferably composed of a compound composed of one element.
  • Examples of the compound contained in the surface layer include Al 2 O 3 and TiN.
  • the thickness of the surface layer is preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 2 ⁇ m or less. Such a thickness can be confirmed by observing the vertical cross section of the base material and the coating film using a scanning transmission electron microscope (STEM) or the like as described above.
  • STEM scanning transmission electron microscope
  • the coating film may further contain other layers as long as the effect of the cutting tool according to the present embodiment is not impaired.
  • the other layers may have a different composition from the AlTiN layer, the base layer, or the surface layer, or may be the same.
  • Examples of the compound contained in the other layer include TiN, TiCN, TiBN, Al 2 O 3 and the like.
  • the order of laminating the other layers is not particularly limited.
  • an intermediate layer provided between the base layer and the AlTiN layer can be mentioned.
  • the thickness of the other layers is not particularly limited as long as the effects of the present embodiment are not impaired, and examples thereof include 0.1 ⁇ m and more and 20 ⁇ m or less.
  • the method for manufacturing a cutting tool is The first step of preparing the base material (hereinafter, may be simply referred to as “first step”) and The second step of forming the AlTiN layer on the base material by using the chemical vapor deposition method (hereinafter, may be simply referred to as “second step”).
  • the third step of blasting the AlTiN layer (hereinafter, may be simply referred to as “third step”) is included.
  • the second step includes a first gas containing a halide gas of aluminum and a halide gas of titanium, a second gas containing a halide gas of aluminum, a halide gas of titanium and an ammonia gas, and an ammonium gas.
  • Each of the three gases includes spraying onto the substrate in an atmosphere of 650 ° C. or higher and 900 ° C. or lower and 0.5 kPa or higher and 30 kPa or lower.
  • the base material is prepared.
  • a cemented carbide base material is prepared as a base material.
  • the cemented carbide base material may be a commercially available product or may be produced by a general powder metallurgy method.
  • WC powder and Co powder or the like are mixed by a ball mill or the like to obtain a mixed powder.
  • the mixed powder is dried, it is molded into a predetermined shape (for example, SEET13T3AGSN-G) to obtain a molded product. Further, by sintering the molded product, a WC-Co-based cemented carbide (sintered product) is obtained.
  • a base material made of a WC-Co-based cemented carbide can be produced by subjecting the sintered body to a predetermined cutting edge processing such as honing treatment.
  • a predetermined cutting edge processing such as honing treatment.
  • any substrate other than the above can be prepared as long as it is a conventionally known substrate as this type of substrate.
  • ⁇ Second step A step of ejecting each of the first gas, the second gas, and the third gas onto the base material to form an AlTiN layer>
  • a first gas containing a halide gas of aluminum and a halide gas of titanium a first gas containing a halide gas of aluminum and a halide gas of titanium
  • a second gas containing a halide gas of aluminum, a halide gas of titanium and an ammonia gas a third gas containing ammonia gas are contained.
  • Each of the gases is ejected onto the substrate in an atmosphere of 650 ° C. or higher and 900 ° C. or lower and 0.5 kPa or higher and 30 kPa or lower.
  • This step can be performed using, for example, the CVD apparatus described below.
  • FIG. 10 shows a schematic cross-sectional view of an example of a CVD apparatus used for manufacturing the cutting tool of the present embodiment.
  • the CVD apparatus 50 includes a plurality of base material setting jigs 52 for installing the base material 10 and a reaction vessel 53 made of heat-resistant alloy steel containing the base material setting jig 52. ing. Further, a temperature control device 54 for controlling the temperature inside the reaction vessel 53 is provided around the reaction vessel 53.
  • the base material 10 is preferably installed on the protrusion provided on the base material setting jig 52.
  • a gas introduction pipe 58 having a first gas introduction pipe 55, a second gas introduction pipe 56, and a third gas introduction pipe 57 joined adjacent to each other vertically fills the space inside the reaction vessel 53. It extends in the direction and is rotatably provided about the vertical direction.
  • the first gas introduced into the first gas introduction pipe 55, the second gas introduced into the second gas introduction pipe 56, and the third gas introduced into the third gas introduction pipe 57 Is not mixed inside the gas introduction pipe 58 (FIG. 11).
  • each of the first gas introduction pipe 55, the second gas introduction pipe 56 and the third gas introduction pipe 57 has the first gas introduction pipe 55, the second gas introduction pipe 56 and the third gas introduction pipe 57, respectively.
  • a plurality of through holes for ejecting the gas flowing inside onto the base material 10 installed on the base material setting jig 52 are provided.
  • the position of the through hole for ejecting the above-mentioned gas is preferably set so as to be the central portion of the flank surface 10b of the base material 10. It is preferable that the distance between the through hole for ejecting the above-mentioned gas and the base material 10 is short.
  • reaction vessel 53 is provided with a gas exhaust pipe 59 for exhausting the gas inside the reaction vessel 53 to the outside, and the gas inside the reaction vessel 53 passes through the gas exhaust pipe 59. The gas is discharged from the gas exhaust port 60 to the outside of the reaction vessel 53.
  • the above-mentioned first gas, second gas and third gas are introduced into the first gas introduction pipe 55, the second gas introduction pipe 56 and the third gas introduction pipe 57, respectively.
  • the temperatures of the first gas, the second gas, and the third gas in each gas introduction pipe are not particularly limited as long as they are not liquefied.
  • the first gas and the second gas are placed in the reaction vessel 53 having an atmosphere of 650 ° C. or higher and 900 ° C. or lower (preferably 700 ° C. or higher and 770 ° C. or lower) and 0.5 kPa or higher and 30 kPa or lower (preferably 2 kPa or higher and 5 kPa or lower).
  • the third gas is repeatedly ejected in this order.
  • the gas introduction pipe 58 Since the gas introduction pipe 58 has a plurality of through holes, the introduced first gas, second gas, and third gas are ejected into the reaction vessel 53 from different through holes. At this time, the gas introduction pipe 58 rotates at a rotation speed of, for example, 2 to 4 rpm around the above-mentioned axis as shown by the rotation arrow in FIG. As a result, the first gas, the second gas, and the third gas can be repeatedly ejected to the base material 10 in this order.
  • the first gas includes a halide gas of aluminum and a halide gas of titanium.
  • the aluminum halide gas examples include aluminum chloride gas (AlCl 3 gas, Al 2 Cl 6 gas) and the like.
  • AlCl 3 gas is used.
  • the concentration (volume%) of the halide gas of aluminum is preferably 0.3% by volume or more and 1.5% by volume or less, and 0.8% by volume or more and 0.87 by volume, based on the total volume of the first gas. More preferably, it is by volume or less.
  • titanium halide gas examples include titanium (IV) chloride gas (TiCl 4 gas) and titanium (III) chloride gas (TiCl 3 gas). Titanium (IV) chloride gas is preferably used.
  • the concentration (volume%) of the halide gas of titanium is preferably 0.1% by volume or more and 1% by volume or less, preferably 0.1% by volume or more and 0.2% by volume, based on the total volume of the first gas. The following is more preferable.
  • the molar ratio of the halide gas of aluminum in the first gas is preferably 0.5 or more and 0.9 or less based on the total number of moles of the halide gas of aluminum and the halide gas of titanium. More preferably, it is 8 or more and 0.87 or less.
  • the first gas may contain hydrogen gas or may contain an inert gas such as argon gas.
  • concentration (volume%) of the inert gas is preferably 5% by volume or more and 70% by volume or less, and more preferably 20% by volume or more and 60% by volume or less, based on the total volume of the first gas.
  • Hydrogen gas usually occupies the balance of the first gas.
  • the flow rate of the first gas when ejected onto the base material is preferably 20 to 40 L / min.
  • the second gas includes a halide gas of aluminum, a halide gas of titanium, and an ammonia gas.
  • a halide gas of aluminum As the halogenated gas of aluminum and the halide gas of titanium, the gas exemplified in the above (first gas) column can be used.
  • the aluminum halide gas and the titanium halide gas used for the first gas, respectively, and the aluminum halide gas and the titanium halide gas used for the second gas are the same. It may be different or it may be different.
  • the concentration (volume%) of the halide gas of aluminum is preferably 4% by volume or more and 5% by volume or less based on the total volume of the second gas, and is 4.3% by volume or more and 4.5% by volume or less. More preferably.
  • the concentration (volume%) of the halide gas of titanium is preferably 0.1% by volume or more and 1% by volume or less, and 0.5% by volume or more and 0.8% by volume, based on the total volume of the second gas. The following is more preferable.
  • the molar ratio of the halide gas of aluminum in the second gas is preferably 0.82 or more and 0.95 or less, preferably 0.85 or less, based on the total number of moles of the halide gas of aluminum and the halide gas of titanium. More preferably, it is 0.9 or more and 0.9 or less.
  • the concentration (volume%) of ammonia gas is preferably 5% by volume or more and 15% by volume or less, and more preferably 9% by volume or more and 11% by volume or less, based on the total volume of the second gas.
  • the second gas may contain hydrogen gas or may contain an inert gas such as argon gas.
  • concentration (volume%) of the inert gas is preferably 5% by volume or more and 50% by volume or less, and more preferably 15% by volume or more and 17% by volume or less, based on the total volume of the second gas.
  • Hydrogen gas usually occupies the balance of the second gas.
  • the flow rate of the second gas when ejected onto the base material is preferably 20 to 40 L / min.
  • the third gas includes ammonia gas. Further, the third gas may contain hydrogen gas or may contain an inert gas such as argon gas.
  • the concentration (volume%) of ammonia gas is preferably 2% by volume or more and 30% by volume or less, and more preferably 2% by volume or more and 10% by volume or less, based on the total volume of the third gas.
  • Hydrogen gas usually occupies the balance of the third gas.
  • the flow rate of the third gas when ejected onto the base material is preferably 10 to 20 L / min.
  • ⁇ Third step Blasting process>
  • the coating film is blasted.
  • the blasting conditions include the following conditions. By carrying out the blast treatment, compressive residual stress can be applied to the coating film.
  • Conditions for blasting Media Zirconia particles, 500g Projection angle: 45 ° Projection distance: 50 mm Projection time: 3 seconds
  • additional steps may be appropriately performed as long as the effects of the present embodiment are not impaired.
  • additional step include a step of forming a base layer between the base material and the AlTiN layer, a step of forming a surface layer on the AlTiN layer, and the like.
  • the method of forming the base layer and the surface layer is not particularly limited, and examples thereof include a method of forming by a CVD method or the like.
  • the third step is performed after the surface layer is formed.
  • the AlTiN layer is formed by the CVD method. Therefore, the adhesion of the coating film to the substrate (film adhesion) is improved as compared with the case where the coating film is formed by the PVD method.
  • a surface-coated cutting tool including a rake face, a flank surface, and a cutting edge portion connecting the rake face and the flank surface.
  • a base material and an AlTiN layer provided on the base material are provided.
  • the AlTiN layer contains cubic Al x Ti 1-x N crystal grains.
  • the atomic ratio x of Al in the Al x Ti 1-x N is 0.7 or more and less than 0.95.
  • the AlTiN layer includes a central portion and includes a central portion. The central portion has a virtual plane D parallel to the first interface passing through a point 1 ⁇ m away from the first interface on the side of the base material and a thickness direction from the second interface opposite to the side of the base material.
  • the first interface is parallel to the second interface and Electron backscatter using an electric field radiation scanning microscope with respect to the cross section when the AlTiN layer is cut on a plane including the normal of the second interface on the rake face and the normal of the second interface on the flank surface.
  • the central portion of the rake face is a crystal grain of Al x Ti 1-x N whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the second interface on the rake face.
  • the area ratio occupied by the crystal grains of the Al x Ti 1-x N whose normal direction of the (200) plane is within ⁇ 15 ° with respect to the normal direction of the cutting edge portion is 80% or more
  • the normal direction of the cutting edge portion is the virtual plane C including the boundary line between the rake face and the cutting edge portion of the base material and the boundary line between the flank surface and the cutting edge portion of the base material.
  • a surface coating cutting tool that is in the normal direction. (Appendix 2) The surface coating cutting tool according to Appendix 1, wherein the AlTiN layer has a thickness of 2.5 ⁇ m or more and 20 ⁇ m or less.
  • (Appendix 3) Further including a base layer provided between the base material and the AlTiN layer, The underlayer is composed of at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and Al in the periodic table, and at least one selected from the group consisting of carbon, nitrogen, oxygen and boron.
  • (Appendix 4) Further including a surface layer provided on the AlTiN layer, The surface layer has at least one element selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and Al in the periodic table, and at least one selected from the group consisting of carbon, nitrogen, oxygen and boron.
  • base material a base material made of cemented carbide shown in Table 1 below (hereinafter, may be simply referred to as “base material”) was prepared (first step). Specifically, first, the raw material powder having the compounding composition (mass%) shown in Table 1 was uniformly mixed. “Remaining” in Table 1 indicates that WC occupies the balance of the compounding composition (mass%).
  • the mixed powder is pressure-molded into a predetermined shape and then sintered at 1300 to 1500 ° C. for 1 to 2 hours to obtain the above-mentioned base material (base material shape (JIS standard): SEET13T3AGSN-G, cutter diameter). 100) was obtained.
  • base material shape JIS standard
  • SEET13T3AGS N-G has the shape of a cutting tip with a replaceable cutting edge for milling.
  • a coating was formed on the surface of the base material by forming the base layer, the AlTiN layer and the surface layer shown in Table 8 on the surface of the base material.
  • the CVD method was mainly used to prepare the coating film.
  • a method for producing each layer constituting the coating film will be described.
  • AlTiN layer Under the film forming conditions shown in Table 2, the first gas, the second gas, and the third gas having the compositions shown in Tables 3 to 5, respectively, are repeatedly ejected in this order onto the surface of the base material.
  • AlTiN layer was prepared (second step).
  • the base material was installed on a protrusion provided on the base material setting jig.
  • the space between the through hole for ejecting the gas and the base material was set to be short (for example, within 15 mm).
  • the position of the through hole was set so as to be the central portion of the flank surface of the base material.
  • the AlTiN layer represented by the identification symbol [1] in Table 6 is formed under the conditions of a temperature of 780 ° C., a pressure of 3 kPa, and a rotation speed of the gas introduction pipe of 2 rpm (identification symbol 2-a in Table 2), in Table 3.
  • first gas represented by identification symbol 3-a (0.83 vol% of AlCl 3, 0.17% by volume of TiCl 4, 60 vol% of Ar, balance H 2, gas flow rate 20L / min), Table 4 AlCl 3, 0.8 vol% of TiCl 4, 9 vol% of NH 3, 15% by volume of Ar, balance H 2, gas of the second gas (4.3 vol% represented by identification symbol 4-a
  • the flow rate of 40 L / min) and the third gas (2% by volume NH 3 , the rest is H 2 , and the gas flow rate of 10 L / min) indicated by the identification symbol 5-a in Table 5 are repeated in this order on the surface of the base material.
  • To prepare an AlTiN layer The AlTiN layer represented by the identification symbol [8] in Table 6 was prepared by a known PVD method. Table 6 shows the composition and the like of the prepared AlTiN layer.
  • the cutting tool according to this embodiment was produced by the above steps.
  • the cutting tools of sample numbers 1 and 4 to 10 include a base material, an AlTiN layer provided on the base material, and a base layer provided between the base material and the AlTiN layer. , A cutting tool.
  • the cutting tools of sample numbers 2 and 3 are on the base material, the AlTiN layer provided on the base material, the base layer provided between the base material and the AlTiN layer, and the AlTiN layer.
  • each characteristic of the cutting tool was evaluated as follows.
  • the cutting tools of sample numbers 1 to 7 correspond to the examples.
  • the cutting tools of sample numbers 8 to 10 correspond to comparative examples.
  • the thickness of the coating film and the underlying layer, AlTiN layer, and surface layer constituting the coating film is determined by using a scanning transmission electron microscope (STEM) (manufactured by JEOL Ltd., trade name: JEM-2100F). Arbitrary 10 points in the cross-sectional sample parallel to the normal direction of No. 1 were measured for each layer, and the average value of the thicknesses of the measured 10 points was taken. The results are shown in Table 8. The notation "none" in the "surface layer” column indicates that the surface layer is not present in the coating.
  • STEM scanning transmission electron microscope
  • the AlTiN layer has a structure represented by the identification symbol [1] in Table 6, and the thickness is 5.0 ⁇ m. Show that.
  • the notation such as "TiCN (1.0)” indicates that the corresponding layer is a TiCN layer having a thickness of 1.0 ⁇ m.
  • the cutting tool was cut so that a cross section perpendicular to the surface (or interface) of the AlTiN layer in the coating was obtained.
  • the cut surface was polished with water-resistant abrasive paper (manufactured by Noritake Coated Abrasive (NCA), trade name: WATERPROOF PAPER, # 400, # 800, # 1500) to prepare a processed surface of the AlTiN layer. did.
  • NCA Noritake Coated Abrasive
  • the processed surface was further smoothed by an ion milling treatment with Ar ions.
  • the conditions for the ion milling process are as follows.
  • the thickness of the machined surface is 10 ⁇ m (thickness of AlTiN layer).
  • the above-mentioned color map was prepared for the observation region of (direction) ⁇ 50 ⁇ m (direction parallel to the interface of the AlTiN layer).
  • the focused electron beam used in the analysis was set so that reflection occurred in the AlN layer in the crystal grains of Al x Ti 1-x N.
  • the number of created color maps was set to 3.
  • the crystal orientation of each crystal grain contained in the cross section of the AlTiN layer was specified.
  • the crystal orientation of each crystal grain specified here is the crystal orientation observed when each crystal grain appearing in the cross section of the AlTiN layer is viewed in a plan view from the normal direction of the cross section (the direction penetrating the paper surface in FIG. 9). Is. Then, based on the crystal orientation of each of the obtained crystal grains, the crystal orientation of each crystal grain in the normal direction of the second interface of the AlTiN layer was specified. Then, a color map was created based on the specified crystal orientation (for example, FIG. 9).
  • the area ratio of the (200) plane-oriented crystal grains in the central part of the AlTiN layer was determined using commercially available software (trade name: "Orientation Imaging Microscopic Ver 6.2", manufactured by EDAX). It was. The results are shown in Table 6.
  • the central portion includes a virtual plane D parallel to the first interface passing through a point 1 ⁇ m away from the first interface on the side of the base material and a second interface opposite to the side of the base material. It is a region sandwiched between the virtual plane E parallel to the second interface passing through a point 1 ⁇ m away from the thickness direction. (For example, FIG. 9).
  • the first interface and the second interface are defined as follows in the color map.
  • colors are displayed separately so that the region of the AlTiN layer and the region other than the AlTiN layer can be distinguished.
  • a straight line L1 passing through the point farthest from the base material on the base material side and parallel to the main surface of the base material and the group on the base material side.
  • the straight line passing through the point closest to the material and passing through the center with the straight line L2 parallel to the main surface of the base material was defined as the first interface 11a (for example, FIG. 9).
  • Table 6 shows the area ratio of (200) plane-oriented crystal grains on each of the rake face, the cutting edge portion, and the flank face.
  • the cutting edge portion with respect to the normal direction of the virtual plane C including the boundary line AA between the rake face and the cutting edge portion on the base material and the boundary line BB between the flank surface and the cutting edge portion on the base material.
  • Crystal grains having a normal direction of the (200) plane within ⁇ 15 ° were defined as (200) plane-oriented crystal grains.
  • the cutting tools of sample numbers 1 to 7 obtained good results with a cutting distance of 3.0 m or more in continuous machining.
  • the cutting tools of sample numbers 1 to 7 had no defects in the cutting edge and were normally worn (normal wear).
  • the cutting tools of sample numbers 8 to 10 had a cutting distance of 1.8 m or less in continuous machining.
  • the cutting tool of sample No. 10 had abnormally large crater wear and flank wear (abnormal wear). The present inventors consider that this abnormal wear is caused by the increase in cutting resistance due to the progress of wear at the cutting edge portion and the tendency to generate heat.
  • the cutting tools of sample numbers 8 and 9 were found to be defective at the cutting edge. From the above results, it was found that the cutting tool of the example was excellent in heat crack resistance.
  • 1 Cutting tool 1a rake plane, 1b flank surface, 1c cutting edge part, 10 base material, 11 AlTiN layer, 11a first interface, 11b second interface, 11c AlTiN layer central part, 11d (200) oriented crystal grains , 12 base layer, 13 surface layer, 14 coating, 50 CVD device, 52 base material set jig, 53 reaction vessel, 54 temperature control device, 55 1st gas introduction tube, 56 2nd gas introduction tube, 57 3rd gas Introduction pipe, 58 gas introduction pipe, 59 gas exhaust pipe, 60 gas exhaust port, A virtual plane A, B virtual plane B, C virtual plane C, D virtual plane D, E virtual plane E, AA boundary line AA, BB boundary Line BB, L1 straight line L1, L2 straight line L2, M1 straight line M1, M2 straight line M2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

すくい面と、逃げ面と、刃先部とを含む切削工具であって、基材と、AlTiN層とを備え、上記AlTiN層は、立方晶型のAlTi1-xNの結晶粒を含み、Alの原子比xは、0.7以上0.95未満であり、上記AlTiN層は、中央部を含み、上記すくい面における法線及び上記逃げ面における法線を含む平面で、上記AlTiN層を切断したときの断面に対し、電子後方散乱回折像解析によって上記AlTi1-xNの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、上記カラーマップにおいて、上記すくい面における上記中央部は、(200)面配向性結晶粒の占める面積比率が50%以上80%未満であり、上記刃先部における上記中央部は、(200)面配向性結晶粒の占める面積比率が80%以上である、切削工具。

Description

切削工具
 本開示は、切削工具に関する。本出願は、2019年4月17日に出願した日本特許出願である特願2019-078674号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 従来より、超硬合金又は立方晶型窒化硼素焼結体(cBN焼結体)からなる切削工具を用いて、鋼及び鋳物等の切削加工が行われている。このような切削工具は、切削加工時において、その刃先が高温及び高応力等の過酷な環境に曝されるため、刃先の摩耗及び欠けが招来される。
 したがって、刃先の摩耗及び欠けを抑制することが、切削工具の切削性能を改善し、切削工具の寿命を向上させる上で重要である。
 切削工具の切削性能(例えば、耐欠損性、耐クレータ摩耗性及び耐逃げ面摩耗性)の改善を目的として、超硬合金、cBN焼結体等の基材の表面を被覆する被膜の開発が進められている。なかでも、アルミニウム(Al)とチタン(Ti)と窒素(N)との化合物(以下、「AlTiN」ともいう。)からなる被膜は、高い硬度を有することができるとともに、耐酸化性を高めることができる(例えば、特開平9-295204号公報(特許文献1)、特開平9-300106号公報(特許文献2)、特開平10-330914号公報(特許文献3))。
特開平9-295204号公報 特開平9-300106号公報 特開平10-330914号公報
 本開示に係る切削工具は、
 すくい面と、逃げ面と、上記すくい面と上記逃げ面とを繋ぐ刃先部とを含む切削工具であって、
 基材と、上記基材上に設けられているAlTiN層とを備え、
 上記AlTiN層は、立方晶型のAlTi1-xNの結晶粒を含み、
 上記AlTi1-xNにおけるAlの原子比xは、0.7以上0.95未満であり、
 上記AlTiN層は、中央部を含み、
 上記中央部は、上記基材の側の第一界面から厚み方向に1μm離れた地点を通る上記第一界面に平行な仮想平面Dと、上記基材の側と反対の第二界面から厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Eとに挟まれた領域であり、
 上記第一界面は、上記第二界面に対して平行であり、
 上記すくい面における上記第二界面の法線及び上記逃げ面における上記第二界面の法線を含む平面で、上記AlTiN層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記AlTi1-xNの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記すくい面における上記中央部は、(200)面の法線方向が上記すくい面における上記第二界面の法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であり、
 上記刃先部における上記中央部は、(200)面の法線方向が上記刃先部における法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が80%以上であり、
 上記刃先部における法線方向は、上記基材における、上記すくい面と上記刃先部との境界線と、上記基材における、上記逃げ面と上記刃先部との境界線とを含む仮想平面Cの法線方向である。
図1は、切削工具の一態様を例示する斜視図である。 図2は、図1のX-X線に関する矢視断面図である。 図3は、図2の部分拡大図である。 図4は、刃先部の他の形状を例示する断面図である。 図5は、刃先部の他の形状を更に例示する断面図である。 図6は、切削工具の一態様を例示する模式断面図である。 図7は、切削工具の他の態様を例示する模式断面図である。 図8は、切削工具の他の態様を更に例示する模式断面図である。 図9は、AlTiN層の断面に基づいて作成されたカラーマップの模式図である。 図10は、本実施形態に係る切削工具の製造に用いられるCVD装置の模式的な断面図である。 図11は、本実施形態に係る切削工具の製造に用いられるCVD装置のガス導入管の模式的な断面図である。
[本開示が解決しようとする課題]
 近年はより高効率な(送り速度が大きい)切削加工が求められており、特に合金鋼(例えば、SCM415)に対する高速加工に用いられる切削工具の更なる耐熱亀裂性の向上(刃先部が高温になる切削加工における熱亀裂の発生の抑制)が期待されている。
 本開示は、上記事情に鑑みてなされたものであり、優れた耐熱亀裂性を有する切削工具を提供することを目的とする。
[本開示の効果]
 本開示によれば、優れた耐熱亀裂性を有する切削工具を提供することが可能になる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 [1]本開示に係る切削工具は、
 すくい面と、逃げ面と、上記すくい面と上記逃げ面とを繋ぐ刃先部とを含む切削工具であって、
 基材と、上記基材上に設けられているAlTiN層とを備え、
 上記AlTiN層は、立方晶型のAlTi1-xNの結晶粒を含み、
 上記AlTi1-xNにおけるAlの原子比xは、0.7以上0.95未満であり、
 上記AlTiN層は、中央部を含み、
 上記中央部は、上記基材の側の第一界面から厚み方向に1μm離れた地点を通る上記第一界面に平行な仮想平面Dと、上記基材の側と反対の第二界面から厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Eとに挟まれた領域であり、
 上記第一界面は、上記第二界面に対して平行であり、
 上記すくい面における上記第二界面の法線及び上記逃げ面における上記第二界面の法線を含む平面で、上記AlTiN層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記AlTi1-xNの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記すくい面における上記中央部は、(200)面の法線方向が上記すくい面における上記第二界面の法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であり、
 上記刃先部における上記中央部は、(200)面の法線方向が上記刃先部における法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が80%以上であり、
 上記刃先部における法線方向は、上記基材における、上記すくい面と上記刃先部との境界線と、上記基材における、上記逃げ面と上記刃先部との境界線とを含む仮想平面Cの法線方向である。
 上記切削工具は、上述のような構成を備えることによって、優れた耐熱亀裂性を有する。ここで、「耐熱亀裂性」とは、刃先部が高温になる切削加工において、刃先部と上記刃先部以外の部位との熱膨張差に起因する亀裂の発生に対する耐性を意味する。
 [2]上記AlTiN層の厚みが2.5μm以上20μm以下である。このように規定することで、耐熱亀裂性に更に優れた切削工具を提供することが可能になる。
 [3]上記基材と上記AlTiN層との間に設けられている下地層を更に含み、
 上記下地層は、周期表4族元素、5族元素、6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなる。このように規定することで、耐熱亀裂性に加えて、上記AlTiN層の耐剥離性に優れた切削工具を提供することが可能になる。
 [4]上記AlTiN層上に設けられている表面層を更に含み、
 上記表面層は、周期表4族元素、5族元素、6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなる。このように規定することで、耐熱亀裂性に更に優れた切削工具を提供することが可能になる。
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において「X~Y」という形式の表記は、範囲の上限下限(すなわちX以上Y以下)を意味し、Xにおいて単位の記載がなく、Yにおいてのみ単位が記載されている場合、Xの単位とYの単位とは同じである。さらに、本明細書において、例えば「TiN」等のように、構成元素の組成比が限定されていない化学式によって化合物が表された場合には、その化学式は従来公知のあらゆる組成比(元素比)を含むものとする。このとき上記化学式は、化学量論組成のみならず、非化学量論組成も含むものとする。例えば「TiN」の化学式には、化学量論組成「Ti」のみならず、例えば「Ti0.8」のような非化学量論組成も含まれる。このことは、「TiN」以外の化合物の記載についても同様である。
 ≪表面被覆切削工具≫
 本開示に係る切削工具は、
 すくい面と、逃げ面と、上記すくい面と上記逃げ面とを繋ぐ刃先部とを含む切削工具であって、
 基材と、上記基材上に設けられているAlTiN層とを備え、
 上記AlTiN層は、立方晶型のAlTi1-xNの結晶粒を含み、
 上記AlTi1-xNにおけるAlの原子比xは、0.7以上0.95未満であり、
 上記AlTiN層は、中央部を含み、
 上記中央部は、上記基材の側の第一界面から厚み方向に1μm離れた地点を通る上記第一界面に平行な仮想平面Dと、上記基材の側と反対の第二界面から厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Eとに挟まれた領域であり、
 上記第一界面は、上記第二界面に対して平行であり、
 上記すくい面における上記第二界面の法線及び上記逃げ面における上記第二界面の法線を含む平面で、上記AlTiN層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記AlTi1-xNの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記すくい面における上記中央部は、(200)面の法線方向が上記すくい面における上記第二界面の法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であり、
 上記刃先部における上記中央部は、(200)面の法線方向が上記刃先部における法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が80%以上であり、
 上記刃先部における法線方向は、上記基材における、上記すくい面と上記刃先部との境界線と、上記基材における、上記逃げ面と上記刃先部との境界線とを含む仮想平面Cの法線方向である。
 本実施形態において「平行」とは幾何学的な平行のみならず、略平行も含む概念である。
 本実施形態の表面被覆切削工具1は、基材10と、上記基材10上に設けられているAlTiN層11とを備える(以下、単に「切削工具」という場合がある。)(例えば、図6)。上記切削工具1は、上記AlTiN層11の他にも、上記基材10と上記AlTiN層11との間に設けられている下地層12を更に含んでいてもよい(図7)。上記切削工具1は、上記AlTiN層11上に設けられている表面層13を更に含んでいてもよい(図8)。下地層12、及び表面層13等の他の層については、後述する。
 なお、上記基材10上に設けられている上述の各層をまとめて「被膜」と呼ぶ場合がある。すなわち、上記切削工具1は上記基材10上に設けられている被膜14を備え、上記被膜は上記AlTiN層11を含む。また、上記被膜14は、上記下地層12又は上記表面層13を更に含んでいてもよい。
 上記切削工具は、例えば、ドリル、エンドミル(例えば、ボールエンドミル)、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ等であり得る。
 上記切削工具は、すくい面と、逃げ面と、上記すくい面と上記逃げ面とを繋ぐ刃先部とを含む。「すくい面」とは、被削材から削り取った切りくずをすくい出す面を意味する。「逃げ面」とは、その一部が被削材と接する面を意味する。以下、刃先交換型切削チップ(図1~図5)を具体例として用いて説明する。
 図1は切削工具の一態様を例示する斜視図である。図2は図1のX-X線に関する矢視断面図である。このような形状の切削工具は、旋削加工用刃先交換型切削チップ等の刃先交換型切削チップとして用いられる。
 図1及び図2に示される切削工具1は、上面、下面及び4つの側面を含む表面を有しており、全体として、上下方向にやや薄い四角柱形状である。また、切削工具1には上下面を貫通する貫通孔が形成されており、4つの側面の境界部分においては、隣り合う側面同士が円弧面で繋がれている。
 上記切削工具1では、上面及び下面がすくい面1aを成し、4つの側面(及びこれらを相互に繋ぐ円弧面)が逃げ面1bを成し、すくい面1aと逃げ面1bとを繋ぐ円弧面が刃先部1cを成す(図2)。
 図3は、図2の部分拡大図である。図3においては、仮想平面A、仮想境界線AA、仮想平面B、および仮想境界線BBが示されている。
 仮想平面Aはすくい面1aを延長した面に相当する。境界線AAはすくい面1aと刃先面1cとの境界線である。仮想平面Bは逃げ面1bを延長した面に相当する。境界線BBは逃げ面1bと刃先面1cとの境界線である。
 図3に示す場合は、刃先部1cは円弧面(ホーニング)であり、すくい面1aと逃げ面1bとが刃先部1cを介して繋がっている。
 なお図3において、仮想平面Aおよび仮想平面Bは線状に示され、境界線AA、および境界線BBは点状に示される。
 図1~図3においては、刃先部1cが円弧面(ホーニング)である場合について示したが、刃先部1cの形状はこれに限られない。たとえば、図4に示されるように、刃先部1cが平面の形状(ネガランド)を有している場合もある。また、図5に示されるように、刃先部1cが平面と円弧面とが混在する形状(ホーニングとネガランドとを組み合わせた形状)を有している場合もある。
 図3に示す場合と同様に、図4および図5に示す場合においてもすくい面1aと逃げ面1bとが刃先部1cを介して繋がっており、仮想平面A、境界線AA、仮想平面B、および境界線BBが設定される。
 上記のように切削工具1が図3~図5に示されるような形状を有する場合、刃先部1cは、その形状のみから決定することができる。この場合の刃先部1cは、仮想平面A及び仮想平面Bのいずれにも含まれず、すくい面1a及び逃げ面1bとの目視による区別が可能だからである。
 刃先部1cは、一般的に、後述する切削工具1における基材10の表面であって、交差する面の稜に対して機械加工処理が施されることによって形成される面であってもよい。換言すれば、基材10は、焼結体等からなる基材前駆体の表面の少なくとも一部に対して機械加工処理が施されてなるものであり、刃先部1cは、機械加工処理による面取りを経て形成された面を含んでもよい。
 以上、切削工具1の形状及び各部の名称を図1~5を用いて説明したが、本実施形態に係る切削工具の基材10において、上記切削工具1に対応する形状及び各部の名称については、上記と同様の用語を用いることとする。すなわち、上記切削工具における基材10は、すくい面1aと、逃げ面1bと、上記すくい面1aと上記逃げ面1bとを繋ぐ刃先部1cとを有する。
 <基材>
 本実施形態の基材は、この種の基材として従来公知のものであればいずれの基材も使用することができる。例えば、上記基材は、超硬合金(例えば、炭化タングステン(WC)基超硬合金、WCの他にCoを含む超硬合金、WCの他にCr、Ti、Ta、Nb等の炭窒化物を添加した超硬合金等)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム等)、立方晶型窒化ホウ素焼結体(cBN焼結体)及びダイヤモンド焼結体からなる群より選ばれる少なくとも1種を含むことが好ましい。
 これらの各種基材の中でも、超硬合金(特にWC基超硬合金)又はサーメット(特にTiCN基サーメット)を選択することが好ましい。その理由は、これらの基材が特に高温における硬度と強度とのバランスに優れ、上記用途の切削工具の基材として優れた特性を有するためである。
 基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素又はη相と呼ばれる異常相を含んでいても本実施形態の効果は示される。なお、本実施形態で用いる基材は、その表面が改質されたものであっても差し支えない。たとえば、超硬合金の場合はその表面に脱β層が形成されていたり、サーメットの場合には表面硬化層が形成されていてもよく、このように表面が改質されていても本実施形態の効果は示される。
 <被膜>
 本実施形態に係る被膜は、上記基材上に設けられたAlTiN層を含む。「被膜」は、上記基材の少なくとも一部(例えば、切削加工時に切り屑と接するすくい面、被削材と接する逃げ面等)を被覆することで、切削工具における耐欠損性、耐摩耗性(耐クレータ摩耗性、耐逃げ面摩耗性等)、耐剥離性、耐熱亀裂性等の諸特性を向上させる作用を有するものである。上記被膜は、上記基材の一部に限らず上記基材の全面を被覆することが好ましい。しかしながら、上記基材の一部が上記被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても本実施形態の範囲を逸脱するものではない。
 上記被膜の厚みが2.5μm以上30μm以下であることが好ましく、3μm以上25μm以下であることがより好ましい。ここで、被膜の厚みとは、被膜を構成する層それぞれの厚みの総和を意味する。「被膜を構成する層」としては、例えば、後述するAlTiN層、下地層、及び表面層等が挙げられる。上記被膜の厚みは、例えば、走査透過型電子顕微鏡(STEM)を用いて、基材の表面の法線方向に平行な断面サンプルにおける任意の10点を測定し、測定された10点の厚みの平均値をとることで求めることが可能である。後述するAlTiN層、下地層、及び表面層等のそれぞれの厚みを測定する場合も同様である。走査透過型電子顕微鏡としては、例えば、日本電子株式会社製のJEM-2100F(商品名)が挙げられる。
 (AlTiN層)
 本実施形態のAlTiN層は、立方晶型のAlTi1-xNの結晶粒(以下、単に「結晶粒」という場合がある。)を含む。すなわち、上記AlTiN層は、多結晶のAlTi1-xNを含む層である。本実施形態において、「AlTi1-xNの結晶粒」とは、AlN(窒化アルミニウム)からなる層(以下、「AlN層」という場合がある。)と、TiN(窒化チタン)からなる層(以下、「TiN層」という場合がある。)とが交互に積層されている複合結晶の結晶粒を意味する。本実施形態において、上記AlN層は、その一部においてAlがTiに置換されているものも含まれる。また、上記TiN層は、その一部においてTiがAlに置換されているものも含まれる。立方晶型のAlTi1-xNの結晶粒の場合、AlN層及びTiN層は共にFCC構造(Face-Centered Cubic構造)を有している。後述する六方晶型のAlTi1-xNの結晶粒の場合、AlN層及びTiN層は共にHCP構造(Hexagonal Close-Packed構造)を有している。上記AlTi1-xNにおけるAl(アルミニウム)の原子比xは、0.7以上0.95未満であり、0.8以上0.9以下であることが好ましい。上記xは、上述の断面サンプルにあらわれたAlTiN層における結晶粒に対して走査型電子顕微鏡(SEM)又はTEMに付帯のエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectroscopy)装置を用いて分析することにより、求めることが可能である。このときに求められるAlの原子比xは、AlTi1-xNの結晶粒全体の平均として求められる値である。具体的には、上記断面サンプルのAlTiN層における任意の10点それぞれを測定して上記xの値を求め、求められた10点の値の平均値を上記AlTi1-xNにおけるxとする。ここで当該「任意の10点」は、上記AlTiN層の互いに異なる結晶粒から選択するものとする。上記EDX装置としては、例えば、日本電子株式会社製のJED-2300(商品名)が挙げられる。なお、Alに限らず、Ti、Nの原子比も上述の方法で算出することが可能である。
 本実施形態において「基材上に設けられている」とは、基材の直上に設けられている態様に限られず、他の層を介して基材の上に設けられている態様も含まれる。すなわち、上記AlTiN層は、本実施形態に係る切削工具が奏する効果を損なわない範囲において、上記基材の直上に設けられていてもよいし、後述する下地層等の他の層を介して上記基材の上に設けられていてもよい。
 本実施形態の一側面において「基材上に設けられている」状態は、「基材上に配置されている」状態と把握することもできる。すなわち、上記AlTiN層は、上記基材の直上に配置されていてもよいし、後述する下地層等の他の層を介して上記基材の上に配置されていてもよい、と把握することもできる。
 上記AlTiN層は、その上に表面層等の他の層が設けられていてもよい。また、上記AlTiN層は、上記被膜の最表面であってもよい。
 上記AlTiN層は、以下の特徴を有する。すなわち、上記AlTiN層は、中央部を含み、上記中央部は、上記基材の側の第一界面から厚み方向に1μm離れた地点を通る上記第一界面に平行な仮想平面Dと、上記基材の側と反対の第二界面から厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Eとに挟まれた領域である。上記第一界面は、上記第二界面に対して平行である。上記すくい面における上記第二界面の法線及び上記逃げ面における上記第二界面の法線を含む平面で、上記AlTiN層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって上記AlTi1-xNの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 上記カラーマップにおいて、
 上記すくい面における上記中央部は、(200)面の法線方向が上記すくい面における上記第二界面の法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒(以下、「(200)面配向性結晶粒」とも記す。)の占める面積比率が50%以上80%未満であり、
 上記刃先部における上記中央部は、(200)面の法線方向が上記刃先部における法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が80%以上である。
 また、上記基材の上記刃先部における法線方向は、上記基材における、上記すくい面と上記刃先部との境界線と、上記基材における、上記逃げ面と上記刃先部との境界線とを含む仮想平面Cの法線方向である。
 本実施形態の一側面において、上記逃げ面における上記中央部は、(200)面の法線方向が上記逃げ面における上記第二界面の法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であることが好ましい。
 ここで、図9を用いながら、上記のカラーマップの具体的な作成方法について説明する。なお、図9に示されるAlTiN層11の第一界面11aは、基材10の側に位置する界面であり、第二界面11bは、基材10の側と反対に位置する界面である。第一界面11aは、第二界面11bに対して平行である。なお、AlTiN層11が被膜の最表面である場合、上記第二界面11bは、AlTiN層11の表面となる。上記第一界面11aは、上記カラーマップにおける上記基材の主面の法線方向において、基材側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線L1と、当該基材側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線L2との中心を通る直線である。上記第二界面11bは、上記カラーマップにおける上記基材の主面の法線方向において、上記基材とは反対側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線M1と、上記基材とは反対側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線M2との中心を通る直線である。ただし、上述の「基材に最も近い点」及び「基材に最も遠い点」を選択するにあたり、一見して異常点と思われる点は除外する。
 まずAlTiN層を後述の製造方法に基づき基材上に形成する。そして、形成されたAlTiN層を、基材なども含めAlTiN層に垂直な断面が得られるように切断する。すなわち、上記すくい面における上記第二界面の法線及び上記逃げ面における上記第二界面の法線を含む平面でAlTiN層を切断した切断面が露出するように切断する。その後、その切断面を耐水研磨紙(研磨剤としてSiC砥粒研磨剤を含むもの)で研磨する。
 なお、上述の切断は、たとえばAlTiN層11の表面(AlTiN層11上に他の層が形成されている場合は被膜の表面)を十分に大きな保持用の平板上にワックス等を用いて密着固定した後、回転刃の切断機にてその平板に対して垂直方向に切断する(当該回転刃と当該平板とが可能な限り垂直となるように切断する)ものとする。この切断は、このような垂直方向に対して行なわれる限り、AlTiN層11の任意の部位で行なうことができるが、後述のように、刃先部1cの近傍を切断することが好ましい。
 また、上記の研磨は、上記耐水研磨紙を用いて行う(#400、#800、#1500を順に用いて行なう)ものとする。耐水研磨紙の番号(#)は、研磨剤の粒径の違いを意味し、番号が大きくなるほど研磨剤の粒径は小さくなる。
 引続き、上記の研磨面をArイオンによるイオンミーリング処理によりさらに平滑化する。イオンミーリング処理の条件は以下の通りである。
加速電圧:6kV
照射角度:AlTiN層の第二界面11bの法線方向(すなわち切断面におけるAlTiN層の厚み方向に平行となる直線方向)から0°
照射時間:8時間。
 次に、上記の平滑化処理された断面(鏡面)を、電子線後方散乱回折装置(EBSD装置)を備えた電界放出型走査型電子顕微鏡(FE-SEM)(製品名:「SU6600」、日立ハイテクノロジーズ社製)を用いて観察し、得られた観察像に対してEBSD解析を行う。上記平滑化処理された断面を観察する位置は、特に限定されないが、刃先部1cの近傍を観察することが好ましい。なお、FE-SEMの観察倍率は5000倍とする。
 またEBSD解析に関し、データは、集束電子ビームを各ピクセル上へ個別に位置させることによって順に収集する。このとき、上記集束電子ビームは上記AlTi1-xNの結晶粒におけるAlN層で反射が起こるように設定する。当該結晶粒は、Alの方がTiよりも原子比が高いため、AlN層の数がTiN層の数よりも多い。そのため、当該結晶粒におけるAlN層の結晶方位を解析することで、当該結晶粒全体の結晶方位を求めることができると本発明者らは考えている。サンプル面(平滑化処理されたAlTiN層の断面)の法線は、入射ビームに対して70°傾斜させ、解析は、15kVにて行なう。帯電効果を避けるために、10Paの圧力を印加する。開口径60μmまたは120μmと合わせて高電流モードを用いる。データ収集は、断面上、10μm(AlTiN層の厚み方向)×50μm(AlTiN層の界面に平行な方向)の面領域(観察領域)に相当する100×500ポイントについて、0.1μm/ステップのステップにて行なう。このときの測定視野数は、3以上とする。
 上記EBSD解析結果を、市販のソフトウェア(商品名:「orientation Imaging microscopy Ver 6.2」、EDAX社製)を用いて分析し、上記カラーマップを作成する。具体的には、まずAlTiN層11の断面に含まれる各結晶粒の結晶方位を特定する。ここで特定される各結晶粒の結晶方位は、AlTiN層11の断面に現れる各結晶粒を、当該断面の法線方向(図9において紙面を貫く方向)から平面視したときに観察される結晶方位である。そして、得られた各結晶粒の結晶方位に基づいて、AlTiN層11の表面(すなわち、第二界面11b)の法線方向における各結晶粒の結晶方位を特定する。そして、特定された結晶方位に基づいてカラーマップを作成する。該カラーマップの作成には、上記ソフトウェアに含まれる「Cristal Direction MAP」の手法を用いることができる。なお、カラーマップは切断面に観察されるAlTiN層11の厚み方向の全域に亘って作成される。また、一部が測定視野の外に出ている結晶粒も1つとしてカウントする。
 図9においては、実線で囲まれかつ斜線のハッチングを有する各領域が、各(200)面配向性結晶粒11dである。また、実線で囲まれかつハッチングを有さない各領域が、(200)面配向性結晶粒に該当しない結晶粒である。すなわち、図9では、AlTiN層11の第二界面11bの法線方向に対して、(200)面の法線方向が±15°以内となる結晶粒11dが斜線でハッチングされている。なお、上記カラーマップは本来カラーで表現されるところ、本明細書では便宜上模式的にモノトーンで表現されている。また、図9において黒色で示される領域があるが、これは、上記方法において結晶方位が特定されなかった結晶粒の領域とみなす。
 本実施形態において、AlTi1-xNの結晶粒の結晶方位は、図9に示すようにAlTiN層11の中央部11cにおいて求める。上記中央部11cは、上記基材の側の第一界面11aから厚み方向に1μm離れた地点を通る上記第一界面11aに平行な仮想平面Dと、上記基材の側と反対の第二界面11bから厚み方向に1μm離れた地点を通る上記第二界面11bに平行な仮想平面Eとに挟まれた領域である。ここで、上記仮想平面D及び仮想平面Eは、作成したカラーマップ上で、第一界面11a又は第二界面11bからの距離に基づいて設定することができる。
 なお、刃先部1cがホーニングの形状等である場合(例えば、図3の場合)、刃先部1cにおける中央部11cは以下の方法で設定する。まず、上記カラーマップにおける第一界面11a及び第二界面11bそれぞれを示す曲線が直線に近似できる範囲ごとにAlTiN層を複数の領域に分割する。次に分割した領域ごとに上述の方法にしたがって、中央部11cを設定する。このようにして設定された上記分割した領域ごとの中央部11cの集合を、刃先部1cの中央部11cとする。また、刃先部1cがホーニングの形状等である場合、刃先部1cにおける(200)面配向性結晶粒は、上記基材における、上記すくい面と上記刃先部との境界線AAと、上記基材における、上記逃げ面と上記刃先部との境界線BBとを含む仮想平面Cの法線方向に対して、(200)面の法線方向が±15°以内となる結晶粒を意味するものとする。
 上記カラーマップにおいて、上記すくい面における上記中央部は、(200)面の法線方向が上記すくい面における上記第二界面の法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であり、60%以上80%以下であることが好ましく、65%以上77%以下であることがより好ましい。ここで、上記面積比率は、上記カラーマップにおける上記中央部11cの面積全体を基準とした面積比率である。
 上記カラーマップにおいて、上記逃げ面における上記中央部は、(200)面の法線方向が上記逃げ面における上記第二界面の法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であることが好ましく、60%以上79%以下であることがより好ましく、65%以上79%以下であることが更に好ましい。ここで、上記面積比率は、上記カラーマップにおける上記中央部11cの面積全体を基準とした面積比率である。
 上記カラーマップにおいて、上記刃先部における上記中央部は、(200)面の法線方向が上記刃先部における法線方向に対して±15°以内となる上記AlTi1-xNの結晶粒の占める面積比率が80%以上であり、81%以上98%以下であることが好ましく、81%以上95%以下であることがより好ましい。上記刃先部1cにおける法線方向は、上記基材10における、上記すくい面1aと上記刃先部1cとの境界線AAと、上記基材10における、上記逃げ面1bと上記刃先部1cとの境界線BBとを含む仮想平面Cの法線方向である(図3~5)。ここで、上記面積比率は、上記カラーマップにおける上記中央部11cの面積全体を基準とした面積比率である。
 本実施形態に係る切削工具では、刃先部において上記AlTiN層の中央部における(200)面配向性結晶粒の占める面積比率が80%以上である。(200)面配向性結晶粒は、面内方向における応力に強く、靱性が高い。そのため、上記切削工具は、耐熱亀裂性に優れる。上記切削工具は、特に合金鋼(例えば、SCM415)に対する高速加工に好適に用いることができる。
 上記AlTiN層は、立方晶型のAlTi1-xNの結晶粒を含む。本実施形態の一側面において、本開示の効果を損なわない範囲において、上記AlTiN層は、六方晶型のAlTi1-xNの結晶粒を更に含んでいてもよい。立方晶型のAlTi1-xNの結晶粒と六方晶型のAlTi1-xNの結晶粒とは、例えば、X線回折により得られる回折ピークのパターンにより識別される。
 立方晶型のAlTi1-xN(c)の結晶粒と六方晶型のAlTi1-xN(h)の結晶粒との総量を基準としたとき、上記六方晶型のAlTi1-xNの結晶粒の含有割合(h/(c+h))は、0~15体積%であることが好ましく、0~10体積%であることがより好ましい。当該含有割合は、例えば、X線回折により得られる回折ピークのパターンを解析することによって求めることが可能である。具体的な方法は以下の通りである。
 X線回折装置(Rigaku社製「MiniFlex600」(商品名))を用いて上述の断面サンプルにおけるAlTiN層のX線スペクトルを得る。このときのX線回折装置の条件は例えば、下記の通りとする。
特性X線: Cu-Kα(波長1.54Å)
管電圧: 45kV
管電流: 40mA
フィルター: 多層ミラー
光学系: 集中法
X線回折法: θ-2θ法。
 得られたX線スペクトルにおいて、立方晶型のAlTi1-xNのピーク強度(Ic)と、六方晶型のAlTi1-xNのピーク強度(Ih)とを測定する。ここで、「ピーク強度」とは、X線スペクトルにおけるピークの高さ(cps)を意味する。立方晶型のAlTi1-xNのピークは、回折角2θ=38°付近及び44°付近に確認することができる。六方晶型のAlTi1-xNのピークは、回折角2θ=33°付近に確認することができる。ピーク強度はバックグラウンドを除いた値とする。
 上記立方晶型のAlTi1-xNと上記六方晶型のAlTi1-xNとの総量を基準としたときの上記六方晶型のAlTi1-xNの含有割合(体積%)は、下記の式により算出される。ここで、立方晶型のAlTi1-xNのピーク強度(Ic)は、θ=38°付近におけるピーク強度とθ=44°付近におけるピーク強度との和で求められる。
 上記六方晶型のAlTi1-xNの含有割合(体積%)=Ih/(Ih+Ic)×100
 (AlTiN層の厚み)
 本実施形態において、AlTiN層の厚みが2.5μm以上20μm以下であることが好ましく、3μm以上20μm以下であることがより好ましく、5μm以上15μm以下であることが更に好ましい。これにより、上記のような優れた効果を発揮することができる。
 AlTiN層の厚みが2.5μm未満の場合、AlTiN層の存在に起因する耐熱亀裂性の向上の程度が低い傾向がある。AlTiN層の厚みが20μmを超えると、AlTiN層と他の層との線膨張係数の差に起因する界面応力が大きくなり、AlTi1-xNの結晶粒がAlTiN層から脱落する場合がある。
 (下地層)
 上記被膜は、上記基材と上記AlTiN層との間に設けられている下地層を更に含み、上記下地層は、周期表4族元素、5族元素、6族元素及びアルミニウム(Al)からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなることが好ましい。周期表4族元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等が挙げられる。周期表5族元素としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等が挙げられる。周期表6族元素としては、クロム(Cr)、モリブデン(Mo)、タングステン(W)等が挙げられる。上記下地層は、TiCNで示される化合物からなることが好ましい。このような下地層は、上記AlTiN層に対して強い密着力を発揮する。その結果、被膜の耐剥離性が向上する。
 上記下地層の厚みが0.1μm以上20μm以下であることが好ましく、1μm以上15μm以下であることがより好ましい。このような厚みは、上述したのと同様に走査透過型電子顕微鏡(STEM)等を用いて基材と被膜の垂直断面を観察することにより確認することができる。
 (表面層)
 上記被膜は、上記AlTiN層上に設けられている表面層を更に含み、
 上記表面層は、周期表4族元素、5族元素、6族元素及びアルミニウム(Al)からなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなることが好ましい。
 上記表面層に含まれる化合物としては、例えば、Al及びTiN等が挙げられる。
 上記表面層の厚みが0.1μm以上3μm以下であることが好ましく、0.3μm以上2μm以下であることがより好ましい。このような厚みは、上述したのと同様に走査透過型電子顕微鏡(STEM)等を用いて基材と被膜の垂直断面を観察することにより確認することができる。
 (他の層)
 本実施形態に係る切削工具が奏する効果を損なわない範囲において、上記被膜は、他の層を更に含んでいてもよい。上記他の層は、上記AlTiN層、上記下地層、又は上記表面層とは組成が異なっていてもよいし、同じであってもよい。他の層に含まれる化合物としては、例えば、TiN、TiCN、TiBN及びAl等を挙げることができる。なお、上記他の層は、その積層の順も特に限定されない。例えば、上記他の層としては、上記下地層と上記AlTiN層との間に設けられている中間層が挙げられる。上記他の層の厚みは、本実施形態の効果を損なわない範囲において、特に制限はないが例えば、0.1μm以上20μm以下が挙げられる。
 ≪表面被覆切削工具の製造方法≫
 本実施形態に係る切削工具の製造方法は、
 上記基材を準備する第1工程(以下、単に「第1工程」という場合がある。)と、
 化学気相蒸着法を用いて、上記基材上に上記AlTiN層を形成する第2工程(以下、単に「第2工程」という場合がある。)と、
 上記AlTiN層をブラスト処理する第3工程(以下、単に「第3工程」という場合がある。)と、を含み、
 上記第2工程は、アルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスを含む第一ガスと、アルミニウムのハロゲン化物ガス、チタンのハロゲン化物ガス及びアンモニアガスを含む第二ガスと、アンモニウムガスを含む第三ガスとのそれぞれを、650℃以上900℃以下且つ0.5kPa以上30kPa以下の雰囲気において上記基材上に噴出することを含む。
 <第1工程:基材を準備する工程>
 第1工程では基材を準備する。例えば、基材として超硬合金基材が準備される。超硬合金基材は、市販品を用いてもよく、一般的な粉末冶金法で製造してもよい。一般的な粉末冶金法で製造する場合、例えば、ボールミル等によってWC粉末とCo粉末等とを混合して混合粉末を得る。該混合粉末を乾燥した後、所定の形状(例えば、SEET13T3AGSN-G等)に成形して成形体を得る。さらに該成形体を焼結することにより、WC-Co系超硬合金(焼結体)を得る。次いで該焼結体に対して、ホーニング処理等の所定の刃先加工を施すことにより、WC-Co系超硬合金からなる基材を製造することができる。第1工程では、上記以外の基材であっても、この種の基材として従来公知の基材であればいずれも準備可能である。
 <第2工程:第一ガスと第二ガスと第三ガスとのそれぞれを基材に噴出し、AlTiN層を形成する工程>
 第2工程では、アルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスを含む第一ガスと、アルミニウムのハロゲン化物ガス、チタンのハロゲン化物ガス及びアンモニアガスを含む第二ガスと、アンモニアガスを含む第三ガスとのそれぞれを、650℃以上900℃以下且つ0.5kPa以上30kPa以下の雰囲気において上記基材に噴出する。この工程は、例えば以下に説明するCVD装置を用いて行うことができる。
 (CVD装置)
 図10に、本実施形態の切削工具の製造に用いられるCVD装置の一例の模式的な断面図を示す。図10に示すように、CVD装置50は、基材10を設置するための基材セット治具52の複数と、基材セット治具52を内包する耐熱合金鋼製の反応容器53とを備えている。また、反応容器53の周囲には、反応容器53内の温度を制御するための調温装置54が設けられている。本実施形態において、基材10は、基材セット治具52に備えられている突起物の上に設置することが好ましい。
 反応容器53には、互いに隣接して接合された第1ガス導入管55と第2ガス導入管56と第3ガス導入管57とを有するガス導入管58が反応容器53の内部の空間を鉛直方向に延在し、当該鉛直方向を軸に回転可能に設けられている。ガス導入管58においては、第1ガス導入管55に導入された第一ガスと、第2ガス導入管56に導入された第二ガスと第3ガス導入管57に導入された第三ガスとがガス導入管58の内部で混合しない構成とされている(図11)。また、第1ガス導入管55、第2ガス導入管56及び第3ガス導入管57のそれぞれには、第1ガス導入管55、第2ガス導入管56及び第3ガス導入管57のそれぞれの内部を流れるガスを基材セット治具52に設置された基材10上に噴出させるための複数の貫通孔が設けられている。本実施形態において、上述のガスを噴出させるための当該貫通孔の位置は、基材10の逃げ面10bの中央部分となるように設定することが好ましい。上述のガスを噴出させるための当該貫通孔と基材10との間隔は短くとることが好ましい。当該貫通孔をこのように設定することで、刃先部において(200)面配向性結晶粒が多くなるように成膜することができる。
 さらに、反応容器53には、反応容器53の内部のガスを外部に排気するためのガス排気管59が設けられており、反応容器53の内部のガスは、ガス排気管59を通過して、ガス排気口60から反応容器53の外部に排出される。
 より具体的には、上述した第一ガス、第二ガス及び第三ガスを、それぞれ第1ガス導入管55、第2ガス導入管56及び第3ガス導入管57に導入する。このとき、各ガス導入管内における第一ガス、第二ガス及び第三ガスそれぞれの温度は、液化しない温度であれば特に制限はない。次に、650℃以上900℃以下(好ましくは700℃以上770℃以下)且つ0.5kPa以上30kPa以下(好ましくは2kPa以上5kPa以下)の雰囲気とした反応容器53内へ第一ガス、第二ガス、第三ガスをこの順で繰り返して噴出する。ガス導入管58には複数の貫通孔が開いているため、導入された第一ガス、第二ガス及び第三ガスは、それぞれ異なる貫通孔から反応容器53内に噴出される。このときガス導入管58は、図10中の回転矢印が示すように上述の軸を中心として、例えば、2~4rpmの回転速度で回転している。これによって、第一ガス、第二ガス、第三ガスをこの順で繰り返して基材10に対して噴出することができる。
 (第一ガス)
 上記第一ガスは、アルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスを含む。
 アルミニウムのハロゲン化物ガスとしては、例えば、塩化アルミニウムガス(AlClガス、AlClガス)等が挙げられる。好ましくは、AlClガスが用いられる。アルミニウムのハロゲン化物ガスの濃度(体積%)は、第一ガスの全体積を基準として、0.3体積%以上1.5体積%以下であることが好ましく、0.8体積%以上0.87体積%以下であることがより好ましい。
 チタンのハロゲン化物ガスとしては、例えば、塩化チタン(IV)ガス(TiClガス)、塩化チタン(III)ガス(TiClガス)等が挙げられる。好ましくは、塩化チタン(IV)ガスが用いられる。チタンのハロゲン化物ガスの濃度(体積%)は、第一ガスの全体積を基準として、0.1体積%以上1体積%以下であることが好ましく、0.1体積%以上0.2体積%以下であることがより好ましい。
 上記第一ガスにおけるアルミニウムのハロゲン化物ガスのモル比は、アルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスの全モル数を基準として、0.5以上0.9以下であることが好ましく、0.8以上0.87以下であることがより好ましい。
 上記第一ガスは、水素ガスを含んでもよいし、アルゴンガス等の不活性ガスを含んでもよい。不活性ガスの濃度(体積%)は、第一ガスの全体積を基準として、5体積%以上70体積%以下であることが好ましく、20体積%以上60体積%以下であることがより好ましい。水素ガスは、通常上記第一ガスの残部を占める。
 上記基材に噴出するときの上記第一ガスの流量は、20~40L/minであることが好ましい。
 (第二ガス)
 上記第二ガスは、アルミニウムのハロゲン化物ガス、チタンのハロゲン化物ガス及びアンモニアガスを含む。アルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスは、上記(第一ガス)の欄において例示されたガスを用いることができる。このとき、上記第一ガスに用いられたアルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスそれぞれと、第二ガスに用いられたアルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスそれぞれとは、同じであってもよいし、異なっていてもよい。
 アルミニウムのハロゲン化物ガスの濃度(体積%)は、第二ガスの全体積を基準として、4体積%以上5体積%以下であることが好ましく、4.3体積%以上4.5体積%以下であることがより好ましい。
 チタンのハロゲン化物ガスの濃度(体積%)は、第二ガスの全体積を基準として、0.1体積%以上1体積%以下であることが好ましく、0.5体積%以上0.8体積%以下であることがより好ましい。
 第二ガスにおけるアルミニウムのハロゲン化物ガスのモル比は、アルミニウムのハロゲン化物ガス及びチタンのハロゲン化物ガスの全モル数を基準として、0.82以上0.95以下であることが好ましく、0.85以上0.9以下であることがより好ましい。
 アンモニアガスの濃度(体積%)は、第二ガスの全体積を基準として、5体積%以上15体積%以下であることが好ましく、9体積%以上11体積%以下であることがより好ましい。
 上記第二ガスは、水素ガスを含んでもよいし、アルゴンガス等の不活性ガスを含んでもよい。不活性ガスの濃度(体積%)は、第二ガスの全体積を基準として、5体積%以上50体積%以下であることが好ましく、15体積%以上17体積%以下であることがより好ましい。水素ガスは、通常上記第二ガスの残部を占める。
 上記基材に噴出するときの上記第二ガスの流量は、20~40L/minであることが好ましい。
 (第三ガス)
 上記第三ガスは、アンモニアガスを含む。また上記第三ガスは、水素ガスを含んでもよいし、アルゴンガス等の不活性ガスを含んでもよい。
 アンモニアガスの濃度(体積%)は、第三ガスの全体積を基準として、2体積%以上30体積%以下であることが好ましく、2体積%以上10体積%以下であることがより好ましい。水素ガスは、通常上記第三ガスの残部を占める。
 上記基材に噴出するときの上記第三ガスの流量は、10~20L/minであることが好ましい。
 <第3工程:ブラスト処理をする工程>
 本工程では、上記被膜にブラスト処理を実施する。上記ブラスト処理の条件としては例えば、以下の条件が挙げられる。ブラスト処理を実施することで上記被膜に圧縮残留応力を付与することができる。
ブラスト処理の条件
メディア:ジルコニア粒子、500g
投射角度:45°
投射距離:50mm
投射時間:3秒
 <その他の工程>
 本実施形態に係る製造方法では、上述した工程の他にも、本実施形態の効果を損なわない範囲で追加工程を適宜行ってもよい。上記追加工程としては例えば、上記基材と上記AlTiN層との間に下地層を形成する工程、及び上記AlTiN層上に表面層を形成する工程等が挙げられる。下地層及び表面層を形成する方法としては、特に制限はなく、例えば、CVD法等によって形成する方法が挙げられる。なお、上記AlTiN層上に表面層を形成する工程を行った場合、上記第3工程は、当該表面層を形成した後に行う。
 本実施形態に係る切削工具の製造方法では、CVD法によってAlTiN層を形成している。そのため、PVD法で被膜を形成したときと比較して、基材に対する被膜の密着力(膜密着力)が向上している。
 以上の説明は、以下に付記する特徴を含む。
(付記1)
 すくい面と、逃げ面と、前記すくい面と前記逃げ面とを繋ぐ刃先部とを含む表面被覆切削工具であって、
 基材と、前記基材上に設けられているAlTiN層とを備え、
 前記AlTiN層は、立方晶型のAlTi1-xNの結晶粒を含み、
 前記AlTi1-xNにおけるAlの原子比xは、0.7以上0.95未満であり、
 前記AlTiN層は、中央部を含み、
 前記中央部は、前記基材の側の第一界面から厚み方向に1μm離れた地点を通る前記第一界面に平行な仮想平面Dと、前記基材の側と反対の第二界面から厚み方向に1μm離れた地点を通る前記第二界面に平行な仮想平面Eとに挟まれた領域であり、
 前記第一界面は、前記第二界面に対して平行であり、
 前記すくい面における前記第二界面の法線及び前記逃げ面における前記第二界面の法線を含む平面で、前記AlTiN層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって前記AlTi1-xNの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
 前記カラーマップにおいて、
 前記すくい面における前記中央部は、(200)面の法線方向が前記すくい面における前記第二界面の法線方向に対して±15°以内となる前記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であり、
 前記刃先部における前記中央部は、(200)面の法線方向が前記刃先部における法線方向に対して±15°以内となる前記AlTi1-xNの結晶粒の占める面積比率が80%以上であり、
 前記刃先部における法線方向は、前記基材における、前記すくい面と前記刃先部との境界線と、前記基材における、前記逃げ面と前記刃先部との境界線とを含む仮想平面Cの法線方向である、表面被覆切削工具。
(付記2)
 前記AlTiN層は、その厚みが2.5μm以上20μm以下である、付記1に記載の表面被覆切削工具。
(付記3)
 前記基材と前記AlTiN層との間に設けられている下地層を更に含み、
 前記下地層は、周期表4族元素、5族元素、6族元素及びAlからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなる、付記1又は付記2に記載の表面被覆切削工具。
(付記4)
 前記AlTiN層上に設けられている表面層を更に含み、
 前記表面層は、周期表4族元素、5族元素、6族元素及びAlからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなる、付記1から付記3のいずれかに記載の表面被覆切削工具。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 ≪切削工具の作製≫
 <基材の準備>
 まず、被膜を形成させる対象となる基材として、以下の表1に示す超硬合金からなる基材(以下、単に「基材」という場合がある。)を準備した(第1工程)。具体的には、まず、表1に記載の配合組成(質量%)からなる原料粉末を均一に混合した。表1中の「残り」とは、WCが配合組成(質量%)の残部を占めることを示している。
Figure JPOXMLDOC01-appb-T000001
 次に、この混合粉末を所定の形状に加圧成形した後に、1300~1500℃で1~2時間焼結することにより、上記基材(基材形状(JIS規格):SEET13T3AGSN-G、カッタ径100)を得た。なお、SEET13T3AGSN-Gは転削加工用刃先交換型切削チップの形状である。
 <被膜の作製>
 上記基材の表面上に、表8に示される下地層、AlTiN層及び表面層を形成することによって、上記基材の表面上に被膜を作製した。被膜の作製には、主にCVD法を用いた。以下、被膜を構成する各層の作製方法について説明する。
 (AlTiN層の作製)
 表2に記載の成膜条件のもとで、表3~5に記載の組成をそれぞれ有する第一ガス、第二ガス及び第三ガスをこの順で繰り返して上記基材の表面上に噴出してAlTiN層を作製した(第2工程)。このとき、上記基材は、基材セット治具に備えられている突起物の上に設置した。また、上述のガスを噴出させるための貫通孔と上記基材との間隔は短くとるように設置した(例えば、15mm以内)。当該貫通孔の位置は、基材の逃げ面の中央部分となるように設定した。なお、上記基材の表面に下地層を設けた場合は、当該下地層の表面上にAlTiN層を作製した。
 例えば、表6の識別記号[1]で示されるAlTiN層は、温度780℃、圧力3kPa、ガス導入管の回転速度2rpmの成膜条件で(表2の識別記号2-a)、表3の識別記号3-aで示される第一ガス(0.83体積%のAlCl、0.17体積%のTiCl、60体積%のAr、残部はH、ガス流量20L/min)、表4の識別記号4-aで示される第二ガス(4.3体積%のAlCl、0.8体積%のTiCl、9体積%のNH、15体積%のAr、残部はH、ガス流量40L/min)及び表5の識別記号5-aで示される第三ガス(2体積%のNH、残部はH、ガス流量10L/min)をこの順で繰り返して基材の表面上に噴出してAlTiN層を作製した。なお、表6の識別記号[8]で示されるAlTiN層は、公知のPVD法で作製した。作製したAlTiN層の組成等を表6に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 (下地層の作製、表面層の作製)
 表7に記載の成膜条件のもとで、表7に記載の組成を有する反応ガスを基材の表面上に噴出して下地層を作製した。表7に記載の成膜条件のもとで、表7に記載の組成を有する反応ガスをAlTiN層の表面上に噴出して表面層を作製した。
Figure JPOXMLDOC01-appb-T000007
 (ブラスト処理)
 以下の条件によって、基材の表面に被覆された被膜に対してブラスト処理を行った(第3工程)。
ブラスト処理の条件
メディア:ジルコニア粒子、500g
投射角度:45°
投射距離:50mm
投射時間:3秒
 以上の工程によって、本実施例に係る切削工具を作製した。試料番号1、及び4~10の切削工具は、基材と、上記基材上に設けられているAlTiN層と、上記基材と上記AlTiN層との間に設けられている下地層とを含む、切削工具である。試料番号2及び3の切削工具は、基材と、上記基材上に設けられているAlTiN層と、上記基材と上記AlTiN層との間に設けられている下地層と、上記AlTiN層上に設けられている表面層とを含む、切削工具である。
 ≪切削工具の特性評価≫
 上述のようにして作製した試料の切削工具を用いて、以下のように、切削工具の各特性を評価した。ここで、試料番号1~7の切削工具は、実施例に相当する。試料番号8~10の切削工具は、比較例に相当する。
 <被膜等の厚みの測定>
 被膜、及び当該被膜を構成する下地層、AlTiN層及び表面層の厚みは、走査透過型電子顕微鏡(STEM)(日本電子株式会社製、商品名:JEM-2100F)を用いて、基材の表面の法線方向に平行な断面サンプルにおける任意の10点を各層ごとに測定し、測定された10点の厚みの平均値をとることで求めた。結果を表8に示す。「表面層」の欄における「なし」との表記は、当該表面層が被膜中に存在しないことを示す。また、「AlTiN層」の欄における「[1](5.0)」等の表記は、AlTiN層が表6の識別記号[1]で示される構成を有し、厚みが5.0μmであることを示す。表8中、「TiCN(1.0)」等の表記は、該当する層が厚み1.0μmのTiCNの層であることを示す。また、1つの欄内に2つの化合物が記載されている場合(例えば、「Al(0.2)-TiN(0.1)」等の場合)は、左側の化合物(Al(0.2))が基材の表面に近い側に位置する層であることを意味し、右側の化合物(TiN(0.1))が基材の表面から遠い側に位置する層であることを意味している。さらに「[Al(0.2)-TiN(0.1)]x3」等の表記は、「Al(0.2)-TiN(0.1)」で示される層が3回繰り返して積層されていることを意味している。
Figure JPOXMLDOC01-appb-T000008
 <カラーマップの作成>
 まず、被膜におけるAlTiN層の表面(又は界面)に垂直な断面が得られるように上記切削工具を切断した。その後、その切断面を耐水研磨紙(株式会社ノリタケコーテッドアブレーシブ(NCA)製、商品名:WATERPROOF PAPER、#400、#800、#1500)で研磨を実施し、AlTiN層の加工面を作製した。引き続き、上記加工面をArイオンによるイオンミーリング処理によりさらに平滑化を行った。イオンミーリング処理の条件は以下の通りである。
加速電圧:6kV
照射角度:AlTiN層の第二界面の法線方向(すなわち切断面におけるAlTiN層の厚み方向に平行となる直線方向)から0°
照射時間:6時間
 作製された上記加工面をEBSDを備えたFE-SEM(日立ハイテクノロジーズ社製、商品名:「SU6600」)を用いて5000倍の倍率で観察することにより、加工面における10μm(AlTiN層の厚み方向)×50μm(AlTiN層の界面に平行な方向)の観察領域に関して上述のカラーマップを作成した。このとき解析に用いた集束電子ビームはAlTi1-xNの結晶粒におけるAlN層で反射が起こるように設定した。また、作成したカラーマップの数(測定視野の数)は、3とした。具体的には、まずAlTiN層の断面に含まれる各結晶粒の結晶方位を特定した。ここで特定される各結晶粒の結晶方位は、AlTiN層の断面に現れる各結晶粒を、当該断面の法線方向(図9において紙面を貫く方向)から平面視したときに観察される結晶方位である。そして、得られた各結晶粒の結晶方位に基づいて、AlTiN層の第二界面の法線方向における各結晶粒の結晶方位を特定した。そして、特定された結晶方位に基づいてカラーマップを作成した(例えば、図9)。各カラーマップについて、市販のソフトウェア(商品名:「Orientation Imaging Microscopy Ver 6.2」、EDAX社製)を用いて、AlTiN層の中央部における(200)面配向性結晶粒の占める面積比率を求めた。その結果を表6に示す。ここで、上記中央部は、上記基材の側の第一界面から厚み方向に1μm離れた地点を通る上記第一界面に平行な仮想平面Dと、上記基材の側と反対の第二界面から厚み方向に1μm離れた地点を通る上記第二界面に平行な仮想平面Eとに挟まれた領域である。(例えば、図9)。
 ここで、上記第一界面及び上記第二界面は上記カラーマップにおいて以下のようにして定めた。まず、カラーマップにおいて、AlTiN層の領域と、AlTiN層以外の領域との区別がつくように色を分けて表示した。上記カラーマップにおける上記基材の主面の法線方向において、基材側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線L1と、当該基材側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線L2との中心を通る直線を、上記第一界面11aとした(例えば、図9)。上記カラーマップにおける上記基材の主面の法線方向において、上記基材とは反対側における上記基材に最も遠い点を通り且つ上記基材の主面に平行な直線M1と、上記基材とは反対側における上記基材に最も近い点を通り且つ上記基材の主面に平行な直線M2との中心を通る直線を、上記第二界面とした(例えば、図9)。
 表6に、すくい面、刃先部及び逃げ面それぞれにおける、(200)面配向性結晶粒の面積比率を示す。なお、刃先部においては、基材における、すくい面と刃先部との境界線AAと、基材における、逃げ面と刃先部との境界線BBとを含む仮想平面Cの法線方向に対して、(200)面の法線方向が±15°以内となる結晶粒を(200)面配向性結晶粒とした。
 ≪切削試験≫
 (切削評価:連続加工試験)
 上述のようにして作製した試料(試料番号1~10)の切削工具を用いて、以下の切削条件により、逃げ面の摩耗量が0.25mmに達したとき又は刃先部に欠損が生じたときの切削距離(m)を測定した。また、切削後の損傷形態(最終損傷形態)を観察した。その結果を表9に示す。切削距離が長い程、耐逃げ面摩耗性又は耐熱亀裂性に優れる切削工具として評価することができる。下記切削条件は刃先部が高温になりやすいと考えられる。そのため、切削後の損傷形態で欠損が観察されなければ、耐熱亀裂性に優れる切削工具として評価することができる。
連続加工の試験条件
被削材 :SCM415(ブロック材、W300×L50)
切削速度:350m/min
送り  :0.2mm/t
切込み量 :2mm
切り込み幅:60mm
切削油 :湿式
Figure JPOXMLDOC01-appb-T000009
 表9の結果から、試料番号1~7の切削工具(実施例の切削工具)は、連続加工における切削距離が3.0m以上の良好な結果が得られた。試料番号1~7の切削工具は、刃先部の欠損がなく、正常に摩耗していた(正常摩耗)。一方試料番号8~10の切削工具(比較例の切削工具)は、連続加工における切削距離が1.8m以下であった。試料番号10の切削工具は、クレータ摩耗及び逃げ面摩耗が異常に大きかった(異常摩耗)。この異常摩耗は、刃先部における摩耗進展で切削抵抗が上がり発熱しやすくなったことに起因していると本発明者らは考えている。試料番号8及び9の切削工具は、刃先部位に欠損が確認された。以上の結果から実施例の切削工具は、耐熱亀裂性に優れることが分かった。
 以上のように本発明の実施形態及び実施例について説明を行なったが、上述の各実施形態及び各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 切削工具、 1a すくい面、 1b 逃げ面、 1c 刃先部、 10 基材、 11 AlTiN層、 11a 第一界面、 11b 第二界面、 11c AlTiN層の中央部、 11d (200)配向を有する結晶粒、 12 下地層、 13 表面層、 14 被膜、 50 CVD装置、 52 基材セット治具、 53 反応容器、 54 調温装置、 55 第1ガス導入管、 56 第2ガス導入管、 57 第3ガス導入管、 58 ガス導入管、 59 ガス排気管、 60 ガス排気口、 A 仮想平面A、 B 仮想平面B、 C 仮想平面C、 D 仮想平面D、 E 仮想平面E、 AA 境界線AA、 BB 境界線BB、 L1 直線L1、 L2 直線L2、 M1 直線M1、 M2 直線M2

Claims (4)

  1.  すくい面と、逃げ面と、前記すくい面と前記逃げ面とを繋ぐ刃先部とを含む切削工具であって、
     基材と、前記基材上に設けられているAlTiN層とを備え、
     前記AlTiN層は、立方晶型のAlTi1-xNの結晶粒を含み、
     前記AlTi1-xNにおけるAlの原子比xは、0.7以上0.95未満であり、
     前記AlTiN層は、中央部を含み、
     前記中央部は、前記基材の側の第一界面から厚み方向に1μm離れた地点を通る前記第一界面に平行な仮想平面Dと、前記基材の側と反対の第二界面から厚み方向に1μm離れた地点を通る前記第二界面に平行な仮想平面Eとに挟まれた領域であり、
     前記第一界面は、前記第二界面に対して平行であり、
     前記すくい面における前記第二界面の法線及び前記逃げ面における前記第二界面の法線を含む平面で、前記AlTiN層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって前記AlTi1-xNの結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
     前記カラーマップにおいて、
     前記すくい面における前記中央部は、(200)面の法線方向が前記すくい面における前記第二界面の法線方向に対して±15°以内となる前記AlTi1-xNの結晶粒の占める面積比率が50%以上80%未満であり、
     前記刃先部における前記中央部は、(200)面の法線方向が前記刃先部における法線方向に対して±15°以内となる前記AlTi1-xNの結晶粒の占める面積比率が80%以上であり、
     前記刃先部における法線方向は、前記基材における、前記すくい面と前記刃先部との境界線と、前記基材における、前記逃げ面と前記刃先部との境界線とを含む仮想平面Cの法線方向である、切削工具。
  2.  前記AlTiN層の厚みが2.5μm以上20μm以下である、請求項1に記載の切削工具。
  3.  前記基材と前記AlTiN層との間に設けられている下地層を更に含み、
     前記下地層は、周期表4族元素、5族元素、6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなる、請求項1又は請求項2に記載の切削工具。
  4.  前記AlTiN層上に設けられている表面層を更に含み、
     前記表面層は、周期表4族元素、5族元素、6族元素及びアルミニウムからなる群より選ばれる少なくとも1種の元素と、炭素、窒素、酸素及びホウ素からなる群より選ばれる少なくとも1種の元素とからなる化合物からなる、請求項1から請求項3のいずれか一項に記載の切削工具。
PCT/JP2020/008146 2019-04-17 2020-02-27 切削工具 WO2020213262A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/051,463 US11203068B2 (en) 2019-04-17 2020-02-27 Cutting tool
JP2020542469A JP6834111B1 (ja) 2019-04-17 2020-02-27 切削工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-078674 2019-04-17
JP2019078674 2019-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/117,286 Continuation US7997627B2 (en) 2003-06-06 2005-04-29 Threaded joint for steel pipes

Publications (1)

Publication Number Publication Date
WO2020213262A1 true WO2020213262A1 (ja) 2020-10-22

Family

ID=72838225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008146 WO2020213262A1 (ja) 2019-04-17 2020-02-27 切削工具

Country Status (3)

Country Link
US (1) US11203068B2 (ja)
JP (1) JP6834111B1 (ja)
WO (1) WO2020213262A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12128483B2 (en) * 2018-10-29 2024-10-29 Kyocera Corporation Cutting insert, cutting tool and method for manufacturing machined product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127003A (ja) * 2001-10-18 2003-05-08 Mitsubishi Materials Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2003145313A (ja) * 2001-11-15 2003-05-20 Mitsubishi Materials Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2014193521A (ja) * 2012-11-30 2014-10-09 Mitsubishi Materials Corp 表面被覆切削工具
WO2017122448A1 (ja) * 2016-01-13 2017-07-20 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP2017185609A (ja) * 2016-04-08 2017-10-12 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229947B2 (ja) 1996-04-26 2001-11-19 日立ツール株式会社 表面被覆スローアウェイインサート
JP3003986B2 (ja) 1996-05-21 2000-01-31 日立ツール株式会社 表面被覆超硬合金製スローアウェイインサート
JP3420024B2 (ja) 1997-05-28 2003-06-23 東芝タンガロイ株式会社 結晶配向性硬質膜を含む積層被膜部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127003A (ja) * 2001-10-18 2003-05-08 Mitsubishi Materials Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2003145313A (ja) * 2001-11-15 2003-05-20 Mitsubishi Materials Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2014193521A (ja) * 2012-11-30 2014-10-09 Mitsubishi Materials Corp 表面被覆切削工具
WO2017122448A1 (ja) * 2016-01-13 2017-07-20 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP2017185609A (ja) * 2016-04-08 2017-10-12 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法

Also Published As

Publication number Publication date
US11203068B2 (en) 2021-12-21
JPWO2020213262A1 (ja) 2021-05-06
US20210069795A1 (en) 2021-03-11
JP6834111B1 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2017061058A1 (ja) 表面被覆切削工具
JP6912032B2 (ja) 切削工具
JP6784345B1 (ja) 切削工具
WO2019181133A1 (ja) 表面被覆切削工具およびその製造方法
JP6834111B1 (ja) 切削工具
JP6889451B2 (ja) 切削工具
JP6950882B2 (ja) 切削工具
JP6840927B1 (ja) 切削工具
JPWO2019181136A1 (ja) 表面被覆切削工具及びその製造方法
WO2020079952A1 (ja) 切削工具
WO2020213259A1 (ja) 切削工具
WO2020213257A1 (ja) 切削工具
JP6750789B1 (ja) 切削工具
JP6926387B2 (ja) 切削工具
JP7124236B1 (ja) 切削工具
WO2020079953A1 (ja) 切削工具
JP6565091B1 (ja) 表面被覆切削工具およびその製造方法
JP6565092B1 (ja) 表面被覆切削工具およびその製造方法
WO2020250626A1 (ja) 切削工具
JPWO2019181135A1 (ja) 表面被覆切削工具およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542469

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790546

Country of ref document: EP

Kind code of ref document: A1