WO2017042949A1 - 圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法 - Google Patents
圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法 Download PDFInfo
- Publication number
- WO2017042949A1 WO2017042949A1 PCT/JP2015/075815 JP2015075815W WO2017042949A1 WO 2017042949 A1 WO2017042949 A1 WO 2017042949A1 JP 2015075815 W JP2015075815 W JP 2015075815W WO 2017042949 A1 WO2017042949 A1 WO 2017042949A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- pulsation
- current
- unit
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
- F04B49/065—Control using electricity and making use of computers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/10—Other safety measures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/28—Safety arrangements; Monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/02—Motor parameters of rotating electric motors
- F04B2203/0201—Current
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/02—Motor parameters of rotating electric motors
- F04B2203/0212—Amplitude of the electric current
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/02—Motor parameters of rotating electric motors
- F04B2203/0213—Pulses per unit of time (pulse motor)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2207/00—External parameters
- F04B2207/70—Warnings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/05—Speed
- F04C2270/052—Speed angular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/07—Electric current
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/60—Prime mover parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/005—Outdoor unit expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/15—Power, e.g. by voltage or current
- F25B2700/151—Power, e.g. by voltage or current of the compressor motor
Definitions
- the present invention relates to a failure prediction / detection means and a failure prediction / detection method for a compressor provided in a refrigeration apparatus or an air conditioner.
- Patent Document 1 there is Patent Document 1 as background art of the present invention.
- an instantaneous current or an instantaneous voltage applied to the compressor is detected, the internal state of the compressor, in particular, a motor driving torque is estimated based on the detected value, lubrication failure, liquid compression, and the like are estimated. It is described that prediction and diagnosis are performed.
- a refrigeration apparatus such as an air conditioner, that constitutes a refrigeration cycle from a compressor, a condenser, an expansion mechanism, and an evaporator
- the inability to operate due to a compressor failure greatly impairs user comfort.
- a refrigeration apparatus such as a refrigerator that controls the temperature of an object
- the inoperability of the refrigeration apparatus due to a compressor failure leads to damage of the object, and the economic loss is not small. Therefore, for stable operation of the air conditioner and the refrigeration apparatus, it is important in the air conditioning of the person and the object to detect and maintain the failure before the compressor becomes inoperable.
- One of the means to achieve stable operation of air conditioners and refrigeration systems is to detect compressor failure early and avoid sudden inoperability for users.
- an air conditioner that constitutes a refrigeration cycle from an air conditioner, a compressor, a condenser, an expansion mechanism, and an evaporator
- the compressor abnormality is detected at an early stage or It is difficult to detect.
- the present invention provides an air conditioner equipped with a compressor failure prediction / detection means and a failure prediction / detection method thereof that solves the above-described problems of the prior art and enables early detection of compressor abnormality. It is to provide.
- the failure prediction / detection means of the compressor of the control unit includes a current detection unit that detects a drive current that drives the compressor, and a drive current detected by the current detection unit.
- a pulsation detection unit that detects pulsation and an abnormality determination unit that predicts or detects a compressor failure based on the magnitude and duration of the pulsation of the drive current detected by the pulsation detection unit.
- the control part which controls a compressor.
- the drive current that drives the compressor is detected by the current detector
- the pulsation of the drive current detected by the current detector is detected by the pulsation detector
- the abnormality determination unit predicts or detects a compressor failure.
- the present invention relates to an air conditioner having a function of predicting and detecting a compressor failure.
- an embodiment of the present invention in a refrigeration cycle of an air conditioner is shown.
- a refrigeration apparatus constituted by a refrigeration cycle including a compressor, a condenser, an expansion mechanism, and an evaporator.
- Fig. 1 shows a typical refrigeration cycle of the air conditioner 1.
- the air conditioner 1 includes an outdoor unit 10 and an indoor unit 30, which are connected by a gas connection pipe 2 and a liquid connection pipe 3.
- the outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an outdoor expansion valve 15, an accumulator 20, a compressor suction pipe 16, a gas refrigerant pipe 17, A control unit 4 is provided.
- the compressor 11 and the accumulator 20 are connected by a compressor suction pipe 16, and the four-way valve 12 and the accumulator 20 are connected by a refrigerant pipe 17.
- Compressor 11 compresses the refrigerant and discharges it to the piping.
- the outdoor heat exchanger 13 exchanges heat between the refrigerant and the outside air.
- the outdoor blower 14 supplies outside air to the outdoor heat exchanger 13.
- the outdoor expansion valve 15 depressurizes the refrigerant to a low temperature.
- the accumulator 20 is provided to store the liquid return at the time of transition, and adjusts the refrigerant to an appropriate dryness.
- the indoor unit 30 includes an indoor heat exchanger 31, an outdoor blower 32, and an indoor expansion valve 33.
- the indoor heat exchanger 31 exchanges heat between the refrigerant and the inside air.
- the outdoor blower 32 supplies outside air to the outdoor heat exchanger 31.
- the indoor expansion valve 33 can change the flow rate of the refrigerant flowing through the indoor heat exchanger 31 by changing the throttle amount.
- a solid line arrow in FIG. 1 indicates the flow of the refrigerant in the cooling operation of the air conditioner 1.
- the four-way valve 12 causes the discharge side of the compressor 11 and the outdoor heat exchanger 13 to communicate with each other and the accumulator 20 and the gas connection pipe 2 to communicate with each other, as indicated by a solid line.
- the high-temperature and high-pressure gas refrigerant compressed and discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the four-way valve 12 and is cooled and condensed by the outdoor air blown by the outdoor blower 14.
- the condensed liquid refrigerant passes through the outdoor expansion valve 15 and the liquid connection pipe 3 and is sent to the indoor unit 30.
- the liquid refrigerant that has flowed into the indoor unit 30 is decompressed by the indoor expansion valve 33, becomes a low-pressure low-temperature gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 31.
- the gas-liquid two-layer liquid refrigerant is heated and evaporated by the indoor air blown by the indoor blower 32 to become a gas refrigerant.
- the room air is cooled by the latent heat of vaporization of the refrigerant, and the cool air is sent into the room.
- the gas refrigerant is returned to the outdoor unit 10 through the gas connection pipe 2.
- the gas refrigerant returned to the outdoor unit 10 passes through the four-way valve 12 and the gas refrigerant pipe 17 and flows into the accumulator 20.
- a series of refrigeration cycles is formed by adjusting to a predetermined refrigerant clearance by the accumulator 20, sucking into the compressor 11 via the compressor suction pipe 16, and compressing again by the compressor 11.
- the dotted arrows in FIG. 1 indicate the refrigerant flow in the heating operation of the air conditioner 100.
- the four-way valve 12 causes the discharge side of the compressor 11 and the gas connection pipe 2 to communicate with each other and the accumulator 20 and the outdoor heat exchanger 13 communicate with each other, as indicated by a dotted line.
- the high-temperature and high-pressure gas refrigerant compressed and discharged from the compressor 11 passes through the gas connection pipe 2 and the four-way valve 12 and is sent to the indoor unit 30.
- the gas refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31, and the refrigerant is cooled and condensed by the indoor air blown by the indoor blower 32 to become high-pressure liquid refrigerant.
- the room air is heated by the refrigerant, and the warm air is sent into the room.
- the liquefied refrigerant passes through the indoor expansion valve 33 and the liquid connection pipe 3 and is returned to the outdoor unit 10.
- the liquid refrigerant that has returned to the outdoor unit 10 is decompressed by a predetermined amount by the outdoor expansion valve 15, enters a low-temperature gas-liquid two-phase state, and flows into the outdoor heat exchanger 13.
- the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the outdoor air blown by the outdoor blower 14, and becomes a low-pressure gas refrigerant.
- the gas refrigerant flowing out of the outdoor heat exchanger 13 flows into the accumulator 20 through the four-way valve 12 and the gas refrigerant pipe 17, is adjusted to a predetermined refrigerant clearance by the accumulator 20, is sucked into the compressor 11, and again A series of refrigeration cycles is formed by compressing the compressor 11.
- FIG. 2 shows an internal structure diagram of a high-pressure chamber type scroll compressor as a representative example of the compressor 11 used in the refrigeration cycle of the air conditioner described above.
- the scroll compressor 11 includes a pressure vessel 103 provided with a suction pipe 101 and a discharge pipe 102.
- a discharge pressure chamber 103 a is formed by the pressure vessel 103.
- an electric motor 104 having a stator 1041 and a rotor 1042 and a compression mechanism 105 are housed, and refrigeration oil 116 is stored in the lower part.
- the pressure vessel 103 is supported by a pedestal 115.
- the compression mechanism unit 105 includes a fixed scroll 106 having a spiral gas passage and a turning scroll 108 having a spiral wrap 107.
- the orbiting scroll 108 is disposed so as to be movable relative to the fixed scroll 106, and the compression chamber 109 is formed by engaging the fixed scroll 106 and the orbiting scroll 108 with each other.
- the orbiting scroll 108 is connected to an Oldham ring (not shown) that revolves while preventing its rotation, and is connected to an eccentric portion 111 of the crankshaft 110 that is rotationally driven by the electric motor 104.
- the fixed scroll 106 is formed with a discharge port 106a.
- the air conditioner 1 is configured such that the outdoor unit 10 and the indoor unit 30 are connected by the refrigerant pipe 2 and the liquid connection pipe 3 to form a refrigeration cycle and perform air conditioning.
- the outdoor unit 10 of the air conditioner 1 includes a compressor 11 that compresses the refrigerant to a high temperature and a high pressure, a compressor motor 104 that rotationally drives the compressor 11, the outdoor unit 10, and the indoor unit 30. And a control unit 4 (control means) for detecting the abnormality of the compressor motor 104 and controlling the compressor motor 104 so that the compressor motor 104 can be rotated freely at a desired rotational speed.
- the control unit 4 includes a current detection unit 5 (current detection unit) that detects an output current of the compressor motor 104 and a compression unit as means for predicting and detecting a failure (abnormality) of the compressor motor 104.
- a phase detector 6 phase detector
- a motor rotation speed detector 7 rotation speed detector
- the phase detection unit 6 receives the information dq-converted by the dq conversion unit 53 of the current detection unit 5 and extracts ⁇ dc as d-axis phase information, and this d-axis phase extraction unit 61.
- a mechanical angle phase calculating unit that calculates ⁇ r of the mechanical angle phase using information of ⁇ dc extracted by the axial phase extracting unit 61, and outputs the calculated mechanical angle phase information to the pulsation detecting unit 8.
- the pulsation detection unit 8 detects a pulsation of the current value of the compressor motor 104 (hereinafter referred to as a motor current value) from the detection results of the current detection unit 5 and the phase detection unit 6.
- FIG. 4C is a diagram illustrating a configuration example of the pulsation detecting unit 8.
- the current detection unit 5 detects the three-phase output current (Iu, Iv, Iw) from the compressor motor 104 in the current calculation unit 51 with the configuration shown in FIG. 4A. Specifically, the current flowing through the DC portion of the inverter (not shown) that drives the compressor motor 104 is measured from the voltage generated at both ends of the shunt resistor (not shown). Then, the motor current (Iu, Iv, Iw) is derived by the current calculation unit 51.
- the motor current (Iu, Iv, Iw) can be detected by various methods such as connecting a resistor having a small resistance value to the motor current output section, detecting from the voltage applied to the resistor, and detecting by a current sensor. There is.
- the mechanical angle phase ⁇ r which is the second input value of the pulsation detecting unit 8, is calculated from ⁇ dc. It is shown in the following equation (Equation 2).
- ⁇ r ⁇ dc / number of pole pairs (Equation 2)
- ⁇ r is calculated by integrating ⁇ r.
- a pulsation component is extracted from the two input q-axis current feedback values and the mechanical angle phase ⁇ r.
- the calculation unit 81 calculates sin ⁇ r and cos ⁇ r from the mechanical angle phase ⁇ r input from the phase detection unit 5 by a sin and cos calculation, and a q-axis current feedback value input from the current detection unit 5 and a multiplier. High frequency components are removed by multiplying by 811 and 812 and performing first-order lag filter processing by the filter processing unit 82.
- the time constant T of the first-order lag filter processing processed by the filter processing unit 82 is set by simulation so that the period of torque pulsation can be extracted based on a test by an actual machine. That is, in order to set the time constant T for the filter process, the time constant T for the filter process needs to be larger than the pulsation period in order to extract the pulsation component. Set a larger time constant.
- the multipliers 821 and 822 multiply sin ⁇ r and cos ⁇ r again, add the multiplied results by the adder 823, and pulsate by the adjustment gain K in the gain adjustment period 83.
- the components By adjusting the components, only the components that pulsate with the period of the mechanical angle phase ⁇ r can be extracted.
- FIG. 4C shows an example in which Ts is 500 ⁇ s and Ta is 500 ms.
- FIG. 5 is a waveform diagram showing the pulsation of the current detected by the current detector 5 when an abnormality occurs inside the compressor 11 of the air conditioner 1 and a touching load is generated.
- Abnormalities in which a contact load is generated inside the compressor 11 include damage to the bearing 112 or 113 that supports the rotation mechanism of the compressor 11, liquid compression in the compression chamber 109, and contact portions in the compression mechanism section. There is poor lubrication.
- a curve 50a shown in FIG. 5 shows a current value waveform in a normal state detected by the current detection unit 5, and a curve 50b shows a current value waveform when the compressor is abnormal.
- the current detector 5 shown in FIG. 3 detects the current of the compressor motor 104 at a constant sampling period.
- the torque fluctuation of the compressor motor 104 becomes larger than that in the normal state, and this also occurs in the applied current of the compressor motor 104. Therefore, as shown by the curve 50b in FIG. 5, the pulsating value for current average value Im (or amplitude) Ia is larger than the pulsation value Ia 0 of the normal. As the rotation speed of the compressor motor 104 increases, the applied current also increases, so the current average value Im also increases. Therefore, the abnormality of the compressor 11 can be accurately detected not by the current average value but by the current pulsation value Ia.
- FIG. 6 shows threshold values Ia1 and Ia2 when a compressor abnormality is detected from the current pulsation value.
- the threshold values Ia1 and Ia2 are preferably set in advance from a test of a normal compressor and a compressor in which an abnormality in the compressor is observed.
- Ia1 exceeds a certain time (T1), it corresponds to the initial stage of abnormality, so that the operation can be continued within a predetermined time just by notifying the user of the compressor abnormality.
- T1 a certain time
- the operation of the compressor that detected the abnormality is stopped by the air conditioner control unit, and the refrigeration capacity is reduced by the operation of other compressors. It is desirable to ensure.
- Ia1 is effective in detecting an event in which abnormality gradually proceeds in proportion to the compressor operation time, such as bearing damage.
- the abnormality determination unit 9 corresponds to a state in which an abnormality such as damage to the bearing 112 or 113 in the compressor 11 is progressing, and it is determined that an abnormality has occurred in the compressor 11, and the abnormality information output unit 91 It is desirable to stop the compressor 11 based on this warning.
- FIG. 4D shows the configuration of the abnormality determination unit 9 that determines the abnormality of the compressor 11 described above.
- the abnormality determination unit 9 includes a storage unit 91 that stores threshold values Ia1 and Ia2 in advance, and stores information on the current pulsation value Ia output from the pulsation detection unit 8 and Ia1 stored in the storage unit.
- First comparison unit 92 for comparison
- second comparison unit 93 for comparing information of current pulsation value Ia output from pulsation detection unit 8 and Ia2 stored in storage unit 91
- first comparison unit And an abnormality information output unit 94 that receives information compared by the second comparison unit 93 and outputs abnormality information.
- Fig. 7 shows a graph of torque change during one rotation of the orbiting scroll in the scroll compressor.
- the scroll compressor in the refrigerant compression process, the refrigerant sucked into the inside of the compression chamber is compressed as the compression chamber volume is sequentially reduced with the rotation of the orbiting scroll as described above.
- the torque changes while the orbiting scroll makes one revolution due to the refrigerant gas load.
- the thresholds Ia1 and Ia2 of the current pulsation value Ia described with reference to FIG. 6 are set by considering the current pulsation associated with the refrigerant compression and the like. It becomes possible to detect abnormality of the compressor with high accuracy.
- a rotary type compressor is often used as the compressor of the air conditioner 1. Similar to the scroll type, the rotary type compressor also includes a positive displacement compression mechanism, and the volume of the compression chamber is changed by the rotating rolling piston to compress the refrigerant.
- the rotary type compressor there is a two-cylinder type having two compression chambers in addition to a one-cylinder type having one compression chamber. When there are two compression chambers, the compression process is shifted 180 degrees in one rotation of the compressor motor.
- FIG. 8 shows a schematic diagram of changes in torque during one rotation of the compression motor in the rotary compressor.
- a curve 51a indicates a change in torque of a single cylinder type
- a curve 51b indicates a change in torque of a two cylinder type.
- the curve 51b in the 2-cylinder type, since the compression process is shifted by 180 degrees, a torque change for two cycles appears during one rotation of the compressor motor. Therefore, current pulsation is observed even in a normal compressor in the secondary component with respect to the rotational speed of the compressor motor. Therefore, the component of the current pulsation value existing in a normal compressor differs depending on the structure of the compressor. Considering the above, by setting the threshold values Ia1 and Ia2 of the current pulsation value, it is possible to detect the abnormality of the compressor of the air conditioner with higher accuracy.
- the abnormality determination processing flow in the abnormality determination unit 9 will be described with reference to FIG. First, after starting the operation of the compressor 11, the current pulsation value Ia output from the pulsation detection unit 8 receiving the outputs from the current detection unit 5 and the phase detection unit 6 is input (S901). Next, it is confirmed that the current pulsation value Ia has been input (S902). If the current pulsation value Ia has not been input (NO in S902), the process is terminated. When the current pulsation value Ia is input (YES in S902), the input current pulsation value Ia is compared with the threshold value Ia1 stored in the storage unit 91 in advance (S902).
- the current calculation unit 51 detects the motor current (S1001), and the ⁇ conversion unit 52 performs ⁇ ⁇ ⁇ conversion using the detection result (
- the dq conversion unit 53 performs dq conversion on the conversion result (S1003), and the filter processing unit 54 performs filter processing on the dq conversion result to calculate the q-axis current feedback value IqFb ( S1004).
- the result of the dq conversion by the dq conversion unit 53 in S1003 is also input to the phase detection unit 6, and the d-axis phase extraction unit 61 extracts ⁇ dc and the mechanical angle phase calculation unit 62 calculates the mechanical angle phase ⁇ r. (S1005).
- the information of the pulsation component Ia extracted by the pulsation detection unit 8 is input to the abnormality determination unit 9, and the abnormality is predicted and detected by the processing flow described with reference to FIG.
- the present invention it is possible to perform failure prediction of a compressor provided in an air conditioner and detection at an initial stage of failure. As a result, the air conditioner can be used stably without causing the operation stop of the air conditioner due to the failure of the compressor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Computer Hardware Design (AREA)
- Air Conditioning Control Device (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
空気調和機に備えられた圧縮機の故障予知・検知を行うために、熱交換器と、圧縮機と、前記熱交換器と前記圧縮機とを接続する配管と、圧縮機を制御すると共に圧縮機の故障予知・検知手段を有する制御部とを備えた空気調和機において、制御部の圧縮機の故障予知・検知手段は、圧縮機を駆動する駆動電流を検出する電流検出部と、電流検出部で検出した駆動電流の脈動を検出する脈動検出部と、脈動検出部で検出した駆動電流の脈動の大きさと継続時間とに基づいて圧縮機の故障を予知又は検知する異常判定部とを備えて構成した。
Description
本発明は、冷凍装置や空気調和装置に備えられた圧縮機の故障予知・検知手段及びその故障予知・検知方法に関する。
本発明の背景技術として、特許文献1が有る。特許文献1には、圧縮機に加わる瞬時電流もしくは瞬時電圧を検出し、この検出値により圧縮機内部状態、特にモータ駆動トルクを推定し、潤滑不良や液圧縮等を推定し、圧縮機の故障予知及び診断を行うことが記載されている。
圧縮機、凝縮器、膨張機構、蒸発器から冷凍サイクルを構成する冷凍装置、例えば空気調和機において、圧縮機の故障による運転不能は使用者の快適性を大きく損なってしまう。
また、物の温調を行う冷凍機のような冷凍装置においては圧縮機の故障による冷凍装置の運転不能は、対象物の破損につながり経済的な損失が小さくない。そのため、空気調和機や冷凍装置の安定的な運転の為に、圧縮機が運転不能となる前に故障を検知し、保全を行うことは、対人及び対物の空気調和において重要である。
また、物の温調を行う冷凍機のような冷凍装置においては圧縮機の故障による冷凍装置の運転不能は、対象物の破損につながり経済的な損失が小さくない。そのため、空気調和機や冷凍装置の安定的な運転の為に、圧縮機が運転不能となる前に故障を検知し、保全を行うことは、対人及び対物の空気調和において重要である。
空気調和機や冷凍装置の、安定的な運転を達成する手段の一つに、圧縮機の故障を早期に検知し利用者にとっての突発的な運転不能を回避することがある。
特許文献1に記載されている構成では、圧縮機に加わる瞬時電流もしくは瞬時電圧を検出し、モータ駆動トルクを演算式により推定し、圧縮機内部状態推定装置で異常を検出している。しかし、特許文献1に記載されている構成では、圧縮機内部状態推定装置を必要とするため、圧縮機状態推定装置の為の制御基板を用意する必要があり、機械室内空間が限られる空気調和機の室外機では価格の面でも構造的な面でも難しい問題を抱えている。
また、瞬時電流、瞬時電圧では、圧縮機の異常に伴う変化が、圧縮機故障度合いが顕著となるまで検知することが困難である。そのため、空気調和機や、圧縮機、凝縮器、膨張機構、蒸発器から冷凍サイクルを構成する冷凍装置(以下、これらを総称して空気調和機と記す)において、圧縮機異常を早期に検知又は検知することが困難である。
本発明は、上記した従来技術の課題を解決して、圧縮機異常を早期に検知することを可能にする圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法を提供するものである。
上記した課題を解決するために、本発明では、熱交換器と、圧縮機と、前記熱交換機と前記圧縮機とを接続する配管と、圧縮機を制御すると共に圧縮機の故障予知・検知手段を有する制御部とを備えた空気調和機において、制御部の圧縮機の故障予知・検知手段は、圧縮機を駆動する駆動電流を検出する電流検出部と、電流検出部で検出した駆動電流の脈動を検出する脈動検出部と、脈動検出部で検出した駆動電流の脈動の大きさと継続時間とに基づいて圧縮機の故障を予知又は検知する異常判定部とを備えて構成した。
また、上記課題を解決するために、本発明では、熱交換器と、圧縮機と、熱交換機と圧縮機とを接続する配管と、圧縮機を制御する制御部とを備えた空気調和機における圧縮機の故障を予知及び検知する方法において、圧縮機を駆動する駆動電流を電流検出部で検出し、電流検出部で検出した駆動電流の脈動を脈動検出部で検出し、脈動検出部で検出した駆動電流の脈動の大きさと継続時間とに基づいて異常判定部で圧縮機の故障を予知又は検知するようにした。
本発明により、圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法において、従来の電流や電圧絶対値による検出では困難であった、より早期に圧縮機の異常を検知することを達成し、空気調和機の計画的な保守や部品交換を実現し、空気調和機利用者の快適性や信頼性を高めることを可能にした。
本発明は、圧縮機の故障を予知及び検知する機能を備えた空気調和機に関するものである。
本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
代表例として空気調和機の冷凍サイクルにおける本発明の実施例を示す。ただし、圧縮機、凝縮器、膨張機構、蒸発器からなる冷凍サイクルで構成される冷凍装置では同様の効果が発揮される。
図1に代表的な空気調和機1の冷凍サイクルを示す。空気調和機1は、室外機10と室内機30を備え、それらの間をガス接続配管2と液接続配管3とで繋いでいる。
室外機10は、圧縮機11と、四方弁12と、室外熱交換器13と、室外送風機14と、室外膨張弁15と、アキュムレータ20と、圧縮機吸入配管16と、ガス冷媒配管17と,制御部4を有している。
圧縮機11とアキュムレータ20とは圧縮機吸入配管16により接続され、四方弁12とアキュムレータ20とは冷媒配管17により接続されている。
圧縮機11は、冷媒を圧縮して配管に吐出する。四方弁12を切り替えることで、冷媒の流れが変化し、冷房運転と暖房運転が切り替わる。室外熱交換器13は、冷媒と外気の間で熱交換させる。室外送風機14は、室外熱交換器13に対し外気を供給する。室外膨張弁15は、冷媒を減圧して低温にする。アキュムレータ20は、過渡時の液戻りを貯留するために設けられており、冷媒を適度な乾き度に調整する。
室内機30は、室内熱交換器31と、室外送風機32と、室内膨張弁33とを備える。室内熱交換器31は、冷媒と内気の間で熱交換させる。室外送風機32は、室外熱交換器31に対し外気を供給する。室内膨張弁33は、その絞り量を変化させることにより室内熱交換器31を流れる冷媒の流量を変化させることが可能である。
次に、空気調和機1における冷房運転について説明する。図1における実線の矢印は、空気調和機1の冷房運転における冷媒の流れを示している。冷房運転において四方弁12は、実線で示すように、圧縮機11の吐出側と室外熱交換器13とを連通させ、アキュムレータ20とガス接続配管2とを連通させる。
そして、圧縮機11より圧縮され吐出された高温高圧のガス冷媒は、四方弁12を経由して、室外熱交換器13に流入し、室外送風機14により送風された室外空気により冷却されて凝縮される。凝縮した液冷媒は、室外膨張弁15および液接続配管3を通過して、室内機30へ送られる。室内機30に流入した液冷媒は、室内膨張弁33で減圧され、低圧低温の気液二相冷媒になり室内熱交換器31に流入する。室内熱交換器31において、気液二層液冷媒は、室内送風機32によって送風される室内空気により加熱されて蒸発し、ガス冷媒となる。この際に、室内空気が冷媒の蒸発潜熱により冷却され、冷風が室内に送られる。その後、ガス冷媒は、ガス接続配管2を通って、室外機10に戻される。
室外機10に戻ったガス冷媒は、四方弁12およびガス冷媒配管17を通過し、アキュムレータ20へと流入する。アキュムレータ20で所定の冷媒かわき度に調整され、圧縮機吸入配管16を介して圧縮機11に吸入され、再度圧縮機11で圧縮されることにより、一連の冷凍サイクルが形成される。
次に、空気調和機1における暖房運転について説明する。図1における点線の矢印は、空気調和機100の暖房運転における冷媒の流れを示している。暖房運転において四方弁12は、点線で示すように、圧縮機11の吐出側とガス接続配管2とを連通させ、アキュムレータ20と室外熱交換器13とを連通させる。
そして、圧縮機11より圧縮され吐出された高温高圧のガス冷媒は、ガス接続配管2および四方弁12を通過して、室内機30へ送られる。室内機30に流入したガス冷媒は、室内熱交換器31に流入し、室内送風機32により送風された室内空気によって冷媒が冷却されて凝縮し、高圧の液冷媒となる。この際に、室内空気は冷媒によって加熱され、温風が室内に送られる。その後、液化した冷媒は、室内膨張弁33および液接続配管3を通過して、室外機10へと戻される。
室外機10へ戻った液冷媒は、室外膨張弁15で所定量減圧されて、低温の気液二相状態となり、室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外送風機14により送風された室外空気と熱交換し、低圧のガス冷媒となる。室外熱交換器13から流出したガス冷媒は、四方弁12およびガス冷媒配管17を通って、アキュムレータ20に流入し、アキュムレータ20で所定の冷媒かわき度に調整され、圧縮機11に吸入され、再度圧縮機11圧縮されることにより一連の冷凍サイクルが形成される。
図2には、前述の空気調和機の冷凍サイクルに用いられる、圧縮機11の代表例として高圧チャンバ方式のスクロール圧縮機の内部構造図を示す。スクロール型の圧縮機11は、吸入パイプ101と吐出パイプ102とが設けられた圧力容器103を備える。圧力容器103により吐出圧室103aが形成される。圧力容器103内には、固定子1041と回転子1042を有する電動機104と圧縮機構部105とが収容され、下部には冷凍機油116が貯留されている。圧力容器103は、台座115で支持されている。
圧縮機構部105は、渦巻状のガス通路を有する固定スクロール106と、渦巻状ラップ107を有する旋回スクロール108とを備える。旋回スクロール108は、固定スクロール106に対して相対的に移動可能に配置され、固定スクロール106と旋回スクロール108とが互いにかみ合わさることにより圧縮室109が形成される。旋回スクロール108は、その自転を阻止しながら、公転運動させるオルダムリング(図示せず)に連結されるとともに、電動機104により回転駆動されるクランク軸110の偏心部分111に連結される。また、固定スクロール106には吐出口106aが形成されている。
電動機104の駆動により、クランク軸110を回転させ、旋回スクロール108を旋回させながら、吸入パイプ101から吸込んだ冷媒を圧縮室109に導入し、順次圧縮する。圧縮された冷媒は、固定スクロール106の吐出口106aから吐出圧室103aに排出される。
また、クランク軸110は軸受112および軸受113によって支持されている。軸受113は支持部材114で圧力容器103に支持されている。冷媒圧縮機の圧縮機構、すなわちスクロール圧縮機での固定スクロールおよび旋回スクロールによって構成される圧縮室は寸法公差が小さく、軸受112及び113が潤滑油不足などにより損傷した場合、クランク軸110が偏心し、旋回スクロール107と固定スクロール106が通常設計値以上に接触し、かじりなどスムーズな圧縮工程を阻害し、ひどい場合には固渋し圧縮不能となる。したがって、軸受112及び113が損傷した段階でクランク軸が偏心することにより、触れ回り荷重が発生している。
この触れ回り荷重が発生し始める初期段階では、異常振動や異常音の発生は感知し難く、また、電流の絶対値自身も変化が小さく、制御部での検知が困難である。しかし、この触れ回り荷重すなわちトルク変化が電動機の電流において脈動を発生させる。この電流脈動を計測することで圧縮機内部の異常を早期に検知可能である。
以下、その電流脈動を計測することで圧縮機内部の異常を早期に検知可能にする、圧縮機の故障予知・検知手段及び圧縮機の故障予知・検知方法について説明する。
空気調和機1は、図1にて前述のとおり、室外機10と室内機30が、冷媒配管2と液接続配管3により接続されて冷凍サイクルを構成し、空気調和を行うものである。
図2に示すように、空気調和機1の室外機10は、冷媒を高温高圧に圧縮する圧縮機11と、圧縮機11を回転駆動する圧縮機電動機104と、室外機10と室内機30との全体の制御と圧縮機電動機104を所望の回転速度となるように回転自在に駆動制御するとともに圧縮機電動機104の異常を検出する制御部4(制御手段)と、を備える。
図3に示すように、制御部4は、圧縮機電動機104の故障(異常)予知・検知する手段として、圧縮機電動機104の出力電流を検出する電流検出部5(電流検出手段)と、圧縮機電動機104の磁極位置を検出する位相検出部6(位相検出手段)と、圧縮機電動機104の回転速度を検出する電動機回転速度検出部7(回転速度検出手段)と、検出した圧縮機電動機104の電流値および磁極位置の情報に基づいて電流値の脈動を検出する脈動検出部8(脈動検出手段)と、検出した電流値の脈動および電動機回転速度に基づき圧縮機異常を判定する異常判定部9と、異常判定部9で異常と判定した情報を出力する異常情報出力部91とを備えている。制御部4は、更に、室外機10と室内機30の全体を制御する回路(図示せず)や、圧縮機電動機104を駆動制御する回路(図示せず)も備えている。
電流検出部5は、図4Aに示すように、圧縮機電動機104に流れるモータ電流を求める電流演算部51、求めたモータ電流をαβ変換するαβ変換部52、αβ変換したデータをdq変換するdq変換部53、dq変換した結果をフィルタ処理してq軸電流フィードバック値を算出するフィルタ処理部54を備え、フィルタ処理部54で算出したq軸電流フィードバック値を脈動検出部8へ出力する。
電流検出部5は、図4Aに示すように、圧縮機電動機104に流れるモータ電流を求める電流演算部51、求めたモータ電流をαβ変換するαβ変換部52、αβ変換したデータをdq変換するdq変換部53、dq変換した結果をフィルタ処理してq軸電流フィードバック値を算出するフィルタ処理部54を備え、フィルタ処理部54で算出したq軸電流フィードバック値を脈動検出部8へ出力する。
位相検出部6は、図4Bに示すように、電流検出部5のdq変換部53でdq変換した情報を入力してd軸位相情報としてθdcを抽出するd軸位相抽出部61と、このd軸位相抽出部61で抽出したθdcの情報を用いて機械角位相のθrを算出する機械角位相算出部とを備え、算出した機械角位相情報を脈動検出部8へ出力する。
脈動検出部8は、電流検出部5および位相検出部6の検出結果より圧縮機電動機104の電流値(以下、モータ電流値という)の脈動を検出する。
図4Cは、脈動検出部8の構成例を示す図である。
まず、電流検出部5は、図4Aに示した構成で、電流演算部51において圧縮機電動機104からの三相の出力電流(Iu、Iv、Iw)を検出する。具体的には、圧縮機電動機104を駆動するインバータ(図示省略)の直流部分に流れる電流をシャント抵抗(図示省略)の両端に発生する電圧から測定する。そして、電流演算部51によって、モータ電流(Iu、Iv、Iw)を導出する。なお、モータ電流(Iu、Iv、Iw)の検出方法には、モータ電流の出力部に抵抗値の小さい抵抗を接続し、その抵抗にかかる電圧からの検出や、電流センサによる検出等様々な方法がある。
まず、電流検出部5は、図4Aに示した構成で、電流演算部51において圧縮機電動機104からの三相の出力電流(Iu、Iv、Iw)を検出する。具体的には、圧縮機電動機104を駆動するインバータ(図示省略)の直流部分に流れる電流をシャント抵抗(図示省略)の両端に発生する電圧から測定する。そして、電流演算部51によって、モータ電流(Iu、Iv、Iw)を導出する。なお、モータ電流(Iu、Iv、Iw)の検出方法には、モータ電流の出力部に抵抗値の小さい抵抗を接続し、その抵抗にかかる電圧からの検出や、電流センサによる検出等様々な方法がある。
検出したモータ電流(Iu、Iv、Iw)を、αβ変換部52とdq変換部53で次式(1)に従って、αβ変換、dq変換の順に変換し、その結果をフィルタ処理部54で1次遅れフィルタ処理することで、脈動検出部8の入力値となる、q軸電流フィードバック値を算出する。
脈動検出部8の二つ目の入力値である機械角位相θrは、θdcをから算出する。次式(数2)に示す。
Δθr=Δθdc/極対数 ・・・(数2)
θrは、Δθrを積算し算出する。上記の2つの入力q軸電流フィードバック値、機械角位相θrから脈動成分を抽出する。
θrは、Δθrを積算し算出する。上記の2つの入力q軸電流フィードバック値、機械角位相θrから脈動成分を抽出する。
図4Aに示すように、位相検出部5から入力した機械角位相θrから演算部81で sin、cos演算によりsinθr、cosθrを算出し、電流検出部5から入力したq軸電流フィードバック値と乗算器811と812とでそれぞれかけ合わせ、フィルタ処理部82で1次遅れフィルタ処理を行うことで、高周波成分を除去する。
ここで、フィルタ処理部82で処理する1次遅れフィルタ処理の時定数Tの設定には、実機による試験を基に、トルク脈動の周期を抽出できるようにシミュレーションにより設定する。すなわち、フィルタ処理の時定数Tの設定には脈動成分を抽出するためにフィルタ処理の時定数Tを脈動周期より大きくする必要があるため、トルク脈動が発生する圧縮機11の回転周期に対しそれよりも大きい時定数を設定する。
フィルタ処理部82での1次遅れフィルタ処理の後、乗算器821と822とで再度sinθr、cosθrをかけ、かけ合わせた結果を加算器823で足し合わせ、ゲイン調整期83で調整ゲインKにより脈動成分の調整を行うことで、機械角位相θrの周期で脈動する成分のみを抽出することができる。サンプリング周期Ts、フィルタ時定数Taの設定値の一例として、図4Cには、Tsが500μs、Taが500msの例を示す。
図5は、空気調和機1の圧縮機11の内部で異常が発生し、触れ回り荷重が発生している場合における電流検出部5で検出される電流の脈動を示す波形図である。圧縮機11の内部にて触れ回り荷重が発生するような異常とは、圧縮機11の回転機構を支持する軸受112又は113の損傷、圧縮室109での液圧縮、圧縮機構部内の接触部における潤滑不良などがある。図5に示す曲線50aは、電流検出部5で検出される正常状態の電流値波形を示し、曲線50bは、圧縮機異常のときの電流値波形を示している。
図3に示す電流検出部5は、一定のサンプリング周期で圧縮機電動機104の電流を検出している。
空気調和機1の圧縮機11に前述のような何らかの異常がある場合、圧縮機電動機104のトルク変動が正常時と比較して大きくなり、それが圧縮機電動機104の印加電流にも発生する。このため、図5の曲線50bに示すように、電流平均値Imに対する脈動値(もしくは振幅)Iaが、正常時の脈動値Ia0と比べて大きくなる。圧縮機電動機104の回転速度が増大するにつれ、印加電流も大きくなるため、電流平均値Imも増加する。したがって電流平均値ではなく、電流脈動値Iaによって、圧縮機11の異常が精度よく検知可能となる。
次に、電流脈動値より圧縮機異常を検知した際の空気調和機1の運転について説明する。
図6に電流脈動値から圧縮機異常を検知する際の、閾値Ia1、Ia2を示す。
閾値Ia1,Ia2は正常な圧縮機及び、圧縮機内部の異常がみられる圧縮機の試験などからあらかじめ設定しておくことが望ましい。異常判定部9で判定した結果、点線で示したグラフのように、この閾値Ia1より電流脈動値Iaが一定時間(T1)超えた場合には、異常情報出力部91から空気調和機利用者に異常を知らせる、もしくはインターネット等を介した遠隔監視やスマートフォンにて空気調和機の異常を空気調和機のメンテナンス者に知らせ、早期の空気調和機のメンテナンスを行うことができる。
図6に電流脈動値から圧縮機異常を検知する際の、閾値Ia1、Ia2を示す。
閾値Ia1,Ia2は正常な圧縮機及び、圧縮機内部の異常がみられる圧縮機の試験などからあらかじめ設定しておくことが望ましい。異常判定部9で判定した結果、点線で示したグラフのように、この閾値Ia1より電流脈動値Iaが一定時間(T1)超えた場合には、異常情報出力部91から空気調和機利用者に異常を知らせる、もしくはインターネット等を介した遠隔監視やスマートフォンにて空気調和機の異常を空気調和機のメンテナンス者に知らせ、早期の空気調和機のメンテナンスを行うことができる。
Ia1を一定時間(T1)超えた場合では、異常の初期段階にあたる為、圧縮機異常を利用者に知らせるのみで所定の時間内であれば運転を継続することができる。ただし冷凍能力の大きい、複数台圧縮機を備えるような空気調和機の場合には、空気調和機制御部により異常を検知した圧縮機の運転を停止し他の圧縮機の運転により、冷凍能力を確保させることが望ましい。Ia1は軸受損傷等、圧縮機運転時間に比例し徐々に異常が進行していく事象の検出に有効である。
一方、図6で実線で示したグラフのように、Ia1を一定時間(T1)以上経過せず、急激に電流脈動Iaが増加し閾値Ia2を超える状態が一定時間(T2)継続した場合には、異常判定部9で圧縮機11内での軸受112又は113の損傷等、異常が進行している状態に相当し、圧縮機11に異常が生じていると判断し、異常情報出力部91からの警報に基づいて圧縮機11を停止することが望ましい。
上記した圧縮機11の異常を判定する異常判定部9の構成を図4Dに示す。異常判定部9は、予めしきい値Ia1,Ia2を記憶しておく記憶部91を備え、脈動検出部8から出力された電流脈動値Iaの情報と記憶部に記憶しておいたIa1とを比較する第1の比較部92、脈動検出部8から出力された電流脈動値Iaの情報と記憶部91に記憶しておいたIa2とを比較する第2の比較部93、第1の比較部92と第2の比較部93とで比較した情報を受けて異常情報を出力する異常情報出力部94とを備えている。
図7にスクロール圧縮機での、旋回スクロールが1回転する中でのトルクの変化のグラフを示す。スクロール圧縮機において冷媒の圧縮工程は、前述のとおり圧縮室内部に吸い込まれた冷媒が圧縮室容積が旋回スクロールの回転に伴って順次縮小していくことによる冷媒が圧縮される。その工程の中で、冷媒ガス荷重により旋回スクロールが1回転するうちにトルクが変化する。
図7に示すように、スクロール型の圧縮機において、旋回スクロールが1回転すなわち、圧縮電動機が1回転するうちにトルクが1周期変化する。したがって、正常な圧縮機でも圧縮機電動機の回転数1次成分の脈動が現れる。
これは正常な圧縮機においても冷媒圧縮に伴い発生するため、図6で説明した電流脈動値Iaの閾値Ia1やIa2は上記の冷媒圧縮等に伴う電流脈動を考慮して設定することにより、より精度よく圧縮機の異常を検知することが可能となる。
また、空気調和機1の圧縮機としては他にロータリ型圧縮機も多く使用される。ロータリ型圧縮機も、スクロール型同様、容積式の圧縮機構を備え、回転するローリングピストンにより圧縮室の容積が変化し冷媒を圧縮する。ロータリ型の圧縮機においては、圧縮室を1つ備える1シリンダ型の他、圧縮室を2つ備える2シリンダ型がある。圧縮室が2つある場合には圧縮工程が圧縮機電動機1回転の中で180度ずらしている。
図8にロータリ型圧縮機において圧縮電動機が1回転する間のトルクの変化概略図を示す。曲線51aが1シリンダ型、曲線51bが2シリンダ型のトルク変化を示す。曲線51bに示すように2シリンダ型では、圧縮工程が180度ずれているために、圧縮機電動機1回転の間に2周期分のトルク変化が現れる。したがって、圧縮機電動機の回転数に対し2次成分において、正常の圧縮機においても電流脈動がみられる。したがって圧縮機の構造により、正常な圧縮機に存在する電流脈動値の成分が異なる。上述を考慮し、電流脈動値の閾値Ia1、Ia2を設定することにより、より精度よく空気調和機の圧縮機の異常を検知することが可能である。
次に、異常判定部9における異常判定の処理フローを、図9を用いて説明する。
まず、圧縮機11の運転を開始した後、電流検出部5と位相検出部6からの出力を受けた脈動検出部8から出力される電流脈動値Iaを入力する(S901)。次にこの電流脈動値Iaが入力したことを確認し(S902)、電流脈動値Iaが入力されていない場合(S902でNOの場合)には、処理を終了する。電流脈動値Iaが入力されている場合(S902でYESの場合)には、この入力した電流脈動値Iaを記憶部91に予め記憶しておいたしきい値Ia1と比較する(S902)。
まず、圧縮機11の運転を開始した後、電流検出部5と位相検出部6からの出力を受けた脈動検出部8から出力される電流脈動値Iaを入力する(S901)。次にこの電流脈動値Iaが入力したことを確認し(S902)、電流脈動値Iaが入力されていない場合(S902でNOの場合)には、処理を終了する。電流脈動値Iaが入力されている場合(S902でYESの場合)には、この入力した電流脈動値Iaを記憶部91に予め記憶しておいたしきい値Ia1と比較する(S902)。
S902における比較の結果、入力した電流脈動値Iaがしきい値Ia1よりも小さい場合(S903でNOの場合)には、S902へ戻って、脈動検出部8から電流脈動値Iaが入力されているかを確認する。一方、S902における比較の結果、入力した電流脈動値Iaがしきい値Ia1よりも大きい場合(S903でYESの場合)には、この入力した電流脈動値Iaがしきい値Ia1よりも大きくしきい値Ia2よりも小さい状態が予め設定した一定の時間(T1)維持(継続)しているかをチェックする(S904)。
S904において、電流脈動値Iaがしきい値Ia1よりも大ききしきい値Ia2よりも小さい状態が予め設定した一定の時間(T1)維持(継続)していると判定した場合(S904でYESの場合)には、異常出力部94へ異常情報を出力し(S905)、S902へ戻って、脈動検出部8から電流脈動値Iaが入力されているかを確認する。
一方、S904において、電流脈動値Iaがしきい値Ia1よりも大ききしきい値Ia2よりも小さい状態が予め設定した一定の時間(T1)までは達していないと判定した場合(S904でNOの場合)には、電流脈動値Iaを記憶部91に予め記憶しておいたしきい値Ia2と比較する(S906)。S906における比較の結果,電流脈動値Iaはしきい値Ia2よりも小さいと判定した場合にはS902へ戻って、脈動検出部8から電流脈動値Iaが入力されているかを確認する。
S906における比較の結果,電流脈動値Iaはしきい値Ia2よりも大きいと判定した場合(S906でYESの場合)には、この入力した電流脈動値Iaがしきい値Ia2よりも大きい状態が予め設定した一定の時間(T2)維持(継続)しているかをチェックする(S907)。電流脈動値Iaがしきい値Ia2よりも大きい状態が予め設定した一定の時間(T2)継続していない場合(S907でNOの場合)には、S902へ戻って、脈動検出部8から電流脈動値Iaが入力されているかを確認する。
一方、電流脈動値Iaがしきい値Ia2よりも大きい状態が予め設定した一定の時間(T2)よりも長く継続している場合(S907でYESの場合)には、圧縮機11の運転を停止させるための緊急停止情報を異常情報出力部94から出力する(S908)。
次に、本実施例による制御部4における処理フローを、図10を用いて説明する。
まず、圧縮機11の運転を開始した後、電流検出部5において、電流演算部51でモータ電流を検出し(S1001)、その検出結果を用いてαβ変換部52でα・β変換を行い(S1002)、その変換結果に対してdq変換部53でdq変換を行い(S1003)、このdq変換した結果に対してフィルタ処理部54でフィルタ処理を行ってq軸電流フィードバック値IqFbを算出する(S1004)。また、S1003においてdq変換部53でdq変換した結果は位相検出部6にも入力されて、d軸位相抽出部61でθdcを抽出して機械角位相算出部62で機械角位相θrを算出する(S1005)。
まず、圧縮機11の運転を開始した後、電流検出部5において、電流演算部51でモータ電流を検出し(S1001)、その検出結果を用いてαβ変換部52でα・β変換を行い(S1002)、その変換結果に対してdq変換部53でdq変換を行い(S1003)、このdq変換した結果に対してフィルタ処理部54でフィルタ処理を行ってq軸電流フィードバック値IqFbを算出する(S1004)。また、S1003においてdq変換部53でdq変換した結果は位相検出部6にも入力されて、d軸位相抽出部61でθdcを抽出して機械角位相算出部62で機械角位相θrを算出する(S1005)。
次に、電流検出部5で求めたq軸電流フィードバック値IqFbと位相検出部6で求めた機械位相角θrの情報が脈動検出部8に入力されて、演算部81、フィルタ処理部82、加算器823で処理されて脈動成分Iaを抽出する(S1006)。
この脈動検出部8で抽出された脈動成分Iaの情報は異常判定部9に入力されて、図9で説明したような処理フローで異常が予知及び検知される。
すなわち、図10に示すように、脈動成分Iaが予め設定したしきい値Ia1よりも大きくIa2よりも小さい状態が予め設定した一定の時間(T1)維持(継続)したかをチェック(S1007)する。その結果、一定の時間(T1)維持(継続)した場合(S1007でYESの場合)には、脈動成分Iaが予め設定したしきい値Ia1よりも大きくIa2よりも小さい状態が予め設定した一定の時間(T1)維持(継続)した情報を異常情報出力部94から出力し(S1008),S1001に戻って、処理を継続する。
一方、S1007で脈動成分Iaが予め設定したしきい値Ia1よりも大きくIa2よりも小さい状態が予め設定した一定の時間(T1)維持(継続)しなかった場合には(S1007でNOの場合)、脈動成分Iaが予め設定したしきい値Ia2よりも大きい状態が予め設定した一定の時間(T2)維持(継続)したかをチェックし、NOの場合にはS1001に戻って処理を継続する。一方、S1009でYESと判定した場合には、異常情報出力部94から緊急停止情報を出力し(S1010)、制御部4で圧縮機11の運転を停止させる。なお、図10で説明したフロー図においては、図9で説明したフロー図のS903のステップが抜けているが、これは、S1007からS1009を通ってS1001に戻るループを実質的に同じであるので、説明を省略した。
以上に説明したように、本発明によれば、空気調和機に備えられた圧縮機の故障予知や故障の初期段階での検知を行うことができるようになった。これにより、圧縮機の故障による空気調和機の運転停止を発生させることなく、安定して使用することを可能にした。
1・・・空気調和機 4・・・制御部 5・・・電流検出部6・・・位相検出部 7・・・電動機回転速度検出部 8・・・脈動検出部 9・・・異常判定部 10・・・室外機 11・・・冷媒圧縮機 30・・・室内機 104・・・電動機 106・・・固定スクロール 108・・・旋回スクロール 112、113・・・軸受
Claims (10)
- 熱交換器と、圧縮機と、前記熱交換器と前記圧縮機とを接続する配管と、前記圧縮機を制御すると共に前記圧縮機の故障予知・検知手段を有する制御部とを備えた空気調和機であって、
前記制御部の前記圧縮機の故障予知・検知手段は、
前記圧縮機を駆動する駆動電流を検出する電流検出部と、
前記電流検出部で検出した駆動電流の脈動を検出する脈動検出部と、
前記脈動検出部で検出した前記駆動電流の脈動の大きさと継続時間とに基づいて前記圧縮機の故障を予知又は検知する異常判定部と
を備えたことを特徴とする圧縮機の故障予知・検知手段を備えた空気調和機。 - 請求項1記載の圧縮機の故障予知・検知手段を備えた空気調和機であって、前記圧縮機は電動機で駆動され、前記電流検出部は前記圧縮機を駆動する前記電動機の出力電流を検出することを特徴とする圧縮機の故障予知・検知手段を備えた空気調和機。
- 請求項2記載の圧縮機の故障予知・検知手段を備えた空気調和機であって、前記故障予知・検知手段は前記電流検出部で検出した前記電動機の出力電流から前記電動機の機械角位相を求める位相検出部を更に備え、前記脈動検出部は、前記電流検出部で検出した駆動電流と前記位相検出部で求めた機械角位相の情報に基づいて前記駆動電流の脈動を検出することを特徴とする圧縮機の故障予知・検知手段を備えた空気調和機。
- 請求項2記載の圧縮機の故障予知・検知手段を備えた空気調和機であって、前記異常判定部は、前記脈動検出部で検出した前記駆動電流の脈動の大きさと継続時間とについて第1のしきい値の組を用いて前記圧縮機の故障を予知し、前記脈動検出部で検出した前記駆動電流の脈動の大きさと継続時間とについて第2のしきい値の組を用いて前記圧縮機の故障を検知することを特徴とする圧縮機の故障予知・検知手段を備えた空気調和機。
- 請求項4記載の圧縮機の故障予知・検知手段を備えた空気調和機であって、前記第1のしきい値の組は前記駆動電流の脈動の大きさの第1のしきい値と前記継続時間の長さの第1にしきい値を備え、前記第2のしきい値の組は前記駆動電流の脈動の大きさの前記第1のしきい値よりも大きい第2のしきい値と前記継続時間の長さの前記第1にしきい値よりも短い第2のしきい値を備えることを特徴とする圧縮機の故障予知・検知手段を備えた空気調和機。
- 熱交換器と、圧縮機と、前記熱交換器と前記圧縮機とを接続する配管と、前記圧縮機を制御する制御部とを備えた空気調和機における圧縮機の故障を予知及び検知する方法であって、
前記圧縮機を駆動する駆動電流を電流検出部で検出し、
前記電流検出部で検出した駆動電流の脈動を脈動検出部で検出し、
前記脈動検出部で検出した前記駆動電流の脈動の大きさと継続時間とに基づいて異常判定部で前記圧縮機の故障を予知又は検知する
ことを特徴とする圧縮機の故障予知・検知方法。 - 請求項6記載の圧縮機の故障予知・検知方法であって、前記圧縮機は電動機で駆動され、前記駆動電流を検出することを、前記電流検出部で前記圧縮機を駆動する前記電動機の出力電流を検出することにより行うことを特徴とする圧縮機の故障予知・検知方法。
- 請求項7記載の圧縮機の故障予知・検知方法であって、前記電流検出部で検出した前記電動機の出力電流から前記電動機の機械角位相を求め、前記検出した駆動電流と前記求めた機械角位相の情報に基づいて前記駆動電流の脈動を検出することを特徴とする圧縮機の故障予知・検知方法。
- 請求項7記載の圧縮機の故障予知・検知方法であって、前記圧縮機の故障を検知することを、前記異常判定部で前記脈動検出部で検出した前記駆動電流の脈動の大きさと継続時間とについて第1のしきい値の組を用いて前記圧縮機の故障を予知し、前記脈動検出部で検出した前記駆動電流の脈動の大きさと継続時間とについて第2のしきい値の組を用いて前記圧縮機の故障を検知することを特徴とする圧縮機の故障予知・検知方法。
- 請求項9記載の圧縮機の故障予知・検知方法であって、前記第1のしきい値の組は前記駆動電流の脈動の大きさの第1のしきい値と前記継続時間の長さの第1にしきい値を備え、前記第2のしきい値の組は前記駆動電流の脈動の大きさの前記第1のしきい値よりも大きい第2のしきい値と前記継続時間の長さの前記第1にしきい値よりも短い第2のしきい値を備えることを特徴とする圧縮機の故障予知・検知方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15903611.0A EP3348835B1 (en) | 2015-09-11 | 2015-09-11 | Air conditioner provided with failure prognosis/detection means for compressor, and failure prognosis/detection method thereof |
PCT/JP2015/075815 WO2017042949A1 (ja) | 2015-09-11 | 2015-09-11 | 圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法 |
CN201580081944.9A CN108138762B (zh) | 2015-09-11 | 2015-09-11 | 具备压缩机的故障预知、检测单元的空调机及其故障预知、检测方法 |
US15/757,779 US11280530B2 (en) | 2015-09-11 | 2015-09-11 | Air conditioner provided with means for predicting and detecting failure in compressor and method for predicting and detecting the failure |
JP2017538810A JP6434634B2 (ja) | 2015-09-11 | 2015-09-11 | 圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/075815 WO2017042949A1 (ja) | 2015-09-11 | 2015-09-11 | 圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017042949A1 true WO2017042949A1 (ja) | 2017-03-16 |
Family
ID=58239356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/075815 WO2017042949A1 (ja) | 2015-09-11 | 2015-09-11 | 圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11280530B2 (ja) |
EP (1) | EP3348835B1 (ja) |
JP (1) | JP6434634B2 (ja) |
CN (1) | CN108138762B (ja) |
WO (1) | WO2017042949A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019210873A (ja) * | 2018-06-05 | 2019-12-12 | 株式会社荏原製作所 | 制御装置、制御システム、制御方法、プログラム及び機械学習装置 |
WO2019244659A1 (ja) | 2018-06-22 | 2019-12-26 | ダイキン工業株式会社 | 冷凍装置 |
JPWO2020075262A1 (ja) * | 2018-10-11 | 2021-03-11 | 三菱電機株式会社 | 故障前兆検出装置 |
WO2021095142A1 (ja) * | 2019-11-12 | 2021-05-20 | 三菱電機株式会社 | 故障予測装置、学習装置、および学習方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11017561B1 (en) | 2018-10-09 | 2021-05-25 | Heliogen, Inc. | Heliostat tracking based on circumsolar radiance maps |
WO2020095450A1 (ja) | 2018-11-09 | 2020-05-14 | 株式会社安川電機 | 電力変換装置、圧送装置、及び制御方法 |
US11588425B1 (en) * | 2019-05-16 | 2023-02-21 | Heliogen Holdings, Inc. | System and method for predicting reliability and maintenance of a solar tracker based on varying control torque |
JP2022116751A (ja) * | 2021-01-29 | 2022-08-10 | 株式会社豊田自動織機 | 電動圧縮機 |
CN115163452B (zh) * | 2022-06-20 | 2024-02-09 | 深圳拓邦股份有限公司 | 一种无实物压缩机检测方法、装置、设备和可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61169684A (ja) * | 1985-01-24 | 1986-07-31 | Japan Electronic Control Syst Co Ltd | 電動式燃料ポンプの作動不良検出装置 |
JP2623526B2 (ja) * | 1985-12-10 | 1997-06-25 | ダイキン工業株式会社 | 圧縮機駆動方法 |
JP4232162B2 (ja) * | 2004-12-07 | 2009-03-04 | 三菱電機株式会社 | 圧縮機検査装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4939909A (en) * | 1986-04-09 | 1990-07-10 | Sanyo Electric Co., Ltd. | Control apparatus for air conditioner |
US5512883A (en) * | 1992-11-03 | 1996-04-30 | Lane, Jr.; William E. | Method and device for monitoring the operation of a motor |
JPH1134860A (ja) * | 1997-07-23 | 1999-02-09 | Jidosha Kiki Co Ltd | 液圧ブレーキ倍力システムの異常検出装置および安全装置 |
JP4548886B2 (ja) * | 1999-12-27 | 2010-09-22 | 東洋電機製造株式会社 | 永久磁石型同期電動機の制御装置 |
JP2001280258A (ja) * | 2000-03-31 | 2001-10-10 | Seiko Instruments Inc | 冷凍システム制御装置及び方法 |
KR20020076185A (ko) * | 2001-03-27 | 2002-10-09 | 코우프랜드코포레이션 | 압축기 진단 시스템 |
JP4023249B2 (ja) * | 2002-07-25 | 2007-12-19 | ダイキン工業株式会社 | 圧縮機内部状態推定装置及び空気調和装置 |
KR100791814B1 (ko) * | 2005-07-13 | 2009-01-28 | 삼성광주전자 주식회사 | 센서리스 비엘디씨 전동기의 제어방법 |
KR101229342B1 (ko) * | 2005-12-29 | 2013-02-05 | 삼성전자주식회사 | 시스템에어컨의 압축기 제어장치 및 그 방법 |
CN101416379B (zh) * | 2006-04-03 | 2011-02-09 | 松下电器产业株式会社 | 逆变器装置和空调机 |
KR100851905B1 (ko) * | 2007-03-28 | 2008-08-13 | 삼성전자주식회사 | 압축기의 예열 제어 장치 및 방법 |
JP4932636B2 (ja) | 2007-08-10 | 2012-05-16 | ダイキン工業株式会社 | 圧縮機内部状態推定装置及び空気調和装置 |
JP4841579B2 (ja) * | 2008-03-07 | 2011-12-21 | 三菱電機株式会社 | ポンプ及び給湯装置 |
JP5358679B2 (ja) * | 2009-04-16 | 2013-12-04 | 株式会社日立製作所 | 三相交流電動機の駆動装置、駆動方法、三相交流電動機、および制御装置 |
US10024321B2 (en) * | 2009-05-18 | 2018-07-17 | Emerson Climate Technologies, Inc. | Diagnostic system |
JP5657425B2 (ja) * | 2011-02-25 | 2015-01-21 | Ntn株式会社 | 電気自動車 |
WO2012164690A1 (ja) * | 2011-05-31 | 2012-12-06 | 日立アプライアンス株式会社 | 冷凍装置の異常検出方法及びその装置 |
CN202997527U (zh) * | 2012-12-28 | 2013-06-12 | 海信(山东)空调有限公司 | 一种三相电源的故障检测保护电路及变频空调器 |
WO2017026061A1 (ja) * | 2015-08-12 | 2017-02-16 | 三菱電機株式会社 | 電動機駆動装置および冷凍空調装置 |
-
2015
- 2015-09-11 CN CN201580081944.9A patent/CN108138762B/zh active Active
- 2015-09-11 WO PCT/JP2015/075815 patent/WO2017042949A1/ja active Application Filing
- 2015-09-11 JP JP2017538810A patent/JP6434634B2/ja active Active
- 2015-09-11 EP EP15903611.0A patent/EP3348835B1/en active Active
- 2015-09-11 US US15/757,779 patent/US11280530B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61169684A (ja) * | 1985-01-24 | 1986-07-31 | Japan Electronic Control Syst Co Ltd | 電動式燃料ポンプの作動不良検出装置 |
JP2623526B2 (ja) * | 1985-12-10 | 1997-06-25 | ダイキン工業株式会社 | 圧縮機駆動方法 |
JP4232162B2 (ja) * | 2004-12-07 | 2009-03-04 | 三菱電機株式会社 | 圧縮機検査装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019210873A (ja) * | 2018-06-05 | 2019-12-12 | 株式会社荏原製作所 | 制御装置、制御システム、制御方法、プログラム及び機械学習装置 |
JP7019513B2 (ja) | 2018-06-05 | 2022-02-15 | 株式会社荏原製作所 | 制御装置、制御システム、制御方法、プログラム及び機械学習装置 |
US11396876B2 (en) | 2018-06-05 | 2022-07-26 | Ebara Corporation | Control device, control system, control method, recording medium and machine learning device |
TWI828687B (zh) * | 2018-06-05 | 2024-01-11 | 日商荏原製作所股份有限公司 | 控制裝置、控制系統、控制方法、記錄媒體及機械學習裝置 |
WO2019244659A1 (ja) | 2018-06-22 | 2019-12-26 | ダイキン工業株式会社 | 冷凍装置 |
JPWO2020075262A1 (ja) * | 2018-10-11 | 2021-03-11 | 三菱電機株式会社 | 故障前兆検出装置 |
WO2021095142A1 (ja) * | 2019-11-12 | 2021-05-20 | 三菱電機株式会社 | 故障予測装置、学習装置、および学習方法 |
JPWO2021095142A1 (ja) * | 2019-11-12 | 2021-05-20 | ||
JP7275305B2 (ja) | 2019-11-12 | 2023-05-17 | 三菱電機株式会社 | 故障予測装置、学習装置、および学習方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3348835A4 (en) | 2019-03-13 |
US20180347879A1 (en) | 2018-12-06 |
EP3348835A1 (en) | 2018-07-18 |
CN108138762B (zh) | 2019-08-02 |
EP3348835B1 (en) | 2020-05-20 |
US11280530B2 (en) | 2022-03-22 |
JPWO2017042949A1 (ja) | 2018-03-29 |
CN108138762A (zh) | 2018-06-08 |
JP6434634B2 (ja) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6434634B2 (ja) | 圧縮機の故障予知・検知手段を備えた空気調和機及びその故障予知・検知方法 | |
CN103216963B (zh) | 空调及其启动控制方法 | |
US11137179B2 (en) | Refrigeration apparatus | |
EP3129719B1 (en) | Hvac systems and controls | |
EP1586836A2 (en) | Cooling cycle apparatus and method of controlling linear expansion valve of the same | |
WO2017059211A1 (en) | Centrifugal compressor with magnetic bearings and surge prediction using a shaft position or a bearing current | |
US20130025307A1 (en) | Refrigeration system | |
JP6373034B2 (ja) | 冷凍機 | |
JPWO2017094057A1 (ja) | シングルスクリュー圧縮機および冷凍サイクル装置 | |
JP2007218550A (ja) | 冷凍サイクル装置 | |
JP4738219B2 (ja) | 冷凍装置 | |
JP7112039B2 (ja) | 診断システム | |
WO2018146805A1 (ja) | 冷凍装置 | |
JP7080801B2 (ja) | ターボ冷凍機 | |
JP7216306B2 (ja) | 油濃度検出システム | |
CN110100137B (zh) | 涡旋卸载检测系统 | |
JP2011237086A (ja) | 冷凍空調装置 | |
JP6830844B2 (ja) | 磁気軸受の状態監視装置、ターボ圧縮機、ターボ冷凍機及び磁気軸受の状態監視方法 | |
JPH04359759A (ja) | スクリュー圧縮機の容量制御方法及び装置 | |
JP5751119B2 (ja) | 冷凍装置 | |
JP6037601B2 (ja) | ヒートポンプシステム | |
JP5469835B2 (ja) | アンモニア冷凍装置 | |
KR100513989B1 (ko) | 냉장고의 소음저감 제어방법 | |
KR20080079479A (ko) | 공기조화기 | |
JP2017025790A (ja) | すべり軸受を備える圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15903611 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017538810 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015903611 Country of ref document: EP |