[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017163499A1 - 燃料電池システム及び燃料電池システムの制御方法 - Google Patents

燃料電池システム及び燃料電池システムの制御方法 Download PDF

Info

Publication number
WO2017163499A1
WO2017163499A1 PCT/JP2016/086635 JP2016086635W WO2017163499A1 WO 2017163499 A1 WO2017163499 A1 WO 2017163499A1 JP 2016086635 W JP2016086635 W JP 2016086635W WO 2017163499 A1 WO2017163499 A1 WO 2017163499A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
compressor
flow rate
turbine
power
Prior art date
Application number
PCT/JP2016/086635
Other languages
English (en)
French (fr)
Inventor
隼人 筑後
要介 冨田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/086,867 priority Critical patent/US10930948B2/en
Priority to KR1020197018222A priority patent/KR102054636B1/ko
Priority to KR1020187028824A priority patent/KR102025503B1/ko
Priority to EP16895522.7A priority patent/EP3435461B1/en
Priority to JP2018506766A priority patent/JP6573022B2/ja
Priority to CA3018246A priority patent/CA3018246C/en
Priority to CN201680083935.8A priority patent/CN108886153B/zh
Publication of WO2017163499A1 publication Critical patent/WO2017163499A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/18Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids characterised by adaptation for specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • F05D2270/3032Temperature excessive temperatures, e.g. caused by overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a control method for the fuel cell system.
  • JP 2004-119239A is a power generation facility that combines a solid electrolyte fuel cell (SOFC), which is a type of fuel cell, and a gas turbine, and includes a compressor for supplying air to the SOFC and a turbine connected to the compressor.
  • SOFC solid electrolyte fuel cell
  • a gas turbine power generation facility including a recovery mechanism and a combustor that combusts exhaust air and exhaust gas from a fuel cell and discharges combustion gas to a turbine is disclosed.
  • the gas turbine power generation facility is a system that assumes a SOFC that operates at a relatively high temperature.
  • various conditions such as gas temperature are greatly different from those of a fuel cell that operates at a relatively low temperature such as a polymer electrolyte fuel cell (PEM). Therefore, the power recovery mechanism in the gas turbine power generation facility cannot be applied to a system related to a fuel cell that operates at a relatively low temperature.
  • PEM polymer electrolyte fuel cell
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a fuel cell system including a power recovery mechanism that can be suitably applied to a low temperature operation type fuel cell, and a control method for the fuel cell system. Is to provide.
  • a fuel cell that generates power by receiving supply of anode gas and cathode gas, a compressor that supplies cathode gas to the fuel cell, and a power source that receives supply of cathode exhaust gas discharged from the fuel cell.
  • a fuel cell system including a turbine that generates power and a compressor and an electric motor that is connected to the turbine and performs power running and regeneration.
  • the fuel cell system further includes a combustor installed between the fuel cell and the turbine for mixing and burning the cathode gas and the anode gas, a cooler for cooling the cathode gas supplied from the compressor to the fuel cell, A bypass passage that bypasses the cooler and the fuel cell from the upstream side of the cooler and supplies cathode gas to the combustor, and a bypass valve provided in the bypass passage are provided.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a state where the nozzle vanes are closed.
  • FIG. 2B is a diagram illustrating a state where the nozzle vanes are opened.
  • FIG. 3 is a block diagram illustrating a functional configuration example of a controller that controls the fuel cell system according to the first embodiment.
  • FIG. 4 is a block diagram showing a functional configuration example for calculating a target value of air pressure to be supplied to the fuel cell.
  • FIG. 5 is a block diagram showing an example of a functional configuration for calculating a target value of the air flow rate to be supplied to the fuel cell and a target value of the air flow rate to be discharged from the compressor.
  • FIG. 6 is a map showing the relationship between the required power to the compressor motor and the stack required compressor flow rate according to the pressure ratio target value.
  • FIG. 7 is a block diagram illustrating a functional configuration example for calculating a target value of the turbine inlet temperature.
  • FIG. 8 is a diagram showing a map for determining the turbine inlet temperature target value.
  • FIG. 9 is a time chart showing changes in the state of the fuel cell system according to the required output.
  • FIG. 10 is a diagram showing the relationship between the flow rate and the recovered power by the turbine in accordance with the pressure when the turbine inlet temperature takes the allowable upper limit temperature.
  • FIG. 11 is a flowchart illustrating opening and closing of the bypass valve according to the first embodiment.
  • FIG. 12 is a block diagram showing an example of a functional configuration for calculating a target value of the air flow rate to be supplied to the fuel cell and a target value of the air flow rate to be discharged from the compressor in the second embodiment.
  • FIG. 13 is a map showing the relationship between the compressor required generated power and the stack required compressor flow rate according to the compressor discharge temperature.
  • the fuel cell system 100 is a power recovery mechanism having a fuel cell stack 10, a cathode supply / discharge mechanism 12, an anode supply mechanism 14, a heat supply mechanism 15, a compressor 50 and a turbine 52. Compressor power supply mechanism 16, stack cooling mechanism 17, and controller 20.
  • the fuel cell stack 10 is a stacked battery in which a plurality of fuel cells are stacked.
  • the fuel cell stack 10 receives the supply of the anode gas (hydrogen) from the anode supply mechanism 14 and the supply of the cathode gas (air) from the cathode supply / exhaust mechanism 12 to generate electric power necessary for traveling of the vehicle.
  • This generated electric power is used by various auxiliary machines such as the compressor 50 used when operating the fuel cell system 100 and a wheel driving motor (not shown).
  • an impedance measuring device 11 Connected to the positive electrode terminal and the negative electrode terminal of the fuel cell stack 10 is an impedance measuring device 11 that measures impedance correlated with the wet state of the electrolyte membrane formed in the fuel cell stack 10.
  • the impedance measuring device 11 supplies an alternating current to the positive terminal of the fuel cell stack 10 and detects an alternating current component of the voltage generated at the positive terminal and the negative terminal of the fuel cell stack 10.
  • the impedance measuring device 11 calculates the AC resistance of the fuel cell stack 10, that is, HFR (High (frequency Resistance), based on the supplied AC current and the AC component of the detected voltage.
  • the impedance measuring device 11 inputs the calculated HFR to the controller 20 as an HFR measurement value.
  • the impedance measuring device 11 may measure the output voltage or output current of the fuel cell stack 10.
  • the cathode supply / discharge mechanism 12 includes a cathode gas supply passage 22 and a cathode exhaust gas passage 24.
  • the cathode gas supply passage 22 is a passage through which air supplied to the fuel cell stack 10 flows. One end of the cathode gas supply passage 22 is connected to the gas filter 23, and the other end is connected to the fuel cell stack 10.
  • the cathode gas supply passage 22 is provided with an air flow sensor 26, a compressor discharge temperature sensor 27, an after cooler 28, a stack supply air temperature sensor 29, and an air pressure sensor 30 in this order from the upstream. .
  • the air flow sensor 26 is provided at the intake inlet of the compressor 50 of the compressor power supply mechanism 16 in the cathode gas supply passage 22.
  • the air flow sensor 26 detects the flow rate of air taken into the compressor 50 (hereinafter also referred to as “compressor flow rate”).
  • compressor flow rate detection value the detection value of the air flow sensor 26 is also referred to as “compressor flow rate detection value”.
  • the compressor flow rate detection value detected by the air flow sensor 26 is input to the controller 20.
  • the compressor discharge temperature sensor 27 detects the air temperature (hereinafter also referred to as “compressor discharge temperature”) discharged from the compressor 50 and upstream from the aftercooler 28.
  • a bypass passage 33 having a bypass valve 32 is connected between the air flow sensor 26 and the compressor discharge temperature sensor 27.
  • the bypass passage 33 is a passage connecting the cathode gas supply passage 22 and the cathode exhaust gas passage 24. That is, the bypass passage 33 is a passage that bypasses the aftercooler 28 and the fuel cell stack 10 from the upstream side of the aftercooler 28 and supplies cathode gas to a catalytic combustor 36 described later.
  • the aftercooler 28 cools the air discharged from the compressor 50 and sent to the fuel cell stack 10.
  • the aftercooler 28 is configured as a water-cooled heat exchanger, and is connected to the stack cooling mechanism 17. That is, heat exchange is performed between the cooling water used for cooling the fuel cell stack 10 and the air to be supplied to the fuel cell stack 10 by the aftercooler 28.
  • the stack supply air temperature sensor 29 detects the temperature of the cathode gas cooled by the aftercooler 28 and supplied to the fuel cell stack 10 (hereinafter also referred to as “stack supply air temperature”).
  • the air pressure sensor 30 detects the pressure in the cathode gas supply passage 22, that is, the pressure of air supplied to the fuel cell stack 10 (hereinafter also referred to as “air pressure”).
  • the detected air pressure value detected by the air pressure sensor 30 is input to the controller 20.
  • the bypass valve 32 is a pressure regulating valve that adjusts the flow rate of air supplied to the cathode exhaust gas passage 24 by bypassing the fuel cell stack 10 and is controlled to be opened and closed by the controller 20. That is, the bypass valve 32 is a valve that adjusts the flow rate of air supplied from the compressor 50 to the cathode exhaust gas passage 24 by bypassing the fuel cell stack 10 via the bypass passage 33.
  • the bypass passage 33 communicates with the upstream of the catalytic combustor 36 in the cathode exhaust gas passage 24 as described above. Accordingly, the oxygen concentration of the cathode exhaust gas supplied to the catalytic combustor 36 can be improved by supplying the air in the cathode gas supply passage 22 to the cathode exhaust gas passage 24 by the bypass passage 33.
  • the cathode exhaust gas passage 24 has one end connected to the cathode outlet of the fuel cell stack 10 and the other end connected to the turbine 52.
  • the cathode exhaust gas passage 24 is provided with a heat supply mechanism 15.
  • the heat supply mechanism 15 has the above-described catalyst combustor 36 and a turbine inlet temperature sensor 38.
  • the catalytic combustor 36 and the turbine inlet temperature sensor 38 are provided in the cathode exhaust gas passage 24 in this order from the fuel cell stack 10 to the turbine 52.
  • the catalytic combustor 36 catalytically burns a mixed gas obtained by mixing anode gas and cathode gas with a mixer (not shown) by catalytic action of platinum or the like.
  • the catalytic combustor 36 is supplied with anode gas from the anode supply mechanism 14 via the combustion anode gas supply passage 64, and from the fuel cell stack 10 via the cathode exhaust gas passage 24 to the cathode exhaust gas and bypass passage 33. Air is supplied from.
  • the cathode gas supplied to the catalytic combustor 36 includes air supplied via the bypass passage 33 and cathode exhaust gas discharged from the fuel cell stack 10.
  • the use of the catalytic combustor 36 as a combustor causes generation of nitrogen compounds (Nox) as compared with the case of using a diffusion combustion type combustor or a lean premixed combustion type combustor. It is suppressed.
  • a combustor other than a catalytic combustor such as a diffusion combustion type combustor or a lean premixed combustion type combustor may be used.
  • the turbine inlet temperature sensor 38 is a temperature of the post-combustion gas remaining after combustion by the catalytic combustor 36, that is, a temperature of the post-combustion gas supplied to the turbine 52 of the compressor power supply mechanism 16 (hereinafter referred to as “turbine inlet temperature”). Also described).
  • the detected value of the turbine inlet temperature detected by the turbine inlet temperature sensor 38 is input to the controller 20.
  • the anode supply mechanism 14 in the present embodiment includes a high-pressure tank 60, a stack anode gas supply passage 62, and a combustion anode gas supply passage 64.
  • the high-pressure tank 60 is a gas storage container that stores hydrogen, which is the anode gas supplied to the fuel cell stack 10, while maintaining a high-pressure state.
  • the stack anode gas supply passage 62 is a passage for supplying hydrogen discharged from the high-pressure tank 60 to the fuel cell stack 10.
  • One end of the stack anode gas supply passage 62 is connected to the high-pressure tank 60, and the other end is connected to the fuel cell stack 10.
  • the stack anode gas supply passage 62 is provided with an anode gas supply valve 66 and a hydrogen pressure detection sensor 67.
  • the anode gas supply valve 66 is a pressure regulating valve that arbitrarily adjusts the amount of hydrogen supplied to the fuel cell stack 10.
  • the hydrogen pressure detection sensor 67 detects the pressure of hydrogen supplied to the fuel cell stack 10 (hereinafter also referred to as “hydrogen pressure”).
  • the detected hydrogen pressure value detected by the hydrogen pressure detection sensor 67 is input to the controller 20.
  • combustion anode gas supply passage 64 is a passage for supplying a part of hydrogen discharged from the high-pressure tank 60 to the catalytic combustor 36.
  • One end of the combustion anode gas supply passage 64 is branched to communicate with the stack anode gas supply passage 62, and the other end is connected to the catalytic combustor 36.
  • the combustion anode gas supply passage 64 is provided with a combustor hydrogen supply valve 68 for arbitrarily adjusting the amount of hydrogen supplied to the catalyst combustor 36.
  • the combustor hydrogen supply valve 68 is a pressure regulating valve that appropriately adjusts the amount of hydrogen supplied to the catalytic combustor 36 by adjusting its opening degree continuously or stepwise.
  • the anode exhaust gas from the fuel cell stack 10 can be processed by, for example, a circulation type or non-circulation type anode exhaust mechanism (not shown).
  • the compressor power supply mechanism 16 includes a compressor 50, a turbine 52, and a compressor drive motor 54 as an electric motor.
  • the compressor 50 is connected to the compressor drive motor 54 and the turbine 52 via a rotary drive shaft 57.
  • the compressor 50 is configured to be rotationally driven to suck outside air and to supply the cathode gas to the fuel cell stack 10 via the cathode gas supply passage 22. Note that the compressor 50 can be driven by either one or both of the power of the compressor drive motor 54 and the turbine 52.
  • the turbine 52 is rotationally driven by the post-combustion gas supplied from the catalytic combustor 36.
  • the turbine 52 outputs this rotational driving force to the compressor 50 via the rotational driving shaft 57 and the compressor driving motor 54. That is, the compressor 50 can be driven by the recovery power from the turbine 52. Further, the post-combustion gas after being used for driving the turbine 52 is discharged through the turbine exhaust passage 53.
  • turbine gas inflow rate the supply flow rate of the post-combustion gas flowing into the turbine 52
  • Turbine inlet temperature Temperature
  • pressure can be increased to suitably power the compressor 50.
  • the power recovered by the turbine 52 may be used not only in the rotational driving force of the compressor 50 but also in any other power request mechanism in the fuel cell system 100.
  • the turbine 52 is provided with a nozzle vane 58 that adjusts the pressure of the gas after combustion supplied to the turbine 52.
  • FIG. 2A and 2B are diagrams showing a schematic structure of the nozzle vane 58 provided in the turbine 52.
  • FIG. 2A shows a state where the nozzle vane 58 is opened
  • FIG. 2B shows a state where the nozzle vane 58 is closed.
  • the flow direction of the inflow after-combustion gas is typically shown by the arrow A.
  • the compressor drive motor 54 is connected to the compressor 50 on one side of the rotation drive shaft 57 and is connected to the turbine 52 on the other side of the rotation drive shaft 57.
  • the compressor drive motor 54 generates power by being driven by rotation by an external force and a function (power running mode) as an electric motor that rotates by receiving power supplied from a battery (not shown), the fuel cell stack 10, the turbine 52, and the like. It has a function (regeneration mode) as a generator for supplying power to the battery or the fuel cell stack 10.
  • the compressor drive motor 54 includes a motor case (not shown), a stator fixed to the inner peripheral surface of the motor case, a rotor disposed rotatably inside the stator, and a rotation drive shaft 57 provided on the rotor. Prepare.
  • the compressor drive motor 54 is provided with a torque sensor 55 and a rotation speed sensor 56.
  • the torque sensor 55 detects the torque of the compressor drive motor 54.
  • the detected torque value of the compressor drive motor 54 detected by the torque sensor 55 is input to the controller 20.
  • the rotation speed sensor 56 detects the rotation speed of the compressor drive motor 54.
  • the compressor rotation speed detection value detected by the rotation speed sensor 56 is input to the controller 20.
  • the stack cooling mechanism 17 includes a cooling water circulation channel 76 and a radiator 77 that heat-exchanges the cooling water flowing through the cooling water circulation channel 76 with outside air and cools the cooling water.
  • the cooling water circulation path 76 is configured as an annular circulation path including a cooling water path of the fuel cell stack 10 (not shown).
  • the cooling water circulation flow path 76 is provided with a cooling water circulation pump 78, which enables circulation of the cooling water.
  • the cooling water circulating through the cooling water circulation passage 76 is supplied into the stack from the cooling water inlet 10 a of the fuel cell stack 10 and flows in the direction discharged from the cooling water outlet 10 b of the fuel cell stack 10.
  • a radiator bypass three-way valve 80 is provided in the cooling water circulation passage 76 at a position upstream from the radiator 77.
  • the radiator bypass three-way valve 80 adjusts the amount of cooling water supplied to the radiator 77. For example, when the temperature of the cooling water is relatively high, the radiator bypass three-way valve 80 is opened, and the cooling water is circulated to the radiator 77. On the other hand, when the temperature of the cooling water is relatively high, the radiator bypass three-way valve 80 is closed and the cooling water is allowed to flow through the bypass passage 80a so as to bypass the radiator 77.
  • an inlet water temperature sensor 81 is provided in the vicinity of the cooling water inlet 10 a of the fuel cell stack 10 and an outlet water temperature sensor 82 is provided in the vicinity of the cooling water outlet 10 b of the fuel cell stack 10. Yes.
  • the inlet water temperature sensor 81 detects the temperature of the cooling water flowing into the fuel cell stack 10.
  • the outlet water temperature sensor 82 detects the temperature of the cooling water discharged from the fuel cell stack 10.
  • the stack inlet water temperature detection value detected by the inlet water temperature sensor 81 and the stack outlet water temperature detection value detected by the outlet water temperature sensor 82 are input to the controller 20.
  • the aftercooler 28 is connected to the cooling water circulation passage 76.
  • the cooling water in the cooling water circulation passage 76 can be heated by the heat of the high-temperature air discharged from the compressor 50, It can meet the heat demand.
  • the aftercooler 28 cools the high-temperature air discharged from the compressor 50, so that the air is supplied to the fuel cell stack 10 at a temperature suitable for the operation of the fuel cell stack 10. The heat exchanged by the aftercooler 28 is carried to the radiator 77 via the cooling water, and is radiated to the outside of the system.
  • the fuel cell system 100 configured as described above has a controller 20 that comprehensively controls the system.
  • the controller 20 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • signals from various sensors of the fuel cell system 100 In addition to signals from various sensors of the fuel cell system 100, signals from various sensors that detect the operating state of the fuel cell system 100 such as the atmospheric pressure sensor 111 that detects atmospheric pressure are input to the controller 20.
  • the controller 20 receives an output request signal related to output power required for the fuel cell system 100 according to the load by the load device 110 (hereinafter also simply referred to as “request output”).
  • the load device 110 is configured by, for example, a wheel driving motor or a secondary battery.
  • the detection signal indicating the amount of depression of an accelerator pedal detected by an accelerator pedal sensor (not shown) increases, the required power of the load device 110 increases. Therefore, an output request input to the controller 20 The signal level of the signal is increased.
  • the controller 20 performs drive control of the various valves 32, 66, 68, 80 including the compressor drive motor 54, the nozzle vane 58, the cooling water circulation pump 78, and the bypass valve 32 using these input signals and the like. For example, the controller 20 calculates a target value of the compressor flow rate and air pressure and a target value of the hydrogen supply pressure to the fuel cell stack 10 based on the power generation request signal of the load device 110, and according to the calculation result, The torque (power) of the compressor drive motor 54, the opening degree of the nozzle vane 58, and the opening degree of the anode gas supply valve 66 are controlled.
  • the controller 20 also acquires information related to the power consumption of the compressor drive motor 54 as part of the request output.
  • FIG. 3 illustrates feedback (F / B) control for the opening of the combustor hydrogen supply valve 68, the opening of the nozzle vane 58, the torque of the compressor drive motor 54, and the opening of the bypass valve 32 according to the present embodiment. It is a control block diagram to do.
  • the control block shown in FIG. 3 includes a film wetting F / B control block B100, an air pressure target value calculation block B101, an air flow rate target value calculation block B102, a turbine inlet temperature target value calculation block B103, and a combustor hydrogen amount. It has an F / B control block B104, an air system F / B control block B105, and a bypass air amount control block B106.
  • the membrane wet F / B control block B100 controls the HFR value correlated with the wet state so that the wet state of the electrolyte membrane formed in the fuel cell stack 10 is appropriately maintained.
  • the HFR target value and the HFR measurement value are input to the film wetting F / B control block B100.
  • the HFR target value is determined in advance using a map or the like that defines the relationship between the generated power of the fuel cell stack 10 and the HFR target value.
  • the measured HFR value is measured using an impedance measuring device 11 provided in the fuel cell stack 10.
  • the membrane wetting F / B control block B100 determines the required air pressure (hereinafter referred to as “wet demand air pressure Ph_r”). And a required air flow rate (hereinafter also referred to as “wet required air flow rate Fh_r”). That is, the film wetting F / B control block B100 calculates the required wet air pressure Ph_r and the required wet air flow rate Fh_r based on the HFR target value.
  • the film wetting F / B control block B100 outputs the required wet air pressure Ph_r to the air pressure target value calculation block B101, and outputs the required wet air flow rate Fh_r to the target air flow value calculation block B102.
  • the air pressure target value calculation block B101 calculates an air pressure target value Pc_t that is a target value of air pressure to be supplied to the fuel cell stack 10 based on the current target value Is_t.
  • the current target value Is_t is a target value of the current to be taken out from the fuel cell stack 10 that is determined based on the system required output and the recovered power by the turbine 52.
  • the target air current value Is_t, the stack temperature detection value Ts_d, and the required wet air pressure Ph_r calculated by the film wetting F / B control block B100 are input to the air pressure target value calculation block B101.
  • the stack temperature detection value Ts_d is, for example, a value obtained by averaging the detection values detected by the inlet water temperature sensor 81 and the outlet water temperature sensor 82. Any one of the detected values may be used.
  • the air pressure target value calculation block B101 is an air pressure target that is a target value of air pressure to be supplied to the fuel cell stack 10 based on the above-described current target value Is_t, stack temperature detection value Ts_d, and required wet air pressure Ph_r.
  • a value Pc_t is calculated and output to the air flow rate target value calculation block B102 and the turbine inlet temperature target value calculation block B103.
  • FIG. 4 is a block diagram showing details of the calculation method of the air pressure target value Pc_t executed by the air pressure target value calculation block B101.
  • the block shown in the figure includes a power generation required air pressure calculation block B200 and a max select block B201.
  • the current target value Is_t and the stack temperature detection value Ts_d are input to the power generation request air pressure calculation block B200. Then, the power generation request air pressure calculation block B200 generates a power generation request air pressure that is an air pressure required for power generation of the fuel cell stack 10 from the current target value Is_t and the stack temperature detection value Ts_d based on a map stored in advance. Pg_r is calculated. Furthermore, the power generation request air pressure calculation block B200 outputs the power generation request air pressure Pg_r to the max select block B201.
  • the power generation required air pressure Pg_r increases as the current target value Is_t increases, and the power generation required air pressure increases as the stack temperature detection value Ts_d increases. Pg_r increases.
  • the power generation required air pressure Pg_r calculated in the power generation required air pressure calculation block B200 and the moisture required air pressure Ph_r calculated in the membrane wetting F / B control block B100 are input to the Max Select block B201.
  • the maximum select block B201 sets the larger one of the power generation required air pressure Pg_r and the wet required air pressure Ph_r as the air pressure target value Pc_t to the air flow rate target value calculation block B102 and the turbine inlet temperature target value calculation block B103. Output.
  • the air pressure required for controlling the power generation state of the fuel cell stack 10 (power generation required air pressure Pg_r) and the air pressure required for operating the wet state of the electrolyte membrane.
  • the maximum value is set as the air pressure target value Pc_t.
  • the air flow rate target value calculation block B102 calculates the compressor flow rate target value Fco_t and the stack flow rate target value Fs_t.
  • the stack flow rate target value Fs_t corresponds to the stack flow rate required for the electrode reaction in the cathode electrode of the fuel cell stack 10 when the fuel cell stack 10 generates target power. That is, the stack flow rate target value Fs_t corresponds to the stack flow rate required for setting the output current to the current target value Is_t when generating the target power.
  • the air flow rate target value calculation block B102 includes an air pressure target value Pc_t, a current target value Is_t, a stack temperature detection value Ts_d, a wet required air flow rate Fh_r, hydrogen calculated by the air pressure target value calculation block B101.
  • the pressure detection value Pan_d and the atmospheric pressure detection value Pai_d are input.
  • the air flow rate target value calculation block B102 is based on these air pressure target value Pc_t, current target value Is_t, stack temperature detection value Ts_d, wet demand air flow rate Fh_r, hydrogen pressure detection value Pan_d, and atmospheric pressure detection value Pai_d.
  • a flow rate target value Fco_t and a stack flow rate target value Fs_t are calculated.
  • FIG. 5 is a block diagram showing details of a method of calculating the stack flow rate target value Fs_t and the compressor flow rate target value Fco_t executed by the air flow rate target value calculation block B102.
  • the blocks shown in this figure are a power generation required air flow rate calculation block B300, a max select block B301, a pressure ratio target value calculation block B302, a stack required compressor flow rate calculation block B303, a dilution required flow rate calculation block B304, and a max select. Block B305.
  • the current target value Is_t is input to the power generation required air flow rate calculation block B300.
  • the power generation request air flow rate calculation block B300 calculates a power generation request air flow rate Fg_r that is an air flow rate required for power generation in the fuel cell stack 10 from the current target value Is_t based on a map stored in advance.
  • the power generation request stack flow rate Fs_gr increases as the current target value Is_t increases. Furthermore, the power generation request air flow rate calculation block B300 outputs the power generation request air flow rate Fg_r to the max select block B301.
  • the power generation required air flow rate Fg_r calculated by the power generation required air flow rate calculation block B300 and the moisture required air flow rate Fh_r are input to the Max Select block B301. Then, the Max select block B301 outputs the larger one of the power generation required air flow rate Fg_r and the wet required air flow rate Fh_r as the stack flow rate target value Fs_t. As a result, the stack flow rate target value Fs_t takes into consideration both the air flow rate based on the power generation request and the air flow rate based on the wet request.
  • the air pressure target value Pc_t and the atmospheric pressure detection value Pai_d are input to the pressure ratio target value calculation block B302. Then, the pressure ratio target value calculation block B302 obtains the pressure ratio target value Pc_t / Pai_d by dividing the air pressure target value Pc_t by the atmospheric pressure detection value Pai_d, and outputs it to the stack required compressor flow rate calculation block B303.
  • the required power Wco to the compressor motor and the pressure ratio target value Pc_t / Pai_d are input to the stack required compressor flow rate calculation block B303.
  • the required power Wco to the compressor motor is defined as a value obtained by subtracting the power that can be output from the fuel cell stack 10 (hereinafter also simply referred to as “power that can be output”) from the required output.
  • the power that can be output from the fuel cell stack 10 is determined according to the size of the fuel cell stack 10, the traveling state of the vehicle on which the fuel cell stack 10 is mounted, and the like.
  • the required power Wco to the compressor motor is a positive value.
  • the required power Wco to the compressor motor being a positive value means that the generated power of the fuel cell stack 10 with respect to the required output is insufficient. Therefore, in this embodiment, in this case, the power shortage is compensated by the regenerative power of the compressor drive motor 54 based on the recovered power of the turbine 52.
  • the required power Wco to the compressor motor becomes a negative value. This is because the power generated by the fuel cell stack 10 is sufficient for the required output, and the compressor drive motor 54 is intended to operate in the powering mode.
  • the pressure ratio target value Pc_t / Pai_d is set larger as the required power Wco to the compressor motor increases. That is, since the increase / decrease in the pressure ratio target value Pc_t / Pai_d is linked to the increase / decrease in the required power Wco to the compressor motor, if the magnitude of the pressure ratio target value Pc_t / Pai_d is seen, the required power Wco to the compressor motor is small or large. Can also be detected.
  • the stack required compressor flow rate calculation block B303 calculates the stack required compressor flow rate Fco_sr from a predetermined map based on the input required power Wco to the compressor motor and the pressure ratio target value Pc_t / Pai_d.
  • the stack required compressor flow rate Fco_sr is a candidate value for the compressor flow rate determined depending on the magnitude between the required output and the output power, that is, whether or not the generated power of the fuel cell stack 10 is insufficient. .
  • FIG. 6 is a map showing the relationship between the required power Wco to the compressor motor according to the pressure ratio target value and the stack required compressor flow rate.
  • the required power Wco to the compressor motor when the required power Wco to the compressor motor is a negative value (when the generated power of the fuel cell stack 10 is not insufficient), the required power Wco to the compressor motor becomes the predetermined value Wco1. Until it reaches, the stack required compressor flow rate Fco_sr is increased to a predetermined value Fco_sr1 regardless of the value of the pressure ratio target value Pc_t / Pai_d.
  • the predetermined value Fco_sr1 is a value corresponding to the stack flow rate determined according to the required generated power of the fuel cell stack 10.
  • the compressor drive motor 54 is operated in the power running mode, so there is no need to set the compressor flow rate exceeding the flow rate based on the required generated power of the fuel cell stack 10. Then, the compressor flow rate corresponding to the stack flow rate determined according to the required generated power of the fuel cell stack 10 is set.
  • the stack required compressor flow rate Fco_sr is set according to the pressure ratio target value Pc_t / Pai_d. Is set.
  • the stack required compressor flow rate Fco_sr is not increased regardless of the required power Wco to the compressor motor.
  • the reason why the stack demand compressor flow rate Fco_sr is not increased beyond the predetermined value Fco_sr1 at low pressure in this way is that the pressure loss of the cathode system is large and the recovery power by the turbine 52 is low at low pressure, so the compressor flow rate is increased. This is because even if the turbine gas inflow rate is increased, a significant improvement in the recovery power by the turbine 52 cannot be expected.
  • the stack request compressor The flow rate Fco_sr is increased from a predetermined value Fco_sr1 based on the required generated power of the fuel cell stack 10 to a predetermined value Fco_sr2.
  • the reason why the stack required compressor flow rate Fco_sr is increased from the predetermined value Fco_sr1 based on the required power generation power of the fuel cell stack 10 at the intermediate pressure is that This is to increase the turbine gas inflow rate so as to obtain.
  • the cathode system pressure loss is still large, and even if the turbine gas inflow rate is increased greatly, it is not possible to increase the recovery power beyond a certain level.
  • the stack required compressor flow rate Fco_sr is increased to a predetermined value Fco_sr2.
  • the degree of opening of the bypass valve 32 is increased so that the cathode gas exceeding the flow rate required by the fuel cell stack 10 is supplied to the aftercooler. Do not flush to 28. This point will be described later in detail.
  • the stack required compressor flow rate Fco_sr is set to the predetermined value Fco_sr1 after the required power Wco to the compressor motor reaches the predetermined value Wco3. Increase from.
  • the stack required compressor flow rate Fco_sr is increased from the predetermined value Fco_sr1 based on the required generated power of the fuel cell stack 10 so as to obtain regenerative power from the compressor drive motor 54 even at high pressure.
  • the cathode system pressure loss is small, so that the turbine gas inflow rate can be greatly increased to increase the recovery power by the turbine 52 to a certain level or more.
  • the opening degree of the bypass valve 32 is increased as the stack required compressor flow rate Fco_sr increases, so that the cathode gas exceeding the flow rate required by the fuel cell stack 10 does not flow to the aftercooler 28.
  • the stack demand compressor flow rate calculation block B303 outputs the stack demand compressor flow rate Fco_sr calculated by the stack demand compressor flow rate calculation block B303 to the max select block B305.
  • the stack temperature detection value Ts_d and the hydrogen pressure detection value Pan_d detected by the hydrogen pressure detection sensor 67 are input to the dilution request flow rate calculation block B304. Then, the dilution request flow rate calculation block B304 calculates a dilution request compressor flow rate Fco_dr that is an air flow rate required for diluting the anode exhaust gas discharged from the fuel cell stack 10 according to a predetermined map. Output to block B305.
  • the dilution request compressor flow rate Fco_dr increases as the hydrogen pressure detection value Pan_d increases.
  • the dilution request compressor flow rate Fco_dr decreases as the stack temperature detection value Ts_d increases. This is because when the stack temperature detection value Ts_d is high, the anode exhaust gas temperature is high, and the pressure loss of the anode exhaust gas discharge flow path becomes high and the flow rate decreases, so that it is necessary to perform correction to reduce the amount of air used for dilution. is there.
  • the dilution request flow rate calculation block B304 outputs the dilution request compressor flow rate Fco_dr to the max select block B305.
  • the Max select block B305 the stack request compressor flow rate Fco_sr output from the stack request compressor flow rate calculation block B303 and the dilution request compressor flow rate Fco_dr calculated in the dilution request flow rate calculation block B304 are input. Then, the Max select block B305 outputs the larger one of the stack required compressor flow rate Fco_sr and the dilution required compressor flow rate Fco_dr as the compressor flow rate target value Fco_t to each of the blocks B103, B105, and B106.
  • the compressor flow rate target value Fco_t is determined in consideration of the required generated power of the fuel cell stack 10 and the anode exhaust gas dilution request.
  • the compressor flow rate target value Fco_t may be determined in consideration of a surge avoidance request for avoiding a surge of the compressor 50.
  • the turbine inlet temperature target value calculation block B103 is based on the flow rate and pressure of the cathode gas supplied to the fuel cell stack 10, and the temperature of the post-combustion gas discharged from the catalytic combustor 36 to the turbine 52, That is, the turbine inlet temperature is controlled.
  • the turbine inlet temperature target value calculation block B103 is calculated by the atmospheric pressure detection value Pai_d, the air pressure target value Pc_t calculated by the air pressure target value calculation block B101, and the air flow rate target value calculation block B102.
  • the compressed compressor flow rate target value Fco_t is input.
  • the turbine inlet temperature target value calculation block B103 is based on the atmospheric pressure detected value Pai_d, the air pressure target value Pc_t, and the compressor flow rate target value Fco_t. Also referred to as “turbine inlet temperature target value Tt_t”).
  • FIG. 7 is a block diagram showing details of a method for calculating the turbine inlet temperature target value Tt_t executed by the turbine inlet temperature target value calculation block B103.
  • the block shown in this drawing has a pressure ratio target value calculation block B400 and a turbine inlet temperature target value setting block B401.
  • the air pressure target value Pc_t and the atmospheric pressure detection value Pai_d are input to the pressure ratio target value calculation block B400. Then, the pressure ratio target value calculation block B400 obtains the pressure ratio target value Pc_t / Pai_d by dividing the air pressure target value Pc_t by the atmospheric pressure detection value Pai_d, and outputs it to the turbine inlet temperature target value setting block B401.
  • the compressor inlet flow target value Fco_t and the pressure ratio target value Pc_t / Pai_d calculated by the pressure ratio target value calculation block B400 are input to the turbine inlet temperature target value setting block B401. Then, the turbine inlet temperature target value setting block B401 calculates a turbine inlet temperature target value Tt_t from the compressor flow rate target value Fco_t and the pressure ratio target value Pc_t / Pai_d based on a previously stored map.
  • FIG. 8 is a diagram showing a map for determining the turbine inlet temperature target value.
  • the turbine inlet temperature target value Tt_t is a pressure between a predetermined lower limit value Tt_tmin of the turbine inlet temperature and an allowable upper limit temperature Tt_tmax of the turbine inlet temperature determined in consideration of the heat resistant temperature of the parts. It fluctuates according to the ratio target value Pc_t / Pai_d and the compressor flow rate target value Fco_t.
  • the pressure ratio target value Pc_t / Pai_d when the pressure ratio target value Pc_t / Pai_d is set to the largest value, when the pressure ratio target value Pc_t / Pai_d is set to an intermediate value, the pressure ratio target value Pc_t / Pai_d Is maintained at the lowest value, the turbine inlet temperature target value Tt_t is maintained at the lower limit value Tt_tmin until the compressor flow rate target value Fco_t reaches predetermined values f1, f2, and f3 (f1 ⁇ f2 ⁇ f3), respectively. And then increase.
  • the reason why the turbine inlet temperature target value Tt_t starts to increase with a smaller compressor flow rate target value Fco_t as the pressure is higher is that the higher the pressure is, the more demanded the fuel cell stack 10 is for the same compressor flow rate target value Fco_t. This is because the generated power is large, and it is necessary to increase the recovered power from the turbine 52 by increasing the turbine inlet temperature.
  • the turbine inlet temperature target value Tt_t is set to the allowable upper limit temperature Tt_tmax. This is because when the compressor flow rate target value Fco_t becomes larger than a certain value, the required output is large and the required power Wco to the compressor motor is large. Therefore, in order to increase the recovered power obtained by the turbine 52, the turbine This is to increase the inlet temperature rapidly. On the other hand, from the viewpoint of the heat-resistant temperature of the parts, the turbine inlet temperature is not increased beyond the allowable upper limit temperature Tt_tmax.
  • the turbine inlet temperature detection value Tt_d and the turbine inlet temperature target value Tt_t calculated by the turbine inlet temperature target value calculation block B103 are input to the combustor hydrogen amount F / B control block B104.
  • the combustor hydrogen amount F / B control block B104 feedback-controls the opening degree of the combustor hydrogen supply valve 68 so that the turbine inlet temperature detection value Tt_d approaches the turbine inlet temperature target value Tt_t.
  • the opening degree of the combustor hydrogen supply valve 68 is increased as the required load on the fuel cell stack 10 and the required power from the turbine 52 increase. Specifically, when at least one of the stack flow rate target value Fs_t and the compressor flow rate target value Fco_t increases, the air supplied to the catalytic combustor 36 increases, so the opening of the combustor hydrogen supply valve 68 is increased. As a result, the amount of hydrogen supplied to the catalytic combustor 36 is increased in order to burn the air.
  • Compressor flow rate detection value Fco_d and air pressure detection value Pc_d are input to the air system F / B control block B105 as detection values. Further, an air pressure target value Pc_t, a compressor flow rate target value Fco_t, and a stack flow rate target value Fs_t are input to the air system F / B control block B105 as target values.
  • the air system F / B control block B105 feedback-controls the opening degree of the nozzle vane 58 and the torque of the compressor drive motor 54 based on the input detection values and target values. Specifically, the air system F / B control block B105 is used when the required load on the fuel cell stack 10 is high or when the required power of the turbine 52 is high, that is, at least the stack flow rate target value Fs_t and the compressor flow rate target value Fco_t. When either one increases, the opening degree of the nozzle vane 58 is increased.
  • the torque (power) of the compressor drive motor 54 is controlled to increase as at least one of the air pressure target value Pc_t, the stack flow rate target value Fs_t, and the compressor flow rate target value Fco_t increases.
  • bypass air amount control block B106 In the bypass air amount control block B106, an air pressure target value Pc_t, a compressor flow rate target value Fco_t, and a stack flow rate target value Fs_t are input.
  • the bypass air amount control block B106 controls the opening degree of the bypass valve 32 based on these values.
  • bypass air amount control block B106 controls the opening degree of the bypass valve 32 so that the air flow rate flowing through the bypass passage 33 becomes a difference between the compressor flow rate target value Fco_t and the stack flow rate target value Fs_t.
  • compressor work Wc work used in the compressor 50
  • turbine work Wt work that can be recovered from the turbine 52
  • Fco is the compressor flow rate
  • Cpc is the specific heat of the air supplied by the compressor 50
  • Tc is the compressor discharge temperature
  • Prc is the pressure ratio
  • ⁇ c is the compressor efficiency.
  • the specific heat Cpc of the air supplied by the compressor 50 and the compressor efficiency ⁇ c are fixed values determined in advance based on the properties of the compressor 50. Therefore, the compressor work Wc varies mainly according to the compressor flow rate Fco, the compressor discharge temperature Tc, and the pressure ratio Prc. Accordingly, based on the formula (1), the compressor work Wc increases when at least one of the compressor flow rate Fco, the compressor discharge temperature Tc, and the pressure ratio Prc increases.
  • Wt Ft ⁇ Cpt ⁇ Tt ⁇ [1- (1 / Prt) ⁇ 0.286 ⁇ ⁇ ⁇ t (2) It is expressed.
  • Ft is the flow rate of the burned gas flowing into the turbine 52 (hereinafter also referred to as “turbine flow rate”)
  • Cpt is the specific heat of the burned gas flowing into the turbine 52
  • Tt is the turbine inlet temperature
  • Prt is the turbine
  • the expansion ratio, ⁇ t means turbine efficiency.
  • the specific heat Cpt of the post-combustion gas flowing into the turbine 52 can be determined in advance by regarding that the component of the post-combustion gas is substantially the same as that of air.
  • the turbine efficiency ⁇ t can be determined in advance based on the properties of the turbine 52. Therefore, the turbine work Wt varies mainly according to the turbine inflow rate Ft, the turbine inlet temperature Tt, and the turbine expansion ratio Prt. Thereby, based on Formula (2), the turbine work Wt increases when at least one of the turbine inflow flow rate Ft and the turbine inlet temperature Tt increases.
  • ⁇ Ps (k ⁇ Fs ⁇ Prc ⁇ Ts) / T0 (3) It is expressed.
  • k is a pressure loss coefficient in the cathode flow path in the fuel cell stack 10
  • Fs is a stack flow rate
  • Ts is a stack temperature
  • T0 is a standard state temperature ( ⁇ 273.15K).
  • Prc in the equation (3) is obtained by the following equation using the turbine expansion ratio Prt described above.
  • Prt Prc + ( ⁇ Ps / Patm) (4) Therefore, the pressure loss ⁇ Ps of the fuel cell stack 10 mainly increases when at least one of the stack flow rate Fs and the stack temperature Ts increases.
  • Ft Fs ⁇ [0.79 + 0.21 ⁇ (1 + SRc) / SRc] + 1/2 ⁇ FH (5)
  • SRc means the excess air ratio of the stack
  • FH means the flow rate of hydrogen charged into the catalytic combustor 36.
  • the hydrogen supply flow rate FH can be obtained from a predetermined map based on, for example, the hydrogen pressure detection value Pan_d by the hydrogen pressure detection sensor 67 and the opening degree of the combustor hydrogen supply valve 68.
  • the turbine inlet temperature Tt is basically calculated from the gas flow rate supplied to the catalytic combustor 36, the specific heat, and the heat value determined by the hydrogen supply flow rate FH to the catalytic combustor 36.
  • the turbine inlet temperature Tt is further adjusted so as not to exceed the allowable upper limit temperature Tt_tmax considering the heat resistant temperature of the parts.
  • drive motor work Wm the work performed by the compressor drive motor 54 (hereinafter also referred to as “drive motor work Wm”) is basically given by the following equation (6).
  • Wml Min (Wmlm, Wstmax-Wreq) (7)
  • Min (a, b) means the smaller value of a and b (any may be used if they are the same).
  • Wstmax is the power that can be output from the fuel cell stack 10.
  • Wmlm is a limit value depending on the size of the compressor drive motor 54.
  • the outputtable power Wstmax in the equation (7) is determined according to factors such as the running state of the vehicle on which the fuel cell stack 10 is mounted and the stack size. Therefore, for example, when the temperature is limited in a hot area, the outputtable power Wstmax is reduced.
  • Wreq is a request output. That is, Wstmax-Wreq in the equation (7) corresponds to the above-described required power Wco for the compressor motor. Therefore, the work Wm of the compressor drive motor 54 is adjusted so as not to exceed the limit value Wml defined by the above equation (7).
  • the turbine work Wt can cover the compressor work Wc, so that the power supplied from the fuel cell stack 10 or the battery to the compressor drive motor 54 can be reduced.
  • the drive motor work Wm is a negative value, that is, when the compressor drive motor 54 is operated in the regeneration mode and no power is supplied from the compressor drive motor 54 to the compressor 50, the compressor work Wc is secured by the turbine work Wt. can do. Further, if the turbine work Wt is further increased, the power obtained by the regeneration of the compressor drive motor 54 is improved while securing the power of the compressor 50. Therefore, this power is used as the output power of the fuel cell stack 10 with respect to the required output. Can be used for shortages.
  • FIG. 9 is a time chart showing changes in the state of the fuel cell system 100 according to the required output. Specifically, FIGS. 9 (a) to 9 (g) show the required stack flow rate, the required air pressure, the power required by the compressor 50 (hereinafter also referred to as “required compressor power”), hydrogen, and the required output, respectively.
  • 6 is a time chart showing changes in fuel consumption, turbine inlet temperature Tt, compressor flow rate target value Fco_t, and bypass valve opening.
  • the section I in which the requested output is Wreq1 or less, the section II in which the requested outputs are Wreq1 to Wreq2, the section III in which the requested outputs are Wreq2 to Wreq3, the section IV in which the requested outputs are Wreq3 to Wreq4, and the requested output is A change in the system state will be described for the section V that is Wreq4 to Wreq5.
  • the section I it is a low load state in which power is not insufficient with respect to the required generated power of the fuel cell stack 10, and as shown in FIGS. 9A and 9B, the required stack flow rate and the required Air pressure value is relatively small. Further, as shown in FIG. 9C, the required compressor power increases as the required output increases, but it still reaches the limit value Wml (indicated by the broken line in the figure) of the output of the compressor drive motor 54. Absent.
  • the compressor drive motor 54 can be operated in the power running mode because the compressor power can be supplied by the electric power from the fuel cell stack 10 and the battery without the recovery power from the turbine 52.
  • the bypass valve 32 is basically fully closed as shown in FIG. In FIG. 9G, the bypass valve 32 is set to a constant opening in a region where the required output is close to zero. This is because, at an extremely low load, the dilution required compressor flow rate Fco_dr calculated in B304 of FIG. 5 becomes larger than the required stack flow rate, so that excess cathode gas with respect to the stack flow rate is passed through the bypass passage 33 to the cathode exhaust gas passage 24. It is intended to flow through.
  • the auxiliary power such as the compressor drive motor 54 is reduced to reduce the fuel. It is necessary to compensate for the shortage of power generated by the battery stack 10. Therefore, the limit value Wml of the compressor drive motor 54 is lowered in order to reduce the power consumption of the compressor drive motor 54 (see FIG. 9C).
  • the hydrogen fuel supply amount through the combustion anode gas supply passage 64 is increased in order to increase the recovery power by the turbine 52 in order to compensate for the power decrease of the compressor drive motor 54 accompanying the decrease in the limit value Wml. (See the shaded area in FIG. 9D).
  • the turbine outlet temperature does not reach the upper limit temperature, and therefore it is possible to increase the turbine recovery power by increasing the temperature without increasing the bypass amount. Therefore, in this case, as shown in FIG. 9G, the bypass valve 32 is fully closed, and the required stack flow rate and the compressor flow rate target value Fco_t increase with an increase in the required output in a state of being substantially equal to each other (FIG. 9). (See (a) and FIG. 9 (f)).
  • section IV is a section in which the requested outputs are Wreq3 to Wreq4. That is, it is a section where the load is higher than the sections I to III.
  • the required output exceeds the power that can be output from the fuel cell stack 10 and the limit value Wml of the compressor drive motor 54 is zero, that is, the required output is not satisfied even if the power supply to the compressor drive motor 54 is zero. (Regeneration is required).
  • control for increasing the turbine inflow rate Ft is not performed even at the stage of section IV.
  • the bypass valve 32 is also fully closed. Therefore, the required stack flow rate and the compressor flow rate target value Fco_t increase with an increase in the required output in a substantially equal state (see FIGS. 9A and 9F).
  • section V is a section in which the requested output is Wreq4 to Wreq5.
  • the limit value Wml of the compressor drive motor 54 is further lowered. That is, the power generation amount of the fuel cell stack 10 is more insufficient than the required output.
  • the turbine inlet temperature Tt reaches the allowable upper limit temperature Tt_tmax determined from the viewpoint of the heat-resistant temperature of the parts. Therefore, it is required to increase the recovery power by the turbine 52 while preventing the turbine inlet temperature Tt from increasing further.
  • the compressor flow rate Fco is increased from the required stack flow rate.
  • the opening degree of the bypass valve 32 is increased so as to flow excess air to the bypass passage 33 with respect to the required stack flow rate (see FIGS. 9F and 9G).
  • bypass valve 32 by increasing the opening degree of the bypass valve 32, it is possible to supply surplus air with respect to the required stack flow rate to the catalytic combustor 36 via the bypass passage 33. This prevents an excessive flow rate from flowing to the aftercooler 28 (see FIG. 1) with respect to the required stack flow rate.
  • the compressor flow rate Fco and the opening degree of the bypass valve 32 are increased to supply gas to the turbine 52.
  • the recovery power from the turbine 52 can be improved while suppressing an increase in the turbine inlet temperature Tt.
  • FIG. 10 is a diagram showing the relationship between the turbine inflow flow rate Ft, the recovered power by the turbine 52, and the compressor power according to the level of air pressure when the turbine inlet temperature Tt is the allowable upper limit temperature Tt_tmax.
  • the recovery power by the turbine 52 is indicated by a solid line
  • the required compressor power is indicated by a broken line.
  • FIG. 10A shows a graph of turbine recovery power at low pressure (when the pressure ratio target value Pc_t / Pai_d is set to be the smallest), and FIG. 10B shows medium pressure (pressure ratio target value Pc_t / FIG. 10C shows a graph of turbine recovery power when Pai_d is set to an intermediate value, and FIG. 10C shows the turbine recovery power at high pressure (when the pressure ratio target value Pc_t / Pai_d is set to the largest value). The graph is shown.
  • the pressure loss of the cathode system becomes large. Therefore, even if the compressor flow rate Fco is increased and the turbine inflow rate Ft is increased, it depends on the turbine 52. Recovery power cannot be increased significantly.
  • the required compressor power increases as the compressor flow rate Fco increases, and when the compressor flow rate Fco reaches a predetermined value Fco1, the required compressor power starts to exceed the recovered power by the turbine 52. Therefore, at the time of low pressure, the compressor flow rate Fco is set to the same value as the stack flow rate Fs, and the bypass valve 32 is fully closed so that air is not supplied to the catalytic combustor 36 via the bypass passage 33.
  • the amount of increase in the recovered power by the turbine 52 with respect to the increase in the turbine inflow flow rate Ft is larger than that at the low pressure. Therefore, even if the compressor flow rate Fco is increased to a certain level, the recovery power by the turbine 52 can be increased, and the state where the recovery power exceeds the required compressor power can be maintained. Therefore, at the intermediate pressure, the compressor flow rate Fco is adjusted to be larger than the stack flow rate Fs.
  • the opening degree of the bypass valve 32 is increased and the air discharged from the compressor 50 is directly supplied to the catalytic combustor 36 via the bypass passage 33.
  • the compressor flow rate Fco is increased as much as possible in order to increase the recovery power of the turbine 52. Then, excess air in which the compressor flow rate Fco exceeds the stack flow rate Fs is supplied to the catalytic combustor 36 via the bypass passage 33 by increasing the opening degree of the bypass valve 32 as in the case of the intermediate pressure. Thereby, the enlargement of the aftercooler 28 mentioned above, the overdrying of the fuel cell stack 10, etc. can be prevented.
  • the upper limit of the amount of increase in the compressor flow rate Fco at high pressure is not particularly limited.
  • the flow rate value obtained by subtracting the stack flow rate Fs from the compressor flow rate Fco is a flow rate that can pass through the bypass valve 32. It is preferable to limit the increase amount of the compressor flow rate Fco so as to be equal to or lower than the upper limit value.
  • FIG. 11 is a flowchart illustrating opening and closing of the bypass valve 32 in the present embodiment.
  • step S110 the controller 20 and various measuring devices obtain the compressor flow rate target value Fco_t, the stack flow rate target value Fs_t, and the air pressure target value Pc_t.
  • step S120 the controller 20 calculates a bypass flow rate estimated value Fb_e from the stack flow rate target value Fs_t and the air pressure target value Pc_t using a previously designed map.
  • the bypass flow rate estimated value Fb_e is calculated as a larger value as the stack flow rate target value Fs_t is larger and the air pressure target value Pc_t is larger.
  • the target bypass flow rate Fb_t is calculated by subtracting the stack flow rate target value Fs_t from the compressor flow rate target value Fco_t.
  • step S130 the controller 20 determines whether or not the bypass flow rate estimated value Fb_e is larger than the target bypass flow rate Fb_t. When it is determined that the estimated bypass flow rate Fb_e is equal to or less than the target bypass flow rate Fb_t, the process proceeds to step S140. In step S140, the controller 20 increases the opening degree of the bypass valve 32. On the other hand, if it is determined in step S130 that the bypass flow rate estimated value Fb_e is larger than the target bypass flow rate Fb_t, the process proceeds to step S150. In step S150, the controller 20 decreases the opening degree of the bypass valve 32.
  • hydrogen is directly supplied from the high-pressure tank 60 to the catalytic combustor 36.
  • the present invention is not limited to this.
  • the anode exhaust gas flowing through the anode circulation passage in an anode circulation fuel cell system is used.
  • a part may be supplied to the catalytic combustor 36.
  • the stack current target value is used as a parameter representative of the load demand of the system, but the present invention is not limited to this. As long as the parameters are correlated, various other parameters such as a power target value and a voltage target value may be used.
  • the fuel cell system 100 includes a fuel cell stack 10 that is a fuel cell that generates power by receiving supply of anode gas and cathode gas, a compressor 50 that supplies cathode gas to the fuel cell stack 10, and fuel.
  • a turbine 52 that receives power from cathode exhaust gas discharged from the battery stack 10 to generate power
  • a compressor 50 and a compressor drive motor 54 that is connected to the turbine 52 and that performs power running and regeneration, and the fuel cell stack 10
  • a catalytic combustor 36 that is installed between the turbines 52 and mixes and burns the cathode gas and the anode gas, and an after-cooler that cools the cathode gas supplied from the compressor 50 to the fuel cell stack 10.
  • the cooler 28 and the upstream of the aftercooler 28 Comprises a Takura 28 and the fuel cell stack 10 bypassing the catalytic combustor 36 bypass passage 33 for supplying the cathode gas to a bypass valve 32 provided in the bypass passage 33.
  • surplus air for the power generation of the fuel cell stack 10 among the air discharged from the compressor 50 can be supplied to the catalytic combustor 36 via the bypass passage 33. Therefore, even if the flow rate of the compressor 50 is increased so as to improve the recovery power of the turbine 52, excess air can be directly supplied to the catalytic combustor 36 via the bypass valve 32.
  • the recovered power of the turbine 52 provides power for the compressor 50 and power for regeneration of the compressor drive motor 54, and avoids flowing excess air to the aftercooler 28 for power generation of the fuel cell stack 10. can do.
  • the power to the load of the fuel cell stack 10 is supplemented by the recovered power of the turbine 52 to reduce the amount of power that the fuel cell stack 10 should generate, thereby suppressing the maximum output performance of the fuel cell stack 10 and the fuel cell.
  • the size of the stack 10 can be reduced.
  • both the fuel cell stack 10 and the aftercooler 28 can be downsized, which contributes to downsizing of the fuel cell system 100 as a whole. Even when the system installation space is limited, such as when the vehicle is mounted on a vehicle, it can be handled.
  • the fuel cell system 100 in which the compressor power supply mechanism 16 of the present embodiment is mounted can be suitably applied to the fuel cell stack 10 that operates at a relatively low temperature such as PEM.
  • the controller 20 functions as a control unit that controls the bypass valve 32 based on a request output that is a load request of the system.
  • the controller 20 functions as a control unit that controls the opening degree of the bypass valve 32 based on the pressure ratio target value that is the target value of the pressure ratio Prc of the compressor 50 with respect to the atmospheric pressure. To do.
  • the opening degree of the bypass valve 32 is determined based on the pressure ratio target value that is the target value for the pressure ratio Prc correlated with the compressor discharge temperature, without directly detecting the compressor discharge temperature, It is possible to detect a high load state of the system (a state where the required output is relatively high) with high accuracy. Thereby, the opening degree of the bypass valve 32 can be increased more reliably in accordance with the high load state of the system, and as a result, the inflow of surplus air to the aftercooler 28 can be more reliably reduced. .
  • the controller 20 requests the compressor flow rate Fco to be the flow rate required by the fuel cell stack 10 after the inlet temperature of the turbine 52 (turbine inlet temperature Tt) reaches the upper limit. It functions as a controller that increases the stack flow rate.
  • the recovered power of the turbine 52 increases as the turbine inlet temperature Tt increases, but the turbine inlet temperature Tt cannot be higher than the allowable upper limit temperature Tt_tmax considering the heat resistance and the like of components. Therefore, when the turbine inlet temperature Tt reaches the allowable upper limit temperature Tt_tmax, the compressor flow rate Fco is set higher than the required stack flow rate to increase the turbine inflow rate Ft so that the turbine inlet temperature Tt does not increase.
  • the recovery power can be further increased. In this case, by increasing the bypass valve 32, it is possible to accurately prevent this in a situation where surplus air flows into the aftercooler 28.
  • the controller 20 can output a system request output (request output) determined based on a load connected to the fuel cell stack 10 and the fuel cell stack 10. It functions as a control unit that controls the compressor flow rate Fco based on the output power.
  • the turbine inflow flow rate Ft can be suitably adjusted according to the required output and the output power, and the recovered power of the turbine 52 can be more suitably obtained.
  • the heat exchanged by the aftercooler 28 can be transferred to the fuel cell stack 10 via the cooling water.
  • the heat of the high-temperature air discharged from the compressor 50 can be supplied to the fuel cell stack 10. This contributes to improvement of the energy efficiency of the system.
  • FIG. 12 is a block diagram showing a function for calculating the stack flow rate target value and the compressor flow rate target value Fco_t in the present embodiment.
  • the compressor discharge temperature detection value detected by the compressor discharge temperature sensor 27 instead of inputting the pressure ratio target value Pc_t / Pai_d to the stack required compressor flow rate calculation block B303 as in the first embodiment. Enter Tc_d.
  • the stack required compressor flow rate calculation block B303 calculates the stack required compressor flow rate Fco_sr according to a predetermined map based on the input required power Wco to the compressor motor and the compressor discharge temperature detection value Tc_d. calculate.
  • FIG. 13 is a map showing the relationship between the required power Wco to the compressor motor and the stack required compressor flow rate Fco_sr according to the compressor discharge temperature.
  • the required power Wco to the compressor motor when the required power Wco to the compressor motor is a negative value (when the generated power of the fuel cell stack 10 is not insufficient), the required power Wco to the compressor motor becomes the predetermined value Wco1.
  • the stack required compressor flow rate Fco_sr is increased to a predetermined value Fco_sr1 regardless of the compressor discharge temperature detection value Tc_d.
  • the predetermined value Fco_sr1 is a value corresponding to the stack flow rate determined according to the required generated power of the fuel cell stack 10. That is, in such a situation where the generated power is not insufficient, the compressor drive motor 54 is operated in the power running mode, so there is no need to set the compressor flow rate exceeding the flow rate based on the required generated power of the fuel cell stack 10. It is intended to set the compressor flow rate corresponding to the stack flow rate determined according to the required generated power of the fuel cell stack 10.
  • the stack required compressor flow rate Fco_sr is set according to the compressor discharge temperature detection value Tc_d. Is done.
  • the stack required compressor flow rate Fco_sr is set to the predetermined value Fco_sr1 without increasing regardless of the required power Wco to the compressor motor. Is done.
  • the reason why the stack required compressor flow rate Fco_sr is not increased above the predetermined value Fco_sr1 at low temperatures is that the pressure loss of the cathode system is large at low temperatures and the recovery power by the turbine 52 is low. This is because even if the turbine gas inflow rate is increased, a significant improvement in the recovery power by the turbine 52 cannot be expected.
  • the stack required compressor flow rate Fco_sr Is increased from a predetermined value Fco_sr1 based on the required generated power of the fuel cell stack 10 to a predetermined value Fco_sr2.
  • the reason why the stack required compressor flow rate Fco_sr is increased from the predetermined value Fco_sr1 based on the required generated power of the fuel cell stack 10 at the middle temperature is to obtain regenerative power from the compressor drive motor 54 in order to eliminate the shortage of generated power.
  • the turbine gas inflow rate is increased.
  • the compressor flow rate is limited to the extent that the recovery power by the turbine 52 can be increased.
  • the degree of opening of the bypass valve 32 is increased so that the cathode gas exceeding the flow rate required by the fuel cell stack 10 is supplied to the aftercooler. Do not flush to 28.
  • the stack required compressor flow rate Fco_sr is changed from the predetermined value Fco_sr1 after the required power Wco to the compressor motor reaches the predetermined value Wco3. increase.
  • the stack required compressor flow rate Fco_sr is increased from the predetermined value Fco_sr1 based on the required generated power of the fuel cell stack 10 so as to obtain regenerative power from the compressor drive motor 54 even at high temperatures.
  • the pressure loss of the cathode system is small, so that the turbine gas inflow rate can be greatly increased, and the recovery power by the turbine 52 can be increased beyond a certain level.
  • the opening degree of the bypass valve 32 is increased so that the cathode gas exceeding the flow rate required by the fuel cell stack 10 does not flow to the aftercooler 28. Like that.
  • the opening / closing control of the bypass valve 32 in the present embodiment is the same as the opening degree control of the bypass valve 32 in the first embodiment described with reference to FIG.
  • the fuel cell system 100 according to the second embodiment of the present invention described above has the following operational effects.
  • the controller 20 functions as a control unit that controls the opening degree of the bypass valve 32 based on the compressor discharge temperature that is the temperature of the air discharged from the compressor 50.
  • the opening degree of the bypass valve 32 can be controlled in accordance with the compressor discharge temperature that changes according to the load of the fuel cell stack 10, and the turbine inflow rate Ft can be adjusted.
  • the increase timing of the opening degree of the bypass valve 32 can be reliably matched to the high load state of the system.
  • the inflow of excess air to the aftercooler 28 can be more reliably reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel Cell (AREA)

Abstract

アノードガス及びカソードガスの供給を受けて発電する燃料電池と、燃料電池にカソードガスを供給するコンプレッサと、燃料電池から排出されるカソード排ガスの供給を受けて動力を生成するタービンと、コンプレッサ及びタービンに連結され力行と回生を行う電動モータと、燃料電池と前記タービンの間に設置されカソードガスとアノードガスとを混合して燃焼させる燃焼器と、コンプレッサから燃料電池に供給されるカソードガスを冷却する冷却器と、冷却器の上流から冷却器と燃料電池をバイパスして燃焼器にカソードガスを供給するバイパス通路と、バイパス通路に設けられたバイパス弁と、を備える。

Description

燃料電池システム及び燃料電池システムの制御方法
 本発明は、燃料電池システム及び燃料電池システムの制御方法に関する。
 JP2004-119239Aには、燃料電池の一種である固体電解質燃料電池(SOFC)とガスタービンを組み合わせた発電設備であって、SOFCに空気を供給する圧縮機と圧縮機に連結されたタービンを備える動力回収機構と、燃料電池からの排空気及び排ガスを燃焼して燃焼ガスをタービンに排出する燃焼器とを備えるガスタービン発電設備が開示されている。
 上記ガスタービン発電設備は、比較的高温で動作するSOFCを想定したシステムである。このような特許文献1のシステムでは、固体高分子形燃料電池(PEM)等の比較的低温で動作する燃料電池とは、ガス温度等の種々の条件が大きくことなる。したがって、上記ガスタービン発電設備における動力回収機構を、このように比較的低温で動作する燃料電池にかかるシステムに適用することはできない。
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、低温動作型の燃料電池にも好適に適用できる動力回収機構を備えた燃料電池システム及び燃料電池システムの制御方法を提供することにある。
 本発明のある態様によれば、アノードガス及びカソードガスの供給を受けて発電する燃料電池と、燃料電池にカソードガスを供給するコンプレッサと、燃料電池から排出されるカソード排ガスの供給を受けて動力を生成するタービンと、コンプレッサ及びタービンに連結され力行と回生を行う電動モータを備える燃料電池システムが提供される。さらに、この燃料電池システムは、燃料電池とタービンの間に設置されカソードガスとアノードガスとを混合して燃焼させる燃焼器と、コンプレッサから燃料電池に供給されるカソードガスを冷却する冷却器と、冷却器の上流から冷却器と燃料電池をバイパスして燃焼器にカソードガスを供給するバイパス通路と、バイパス通路に設けられたバイパス弁と、を備える。
図1は、本発明の第1実施形態による燃料電池システムの概略構成図である。 図2Aは、ノズルベーンが閉塞されている状態を説明する図である。 図2Bは、ノズルベーンが開放されている状態を説明する図である。 図3は、第1実施形態による燃料電池システムを制御するコントローラの機能構成例を示すブロック図である。 図4は、燃料電池に供給すべき空気圧力の目標値を算出する機能構成例を示すブロック図である。 図5は、燃料電池に供給すべき空気流量の目標値及びコンプレッサから吐出すべき空気流量の目標値を算出する機能構成例を示すブロック図である。 図6は、圧力比目標値に応じたコンプレッサモータへの要求電力とスタック要求コンプレッサ流量の関係を示すマップである。 図7は、タービン入口温度の目標値を算出する機能構成例を示すブロック図である。 図8は、タービン入口温度目標値を定めるためのマップを示す図である。 図9は、要求出力に応じた燃料電池システムの状態の変化を示すタイムチャートである。 図10は、タービン入口温度が許容上限温度をとる場合における流量とタービンによる回収動力の関係を圧力に応じて示した図である。 図11は、第1実施形態によるバイパス弁の開閉について説明するフローチャートである。 図12は、第2実施形態における、燃料電池に供給すべき空気流量の目標値及びコンプレッサから吐出すべき空気流量の目標値を算出する機能構成例を示すブロック図である。 図13は、コンプレッサ吐出温度に応じたコンプレッサ要求発電電力とスタック要求コンプレッサ流量の関係を示すマップである。
 以下、図面等を参照して、本発明の実施形態について説明する。
(第1実施形態)
 本発明の第1実施形態における燃料電池システム100は、燃料電池スタック10と、カソード給排機構12と、アノード供給機構14と、熱供給機構15と、コンプレッサ50及びタービン52を有する動力回収機構としてのコンプレッサ動力供給機構16と、スタック冷却機構17と、コントローラ20と、を有している。
 燃料電池スタック10は、複数の燃料電池を積層した積層電池である。燃料電池スタック10は、アノード供給機構14からのアノードガス(水素)の供給及びカソード給排機構12からのカソードガス(空気)の供給を受けて、車両の走行に必要な電力を発電する。この発電電力は、燃料電池システム100を作動するときに使用されるコンプレッサ50等の各種の補機類や、図示しない車輪駆動用のモータで使用される。燃料電池スタック10の正極端子及び負極端子には、燃料電池スタック10に形成された電解質膜の湿潤状態に相関するインピーダンスを計測するインピーダンス計測装置11が接続されている。
 インピーダンス計測装置11は、燃料電池スタック10の正極端子に交流電流を供給し、燃料電池スタック10の正極端子と負極端子に生じる電圧の交流成分を検出する。そしてインピーダンス計測装置11は、供給した交流電流と検出した電圧の交流成分とに基づいて、燃料電池スタック10の交流抵抗、すなわちHFR(High frequency Resistance)を演算する。インピーダンス計測装置11は、演算したHFRをHFR計測値としてコントローラ20に入力する。なお、インピーダンス計測装置11は、燃料電池スタック10の出力電圧や出力電流などを計測してもよい。
 カソード給排機構12は、カソードガス供給通路22と、カソード排ガス通路24と、を備えている。
 カソードガス供給通路22は、燃料電池スタック10に供給される空気が流れる通路である。カソードガス供給通路22の一端はガスフィルタ23に接続され、他端は燃料電池スタック10に接続される。
 そして、カソードガス供給通路22には、上流から順に、エアフローセンサ26と、コンプレッサ吐出温度センサ27と、アフタークーラ28と、スタック供給空気温度センサ29と、空気圧力センサ30と、が設けられている。
 エアフローセンサ26は、カソードガス供給通路22において、コンプレッサ動力供給機構16のコンプレッサ50の吸気入口に設けられている。エアフローセンサ26は、コンプレッサ50に吸入される空気の流量(以下では「コンプレッサ流量」とも記載する)を検出する。以下では、このエアフローセンサ26の検出値を「コンプレッサ流量検出値」とも記載する。エアフローセンサ26で検出されたコンプレッサ流量検出値は、コントローラ20に入力される。
 コンプレッサ吐出温度センサ27は、コンプレッサ50から吐出され、アフタークーラ28より上流の空気温度(以下では「コンプレッサ吐出温度」とも記載する)を検出する。
 また、カソードガス供給通路22において、エアフローセンサ26とコンプレッサ吐出温度センサ27の間には、バイパス弁32を有するバイパス通路33が接続されている。このバイパス通路33は、カソードガス供給通路22とカソード排ガス通路24を連結する通路である。すなわち、バイパス通路33は、アフタークーラ28の上流から該アフタークーラ28と燃料電池スタック10をバイパスして後述する触媒燃焼器36にカソードガスを供給する通路である。
 アフタークーラ28は、コンプレッサ50から吐出されて燃料電池スタック10に送られる空気を冷却する。アフタークーラ28は、水冷式の熱交換器として構成されており、スタック冷却機構17と接続されている。すなわち、アフタークーラ28により、燃料電池スタック10の冷却に用いる冷却水と燃料電池スタック10に供給すべき空気との間で熱交換が行われる。
 スタック供給空気温度センサ29は、アフタークーラ28で冷却されて燃料電池スタック10に供給されるカソードガスの温度(以下では「スタック供給空気温度」とも記載する)を検出する。
 空気圧力センサ30は、カソードガス供給通路22内の圧力、すなわち燃料電池スタック10に供給される空気の圧力(以下では「空気圧力」とも記載する)を検出する。空気圧力センサ30で検出された空気圧力検出値は、コントローラ20に入力される。
 バイパス弁32は、燃料電池スタック10をバイパスしてカソード排ガス通路24に供給する空気流量を調節する調圧弁であり、コントローラ20によって開閉制御される。すなわち、バイパス弁32は、コンプレッサ50から供給された空気の内、バイパス通路33を介して燃料電池スタック10をバイパスしてカソード排ガス通路24に供給する空気流量を調節する弁である。
 また、本実施形態では、バイパス通路33は、既に述べたようにカソード排ガス通路24における触媒燃焼器36の上流に連通されている。したがって、このバイパス通路33により、カソードガス供給通路22内の空気をカソード排ガス通路24に供給し、触媒燃焼器36に供給するカソード排ガスの酸素濃度を向上させることができる。
 さらに、カソード排ガス通路24は、一端が燃料電池スタック10のカソード出口に接続されるとともに、他端がタービン52に連結されている。またカソード排ガス通路24には、熱供給機構15が設けられている。
 熱供給機構15は、上述の触媒燃焼器36と、タービン入口温度センサ38と、を有している。この触媒燃焼器36とタービン入口温度センサ38は、燃料電池スタック10からタービン52に向かってこの順で、カソード排ガス通路24に設けられている。
 触媒燃焼器36は、アノードガスとカソードガスを図示しないミキサで混合してなる混合ガスを、白金等による触媒作用で触媒燃焼させる。この触媒燃焼器36には、アノード供給機構14から燃焼用アノードガス供給通路64を介してアノードガスが供給される一方で、カソード排ガス通路24を介して燃料電池スタック10からカソード排ガス及びバイパス通路33から空気が供給される。したがって、触媒燃焼器36に供給されるカソードガスには、バイパス通路33を介して供給される空気と、燃料電池スタック10から排出されたカソード排ガスが含まれることとなる。
 なお、本実施形態では、燃焼器として触媒燃焼器36を用いることで、拡散燃焼方式の燃焼器や希薄予混合燃焼方式の燃焼器を用いる場合と比較して、窒素化合物(Nox)の発生が抑制される。しかしながら、拡散燃焼方式の燃焼器や希薄予混合燃焼方式の燃焼器等の触媒燃焼器以外の燃焼器を用いても良い。
 タービン入口温度センサ38は、触媒燃焼器36による燃焼の後に残った燃焼後ガスの温度、すなわちコンプレッサ動力供給機構16のタービン52に供給される燃焼後ガスの温度(以下では、「タービン入口温度」とも記載する)を検出する。なお、タービン入口温度センサ38で検出されたタービン入口温度の検出値は、コントローラ20に入力される。
 次に、アノード供給機構14について説明する。本実施形態におけるアノード供給機構14は、高圧タンク60と、スタック用アノードガス供給通路62と、燃焼用アノードガス供給通路64と、を備えている。
 高圧タンク60は、燃料電池スタック10に供給するアノードガスである水素を高圧状態に保って貯蔵するガス貯蔵容器である。
 スタック用アノードガス供給通路62は、高圧タンク60から排出される水素を燃料電池スタック10に供給する通路である。スタック用アノードガス供給通路62の一端は高圧タンク60に接続され、他端は燃料電池スタック10に接続される。
 また、スタック用アノードガス供給通路62には、アノードガス供給弁66と、水素圧力検出センサ67と、が設けられている。アノードガス供給弁66は、燃料電池スタック10への水素の供給量を任意に調節する調圧弁である。
 水素圧力検出センサ67は、燃料電池スタック10に供給される水素の圧力(以下では、「水素圧力」とも記載する)を検出する。なお、水素圧力検出センサ67で検出された水素圧力検出値は、コントローラ20に入力される。
 一方、燃焼用アノードガス供給通路64は、高圧タンク60から排出される水素の一部を、触媒燃焼器36に供給する通路である。そして、燃焼用アノードガス供給通路64は、その一端がスタック用アノードガス供給通路62に連通して分岐しており、他端が触媒燃焼器36に連結されている。
 また、燃焼用アノードガス供給通路64には、触媒燃焼器36への水素供給量を任意に調節する燃焼器水素供給弁68が設けられている。燃焼器水素供給弁68は、その開度が連続的又は段階的に調節されることで触媒燃焼器36への水素供給量を適宜調節する調圧弁である。
 なお、本実施形態にかかる燃料電池システム100において、燃料電池スタック10からのアノード排ガスは、たとえば循環型又は非循環型の図示しないアノード排気機構により処理することができる。
 次に、コンプレッサ動力供給機構16について説明する。コンプレッサ動力供給機構16は、コンプレッサ50と、タービン52と、電動モータとしてのコンプレッサ駆動モータ54と、を備えている。
 コンプレッサ50は、コンプレッサ駆動モータ54及びタービン52と回転駆動軸57を介して接続されている。コンプレッサ50は、回転駆動されて外気を吸入し、カソードガス供給通路22を介して燃料電池スタック10にカソードガスを供給するように構成されている。なお、コンプレッサ50は、コンプレッサ駆動モータ54及びタービン52の一方又は双方の動力の何れかにより駆動することができる。
 タービン52は、触媒燃焼器36から供給される燃焼後ガスによって回転駆動される。そして、タービン52は、この回転駆動力を、回転駆動軸57及びコンプレッサ駆動モータ54を介してコンプレッサ50に動力を出力する。すなわち、タービン52からの回収動力でコンプレッサ50を駆動することができる。また、タービン52の駆動に使用された後の燃焼後ガスは、タービン排気通路53を介して排出される。
 コンプレッサ50の動力要求が比較的大きく、タービン52による回収動力を増加させる必要がある場合などには、タービン52へ流入する燃焼後ガスの供給流量(以下では、「タービンガス流入流量」とも記載する)、温度(以下では、「タービン入口温度」)、及び圧力を増加させてコンプレッサ50へ好適に動力を供給することができる。
 なお、タービン52による回収動力を、コンプレッサ50の回転駆動力だけではなく、燃料電池システム100内の他の任意の動力要求機構において使用しても良い。
 さらに、本実施形態において、タービン52には、当該タービン52へ供給される燃焼後ガスの圧力を調節するノズルベーン58が設けられている。
 図2A及び図2Bは、タービン52に設けられたノズルベーン58の概略構造を示す図である。特に、図2Aは、ノズルベーン58が開放されている状態を示し、図2Bは、ノズルベーン58が閉塞されている状態を示している。また、図2A及び図2Bにおいては、流入する燃焼後ガスの流れ方向を矢印Aで模式的に示している。
 図2Aに示すように、ノズルベーン58が開放されている状態では、ノズルベーン58からタービンホイール52aの入口流路の断面積が増加する。したがって、この状態では、カソード排ガス通路24からタービン52に流入する燃焼後ガスの圧力損失が相対的に小さくなる。
 一方、図2Bに示すように、ノズルベーン58が閉塞されている状態では、タービンホイール52a入口流路の断面積が相対的に減少し、圧力損失が大きくなる。
 図1に戻り、コンプレッサ駆動モータ54は、回転駆動軸57の一方側でコンプレッサ50に接続されるとともに、回転駆動軸57の他方側でタービン52に接続される。コンプレッサ駆動モータ54は、図示しないバッテリ、燃料電池スタック10、及びタービン52等から電力の供給を受けて回転駆動する電動機としての機能(力行モード)、及び外力によって回転駆動されることで発電し、バッテリや燃料電池スタック10に電力を供給する発電機としての機能(回生モード)を有する。コンプレッサ駆動モータ54は、図示しないモータケースと、モータケースの内周面に固定されるステータと、ステータの内側に回転可能に配置されるロータと、ロータに設けられた回転駆動軸57と、を備える。
 また、コンプレッサ駆動モータ54には、トルクセンサ55及び回転速度センサ56が設けられている。トルクセンサ55は、コンプレッサ駆動モータ54のトルクを検出する。そして、トルクセンサ55で検出されたコンプレッサ駆動モータ54のトルク検出値は、コントローラ20に入力される。
 さらに、回転速度センサ56は、コンプレッサ駆動モータ54の回転速度を検出する。回転速度センサ56で検出されたコンプレッサ回転速度検出値は、コントローラ20に入力される。
 次に、スタック冷却機構17について説明する。スタック冷却機構17は、冷却水循環流路76と、冷却水循環流路76を流れる冷却水を外気等と熱交換し、当該冷却水を冷却するラジエータ77と、を有している。
 冷却水循環流路76は、図示しない燃料電池スタック10の冷却水通路を含む環状循環路として構成されている。この冷却水循環流路76には、冷却水循環ポンプ78が設けられており、これにより冷却水の循環が可能となっている。
 そして、冷却水循環流路76を循環する冷却水は、燃料電池スタック10の冷却水入口10aからスタック内に供給されるとともに、燃料電池スタック10の冷却水出口10bから排出される方向に流れる。
 さらに、冷却水循環流路76には、ラジエータ77よりも上流の位置において、ラジエータバイパス三方弁80が設けられている。ラジエータバイパス三方弁80は、ラジエータ77に供給される冷却水の量を調節する。例えば、冷却水の温度が比較的高い場合には、ラジエータバイパス三方弁80を開放状態として、冷却水をラジエータ77に循環させる。一方で、冷却水の温度が比較的高い場合には、ラジエータバイパス三方弁80を閉塞状態として、ラジエータ77をバイパスするように冷却水をバイパス路80aに流す。
 また、冷却水循環流路76には、燃料電池スタック10の冷却水入口10aの近傍に入口水温センサ81が設けられ、燃料電池スタック10の冷却水出口10bの近傍に出口水温センサ82が設けられている。
 入口水温センサ81は、燃料電池スタック10へ流入される冷却水の温度を検出する。出口水温センサ82は、燃料電池スタック10から排出される冷却水の温度を検出する。入口水温センサ81で検出されたスタック入口水温検出値と出口水温センサ82で検出されたスタック出口水温検出値は、コントローラ20に入力される。
 さらに、上述のように、冷却水循環流路76には、アフタークーラ28が接続されている。これにより、既に述べたように、冷却水循環流路76内の冷却水とカソードガス供給通路22内における燃料電池スタック10へ供給される空気との間で熱交換を行うことが可能である。したがって、例えば、燃料電池スタック10の暖機時等の熱量が要求される場合において、コンプレッサ50から吐出された高温の空気の熱により冷却水循環流路76内の冷却水を加熱することができ、熱量要求を満たすことができる。一方で、アフタークーラ28は、コンプレッサ50から吐出された高温の空気を冷却するので、空気が燃料電池スタック10の作動に好適な温度となって当該燃料電池スタック10に供給されることとなる。アフタークーラ28で交換された熱は冷却水を介してラジエータ77に運ばれ、システム外部に放熱される。
 さらに、上述のように構成される燃料電池システム100は、当該システムを統括的に制御するコントローラ20を有している。
 コントローラ20は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。
 コントローラ20には、燃料電池システム100の各種センサからの信号の他、大気の圧力を検出する大気圧センサ111などの燃料電池システム100の作動状態を検出する各種センサからの信号が入力される。
 さらに、コントローラ20には、負荷装置110による負荷に応じて燃料電池システム100に要求される出力電力(以下では、単に「要求出力」とも記載する)に関する出力要求信号が入力される。負荷装置110は、例えば、車輪駆動用のモータや二次電池などによって構成される。本実施形態では、例えば、図示されていないアクセルペダルセンサで検出されるアクセルペダルの踏込み量を示す検出信号が大きくなるほど、負荷装置110の要求電力は大きくなるため、コントローラ20に入力される出力要求信号の信号レベルは高くなる。
 コントローラ20は、これら入力信号等を用いて、コンプレッサ駆動モータ54、ノズルベーン58、冷却水循環ポンプ78、及びバイパス弁32を含む各種弁32、66、68、80等の駆動制御を行う。例えば、コントローラ20は、負荷装置110の発電要求信号に基づいて、コンプレッサ流量や空気圧力の目標値や、燃料電池スタック10への水素供給圧力の目標値を算出し、その算出結果に応じて、コンプレッサ駆動モータ54のトルク(動力)や、ノズルベーン58の開度、アノードガス供給弁66の開度を制御する。
 また、本実施形態では、コントローラ20は、上記要求出力の一部として、コンプレッサ駆動モータ54の消費電力に関連する情報も取得される。
 次に、本実施形態における燃料電池システム100における各種制御について、図3~図7に示すブロック図を参照して詳細に説明する。なお、図3~図7に示す各ブロックの機能は、コントローラ20により実現される。
 図3は、本実施形態にかかる、燃焼器水素供給弁68の開度、ノズルベーン58の開度、コンプレッサ駆動モータ54のトルク、及びバイパス弁32の開度に対するフィードバック(F/B)制御を説明する制御ブロック図である。
 図3に示す制御ブロックは、膜湿潤F/B制御ブロックB100と、空気圧力目標値演算ブロックB101と、空気流量目標値演算ブロックB102と、タービン入口温度目標値演算ブロックB103と、燃焼器水素量F/B制御ブロックB104と、空気系F/B制御ブロックB105と、バイパス空気量制御ブロックB106と、を有する。
 膜湿潤F/B制御ブロックB100は、燃料電池スタック10に形成される電解質膜の湿潤状態を適切に保つように、当該湿潤状態と相関するHFR値を制御する。
 本実施形態では、膜湿潤F/B制御ブロックB100には、HFR目標値と、HFR計測値とが入力される。HFR目標値は、燃料電池スタック10の発電電力とHFR目標値との関係を定めたマップ等を用いて予め定められる。HFR計測値は、燃料電池スタック10に設けられるインピーダンス計測装置11を用いて計測される。
 膜湿潤F/B制御ブロックB100は、HFR計測値がHFR目標値に近づくように、燃料電池システム100の作動状態を調節する観点から、要求される空気圧力(以下では、「湿潤要求空気圧力Ph_r」とも記載する)及び要求される空気流量(以下では、「湿潤要求空気流量Fh_r」とも記載する)を算出する。すなわち、膜湿潤F/B制御ブロックB100は、HFR目標値に基づいて、湿潤要求空気圧力Ph_rと、湿潤要求空気流量Fh_rとを算出する。
 さらに、膜湿潤F/B制御ブロックB100は、この湿潤要求空気圧力Ph_rを空気圧力目標値演算ブロックB101に出力するとともに、湿潤要求空気流量Fh_rを空気流量目標値演算ブロックB102に出力する。
 空気圧力目標値演算ブロックB101は、電流目標値Is_tに基づいて、燃料電池スタック10に供給すべき空気圧力の目標値である空気圧力目標値Pc_tを演算する。なお、電流目標値Is_tは、システム要求出力及びタービン52による回収動力に基づいて定まる、燃料電池スタック10から取り出すべき電流の目標値である。
 本実施形態では、空気圧力目標値演算ブロックB101には、電流目標値Is_tと、スタック温度検出値Ts_dと、膜湿潤F/B制御ブロックB100で算出された湿潤要求空気圧力Ph_rと、が入力される。スタック温度検出値Ts_dは、例えば、入口水温センサ81及び出口水温センサ82で検出された各検出値を平均した値である。なお、各検出値の何れか一方の値が用いられてもよい。空気圧力目標値演算ブロックB101は、上述の電流目標値Is_t、スタック温度検出値Ts_d、及び湿潤要求空気圧力Ph_rに基づいて、燃料電池スタック10に供給すべき空気圧力の目標値である空気圧力目標値Pc_tを算出し、これを空気流量目標値演算ブロックB102及びタービン入口温度目標値演算ブロックB103に出力する。
 図4は、空気圧力目標値演算ブロックB101により実行される空気圧力目標値Pc_tの算出方法の詳細を示すブロック図である。当図に示すブロックは、発電要求空気圧力算出ブロックB200と、マックスセレクトブロックB201と、を有する。
 発電要求空気圧力算出ブロックB200には、電流目標値Is_tとスタック温度検出値Ts_dと、が入力される。そして、発電要求空気圧力算出ブロックB200は、予め記憶されたマップに基づいて、電流目標値Is_t及びスタック温度検出値Ts_dから、燃料電池スタック10の発電に必要となる空気圧力である発電要求空気圧力Pg_rを算出する。さらに、発電要求空気圧力算出ブロックB200は、発電要求空気圧力Pg_rをマックスセレクトブロックB201に出力する。図に示す発電要求空気圧力算出ブロックB200の上記マップから理解されるように、電流目標値Is_tが大きくなるほど、発電要求空気圧力Pg_rは大きくなるとともに、スタック温度検出値Ts_dが高くなるほど発電要求空気圧力Pg_rは大きくなる。
 マックスセレクトブロックB201には、発電要求空気圧力算出ブロックB200で算出された発電要求空気圧力Pg_rと、膜湿潤F/B制御ブロックB100で算出された湿潤要求空気圧力Ph_rと、が入力される。そして、マックスセレクトブロックB201は、発電要求空気圧力Pg_r及び湿潤要求空気圧力Ph_rの内の大きい方の値を空気圧力目標値Pc_tとして空気流量目標値演算ブロックB102及びタービン入口温度目標値演算ブロックB103に出力する。
 したがって、図4に示すブロックでは、燃料電池スタック10の発電状態を制御する上で要求される空気圧力(発電要求空気圧力Pg_r)、及び電解質膜の湿潤状態を操作する上で要求される空気圧力(湿潤要求空気圧力Ph_r)を考慮して、最大の値が空気圧力目標値Pc_tとして設定されることとなる。
 図3に戻り、空気流量目標値演算ブロックB102は、コンプレッサ流量目標値Fco_t及びスタック流量目標値Fs_tを演算する。スタック流量目標値Fs_tは、燃料電池スタック10が目標電力を発電したときに、燃料電池スタック10のカソード電極内で電極反応に必要なスタック流量に相当する。すなわち、スタック流量目標値Fs_tは、目標電力を発電するにあたり、出力電流を電流目標値Is_tとするために必要なスタック流量に相当する。
 本実施形態では、空気流量目標値演算ブロックB102には、空気圧力目標値演算ブロックB101により算出された空気圧力目標値Pc_t、電流目標値Is_t、スタック温度検出値Ts_d、湿潤要求空気流量Fh_r、水素圧力検出値Pan_d、及び大気圧検出値Pai_dが入力される。空気流量目標値演算ブロックB102は、これら空気圧力目標値Pc_t、電流目標値Is_t、スタック温度検出値Ts_d、湿潤要求空気流量Fh_r、水素圧力検出値Pan_d、及び大気圧検出値Pai_dに基づいて、コンプレッサ流量目標値Fco_t及びスタック流量目標値Fs_tを算出する。
 図5は、空気流量目標値演算ブロックB102により実行されるスタック流量目標値Fs_t及びコンプレッサ流量目標値Fco_tの算出方法の詳細を示すブロック図である。当図に示すブロックは、発電要求空気流量算出ブロックB300と、マックスセレクトブロックB301と、圧力比目標値演算ブロックB302と、スタック要求コンプレッサ流量算出ブロックB303と、希釈要求流量算出ブロックB304と、マックスセレクトブロックB305と、を有する。
 発電要求空気流量算出ブロックB300には、電流目標値Is_tが入力される。発電要求空気流量算出ブロックB300は、予め記憶されたマップに基づいて、電流目標値Is_tから、燃料電池スタック10において発電に必要な空気流量である発電要求空気流量Fg_rを算出する。
 図に示すように、発電要求空気流量算出ブロックB300の上記マップでは、電流目標値Is_tが増大するに伴い、発電要求スタック流量Fs_grも増大する。さらに、発電要求空気流量算出ブロックB300は、発電要求空気流量Fg_rをマックスセレクトブロックB301に出力する。
 マックスセレクトブロックB301には、発電要求空気流量算出ブロックB300で算出された発電要求空気流量Fg_rと、湿潤要求空気流量Fh_rと、が入力される。そして、マックスセレクトブロックB301は、発電要求空気流量Fg_r及び湿潤要求空気流量Fh_rの内の大きい方の値をスタック流量目標値Fs_tとして出力する。これにより、スタック流量目標値Fs_tには、発電要求に基づく空気流量及び湿潤要求に基づく空気流量の双方が考慮されることとなる。
 圧力比目標値演算ブロックB302には、空気圧力目標値Pc_tと大気圧検出値Pai_dが入力される。そして、圧力比目標値演算ブロックB302は、空気圧力目標値Pc_tを大気圧検出値Pai_dで除して圧力比目標値Pc_t/Pai_dを求め、スタック要求コンプレッサ流量算出ブロックB303に出力する。
 スタック要求コンプレッサ流量算出ブロックB303には、コンプレッサモータへの要求電力Wcoと、圧力比目標値Pc_t/Pai_dと、が入力される。ここで、コンプレッサモータへの要求電力Wcoとは、要求出力から、燃料電池スタック10の出力可能電力(以下、単に「出力可能電力」とも記載する)を減算した値として定義される。なお、燃料電池スタック10の出力可能電力は、燃料電池スタック10のサイズや燃料電池スタック10を搭載した車両の走行状態等に応じて定まる。
 すなわち、要求出力が出力可能電力を上回っている場合には、コンプレッサモータへの要求電力Wcoが正の値となる。このようにコンプレッサモータへの要求電力Wcoが正の値となることは、要求出力に対する燃料電池スタック10の発電電力が不足することを意味する。したがって、本実施形態では、この場合、電力不足分をタービン52の回収動力に基づくコンプレッサ駆動モータ54の回生電力で補償する。
 一方で、要求出力が出力可能電力を下回っている場合には、コンプレッサモータへの要求電力Wcoが負の値となる。これは、要求出力に対する燃料電池スタック10の発電電力が足りており、コンプレッサ駆動モータ54を力行モードで作動することを意図している。
 さらに、圧力比目標値Pc_t/Pai_dは、コンプレッサモータへの要求電力Wcoが大きくなるほど、大きく設定される。すなわち、圧力比目標値Pc_t/Pai_dの増減はコンプレッサモータへの要求電力Wcoの増減とリンクしているので、圧力比目標値Pc_t/Pai_dの大小を見れば、コンプレッサモータへの要求電力Wcoの大小も検出することができる。
 そして、スタック要求コンプレッサ流量算出ブロックB303は、入力されたコンプレッサモータへの要求電力Wco及び圧力比目標値Pc_t/Pai_dに基づいて、予め定められたマップにより、スタック要求コンプレッサ流量Fco_srを算出する。ここで、スタック要求コンプレッサ流量Fco_srとは、要求出力と出力可能電力との間の大小、すなわち燃料電池スタック10の発電電力が不足しているか否かに応じて定められるコンプレッサ流量の候補値である。
 図6は、圧力比目標値に応じたコンプレッサモータへの要求電力Wcoとスタック要求コンプレッサ流量の関係を示すマップである。
 図示のように、コンプレッサモータへの要求電力Wcoが負の値である場合(燃料電池スタック10の発電電力が不足していない場合)には、当該コンプレッサモータへの要求電力Wcoが所定値Wco1に到達するまで、圧力比目標値Pc_t/Pai_dの値にかかわらず、スタック要求コンプレッサ流量Fco_srを所定値Fco_sr1まで増加させる。この所定値Fco_sr1は、燃料電池スタック10の要求発電電力に応じて定められるスタック流量に相当する値である。すなわち、このように発電電力が不足していない状況においては、コンプレッサ駆動モータ54を力行モードで作動させるので、燃料電池スタック10の要求発電電力に基づく流量を越えたコンプレッサ流量を設定する必要は無く、燃料電池スタック10の要求発電電力に応じて定められるスタック流量に相当するコンプレッサ流量を設定する。
 一方、コンプレッサモータへの要求電力Wcoが正の値である場合(燃料電池スタック10の発電電力が不足している場合)には、圧力比目標値Pc_t/Pai_dに応じてスタック要求コンプレッサ流量Fco_srが設定される。
 先ず、圧力比目標値Pc_t/Pai_dを最も小さく設定する場合(低圧時)は、コンプレッサモータへの要求電力Wcoの大きさにかかわらず、スタック要求コンプレッサ流量Fco_srを増加させることなく上記所定値Fco_sr1に設定する。このように低圧時にスタック要求コンプレッサ流量Fco_srを所定値Fco_sr1を超えて増加させないようにしている理由は、低圧時はカソード系の圧力損失が大きくタービン52による回収動力が低くなるので、コンプレッサ流量を増やしてタービンガス流入流量を増加させたとしても、タービン52による回収動力の大幅な向上が望めないためである。
 次に、圧力比目標値Pc_t/Pai_dが上記低圧時よりも大きい中間値に設定する場合(中圧時)は、コンプレッサモータへの要求電力Wcoが所定値Wco2に到達した以降は、スタック要求コンプレッサ流量Fco_srを燃料電池スタック10の要求発電電力に基づく所定値Fco_sr1から所定値Fco_sr2まで増加させる。
 このように、中圧時においてスタック要求コンプレッサ流量Fco_srを燃料電池スタック10の要求発電電力に基づく所定値Fco_sr1より増加させる理由は、発電電力の不足を解消すべく、コンプレッサ駆動モータ54から回生電力を得るように、タービンガス流入流量を増やすためである。しかしながら、中圧時は、まだカソード系の圧力損失が大きいため、タービンガス流入流量を大きく増加させても一定以上の回収動力の増加は望めないため、タービン52による回収動力を増加させることできる限度でコンプレッサ流量を増加させるべく、スタック要求コンプレッサ流量Fco_srを所定値Fco_sr2まで増加させている。なお、本実施形態では、後述するように、スタック要求コンプレッサ流量Fco_srの増加に伴い、バイパス弁32の開度を増加させて、燃料電池スタック10により要求される流量以上のカソードガスを、アフタークーラ28に流さないようにする。この点は、後に詳細に説明する。
 さらに、圧力比目標値Pc_t/Pai_dを最も大きい値に設定する場合(高圧時)は、コンプレッサモータへの要求電力Wcoが所定値Wco3に到達する以降に、スタック要求コンプレッサ流量Fco_srを上記所定値Fco_sr1から増加させる。
 このように、高圧時においても、コンプレッサ駆動モータ54から回生電力を得るようにスタック要求コンプレッサ流量Fco_srを燃料電池スタック10の要求発電電力に基づく所定値Fco_sr1より増加させている。そして、高圧時においては、カソード系の圧力損失が小さいため、タービンガス流入流量を大きく増加させて、タービン52による回収動力を一定以上に増加させることができる。
 ここで、高圧時においても、スタック要求コンプレッサ流量Fco_srの増加に伴い、バイパス弁32の開度を増加させて、燃料電池スタック10により要求される流量以上のカソードガスをアフタークーラ28に流さないようにする。
 図5に戻り、スタック要求コンプレッサ流量算出ブロックB303は、スタック要求コンプレッサ流量算出ブロックB303で算出されたスタック要求コンプレッサ流量Fco_srをマックスセレクトブロックB305に出力する。
 一方、希釈要求流量算出ブロックB304には、スタック温度検出値Ts_dと、水素圧力検出センサ67で検出された水素圧力検出値Pan_dと、が入力される。そして、希釈要求流量算出ブロックB304は、予め定められたマップにより、燃料電池スタック10から排出されるアノード排ガスを希釈するために要求される空気流量である希釈要求コンプレッサ流量Fco_drを算出し、マックスセレクトブロックB305に出力する。
 図に示す希釈要求流量算出ブロックB304のマップでは、水素圧力検出値Pan_dが大きくなるほど、希釈要求コンプレッサ流量Fco_drも大きくなる。また、当該マップでは、スタック温度検出値Ts_dが高くなると、希釈要求コンプレッサ流量Fco_drは減少する。これは、スタック温度検出値Ts_dが高い状態ではアノード排ガス温度が高く、アノード排ガス排出流路の圧損が高くなって流量が低下する分、希釈に用いる空気量を減らす補正を行う必要があるためである。
 そして、希釈要求流量算出ブロックB304は、この希釈要求コンプレッサ流量Fco_drをマックスセレクトブロックB305に出力する。
 マックスセレクトブロックB305には、スタック要求コンプレッサ流量算出ブロックB303から出力されたスタック要求コンプレッサ流量Fco_sr、及び希釈要求流量算出ブロックB304で算出された希釈要求コンプレッサ流量Fco_drが入力される。そして、マックスセレクトブロックB305は、スタック要求コンプレッサ流量Fco_sr及び希釈要求コンプレッサ流量Fco_drの内の大きい方の値をコンプレッサ流量目標値Fco_tとして、各ブロックB103、B105、及びB106に出力する。
 すなわち、本実施形態では、コンプレッサ流量目標値Fco_tは、燃料電池スタック10の要求発電電力と、アノード排ガスの希釈要求とを考慮して決定されることになる。なお、これらの要求に加えて、コンプレッサ50のサージを回避するためのサージ回避要求を考慮してコンプレッサ流量目標値Fco_tを決定してもよい。
 図3に戻り、タービン入口温度目標値演算ブロックB103は、燃料電池スタック10に供給されるカソードガスの流量及び圧力に基づいて、触媒燃焼器36からタービン52に排出される燃焼後ガスの温度、すなわちタービン入口温度を制御する。
 本実施形態では、タービン入口温度目標値演算ブロックB103には、大気圧検出値Pai_dと、空気圧力目標値演算ブロックB101で算出された空気圧力目標値Pc_tと、空気流量目標値演算ブロックB102で演算されたコンプレッサ流量目標値Fco_tと、が入力される。タービン入口温度目標値演算ブロックB103は、大気圧検出値Pai_d、空気圧力目標値Pc_t、及びコンプレッサ流量目標値Fco_tに基づいて、タービン入口温度が目指すべきタービン52の入口温度の目標値(以下では「タービン入口温度目標値Tt_t」とも記載する)を求める。
 図7は、タービン入口温度目標値演算ブロックB103により実行されるタービン入口温度目標値Tt_tの算出方法の詳細を示すブロック図である。当図に示すブロックは、圧力比目標値演算ブロックB400と、タービン入口温度目標値設定ブロックB401と、を有している。
 圧力比目標値演算ブロックB400には、空気圧力目標値Pc_tと大気圧検出値Pai_dが入力される。そして、圧力比目標値演算ブロックB400は、空気圧力目標値Pc_tを大気圧検出値Pai_dで除して圧力比目標値Pc_t/Pai_dを求め、タービン入口温度目標値設定ブロックB401に出力する。
 タービン入口温度目標値設定ブロックB401には、コンプレッサ流量目標値Fco_tと、圧力比目標値演算ブロックB400で算出された圧力比目標値Pc_t/Pai_dと、が入力される。そして、タービン入口温度目標値設定ブロックB401は、予め記憶されたマップに基づいて、コンプレッサ流量目標値Fco_t及び圧力比目標値Pc_t/Pai_dからタービン入口温度目標値Tt_tを算出する。
 図8は、タービン入口温度目標値を定めるためのマップを示す図である。
 図8に示すように、タービン入口温度目標値Tt_tは、予め定められるタービン入口温度の下限値Tt_tminと、部品の耐熱温度を考慮して定められるタービン入口温度の許容上限温度Tt_tmaxの間で、圧力比目標値Pc_t/Pai_d及びコンプレッサ流量目標値Fco_tに応じて変動する。
 具体的に、先ず、圧力比目標値Pc_t/Pai_dが最も大きい値に設定される高圧時、圧力比目標値Pc_t/Pai_dが中間の値に設定される中圧時、圧力比目標値Pc_t/Pai_dが最も小さい値に設定される低圧時において、コンプレッサ流量目標値Fco_tがそれぞれ、所定値f1、f2、f3(f1<f2<f3)に到達するまでタービン入口温度目標値Tt_tが下限値Tt_tminに維持され、その後に増加する。
 このように、高圧であるほどより少ないコンプレッサ流量目標値Fco_tでタービン入口温度目標値Tt_tを増加させ始める理由は、同じコンプレッサ流量目標値Fco_tであっても、高圧であるほど燃料電池スタック10に対する要求発電電力が大きいので、タービン入口温度を上昇させてタービン52からの回収動力を増加させる必要があるためである。
 さらに、高圧時、中圧時、及び低圧時の何れの場合であっても、コンプレッサ流量目標値Fco_tが、上記タービン入口温度を上昇させ始める流量f1~f3よりも大きい所定値f4に到達すると、タービン入口温度目標値Tt_tを許容上限温度Tt_tmaxに設定する。これは、コンプレッサ流量目標値Fco_tが一定以上に大きくなる場合には、要求出力が大きく、コンプレッサモータへの要求電力Wcoが大きい状態であるので、タービン52で得られる回収動力を増加させるべく、タービン入口温度を急激に上昇させるようにするためである。一方で、部品の耐熱温度の観点から、タービン入口温度は許容上限温度Tt_tmaxを越えて増加させないようにしている。
 図3に戻り、燃焼器水素量F/B制御ブロックB104には、タービン入口温度検出値Tt_dと、タービン入口温度目標値演算ブロックB103で演算されたタービン入口温度目標値Tt_tと、が入力される。燃焼器水素量F/B制御ブロックB104は、タービン入口温度検出値Tt_dがタービン入口温度目標値Tt_tに近くづくように、燃焼器水素供給弁68の開度をフィードバック制御する。
 本実施形態では、燃焼器水素供給弁68の開度は、燃料電池スタック10への要求負荷やタービン52からの要求動力が大きくなるほど大きくする。具体的には、スタック流量目標値Fs_t及びコンプレッサ流量目標値Fco_tの少なくとも何れか一方が増大すると、触媒燃焼器36に供給される空気が増加するため、燃焼器水素供給弁68の開度を大きくして当該空気を燃焼させるために触媒燃焼器36への水素供給量を増大させることとなる。
 空気系F/B制御ブロックB105には、各検出値として、コンプレッサ流量検出値Fco_dと、空気圧力検出値Pc_dと、が入力される。さらに、空気系F/B制御ブロックB105には、各目標値として、空気圧力目標値Pc_t、コンプレッサ流量目標値Fco_t、及びスタック流量目標値Fs_tが入力される。
 そして、空気系F/B制御ブロックB105は、入力された各検出値及び各目標値に基づいて、ノズルベーン58の開度、及びコンプレッサ駆動モータ54のトルクをフィードバック制御する。具体的に、空気系F/B制御ブロックB105は、燃料電池スタック10への要求負荷が高い場合やタービン52の要求動力が高い場合、すなわち、スタック流量目標値Fs_t及びコンプレッサ流量目標値Fco_tの少なくとも何れか一方が増大する場合には、ノズルベーン58の開度を大きくする。
 同様に、コンプレッサ駆動モータ54のトルク(動力)は、空気圧力目標値Pc_t、スタック流量目標値Fs_t、及びコンプレッサ流量目標値Fco_tのうちの少なくとも一つが増大するほど大きくするように制御される。
 バイパス空気量制御ブロックB106には、空気圧力目標値Pc_t、コンプレッサ流量目標値Fco_t、及びスタック流量目標値Fs_tが入力される。そして、バイパス空気量制御ブロックB106は、これら値に基づいて、バイパス弁32の開度を制御する。
 具体的に、バイパス空気量制御ブロックB106は、バイパス通路33に流れる空気流量がコンプレッサ流量目標値Fco_tとスタック流量目標値Fs_tとの差分となるように、バイパス弁32の開度を制御する。
 次に、既に説明した燃料電池システム100におけるコンプレッサ動力供給機構16(図1参照)によるエネルギー収支について詳細に説明する。
 以下では、先ず、コンプレッサ50で用いられる仕事(以下では、「コンプレッサ仕事Wc」とも記載する)とタービン52から回収できる仕事(以下では、「タービン仕事Wt」とも記載する)との関係を説明する。
 先ず、コンプレッサ仕事Wcを求める理論式は、
 Wc=Fco×Cpc×Tc×[(Prc)^0.286-1}/ηc・・・・(1)
と表される。ただし、Fcoはコンプレッサ流量、Cpcはコンプレッサ50により供給される空気の比熱、Tcはコンプレッサ吐出温度、Prcは圧力比、及びηcはコンプレッサ効率を意味する。本実施形態では、コンプレッサ50により供給される空気の比熱Cpcやコンプレッサ効率ηcは、コンプレッサ50の性質に基づいて予め定めた固定値を用いる。したがって、コンプレッサ仕事Wcは主として、コンプレッサ流量Fco、コンプレッサ吐出温度Tc、及び圧力比Prcに応じて変動することとなる。これにより、式(1)に基づけば、コンプレッサ仕事Wcは、コンプレッサ流量Fco、コンプレッサ吐出温度Tc、及び圧力比Prcの少なくとも何れかが増加すると増加する。
 また、タービン仕事Wtを求める理論式は、
 Wt=Ft×Cpt×Tt×[1-(1/Prt)^0.286}×ηt ・・・・(2)
と表される。ただし、Ftはタービン52へ流入する燃焼後ガスの流量(以下では、「タービン流入流量」とも記載する)、Cptはタービン52へ流入する燃焼後ガスの比熱、Ttはタービン入口温度、Prtはタービン膨張比、ηtはタービン効率を意味する。ここで、本実施形態では、タービン52へ流入する燃焼後ガスの比熱Cptについては、燃焼後ガスの成分が空気とほぼ同じであるとみなすことなどにより予め定めることができる。またタービン効率ηtは、タービン52の性質に基づいて予め定めることができる。したがって、タービン仕事Wtは主として、タービン流入流量Ft、タービン入口温度Tt、及びタービン膨張比Prtに応じて変動することとなる。これにより、式(2)に基づけば、タービン仕事Wtは、タービン流入流量Ft、及びタービン入口温度Ttの少なくとも何れかが増加すると増加する。
 さらに、燃料電池スタック10の圧力損失ΔPsを求める理論式は、
 ΔPs=(k×Fs×Prc×Ts)/T0・・・・(3)
と表される。ただし、kは燃料電池スタック10内のカソード流路における圧力損失係数、Fsはスタック流量、Tsはスタック温度、及びT0は標準状態の温度(≒273.15K)を意味する。また、式(3)中のPrcは、既に述べたタービン膨張比Prtを用いて以下の式により求められる。
 Prt=Prc+(ΔPs/Patm)・・・・(4)
 したがって、燃料電池スタック10の圧力損失ΔPsは、主に、スタック流量Fs及びスタック温度Tsの少なくとも何れかが増加すると増加することとなる。
 さらに、燃料電池スタック10内の電気化学反応による生成水がシステム内で発生しない運転条件下であって大気中の酸素濃度を21%と仮定したときには、コンプレッサ流量Fcoとタービン流入流量Ftの間の関係は、以下の式で表される。
 Ft=Fs×[0.79+0.21×(1+SRc)/SRc]+1/2×FH・・・・・(5)
 ただし、SRcはスタックの空気過剰率、FHは触媒燃焼器36に投入される水素流量を意味する。なお、水素供給流量FHは、例えば水素圧力検出センサ67による水素圧力検出値Pan_dと燃焼器水素供給弁68の開度等に基づいて、所定のマップにより求めることができる。
 また、タービン入口温度Ttは、基本的に触媒燃焼器36に供給されるガス流量、比熱、及び触媒燃焼器36への水素供給流量FHにより定まる発熱量から算出される。なお、タービン入口温度Ttは、さらに部品の耐熱温度を考慮した許容上限温度Tt_tmaxを越えないように調節される。
 さらに、コンプレッサ駆動モータ54が行う仕事(以下では、「駆動モータ仕事Wm」とも記載する)は、基本的には以下の式(6)で与えられる。
 Wm=Wc-Wt・・・・(6)
 ただし、駆動モータ仕事Wmについては、コンプレッサ駆動モータ54のサイズによる制限と燃料電池スタック10の要求発電電力による制限を考慮する必要がある。したがって、駆動モータ仕事Wmは、以下の制限値Wmlに制限される。
 Wml=Min(Wmlm,Wstmax-Wreq) ・・・・(7)
 ここで、Min(a,b)とは、aとbの内の小さい方の値(同一ならば何れでも良い)を意味する。式(7)中、Wstmaxは燃料電池スタック10の出力可能電力である。Wmlmは、コンプレッサ駆動モータ54のサイズによる制限値である。
 式(7)中の出力可能電力Wstmaxは既に述べたように、燃料電池スタック10が搭載される車両の走行状態やスタックサイズなどの要因に応じて決定される。したがって、例えば熱地における温度制限時などにおいては、出力可能電力Wstmaxが低下する。一方、Wreqは要求出力である。すなわち、式(7)中のWstmax-Wreqは、上述したコンプレッサモータへの要求電力Wcoに相当することとなる。したがって、コンプレッサ駆動モータ54の仕事Wmは、上記式(7)で定義される制限値Wmlを超えないように調節される。
 ここで、式(6)から理解されるように、タービン仕事Wtでコンプレッサ仕事Wcを賄うことができるので、燃料電池スタック10やバッテリからコンプレッサ駆動モータ54に供給する電力を低減することができる。
 また、駆動モータ仕事Wmが負の値、すなわちコンプレッサ駆動モータ54が回生モードで運転されており、コンプレッサ駆動モータ54からコンプレッサ50に動力が供給されない場合には、タービン仕事Wtによりコンプレッサ仕事Wcを確保することができる。さらに、タービン仕事Wtをより増加させると、コンプレッサ50の動力を確保した上で、コンプレッサ駆動モータ54の回生により得られる電力が向上するので、この電力を要求出力に対する燃料電池スタック10の出力電力の不足分に充てることができる。
 次に、要求出力に応じた燃料電池システム100の状態の変化について説明する。
 図9は、要求出力に応じた燃料電池システム100の状態の変化を示すタイムチャートである。具体的に図9(a)~図9(g)は、それぞれ、要求出力に対する、要求スタック流量、要求空気圧力、コンプレッサ50が要求する動力(以下、「要求コンプレッサ動力」とも記載する)、水素燃料消費量、タービン入口温度Tt、コンプレッサ流量目標値Fco_t、及びバイパス弁開度の変化を示すタイムチャートである。
 以下では、要求出力がWreq1以下である区間I、要求出力がWreq1~Wreq2である区間II、要求出力がWreq2~Wreq3である区間III、要求出力がWreq3~Wreq4である区間IV、及び要求出力がWreq4~Wreq5である区間Vについて、システム状態の変化について説明する。
 先ず、区間Iにおいて、燃料電池スタック10の要求発電電力に対して電力が不足していない低負荷状態であり、図9(a)及び図9(b)に示すように、要求スタック流量及び要求空気圧力の値が比較的小さい。また、図9(c)に示すように、要求出力の増加にともない要求コンプレッサ動力は増加しているが、いまだコンプレッサ駆動モータ54の出力の制限値Wml(図に破線で示す)に到達していない。
 したがって、この場合、タービン52による回収動力無しでも、燃料電池スタック10やバッテリからの電力によってコンプレッサ動力を賄うことができるので、コンプレッサ駆動モータ54を力行モードで稼動させる。
 さらに、区間Iにおいては、上述のようにタービン52の回収動力の確保は必須ではないので、タービン52の出力を比較的小さくすることができる。したがって、水素消費量、タービン入口温度Tt、及びタービン流入流量Ftを増加させる制御は行われない。また、この場合には、図9(g)に示すようにバイパス弁32は基本的に全閉とされる。なお、図9(g)には要求出力がゼロに近い領域でバイパス弁32が一定開度に設定されている。これは極低負荷では、要求スタック流量に対し図5のB304で演算される希釈要求コンプレッサ流量Fco_drが大きくなるため、スタック流量に対して余剰のカソードガスをバイパス通路33を介してカソード排ガス通路24に流すことを意図したものである。
 以上説明したように、極低負荷以外の区間Iにおいては、タービン流入流量Ftを増加させるべく特別な制御を行わず、またバイパス弁32は基本的に全閉に設定される。したがって、要求スタック流量とコンプレッサ流量目標値Fco_tはほぼ等しくなり、これらはともに要求出力の増加とともに増加する(図9(a)及び図9(f)参照)。
 次に、区間IIにおいて、要求出力がWreq1に到達すると、要求コンプレッサ動力がコンプレッサ駆動モータ54の出力の制限値Wmlを越える。これにより、要求コンプレッサ動力に対するコンプレッサ駆動モータ54の出力の不足分(図9(c)の斜線部に相当)を、タービン52の回収動力で賄うことができる。なお、このときに要求されるタービン52の回収動力を「要求タービン回収動力」とも記載する。
 したがって、この場合、タービン52の回収動力を増加させるべく、図9(d)に示すように、触媒燃焼器36への水素燃料供給を開始し、この供給量を徐々に増加させていく。これにより、図9(e)に示すようにタービン入口温度Ttが増加して、タービン回収動力を増加させることができる。
 一方で、既に述べたように、タービン回収動力を増加させるにはタービン入口温度Ttだけでなく、タービン流入流量Ftを増加させることも考えられる。しかしながら、区間IIの段階ではいまだ、空気圧力が十分に高くはなく、カソード系の圧力損失が大きいので、タービン流入流量Ftを増加させる制御を行ってもタービン52の回収動力を大幅に増加させることはできない。したがって、この場合も図9(g)に示すようにバイパス弁32が全閉とされ、要求スタック流量とコンプレッサ流量目標値Fco_tはほぼ等しい状態で要求出力の増加とともに増加する(図9(a)及び図9(f)参照)。
 次に、区間IIIにおいて要求出力がWreq2に到達すると、燃料電池スタック10の発電電力が最大発電電力Wstmaxに達する。
 ここで、要求出力が最大発電電力Wstmax以上となった場合、要求出力に対して燃料電池スタック10の発電電力が不足することとなるので、コンプレッサ駆動モータ54等の補機電力を低下させて燃料電池スタック10の発電電力の不足を補う必要がある。したがって、コンプレッサ駆動モータ54の消費電力を低減させるべくコンプレッサ駆動モータ54の制限値Wmlを低下させる(図9(c)参照)。一方で、当該制限値Wmlの低下に伴うコンプレッサ駆動モータ54の動力低下を補うために、タービン52による回収動力を増加させるべく、燃焼用アノードガス供給通路64を介した水素燃料供給量を増加させる(図9(d)の斜線部参照)。これにより、タービン入口温度Ttが増加して(図9(e)参照)、タービン52による回収動力が増加するので、要求コンプレッサ動力とコンプレッサ駆動モータ54の制限値Wmlとの差分を、タービン52による回収動力で補うことができる(図9(c)の斜線部参照)。
 なお、区間IIIの段階では、タービン出口温度は上限温度に達していないため、バイパス量を増やさなくても、温度を上げることでタービン回収動力を増やすことが可能である。したがって、この場合、図9(g)に示すようにバイパス弁32が全閉とされ、要求スタック流量とコンプレッサ流量目標値Fco_tは、相互にほぼ等しい状態で要求出力の増加とともに増加する(図9(a)及び図9(f)参照)。
 次に、区間IVは、要求出力がWreq3~Wreq4となる区間である。すなわち、区間I~区間IIIと比較してより負荷が高い区間である。この区間IVでは、要求出力が燃料電池スタック10の出力可能電力を超え且つ、コンプレッサ駆動モータ54の制限値Wmlをゼロ、すなわちコンプレッサ駆動モータ54への電力供給をゼロとしても要求出力が満たされない状況(回生が要求される状況)となっている。
 この区間IVでは、タービン52の回収動力により、コンプレッサ50の動力を確保し且つ要求出力を満たすべくコンプレッサ駆動モータ54を回生モードとして発電を行う。これにより、要求出力に対する電力の不足分がコンプレッサ駆動モータ54による発電で補われる。したがって、図9(d)及び図9(e)に示すように、燃焼用アノードガス供給通路64を介した触媒燃焼器36への水素燃料供給量をさらに増やしてタービン入口温度Ttを増大させ、タービン52による回収動力を増加させる。
 一方で、本実施形態では、区間IVの段階でも、タービン流入流量Ftを増加させる制御を行わない。そして、図9(g)に示すようにバイパス弁32も全閉とされている。したがって、要求スタック流量とコンプレッサ流量目標値Fco_tはほぼ等しい状態で要求出力の増加とともに増加する(図9(a)及び図9(f)参照)。
 さらに、区間Vは、要求出力がWreq4~Wreq5となる区間である。この区間は、要求出力が区間I~区間IVと比較して最も大きいので、コンプレッサ駆動モータ54の制限値Wmlがさらに低くなっている。すなわち、要求出力に対して燃料電池スタック10の発電量がより不足する。
 しかしながら、区間Vでは、図9(e)に示すように、タービン入口温度Ttが、部品の耐熱温度等の観点から定められる許容上限温度Tt_tmaxに達している。したがって、これ以上、タービン入口温度Ttを上昇させないようにしつつも、タービン52による回収動力を増加させることが要求される。
 したがって、本実施形態では、触媒燃焼器36への水素燃料供給量を増加させつつ、コンプレッサ流量Fcoを要求スタック流量よりも増大させる。そして、これに伴い、要求スタック流量に対して余剰な空気をバイパス通路33に流すべくバイパス弁32の開度を増加させる(図9(f)及び図9(g)参照)。
 これにより、バイパス通路33を介して、本来、触媒燃焼器36への水素燃料供給量を燃焼させるのに必要なカソード排ガス流量を越えた流量をタービン52に供給することができる。これにより、タービン入口温度Ttの上昇を抑制しつつも、タービン流入流量Ftを増加させてタービン52からの回収動力を向上させることができる。したがって、タービン52の回収動力に基づいたコンプレッサ駆動モータ54の発電電力をより向上させることができ、負荷の増大にともない増加した要求出力を満たすことができる。
 特に、本実施形態では、バイパス弁32の開度を増加させることにより、要求スタック流量に対して余剰な空気を、バイパス通路33を介して触媒燃焼器36へ供給することができる。これにより、要求スタック流量に対して過剰な流量をアフタークーラ28(図1参照)に流すことが防止される。
 以上のように、本実施形態では、区間Vのようにタービン入口温度Ttが許容上限温度Tt_tmaxに達した場合に、コンプレッサ流量Fco及びバイパス弁32の開度を増加させてタービン52へのガス供給量を増加させることで、タービン入口温度Ttの上昇を抑えつつも、タービン52からの回収動力を向上させることができる。
 特に、本実施形態では、上記区間Vのように、タービン入口温度Ttが許容上限温度Tt_tmaxに達した場合で、空気圧力がある程度高い状態でコンプレッサ流量Fco及びバイパス弁32の開度を増加させてタービン流入流量Ftを増加させることが好ましい。以下では、その理由の詳細について説明する。
 図10は、タービン入口温度Ttが許容上限温度Tt_tmaxであるときにおいて、タービン流入流量Ft、タービン52による回収動力、及びコンプレッサ動力の関係を、空気圧力の高低に応じて示した図である。なお、図においては、タービン52による回収動力を実線で示し、要求コンプレッサ動力を破線で示している。
 図10(a)は低圧時(圧力比目標値Pc_t/Pai_dが最も小さく設定する場合)のタービン回収動力のグラフを示しており、図10(b)は中圧時(圧力比目標値Pc_t/Pai_dが中間値に設定する場合)のタービン回収動力のグラフを示しており、図10(c)は高圧時(圧力比目標値Pc_t/Pai_dが最も大きい値に設定する場合)のタービン回収動力のグラフを示している。
 図10(a)に示すように、低圧時においては、既に述べたように、カソード系の圧力損失が大きくなるので、コンプレッサ流量Fcoを大きくしてタービン流入流量Ftを増加させてもタービン52による回収動力を大幅に増加させることができない。これに対して、コンプレッサ流量Fcoの増加にもとない要求コンプレッサ動力は増加していき、コンプレッサ流量Fcoが所定値Fco1となったときには要求コンプレッサ動力がタービン52による回収動力を上回り始めてしまう。したがって、低圧時は、コンプレッサ流量Fcoをスタック流量Fsと同じ値にするとともに、バイパス弁32を全閉とし、バイパス通路33を介した触媒燃焼器36への空気の供給を行わないようにする。
 次に、図10(b)に示すように、中圧時においては、タービン流入流量Ftの増加に対するタービン52による回収動力の増加量が、低圧時と比較してより大きくなる。したがって、コンプレッサ流量Fcoを一定程度まで増加していっても、タービン52による回収動力を増加させることができ、当該回収動力が要求コンプレッサ動力を上回っている状態を維持することができる。したがって、中圧時は、コンプレッサ流量Fcoがスタック流量Fsよりも大きくなるように調節する。
 一方で、このように調節した場合、スタック流量Fsに対して余剰の空気をそのまま、図1のアフタークーラ28に流すようにすると、アフタークーラ28の放熱量が大きくなり、アフタークーラ28を大型化する必要性が生じる。さらに、余剰の空気が燃料電池スタック10に供給されることで、燃料電池スタック10の過乾燥や過電圧等の問題が生じる可能性がある。これに対して、本実施形態では、バイパス弁32の開度を増加させて、コンプレッサ50から吐出される空気を、バイパス通路33を介して触媒燃焼器36へ直接供給する。
 さらに、中圧時においては、低圧時よりは少ないものの、一定程度のカソード系の圧力損失が生じる。このため、タービン流入流量Ftが一定以上増加していくと、タービン52の回収動力の増加量が少なくなる。したがって、中圧時においては、コンプレッサ流量Fcoがスタック流量Fsを大きく越えてしまわないように調節されるとともに、バイパス弁32の開度もこれに合せて制限される。
 次に、図10(c)に示すように、高圧時においては、コンプレッサ流量Fcoの増加に対して要求コンプレッサ動力の増加量が大きくなる。しかしながら、高圧時はカソード系の圧力損失が小さいため、コンプレッサ流量Fcoの増加に伴うタービン流入流量Ftの増加に対してタービン52の回収動力も大きく増加する。そして、コンプレッサ流量Fcoの増加によるタービン52の回収動力の増加量は、要求コンプレッサ動力の増加量を大きく上回っている。例えば、タービン52の回収動力を要求コンプレッサ動力よりΔPだけ大きくする場合であっても、高圧時では中圧時よりも少ないコンプレッサ流量Fcoによりこれを実現することができる(図10(b)及び図10(c)参照)。
 したがって、高圧時においては、タービン52の回収動力を大きくするために、可能な限りコンプレッサ流量Fcoを増加させる。そして、コンプレッサ流量Fcoがスタック流量Fsを上回る余剰な空気は、中圧時と同様に、バイパス弁32の開度を大きくすることで、バイパス通路33を介して触媒燃焼器36へ供給する。これにより、上述したアフタークーラ28の大型化や燃料電池スタック10の過乾燥等を防止することができる。
 なお、高圧時におけるコンプレッサ流量Fcoの増加量について、その上限は特に限定されるものではない。しかしながら、アフタークーラ28や燃料電池スタック10への余剰な空気の供給を極力回避する観点から、コンプレッサ流量Fcoからスタック流量Fsを減じて得られる流量の値が、バイパス弁32を通過可能な流量の上限値以下となるように、コンプレッサ流量Fcoの増加量を制限することが好ましい。
 以下では、本実施形態において特徴的なバイパス弁32の開閉制御の概要を説明する。
 図11は、本実施形態におけるバイパス弁32の開閉について説明するフローチャートである。
 図示のように、ステップS110において、コントローラ20及び各種計測装置により、コンプレッサ流量目標値Fco_t、スタック流量目標値Fs_t、及び空気圧力目標値Pc_tを取得する。
 次に、ステップS120において、コントローラ20はスタック流量目標値Fs_t及び空気圧力目標値Pc_tから、あらかじめ設計されたマップを用いてバイパス流量推定値Fb_eを算出する。バイパス流量推定値Fb_eは、スタック流量目標値Fs_tが大きいほど、及び空気圧力目標値Pc_tが大きいほど、大きく値として演算される。さらに、コンプレッサ流量目標値Fco_tからスタック流量目標値Fs_tを減算することで目標バイバス流量Fb_tを算出する。
 ステップS130において、コントローラ20は、バイパス流量推定値Fb_eが目標バイバス流量Fb_tより大きいか否かを判定する。そして、バイパス流量推定値Fb_eが目標バイバス流量Fb_t以下であると判定されると、ステップS140に進む。ステップS140において、コントローラ20は、バイパス弁32の開度を増加させる。一方、ステップS130において、バイパス流量推定値Fb_eが目標バイバス流量Fb_tより大きいと判定されると、ステップS150に進む。ステップS150において、コントローラ20はバイパス弁32の開度を減少させる。
 また、本実施形態では高圧タンク60から触媒燃焼器36に直接、水素を供給する構成であったが、これに限られず、例えば、アノード循環系の燃料電池システムにおいてアノード循環通路を流れるアノード排ガスの一部を触媒燃焼器36に供給する構成にしてもよい。
 さらに本実施形態における燃料電池システム100の制御では、図3に示すようにではシステムの負荷要求を代表するパラメータとしてスタック電流目標値用いているが、これに限られず、負荷装置110における負荷量に相関するパラメータであれば、電力目標値や電圧目標値等の他の種々のパラメータを用いても良い。
 以上説明した本発明の第1実施形態にかかる燃料電池システム100及び燃料電池システム100の制御方法によれば、以下の作用効果を奏する。
 本実施形態によれば、燃料電池システム100は、アノードガス及びカソードガスの供給を受けて発電する燃料電池である燃料電池スタック10と、燃料電池スタック10にカソードガスを供給するコンプレッサ50と、燃料電池スタック10から排出されるカソード排ガスの供給を受けて動力を生成するタービン52と、コンプレッサ50及びタービン52に連結され力行と回生を行う電動モータとしてのコンプレッサ駆動モータ54と、燃料電池スタック10とタービン52の間に設置されカソードガスとアノードガスとを混合して燃焼させる燃焼器としての触媒燃焼器36と、コンプレッサ50から燃料電池スタック10に供給されるカソードガスを冷却する冷却器としてのアフタークーラ28と、アフタークーラ28の上流からアフタークーラ28と燃料電池スタック10をバイパスして触媒燃焼器36にカソードガスを供給するバイパス通路33と、バイパス通路33に設けられたバイパス弁32と、を備える。
 これによれば、コンプレッサ50のから吐出される空気の内、燃料電池スタック10の発電に対して余剰な空気を、バイパス通路33を介して触媒燃焼器36に供給することができる。したがって、タービン52の回収動力を向上させるように、コンプレッサ50の流量を増加させたとしても、余剰な空気をバイパス弁32を介して直接、触媒燃焼器36に供給することができる。
 これにより、タービン52の回収動力により、コンプレッサ50の動力やコンプレッサ駆動モータ54の回生のための動力を賄いつつ、燃料電池スタック10の発電に対して余剰な空気をアフタークーラ28に流すことを回避することができる。
 したがって、燃料電池スタック10の負荷への電力をタービン52の回収動力により補填して燃料電池スタック10が発電すべき電力量を減少させて、燃料電池スタック10の最高出力性能を抑制し、燃料電池スタック10のサイズを小型化することができる。
 そして、上述のように、タービン52による回収動力を向上させるためにコンプレッサ流量Fcoを増加させたとしても、余剰の空気は、アフタークーラ28の上流からバイパス通路33を介して触媒燃焼器36に供給されることとなる。これにより、タービン52による回収動力の増加を実現しつつ、アフタークーラ28への高温空気の多量の流入を抑制することができ、アフタークーラ28における放熱量を低減することができる。したがって、アフタークーラ28のサイズ及びラジエータ77のサイズを小型化することができる。
 以上のように、本実施形態によれば、燃料電池スタック10及びアフタークーラ28の双方の小型化を実現することができるので、燃料電池システム100全体の小型化に資することとなり、燃料電池システム100を車載する場合などのようにシステム設置スペースが限られている場合であっても対応することができる。
 したがって、本実施形態のコンプレッサ動力供給機構16が実装された燃料電池システム100は、PEM等の比較的低温で動作する燃料電池スタック10においても、好適に適用することができる。
 また、本実施形態による燃料電池システム100は、コントローラ20が、システムの負荷要求である要求出力に基づいてバイパス弁32を制御する制御部として機能する。これにより、要求出力に応じて必要とされるタービン52による回収動力に応じて増加したコンプレッサ流量Fcoに関し、スタック流量に対する余剰空気をより確実にバイパス通路33に流すことができる。
 さらに、本実施形態による燃料電池システム100では、コントローラ20が、大気圧に対するコンプレッサ50の圧力比Prcの目標値である圧力比目標値に基づいてバイパス弁32の開度を制御する制御部として機能する。
 これにより、コンプレッサ吐出温度と相関する圧力比Prcについて、その目標値である圧力比目標値に基づいてバイパス弁32の開度が定められることとなるので、コンプレッサ吐出温度を直接検出することなく、システムの高負荷状態(要求出力が相対的に高い状態)を高精度に検知することができる。これにより、バイパス弁32の開度の増加を、より確実にシステムの高負荷状態に合せて行うことができ、結果として、アフタークーラ28への余剰空気の流入をより確実に低減することができる。
 さらに、本実施形態による燃料電池システム100では、コントローラ20は、タービン52の入口温度(タービン入口温度Tt)が上限に達した後に、コンプレッサ流量Fcoを、燃料電池スタック10が要求する流量である要求スタック流量よりも増加させる制御部として機能する。
 ここで、タービン52の回収動力はタービン入口温度Ttが高いほど大きくなるが、タービン入口温度Ttは部品の耐熱等性等を考慮した許容上限温度Tt_tmaxよりも高くすることはできない。したがって、タービン入口温度Ttが許容上限温度Tt_tmaxに達した場合、タービン入口温度Ttが増加しないように、コンプレッサ流量Fcoを要求スタック流量よりも高くしてタービン流入流量Ftを増加させることでタービン52の回収動力をより増加させることができる。なお、この場合にバイパス弁32を増加させることで、アフタークーラ28への余剰空気の流入が生じる状況において的確にこれを防止することができる。
 また、本実施形態による燃料電池システム100では、コントローラ20は、燃料電池スタック10に接続される負荷に基づき定められるシステム要求出力(要求出力)と、燃料電池スタック10が出力することが可能である出力可能電力と、に基づいてコンプレッサ流量Fcoを制御する制御部として機能する。
 これにより、要求出力と出力可能電力に応じて好適にタービン流入流量Ftを調節することができ、タービン52の回収動力をより好適に得ることができる。
 特に、要求出力に対して出力可能電力がより不足するにつれて、コンプレッサ流量Fcoをより大きくすることによって、燃料電池スタック10の発電電力の不足分をタービン52から回収できる動力により適切に補填することができる。なお、この場合にバイパス弁32を増加させることで、アフタークーラ28への余剰空気の流入が生じる状況において的確にこれを防止することができる。
 さらに、本実施形態による燃料電池システム100では、アフタークーラ28で交換した熱を、冷却水を介して燃料電池スタック10に伝熱させることが可能である。これにより、例えば、暖機時等の燃料電池スタック10への熱供給が要求される場面において、コンプレッサ50から吐出された高温空気の熱を燃料電池スタック10に供給することができる。これにより、システムのエネルギー効率の向上に資することとなる。
(第2実施形態)
 次に本発明の第2実施形態における燃料電池システムについて説明する。なお、第1実施形態と同様の要素には同一の符号を付し、その説明を省略する。
 図12は、本実施形態におけるスタック流量目標値及びコンプレッサ流量目標値Fco_tを算出する機能を示すブロック図である。本実施形態は、第1実施形態のように、スタック要求コンプレッサ流量算出ブロックB303に圧力比目標値Pc_t/Pai_dを入力することに代えて、コンプレッサ吐出温度センサ27で検出されるコンプレッサ吐出温度検出値Tc_dを入力する。
 そして、本実施形態では、スタック要求コンプレッサ流量算出ブロックB303は、入力されたコンプレッサモータへの要求電力Wco及びコンプレッサ吐出温度検出値Tc_dに基づいて、予め定められたマップにより、スタック要求コンプレッサ流量Fco_srを算出する。
 図13は、コンプレッサ吐出温度に応じたコンプレッサモータへの要求電力Wcoとスタック要求コンプレッサ流量Fco_srの関係を示すマップである。
 図示のように、コンプレッサモータへの要求電力Wcoが負の値である場合(燃料電池スタック10の発電電力が不足していない場合)には、当該コンプレッサモータへの要求電力Wcoが所定値Wco1に到達するまで、コンプレッサ吐出温度検出値Tc_dの値にかかわらず、スタック要求コンプレッサ流量Fco_srを所定値Fco_sr1まで増加させる。この所定値Fco_sr1は、燃料電池スタック10の要求発電電力に応じて定められるスタック流量に相当する値である。すなわち、このように発電電力が不足していない状況においては、コンプレッサ駆動モータ54を力行モードで作動させるので、燃料電池スタック10の要求発電電力に基づく流量を越えたコンプレッサ流量を設定する必要は無く、燃料電池スタック10の要求発電電力に応じて定められるスタック流量に相当するコンプレッサ流量を設定することを意図している。
 一方、コンプレッサモータへの要求電力Wcoが正の値である場合(燃料電池スタック10の発電電力が不足している場合)には、コンプレッサ吐出温度検出値Tc_dに応じてスタック要求コンプレッサ流量Fco_srが設定される。
 先ず、コンプレッサ吐出温度検出値Tc_dを最も小さく設定する場合(低温時)は、コンプレッサモータへの要求電力Wcoの大きさにかかわらず、スタック要求コンプレッサ流量Fco_srが増加させることなく上記所定値Fco_sr1に設定される。このように低温時にスタック要求コンプレッサ流量Fco_srを所定値Fco_sr1以上に増加させないようにしている理由は、低温時はカソード系の圧力損失が大きくタービン52による回収動力が低くなるので、コンプレッサ流量を増やしてタービンガス流入流量を増加させたとしても、タービン52による回収動力の大幅な向上が望めないためである。
 次に、コンプレッサ吐出温度検出値Tc_dが上記低音時よりも大きい中間値に設定する場合(中温時)は、コンプレッサモータへの要求電力Wcoが所定値Wco2に到達した以降は、スタック要求コンプレッサ流量Fco_srを燃料電池スタック10の要求発電電力に基づく所定値Fco_sr1から所定値Fco_sr2まで増加させる。
 このように、中温時においてスタック要求コンプレッサ流量Fco_srを燃料電池スタック10の要求発電電力に基づく所定値Fco_sr1より増加させる理由は、発電電力の不足を解消すべく、コンプレッサ駆動モータ54から回生電力を得るように、タービンガス流入流量を増やすためである。しかしながら、中温時は、まだカソード系の圧力損失が大きいため、タービンガス流入流量を大きく増加させても一定以上の回収動力は望めないため、タービン52による回収動力を増加させることできる限度でコンプレッサ流量を増加させるべく、スタック要求コンプレッサ流量Fco_srを所定値Fco_sr2まで増加させている。なお、本実施形態では、後述するように、スタック要求コンプレッサ流量Fco_srの増加に伴い、バイパス弁32の開度を増加させて、燃料電池スタック10により要求される流量以上のカソードガスを、アフタークーラ28に流さないようにする。
 さらに、コンプレッサ吐出温度検出値Tc_dを最も大きい値に設定する場合(高温時)は、コンプレッサモータへの要求電力Wcoが所定値Wco3に到達する以降に、スタック要求コンプレッサ流量Fco_srを上記所定値Fco_sr1から増加させる。
 このように、高温時においても、コンプレッサ駆動モータ54から回生電力を得るようにスタック要求コンプレッサ流量Fco_srを燃料電池スタック10の要求発電電力に基づく所定値Fco_sr1より増加させている。そして、高温時においては、カソード系の圧力損失が小さいため、タービンガス流入流量を大きく増加させて、タービン52による回収動力を一定以上に増加させることができる。
 ここで、高温時においても、スタック要求コンプレッサ流量Fco_srの増加に伴い、バイパス弁32の開度を増加させて、燃料電池スタック10により要求される流量以上のカソードガスを、アフタークーラ28に流さないようにする。
 なお、本実施形態におけるバイパス弁32の開閉制御は、図11により説明した第1実施形態におけるバイパス弁32の開度制御と同様である。
 以上説明した本発明の第2実施形態にかかる燃料電池システム100は、以下の作用効果を奏する。
 本実施形態によれば、コントローラ20は、コンプレッサ50から吐出される空気の温度であるコンプレッサ吐出温度に基づいてバイパス弁32の開度を制御する制御部として機能する。
 これにより、燃料電池スタック10の負荷に応じて変化するコンプレッサ吐出温度に合せてバイパス弁32の開度を制御し、タービン流入流量Ftを調節することができる。例えば、システムの高負荷時に相対的に高温となるコンプレッサ吐出温度に合せてバイパス弁32の開度を増加させることで、バイパス弁32の開度の増加タイミングをシステムの高負荷状態により確実に合せることができ、結果として、アフタークーラ28への余剰空気の流入をより確実に低減することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は、2016年3月22日に日本国特許庁に出願された特願2016-056453号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (8)

  1.  アノードガス及びカソードガスの供給を受けて発電する燃料電池と、
     前記燃料電池に前記カソードガスを供給するコンプレッサと、
     前記燃料電池から排出されるカソード排ガスの供給を受けて動力を生成するタービンと、
     前記コンプレッサ及び前記タービンに連結され力行と回生を行う電動モータと、
     前記燃料電池と前記タービンの間に設置され前記カソードガスとアノードガスとを混合して燃焼させる燃焼器と、
     前記コンプレッサから前記燃料電池に供給される前記カソードガスを冷却する冷却器と、
     前記冷却器の上流から前記冷却器と前記燃料電池をバイパスして前記燃焼器に前記カソードガスを供給するバイパス通路と、
     前記バイパス通路に設けられたバイパス弁と、
     を備える燃料電池システム。
  2.  請求項1に記載の燃料電池システムであって、
     システムの負荷要求に基づいて前記バイパス弁を制御する制御部を備えた燃料電池システム。
  3.  請求項2に記載の燃料電池システムであって、
     前記制御部は、
     前記コンプレッサから吐出される空気の温度に基づいて前記バイパス弁の開度を制御する燃料電池システム。
  4.  請求項2又は請求項3に記載の燃料電池システムであって、
     前記制御部は、
     大気圧に対する前記コンプレッサの圧力比の目標値に基づいて前記バイパス弁の開度を制御する燃料電池システム。
  5.  請求項2~請求項4の何れか1項に記載の燃料電池システムであって、
     前記制御部は、
     前記タービンの入口温度が許容上限温度に達した後に、前記コンプレッサの流量を前記燃料電池が要求する流量よりも増加させる燃料電池システム。
  6.  請求項2~請求項4の何れか1項に記載の燃料電池システムであって、
     前記制御部は、
     前記燃料電池に接続される負荷に基づき定められるシステム要求出力と、前記燃料電池が出力することが可能な出力可能電力と、に基づいて前記コンプレッサの流量を制御する燃料電池システム。
  7.  請求項1~請求項6の何れか1項に記載の燃料電池システムであって、
     前記冷却器は、前記燃料電池と熱交換を行う燃料電池システム。
  8.  アノードガス及びカソードガスの供給を受けて発電する燃料電池と、前記燃料電池に前記カソードガスを供給するコンプレッサと、前記燃料電池から排出されるカソード排ガスの供給を受けて動力を生成するタービンと、前記コンプレッサ及び前記タービンに連結され力行と回生を行う電動モータと、前記燃料電池と前記タービンの間に設置され前記カソードガスとアノードガスとを混合して燃焼させる燃焼器と、前記コンプレッサから前記燃料電池に供給される前記カソードガスを冷却する冷却器と、前記冷却器の上流から前記冷却器と前記燃料電池をバイパスして前記燃焼器に前記カソードガスを供給するバイパス通路と、前記バイパス通路に設けられたバイパス弁と、を備える燃料電池システムで実行される燃料電池システムの制御方法であって、
     システムの負荷要求に基づいて前記バイパス弁を制御する燃料電池システムの制御方法。
PCT/JP2016/086635 2016-03-22 2016-12-08 燃料電池システム及び燃料電池システムの制御方法 WO2017163499A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/086,867 US10930948B2 (en) 2016-03-22 2016-12-08 Fuel cell system and method for controlling fuel cell system including power recovery mechanism
KR1020197018222A KR102054636B1 (ko) 2016-03-22 2016-12-08 연료 전지 시스템 및 연료 전지 시스템의 제어 방법
KR1020187028824A KR102025503B1 (ko) 2016-03-22 2016-12-08 연료 전지 시스템 및 연료 전지 시스템의 제어 방법
EP16895522.7A EP3435461B1 (en) 2016-03-22 2016-12-08 Fuel cell system and method for controlling fuel cell system
JP2018506766A JP6573022B2 (ja) 2016-03-22 2016-12-08 燃料電池システム及び燃料電池システムの制御方法
CA3018246A CA3018246C (en) 2016-03-22 2016-12-08 Fuel cell system and method for controlling fuel cell system
CN201680083935.8A CN108886153B (zh) 2016-03-22 2016-12-08 燃料电池系统以及燃料电池系统的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-056453 2016-03-22
JP2016056453 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017163499A1 true WO2017163499A1 (ja) 2017-09-28

Family

ID=59901093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086635 WO2017163499A1 (ja) 2016-03-22 2016-12-08 燃料電池システム及び燃料電池システムの制御方法

Country Status (7)

Country Link
US (1) US10930948B2 (ja)
EP (1) EP3435461B1 (ja)
JP (1) JP6573022B2 (ja)
KR (2) KR102025503B1 (ja)
CN (1) CN108886153B (ja)
CA (1) CA3018246C (ja)
WO (1) WO2017163499A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3474362A1 (en) * 2017-10-20 2019-04-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell system
JP2019145488A (ja) * 2017-11-28 2019-08-29 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 冷却システムdT/dtに基づく制御
JP2021190266A (ja) * 2020-05-28 2021-12-13 トヨタ自動車株式会社 燃料電池システム
JP2021190238A (ja) * 2020-05-27 2021-12-13 トヨタ自動車株式会社 燃料電池システム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766639B2 (ja) * 2016-12-26 2020-10-14 株式会社デンソー 燃料電池冷却システム
US10978723B2 (en) * 2018-09-05 2021-04-13 Honeywell International Inc. Fuel cell secondary power and thermal management systems
JP7238805B2 (ja) * 2020-01-16 2023-03-14 トヨタ自動車株式会社 燃料電池システム
CN112201810B (zh) * 2020-09-25 2024-05-28 上海华熵能源科技有限公司 一种稳压供气的氢燃料电池装置
CN112421075A (zh) * 2020-11-17 2021-02-26 一汽解放汽车有限公司 一种燃料电池发动机空气供给系统
CN114754024A (zh) * 2021-01-12 2022-07-15 海德韦尔(太仓)能源科技有限公司 一种压气机和包括压气机的空气压缩机以及燃料电池装置
JP7213287B2 (ja) * 2021-03-16 2023-01-26 本田技研工業株式会社 暖機システム
US20220367890A1 (en) * 2021-05-17 2022-11-17 General Electric Company Control system for a fuel cell and engine combustor assembly
KR102536353B1 (ko) * 2021-10-27 2023-05-26 두산에너빌리티 주식회사 복합 발전 시스템 및 복합 발전 시스템의 운영 방법
WO2023249659A1 (en) * 2022-06-23 2023-12-28 Zeroavia Ltd Thrust from hydrogen fuel cell waste
CN115295826B (zh) * 2022-07-25 2023-04-18 上海杰宁新能源科技发展有限公司 一种燃料电池控制方法、系统、存储介质及智能终端
DE102023202972A1 (de) * 2023-03-30 2024-10-02 Stellantis Auto Sas Brennstoffzellensystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270205A (ja) * 2001-03-09 2002-09-20 Meidensha Corp 燃料電池システム、およびこのシステムを利用した動力装置並びに発電設備
JP2004119239A (ja) 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd 燃料電池−ガスタービン発電設備及び複合発電設備
JP2007234311A (ja) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd 燃料電池システム
JP2010020924A (ja) * 2008-07-08 2010-01-28 Toyota Motor Corp 燃料電池システム
JP2014165072A (ja) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd 燃料電池発電システム、コンバインド発電システム、運転方法、及び制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976506A (en) 1975-02-12 1976-08-24 United Technologies Corporation Pressurized fuel cell power plant with air bypass
US4838020A (en) * 1985-10-24 1989-06-13 Mitsubishi Denki Kabushiki Kaisha Turbocompressor system and method for controlling the same
JP3137147B2 (ja) * 1992-08-28 2001-02-19 石川島播磨重工業株式会社 燃料電池設備用タービン・コンプレッサ装置の制御方法
JPH11339831A (ja) * 1998-05-31 1999-12-10 Aisin Seiki Co Ltd 車両搭載用燃料電池システム
JP3832802B2 (ja) * 2000-07-25 2006-10-11 本田技研工業株式会社 燃料電池システムおよびその制御方法
US6896988B2 (en) * 2003-09-11 2005-05-24 Fuelcell Energy, Inc. Enhanced high efficiency fuel cell/turbine power plant
JP4939362B2 (ja) 2007-10-15 2012-05-23 三菱重工業株式会社 燃料電池−ガスタービン発電設備及び複合発電設備
DE102008049689A1 (de) * 2008-09-30 2010-04-01 Daimler Ag Luftversorgungseinrichtung für einen Brennstoffzellenstapel, Brennstoffzellensystem und Verfahren zum Betreiben einer Luftversorgungseinrichtung
JP5389090B2 (ja) * 2011-03-31 2014-01-15 本田技研工業株式会社 燃料電池システム
US8962208B2 (en) * 2012-10-25 2015-02-24 GM Global Technology Operations LLC Predictive cathode compressor speed control in a fuel cell power system
JP6109529B2 (ja) * 2012-10-31 2017-04-05 三菱日立パワーシステムズ株式会社 発電システム
JP6116871B2 (ja) * 2012-11-22 2017-04-19 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの運転方法
WO2014103589A1 (ja) * 2012-12-28 2014-07-03 日産自動車株式会社 燃料電池システム及びその制御方法
CN106575780B (zh) 2014-07-24 2019-12-03 日产自动车株式会社 燃料电池系统
JP6172115B2 (ja) * 2014-10-29 2017-08-02 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
CN105261771B (zh) * 2015-10-20 2016-08-31 华中科技大学 一种固体氧化物燃料电池系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270205A (ja) * 2001-03-09 2002-09-20 Meidensha Corp 燃料電池システム、およびこのシステムを利用した動力装置並びに発電設備
JP2004119239A (ja) 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd 燃料電池−ガスタービン発電設備及び複合発電設備
JP2007234311A (ja) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd 燃料電池システム
JP2010020924A (ja) * 2008-07-08 2010-01-28 Toyota Motor Corp 燃料電池システム
JP2014165072A (ja) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd 燃料電池発電システム、コンバインド発電システム、運転方法、及び制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435461A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10957926B2 (en) 2017-10-20 2021-03-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell system
CN109698369A (zh) * 2017-10-20 2019-04-30 丰田自动车株式会社 燃料电池系统和燃料电池系统的控制方法
KR20190044516A (ko) * 2017-10-20 2019-04-30 도요타지도샤가부시키가이샤 연료 전지 시스템 및 연료 전지 시스템의 제어 방법
JP2019079606A (ja) * 2017-10-20 2019-05-23 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
KR102139197B1 (ko) * 2017-10-20 2020-07-29 도요타지도샤가부시키가이샤 연료 전지 시스템 및 연료 전지 시스템의 제어 방법
EP3474362A1 (en) * 2017-10-20 2019-04-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell system
CN109698369B (zh) * 2017-10-20 2022-03-01 丰田自动车株式会社 燃料电池系统和燃料电池系统的控制方法
JP2019145488A (ja) * 2017-11-28 2019-08-29 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 冷却システムdT/dtに基づく制御
JP7296203B2 (ja) 2017-11-28 2023-06-22 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド 冷却システムdT/dtに基づく制御
JP2021190238A (ja) * 2020-05-27 2021-12-13 トヨタ自動車株式会社 燃料電池システム
JP7247958B2 (ja) 2020-05-27 2023-03-29 トヨタ自動車株式会社 燃料電池システム
JP2021190266A (ja) * 2020-05-28 2021-12-13 トヨタ自動車株式会社 燃料電池システム
JP7276251B2 (ja) 2020-05-28 2023-05-18 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
US10930948B2 (en) 2021-02-23
EP3435461A4 (en) 2019-10-02
KR20190076073A (ko) 2019-07-01
CA3018246C (en) 2019-08-06
CN108886153B (zh) 2019-11-29
KR102025503B1 (ko) 2019-09-26
CA3018246A1 (en) 2017-09-28
KR102054636B1 (ko) 2019-12-10
JPWO2017163499A1 (ja) 2019-01-31
EP3435461B1 (en) 2023-06-28
KR20180119166A (ko) 2018-11-01
CN108886153A (zh) 2018-11-23
US20190088962A1 (en) 2019-03-21
JP6573022B2 (ja) 2019-09-11
EP3435461A1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6573022B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6206440B2 (ja) 燃料電池システム
JP4936126B2 (ja) 燃料電池システム
US20090239105A1 (en) Fuel Battery System, Method for Detecting Gas Leakage in Such System, and Mobile Object
JP6187774B2 (ja) 燃料電池システム及び燃料電池システムの運転制御方法
US10290887B2 (en) Fuel cell system and method for operating such a system
EP3392946B1 (en) Fuel cell system and control method for fuel cell system
US20150372328A1 (en) Operation method of fuel cell system and fuel cell system
JP6717085B2 (ja) 燃料電池システム
WO2017098782A1 (ja) 燃料電池システム
JP5092335B2 (ja) 燃料電池システム及び燃料電池システム制御方法
JP2004265683A (ja) 燃料電池発電制御システム
JP4375208B2 (ja) 燃料電池の出力制限装置
JP2016035870A (ja) 燃料電池システム
JP2014220156A (ja) 燃料電池システムの制御装置
JP6790509B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP3873803B2 (ja) 燃料電池制御システム
KR20190063313A (ko) 오픈 캐소드 타입 연료전지의 팬 제어 장치
JP5057086B2 (ja) ポンプ駆動制御装置
JP2010146750A (ja) 燃料電池システム
JP6790510B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6665510B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP6729090B2 (ja) 燃料電池システムおよびその制御方法
JP6394875B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506766

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3018246

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187028824

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016895522

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016895522

Country of ref document: EP

Effective date: 20181022

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895522

Country of ref document: EP

Kind code of ref document: A1