[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017022021A1 - 回転電機の回転子 - Google Patents

回転電機の回転子 Download PDF

Info

Publication number
WO2017022021A1
WO2017022021A1 PCT/JP2015/071826 JP2015071826W WO2017022021A1 WO 2017022021 A1 WO2017022021 A1 WO 2017022021A1 JP 2015071826 W JP2015071826 W JP 2015071826W WO 2017022021 A1 WO2017022021 A1 WO 2017022021A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
iron core
circumferential direction
convex portion
bolt
Prior art date
Application number
PCT/JP2015/071826
Other languages
English (en)
French (fr)
Inventor
隆司 梅田
宏己 木谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580082060.5A priority Critical patent/CN107852047B/zh
Priority to DE112015006756.6T priority patent/DE112015006756T5/de
Priority to PCT/JP2015/071826 priority patent/WO2017022021A1/ja
Priority to US15/743,724 priority patent/US10559988B2/en
Priority to JP2017526006A priority patent/JP6227203B2/ja
Publication of WO2017022021A1 publication Critical patent/WO2017022021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a rotor of a rotating electrical machine in which a plurality of magnets are provided on an iron core.
  • a plurality of first magnets are arranged and fixed in the rotational direction on the outer peripheral surface of the first block, and on the outer peripheral surface of the second block.
  • an electric motor rotor in which a plurality of second magnets are aligned and fixed in the rotation direction, and the same polarity of the first magnet and the second magnet is shifted in the rotation direction to form a step skew structure.
  • the plurality of first magnets are fixed to the outer peripheral surface of the first block by changing their magnetic poles alternately in the rotation direction.
  • the plurality of second magnets are fixed to the outer peripheral surface of the second block with their magnetic poles alternately changed in the rotation direction (see, for example, Patent Document 1).
  • first magnets of the opposite poles and the second magnets of the opposite poles are adjacent to each other in the rotation direction, but the first magnet and the second magnet having the same poles are adjacent to each other also in the axial direction of the rotation axis. Therefore, when the first magnet and the second magnet are fixed to the first block and the second block attached to the rotating shaft, a strong magnetic force is received from both the rotating direction and the axial direction. Therefore, it takes time and effort to arrange the first magnet and the second magnet close to each other, and the productivity of the rotor of the electric motor is reduced.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a rotor of a rotating electrical machine capable of improving productivity.
  • the rotor of the rotating electrical machine includes a first rotor member and a second rotor member, and the first rotor member is provided on the first iron core member and the first iron core member.
  • the second rotor member has a second iron core member and a second magnet group provided on the second iron core member, and The second iron core members are fixed to each other in a state of being aligned in the axial direction, the first and second magnet groups are adjacent to each other in the axial direction, and the first magnet group is aligned in the circumferential direction.
  • the second magnet group has a plurality of second magnets arranged in the circumferential direction, and the first and second magnets of the same polarity adjacent to each other are
  • the first and second iron core members are provided with a first recess and the other is provided with a first recess in the circumferential direction.
  • First protrusions for engagement are provided in the circumferential direction in section.
  • the rotor of the rotating electrical machine includes a first rotor member, a second rotor member, and a rotor base
  • the first rotor member includes a first iron core member and a first rotor member.
  • a first magnet group provided on the iron core member, and the second rotor member includes a second iron core member and a second magnet group provided on the second iron core member.
  • the first and second iron core members are adjacent to each other in the radial direction and are fixed to the rotor base in the axial direction, and the first and second magnet groups are adjacent to each other in the radial direction.
  • the first magnet group has a plurality of first magnets arranged in the circumferential direction
  • the second magnet group has a plurality of second magnets arranged in the circumferential direction and adjacent to each other.
  • the first and second magnets having the same polarity are displaced from each other by a specific angle in the circumferential direction, and the first and second iron core members are few.
  • the rotor base also either a While the provided first recess, the other first convex portion is provided which engages in the circumferential direction in the first recess.
  • the first convex portion is engaged with the first concave portion in the circumferential direction, thereby positioning the first and second rotor members in the circumferential direction and the radial direction more accurately. And can be done easily. Further, the engagement state between the first convex portion and the first concave portion is more reliably maintained by the circumferential component of the magnetic repulsive force and the magnetic attractive force generated between the first magnet and the second magnet. can do. For this reason, the productivity of the rotor can be improved.
  • FIG. 4 is an exploded perspective view showing the rotor of FIG. 3.
  • FIG. 10 It is an expansion perspective view which shows the 1st convex part of the 1st rotor member of FIG. It is a perspective view which shows a state when inserting the 1st convex part of FIG. 7 in the 1st recessed part of FIG. It is a front view which shows the positional relationship of the circumferential direction of the 1st and 2nd rotor member when the 1st convex part of FIG. 10 is inserted in the recessed part insertion part. It is a front view which shows the positional relationship of the circumferential direction of the 1st and 2nd rotor member when the 1st convex part engaging part of FIG. 10 is fitted in the 1st recessed part engaging part.
  • FIG. 1 It is a perspective view which shows the other example of the rotor by Embodiment 1 of this invention. It is a principal part perspective view which shows the 1st convex part of the rotor of the rotary electric machine by Embodiment 2 of this invention. It is a principal part perspective view which shows the 1st recessed part of the rotor of the rotary electric machine by Embodiment 2 of this invention. It is a rear view which shows the 1st rotor member when it sees from the 2nd rotor member side in the rotor of the rotary electric machine by Embodiment 3 of this invention.
  • FIG. 1 is a perspective view showing a rotary electric machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view showing the rotating electrical machine of FIG.
  • a rotating electrical machine 1 includes a stator 2 that is a cylindrical armature, a rotating shaft 3 that is arranged coaxially with the stator 2, a stator 2 that is fixed to the rotating shaft 3 and is integrated with the rotating shaft 3. And a rotor 4 that is rotated relative to the rotor.
  • the rotary electric machine 1 is an inner rotor type rotary electric machine in which the rotor 4 is arranged on the radially inner side of the cylindrical stator 2.
  • the stator 2 includes a cylindrical stator core 7 made of a magnetic material such as iron, and a stator coil 8 provided on the stator core 7.
  • the stator core 7 has a cylindrical core back 9 and a plurality of magnetic pole teeth 10 projecting radially inward from the inner peripheral portion of the core back 9.
  • the plurality of magnetic teeth 10 are provided at intervals in the circumferential direction of the stator core 7.
  • the conducting wire of the stator coil 8 is passed through a slot formed between the magnetic pole teeth 10.
  • a rotating magnetic field is generated in the stator 2 by supplying an alternating current to the stator coil 8.
  • the rotor 4 is opposed to the stator 2 with a gap in the radial direction. Further, the rotor 4 is arranged coaxially with the rotation shaft 3. A shaft hole 11 that is a through hole is provided in the center of the rotor 4. The rotation shaft 3 is fitted in the shaft hole 11. A key groove 12 along the axis of the rotary shaft 3 is provided on the outer peripheral surface of the rotary shaft 3. A key groove 13 along the axis of the rotary shaft 3 is provided on the inner surface of the shaft hole 11. A common key is fitted in the key grooves 12 and 13. Thereby, the position of the rotor 4 with respect to the rotating shaft 3 is fixed in the rotation direction of the rotor 4, that is, the circumferential direction of the rotor 4. The rotating shaft 3 and the rotor 4 rotate about the axis of the rotating shaft 3 with respect to the stator 2 by the generation of the rotating magnetic field of the stator 2.
  • FIG. 3 is a perspective view showing the rotor 4 of FIG.
  • FIG. 4 is an exploded perspective view showing the rotor 4 of FIG.
  • the rotor 4 includes a first rotor member 15 and a second rotor member 16 that are arranged side by side in the axial direction of the rotary shaft 3.
  • the first rotor member 15 includes a first iron core member 17 made of a magnetic material such as iron, and a first magnet group 18 provided on the first iron core member 17. Yes.
  • the first iron core member 17 includes a cylindrical boss portion 171, an annular outer ring portion 172 that surrounds the outer periphery of the boss portion 171 on the radially outer side of the boss portion 171, and the boss portion 171 and the outer ring portion 172. It has a plurality of (four in this example) ribs 173 to be connected. Thereby, the outer peripheral surface of the first iron core member 17 is a cylindrical surface centered on the axis of the rotating shaft 3.
  • the plurality of first magnets 181 are arranged in the circumferential direction of the rotor 4 with different magnetic poles. Thereby, among the two first magnets 181 adjacent to each other in the circumferential direction of the rotor 4, the magnetic pole of one first magnet 181 is an S pole, and the magnetic pole of the other first magnet 181. Is N pole.
  • the second rotor member 16 includes a second iron core member 19 made of a magnetic material such as iron, and a second magnet group 20 provided on the second iron core member 19. Yes.
  • the second iron core member 19 includes a cylindrical boss portion 191, an annular outer ring portion 192 that surrounds the outer periphery of the boss portion 191 on the radially outer side of the boss portion 191, and the boss portion 191 and the outer ring portion 192. And a plurality of (four in this example) ribs 193 to be connected.
  • the outer peripheral surface of the second iron core member 19 is a cylindrical surface centered on the axis of the rotating shaft 3.
  • the second magnet group 20 has a plurality of second magnets 201 arranged in the circumferential direction of the rotor 4.
  • the number of second magnets 201 is the same as the number of first magnets 181. Therefore, in this example, 40 second magnets 201 are fixed to the outer peripheral surface of the second iron core member 19 side by side in the circumferential direction.
  • Each second magnet 201 faces the stator 2 in the radial direction of the rotor 4.
  • a plurality of second magnets 201 are arranged in the circumferential direction of the rotor 4 with the magnetic poles alternately changed.
  • the magnetic pole of one second magnet 201 is an S pole
  • the magnetic pole of the other second magnet 201 is N pole.
  • the shaft hole 11 is provided at each of the center of the boss 171 of the first core member 17 and the center of the boss 191 of the second core member 19.
  • the common rotating shaft 3 is fitted in the shaft hole 11 of the first iron core member 17 and the shaft hole 11 of the second iron core member 19.
  • the first and second rotor members 15 and 16 are arranged coaxially with the rotation shaft 3. Further, the positioning of the first and second rotor members 15 and 16 with respect to the rotation shaft 3 in the rotation direction of the rotor 4 is performed by fitting keys into the key grooves 12 and 13.
  • the first and second rotor members 15 and 16 are arranged such that the side surface 17a of the first iron core member 17 and the side surface 19a of the second iron core member 19 are opposed to each other in the axial direction. Thereby, the first and second magnet groups 18 and 20 are adjacent to each other in the axial direction of the rotor 4.
  • a plurality of first bolt through holes 21 are provided in the outer ring portion 172 of the first iron core member 17 at intervals in the circumferential direction.
  • Each first bolt through hole 21 is a through hole that penetrates the outer ring portion 172 in the axial direction.
  • four first bolt through holes 21 are provided in the outer ring portion 172, and each first bolt through hole 21 is a round hole having a circular cross section.
  • each screw hole 22 In the side surface 19a of the outer ring portion 192 of the second iron core member 19, the same number of screw holes 22 as the number of the first bolt through holes 21 are provided at intervals in the circumferential direction. Therefore, in this example, four screw holes 22 are provided in the outer ring portion 192. The circumferential position of each screw hole 22 coincides with the circumferential position of each first bolt through hole 21.
  • FIG. 5 is a perspective view showing the first iron core member 17 and the second iron core member 19 with the first and second magnets 181 and 201 shown in FIG. 3 removed.
  • a plurality of magnet arrangement grooves 172 a arranged in the circumferential direction of the first core member 17 are provided on the outer peripheral surface of the outer ring portion 172 of the first core member 17.
  • Two magnet arrangement grooves 172 a adjacent to each other are partitioned by a groove wall 172 b along the axis of the first iron core member 17.
  • the height of the groove wall 172 b is lower than the thickness of the first magnet 181.
  • Each first magnet 181 is fixed to the magnet arrangement groove 172a with, for example, an adhesive or the like in a state of being fitted in the magnet arrangement groove 172a.
  • a plurality of magnet arrangement grooves 192 a arranged in the circumferential direction of the second core member 19 are provided on the outer peripheral surface of the outer ring portion 192 of the second core member 19.
  • Two magnet arrangement grooves 192 a adjacent to each other are partitioned by a groove wall 192 b along the axis of the second iron core member 19.
  • the height of the groove wall 192 b is lower than the thickness of the second magnet 201.
  • Each second magnet 201 is fixed to the magnet arrangement groove 192a with, for example, an adhesive or the like in a state of being fitted in the magnet arrangement groove 192a.
  • each second magnet 201 with respect to the reference line P is shifted from the circumferential position of each first magnet 181 with respect to the reference line P by a specific angle ⁇ ° in mechanical angle. Accordingly, the first and second magnets 181 and 201 having the same polarity adjacent to each other are displaced by a specific angle ⁇ ° in the circumferential direction of the rotor 4.
  • Each first convex portion 31 is inserted into the first concave portion 32 and is engaged with the first concave portion 32 in the circumferential direction of the rotor 4.
  • Each first convex portion 31 is engaged with each first concave portion 32 in the same direction in the circumferential direction of the rotor 4.
  • each first convex portion 31 has a first convex portion engaging portion 311 that fits into the first concave portion 32.
  • the width direction of the first protrusion engaging portion 311 coincides with the radial direction of the rotor 4.
  • the width of the first convex portion engaging portion 311 is continuously narrowed in the direction in which the first convex portion 31 engages with the first concave portion 32. That is, the shape of the first convex portion engaging portion 311 is a tapered shape in which the width of the first convex portion 31 is continuously narrowed toward one end portion in the circumferential direction of the first convex portion 31.
  • each first concave portion 32 includes a first concave portion insertion portion 321 and a first concave portion engagement protruding from the first concave portion insertion portion 321 in the circumferential direction of the rotor 4. Part 322.
  • the width direction of the first recess engaging portion 322 coincides with the radial direction of the rotor 4.
  • size of the 1st recessed part insertion part 321 is a magnitude
  • the shape of the first recessed portion insertion portion 321 is rectangular.
  • the width of the first recess engaging portion 322 is continuously narrowed in the direction in which the first protrusion 31 engages with the first recess 32. That is, the shape of the first recess engaging portion 322 is a tapered shape in which the width of the first recess 32 is continuously narrowed toward one circumferential end of the first recess 32.
  • the first convex portion 31 is positioned in the circumferential direction and the radial direction of the rotor 4 with respect to the first concave portion 32 by fitting the first convex portion engaging portion 311 into the first concave portion engaging portion 322. About has been fixed.
  • FIG. 11 is a front view showing a positional relationship in the circumferential direction between the first and second rotor members 15 and 16 when the first convex portion 31 of FIG. 10 is inserted into the concave portion insertion portion 321.
  • the first and second magnets 181 and 191 having the same polarity are completely adjacent to each other in the axial direction. That is, in the state where the first convex portion 31 is inserted into the first concave portion insertion portion 321, the same-polarity first and second magnets 181 and 191 are present at the same phase position in the circumferential direction. .
  • the S-pole first magnet 181 faces the S-pole second magnet 201 in the axial direction
  • the N-pole second magnet 201 faces the magnet 181 in the axial direction.
  • the second magnet 201 is not shown because the second magnet 201 is hidden behind the first magnet 181.
  • the first rotor member 15 is turned into the second rotor member 16 in the direction in which the first convex portion engaging portion 311 is fitted into the first concave portion engaging portion 322, that is, in the direction of the arrow B1 in FIG. Rotate against.
  • the first convex portion engaging portion 311 is fitted into the first concave portion engaging portion 322, and the first convex portion 31 is engaged with the first concave portion 32 in the circumferential direction and the radial direction.
  • FIG. 12 shows the positional relationship in the circumferential direction between the first and second rotor members 15 and 16 when the first convex portion engaging portion 311 in FIG. 10 is fitted into the first concave portion engaging portion 322.
  • FIG. FIG. When the first rotor member 15 is rotated with respect to the second rotor member 16 in the direction in which the first convex portion engaging portion 311 is fitted into the first concave portion engaging portion 322, each first magnet 181 is provided. Is shifted in the circumferential direction with respect to each second magnet 201. Thereby, a step skew structure is formed in which the magnetic poles of the first rotor member 15 are shifted in the circumferential direction with respect to the magnetic poles of the second rotor member 16.
  • the area of the first magnet 181 facing the second magnet 201 having the same polarity is larger than the area of the first magnet 181 facing the second magnet 201 having the opposite polarity. ing. Therefore, a magnetic repulsion force is generated in the axial direction as a whole between the first rotor member 15 and the second rotor member 16.
  • the first rotor member 15 and The bolts 23 are passed through the first bolt through holes 21 of the first iron core member 17 so that the second rotor member 16 is not separated from each other, and the bolts 23 are passed through the screws of the second iron core member 19. Install in hole 22. Thereafter, the first and second core members 17, 19 are held in a state where the bolts 23 are tightened so that the side surface 17 a of the first core member 17 and the side surface 19 a of the second core member 19 are in contact with each other. Fix each other. Thereby, the rotor 4 is completed.
  • the rotating shaft 3 is fitted into the shaft hole 11 of the rotor 4 while the circumferential position of the key groove 12 of the rotating shaft 3 and the circumferential position of the key groove 13 of the shaft hole 11 are made to coincide with each other.
  • the key is fitted into the space formed by the key groove 12 and the key groove 13.
  • the rotor 4 is positioned in the circumferential direction with respect to the rotating shaft 3, and the rotor 4 is fixed to the rotating shaft 3.
  • first convex portion 31 by engaging the first convex portion 31 with the first concave portion 32 in the circumferential direction, it is possible to reduce the load of the bolt 23 that fastens the first and second rotor members 15 and 16 to each other.
  • the number of bolts 23 can be reduced. Thereby, the effort of the fastening operation
  • FIG. 15 is a perspective view showing a main part of the first recess 32 of the rotor of the rotating electrical machine according to the second embodiment of the present invention.
  • the width of the first recess insertion portion 321 is constant at any position in the depth direction of the first recess 32.
  • the width of the first recess engaging portion 322 continuously extends toward the bottom surface in the depth direction of the first recess 32. That is, the cross-sectional shape of the first recessed portion insertion portion 321 in the plane along the radial direction of the rotor 4 is a rectangular shape having a certain width, and the first in the plane along the radial direction of the rotor 4.
  • the recessed portion engaging portion 322 has a cross-sectional shape that continuously expands toward the bottom surface in the depth direction of the first recessed portion 32.
  • the first convex portion engaging portion 311 and the inner surface of the first concave portion engaging portion 322 are aligned. Not only the circumferential direction and the radial direction of the rotor 4 but also the axial direction are engaged with each other, and the first iron core member 17 is prevented from coming off from the second iron core member 19 in the axial direction.
  • Other configurations are the same as those in the first embodiment.
  • the cross-sectional shape of the first convex portion engaging portion 311 is a tapered shape that widens toward the projecting direction end portion of the first convex portion 31, and the cross-sectional shape of the first concave portion engaging portion 322 is the first concave portion 32. Therefore, when the first convex portion engaging portion 311 is fitted into the first concave portion engaging portion 322, only the circumferential direction and the radial direction of the rotor 4 are provided. The first convex portion 31 engages with the first concave portion 32 also in the axial direction.
  • the magnetic repulsive force and magnetic force generated between the first magnet 181 and the second magnet 201 are the same as in the first embodiment. Since the circumferential component of the suction force is applied in the direction in which the first convex portion 31 is engaged with the first concave portion 32, the engaged state between the first convex portion 31 and the first concave portion 32 is maintained. The Further, the area of the first magnet 181 facing the second magnet 201 having the same polarity is larger than the area of the first magnet 181 facing the second magnet 201 having the opposite polarity. .
  • the bolts 23 are passed through the first bolt through holes 21 of the first iron core member 17, the bolts 23 are attached to the screw holes 22 of the second iron core member 19, and the bolts 23 are tightened.
  • the first and second iron core members 17 and 19 are fastened together. Thereby, the rotor 4 is completed.
  • the width of the first convex portion engaging portion 311 is widened toward the projecting direction end of the first convex portion 31, and the width of the first concave portion engaging portion 322 is the first width. Since the first concave portion 32 spreads toward the bottom surface in the depth direction, the first convex portion engaging portion 311 fits into the first concave portion engaging portion 322, so that the circumferential direction and radial direction of the rotor 4 Not only the axial direction but also the first convex portion 31 can be engaged with the first concave portion 32. Thereby, the positioning of the first core member 17 with respect to the second core member 19 can be performed more reliably and easily, and the productivity of the rotor 4 can be further improved.
  • the first and second iron core members 17 and 19 are fixed to each other by fastening the bolts 23, but the first convex portion engaging portion 311 is connected to the first concave portion engaging portion 322. Since the first core member 17 can be prevented from being detached from the second core member 19 in the axial direction by fitting, the bolts 23 are not necessary. In this way, the number of parts can be reduced, and the productivity of the rotor 4 can be further improved.
  • the first iron core member 17 is moved to the second position by screwing each bolt 23 into each screw hole 22 against the magnetic repulsive force generated between the first magnet 181 and the second magnet 201.
  • the first iron core member 17 is displaced toward the second iron core member 19 until it comes into contact with the iron core member 19. That is, by using each bolt 23 as a jack bolt, the first core member 17 is moved to the second core member 19 against the magnetic repulsion force generated between the first magnet 181 and the second magnet 201. Displace toward. Thereby, each 1st convex part 31 is inserted in each recessed part insertion part 321.
  • the bolt 23 passed through the elongated hole 21a is screwed into the screw hole 22 to counter the magnetic repulsive force.
  • the first rotor member 15 can be displaced toward the second rotor member 16.
  • the first rotor member 15 is rotated with respect to the second rotor member 16 and the first convex portion
  • the engaging portion 311 can be fitted into the first recess engaging portion 322.
  • each round hole 21b corresponds with the circumferential direction position of the screw hole 22 in the state in which the 1st convex part 31 is inserted in the 1st recessed part insertion part 321,
  • the first convex portion engaging portion 311 is set to a position shifted from the circumferential position of the screw hole 22 in a state where the first concave portion engaging portion 311 is fitted in the first concave portion engaging portion 322, the circumferential position of each round hole 21b is set.
  • the first convex portion 31 is displaced from the circumferential position of the screw hole 22 in a state where the first convex portion 31 is inserted into the first concave portion insertion portion 321, and the first convex portion engaging portion 311 is shifted to the first concave portion engaging portion.
  • You may set to the position corresponding to the circumferential direction position of the screw hole 22 in the state fitted to 322. In this case, in a state where the first convex portion 31 is inserted into the first concave portion insertion portion 321, only the bolt 23 passed through each elongated hole 21a is screwed into the screw hole 22, and the first convex portion engagement is performed.
  • the bolts 23 After fitting the joint portion 311 into the first recess engaging portion 322, the bolts 23 are passed through the respective round holes 21 b and screwed into the respective screw holes 22. If it does in this way, the number of the bolts 23 which fix the 1st iron core member 17 to the 2nd iron core member 19 can be increased.
  • FIG. FIG. 19 is a perspective view showing first rotor member 15 in the rotor of the rotating electrical machine according to the fourth embodiment of the present invention.
  • the outer ring part 172 of the first iron core member 17 includes an inner ring part 175 surrounding the boss part 171 and a plurality of arc-shaped iron core blocks 176 attached to the outer peripheral part of the inner ring part 175.
  • four arc-shaped iron core blocks 176 that are equally divided in the circumferential direction of the rotor 4 surround the inner ring portion 175 in a state where the arc-shaped iron core blocks 176 are arranged without gaps in the circumferential direction of the first iron core member 17.
  • the boss portion 171, each rib 173, and the inner ring portion 175 are formed of a single material, and constitute a main body core block 177. That is, the first iron core member 17 includes a main body core block 177 composed of a boss portion 171, a plurality of ribs 173 and an inner ring portion 175, and a plurality of arc-shaped core blocks attached to the outer peripheral portion of the main body core block 177.
  • the assembly core member has 176 as a plurality of divided core blocks.
  • the first convex portion 31 and the first bolt through hole 21 are provided in each arc-shaped core block 176.
  • a plurality of first magnets 181 are attached to each arc-shaped iron core block 176 side by side in the circumferential direction.
  • the same number of first magnets 181 are attached to each arc-shaped core block 176.
  • the first magnet group 18 is configured by attaching the arc-shaped core blocks 176 to the inner ring portion 175 in a state where the arc-shaped core blocks 176 are arranged in the circumferential direction.
  • FIG. 20 is a perspective view showing the second rotor member 16 in the rotor of the rotating electrical machine according to the fourth embodiment of the present invention.
  • the outer ring portion 192 of the second iron core member 19 includes an inner ring portion 195 that surrounds the boss portion 191 and a plurality of arc-shaped core blocks 196 that are attached to the outer peripheral portion of the inner ring portion 195.
  • four arc-shaped iron core blocks 196 that are equally divided in the circumferential direction of the rotor 4 surround the inner ring portion 195 in a state in which the second iron core member 19 is arranged without gaps in the circumferential direction.
  • the boss 191, each rib 193, and the inner ring portion 195 are formed of a single material and constitute a main body core block 197. That is, the ninth iron core member 19 includes a main body core block 197 composed of a boss 191, a plurality of ribs 193 and an inner ring portion 195, and a plurality of arc-shaped core blocks attached to the outer periphery of the main body core block 197. This is a collective core member having 196 as a plurality of divided core blocks. The first recess 32 and the screw hole 22 are provided in each arc-shaped core block 196.
  • a plurality of second magnets 201 are attached to each arcuate core block 196 side by side in the circumferential direction.
  • the same number of second magnets 201 are attached to each arc-shaped core block 196.
  • the second magnet group 20 is configured by attaching the arc-shaped core blocks 196 to the inner ring portion 195 in a state where the arc-shaped iron core blocks 196 are arranged in the circumferential direction.
  • FIG. 21 is a perspective view showing an inner peripheral portion of the arc-shaped core block 176 of FIG.
  • a taper block protruding toward the main body core block 177 is fixed to the inner peripheral surface of each arc-shaped core block 176 as the second convex portion 41.
  • the second convex portion 41 which is a tapered block, is a separate member from the arc-shaped core block 176.
  • a fitting hole 42 is provided on the inner peripheral surface of each arc-shaped core block 176.
  • the second convex portion 41 is fixed to the arc-shaped core block 176 by being fitted into the fitting hole 42 by press-fitting.
  • FIG. 22 is a perspective view showing the outer periphery of the main body iron core block 177 of FIG.
  • the same number of second concave portions 43 as the number of the second convex portions 41 of each arc-shaped core block 176 are provided on the outer peripheral surface of the main body core block 177.
  • Each of the second recesses 43 is provided on the outer peripheral surface of the main body core block 177 in accordance with the circumferential position of each of the second protrusions 41.
  • the second convex portion 41 is inserted into the second concave portion 43 and is second in the circumferential direction of the rotor 4 in the same direction as the direction in which the first convex portion 31 engages with the first concave portion 32. Is engaged with the recess 43. Each second convex portion 41 is engaged with each second concave portion 43 in the same direction in the circumferential direction of the rotor 4.
  • the second convex portion 41 has a second convex portion engaging portion 411 that fits into the second concave portion 43.
  • the width direction of the second convex portion engaging portion 411 coincides with the axial direction of the rotor 4. Further, the width of the second convex portion engaging portion 411 is continuously narrowed in the direction in which the second convex portion 41 engages with the second concave portion 43. That is, the shape of the second convex portion engaging portion 411 is a tapered shape in which the width of the second convex portion 41 is continuously narrowed toward one circumferential end of the second convex portion 41.
  • each second concave portion 43 includes a second concave portion insertion portion 431 and a second concave portion engaging portion that protrudes from the second concave portion insertion portion 431 in the circumferential direction of the rotor 4. 432.
  • the width direction of the second recess engaging portion 432 coincides with the axial direction of the rotor 4.
  • size of the 2nd recessed part insertion part 431 is a magnitude
  • the shape of the second recess insertion portion 431 is rectangular.
  • the width of the second recessed portion engaging portion 432 is continuously narrowed in the direction in which the second protruding portion 41 engages with the second recessed portion 43. That is, the shape of the second recessed portion engaging portion 432 is a tapered shape in which the width of the second recessed portion 43 is continuously narrowed toward one circumferential end of the second recessed portion 43.
  • the position of the second convex portion 41 is such that the second convex portion engaging portion 411 fits into the second concave portion engaging portion 432, and the circumferential direction and the axial direction of the rotor 4 with respect to the second concave portion 43. About has been fixed.
  • the width of the second protrusion 41 in the axial direction of the rotor 4 is constant at any position in the protruding direction of the second protrusion 41.
  • the width of the second recess 43 in the axial direction of the rotor 4 is also constant at any position in the depth direction of the second recess 43.
  • Each arc-shaped core block 176 is configured such that the second convex portion engaging portion 411 fits into the second concave portion engaging portion 432 and the second convex portion 41 engages with the second concave portion 43, whereby the main body core block 177 is positioned in the circumferential direction and the axial direction.
  • FIG. 23 is an enlarged perspective view showing the inner peripheral surface of the inner ring portion 175 of FIG.
  • the inner ring portion 175 of the main body core block 177 is provided with a plurality of second bolt through holes 51 according to the circumferential position of each arc-shaped core block 176.
  • two second bolt through holes 51 are provided in each portion of the inner ring portion 175 corresponding to the positions of both end portions in the circumferential direction of each arc-shaped core block 176.
  • Each of the second bolt through holes 51 is a through hole that penetrates the inner ring portion 175 in the radial direction of the rotor 4.
  • Each second bolt through hole 51 is a long hole along the circumferential direction of the rotor 4.
  • a plurality of screw holes are provided on the inner peripheral surface of each arc-shaped core block 176.
  • the circumferential position of each screw hole is set within the circumferential range of each second bolt through hole 51.
  • Bolts 52 that are passed through the second bolt through holes 51 are attached to the respective screw holes of the arc-shaped core block 176.
  • Each arc-shaped iron core block 176 has the second convex portion engaging portion 411 fitted into the second concave portion engaging portion 432 and the second convex portion 41 is engaged with the second concave portion 43. It is fastened to the inner ring portion 175 by a bolt 52 passed through the second bolt through hole 51.
  • the configuration of the second iron core member 19 is the same as that of the first iron core member 17. That is, the second convex portions 41 are fixed to the inner peripheral surface of each arc-shaped core block 196, and the same number of second convex portions 41 as the second convex portions 41 of each arc-shaped core block 196 are also fixed to the outer peripheral surface of the main body core block 177. Two recesses 43 are provided. In the second iron core member 19, the second convex portion 41 is inserted into the second concave portion 43, and the first convex portion 31 is changed to the first concave portion 32 in the circumferential direction of the rotor 4. The second recess 43 is engaged in the same direction as the engaging direction.
  • Each arc-shaped core block 196 has a main core block formed by fitting the second convex portion engaging portion 411 into the second concave portion engaging portion 432 and engaging the second convex portion 41 with the second concave portion 43. Positioned with respect to 197 in the circumferential direction and the axial direction.
  • a plurality of second bolt through holes 51 similar to those in the first iron core member 17 are provided in the inner ring portion 195 of the main body iron core block 197.
  • two second bolt through holes 51 are provided in each portion of the inner ring portion 195 corresponding to the positions of both end portions in the circumferential direction of each arc-shaped core block 196.
  • each arc-shaped core block 196 has the second convex portion engaging portion 411 fitted in the second concave portion engaging portion 432 and the second convex portion 41 is engaged with the second concave portion 43 in each state. It is fastened to the inner ring portion 195 by a bolt 52 passed through the second bolt through hole 51.
  • Other configurations are the same as those in the first embodiment.
  • the bolts 52 are passed through the second bolt through holes 51 and the bolts 52 are attached to the screw holes of the arc-shaped core block 176, thereby temporarily fixing the arc-shaped core blocks 176 to the outer peripheral surface of the inner ring portion 175.
  • each bolt 52 is slightly loosened, and all the arc-shaped iron core blocks 176 are moved to the main body in the direction in which the second convex portion engaging portion 411 is fitted into the second concave portion engaging portion 432, that is, in the direction of arrow B2 in FIG.
  • the core block 177 is rotated simultaneously.
  • the second convex portion engaging portion 411 is fitted into the second concave portion engaging portion 432, the second convex portion 41 is engaged with the second concave portion 43 in the circumferential direction, and the main core block 177 is engaged.
  • All the arc-shaped core blocks 176 are positioned in the circumferential direction and the axial direction.
  • each arc-shaped core block 176 is guided by each bolt 52 along the second bolt through hole 51 which is a long hole, each arc-shaped core block 176 can be easily moved in the circumferential direction with respect to the main body core block 177. become.
  • the second rotor member 16 is also assembled by fixing all the arc-shaped core blocks 196 to the outer peripheral portion of the main body core block 197 in the same procedure as the first rotor member 15.
  • the procedure for assembling the first and second rotor members 15 and 16 to manufacture the rotor 4 is the same as that in the first embodiment.
  • the first and second core members 17, 19 are divided into main body core blocks 177, 197 and arc-shaped core blocks 176, 196. Work can be performed on each of the arc-shaped core blocks 176 and 196 that are smaller in size than the members 17 and 19, and labor for manufacturing the first and second rotor members 15 and 16 can be reduced. .
  • the plurality of arc-shaped core blocks 176, 196 are provided with second convex portions 41
  • the main core blocks 177, 197 are provided with second concave portions 43
  • the first convex portions 31 are the first convex portions 31. Since the second convex portion 41 is engaged with the second concave portion 43 in the circumferential direction of the rotor 4 in the same direction as the direction in which the first concave portion 32 is engaged, each arc-shaped core with respect to the main body core blocks 177 and 197 is provided.
  • the positioning of the blocks 176 and 196 can be facilitated, and the assembly work of the first and second iron core members 17 and 19 can be facilitated.
  • the second bolt through holes 51 provided in the main body core blocks 177 and 197 are long holes along the circumferential direction of the rotor 4, and the bolts 52 passed through the second bolt through holes 51 are used. Since the arc-shaped core blocks 176 and 196 are fastened to the main body core blocks 177 and 197, the arc-shaped core blocks 176 and 196 are moved in the circumferential direction with respect to the main body core blocks 177 and 197 by loosening the bolt 52. The movement of the iron core blocks 176 and 196 can be guided by the bolt 52. Thereby, the assembly operation
  • each of the first and second core members 17 and 19 includes the core core blocks 177 and 197 and a plurality of arc-shaped core blocks 176 and 196 as a plurality of divided core blocks.
  • only one of the first and second core members 17 and 19 may be a collective core member.
  • the width of the second protrusion 41 is constant at any position in the protruding direction of the second protrusion 41, and the width of the second recess 43 is the depth of the second recess 43.
  • the width of the second convex portion engaging portion 411 is widened toward the projecting direction end portion of the second convex portion 41, and the second concave portion engaging portion 432 The width may be increased toward the bottom surface of the second recess 43 in the depth direction.
  • the second convex portion engaging portion 411 and the second concave portion engaging portion 432 can be engaged with each other in the radial direction of the rotor 4, and the circumferential direction and the axial direction of the rotor 4.
  • the arc-shaped core blocks 176 and 196 can be positioned with respect to the main body core blocks 177 and 197.
  • the first bolt through hole 21 is provided in the arc core block 176 of the first core member 17, and the screw hole 22 is provided in the arc core block 196 of the second core member 19.
  • the main body core block 177 of the first core member 17 may be provided with the first bolt through hole 21 and the main body core block 197 of the second core member 19 may be provided with the screw hole 22.
  • the first and second iron core members 17 and 19 can be fastened to each other by the bolt 23 passed through the first bolt through hole 21.
  • arc-shaped core blocks 176 and 196 that are equally divided in the circumferential direction of the rotor 4 are attached to the outer peripheral portion of the main body core blocks 177 and 197, but one arc-shaped core block is provided. If the central angle of the arcs 176 and 196 is 180 ° or less, the circumferential direction of the rotor 4 may be divided into two, three, or five arc-shaped core blocks 176 and 196. In addition, a plurality of arc-shaped core blocks that are unevenly divided in the circumferential direction of the rotor 4 may be attached to the outer peripheral portions of the main body core blocks 176 and 196.
  • the second convex portion 41 is a separate member from the arc-shaped core blocks 176 and 196 and the main body core blocks 177 and 197, but in the first core member 17, the second convex portion 41.
  • the arc-shaped core block 176 may be formed of a single material, or the second protrusion 41 and the arc-shaped core block 196 may be formed of a single material in the second core member 19.
  • the second convex portion 41 is provided in the arc-shaped core blocks 176 and 196 and the second concave portion 43 is provided in the main body core blocks 177 and 197.
  • the main core blocks 177 and 197 may be provided, and the second recess 43 may be provided in the arc-shaped core blocks 176 and 196.
  • the 2nd convex part 41 and the main body core block 177 may be formed with a single material, and the 2nd convex part 41 and the main body core block 197 may be formed with a single material.
  • the second convex portion 41 may be a separate member from the main body core blocks 177 and 196 and the arc-shaped core blocks 176 and 196.
  • the fitting holes into which the second convex portion 41 as the taper block fits are formed in the main body core blocks 177 and 197.
  • the plurality of second bolt through holes 51 are all elongated holes, but at least one of the plurality of second bolt through holes 51 may be a round hole.
  • the position of the second bolt through hole 51 which is a round hole is such that the arc-shaped core blocks 176 and 196 are moved into the main body core blocks 177 and 197 by the engagement of the second convex portion 41 and the second concave portion 43. It is set to match the position of the bolt holes of the arc-shaped core blocks 176 and 196 when positioned with respect to the arc-shaped core blocks 176 and 196.
  • the second convex portion engaging portion 411 is merely fitted into the second concave portion engaging portion 432, but the second convex portion engaging portion 411 is connected to the second concave portion engaging portion. It may be fitted into the joint portion 432 by press fitting. In this way, the state in which the second convex portion engaging portion 411 is fitted to the second concave portion engaging portion 432 can be more reliably maintained.
  • the shape of the second protrusion engaging portion 411 is a tapered shape whose width is continuously narrowed in the circumferential direction, and the shape of the second recessed portion engaging portion 432 is in the circumferential direction.
  • the taper shape has a continuously narrowing width
  • the respective shapes of the second convex portion engaging portion 411 and the second concave portion engaging portion 432 are not tapered, and the width is constant in the circumferential direction. You may make it a shape. That is, the width of the second convex portion 41 may be constant at any position in the circumferential direction, and the width of the second concave portion 43 may be constant at any position in the circumferential direction.
  • each of the arc-shaped core blocks 176 and 196 may be configured by stacking a plurality of magnetic plates.
  • FIG. 24 is a perspective view showing an arc-shaped core block 176 of the first core member 17 in the rotor according to the fifth embodiment of the present invention.
  • each arc-shaped iron core block 176 is formed by laminating a plurality of magnetic plates 176a in the axial direction.
  • the magnetic plate a steel plate or the like is used, for example.
  • the magnetic plates 176a are stacked by being connected to each other, for example, by caulking or welding.
  • a plurality of nut block grooves 178 along the axial direction of the rotor 4 are formed in the inner peripheral portion of the arc-shaped core block 176.
  • the cross section of the nut block groove 178 is composed of a housing part including the bottom surface of the groove and an opening part reaching the inner peripheral surface of the arc-shaped iron core block 176 from the housing part, and the width of the housing part is larger than the width of the opening part. It is getting bigger.
  • a nut block 54 provided with a plurality of screw holes 53 is fitted into the accommodating portion of the nut block groove 178 by press fitting.
  • two screw holes 53 are provided in the plate-like nut block 54.
  • a bolt 52 passed through the second bolt through hole 51 of the main body core block 177 is attached through an opening portion of the nut block groove 178.
  • each arc-shaped iron core block 196 is configured by laminating a plurality of magnetic plates in the axial direction.
  • the configuration of each arc-shaped core block 196 of the second core member 19 is the same as the configuration of each arc-shaped core block 176 of the first core member 17.
  • Other configurations are the same as those of the fourth embodiment.
  • each arc-shaped iron core block 176 and 196 is a laminate of a plurality of magnetic plates. Only one of the arc-shaped core block 176 and the arc-shaped core block 196 of the second core members 17 and 19 may be a laminate of a plurality of magnetic plates.
  • the nut block grooves 178 are provided in the arc-shaped iron core blocks 176 and 196, and the nut block 54 provided with the screw holes 53 is fitted in the nut block grooves 178.
  • the screw hole can be directly provided, the nut block groove 178 and the nut block 54 may not be provided in the arc-shaped core blocks 176 and 196.
  • Embodiment 6 FIG.
  • the present invention is applied to the inner rotor type rotating electrical machine in which the rotor 4 is disposed on the radially inner side of the cylindrical stator 2, but on the radially inner side of the cylindrical rotor.
  • the present invention may be applied to an outer rotor type rotating electrical machine in which a stator is arranged.
  • FIG. 25 is an exploded perspective view showing the rotating electrical machine 1 according to the sixth embodiment of the present invention.
  • the stator 2 is arranged on the radially inner side of the cylindrical rotor 4.
  • the rotor 4 is fixed to the rotating shaft 3. Thereby, the rotor 4 is rotated integrally with the rotating shaft 3 around the axis of the rotating shaft 3.
  • the stator 2 is arranged coaxially with the rotary shaft 3. Further, in the stator 2 having the stator core 7 and the stator coil, a plurality of magnetic teeth 10 protrude radially outward from the core back 9 of the stator core 7. The conducting wire of the stator coil 8 is passed through a slot formed between the magnetic pole teeth 10. A rotating magnetic field is generated in the stator 2 by supplying an alternating current to the stator coil 8.
  • the rotor 4 has a first rotor member 15, a second rotor member 16, and a disc-like rotor base 61.
  • the first rotor member 15, the second rotor member 16, and the rotor base 61 are fixed to each other in a state where they are arranged in the axial direction of the rotor 4.
  • a rotor base 61 is fixed to the rotary shaft 3.
  • the first rotor member 15 has a cylindrical first iron core member 17 and a first magnet group 18 provided on the inner periphery of the first iron core member 17.
  • the second rotor member 16 has a cylindrical second iron core member 19 and a second magnet group 20 provided on the inner periphery of the second iron core member 19.
  • the first magnet group 18 and the second magnet group 20 are adjacent to each other in the axial direction of the rotor 4.
  • the first magnet group 18 has a plurality of first magnets 181 arranged in the circumferential direction of the rotor 4. The relationship between the number of first magnets 181 and the magnetic poles is the same as in the first embodiment. Each first magnet 181 faces the stator 2 in the radial direction of the rotor 4.
  • the second magnet group 20 has a plurality of second magnets 201 arranged in the circumferential direction of the rotor 4.
  • the relationship between the number of the second magnets 201 and the magnetic poles is the same as in the first embodiment. Further, the positional relationship between the first magnet 181 and the second magnet 201 in the circumferential direction of the rotor 4 is the same as that in the first embodiment.
  • Each second magnet 201 faces the stator 2 in the radial direction of the rotor 4.
  • the first and second rotor members 15 and 16 are fixed to each other with the side surface 17a of the first core member 17 and the side surface 19a of the second core member 19 facing each other.
  • the second rotor member 16 is fixed to the rotor base 61 with the side surface opposite to the side surface 19 a of the second iron core member 19 facing the rotor base 61.
  • FIG. 26 is an enlarged perspective view showing the side surface 17a of the first core member 17 of FIG.
  • a plurality (four in this example) of first convex portions 31 are provided on the side surface 17 a of the first iron core member 17 at intervals in the circumferential direction of the rotor 4.
  • the same number of first concave portions 32 as the number of the first convex portions 31 are provided on the side surface 19 a of the second iron core member 19 at intervals in the circumferential direction of the rotor 4.
  • the respective configurations of the first convex portion 31 and the first concave portion 32 and the positional relationship in the circumferential direction between the first convex portion 31 and the first concave portion 32 are the same as those in the first embodiment.
  • Positioning of the first rotor member 15 with respect to the second rotor member 16 in the circumferential direction and the radial direction is performed by the first convex portion 31 engaging with the first concave portion 32 in the circumferential direction. Yes.
  • a plurality of through holes are provided as first bolt through holes 21 in the first and second iron core members 17 and 19, respectively.
  • a plurality of screw holes (not shown) are provided in the rotor base 61 so as to coincide with the circumferential positions of the first bolt through holes 21.
  • Bolts 23 that are sequentially passed through the first bolt through holes 21 of the first and second iron core members 17 and 19 are attached to the screw holes of the rotor base 61.
  • the first and second iron core members 17 and 19 are put together on the rotor base 61 by the respective bolts 23 that are sequentially passed through the first bolt through holes 21 of the first and second iron core members 17 and 19. It is concluded.
  • Other configurations are the same as those in the first embodiment.
  • the procedure for manufacturing the rotor 4 by combining the first and second rotor members 15 and 16 is the same as that of the first embodiment.
  • the first convex portion 31 becomes the first concave portion 32.
  • the engagement can be made in the circumferential direction, and the positioning of the first rotor member 16 in the circumferential direction and the radial direction with respect to the second rotor member 16 can be more reliably and easily performed. Thereby, the productivity of the rotor 4 can be improved.
  • each of the first and second iron core members 17 and 19 is an integrated iron core member that is not divided into a plurality of divided blocks.
  • at least one of the second core members 17 and 19 may be a collective core member divided into a plurality of divided blocks.
  • the assembly core member is configured to have a cylindrical main body core block and a plurality of arc-shaped core blocks attached to the inner periphery of the main body core block as a plurality of divided blocks.
  • each arc-shaped iron core block is attached with a magnet that is provided on the aggregate core member among the first magnet 181 and the second magnet 201.
  • the main body core block and the arc-shaped core block one of the second recesses similar to that of the fourth embodiment is provided, and the other is engaged with the second recess in the circumferential direction.
  • the same 2nd convex part is provided.
  • the main body core block is provided with a plurality of second bolt through holes, which are the same long holes as in the fourth embodiment, and each arc-shaped core block is formed by the bolt passed through each second bolt through hole. Fastened to the inner periphery of the core block.
  • the first bolt through hole 21 provided in the assembly core member may be provided in the main body core block or may be provided in the arc-shaped core block.
  • the first bolt through hole 21 is provided in each of the first and second iron core members 17 and 19, and the screw hole to which the bolt 23 passed through the first bolt through hole 21 is attached.
  • the second core member 19 is provided with a screw hole, and the bolt 23 passed through the first bolt through hole 21 of the first core member 17 is replaced with the second core member. You may make it attach to 19 screw holes.
  • the second iron core member 19 is fixed to the rotor base 61 by, for example, another bolt or welding.
  • each of the rotor members 15 and 16 is fixed to the rotor base 61 with bolts.
  • the rotor members 15 and 16 fixed to each other with bolts are welded to the rotor base 61.
  • the rotor members 15 and 16 fixed to each other with bolts may be fixed to the inner surface of the cylindrical rotor base 61 by shrink fitting.
  • Embodiment 7 FIG.
  • the present invention is applied to a radial gap type rotating electrical machine in which the stator 2 and the rotor 4 face each other in the radial direction, but the stator 2 and the rotor 4 face each other in the axial direction.
  • the present invention may be applied to an axial gap type rotating electrical machine.
  • FIG. 27 is an exploded perspective view showing a rotary electric machine according to Embodiment 7 of the present invention.
  • the rotor 4 faces the annular stator 2 with a gap in the axial direction of the rotary shaft 3.
  • the rotor 4 is fixed to the rotating shaft 3. Thereby, the rotor 4 is rotated integrally with the rotating shaft 3 around the axis of the rotating shaft 3 while facing the stator 2 in the axial direction.
  • the stator 2 is arranged coaxially with the rotary shaft 3.
  • a stator coil (not shown)
  • a plurality of magnetic teeth 10 protrude from the core back 9 of the stator core 7 toward the rotor 4 along the axial direction.
  • the lead wires of the stator coil are passed through slots formed between the magnetic pole teeth 10.
  • a rotating magnetic field is generated in the stator 2 by supplying an alternating current to the stator coil.
  • the rotor 4 has an annular first rotor member 15, an annular second rotor member 16, and a disc-like rotor base 61.
  • the outer diameter of the first rotor member 15 is smaller than the inner diameter of the second rotor member 16.
  • the first rotor member 15 is disposed on the radially inner side than the second rotor member 16.
  • Each of the first and second rotor members 15 and 16 is fixed to the rotor base 61 in the axial direction of the rotor 4.
  • a rotor base 61 is fixed to the rotary shaft 3.
  • the first rotor member 15 includes an annular first iron core member 17 and a first magnet group 18 provided on a side surface of the first iron core member 17 on the stator 2 side.
  • the second rotor member 16 includes an annular second iron core member 19 and a second magnet group 20 provided on the side surface of the second iron core member 19 on the stator 2 side.
  • the outer peripheral surface of the first iron core member 17 and the inner peripheral surface of the second iron core member 19 are in contact with each other.
  • the first magnet group 18 and the second magnet group 20 are adjacent to each other in the radial direction of the rotor 4.
  • the first magnet group 18 has a plurality of first magnets 181 arranged in the circumferential direction of the rotor 4. The relationship between the number of first magnets 181 and the magnetic poles is the same as in the first embodiment. Each first magnet 181 faces the stator 2 in the axial direction of the rotor 4.
  • the second magnet group 20 has a plurality of second magnets 201 arranged in the circumferential direction of the rotor 4.
  • the relationship between the number of the second magnets 201 and the magnetic poles is the same as in the first embodiment.
  • Each second magnet 201 faces the stator 2 in the axial direction of the rotor 4.
  • the first and second magnets 181 and 201 adjacent to each other in the radial direction of the rotor 4 are shifted by a skew machine angle ⁇ ° in the circumferential direction of the rotor 4. That is, the rotor 4 has a step skew structure in which the magnetic poles of the first rotor member 15 are shifted in the circumferential direction with respect to the magnetic poles of the second rotor member 16.
  • the first iron core member 17 is fixed to the rotor base 61 with the side surface 17a opposite to the stator 2 side facing the rotor base 61.
  • the second rotor member 16 is fixed to the rotor base 61 with the side surface 19 a opposite to the stator 2 side facing the rotor base 61.
  • FIG. 28 is an enlarged perspective view showing the side surface 17a of the first iron core member 17 of FIG. A plurality (four in this example) of first convex portions 31 ⁇ / b> A are provided on the side surface 17 a of the first iron core member 17 at intervals in the circumferential direction of the rotor 4.
  • the rotor base 61 is provided with the same number of first concave portions 32 ⁇ / b> A as the number of the first convex portions 31 ⁇ / b> A at intervals in the circumferential direction of the rotor 4.
  • Each configuration of the first convex portion 31A and the first concave portion 32A and the positional relationship in the circumferential direction between the first convex portion 31A and the first concave portion 32A are the first convex portions in the first embodiment.
  • the configuration of each of the first and second concave portions 32 and the positional relationship in the circumferential direction between the first convex portion 31 and the first concave portion 32 are the same.
  • FIG. 29 is an enlarged perspective view showing a side surface 19a of the second core member 19 of FIG.
  • a plurality (four in this example) of first convex portions 31 ⁇ / b> B are provided on the side surface 19 a of the second iron core member 19 at intervals in the circumferential direction of the rotor 4.
  • the rotor base 61 is provided with the same number of first concave portions 32 ⁇ / b> B as the number of the first convex portions 31 ⁇ / b> B at intervals with respect to the circumferential direction of the rotor 4.
  • the respective configurations of the first convex portion 31B and the first concave portion 32B and the positional relationship in the circumferential direction between the first convex portion 31B and the first concave portion 32B are the first convex portions in the first embodiment.
  • the configuration of each of the first and second concave portions 32 and the positional relationship in the circumferential direction between the first convex portion 31 and the first concave portion 32 are the same.
  • the direction in which the first convex portion 31A engages with the first concave portion 32A and the direction in which the first convex portion 31B engages with the first concave portion 32B are in the circumferential direction of the rotor 4. It is in the opposite direction.
  • Positioning of the first rotor member 15 in the circumferential direction and the radial direction with respect to the rotor base 61 is performed by engaging the first convex portion 31A with the first concave portion 32A in the circumferential direction. Further, the positioning of the second rotor member 16 with respect to the rotor base 61 in the circumferential direction and the radial direction is performed by the first convex portion 31B engaging the first concave portion 32B in the circumferential direction. .
  • the first iron core member 17 has a plurality of through holes as first bolt through holes 21A
  • the second iron core member 19 has a plurality of through holes as first bolt through holes 21B
  • the rotor base 61 includes a plurality of screw holes 22A that face the first bolt through holes 21A in the first iron core member 17 in the axial direction, and an axis line in the first bolt through holes 21B in the second iron core member 19.
  • a plurality of screw holes 22B facing each other are provided.
  • Bolts 23A passed through the first bolt through holes 21A are attached to the respective screw holes 22A of the rotor base 61, and the respective screw holes 22B of the rotor base 61 are passed through the first bolt through holes 21B.
  • Bolts 23B are attached.
  • the first iron core member 17 is fastened to the rotor base 61 by a bolt 23A passed through the first bolt through hole 21A.
  • the second iron core member 19 is fastened to the rotor base 61 by bolts 23B passed through the first bolt through holes 21B.
  • Other configurations are the same as those in the first embodiment.
  • each first convex portion 31 ⁇ / b> A of the first rotor member 15 is moved to the rotor base 61.
  • Each first recess 32A is inserted into the first recess insertion portion, and the first projection engaging portion of the first projection 31A is fitted in the recess engaging portion of the first recess 32A.
  • the first rotor member 15 is rotated with respect to the rotor base 61.
  • the first rotor member 15 is positioned with respect to the rotor base 61 in the circumferential direction and the radial direction.
  • the first core member 17 is fastened to the rotor base 61 by passing the bolts 23A through the first bolt through holes 21A and attaching the bolts 23A to the respective screw holes 22A of the rotor base 61.
  • the first rotor member 15 is fixed to the rotor base 61.
  • the second rotor member 16 is also fixed to the rotor base 61 in the same manner as the first rotor member 15. That is, the first convex portions 31B of the second rotor member 16 are inserted into the first concave portion insertion portions of the first concave portions 32B of the rotor base 61, and the first convex portions 31B of the first convex portions 31B.
  • Each of the second rotor members 16 is rotated with respect to the rotor base 61 in a direction in which the protrusion engaging portions of the first recess 32 ⁇ / b> B fit into the recess engaging portions of the first recess 32 ⁇ / b> B. Thereby, the positioning of the second rotor member 16 with respect to the rotor base 61 in the circumferential direction and the radial direction is performed.
  • the circumferential direction component of the magnetic repulsive force and the magnetic attractive force generated between the first magnet 181 and the second magnet 201 causes the convex engaging portion of the first convex portion 31B to be the first concave portion.
  • positioning of the second rotor member 16 with respect to the rotor base 61 in the circumferential direction and the radial direction is more reliably performed.
  • the second iron core member 19 is fastened to the rotor base 61 by passing the bolts 23B through the first bolt through holes 21B and attaching the bolts 23B to the screw holes 22B of the rotor base 61.
  • the second rotor member 16 is fixed to the rotor base 61. In this way, the first and second rotor members 15 and 16 are fixed to the rotor base 61.
  • the second rotor member 16 is fixed to the rotor base 61.
  • the second rotor member 16 is fixed to the rotor.
  • the first rotor member 15 may be fixed to the rotor base 61 after being fixed to the base 61.
  • the first protrusions 31A and 31B are replaced with the first recesses 32A and 32B.
  • the productivity of the rotor 4 can be improved.
  • the first convex portion 31 ⁇ / b> A is provided in the first iron core member 17 and the first concave portion 32 ⁇ / b> A is provided in the rotor base 61, but the first iron core member 17 has the first
  • the first convex portion 31 ⁇ / b> A may be provided on the rotor base 61.
  • the first convex portion 31 ⁇ / b> A may be formed of a single material with the first core member 17, or separate from the first core member 17, the second core member 19, and the rotor base 61. It may be a member.
  • the first convex portion 31 ⁇ / b> B is provided on the second iron core member 19 and the first concave portion 32 ⁇ / b> B is provided on the rotor base 61. May be provided, and the first protrusion 31B may be provided on the rotor base 61.
  • the first convex portion 31 ⁇ / b> B may be formed of a single material with the second core member 19, or separate from the first core member 17, the second core member 19, and the rotor base 61. It may be a member.
  • all the first bolt through holes 21A of the first core member 17 are round holes, but at least each of the first bolt through holes 21A is the same as in the third embodiment.
  • One of them may be a long hole along the circumferential direction of the rotor 4.
  • the bolt 23A passed through the first bolt through hole 21A which is a long hole, can be used as a jack bolt, and the same effect as in the third embodiment can be obtained.
  • the first convex portion 31 is provided in the first iron core member 17 and the first concave portion 32 is provided in the second iron core member 19, but the first iron core is not provided.
  • the first concave portion 32 may be provided in the member 17, and the first convex portion 31 may be provided in the second iron core member 19.
  • the first convex portion 31 may be formed of a single material with the second core member 19, or may be a separate member from the first and second core members 17, 19. .
  • each of the first convex portions 31, 31A, 31B and the first concave portions 32, 32A, 32B has the same configuration as that of the first embodiment. Applying the same configuration as in the second embodiment in which the width of one convex engaging portion is widened toward the projecting direction end of the first convex portion 31 to the first convex portions 31, 31A, 31B, Even if the same configuration as that of the second embodiment in which the width of the first recess engaging portion is widened toward the bottom surface in the depth direction of the first recess 32 is applied to the first recesses 32, 32A, and 32B. Good.
  • the 1st convex part engaging part of the 1st convex part 31, 31A, 31B just fits in the 1st recessed part engaging part of the 1st recessed part 32, 32A, 32B.
  • the first convex portion engaging portions of the first convex portions 31, 31A, 31B may be fitted into the first concave portion engaging portions of the first concave portions 32, 32A, 32B by press-fitting. . If it does in this way, the state where the 1st convex part engagement part was fitted in the 1st concave part engagement part can be held still more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電機の回転子では、第1の鉄心部材に設けられた第1の磁石群と、第2の鉄心部材に設けられた第2の磁石群とが、軸線方向について互いに隣接している。第1の磁石群は、周方向へ並んでいる複数の第1の磁石を有している。第2の磁石群は、周方向へ並んでいる複数の第2の磁石を有している。互いに隣接する同極の第1及び第2の磁石は、周方向へ特定の角度でずれている。第1及び第2の鉄心部材のうち、一方には第1の凹部が設けられ、他方には第1の凹部に周方向について係合する第1の凸部が設けられている。

Description

回転電機の回転子
 この発明は、複数の磁石が鉄心に設けられている回転電機の回転子に関するものである。
 従来、軸線方向へ並んで回転軸に取り付けられる第1ブロック及び第2ブロックのうち、第1ブロックの外周面に複数の第1磁石を回転方向へ並べて固定するとともに、第2ブロックの外周面に複数の第2磁石を回転方向へ並べて固定し、第1磁石及び第2磁石の同極を回転方向へずらすことにより段スキュー構造を形成した電動機のロータが知られている。複数の第1磁石は、その磁極を回転方向へ交互に異ならせて第1ブロックの外周面に固定されている。複数の第2磁石は、その磁極を回転方向へ交互に異ならせて第2ブロックの外周面に固定されている(例えば特許文献1参照)。
特開2002-58184号公報
 しかし、反対極の第1磁石同士及び反対極の第2磁石同士が回転方向について隣り合っているだけでなく、回転軸の軸線方向についても同極の第1磁石及び第2磁石が互いに隣り合っているので、回転軸に取り付けられている第1ブロック及び第2ブロックに第1磁石及び第2磁石を固定するときに、回転方向及び軸線方向の両方から強い磁力を受けることになる。従って、第1磁石及び第2磁石を近づけて配置する作業に手間がかかってしまい、電動機のロータの生産性が低下してしまう。
 この発明は、上記のような課題を解決するためになされたものであり、生産性の向上を図ることができる回転電機の回転子を得ることを目的とする。
 この発明による回転電機の回転子は、第1の回転子部材、及び第2の回転子部材を備え、第1の回転子部材は、第1の鉄心部材と、第1の鉄心部材に設けられている第1の磁石群とを有し、第2の回転子部材は、第2の鉄心部材と、第2の鉄心部材に設けられている第2の磁石群とを有し、第1及び第2の鉄心部材は、軸線方向について並んだ状態で互いに固定されており、第1及び第2の磁石群は、軸線方向について互いに隣接しており、第1の磁石群は、周方向へ並んでいる複数の第1の磁石を有し、第2の磁石群は、周方向へ並んでいる複数の第2の磁石を有し、互いに隣接する同極の第1及び第2の磁石同士は、周方向へ特定の角度でずれており、第1及び第2の鉄心部材のうち、一方には第1の凹部が設けられ、他方には第1の凹部に周方向について係合する第1の凸部が設けられている。
 また、この発明による回転電機の回転子は、第1の回転子部材、第2の回転子部材、及び回転子ベースを備え、第1の回転子部材は、第1の鉄心部材と、第1の鉄心部材に設けられている第1の磁石群とを有し、第2の回転子部材は、第2の鉄心部材と、第2の鉄心部材に設けられている第2の磁石群とを有し、第1及び第2の鉄心部材は、径方向について互いに隣接し、かつ軸線方向について回転子ベースに固定されており、第1及び第2の磁石群は、径方向について互いに隣接しており、第1の磁石群は、周方向へ並んでいる複数の第1の磁石を有し、第2の磁石群は、周方向へ並んでいる複数の第2の磁石を有し、互いに隣接する同極の第1及び第2の磁石同士は、周方向へ特定の角度でずれており、第1及び第2の鉄心部材の少なくともいずれかと回転子ベースとのうち、一方には第1の凹部が設けられ、他方には第1の凹部に周方向について係合する第1の凸部が設けられている。
 この発明による回転電機によれば、周方向について第1の凸部を第1の凹部に係合させることにより、第1及び第2の回転子部材の周方向及び径方向についての位置決めをより正確かつ容易に行うことができる。また、第1の磁石と第2の磁石との間で発生する磁気反発力及び磁気吸引力の周方向成分によって、第1の凸部と第1の凹部との係合状態をより確実に保持することができる。このようなことから、回転子の生産性の向上を図ることができる。
この発明の実施の形態1による回転電機を示す斜視図である。 図1の回転電機を示す正面図である。 図1の回転子を示す斜視図である。 図3の回転子を示す分解斜視図である。 図3の第1及び第2の磁石を外した第1の鉄心部材及び第2の鉄心部材を示す斜視図である。 図4の第1の回転子部材を示す正面図である。 図4の第2の回転子部材側から見たときの第1の回転子部材を示す背面図である。 図4の第1の回転子部材側から見たときの第2の回転子部材を示す正面図である。 図6の第1の回転子部材の第1の凸部を示す拡大斜視図である。 図7の第1の凸部を図8の第1の凹部に挿入するときの状態を示す斜視図である。 図10の第1の凸部を凹部差込部に差し込んだときの第1及び第2の回転子部材の周方向の位置関係を示す正面図である。 図10の第1の凸部係合部が第1の凹部係合部に嵌っているときの第1及び第2の回転子部材の周方向の位置関係を示す正面図である。 この発明の実施の形態1による回転子の他の例を示す斜視図である。 この発明の実施の形態2による回転電機の回転子の第1の凸部を示す要部斜視図である。 この発明の実施の形態2による回転電機の回転子の第1の凹部を示す要部斜視図である。 この発明の実施の形態3による回転電機の回転子において第2の回転子部材側から見たときの第1の回転子部材を示す背面図である。 この発明の実施の形態3による第1の凸部が第1の凹部差込部に差し込まれる位置にあるときの第1及び第2の回転子部材の位置関係を示す正面図である。 この発明の実施の形態3による第1の凸部が第1の凹部に係合しているときの第1及び第2の回転子部材の位置関係を示す正面図である。 この発明の実施の形態4による回転電機の回転子における第1の回転子部材を示す斜視図である。 この発明の実施の形態4による回転電機の回転子における第2の回転子部材を示す斜視図である。 図19の弧状鉄心ブロックの内周部を示す斜視図である。 図19の本体鉄心ブロックの外周部を示す斜視図である。 図19の内輪部の内周面を示す拡大斜視図である。 この発明の実施の形態5による回転子における第1の鉄心部材の弧状鉄心ブロックを示す斜視図である。 この発明の実施の形態6による回転電機を示す分解斜視図である。 図25の第1の鉄心部材の側面を示す拡大斜視図である。 この発明の実施の形態7による回転電機を示す分解斜視図である。 図27の第1の鉄心部材の側面を示す拡大斜視図である。 図27の第2の鉄心部材の側面を示す拡大斜視図である。
 以下、この発明の好適な実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1による回転電機を示す斜視図である。また、図2は、図1の回転電機を示す正面図である。図において、回転電機1は、筒状の電機子である固定子2と、固定子2と同軸に配置されている回転軸3と、回転軸3に固定され回転軸3と一体に固定子2に対して回転される回転子4とを有している。この例では、筒状の固定子2の径方向内側に回転子4が配置されたインナロータ型の回転電機が回転電機1とされている。
 固定子2は、例えば鉄等の磁性材料で構成されている円筒状の固定子コア7と、固定子コア7に設けられている固定子コイル8とを有している。
 固定子コア7には、円筒状のコアバック9と、コアバック9の内周部から径方向内側へそれぞれ突出している複数の磁極ティース10とを有している。複数の磁極ティース10は、固定子コア7の周方向へ間隔を置いて設けられている。固定子コイル8の導線は、各磁極ティース10間に形成されているスロットに通されている。固定子2には、固定子コイル8への交流電流の供給により回転磁界が生じる。
 回転子4は、径方向について固定子2に隙間を介して対向している。また、回転子4は、回転軸3と同軸に配置されている。回転子4の中央には、貫通穴である軸用穴11が設けられている。軸用穴11には、回転軸3が嵌められている。回転軸3の外周面には、回転軸3の軸線に沿ったキー溝12が設けられている。軸用穴11の内面には、回転軸3の軸線に沿ったキー溝13が設けられている。キー溝12,13には、共通のキーが嵌められている。これにより、回転軸3に対する回転子4の位置は、回転子4の回転方向、即ち回転子4の周方向について固定されている。回転軸3及び回転子4は、固定子2の回転磁界の発生により、固定子2に対して回転軸3の軸線を中心に回転する。
 図3は、図1の回転子4を示す斜視図である。また、図4は、図3の回転子4を示す分解斜視図である。回転子4は、回転軸3の軸線方向について並んで配置されている第1の回転子部材15及び第2の回転子部材16を有している。
 第1の回転子部材15は、例えば鉄等の磁性材料で構成されている第1の鉄心部材17と、第1の鉄心部材17に設けられている第1の磁石群18とを有している。
 第1の鉄心部材17は、円柱状のボス部171と、ボス部171の径方向外側でボス部171の外周を囲む円環状の外環部172と、ボス部171と外環部172とを繋ぐ複数(この例では、4つ)のリブ173とを有している。これにより、第1の鉄心部材17の外周面は、回転軸3の軸線を中心とする円筒面になっている。
 第1の磁石群18は、回転子4の周方向へ並んでいる複数の第1の磁石181を有している。この例では、40個の第1の磁石181が第1の鉄心部材17の外周面に周方向へ並んで固定されている。各第1の磁石181は、回転子4の径方向について固定子2に対向している。
 複数の第1の磁石181は、回転子4の周方向へ磁極を交互に異ならせて並べられている。これにより、回転子4の周方向についての互いに隣り合う2つの第1の磁石181のうち、一方の第1の磁石181の磁極がS極になっており、他方の第1の磁石181の磁極がN極になっている。
 第2の回転子部材16は、例えば鉄等の磁性材料で構成されている第2の鉄心部材19と、第2の鉄心部材19に設けられている第2の磁石群20とを有している。
 第2の鉄心部材19は、円柱状のボス部191と、ボス部191の径方向外側でボス部191の外周を囲む円環状の外環部192と、ボス部191と外環部192とを繋ぐ複数(この例では、4つ)のリブ193とを有している。これにより、第2の鉄心部材19の外周面は、回転軸3の軸線を中心とする円筒面になっている。
 第2の磁石群20は、回転子4の周方向へ並んでいる複数の第2の磁石201を有している。第2の磁石201の数は、第1の磁石181の数と同じになっている。従って、この例では、40個の第2の磁石201が第2の鉄心部材19の外周面に周方向へ並んで固定されている。各第2の磁石201は、回転子4の径方向について固定子2に対向している。
 第2の磁石群20では、複数の第2の磁石201が、回転子4の周方向へ磁極を交互に異ならせて並べられている。これにより、回転子4の周方向について互いに隣り合う2つの第2の磁石201のうち、一方の第2の磁石201の磁極がS極になっており、他方の第2の磁石201の磁極がN極になっている。
 軸用穴11は、第1の鉄心部材17のボス部171の中央、及び第2の鉄心部材19のボス部191の中央のそれぞれに設けられている。第1の鉄心部材17の軸用穴11、及び第2の鉄心部材19の軸用穴11には、共通の回転軸3が嵌まっている。これにより、第1及び第2の回転子部材15,16は、回転軸3と同軸に配置されている。また、回転子4の回転方向についての回転軸3に対する第1及び第2の回転子部材15,16のそれぞれの位置決めは、キーがキー溝12,13に嵌められることにより行われている。
 第1及び第2の回転子部材15,16は、第1の鉄心部材17の側面17aと、第2の鉄心部材19の側面19aとを軸線方向について互いに対向させて配置されている。これにより、第1及び第2の磁石群18,20は、回転子4の軸線方向について互いに隣接している。
 第1の鉄心部材17の外環部172には、複数の第1のボルト通し穴21が周方向へ互いに間隔を置いて設けられている。各第1のボルト通し穴21は、外環部172を軸線方向へ貫通する貫通穴である。この例では、4つの第1のボルト通し穴21が外環部172に設けられており、各第1のボルト通し穴21が断面円形の丸穴になっている。
 第2の鉄心部材19の外環部192の側面19aには、各第1のボルト通し穴21の数と同数のねじ穴22が周方向へ互いに間隔を置いて設けられている。従って、この例では、4つのねじ穴22が外環部192に設けられている。各ねじ穴22の周方向位置は、各第1のボルト通し穴21の周方向位置と一致している。
 第1の鉄心部材17の各第1のボルト通し穴21には、ボルト23がそれぞれ通されている。各第1のボルト通し穴21に通された複数のボルト23は、第2の鉄心部材19の各ねじ穴22にそれぞれ取り付けられている。第1及び第2の回転子部材15,16は、第1及び第2の鉄心部材17,19の側面17a,19a同士を接触させた状態で、各第1のボルト通し穴21に通された各ボルト23の締結により互いに固定されている。
 図5は、図3の第1及び第2の磁石181,201を外した第1の鉄心部材17及び第2の鉄心部材19を示す斜視図である。第1の鉄心部材17の外環部172の外周面には、第1の鉄心部材17の周方向へ並ぶ複数の磁石配置溝172aが設けられている。互いに隣り合う2つの磁石配置溝172aは、第1の鉄心部材17の軸線に沿った溝壁172bで仕切られている。溝壁172bの高さは、第1の磁石181の厚さよりも低くなっている。各第1の磁石181は、磁石配置溝172aに嵌った状態で例えば接着剤等によって磁石配置溝172aに固定されている。
 第2の鉄心部材19の外環部192の外周面には、第2の鉄心部材19の周方向へ並ぶ複数の磁石配置溝192aが設けられている。互いに隣り合う2つの磁石配置溝192aは、第2の鉄心部材19の軸線に沿った溝壁192bで仕切られている。溝壁192bの高さは、第2の磁石201の厚さよりも低くなっている。各第2の磁石201は、磁石配置溝192aに嵌った状態で例えば接着剤等によって磁石配置溝192aに固定されている。
 図6は、図4の第1の回転子部材15を示す正面図である。また、図7は、図4の第2の回転子部材16側から見たときの第1の回転子部材15を示す背面図である。さらに、図8は、図4の第1の回転子部材15側から見たときの第2の回転子部材16を示す正面図である。
 回転子4では、図6及び図8に示すように、回転軸3の軸線に沿って回転子4を見たとき、回転軸3の軸線とキー溝13とを通る直線を基準線Pとすると、基準線Pに対する各第2の磁石201の周方向位置が、基準線Pに対する各第1の磁石181の周方向位置に対して、機械角で特定の角度α°だけずれている。これにより、互いに隣接する同極の第1及び第2の磁石181,201は、回転子4の周方向へ特定の角度α°だけずれている。即ち、第2の回転子部材16の磁極は、第1の回転子部材15の磁極に対して、回転子4の周方向へ電気角β°=α°/7200°だけ位相をずらして配置されている。以後、電気角β°をスキュー角度として説明し、機械角α°をスキュー機械角度として説明する。
 第1の鉄心部材17の外環部172の側面17aには、図7に示すように、複数の第1の凸部31が設けられている。この例では、4つの第1の凸部31が第1の鉄心部材17に設けられている。また、この例では、各第1の凸部31と第1の鉄心部材17とが、同一材料で構成された単一材で形成されている。複数の第1の凸部31は、第1の鉄心部材17の周方向へ互いに間隔を置いて配置されている。
 第2の鉄心部材19の外環部192の側面19aには、図8に示すように、第1の凸部31の数と同数の第1の凹部32が設けられている。従って、この例では、4つの第1の凹部32が第2の鉄心部材19に設けられている。各第1の凹部32は、各第1の凸部31の周方向位置に合わせて第2の鉄心部材19の周方向へ互いに間隔を置いて配置されている。
 各第1の凸部31は、第1の凹部32に挿入されているとともに、回転子4の周方向について第1の凹部32に係合している。各第1の凸部31は、回転子4の周方向の同じ向きで各第1の凹部32にそれぞれ係合している。また、各第1の凸部31は、第1の凹部32に嵌る第1の凸部係合部311を有している。第1の凸部係合部311の幅方向は、回転子4の径方向に一致している。また、第1の凸部係合部311の幅は、第1の凸部31が第1の凹部32に係合する方向へ連続的に狭くなっている。即ち、第1の凸部係合部311の形状は、第1の凸部31の周方向一端部に向けて第1の凸部31の幅が連続的に狭くなるテーパ形状になっている。
 各第1の凹部32は、図8に示すように、第1の凹部差込部321と、回転子4の周方向へ第1の凹部差込部321から出ている第1の凹部係合部322とを有している。第1の凹部係合部322の幅方向は、回転子4の径方向に一致している。
 第1の凹部差込部321の大きさは、回転子4を軸線方向に沿って見たとき、第1の凸部31が収まる大きさになっている。この例では、回転子4の軸線方向に沿って見たとき、第1の凹部差込部321の形状が矩形状になっている。
 第1の凹部係合部322の幅は、第1の凸部31が第1の凹部32に係合する方向へ連続的に狭くなっている。即ち、第1の凹部係合部322の形状は、第1の凹部32の周方向一端部に向けて第1の凹部32の幅が連続的に狭くなるテーパ形状になっている。第1の凸部31の位置は、第1の凸部係合部311が第1の凹部係合部322に嵌ることにより、第1の凹部32に対して回転子4の周方向及び径方向について固定されている。
 図9は、図6の第1の回転子部材15の第1の凸部31を示す拡大斜視図である。第1の凸部31は、第1の鉄心部材17の外環部172の側面17aから軸線方向に沿って突出している。この例では、回転子4の径方向についての第1の凸部31の幅が第1の凸部31の突出方向のどの位置でも一定になっている。また、この例では、回転子4の径方向についての第1の凹部32の幅も第1の凹部32の深さ方向のどの位置でも一定になっている。
 次に、回転子4の製造方法について説明する。回転子4を製造するときには、予め作製しておいた第1及び第2の回転子部材15,16を互いに組み合わせる。
 第1及び第2の回転子部材15,16を互いに組み合わせるときには、第1の鉄心部材17の側面17aと、第2の鉄心部材19の側面19aとを互いに向き合わせた状態で、各第1の凸部31を各第1の凹部32にそれぞれ挿入する。
 図10は、図7の第1の凸部31を図8の第1の凹部32に挿入するときの状態を示す斜視図である。なお、図10では、簡単のため、第1の回転子部材15のうち、第1の凸部31のみを示し、他の部分の図示は省略している。第1の凸部31を第2の凹部32に挿入するときには、図10の矢印A1で示すように、まず、第1の回転子部材15を第2の回転子部材16に近づけながら、第1の凸部31を第1の凹部差込部321に差し込む。
 図11は、図10の第1の凸部31を凹部差込部321に差し込んだときの第1及び第2の回転子部材15,16の周方向の位置関係を示す正面図である。第1の凹部差込部321に差し込んでいる状態では、同極の第1及び第2の磁石181,191同士が軸線方向について完全に隣り合っている。即ち、第1の凸部31を第1の凹部差込部321に差し込んでいる状態では、同極の第1及び第2の磁石181,191同士が周方向について同じ位相位置に存在している。従って、第1の凸部31を第1の凹部差込部321に差し込むと、S極の第1の磁石181にS極の第2の磁石201が軸線方向について対向し、N極の第1の磁石181にN極の第2の磁石201が軸線方向について対向する。なお、図11では、第2の磁石201が第1の磁石181に隠れているので第2の磁石201は示されていない。
 一方、第1の凸部31を第1の凹部差込部321に差し込んでいる状態では、第1の鉄心部材17の各第1のボルト通し穴21及びキー溝13の位置が、第2の鉄心部材19の各ねじ穴22及びキー溝13の位置に対してスキュー機械角度α°だけそれぞれ周方向へずれている。
 この後、第1の凸部係合部311が第1の凹部係合部322に嵌る方向、即ち図10の矢印B1の方向へ第1の回転子部材15を第2の回転子部材16に対して回転させる。これにより、第1の凸部係合部311が第1の凹部係合部322に嵌り、第1の凸部31が第1の凹部32に周方向及び径方向について係合する。
 図12は、図10の第1の凸部係合部311が第1の凹部係合部322に嵌っているときの第1及び第2の回転子部材15,16の周方向の位置関係を示す正面図である。第1の凸部係合部311が第1の凹部係合部322に嵌る方向へ第1の回転子部材15を第2の回転子部材16に対して回転させると、各第1の磁石181が各第2の磁石201に対して周方向へずれる。これにより、第1の回転子部材15の磁極が第2の回転子部材16の磁極に対して周方向へずれた段スキュー構造が形成される。
 第1の凸部係合部311が第1の凹部係合部322に嵌って第1の凸部31が第1の凹部32に係合すると、第1の回転子部材15が第2の回転子部材16に対して周方向及び径方向のいずれの方向についても位置決めされる。このとき、第1の磁石181は、同極の第2の磁石201から磁気反発力を周方向へ受け、反対極の第2の磁石201から磁気吸引力を周方向へ受ける。即ち、図10の矢印B1の方向へ第1の凸部31がずれることにより、N極の第1の磁石181がN極の第2の磁石201から磁気反発力を周方向へ受けるとともにS極の第2の磁石201から磁気吸引力を周方向へ受け、S極の第1の磁石181がS極の第2の磁石201から磁気反発力を周方向へ受けるとともにN極の第2の磁石201から磁気吸引力を周方向へ受ける。これにより、第1の磁石181と第2の磁石201との間で発生する磁気反発力及び磁気吸引力の周方向成分が、第1の凸部31を第1の凹部32に係合させる方向へ加わり、第1の凸部31が第1の凹部32に係合している状態が保持される。
 また、第1の凸部31が第1の凹部32に係合すると、第1の鉄心部材17が第2の鉄心部材19に対して周方向及び径方向のいずれにも位置決めされるので、第1及び第2の鉄心部材17,19のそれぞれの軸用穴11が同軸に位置決めされるとともに、第1及び第2の鉄心部材17,19のそれぞれのキー溝13の位置が周方向及び径方向について一致する。さらに、このとき、各第1のボルト通し穴21の位置も、各ねじ穴22の位置に周方向及び径方向について一致する。
 図12では、同極の第2の磁石201に対向している第1の磁石181の面積が、反対極の第2の磁石201に対向している第1の磁石181の面積よりも大きくなっている。従って、第1の回転子部材15と第2の回転子部材16との間では全体として磁気反発力が軸線方向へ生じている。
 従って、第1の回転子部材15を第2の回転子部材16に対して回転させて第1の凸部31を第2の凹部32に係合させた後、第1の回転子部材15と第2の回転子部材16とが互いに離れないように、第1の鉄心部材17の各第1のボルト通し穴21にボルト23をそれぞれ通し、各ボルト23を第2の鉄心部材19の各ねじ穴22に取り付ける。この後、各ボルト23を締め付けて、第1の鉄心部材17の側面17aと、第2の鉄心部材19の側面19aとを接触させた状態で、第1及び第2の鉄心部材17,19を互いに固定する。これにより、回転子4が完成する。
 この後、回転軸3のキー溝12の周方向位置と軸用穴11のキー溝13の周方向位置とを互いに一致させながら、回転子4の軸用穴11に回転軸3を嵌める。この後、キー溝12及びキー溝13で形成された空間にキーを嵌める。これにより、回転子4が回転軸3に対して周方向について位置決めされ、回転子4が回転軸3に固定される。
 このような回転子4では、第1の凸部31が第1の鉄心部材17に設けられ、第1の凸部31が周方向について係合する第1の凹部32が第2の鉄心部材19に設けられており、第1の凹部32が凹部係合部322を有し、第1の凸部31が凹部係合部322に嵌る凸部係合部311を有しているので、周方向について第1の凸部31を第1の凹部32に係合させることにより、第2の回転子部材16に対する第1の回転子部材15の周方向及び径方向についての位置決めをより正確かつ容易に行うことができる。また、互いに隣接する同極の第1及び第2の磁石181,201同士が周方向へ特定の角度でずれているので、第1の磁石181と第2の磁石201との間で発生する磁気反発力及び磁気吸引力の周方向成分を大きくすることができ、第1の凸部31と第1の凹部32との係合状態をより確実に保持することができる。このようなことから、第1及び第2の回転子部材15,16の組み合わせ作業を容易に行うことができ、回転子4の生産性の向上を図ることができる。また、第1の凸部31が第1の凹部32に周方向について係合することによって、第1及び第2の回転子部材15,16を互いに締結するボルト23の負担を軽減することができ、ボルト23の数を減らすことができる。これにより、ボルト23の締結作業の手間を軽減させることができる。さらに、第1のボルト通し穴21の数及びねじ穴22の数も減らすことができるので、第1及び第2の鉄心部材17,19の強度を確保しやすくすることもできる。
 また、上記の例では、第1の回転子部材15及び第2の回転子部材16としての2つの回転子部材が軸線方向について並んだ状態で互いに固定されているが、図13に示すように、第1の回転子部材15、第2の回転子部材16及び1つ以上の追加の回転子部材30としての3つ以上の回転子部材を軸線方向について並べた状態で互いに固定してもよい。この場合、追加の回転子部材30の構成は第1の回転子部材15と同様とされ、互いに隣り合う回転子部材のそれぞれの鉄心部材のうち、一方に第1の凸部31が設けられ、他方に第1の凹部32が設けられる。また、この場合、追加の回転子部材30の磁石群の各磁石は、第2の回転子部材16の各第2の磁石201に対して周方向へ特定の角度でずらされ、3段以上の段スキュー構造が形成される。
 実施の形態2.
 図14は、この発明の実施の形態2による回転電機の回転子の第1の凸部31を示す要部斜視図である。第1の鉄心部材17の側面17aから突出している各第1の凸部31では、第1の凸部係合部311の幅が第1の凸部31の突出方向端部に向かって連続的に広がっている。即ち、回転子4の径方向に沿った平面における各第1の凸部係合部311の断面形状は、第1の凸部31の突出方向端部、即ち第1の凸部31の高さ方向上端部に向かって連続的に広がるテーパ形状になっている。
 図15は、この発明の実施の形態2による回転電機の回転子の第1の凹部32を示す要部斜視図である。第1の凹部32では、第1の凹部差込部321の幅が第1の凹部32の深さ方向についてどの位置でも一定になっている。また、第1の凹部32では、第1の凹部係合部322の幅が第1の凹部32の深さ方向の底面に向かって連続的に広がっている。即ち、回転子4の径方向に沿った平面における第1の凹部差込部321の断面形状は一定の幅を持つ矩形状になっており、回転子4の径方向に沿った平面における第1の凹部係合部322の断面形状は第1の凹部32の深さ方向の底面に向かって連続的に広がるテーパ形状になっている。
 これにより、第1の凸部係合部311が第1の凹部係合部322に嵌っている状態では、第1の凸部係合部311と第1の凹部係合部322の内面とが回転子4の周方向及び径方向だけでなく軸線方向についても互いに係合し、第1の鉄心部材17が軸線方向について第2の鉄心部材19から外れることが阻止される。他の構成は実施の形態1と同様である。
 第1及び第2の回転子部材15,16を互いに組み合わせるときの手順も、実施の形態1と同様である。即ち、図10の矢印A1と同じ方向へ第1の回転子部材15を第2の回転子部材16に近づけながら、第1の凸部31を第1の凹部差込部321に差し込んだ後、第1の凸部係合部311が第1の凹部係合部322に嵌る方向、即ち図10の矢印B1と同じ方向へ第1の回転子部材15を第2の回転子部材16に対して回転させる。これにより、第1の凸部係合部311が第1の凹部係合部322に嵌る。第1の凸部係合部311の断面形状が第1の凸部31の突出方向端部に向かって広がるテーパ形状であり、第1の凹部係合部322の断面形状が第1の凹部32の深さ方向の底面に向かって広がるテーパ形状であることから、第1の凸部係合部311が第1の凹部係合部322に嵌ると、回転子4の周方向及び径方向だけでなく軸線方向についても第1の凸部31が第1の凹部32に係合する。
 第1の凸部31が第1の凹部32に係合している状態では、実施の形態1と同様に、第1の磁石181と第2の磁石201との間に生じる磁気反発力及び磁気吸引力の周方向成分が、第1の凸部31を第1の凹部32に係合させる方向へ加わることから、第1の凸部31と第1の凹部32との係合状態が保持される。また、同極の第2の磁石201に対向している第1の磁石181の面積が、反対極の第2の磁石201に対向している第1の磁石181の面積よりも大きくなっている。従って、第1の回転子部材15と第2の回転子部材16との間では全体として磁気反発力が軸線方向へ生じており、この磁気反発力は第1の凸部31を第1の凹部32に係合させる方向へ加わり、第1の凸部31が第1の凹部32に係合している状態が保持される。
 この後、第1の鉄心部材17の各第1のボルト通し穴21にボルト23をそれぞれ通し、各ボルト23を第2の鉄心部材19の各ねじ穴22に取り付け、各ボルト23を締め付けることにより、第1及び第2の鉄心部材17,19を互いに締結する。これにより、回転子4が完成する。
 この後、回転軸3のキー溝12の周方向位置と軸用穴11のキー溝13の周方向位置とを互いに一致させながら回転子4の軸用穴11に回転軸3を嵌め、キー溝12及びキー溝13で形成された空間にキーを嵌める。これにより、回転子4が回転軸3に対して周方向について位置決めされ、回転子4が回転軸3に固定される。
 このような回転子4では、第1の凸部係合部311の幅が第1の凸部31の突出方向端部に向かって広がっており、第1の凹部係合部322の幅が第1の凹部32の深さ方向の底面に向かって広がっているので、第1の凸部係合部311が第1の凹部係合部322に嵌ることにより、回転子4の周方向及び径方向だけでなく軸線方向についても第1の凸部31を第1の凹部32に係合させることができる。これにより、第2の鉄心部材19に対する第1の鉄心部材17の位置決めをさらに確実にかつ容易に行うことができ、回転子4の生産性の向上をさらに図ることができる。また、ボルト23の数の削減によるボルト23の締結作業の軽減化をさらに図ることもでき、第1のボルト通し穴21及びねじ穴22のそれぞれの数の削減による第1及び第2の鉄心部材17,19の強度の確保をさらに図ることもできる。
 なお、上記の例では、第1及び第2の鉄心部材17,19がボルト23の締結により互いに固定されているが、第1の凸部係合部311が第1の凹部係合部322に嵌ることにより、第1の鉄心部材17が軸線方向について第2の鉄心部材19から外れないようにすることができるので、ボルト23はなくてもよい。このようにすれば、部品点数を削減することができ、回転子4の生産性の向上をさらに図ることができる。
 実施の形態3.
 図16は、この発明の実施の形態3による回転電機の回転子において第2の回転子部材16側から見たときの第1の回転子部材15を示す背面図である。第1の鉄心部材17の外環部172に設けられている複数の第1のボルト通し穴21の少なくともいずれかは、回転子4の周方向に沿った長穴21aになっている。この例では、4つの第1のボルト通し穴21のうち、回転子4の軸線に関して対称位置に存在する2つの第1のボルト通し穴21が長穴21aになっており、他の2つの第1のボルト通し穴21が丸穴21bになっている。
 各丸穴21bの周方向位置は、第1の凸部31が第1の凹部差込部321に差し込まれている状態でねじ穴22の周方向位置に一致し、第1の凸部係合部311が第1の凹部係合部322に嵌っている状態でねじ穴22の周方向位置からずれる位置に設定されている。
 各長穴21aの周方向の範囲は、第1の凸部31が第1の凹部差込部321に差し込まれている状態でも、第1の凸部係合部311が第1の凹部係合部322に嵌っている状態でも、ねじ穴22の周方向位置が各長穴21aの周方向の範囲に入るように設定されている。第1及び第2の鉄心部材17,19は、各長穴21aに通されているボルト23によって互いに締結されている。他の構成は実施の形態1と同様である。
 図17は、この発明の実施の形態3による第1の凸部31が第1の凹部差込部321に差し込まれる位置にあるときの第1及び第2の回転子部材15,16の位置関係を示す正面図である。第1の回転子部材15と第2の回転子部材16とを組み合わせるときには、まず、第1の鉄心部材17の側面17aと、第2の鉄心部材19の側面19aとを隙間を介して対向させた状態で、各長穴21a及び各丸穴21bの周方向位置を各ねじ穴22の周方向位置に合わせる。この後、各長穴21a及び各丸穴21bのそれぞれにボルト23を通し、各ボルト23を各ねじ穴22に取り付ける。これにより、第1の凸部31が第1の凹部差込部321に軸線方向について対向し、第1の凸部31が第1の凹部差込部321に差し込み可能になる。この状態では、図17に示すように、同極の第1の磁石181及び第2の磁石201のそれぞれの位置が周方向について一致し、第1の鉄心部材17のキー溝13が第2の鉄心部材19のキー溝13に対して周方向へスキュー機械角度α°だけずれている。
 この後、第1の磁石181と第2の磁石201との間で発生する磁気反発力に逆らって、各ボルト23を各ねじ穴22にそれぞれねじ込むことにより、第1の鉄心部材17が第2の鉄心部材19に接触するまで、第1の鉄心部材17を第2の鉄心部材19に向けて変位させる。即ち、各ボルト23をジャッキボルトとして用いることにより、第1の磁石181と第2の磁石201との間で発生する磁気反発力に逆らって、第1の鉄心部材17を第2の鉄心部材19に向けて変位させる。これにより、各第1の凸部31が各凹部差込部321に差し込まれる。
 この後、各丸穴21bに通されたボルト23を取り外し、各長穴21aに通されたボルト23を僅かに緩める。これにより、第1の回転子部材15が第2の回転子部材16に対して回転可能になる。
 この後、第1の凸部係合部311が第1の凹部係合部322に嵌る方向へ第1の回転子部材15を第2の回転子部材16に対して回転させる。このとき、ねじ穴22に取り付けられたボルト23によって第1の鉄心部材17が各長穴21aに沿って案内されるとともに、第1の磁石181と第2の磁石201との間で発生する磁気反発力及び磁気吸引力の周方向成分が第1の回転子部材15の回転の助けになる。これにより、第1の凸部係合部311が第1の凹部係合部322に嵌って第1の凸部31が第1の凹部32に係合する。このようにして、第2の回転子部材16に対する第1の回転子部材15の周方向及び径方向についての位置決めが行われる。
 図18は、この発明の実施の形態3による第1の凸部31が第1の凹部32に係合しているときの第1及び第2の回転子部材15,16の位置関係を示す正面図である。第1の凸部31が第1の凹部32に係合している状態では、各丸穴21bの位置がねじ穴22の位置に対して周方向へずれている。また、この状態では、同極の第1の磁石181及び第2の磁石201の一方の位置が他方の位置に対してスキュー機械角度α°だけ周方向へずれているとともに、第1及び第2の鉄心部材17,19のそれぞれのキー溝13の位置が周方向及び径方向について互いに一致している。
 この状態で、各長穴21aに通されている各ボルト23を増し締めすることにより、第1及び第2の回転子部材15,16が軸線方向についても互いに締結され、回転子4が完成する。
 この後の回転子4を回転軸3に固定する手順については、実施の形態1と同様である。
 このような回転子4では、複数の第1のボルト通し穴21の少なくともいずれかが、周方向に沿った長穴21aになっており、長穴21aに通されているボルト23によって第1及び第2の鉄心部材17,19が互いに締結されているので、長穴21aに通したボルト23を第2の鉄心部材19のねじ穴22に取り付けたまま、第1の回転子部材15を第2の回転子部材16に対して回転させて、第1の凸部係合部311を第1の凹部係合部322に嵌めることができる。また、長穴21aに通されたボルト23をねじ穴22にねじ込むことにより、第1の回転子部材15を第2の回転子部材16に向けて変位させることもできる。
 ここで、第1の鉄心部材17の側面17aが第2の鉄心部材19の側面19aに近づくと、第1の磁石181と第2の磁石201との間で磁気反発力が生じる。第1及び第2の回転子部材15,16が大型になると、第1及び第2の磁石181,201の大きさ及び数が増すため、第1及び第2の磁石181,201間の磁気反発力が大きくなり、第1及び第2の回転子部材15,16の組み合わせ作業が難しくなる。
 本実施の形態では、第1及び第2の磁石181,201間の磁気反発力が大きくなっても、長穴21aに通されたボルト23をねじ穴22にねじ込むことにより、磁気反発力に逆らって第1の回転子部材15を第2の回転子部材16に向けて変位させることができる。また、第1及び第2の回転子部材15が磁気反発力を受けている状態でも、第1の回転子部材15を第2の回転子部材16に対して回転させて、第1の凸部係合部311を第1の凹部係合部322に嵌めることができる。これにより、第1及び第2の回転子部材15,16の組み合わせの作業を容易にすることができ、回転子4の生産性の向上をさらに図ることができる。
 なお、上記の例では、4つの第1のボルト通し穴21のうち、2つの第1のボルト通し穴21が長穴21aになっており、他の2つの第1のボルト通し穴21が丸穴21bになっているが、長穴21aの数を1つにしてもよいし、3つ以上にしてもよい。また、丸穴21bの数も2つに限定されない。さらに、第1の鉄心部材17から丸穴21bをなくしてもよい。
 また、上記の例では、各丸穴21bの周方向位置が、第1の凸部31が第1の凹部差込部321に差し込まれている状態でねじ穴22の周方向位置に一致し、第1の凸部係合部311が第1の凹部係合部322に嵌っている状態でねじ穴22の周方向位置からずれる位置に設定されているが、各丸穴21bの周方向位置を、第1の凸部31が第1の凹部差込部321に差し込まれている状態でねじ穴22の周方向位置からずれ、第1の凸部係合部311が第1の凹部係合部322に嵌っている状態でねじ穴22の周方向位置に一致する位置に設定してもよい。この場合、第1の凸部31が第1の凹部差込部321に差し込まれている状態では各長穴21aに通したボルト23だけをねじ穴22にねじ込んでおき、第1の凸部係合部311を第1の凹部係合部322に嵌めた後に、各丸穴21bにボルト23を通して、各ボルト23を各ねじ穴22にねじ込む。このようにすれば、第1の鉄心部材17を第2の鉄心部材19に固定するボルト23の数を増やすことができる。
 実施の形態4.
 図19は、この発明の実施の形態4による回転電機の回転子における第1の回転子部材15を示す斜視図である。第1の鉄心部材17の外環部172は、ボス部171を囲む内輪部175と、内輪部175の外周部に取り付けられている複数の弧状鉄心ブロック176とで構成されている。この例では、回転子4の周方向について均等に分割されている4つの弧状鉄心ブロック176が第1の鉄心部材17の周方向へ隙間なく並んだ状態で内輪部175を囲んでいる。また、ボス部171、各リブ173及び内輪部175は、単一材で形成されており、本体鉄心ブロック177を構成している。即ち、第1の鉄心部材17は、ボス部171、複数のリブ173及び内輪部175で構成された本体鉄心ブロック177と、本体鉄心ブロック177の外周部にそれぞれ取り付けられている複数の弧状鉄心ブロック176とを複数の分割鉄心ブロックとして有する集合鉄心部材になっている。第1の凸部31及び第1のボルト通し穴21は、各弧状鉄心ブロック176に設けられている。
 各弧状鉄心ブロック176には、複数の第1の磁石181が周方向へ並べて取り付けられている。この例では、第1の磁石181が各弧状鉄心ブロック176に同数ずつ取り付けられている。第1の磁石群18は、各弧状鉄心ブロック176が周方向へ並んだ状態で内輪部175に取り付けられることにより構成されている。
 図20は、この発明の実施の形態4による回転電機の回転子における第2の回転子部材16を示す斜視図である。第2の鉄心部材19の外環部192は、ボス部191を囲む内輪部195と、内輪部195の外周部に取り付けられている複数の弧状鉄心ブロック196とで構成されている。この例では、回転子4の周方向について均等に分割されている4つの弧状鉄心ブロック196が第2の鉄心部材19の周方向へ隙間なく並んだ状態で内輪部195を囲んでいる。また、ボス部191、各リブ193及び内輪部195は、単一材で形成されており、本体鉄心ブロック197を構成している。即ち、第9の鉄心部材19は、ボス部191、複数のリブ193及び内輪部195で構成された本体鉄心ブロック197と、本体鉄心ブロック197の外周部にそれぞれ取り付けられている複数の弧状鉄心ブロック196とを複数の分割鉄心ブロックとして有する集合鉄心部材になっている。第1の凹部32及びねじ穴22は、各弧状鉄心ブロック196に設けられている。
 各弧状鉄心ブロック196には、複数の第2の磁石201が周方向へ並べて取り付けられている。この例では、第2の磁石201が各弧状鉄心ブロック196に同数ずつ取り付けられている。第2の磁石群20は、各弧状鉄心ブロック196が周方向へ並んだ状態で内輪部195に取り付けられることにより構成されている。
 図21は、図19の弧状鉄心ブロック176の内周部を示す斜視図である。各弧状鉄心ブロック176の内周面には、本体鉄心ブロック177に向けて突出するテーパブロックが第2の凸部41として固定されている。テーパブロックである第2の凸部41は、弧状鉄心ブロック176と別部材になっている。各弧状鉄心ブロック176の内周面には、嵌合穴42が設けられている。第2の凸部41は、嵌合穴42に圧入によって嵌められることにより弧状鉄心ブロック176に固定されている。
 図22は、図19の本体鉄心ブロック177の外周部を示す斜視図である。本体鉄心ブロック177の外周面には、各弧状鉄心ブロック176の第2の凸部41の数と同数の第2の凹部43が設けられている。各第2の凹部43は、各第2の凸部41の周方向位置に合わせて本体鉄心ブロック177の外周面に設けられている。
 第2の凸部41は、第2の凹部43に挿入されているとともに、第1の凸部31が第1の凹部32に係合する方向と同じ方向へ回転子4の周方向について第2の凹部43に係合している。各第2の凸部41は、回転子4の周方向の同じ向きで各第2の凹部43にそれぞれ係合している。
 第2の凸部41は、第2の凹部43に嵌る第2の凸部係合部411を有している。第2の凸部係合部411の幅方向は、回転子4の軸線方向に一致している。また、第2の凸部係合部411の幅は、第2の凸部41が第2の凹部43に係合する方向へ連続的に狭くなっている。即ち、第2の凸部係合部411の形状は、第2の凸部41の周方向一端部に向けて第2の凸部41の幅が連続的に狭くなるテーパ形状になっている。
 各第2の凹部43は、図22に示すように、第2の凹部差込部431と、第2の凹部差込部431から回転子4の周方向へ突出する第2の凹部係合部432とを有している。第2の凹部係合部432の幅方向は、回転子4の軸線方向に一致している。
 第2の凹部差込部431の大きさは、回転子4を径方向に沿って見たとき、第2の凸部41が収まる大きさになっている。この例では、回転子4の径方向に沿って見たとき、第2の凹部差込部431の形状が矩形状になっている。
 第2の凹部係合部432の幅は、第2の凸部41が第2の凹部43に係合する方向へ連続的に狭くなっている。即ち、第2の凹部係合部432の形状は、第2の凹部43の周方向一端部に向けて第2の凹部43の幅が連続的に狭くなるテーパ形状になっている。第2の凸部41の位置は、第2の凸部係合部411が第2の凹部係合部432に嵌ることにより、第2の凹部43に対して回転子4の周方向及び軸線方向について固定されている。
 回転子4の軸線方向についての第2の凸部41の幅は、第2の凸部41の突出方向のどの位置でも一定になっている。また、回転子4の軸線方向についての第2の凹部43の幅も、第2の凹部43の深さ方向のどの位置でも一定になっている。
 各弧状鉄心ブロック176は、第2の凸部係合部411が第2の凹部係合部432に嵌って第2の凸部41が第2の凹部43に係合することにより、本体鉄心ブロック177に対して周方向及び軸線方向について位置決めがされている。
 図23は、図19の内輪部175の内周面を示す拡大斜視図である。本体鉄心ブロック177の内輪部175には、複数の第2のボルト通し穴51が各弧状鉄心ブロック176の周方向位置に合わせて設けられている。この例では、各弧状鉄心ブロック176の周方向両端部の位置に対応する内輪部175のそれぞれの部分に第2のボルト通し穴51が2つずつ設けられている。
 各第2のボルト通し穴51は、内輪部175を回転子4の径方向へ貫通する貫通穴である。また、各第2のボルト通し穴51は、回転子4の周方向に沿った長穴である。
 各弧状鉄心ブロック176の内周面には、図示しない複数のねじ穴が設けられている。各ねじ穴の周方向位置は、各第2のボルト通し穴51の周方向の範囲内に設定されている。弧状鉄心ブロック176の各ねじ穴には、第2のボルト通し穴51に通されたボルト52が取り付けられている。各弧状鉄心ブロック176は、第2の凸部係合部411を第2の凹部係合部432に嵌めて第2の凸部41を第2の凹部43に係合させた状態で、各第2のボルト通し穴51に通されたボルト52によって内輪部175に締結されている。
 第2の鉄心部材19の構成も、第1の鉄心部材17の構成と同様である。即ち、各弧状鉄心ブロック196の内周面にも第2の凸部41が固定され、本体鉄心ブロック177の外周面にも各弧状鉄心ブロック196の第2の凸部41の数と同数の第2の凹部43が設けられている。また、第2の鉄心部材19でも、第2の凸部41が、第2の凹部43に挿入されているとともに、回転子4の周方向について第1の凸部31が第1の凹部32に係合する方向と同じ方向へ第2の凹部43に係合している。
 各弧状鉄心ブロック196は、第2の凸部係合部411が第2の凹部係合部432に嵌って第2の凸部41が第2の凹部43に係合することにより、本体鉄心ブロック197に対して周方向及び軸線方向について位置決めされている。
 また、第2の鉄心部材19でも、第1の鉄心部材17と同様の複数の第2のボルト通し穴51が本体鉄心ブロック197の内輪部195に設けられている。この例では、各弧状鉄心ブロック196の周方向両端部の位置に対応する内輪部195のそれぞれの部分に第2のボルト通し穴51が2つずつ設けられている。
 さらに、第2の鉄心部材19でも、各弧状鉄心ブロック196の内周面に複数のねじ穴が設けられており、各第2のボルト通し穴51に通されたボルト52が各ねじ穴に取り付けられている。各弧状鉄心ブロック196は、第2の凸部係合部411を第2の凹部係合部432に嵌めて第2の凸部41を第2の凹部43に係合させた状態で、各第2のボルト通し穴51に通されたボルト52によって内輪部195に締結されている。他の構成は実施の形態1と同様である。
 次に、第1の回転子部材15を組み立てる手順について説明する。第1の回転子部材15を組み立てるときには、図22の矢印A2で示すように、まず、第2の凸部41及び第1の磁石181を予め取り付けておいた各弧状鉄心ブロック176の第2の凸部41を第2の凹部差込部431に差し込んで、本体鉄心ブロック177を囲むようにすべての弧状鉄心ブロック176を内輪部175の外周面に配置する。この後、各第2のボルト通し穴51にボルト52を通し、各ボルト52を弧状鉄心ブロック176のねじ穴に取り付けることにより、各弧状鉄心ブロック176を内輪部175の外周面に仮固定する。
 この後、各ボルト52を僅かに緩め、第2の凸部係合部411が第2の凹部係合部432に嵌る方向、即ち図22の矢印B2の方向へすべての弧状鉄心ブロック176を本体鉄心ブロック177に対して同時に回転させる。これにより、第2の凸部係合部411が第2の凹部係合部432に嵌り、第2の凸部41が第2の凹部43に周方向について係合して、本体鉄心ブロック177に対するすべての弧状鉄心ブロック176の周方向及び軸線方向についての位置決めが行われる。このとき、長穴である第2のボルト通し穴51に沿って各弧状鉄心ブロック176が各ボルト52に案内されるので、本体鉄心ブロック177に対する各弧状鉄心ブロック176の周方向への移動が容易になる。
 この後、各ボルト52を再度締め付ける。これにより、すべての弧状鉄心ブロック176が本体鉄心ブロック177の外周部に固定され、第1の回転子部材15が完成する。
 第2の回転子部材16についても、第1の回転子部材15と同様の手順ですべての弧状鉄心ブロック196を本体鉄心ブロック197の外周部に固定することにより、組み立てられる。
 第1及び第2の回転子部材15,16を組み立てて回転子4を製造する手順は、実施の形態1と同様である。
 第1及び第2の回転子部材15,16が組み立てられた後、すべてのボルト52を再度僅かに緩めると、第1の磁石181と第2の磁石201との間で発生する磁気反発力及び磁気吸引力の周方向成分が、第2の凸部係合部411を第2の凹部係合部432に嵌める方向へ加わり、本体鉄心ブロック177,197に対する各弧状鉄心ブロック176,196の周方向及び軸線方向についての位置決めがより確実に行われる。各ボルト52を緩めて各弧状鉄心ブロック176,196の位置決めを行った場合には、各ボルト52を再度締め付けて、各弧状鉄心ブロック176,196を本体鉄心ブロック177,197に固定する。
 このような回転子4では、第1及び第2の鉄心部材17,19が、本体鉄心ブロック177,197と各弧状鉄心ブロック176,196とに分割されているので、第1及び第2の鉄心部材17,19よりも大きさの小さい各弧状鉄心ブロック176,196に対して作業を行うことができ、第1及び第2の回転子部材15,16の製造作業の手間を軽減させることができる。
 また、複数の弧状鉄心ブロック176,196に第2の凸部41が設けられ、本体鉄心ブロック177,197の外周部に第2の凹部43が設けられており、第1の凸部31が第1の凹部32に係合する方向と同じ方向へ回転子4の周方向について第2の凸部41が第2の凹部43に係合しているので、本体鉄心ブロック177,197に対する各弧状鉄心ブロック176,196の位置決めを容易にすることができ、第1及び第2の鉄心部材17,19の組み立て作業を容易にすることができる。
 また、本体鉄心ブロック177,197に設けられている第2のボルト通し穴51が回転子4の周方向に沿った長穴であり、第2のボルト通し穴51に通されているボルト52によって弧状鉄心ブロック176,196が本体鉄心ブロック177,197に締結されているので、ボルト52を緩めて本体鉄心ブロック177,197に対して弧状鉄心ブロック176,196を周方向へ移動させるときに、弧状鉄心ブロック176,196の移動をボルト52で案内させることができる。これにより、第1及び第2の鉄心部材17,19の組み立て作業を容易にすることができる。
 なお、上記の例では、第1及び第2の鉄心部材17,19のそれぞれが、本体鉄心ブロック177,197と、複数の弧状鉄心ブロック176,196とを複数の分割鉄心ブロックとして有する集合鉄心部材になっているが、第1及び第2の鉄心部材17,19のいずれかのみが集合鉄心部材になっていてもよい。
 また、上記の例では、第2の凸部41の幅が第2の凸部41の突出方向のどの位置でも一定になっており、第2の凹部43の幅が第2の凹部43の深さ方向のどの位置でも一定になっているが、第2の凸部係合部411の幅を第2の凸部41の突出方向端部に向けて広げ、第2の凹部係合部432の幅を第2の凹部43の深さ方向の底面に向けて広げてもよい。このようにすれば、第2の凸部係合部411と第2の凹部係合部432とを回転子4の径方向について互いに係合させることができ、回転子4の周方向及び軸線方向だけでなく径方向についても本体鉄心ブロック177,197に対する弧状鉄心ブロック176,196の位置決めを行うことができる。
 また、上記の例では、第1の鉄心部材17の弧状鉄心ブロック176に第1のボルト通し穴21が設けられ、第2の鉄心部材19の弧状鉄心ブロック196にねじ穴22が設けられているが、第1の鉄心部材17の本体鉄心ブロック177に第1のボルト通し穴21を設け、第2の鉄心部材19の本体鉄心ブロック197にねじ穴22を設けてもよい。このようにしても、第1のボルト通し穴21に通されたボルト23によって第1及び第2の鉄心部材17,19を互いに締結することができる。
 また、上記の例では、回転子4の周方向について均等に分割されている4つの弧状鉄心ブロック176,196が本体鉄心ブロック177,197の外周部に取り付けられているが、1つの弧状鉄心ブロック176,196の円弧の中心角度が180°以下であれば、回転子4の周方向について2つ、3つ又は5つの弧状鉄心ブロック176,196に分割されていてもよい。また、回転子4の周方向について不均等に分割されている複数の弧状鉄心ブロックを本体鉄心ブロック176,196の外周部に取り付けてもよい。
 また、上記の例では、第2の凸部41が弧状鉄心ブロック176,196及び本体鉄心ブロック177,197とは別部材になっているが、第1の鉄心部材17において第2の凸部41及び弧状鉄心ブロック176を単一材で形成してもよいし、第2の鉄心部材19において第2の凸部41及び弧状鉄心ブロック196を単一材で形成してもよい。
 また、上記の例では、第2の凸部41が弧状鉄心ブロック176,196に設けられ、第2の凹部43が本体鉄心ブロック177,197に設けられているが、第2の凸部41を本体鉄心ブロック177,197に設け、第2の凹部43を弧状鉄心ブロック176,196に設けてもよい。この場合、第2の凸部41及び本体鉄心ブロック177を単一材で形成してもよいし、第2の凸部41及び本体鉄心ブロック197を単一材で形成してもよい。また、第2の凸部41を本体鉄心ブロック177,196及び弧状鉄心ブロック176,196と別部材にしてもよい。第2の凸部41を本体鉄心ブロック177,196及び弧状鉄心ブロック176,196と別部材にする場合、テーパブロックとしての第2の凸部41が嵌る嵌合穴を本体鉄心ブロック177,197の外周面に設けてもよいし、第2の凸部41を本体鉄心ブロック177,197の外周面に例えばボルト又は溶接等で固定してもよい。
 また、上記の例では、複数の第2のボルト通し穴51がすべて長穴になっているが、複数の第2のボルト通し穴51の少なくともいずれかが丸穴であってもよい。この場合、丸穴とされた第2のボルト通し穴51の位置は、第2の凸部41と第2の凹部43との係合によって弧状鉄心ブロック176,196が本体鉄心ブロック177,197に対して位置決めされているときに弧状鉄心ブロック176,196のボルト穴の位置に合うように設定される。
 また、上記の例では、第2の凸部係合部411が第2の凹部係合部432に単に嵌っているだけであるが、第2の凸部係合部411を第2の凹部係合部432に圧入により嵌めてもよい。このようにすれば、第2の凸部係合部411が第2の凹部係合部432に嵌った状態をさらに確実に保持することができる。
 また、上記の例では、第2の凸部係合部411の形状が周方向について連続的に幅が狭くなるテーパ形状になっており、第2の凹部係合部432の形状が周方向について連続的に幅が狭くなるテーパ形状になっているが、第2の凸部係合部411及び第2の凹部係合部432のそれぞれの形状を、テーパ形状とせず周方向について幅が一定の形状にしてもよい。即ち、第2の凸部41の幅を周方向のどの位置でも一定とし、第2の凹部43の幅を周方向のどの位置でも一定としてもよい。
 実施の形態5.
 第1及び第2の鉄心部材では、複数の磁性板を積層して各弧状鉄心ブロック176,196を構成してもよい。
 即ち、図24は、この発明の実施の形態5による回転子における第1の鉄心部材17の弧状鉄心ブロック176を示す斜視図である。第1の鉄心部材17では、各弧状鉄心ブロック176が、複数の磁性板176aを軸線方向へ積層して構成されている。磁性板としては、例えば鋼板等が用いられている。各磁性板176aは、例えばかしめ又は溶接等により互いに繋ぎ合わせて積層されている。
 弧状鉄心ブロック176の内周部には、回転子4の軸線方向に沿った複数のナットブロック溝178が形成されている。ナットブロック溝178の断面は、溝の底面を含む収容部分と、収容部分から弧状鉄心ブロック176の内周面に達する開口部分とで構成されており、収容部分の幅が開口部分の幅よりも大きくなっている。
 ナットブロック溝178の収容部分には、複数のねじ穴53が設けられているナットブロック54が圧入により嵌っている。図24では、2つのねじ穴53が板状のナットブロック54に設けられている。ナットブロック54の各ねじ穴53には、本体鉄心ブロック177の第2のボルト通し穴51に通されたボルト52がナットブロック溝178の開口部分を通して取り付けられている。
 第2の鉄心部材19でも、各弧状鉄心ブロック196が、複数の磁性板を軸線方向へ積層して構成されている。第2の鉄心部材19の各弧状鉄心ブロック196の構成は、第1の鉄心部材17の各弧状鉄心ブロック176の構成と同様である。他の構成は実施の形態4と同様である。
 このように、弧状鉄心ブロック176,196を複数の磁性板の積層体にすることにより、第1及び第2の鉄心部材17,19における渦電流の発生を抑制することができ、回転電機の効率を向上させることができる。
 なお、上記の例では、第1及び第2の鉄心部材17,19のそれぞれにおいて、各弧状鉄心ブロック176,196が複数の磁性板の積層体になっているが、第1の鉄心部材17の弧状鉄心ブロック176及び第2の鉄心部材17,19の弧状鉄心ブロック196のいずれかのみを複数の磁性板の積層体にしてもよい。
 また、上記の例では、弧状鉄心ブロック176,196にナットブロック溝178を設け、ねじ穴53が設けられたナットブロック54をナットブロック溝178に嵌めているが、複数の磁性板の積層体にねじ穴を直接設けることができる場合には、ナットブロック溝178及びナットブロック54を弧状鉄心ブロック176,196に設けなくてもよい。
 実施の形態6.
 各上記実施の形態では、筒状の固定子2の径方向内側に回転子4が配置されたインナロータ型の回転電機にこの発明が適用されているが、筒状の回転子の径方向内側に固定子が配置されたアウタロータ型の回転電機にこの発明を適用してもよい。
 図25は、この発明の実施の形態6による回転電機1を示す分解斜視図である。回転電機1では、筒状の回転子4の径方向内側に固定子2が配置されている。回転子4は、回転軸3に固定されている。これにより、回転子4は、回転軸3の軸線を中心として回転軸3と一体に回転される。
 固定子2は、回転軸3と同軸に配置されている。また、固定子コア7及び固定子コイルを有する固定子2では、固定子コア7のコアバック9から複数の磁極ティース10が径方向外側へ突出している。固定子コイル8の導線は、各磁極ティース10間に形成されているスロットに通されている。固定子2には、固定子コイル8への交流電流の供給により回転磁界が生じる。
 回転子4は、第1の回転子部材15と、第2の回転子部材16と、円板状の回転子ベース61とを有している。第1の回転子部材15、第2の回転子部材16及び回転子ベース61は、回転子4の軸線方向について並んだ状態で互いに固定されている。回転軸3には、回転子ベース61が固定されている。
 第1の回転子部材15は、筒状の第1の鉄心部材17と、第1の鉄心部材17の内周部に設けられている第1の磁石群18とを有している。第2の回転子部材16は、筒状の第2の鉄心部材19と、第2の鉄心部材19の内周部に設けられている第2の磁石群20とを有している。第1の磁石群18及び第2の磁石群20は、回転子4の軸線方向について互いに隣接している。
 第1の磁石群18は、回転子4の周方向へ並んでいる複数の第1の磁石181を有している。第1の磁石181の数及び磁極の関係は、実施の形態1と同様である。各第1の磁石181は、回転子4の径方向について固定子2に対向している。
 第2の磁石群20は、回転子4の周方向へ並んでいる複数の第2の磁石201を有している。第2の磁石201の数及び磁極の関係は、実施の形態1と同様である。また、第1の磁石181と第2の磁石201との回転子4の周方向についての位置関係も実施の形態1と同様である。各第2の磁石201は、回転子4の径方向について固定子2に対向している。
 第1及び第2の回転子部材15,16は、第1の鉄心部材17の側面17aと、第2の鉄心部材19の側面19aとを対向させて互いに固定されている。回転子ベース61には、第2の鉄心部材19の側面19aと反対側の側面を回転子ベース61に対向させて第2の回転子部材16が固定されている。
 ここで、図26は、図25の第1の鉄心部材17の側面17aを示す拡大斜視図である。第1の鉄心部材17の側面17aには、複数(この例では、4つ)の第1の凸部31が回転子4の周方向について互いに間隔を置いて設けられている。第2の鉄心部材19の側面19aには、図25に示すように、第1の凸部31の数と同数の第1の凹部32が回転子4の周方向について互いに間隔を置いて設けられている。第1の凸部31及び第1の凹部32のそれぞれの構成、及び第1の凸部31と第1の凹部32との周方向の位置関係は、実施の形態1と同様である。
 第2の回転子部材16に対する第1の回転子部材15の周方向及び径方向についての位置決めは、第1の凸部31が第1の凹部32に周方向について係合することにより行われている。
 第1及び第2の鉄心部材17,19には、複数の貫通穴が第1のボルト通し穴21としてそれぞれ設けられている。回転子ベース61には、図示しない複数のねじ穴が各第1のボルト通し穴21の周方向位置に一致させて設けられている。回転子ベース61の各ねじ穴には、第1及び第2の鉄心部材17,19のそれぞれの第1のボルト通し穴21に順次通されたボルト23が取り付けられている。第1及び第2の鉄心部材17,19は、第1及び第2の鉄心部材17,19のそれぞれの第1のボルト通し穴21に順次通された各ボルト23によって回転子ベース61にまとめて締結されている。他の構成は実施の形態1と同様である。また、第1及び第2の回転子部材15,16を組み合わせて回転子4を製造する手順も実施の形態1と同様である。
 このように、筒状の回転子4の径方向内側に固定子2が配置されたアウタロータ型の回転電機1にこの発明を適用しても、第1の凸部31を第1の凹部32に周方向について係合させることができ、第2の回転子部材16に対する第1の回転子部材16の周方向及び径方向についての位置決めをより確実にかつ容易にすることができる。これにより、回転子4の生産性の向上を図ることができる。
 なお、上記の例では、第1及び第2の鉄心部材17,19のそれぞれが複数の分割ブロックに分割されていない一体の鉄心部材になっているが、実施の形態4と同様に、第1及び第2の鉄心部材17,19の少なくともいずれかを、複数の分割ブロックに分割した集合鉄心部材にしてもよい。この場合、集合鉄心部材は、筒状の本体鉄心ブロックと、本体鉄心ブロックの内周部にそれぞれ取り付けられた複数の弧状鉄心ブロックとを複数の分割ブロックとして有する構成とされる。また、各弧状鉄心ブロックには、第1の磁石181及び第2の磁石201のうち、集合鉄心部材に設けられている磁石がそれぞれ取り付けられる。さらに、本体鉄心ブロック及び弧状鉄心ブロックのうち、一方には、実施の形態4と同様の第2の凹部が設けられ、他方には、第2の凹部に周方向について係合する実施の形態4と同様の第2の凸部が設けられる。また、本体鉄心ブロックには、実施の形態4と同様の長穴である複数の第2のボルト通し穴が設けられ、各第2のボルト通し穴に通されたボルトによって各弧状鉄心ブロックが本体鉄心ブロックの内周部に締結される。集合鉄心部材に設けられる第1のボルト通し穴21は、本体鉄心ブロックに設けてもよいし、弧状鉄心ブロックに設けてもよい。
 また、上記の例では、第1のボルト通し穴21が第1及び第2の鉄心部材17,19のそれぞれに設けられ、第1のボルト通し穴21に通されたボルト23が取り付けられるねじ穴が回転子ベース61に設けられているが、第2の鉄心部材19にねじ穴を設け、第1の鉄心部材17の第1のボルト通し穴21に通されたボルト23を第2の鉄心部材19のねじ穴に取り付けるようにしてもよい。この場合、第2の鉄心部材19は、例えば別のボルト又は溶接等により回転子ベース61に固定される。
 また、上記の例では、回転子部材15,16のそれぞれが回転子ベース61にボルトで固定されているが、例えば、ボルトで互いに固定した回転子部材15,16を回転子ベース61に溶接で固定したり、ボルトで互いに固定した回転子部材15,16を円筒状の回転子ベース61の内面に焼嵌めによって固定したりしてもよい。
 実施の形態7.
 各上記実施の形態では、固定子2と回転子4とが径方向について対向するラジアルギャップ型の回転電機にこの発明が適用されているが、固定子2と回転子4とが軸線方向について対向するアキシャルギャップ型の回転電機にこの発明を適用してもよい。
 図27は、この発明の実施の形態7による回転電機を示す分解斜視図である。回転電機1では、回転子4が環状の固定子2に回転軸3の軸線方向について隙間を介して対向している。回転子4は、回転軸3に固定されている。これにより、回転子4は、軸線方向について固定子2に対向しながら回転軸3の軸線を中心として回転軸3と一体に回転される。
 固定子2は、回転軸3と同軸に配置されている。また、固定子コア7及び図示しない固定子コイルを有する固定子2では、固定子コア7のコアバック9から複数の磁極ティース10が軸線方向に沿って回転子4側へ突出している。固定子コイルの導線は、各磁極ティース10間に形成されているスロットに通されている。固定子2には、固定子コイルへの交流電流の供給により回転磁界が生じる。
 回転子4は、環状の第1の回転子部材15と、環状の第2の回転子部材16と、円板状の回転子ベース61とを有している。
 第1の回転子部材15の外径は、第2の回転子部材16の内径よりも小さくなっている。第1の回転子部材15は、第2の回転子部材16よりも径方向内側に配置されている。第1及び第2の回転子部材15,16のそれぞれは、回転子4の軸線方向について回転子ベース61に固定されている。回転軸3には、回転子ベース61が固定されている。
 第1の回転子部材15は、環状の第1の鉄心部材17と、第1の鉄心部材17の固定子2側の側面に設けられている第1の磁石群18とを有している。第2の回転子部材16は、環状の第2の鉄心部材19と、第2の鉄心部材19の固定子2側の側面に設けられている第2の磁石群20とを有している。第1の鉄心部材17の外周面と第2の鉄心部材19の内周面とは、互いに接触している。第1の磁石群18及び第2の磁石群20は、回転子4の径方向について互いに隣接している。
 第1の磁石群18は、回転子4の周方向へ並んでいる複数の第1の磁石181を有している。第1の磁石181の数及び磁極の関係は、実施の形態1と同様である。各第1の磁石181は、回転子4の軸線方向について固定子2に対向している。
 第2の磁石群20は、回転子4の周方向へ並んでいる複数の第2の磁石201を有している。第2の磁石201の数及び磁極の関係は、実施の形態1と同様である。各第2の磁石201は、回転子4の軸線方向について固定子2に対向している。
 回転子4の径方向について互いに隣接する第1及び第2の磁石181,201同士は、回転子4の周方向へスキュー機械角度α°だけずれている。即ち、回転子4には、第1の回転子部材15の磁極が第2の回転子部材16の磁極に対して周方向へずれた段スキュー構造が形成されている。
 第1の鉄心部材17は、固定子2側と反対側の側面17aを回転子ベース61に向けて回転子ベース61に固定されている。第2の回転子部材16は、固定子2側と反対側の側面19aを回転子ベース61に向けて回転子ベース61に固定されている。
 ここで、図28は、図27の第1の鉄心部材17の側面17aを示す拡大斜視図である。第1の鉄心部材17の側面17aには、複数(この例では、4つ)の第1の凸部31Aが回転子4の周方向について互いに間隔を置いて設けられている。回転子ベース61には、図27に示すように、第1の凸部31Aの数と同数の第1の凹部32Aが回転子4の周方向について互いに間隔を置いて設けられている。第1の凸部31A及び第1の凹部32Aのそれぞれの構成、及び第1の凸部31Aと第1の凹部32Aとの周方向の位置関係は、実施の形態1での第1の凸部31及び第2の凹部32のそれぞれの構成、及び第1の凸部31と第1の凹部32との周方向の位置関係と同様である。
 また、図29は、図27の第2の鉄心部材19の側面19aを示す拡大斜視図である。第2の鉄心部材19の側面19aには、複数(この例では、4つ)の第1の凸部31Bが回転子4の周方向について互いに間隔を置いて設けられている。回転子ベース61には、図27に示すように、第1の凸部31Bの数と同数の第1の凹部32Bが回転子4の周方向について互いに間隔を置いて設けられている。第1の凸部31B及び第1の凹部32Bのそれぞれの構成、及び第1の凸部31Bと第1の凹部32Bとの周方向の位置関係は、実施の形態1での第1の凸部31及び第2の凹部32のそれぞれの構成、及び第1の凸部31と第1の凹部32との周方向の位置関係と同様である。この例では、第1の凸部31Aが第1の凹部32Aに係合する方向と、第1の凸部31Bが第1の凹部32Bに係合する方向とが、回転子4の周方向について反対の方向になっている。
 回転子ベース61に対する第1の回転子部材15の周方向及び径方向についての位置決めは、第1の凸部31Aが第1の凹部32Aに周方向について係合することにより行われている。また、回転子ベース61に対する第2の回転子部材16の周方向及び径方向についての位置決めは、第1の凸部31Bが第1の凹部32Bに周方向について係合することにより行われている。
 第1の鉄心部材17には複数の貫通穴が第1のボルト通し穴21Aとして設けられ、第2の鉄心部材19には複数の貫通穴が第1のボルト通し穴21Bとして設けられている。回転子ベース61には、第1の鉄心部材17における第1のボルト通し穴21Aに軸線方向について対向する複数のねじ穴22Aと、第2の鉄心部材19における第1のボルト通し穴21Bに軸線方向について対向する複数のねじ穴22Bとが設けられている。回転子ベース61の各ねじ穴22Aには第1のボルト通し穴21Aに通されたボルト23Aが取り付けられ、回転子ベース61の各ねじ穴22Bには第1のボルト通し穴21Bに通されたボルト23Bが取り付けられている。第1の鉄心部材17は、第1のボルト通し穴21Aに通されたボルト23Aによって回転子ベース61に締結されている。第2の鉄心部材19は、第1のボルト通し穴21Bに通されたボルト23Bによって回転子ベース61に締結されている。他の構成は実施の形態1と同様である。
 第1及び第2の回転子部材15,16を回転子ベース61に組み合わせて回転子4を製造するときには、まず、第1の回転子部材15の各第1の凸部31Aを回転子ベース61の各第1の凹部32Aの第1の凹部差込部に差し込んで、第1の凸部31Aの第1の凸部係合部が第1の凹部32Aの凹部係合部に嵌る方向へ各第1の回転子部材15を回転子ベース61に対して回転させる。これにより、回転子ベース61に対する第1の回転子部材15の周方向及び径方向についての位置決めを行う。
 この後、各第1のボルト通し穴21Aにボルト23Aを通し、各ボルト23Aを回転子ベース61の各ねじ穴22Aに取り付けることにより、第1の鉄心部材17を回転子ベース61に締結する。これにより、第1の回転子部材15を回転子ベース61に固定する。
 この後、第2の回転子部材16も、第1の回転子部材15と同様にして、回転子ベース61に固定する。即ち、第2の回転子部材16の各第1の凸部31Bを回転子ベース61の各第1の凹部32Bの第1の凹部差込部に差し込んで、第1の凸部31Bの第1の凸部係合部が第1の凹部32Bの凹部係合部に嵌る方向へ各第2の回転子部材16を回転子ベース61に対して回転させる。これにより、回転子ベース61に対する第2の回転子部材16の周方向及び径方向についての位置決めを行う。
 このとき、第1の磁石181と第2の磁石201との間で発生する磁気反発力及び磁気吸引力の周方向成分が、第1の凸部31Bの凸部係合部を第1の凹部32Bの凹部係合部に嵌める方向へ加わり、回転子ベース61に対する第2の回転子部材16の周方向及び径方向についての位置決めがより確実に行われる。
 この後、各第1のボルト通し穴21Bにボルト23Bを通し、各ボルト23Bを回転子ベース61の各ねじ穴22Bに取り付けることにより、第2の鉄心部材19を回転子ベース61に締結する。これにより、第2の回転子部材16を回転子ベース61に固定する。このようにして、第1及び第2の回転子部材15,16を回転子ベース61に固定する。
 この例では、第1の回転子部材15を回転子ベース61に固定した後に、第2の回転子部材16を回転子ベース61に固定しているが、第2の回転子部材16を回転子ベース61に固定した後に、第1の回転子部材15を回転子ベース61に固定するようにしてもよい。
 このように、回転子4と固定子2とが軸線方向について対向するアキシャルギャップ型の回転電機1にこの発明を適用しても、第1の凸部31A,31Bを第1の凹部32A,32Bに周方向について係合させることができ、回転子ベース61に対する第1及び第2の回転子部材15,16のそれぞれの周方向及び径方向についての位置決めをより確実にかつ容易にすることができる。これにより、回転子4の生産性の向上を図ることができる。
 なお、上記の例では、第1及び第2の鉄心部材17,19のそれぞれが複数の分割ブロックに分割されていない一体の鉄心部材になっているが、実施の形態4と同様に、第1及び第2の鉄心部材17,19の少なくともいずれかを、回転子4の周方向へ並んでいる複数の分割鉄心ブロックで構成した集合鉄心部材にしてもよい。この場合、各分割鉄心ブロックには、第1の磁石181及び第2の磁石201のうち、集合鉄心部材に設けられている磁石がそれぞれ取り付けられる。このようにすれば、第1及び第2の鉄心部材17,19よりも大きさの小さい各分割鉄心ブロックに対して作業を行うことができ、回転子4の製造作業の手間を軽減させることができる。
 また、上記の例では、各第1の凸部31Aと第1の鉄心部材17とが単一材で形成されているが、各第1の凸部31Aを第1の鉄心部材17、第2の鉄心部材19及び回転子ベース61と別部材にしてもよい。この場合、各第1の凸部31Aは、例えばボルト又は溶接等によって第1の鉄心部材17の側面17aに固定される。
 また、上記の例では、各第1の凸部31Bと第2の鉄心部材19とが単一材で形成されているが、各第1の凸部31Bを第1の鉄心部材17、第2の鉄心部材19及び回転子ベース61と別部材にしてもよい。この場合、各第1の凸部31Bは、例えばボルト又は溶接等によって第2の鉄心部材19の側面19aに固定される。
 また、上記の例では、第1の凸部31Aが第1の鉄心部材17に設けられ、第1の凹部32Aが回転子ベース61に設けられているが、第1の鉄心部材17に第1の凹部32Aを設け、回転子ベース61に第1の凸部31Aを設けてもよい。この場合、第1の凸部31Aは、第1の鉄心部材17と単一材で形成されていてもよいし、第1の鉄心部材17、第2の鉄心部材19及び回転子ベース61と別部材になっていてもよい。
 また、上記の例では、第1の凸部31Bが第2の鉄心部材19に設けられ、第1の凹部32Bが回転子ベース61に設けられているが、第2の鉄心部材19に第1の凹部32Bを設け、回転子ベース61に第1の凸部31Bを設けてもよい。この場合、第1の凸部31Bは、第2の鉄心部材19と単一材で形成されていてもよいし、第1の鉄心部材17、第2の鉄心部材19及び回転子ベース61と別部材になっていてもよい。
 また、上記の例では、第1の鉄心部材17のすべての第1のボルト通し穴21Aが丸穴になっているが、実施の形態3と同様に、各第1のボルト通し穴21Aの少なくともいずれかを回転子4の周方向に沿った長穴にしてもよい。このようにすれば、長穴である第1のボルト通し穴21Aに通されたボルト23Aをジャッキボルトとして用いることができ、実施の形態3と同様の効果を得ることができる。
 また、上記の例では、第2の鉄心部材19のすべての第1のボルト通し穴21Bが丸穴になっているが、実施の形態3と同様に、各第1のボルト通し穴21Bの少なくともいずれかを回転子4の周方向に沿った長穴にしてもよい。このようにすれば、長穴である第1のボルト通し穴21Bに通されたボルト23Bをジャッキボルトとして用いることができ、実施の形態3と同様の効果を得ることができる。
 また、上記の例では、第1の回転子部材15及び第2の回転子部材16である2つの回転子部材が径方向について並んだ状態で回転子ベース61に固定されているが、第1の回転子部材15、第2の回転子部材16及び1つ以上の環状の追加の回転子部材である3つ以上の回転子部材を径方向について並べた状態で回転子ベース61に固定してもよい。この場合、追加の回転子部材の構成は第1の回転子部材15と同様とされ、追加の回転子部材の内径は内側の回転子部材の外径よりも大きくされる。また、追加の回転子部材及び回転子ベース61のうち、一方に実施の形態1の第1の凸部31と同様の第1の凸部が設けられ、他方に実施の形態1の第1の凹部32と同様の第1の凹部が設けられる。
 また、実施の形態1~6では、第1の凸部31が第1の鉄心部材17と単一材で形成されているが、各第1の凸部31を第1及び第2の鉄心部材17,19と別部材にしてもよい。この場合、各第1の凸部31は、例えばボルト又は溶接等によって第1の鉄心部材17の側面17aに固定される。
 また、実施の形態1~6では、第1の凸部31が第1の鉄心部材17に設けられ、第1の凹部32が第2の鉄心部材19に設けられているが、第1の鉄心部材17に第1の凹部32を設け、第2の鉄心部材19に第1の凸部31を設けてもよい。この場合、第1の凸部31は、第2の鉄心部材19と単一材で形成されていてもよいし、第1及び第2の鉄心部材17,19と別部材になっていてもよい。
 また、実施の形態3~7では、第1の凸部31,31A,31B及び第1の凹部32,32A,32Bのそれぞれの構成が実施の形態1と同様の構成とされているが、第1の凸部係合部の幅が第1の凸部31の突出方向端部に向けて広がっている実施の形態2と同様の構成を第1の凸部31,31A,31Bに適用し、第1の凹部係合部の幅が第1の凹部32の深さ方向の底面に向けて広がっている実施の形態2と同様の構成を第1の凹部32,32A,32Bに適用してもよい。
 また、実施の形態4~6では、すべての第1のボルト通し穴21が丸穴になっているが、実施の形態3と同様に、各第1のボルト通し穴21の少なくともいずれかを回転子4の周方向に沿った長穴にしてもよい。このようにすれば、長穴である第1のボルト通し穴21に通されたボルト23を、第1の鉄心部材17を第2の鉄心部材19に向けて変位させるジャッキボルトとして用いることができ、実施の形態3と同様の効果を得ることができる。
 また、各上記実施の形態では、第1の凸部31,31A,31Bの第1の凸部係合部が第1の凹部32,32A,32Bの第1の凹部係合部に単に嵌っているだけであるが、第1の凸部31,31A,31Bの第1の凸部係合部を第1の凹部32,32A,32Bの第1の凹部係合部に圧入により嵌めてもよい。このようにすれば、第1の凸部係合部が第1の凹部係合部に嵌った状態をさらに確実に保持することができる。
 また、各上記実施の形態では、第1の凸部31,31A,31Bの第1の凸部係合部の形状が周方向について連続的に幅が狭くなるテーパ形状になっており、第1の凹部32,32A,32Bの第1の凹部係合部の形状が周方向について連続的に幅が狭くなるテーパ形状になっているが、第1の凸部係合部及び第1の凹部係合部のそれぞれの形状を、テーパ形状とせず周方向について幅が一定の形状にしてもよい。即ち、第1の凸部31,31A,31Bの幅を周方向のどの位置でも一定とし、第1の凹部32,32A,32Bの幅を周方向のどの位置でも一定としてもよい。
 また、各上記実施の形態による回転電機は、例えば電動機、発電機及び発電電動機のいずれにも適用することができる。

Claims (14)

  1.  第1の回転子部材、及び
     第2の回転子部材
     を備え、
     前記第1の回転子部材は、第1の鉄心部材と、前記第1の鉄心部材に設けられている第1の磁石群とを有し、
     前記第2の回転子部材は、第2の鉄心部材と、前記第2の鉄心部材に設けられている第2の磁石群とを有し、
     前記第1及び第2の鉄心部材は、軸線方向について並んだ状態で互いに固定されており、
     前記第1及び第2の磁石群は、軸線方向について互いに隣接しており、
     前記第1の磁石群は、周方向へ並んでいる複数の第1の磁石を有し、
     前記第2の磁石群は、周方向へ並んでいる複数の第2の磁石を有し、
     互いに隣接する同極の前記第1及び第2の磁石は、周方向へ特定の角度でずれており、
     前記第1及び第2の鉄心部材のうち、一方には第1の凹部が設けられ、他方には前記第1の凹部に周方向について係合する第1の凸部が設けられている回転電機の回転子。
  2.  前記第1の凸部は、前記第1及び第2の鉄心部材のそれぞれと別部材になっている請求項1に記載の回転電機の回転子。
  3.  前記第1及び第2の鉄心部材のいずれかには、複数の貫通穴が第1のボルト通し穴として設けられており、
     各前記第1のボルト通し穴の少なくともいずれかは、周方向に沿った長穴であり、
     前記第1及び第2の鉄心部材は、前記第1のボルト通し穴に通されているボルトによって互いに締結されている請求項1又は請求項2に記載の回転電機の回転子。
  4.  前記第1及び第2の鉄心部材の少なくともいずれかは、本体鉄心ブロックと、前記本体鉄心ブロックの外周部又は内周部に取り付けられている複数の弧状鉄心ブロックとを有する集合鉄心部材になっており、
     前記第1及び第2の磁石のうち、前記集合鉄心部材に設けられている磁石は、各前記弧状鉄心ブロックにそれぞれ設けられており、
     前記本体鉄心ブロック及び前記弧状鉄心ブロックのうち、一方には第2の凹部が設けられ、他方には前記第1の凸部が前記第1の凹部に係合する方向と同じ方向へ前記第2の凹部に係合する第2の凸部が設けられている請求項1~請求項3のいずれか一項に記載の回転電機の回転子。
  5.  前記第2の凹部は、前記第2の凸部が前記第2の凹部に係合する方向へ連続的に幅が狭くなっている第2の凹部係合部を有し、
     前記第2の凸部は、前記第2の凹部係合部に嵌る第2の凸部係合部を有している請求項4に記載の回転電機の回転子。
  6.  前記第2の凹部係合部の幅は、前記第2の凹部の深さ方向の底面に向かって連続的に広がっており、
     前記第2の凸部係合部の幅は、前記第2の凸部の突出方向端部に向かって連続的に広がっている請求項5に記載の回転電機の回転子。
  7.  前記弧状鉄心ブロックは、複数の磁性板が積層されて構成されている請求項4~請求項6のいずれか一項に記載の回転電機の回転子。
  8.  前記本体鉄心ブロックには、複数の貫通穴が第2のボルト通し穴として設けられ、
     各前記第2のボルト通し穴の少なくともいずれかは、周方向に沿った長穴であり、
     前記弧状鉄心ブロックは、前記第2のボルト通し穴に通されているボルトによって前記本体鉄心ブロックに締結されている請求項4~請求項7のいずれか一項に記載の回転電機の回転子。
  9.  第1の回転子部材、
     第2の回転子部材、及び
     回転子ベース
     を備え、
     前記第1の回転子部材は、第1の鉄心部材と、前記第1の鉄心部材に設けられている第1の磁石群とを有し、
     前記第2の回転子部材は、第2の鉄心部材と、前記第2の鉄心部材に設けられている第2の磁石群とを有し、
     前記第1及び第2の鉄心部材は、径方向について互いに対向し、かつ軸線方向について前記回転子ベースに固定されており、
     前記第1及び第2の磁石群は、径方向について互いに隣接しており、
     前記第1の磁石群は、周方向へ並んでいる複数の第1の磁石を有し、
     前記第2の磁石群は、周方向へ並んでいる複数の第2の磁石を有し、
     互いに隣接する同極の前記第1及び第2の磁石は、周方向へ特定の角度でずれており、
     前記第1及び第2の鉄心部材の少なくともいずれかと前記回転子ベースとのうち、一方には第1の凹部が設けられ、他方には前記第1の凹部に周方向について係合する第1の凸部が設けられている回転電機の回転子。
  10.  前記第1及び第2の鉄心部材の少なくともいずれかには、複数の貫通穴が第1のボルト通し穴として設けられており、
     各前記第1のボルト通し穴の少なくともいずれかは、周方向に沿った長穴であり、
     前記第1及び第2の鉄心部材の少なくともいずれかは、前記第1のボルト通し穴に通されているボルトによって前記回転子ベースに締結されている請求項9に記載の回転電機の回転子。
  11.  前記第1の凸部は、前記第1の鉄心部材、前記第2の鉄心部材及び前記回転子ベースのぞれぞれと別部材になっている請求項9又は請求項10に記載の回転電機の回転子。
  12.  前記第1及び第2の鉄心部材の少なくともいずれかは、周方向へ並んでいる複数の分割鉄心ブロックで構成されている集合鉄心部材になっており、
     各前記分割鉄心ブロックには、前記第1の凹部及び前記第1の凸部のいずれかが設けられている請求項9~請求項11のいずれか一項に記載の回転電機の回転子。
  13.  前記第1の凹部は、前記第1の凸部が前記第1の凹部に係合する方向へ連続的に幅が狭くなっている第1の凹部係合部を有し、
     前記第1の凸部は、前記第1の凹部係合部に嵌る第1の凸部係合部を有している請求項1~請求項12のいずれか一項に記載の回転電機の回転子。
  14.  前記第1の凹部係合部の幅は、前記第1の凹部の深さ方向の底面に向かって連続的に広がっており、
     前記第1の凸部係合部の幅は、前記第1の凸部の突出方向端部に向かって連続的に広がっている請求項13に記載の回転電機の回転子。
PCT/JP2015/071826 2015-07-31 2015-07-31 回転電機の回転子 WO2017022021A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580082060.5A CN107852047B (zh) 2015-07-31 2015-07-31 旋转电机的转子
DE112015006756.6T DE112015006756T5 (de) 2015-07-31 2015-07-31 Rotor für rotierende elektrische Maschine
PCT/JP2015/071826 WO2017022021A1 (ja) 2015-07-31 2015-07-31 回転電機の回転子
US15/743,724 US10559988B2 (en) 2015-07-31 2015-07-31 Rotor for rotary electric machine
JP2017526006A JP6227203B2 (ja) 2015-07-31 2015-07-31 回転電機の回転子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071826 WO2017022021A1 (ja) 2015-07-31 2015-07-31 回転電機の回転子

Publications (1)

Publication Number Publication Date
WO2017022021A1 true WO2017022021A1 (ja) 2017-02-09

Family

ID=57942540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071826 WO2017022021A1 (ja) 2015-07-31 2015-07-31 回転電機の回転子

Country Status (5)

Country Link
US (1) US10559988B2 (ja)
JP (1) JP6227203B2 (ja)
CN (1) CN107852047B (ja)
DE (1) DE112015006756T5 (ja)
WO (1) WO2017022021A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050702A (ja) * 2017-09-12 2019-03-28 東芝産業機器システム株式会社 回転子鉄心、回転子、及び回転電機
JPWO2019043767A1 (ja) * 2017-08-29 2020-03-26 三菱電機株式会社 モータ及び空気調和装置
JPWO2020044419A1 (ja) * 2018-08-28 2021-11-18 日立ジョンソンコントロールズ空調株式会社 永久磁石式回転電機及びそれを用いた圧縮機
WO2023073901A1 (ja) * 2021-10-29 2023-05-04 三菱電機株式会社 回転子、及び永久磁石同期モータ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102572084B1 (ko) * 2017-07-27 2023-08-30 삼성전자주식회사 모터 및 모터의 제어 방법, 모터를 구비한 세탁기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050548A (ja) * 1998-08-03 2000-02-18 Okuma Corp 同期電動機のロータ組立体
JP2004153913A (ja) * 2002-10-30 2004-05-27 Fuji Electric Fa Components & Systems Co Ltd 永久磁石モータの回転子
JP2004343938A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 回転機
JP2008106739A (ja) * 2006-10-25 2008-05-08 Taida Electronic Ind Co Ltd ファン及びファンフレーム
JP2009219194A (ja) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd 回転電機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285848A (ja) * 1997-04-02 1998-10-23 Yaskawa Electric Corp 永久磁石形電動機
JP2002058184A (ja) * 2000-08-09 2002-02-22 Asmo Co Ltd ロータの構造及び電動機
US6552459B2 (en) 2001-03-20 2003-04-22 Emerson Electric Co. Permanent magnet rotor design
JP4623472B2 (ja) * 2007-01-30 2011-02-02 トヨタ自動車株式会社 回転電動機
JP2010119192A (ja) 2008-11-12 2010-05-27 Yaskawa Electric Corp 永久磁石形モータ
CN101662175A (zh) * 2009-09-18 2010-03-03 钱存善 多段斜极转子式永磁风力发电机
CN102611224A (zh) 2011-01-20 2012-07-25 株式会社安川电机 旋转电机以及风力发电系统
JP4771010B1 (ja) * 2011-01-20 2011-09-14 株式会社安川電機 回転電機および風力発電システム
JP5679899B2 (ja) * 2011-05-06 2015-03-04 三菱電機株式会社 永久磁石式回転電機
DE102013018737A1 (de) * 2012-11-13 2014-05-15 Asmo Co., Ltd. Bürstenloser motor und rotor
CN204012974U (zh) 2014-07-17 2014-12-10 长春工程学院 一种电机转子总成结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050548A (ja) * 1998-08-03 2000-02-18 Okuma Corp 同期電動機のロータ組立体
JP2004153913A (ja) * 2002-10-30 2004-05-27 Fuji Electric Fa Components & Systems Co Ltd 永久磁石モータの回転子
JP2004343938A (ja) * 2003-05-19 2004-12-02 Mitsubishi Electric Corp 回転機
JP2008106739A (ja) * 2006-10-25 2008-05-08 Taida Electronic Ind Co Ltd ファン及びファンフレーム
JP2009219194A (ja) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd 回転電機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019043767A1 (ja) * 2017-08-29 2020-03-26 三菱電機株式会社 モータ及び空気調和装置
JP2019050702A (ja) * 2017-09-12 2019-03-28 東芝産業機器システム株式会社 回転子鉄心、回転子、及び回転電機
JP7107654B2 (ja) 2017-09-12 2022-07-27 東芝産業機器システム株式会社 回転子鉄心、回転子、及び回転電機
JPWO2020044419A1 (ja) * 2018-08-28 2021-11-18 日立ジョンソンコントロールズ空調株式会社 永久磁石式回転電機及びそれを用いた圧縮機
JP7126551B2 (ja) 2018-08-28 2022-08-26 日立ジョンソンコントロールズ空調株式会社 永久磁石式回転電機及びそれを用いた圧縮機
WO2023073901A1 (ja) * 2021-10-29 2023-05-04 三菱電機株式会社 回転子、及び永久磁石同期モータ

Also Published As

Publication number Publication date
CN107852047B (zh) 2020-06-26
DE112015006756T5 (de) 2018-04-12
US10559988B2 (en) 2020-02-11
JPWO2017022021A1 (ja) 2017-08-03
US20180212484A1 (en) 2018-07-26
JP6227203B2 (ja) 2017-11-08
CN107852047A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
US10110076B2 (en) Single-phase brushless motor
JP6227203B2 (ja) 回転電機の回転子
US9595851B2 (en) Rotary electric machine
CA2941287C (en) Rotary electric machine and stator of rotary electric machine
WO2018043026A1 (ja) 表面磁石型モータ
US10714992B2 (en) Motor including plurality of rotor parts
JP2008187804A (ja) 回転子およびこの回転子を備えた回転電機
JP2010017032A (ja) 回転電機用ステータおよび電動機
US10491058B2 (en) Single phase permanent magnet motor
US9762097B2 (en) Rotor and motor
US10461590B2 (en) Single phase permanent magnet motor
JP2015002572A (ja) 回転電機用ロータの製造治具および回転電機用ロータの製造方法
JP2012125111A (ja) アウターロータ型回転機のロータ
JP6824032B2 (ja) リラクタンス回転電機の組立方法およびリラクタンス回転電機
CN112567597B (zh) 旋转电机
JP2010017028A (ja) 回転電機用ロータおよび電動機
JP6745212B2 (ja) 回転子およびリラクタンス回転電機
JP4767902B2 (ja) 回転電機
JP2015029381A (ja) ロータ及びモータ
JP7425926B2 (ja) モーター構造およびモーター製造方法
KR20180073748A (ko) 축방향 자속 집중형 전동기의 회전자 제조 방법 및 이를 통해 제조되는 회전자
JP2018074882A (ja) ランデル型モータ及びランデル型モータの製造方法
JP4712000B2 (ja) 回転電機用ロータ
JP2010017030A (ja) 回転電機用ロータおよび電動機
TWM651451U (zh) 永磁式馬達

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526006

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743724

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006756

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900335

Country of ref document: EP

Kind code of ref document: A1