[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016204097A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2016204097A1
WO2016204097A1 PCT/JP2016/067456 JP2016067456W WO2016204097A1 WO 2016204097 A1 WO2016204097 A1 WO 2016204097A1 JP 2016067456 W JP2016067456 W JP 2016067456W WO 2016204097 A1 WO2016204097 A1 WO 2016204097A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
lifetime
layer
semiconductor substrate
Prior art date
Application number
PCT/JP2016/067456
Other languages
English (en)
French (fr)
Inventor
崇一 吉田
晴司 野口
河野 憲司
広光 田邊
Original Assignee
富士電機株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 株式会社デンソー filed Critical 富士電機株式会社
Priority to CN201680012544.7A priority Critical patent/CN107251205B/zh
Publication of WO2016204097A1 publication Critical patent/WO2016204097A1/ja
Priority to US15/686,216 priority patent/US10629678B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/221Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • a method of manufacturing an IGBT with low electrical loss such as low cost and low on-voltage. Specifically, first, in order to prevent wafer cracking during the wafer process, the wafer process is started with a thick wafer that is usually employed. Then, in the second half of the wafer process, the back surface of the wafer is ground so as to be as thin as possible to obtain desired characteristics. After that, impurities are ion-implanted from the back surface of the ground wafer at a desired impurity concentration and activated to form a p + -type collector region.
  • a method for manufacturing a semiconductor device with a low cost and low electrical loss by reducing the thickness of the wafer (semiconductor substrate) has become a mainstream method for developing and manufacturing a power semiconductor device.
  • a field stop (FS) layer that suppresses the depletion layer extending from the pn junction on the front surface side of the semiconductor substrate from reaching the p + -type collector region when turned off, the electrical loss is further reduced.
  • An IGBT with an FS structure is known.
  • the following method has been proposed as a method of manufacturing an IGBT having an FS structure.
  • a MOS gate insulating gate made of metal-oxide film-semiconductor
  • MOS gate insulating gate made of metal-oxide film-semiconductor
  • phosphorus (P) or selenium (Se) is ion-implanted from the back surface of the ground semiconductor substrate to form a field stop layer.
  • boron (B) ions are implanted into the back surface of the semiconductor substrate to form a p + collector layer (for example, Patent Document 1 (paragraphs 0044 to 0049) and Patent Document 2 (paragraphs 0017 to 0018). )reference.).
  • the following method has been proposed as a method of manufacturing a diode having an FS structure.
  • a p-anode layer is formed on the front surface of the wafer.
  • protons are irradiated from the p anode layer side.
  • the back surface of the wafer is ground to reduce the thickness of the entire wafer.
  • selenium is ion-implanted into the back surface of the wafer.
  • heat treatment is performed.
  • the injected selenium diffuses from the back surface of the wafer to the anode side, and an n cathode buffer layer is formed.
  • protons introduced into the wafer become donors to form a broad buffer layer (see, for example, Patent Document 3 below (paragraphs 0097 to 0101)).
  • a reverse conducting IGBT (RC having a structure in which an IGBT and a free-wheeling diode (FWD) connected in reverse parallel to the IGBT are integrated in the same semiconductor substrate are integrated.
  • -IGBT free-wheeling diode
  • the following method has been proposed as a method for manufacturing the RC-IGBT. After forming the n + type region of the diode on a part of the back surface of the ground drift region, selenium is ion-implanted into the entire back surface of the ground drift region. Next, furnace annealing is performed to activate selenium implanted into the back surface of the drift region to form a field stop region (see, for example, Patent Document 4 below).
  • the following method has been proposed as another method for manufacturing the RC-IGBT.
  • Helium (He) is irradiated from one main surface side of the substrate to form a low lifetime region having a short lifetime locally near the emitter region inside the N-type base layer.
  • a method of forming a low lifetime region in the drift layer by proton irradiation has been proposed (see, for example, Patent Document 6 below).
  • the following problems occur in the RC-IGBT having the FS structure in which the IGBT and the FWD are integrated on the same semiconductor substrate. Since this RC-IGBT with the FS structure has a punch-through structure in which an FS layer is provided on the back side of the thinned wafer, a deep diffusion layer containing selenium as a dopant is formed as the FS layer in order to improve the yield rate. The Further, since the IGBT and the FWD are integrated on the same semiconductor substrate, the IGBT channel region and the FWD anode region share a p-type region on the front surface side of the semiconductor substrate. In such RC-IGBT, the reverse recovery characteristic during FWD operation is deteriorated.
  • FIG. 17 is a characteristic diagram showing a leakage current characteristic of an RC-IGBT having a conventional field stop structure.
  • EB Electron Beam
  • An object of the present invention is to provide a semiconductor device and a semiconductor device manufacturing method capable of suppressing an increase in leakage current and improving a non-defective product rate in order to solve the above-described problems caused by the prior art.
  • Another object of the present invention is to provide a semiconductor device and a method for manufacturing the semiconductor device that can reduce electrical loss in order to eliminate the above-described problems caused by the prior art.
  • a semiconductor device manufacturing method has the following characteristics.
  • a semiconductor device according to the present invention includes a semiconductor substrate having a first conductivity type drift layer, a second conductivity type base layer provided on the front surface side of the semiconductor substrate, and selectively provided in the base layer.
  • An insulated gate bipolar transistor section comprising an emitter electrode to be connected, a collector region of a second conductivity type selectively provided on the back side of the semiconductor substrate, and a collector electrode electrically connected to the collector region;
  • a second conductivity type anode layer provided on the front surface side of the semiconductor substrate and electrically connected to the emitter electrode, and selectively provided on the back surface side of the semiconductor substrate;
  • One comprises the a reflux diode section having a cathode region of first conductivity type electrically connected to the collector electrode.
  • an introducing step of introducing a first conductivity type impurity into the back surface of the semiconductor substrate is performed.
  • the first conductivity type impurity is activated by heat treatment to form a first conductivity type field stop layer having an impurity concentration higher than that of the drift layer at a position deeper than the collector region from the back surface of the semiconductor substrate.
  • a first heat treatment step is performed.
  • a first irradiation step is performed in which light ions are irradiated from the back surface of the semiconductor substrate to form a first low lifetime region in which the lifetime of carriers is shorter than other regions in the drift layer.
  • a second irradiation step is performed in which light ions are irradiated from the back surface of the semiconductor substrate to form a second low lifetime region in which the lifetime of carriers is shorter than other regions in the field stop layer. Furthermore, a second heat treatment step is performed in which the defect density of defects generated in the field stop layer in the second irradiation step is reduced by heat treatment.
  • the method for manufacturing a semiconductor device according to the present invention is characterized in that, in the above-described invention, selenium is introduced as the first conductivity type impurity in the introduction step.
  • the defect density of defects formed in the field stop layer is reduced and the light density in the field stop layer is reduced. It is characterized by making ions into donors.
  • the semiconductor device manufacturing method according to the present invention is characterized in that, in the above-described invention, the second heat treatment step is performed at a temperature of 350 ° C. to 370 ° C. for 1 hour to 2 hours.
  • the semiconductor device manufacturing method according to the present invention is characterized in that, in the above-described invention, the lifetime of the second low lifetime region is made shorter than the lifetime of the first low lifetime region.
  • the method for manufacturing a semiconductor device according to the present invention is characterized in that, in the above-described invention, the light ion is helium or proton.
  • a semiconductor device includes an insulated gate bipolar transistor part, a freewheeling diode part, a first conductivity type field stop layer, A first low lifetime region and a second low lifetime region.
  • the insulated gate bipolar transistor section is selectively provided in the semiconductor substrate having the first conductivity type drift layer, the second conductivity type base layer provided on the front surface side of the semiconductor substrate, and the base layer.
  • An emitter electrode to be connected, a collector region of a second conductivity type selectively provided on the back side of the semiconductor substrate, and a collector electrode electrically connected to the collector region are provided.
  • the reflux diode portion is provided on the front surface side of the semiconductor substrate and is selectively provided on the back surface side of the semiconductor substrate, and a second conductivity type anode layer electrically connected to the emitter electrode.
  • a first conductivity type cathode region electrically connected to the collector electrode.
  • the field stop layer of the first conductivity type is provided at a position deeper than the collector region from the back surface of the semiconductor substrate, and has an impurity concentration higher than that of the drift layer.
  • the first low lifetime region is provided in the drift layer apart from the field stop layer, and has a shorter carrier lifetime than the other regions.
  • the second low lifetime region is provided in the field stop layer and has a shorter carrier lifetime than the other regions.
  • the field stop layer includes selenium as a dopant.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the first low lifetime region includes light ions.
  • the second low lifetime region includes light ions.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, a region in which light ions are converted into donors is provided in the second low lifetime region.
  • the light ion is helium or proton.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, a lifetime of the second low lifetime region is shorter than a lifetime of the first low lifetime region.
  • the insulated gate portion is provided along a trench that penetrates the base layer and the emitter region and reaches the drift layer, and an inner wall of the trench.
  • the gate insulating film and the gate electrode provided inside the trench through the gate insulating film.
  • the size of the defects formed in the field stop (FS) layer can be reduced by electron beam irradiation as in the prior art.
  • the time can be reduced as compared with the case of controlling the time.
  • the leakage current between the collector and emitter (CE) of the RC-IGBT having the FS structure using a thin wafer can be reduced as compared with the conventional RC-IGBT in which the lifetime is controlled by electron beam irradiation.
  • the FS layer containing selenium as a dopant the FS layer can be a deep diffusion layer, and the yield rate can be improved.
  • the carriers discharged during the reverse recovery operation of the FWD in the freewheeling diode portion are reduced, so that the reverse recovery operation of the FWD is performed. Loss sometimes generated can be reduced.
  • the second low lifetime region in the FS layer the tail current at the turn-off time of the IGBT in the insulated gate bipolar transistor portion is suppressed, and the reverse recovery time of the FWD in the freewheeling diode portion is adjusted. be able to. Therefore, in the RC-IGBT having the FS structure, it is possible to control the carrier lifetime and reduce the electrical loss during operation.
  • the semiconductor device and the semiconductor device manufacturing method of the present invention it is possible to suppress the increase in leakage current and improve the yield rate.
  • the semiconductor device and the method for manufacturing the semiconductor device of the present invention there is an effect that electrical loss can be reduced.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the embodiment.
  • FIG. 2 is a cross-sectional view illustrating a state in the middle of manufacturing the semiconductor device according to the embodiment.
  • FIG. 3 is a cross-sectional view illustrating a state in the process of manufacturing the semiconductor device according to the embodiment.
  • FIG. 4 is a cross-sectional view illustrating a state during the manufacture of the semiconductor device according to the embodiment.
  • FIG. 5 is a cross-sectional view illustrating a state in the process of manufacturing the semiconductor device according to the embodiment.
  • FIG. 6 is a cross-sectional view illustrating a state in the process of manufacturing the semiconductor device according to the embodiment.
  • FIG. 7 is a cross-sectional view illustrating a state in the middle of manufacturing of the semiconductor device according to the embodiment.
  • FIG. 8 is a cross-sectional view illustrating a state in the process of manufacturing the semiconductor device according to the embodiment.
  • FIG. 9 is a cross-sectional view illustrating a state in the process of manufacturing the semiconductor device according to the embodiment.
  • FIG. 10 is a characteristic diagram illustrating a leakage current characteristic of the semiconductor device manufactured by the method of manufacturing a semiconductor device according to the embodiment.
  • FIG. 11 is a characteristic diagram illustrating a turn-off loss characteristic of a semiconductor device manufactured by the method of manufacturing a semiconductor device according to the embodiment.
  • FIG. 12 is a characteristic diagram illustrating reverse recovery loss characteristics of a semiconductor device manufactured by the method of manufacturing a semiconductor device according to the embodiment.
  • FIG. 13 is a characteristic diagram illustrating the relationship between the breakdown voltage of the semiconductor device according to the embodiment and the irradiation position of the first light ion irradiation.
  • FIG. 14 is a characteristic diagram illustrating the relationship between the breakdown voltage of the semiconductor device according to the embodiment and the irradiation position of the second light ion irradiation.
  • FIG. 15 is a characteristic diagram showing the impurity concentration of the field stop layer of the semiconductor device according to the embodiment.
  • FIG. 16 is a characteristic diagram showing the impurity concentration of the field stop layer of the conventional semiconductor device.
  • FIG. 17 is a characteristic diagram showing a leakage current characteristic of an RC-IGBT having a conventional field stop structure.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the embodiment.
  • the semiconductor device according to the embodiment shown in FIG. 1 includes an IGBT unit 21 and an FWD unit 22.
  • the IGBT section 21 is provided with an insulated gate bipolar transistor (IGBT) on the same n ⁇ type semiconductor substrate that becomes the n ⁇ type drift layer 1.
  • the FWD unit 22 includes a reflux diode (FWD).
  • the FWD of the FWD unit 22 is connected in reverse parallel to the IGBT of the IGBT unit 21. That is, the semiconductor device according to the embodiment shown in FIG. 1 is a reverse conducting IGBT (RC-IGBT).
  • RC-IGBT reverse conducting IGBT
  • an IGBT MOS gate (insulating gate made of metal-oxide film-semiconductor) structure 20 is provided on the front surface of the n ⁇ -type semiconductor substrate.
  • the MOS gate structure 20 includes a p-type base layer 2, a gate oxide film 4, and a gate electrode 5.
  • the p-type base layer 2 is provided on the front surface layer of the n ⁇ -type semiconductor substrate.
  • Trench 3 that penetrates p-type base layer 2 and reaches n ⁇ -type drift layer 1 is provided at a predetermined interval.
  • a gate oxide film 4 is provided along the side wall and bottom surface of the trench 3.
  • a gate electrode 5 made of, for example, polysilicon is provided inside the trench 3 via a gate oxide film 4.
  • an n + -type emitter region 6 and a p + -type contact region 7 are selectively provided inside the p-type base layer 2.
  • the n + type emitter region 6 and the p + type contact region 7 are in contact with each other.
  • N + -type emitter region 6 is in contact with the sidewall of trench 3 and faces gate electrode 5 with gate oxide film 4 interposed therebetween.
  • Emitter electrode 8 is in contact with n + -type emitter region 6 and p + -type contact region 7.
  • the emitter electrode 8 is electrically insulated from the gate electrode 5 by the interlayer insulating film 9.
  • the p-type base layer 2, the trench 3, the emitter electrode 8, and the interlayer insulating film 9 described above are provided from the IGBT portion 21 to the FWD portion 22. That is, in the FWD portion 22, the p-type base layer 2, the trench 3, the emitter electrode 8, and the interlayer insulating film 9 are provided on the front surface layer of the n ⁇ -type semiconductor substrate, similarly to the IGBT portion 21. Yes.
  • the FWD portion 22 is not provided with the n + -type emitter region 6 and the p + -type contact region 7.
  • a part of the p-type base layer 2 also serves as an FWD p-type anode layer.
  • a part of the emitter electrode 8 also serves as an anode electrode and is in contact with the p-type base layer 2 between adjacent trenches 3.
  • a p + -type collector region 10 is selectively provided in the IGBT portion 21 on the surface layer on the back surface of the n ⁇ -type semiconductor substrate. Further, an n + type cathode region 11 is selectively provided in the FWD portion 22 on the surface layer on the back surface of the n ⁇ type semiconductor substrate. The n + type cathode region 11 is provided side by side with the p + type collector region 10 in the horizontal direction on the back surface of the n ⁇ type semiconductor substrate.
  • Collector electrode 13 is in contact with p + -type collector region 10. The collector electrode 13 also serves as a cathode electrode and is in contact with the n + -type cathode region 11.
  • a low region (hereinafter referred to as a first low lifetime region) 31 is provided.
  • the first low lifetime region 31 is provided on the front surface side of the n ⁇ type semiconductor substrate with a predetermined thickness from the IGBT part 21 to the FWD part 22. Further, the first low lifetime region 31 is longer than the first lifetime minimum region 31a having the shortest lifetime value in the first low lifetime region 31 and the first lifetime minimum region 31a, and is longer than the other regions. And a first lifetime passage region 31b having a short lifetime value.
  • the first lifetime minimum region 31a corresponds to the range of light ions to be irradiated Rp1 and the vicinity thereof ( ⁇ ⁇ Rp1), and the first lifetime passage region 31b includes light ions from the incident surface to about Rp1 ⁇ Rp1. Corresponds to the area where the lifetime is shortened by passing.
  • the symbol ⁇ 1a is the lifetime of the first lifetime minimum region 31a
  • the symbol ⁇ 1b is the lifetime of the first lifetime passage region 31b.
  • Symbol ⁇ 0 is the lifetime of the n ⁇ type semiconductor substrate.
  • a layer 12 is provided.
  • the n + -type FS layer 12 is provided from the IGBT portion 21 to the FWD portion 22 and is in contact with the n ⁇ -type drift layer 1, the p + -type collector region 10 and the n + -type cathode region 11. Further, the n + -type FS layer 12 is provided apart from the first low lifetime region 31.
  • the n + -type FS layer 12 has a function of preventing a depletion layer extending from a pn junction between the n ⁇ -type drift layer 1 and the p-type base layer 2 from reaching the p + -type collector region 10 when turned off.
  • a region having a lifetime lower than that of other regions (hereinafter referred to as “crystal defects”) formed from light ions added as a lifetime killer from the inside of the n + -type FS layer 12 to the back surface of the n ⁇ -type semiconductor substrate.
  • a second low lifetime region 32 is provided.
  • the second low lifetime region 32 is longer than the second lifetime minimum region 32a having the shortest lifetime value in the n ⁇ type semiconductor substrate and the first lifetime minimum region 31a, and is longer than the first lifetime passing region 31b.
  • a second lifetime passing area 32b having a short lifetime value is provided.
  • the second minimum lifetime region 32a corresponds to the range Rp2 of light ions to be irradiated and the vicinity thereof ( ⁇ ⁇ Rp2), and the second lifetime passage region 32b has light ions from the incident surface to about Rp2 ⁇ Rp2. Corresponds to the area where the lifetime is shortened by passing.
  • FIG. 1 shows a second lifetime passing area 32b from the back surface of the n ⁇ type semiconductor substrate to the boundary with the second lifetime minimum area 32a (a hatched area thinner than the second lifetime minimum area 32a).
  • the symbol ⁇ 2a is the lifetime of the second lifetime minimum region 32a
  • the symbol ⁇ 2b is the lifetime of the second lifetime passage region 32b.
  • the lifetime ⁇ 2a of the second minimum lifetime region 32a is preferably shorter than the lifetime ⁇ 1a of the first minimum lifetime region 31a.
  • the reason is as follows.
  • the RC-IGBT has a p + -type collector region 10 on the back side of an n ⁇ -type semiconductor substrate, unlike the case of a single FWD. Therefore, in the RC-IGBT, an excessive hole is injected from the p + -type collector region 10 to the n ⁇ -type drift layer 1 during the FWD reverse recovery operation, and a desired reverse recovery in which the FWD reverse recovery time is obtained by design. It tends to be longer than time. Therefore, by shortening the lifetime ⁇ 2a of the second lifetime minimum region 32a to be shorter than the lifetime ⁇ 1a of the first lifetime minimum region 31a, the FWD reverse recovery time is shortened to be a desired reverse recovery time. Because you can.
  • the spread width of the vicinity ( ⁇ ⁇ Rp1, ⁇ ⁇ Rp2) of the light ion ranges Rp1 and Rp2 to be irradiated becomes a size depending on the lifetimes ⁇ 1a and ⁇ 2a of the first and second lifetime minimum regions 31a and 32a, respectively. Specifically, since the lifetime ⁇ 2a of the second lifetime minimum region 32a is shorter than the lifetime ⁇ 1a of the first lifetime minimum region 31a, the vicinity of the range Rp2 ( ⁇ ⁇ Rp2) of the irradiated light ions is increased. The width is shorter than the spreading width in the vicinity ( ⁇ ⁇ Rp1) of the range of light ions to be irradiated Rp1.
  • the spread width is a peak width of a peak waveform indicating the lifetimes ⁇ 1a and ⁇ 2a of the first and second lifetime minimum regions 31a and 32a in the characteristic diagram shown in FIG.
  • the average lifetime of the first low lifetime region 31 mainly depends on the lifetime ⁇ 1a of the first lifetime minimum region 31a.
  • the average lifetime of the second low lifetime region 32 mainly depends on the lifetime ⁇ 2a of the second minimum lifetime region 32a.
  • a method for manufacturing a semiconductor device according to the embodiment will be described by taking an example of manufacturing an RC-IGBT having a withstand voltage (rated voltage) of 1200 V class and a rated current of 400 A.
  • 2 to 9 are cross-sectional views showing states during the manufacture of the semiconductor device according to the embodiment.
  • a silicon substrate 41 hereinafter referred to as a Si substrate 41 having a thickness t of 650 ⁇ m and a diameter of 6 inches prepared by an FZ (Floating Zone) method is prepared.
  • the specific resistance of the Si substrate 41 is about 40 ⁇ cm to 80 ⁇ cm when the withstand voltage is in the 1200 V class, and may be 55 ⁇ cm, for example.
  • the trench gate type MOS gate structure 20 (p-type base layer 2, trench 3, gate oxide film 4 and the like is formed on the front surface of the Si substrate 41 to be the n ⁇ type drift layer 1 by a general method.
  • a gate electrode 5 an n + type emitter region 6, a p + type contact region 7, an interlayer insulating film 9 and the like are formed.
  • the front surface of the Si substrate 41 on which the MOS gate structure 20 and the like are formed is protected with a resist 42.
  • the back surface of the Si substrate 41 is ground, and the thickness t of the Si substrate 41 is reduced to, for example, 125 ⁇ m.
  • the back surface of the Si substrate 41 is etched to remove a grinding strain layer (not shown) on the back surface of the Si substrate 41.
  • the first ion implantation 51 of selenium is performed on the entire ground back surface of the Si substrate 41 with, for example, acceleration energy of 100 keV and a dose amount of 3 ⁇ 10 14 / cm 2 .
  • the impurity implanted by the first ion implantation 51 selenium having a relatively large diffusion coefficient, the n + -type FS layer 12 can be made a deep diffusion layer, and the yield rate of RC-IGBT can be improved.
  • second ion implantation 52 of boron (B) is performed on the entire ground back surface of the Si substrate 41 with an acceleration energy of 40 keV and a dose of 8 ⁇ 10 13 / cm 2 , for example.
  • the second ion implantation 52 is an ion implantation for forming the p + -type collector region 10.
  • a resist 43 is applied to the back surface of the Si substrate 41 with a thickness of 2 ⁇ m, for example.
  • the resist 43 is patterned by photolithography to expose the formation region of the n + -type cathode region 11.
  • third ion implantation 53 of phosphorus (P) is performed on the back surface of the Si substrate 41 with, for example, acceleration energy of 110 keV and a dose of 2 ⁇ 10 15 / cm 2 .
  • the third ion implantation 53 is an ion implantation for forming the n + -type cathode region 11.
  • the dose of phosphorus in the third ion implantation 53 is preferably 1 ⁇ 10 15 / cm 2 or more, for example.
  • the resist 42 on the front surface of the Si substrate 41 and the resist 43 on the back surface of the Si substrate 41 are removed.
  • a first annealing process (first heat treatment) is performed at a temperature of 950 ° C. for about 30 minutes to activate the impurities implanted by the first to third ion implantations 51 to 53.
  • the p + -type collector region 10 the n + -type cathode region 11 and the n + -type FS layer 12 are formed on the front surface layer of the Si substrate 41.
  • an aluminum silicon (Al—Si) film is deposited to a thickness of 5 ⁇ m on the front surface of the Si substrate 41, and the emitter electrode 8 is formed by patterning the aluminum silicon film by photolithography.
  • first light ion irradiation light ions such as helium and protons are irradiated from the back surface of the Si substrate 41 to the entire back surface with a predetermined range Rp1 (hereinafter referred to as first light ion irradiation) 54, and n A defect layer (first low lifetime region 31) is formed on the front surface side of the Si substrate 41 inside the -type drift layer 1.
  • the irradiation position of the first light ion irradiation 54 is preferably in a range where the distance from the front surface of the Si substrate 41 is, for example, 20 ⁇ m or less. The reason is that it is possible to realize a withstand voltage that is higher than a desired withstand voltage obtained in design.
  • the distance from the back surface of the Si substrate 41 to the irradiation position of the first light ion irradiation 54 is the light ion range Rp1 in the first light ion irradiation 54.
  • x in the n ⁇ -type drift layer 1 represents a crystal defect formed in the first lifetime minimum region 31a by the first light ion irradiation 54 (the same applies to FIG. 9).
  • the crystal defects formed in the region where the lifetime is shortened by passing light ions from the back surface of the Si substrate 41 to about Rp1- ⁇ Rp1 are not shown (the same applies to FIG. 9).
  • a region in which the lifetime is shortened by passing light ions from the back surface of the Si substrate 41 to about Rp1- ⁇ Rp1 is the first lifetime passing region 31b.
  • second light ion irradiation 55 light ions are irradiated from the back surface of the Si substrate 41 to the entire back surface with a predetermined range Rp2 (hereinafter referred to as second light ion irradiation) 55, and the n + -type FS layer 12 is irradiated.
  • a defect layer (second low lifetime region 32) is formed inside the substrate.
  • the acceleration energy of the second light ion irradiation 55 is preferably smaller than the acceleration energy of the first light ion irradiation 54, for example, 4.3 MeV or less.
  • the range Rp2 of light ions in the second light ion irradiation 55 is preferably 15 ⁇ m or less from the back surface of the Si substrate 41, for example. The reason is that the breakdown voltage can be made higher than when only the first low lifetime region 31 is provided.
  • “x” in the n + -type FS layer 12 represents a crystal defect formed in the second lifetime minimum region 32 a by the second light ion irradiation 55.
  • the crystal defects formed in the region where the lifetime is shortened by passing light ions from the back surface of the Si substrate 41 to about Rp2- ⁇ Rp2 are not shown.
  • a region where the lifetime is shortened by passing light ions from the back surface of the Si substrate 41 to about Rp2- ⁇ Rp2 is the second lifetime passing region 32b.
  • the dose amount of the first and second light ion irradiations 54 and 55 may be, for example, 1 ⁇ 10 10 / cm 2 or more and 1 ⁇ 10 12 / cm 2 or less. Furthermore, the dose amount of the second light ion irradiation 55 is preferably higher than the dose amount of the first light ion irradiation 54. By making the dose amount of the second light ion irradiation 55 higher than the dose amount of the first light ion irradiation 54, the lifetime of the second low lifetime region 32 is made shorter than the lifetime of the first low lifetime region 31. can do. For example, the back surface of the Si substrate 41 may be masked, and the first and second light ion irradiations 54 and 55 may be performed only on a part of the back surface of the Si substrate 41.
  • the irradiation order of the first and second light ion irradiations 54 and 55 is not limited to the order described above, and can be variously changed.
  • the first light ion irradiation 54 may be performed after the second light ion irradiation 55.
  • the number of irradiations of the first and second light ion irradiations 54 and 55 can be variously changed.
  • the first and second light ion irradiations 54 and 55 may be performed once each, or may be performed twice or more.
  • the first and second light ion irradiations 54 and 55 may be alternately performed.
  • a second annealing process (second heat treatment) is performed at a temperature of 370 ° C. for one hour to reduce the defect density of crystal defects generated in the n + -type FS layer 12 by the second light ion irradiation 55. .
  • a donor region by light ions (for example, protons) is formed inside the n + -type FS layer 12.
  • This second annealing treatment is preferably performed at a temperature of 350 ° C. to 370 ° C. for about 1 hour to 2 hours, for example.
  • FIG. 10 is a characteristic diagram illustrating a leakage current characteristic of the semiconductor device manufactured by the method of manufacturing a semiconductor device according to the embodiment.
  • an RC-IGBT having an FS structure in which the lifetime was controlled by irradiation with helium (He) was manufactured (hereinafter referred to as a second example). Furthermore, as a comparative example, an RC-IGBT having an FS structure whose lifetime was controlled by electron beam irradiation was also produced. Specifically, in the second embodiment, helium irradiation is performed twice with different acceleration energy from the back surface of the Si substrate, and the first and second low life including helium as a lifetime killer at the same position as in the first embodiment. A time area was formed. As a comparative example, an electron beam was irradiated at 5 MeV and 300 kGy from the surface of the Si substrate.
  • FIG. 10 shows the relationship between the collector-emitter voltage Vce and the collector current Ices measured at room temperature (for example, 25 ° C.) for each of the first example, the second example, and the comparative example.
  • the leakage current (collector current Ices) between CEs when the rated voltage was 1200 V was 4.0 ⁇ A.
  • the leakage current between CEs when the rated voltage is 1200 V is 1.5 ⁇ A
  • the leakage current between CEs when the rated voltage is 1200 V is 2 0.0 ⁇ A. That is, in the first embodiment, the leakage current between CEs when the rated voltage is 1200 V can be reduced by 60% or more than in the comparative example, and also between the CEs when the rated voltage is 1200 V in the second example. It was confirmed that the leakage current can be halved compared to the comparative example. The reason is as follows.
  • the reason why the leakage current of proton is lower than that of helium is that the ionic radius of proton is smaller than the ionic radius of helium, and thus the size of crystal defects generated in the n + -type FS layer 12 of the first embodiment is large. This is because it can be made smaller than the crystal defects generated in the n + -type FS layer of the second embodiment.
  • FIG. 11 is a characteristic diagram illustrating a turn-off loss characteristic of a semiconductor device manufactured by the method of manufacturing a semiconductor device according to the embodiment.
  • FIG. 12 is a characteristic diagram illustrating reverse recovery loss characteristics of a semiconductor device manufactured by the method of manufacturing a semiconductor device according to the embodiment.
  • a plurality of first examples and comparative examples described above were prepared (hereinafter referred to as first example group 61 and comparative example group 62), and IGBT turn-off loss Eoff and FWD reverse recovery loss Err were measured, respectively.
  • the light ions to be irradiated were protons.
  • FIG. 13 is a characteristic diagram illustrating the relationship between the breakdown voltage of the semiconductor device according to the embodiment and the irradiation position of the first light ion irradiation.
  • Various FS-structure RC-IGBTs were manufactured by changing the proton range Rp1 (that is, the acceleration energy of the first light ion irradiation 54) in the first light ion irradiation 54 (hereinafter referred to as a second embodiment).
  • the second light ion irradiation 55 is not performed in order to verify a suitable range Rp1 of protons in the first light ion irradiation 54.
  • the other conditions of the manufacturing method of the second embodiment are the same as those of the manufacturing method of the first embodiment. From the results shown in FIG. 13, it was confirmed that a breakdown voltage of about 1400 V or more can be realized by setting the irradiation position of the first light ion irradiation 54 within the range of 20 ⁇ m or less from the front surface of the Si substrate 41. .
  • FIG. 14 is a characteristic diagram illustrating the relationship between the breakdown voltage of the semiconductor device according to the embodiment and the irradiation position of the second light ion irradiation.
  • Various FS structure RC-IGBTs were prepared by changing the proton range Rp2 in the second light ion irradiation 55 (that is, the acceleration energy of the second light ion irradiation 55) (hereinafter, referred to as a third embodiment).
  • the irradiation position of the first light ion irradiation 54 when producing the third example was 15 ⁇ m from the front surface of the Si substrate 41.
  • Other conditions of the manufacturing method of the third embodiment are the same as those of the manufacturing method of the first embodiment.
  • FIG. 14 also shows, as a comparison, Example 2 in which the second light ion irradiation 55 is not performed and only the first light ion irradiation 54 (proton irradiation) is performed.
  • FIG. 14 also shows the breakdown voltage of Example 2 in which the distance from the front surface of the Si substrate 41 to the irradiation position of the first light ion irradiation 54 is 15 ⁇ m for comparison. From the results shown in FIG.
  • the breakdown voltage is improved as compared with the case where only the first light ion irradiation 54 is performed. It was confirmed that it can be made.
  • FIG. 15 is a characteristic diagram showing the impurity concentration of the field stop layer of the semiconductor device according to the embodiment.
  • FIG. 16 is a characteristic diagram showing the impurity concentration of the field stop layer of the conventional semiconductor device.
  • FIG. 15 shows the result of measuring the impurity concentration from the back surface of the substrate of the FWD portion 22 in the first embodiment described above.
  • FIG. 16 shows the result of measuring the impurity concentration from the back surface of the substrate of the FWD part for a conventional RC-IGBT (hereinafter referred to as the first and second conventional examples) in which the second light ion irradiation 55 is not performed. .
  • the first to third ion implantation is performed.
  • a first annealing process is performed to activate each of the impurities simultaneously.
  • the conditions of the first to third ion implantations and the first annealing treatment in the first conventional example are the same as those in the manufacturing method of the first example.
  • the impurity concentration of the n + -type FS layer 72-1 was lower than the normal impurity concentration.
  • the normal impurity concentration is the impurity concentration of the n + -type FS layer 72-2 of the second conventional example.
  • the dose of selenium in the first ion implantation is increased to, for example, about 3 ⁇ 10 14 / cm 2 , or the n + -type cathode region 71-2 is activated separately from the first annealing treatment. Therefore, an n + -type FS layer 72-2 that compensates for the decrease in the impurity concentration was formed by adding laser annealing for the purpose. For this reason, in the second conventional example, by increasing the dose of the first ion implantation for forming the n + -type FS layer 72-2, the throughput of the manufacturing process is reduced, or laser annealing is added. It has been confirmed that there is a problem that the lead time increases.
  • the second light ion irradiation for forming the second low lifetime region 32 after the first to third ion implantations 51 to 53 and the first annealing treatment may be formed inside the n + -type FS layer 12 by performing step 55.
  • the impurity concentration of the n + -type FS layer 12 is complemented by the donor region A by light ions, and is the same as the impurity concentration of the n + -type FS layer 72-2 of the second conventional example. It was.
  • As light ion donor formation it is known that protons become shallow donors and helium becomes deep donors, for example.
  • the second light ion irradiation 55 provides a lifetime killer effect for adjusting the reverse recovery time of the FWD portion 22 and the first donor effect that interpolates the impurity concentration of the n + -type FS layer 12. 2 It was confirmed that the problems caused in the conventional example can be solved.
  • helium is effective for donor formation of light ions, and more preferably proton is effective.
  • the size of the crystal defect formed in the n + -type FS layer by forming the first and second low lifetime regions by the first and second light ion irradiations. Can be reduced as compared with the conventional case where the lifetime is controlled by electron beam irradiation.
  • the leakage current between CEs of the RC-IGBT having the FS structure using a thin wafer can be reduced by 50% or more compared to the conventional RC-IGBT in which the lifetime is controlled by electron beam irradiation.
  • the n + type FS layer can be a deep diffusion layer, and the yield rate can be improved. Therefore, in the RC-IGBT having the FS structure, an increase in leakage current between CEs can be suppressed and the yield rate can be improved.
  • the first low lifetime region in the n ⁇ -type drift layer by forming the first low lifetime region in the n ⁇ -type drift layer, the number of carriers discharged during the FWD reverse recovery operation is reduced, and the loss generated during the FWD reverse recovery operation Can be reduced. Further, by forming the second low lifetime region in the n + -type FS layer, it is possible to suppress the tail current when the IGBT is turned off and to adjust the reverse recovery time of the FWD. Therefore, in the RC-IGBT having the FS structure, it is possible to control the carrier lifetime and reduce the electrical loss during operation.
  • a deep donor deep donors caused by light ions in the n + -type FS layer (In some cases, a donor region is formed by helium) or a Schaldoner (proton), and the impurity concentration of the n + -type FS layer is interpolated.
  • the dose amount of the impurity of the first ion implantation necessary for forming the n + -type FS layer can be reduced. For this reason, the throughput of a manufacturing process can be improved.
  • the electron beam is transmitted through the entire substrate, so that the gate oxide film of the MOS gate structure has a defect.
  • the gate threshold voltage Vth is lowered or the variation of the gate threshold voltage is increased. Defects generated in the gate oxide film cannot be completely recovered even by annealing treatment (heat treatment) for defect recovery.
  • the first and second light ions are irradiated from the back surface of the n ⁇ type semiconductor substrate, light ions are applied to the gate oxide film of the MOS gate structure formed on the front surface side of the n ⁇ type semiconductor substrate. Irradiation defects do not occur. For this reason, it is possible to avoid a decrease in the gate threshold voltage or an increase in the variation in the gate threshold voltage.
  • the present invention has been described by taking the RC-IGBT having a high breakdown voltage FS structure using a thin wafer as an example. It is.
  • the MOS gate structure of the IGBT portion is a trench gate type, but it may be a planar gate type instead of the trench gate type.
  • a part of the p-type base layer of the MOS gate structure also serves as the p-type anode layer of the FWD, but the p-type base layer of the MOS gate structure is formed on the surface layer of the n ⁇ -type semiconductor substrate.
  • a FWD p-type anode layer may be selectively provided.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the semiconductor device and the method for manufacturing the semiconductor device according to the present invention are useful for a power semiconductor device used for a power conversion device such as an inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thyristors (AREA)

Abstract

-型ドリフト層(1)となるn-型半導体基板のおもて面に、FS構造のRC-IGBTのおもて面素子構造を形成する。次に、n-型半導体基板の裏面にp+型コレクタ領域(10)、n+型カソード領域(11)およびn+型FS層(12)を形成する。n+型FS層(12)はセレンを用いて形成される。次に、n-型半導体基板の裏面から軽イオンを照射し、n-型ドリフト層(1)の内部に第1低ライフタイム領域(31)を形成する。次に、n-型半導体基板の裏面から軽イオンを照射し、n+型FS層(12)の内部に第2低ライフタイム領域(32)を形成する。次に、アニール処理により、n+型FS層(12)内部の結晶欠陥の欠陥密度を低減する。このようにすることで、リーク電流の増加を抑制するとともに、電気的損失を低減させ、かつ良品率を向上させることができる半導体装置および半導体装置の製造方法を提供することができる。

Description

半導体装置および半導体装置の製造方法
 この発明は、半導体装置および半導体装置の製造方法に関する。
 従来、絶縁ゲート型バイポーラトランジスタ(IGBT)や還流用ダイオード(FWD)等の600V、1200V、1700V耐圧クラスの電力用半導体装置の特性改善が進められている。電力用半導体装置は、省電力性および高効率性をもたらすインバータ等の電力変換装置に使用されており、モータ制御に不可欠である。このような用途で用いられる電力用半導体装置は、低損失(省電力)化、高速高効率化、および地球環境に優しい各種特性が市場から急速に要求されている。
 このような要求を満たす電力用半導体装置を製造する方法として、低コストでかつ低オン電圧など電気的損失の低いIGBTを製造する方法が提案されている。具体的には、まず、ウエハプロセス中のウエハ割れを防止するために、通常採用される厚いウエハでウエハプロセスを開始する。そして、ウエハプロセスのできるだけ後半で、所望の特性を得られる程度に可能な限り薄くなるようにウエハ裏面を研削する。その後、研削されたウエハの裏面から所望の不純物濃度で不純物をイオン注入して活性化しp+型コレクタ領域を形成する。
 近年、このようにウエハ(半導体基板)の厚さを薄くすることにより低コストで電気的損失の低い半導体装置を製造する方法が、特に電力用半導体装置を開発・製造する主流の方法となりつつある。さらに、オフ時に半導体基板のおもて面側のpn接合から伸びる空乏層がp+型コレクタ領域に達しないように抑制するフィールドストップ(FS)層を設けることで、電気的損失をより低減したFS構造のIGBTが公知である。
 FS構造のIGBTを製造する方法として、次の方法が提案されている。まず、半導体
基板のおもて面に、MOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)構造を形成する。次に、半導体基板の裏面を研削して半導体基板の厚さを薄くした後、研削された半導体基板の裏面からリン(P)またはセレン(Se)をイオン注入してフィールドストップ層を形成する。次に、半導体基板の裏面にボロン(B)のイオン注入を行い、p+コレクタ層を形成する(例えば、下記特許文献1(第0044~0049段落)および下記特許文献2(第0017~0018段落)参照。)。
 また、FS構造のダイオードを製造する方法として、次の方法が提案されている。まず、ウエハのおもて面にpアノード層を形成する。次に、pアノード層の側からプロトンを照射する。次に、ウエハの裏面を研削し、ウエハ全体の厚さを薄くする。次に、ウエハ裏面にセレンをイオン注入する。次に、熱処理を行う。それによって、注入されたセレンがウエハ裏面からアノード側へ拡散し、nカソードバッファ層が形成される。また、ウエハに導入されたプロトンがドナー化し、ブロードバッファ層が形成される(例えば、下記特許文献3(第0097~0101段落)参照。)。
 さらに、電力変換装置全体の小型化を図るために、IGBTと当該IGBTに逆並列に接続された還流ダイオード(FWD)とを同一半導体基板に内蔵して一体化した構造の逆導通型IGBT(RC-IGBT)の開発も進んでいる。RC-IGBTを製造する方法として、次の方法が提案されている。研削されたドリフト領域の裏面の一部にダイオードのn+型領域を形成した後、研削されたドリフト領域の裏面の全体に、セレンをイオン注入する。次に、炉アニールを行い、ドリフト領域の裏面に注入したセレンを活性化し、フィールドストップ領域を形成する(例えば、下記特許文献4参照。)。
 また、RC-IGBTを製造する別の方法として、次の方法が提案されている。基板の一方の主表面側からヘリウム(He)を照射してN型ベース層の内部のエミッタ領域寄りに局所的にライフタイムの短い低ライフタイム領域を形成する。このようにして、FWDの逆回復動作時に吐き出されるキャリアを減少させることで、FWDの逆回復動作時に発生する損失を低減させる(例えば、下記特許文献5(第0025段落)参照。)。また、RC-IGBTを製造する別の方法として、プロトン照射によりドリフト層内に低ライフタイム領域を形成する方法が提案されている(例えば、下記特許文献6参照。)。
特開2008-211148号公報 特開2008-103562号公報 特開2007-158320号公報 特開2012-9629号公報 特開2005-317751号公報 米国特許出願公開第2009/283799号明細書
 しかしながら、発明者らが鋭意研究を重ねた結果、IGBTとFWDとを同一半導体基板に一体化したFS構造のRC-IGBTでは、次の問題が生じることが判明した。このFS構造のRC-IGBTは、薄化したウエハ裏面側にFS層を設けたパンチスルー構造であるため、良品率を向上させるために、ドーパントとしてセレンを含む深い拡散層がFS層として形成される。さらに、IGBTとFWDとを同一半導体基板に一体化した構造であるため、IGBTのチャネル領域とFWDのアノード領域とが半導体基板のおもて面側のp型領域を共有する構成となる。このようなRC-IGBTでは、FWD動作時の逆回復特性が劣化する。
 したがって、FWDの逆回復動作時に吐き出されるキャリアを減少し逆回復特性を向上させるために、キャリアのライフタイムを制御する必要がある。図17は、従来のフィールドストップ構造のRC-IGBTのリーク電流特性を示す特性図である。従来のように電子線(EB:Electron Beam)を照射してキャリアのライフタイムを制御した場合(Se-FS+EB)、FS層に欠陥が形成される。FS層内の欠陥はその後の熱処理においても回復されず、電子線を照射しない場合(Se-FS)よりもコレクタ-エミッタ(CE)間のリーク電流が増加するという問題がある。
 この発明は、上述した従来技術による問題点を解消するため、リーク電流の増加を抑制し、かつ良品率を向上させることができる半導体装置および半導体装置の製造方法を提供することを目的とする。また、この発明は、上述した従来技術による問題点を解消するため、電気的損失を低減させることができる半導体装置および半導体装置の製造方法を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。この発明にかかる半導体装置は、第1導電型のドリフト層を有する半導体基板、前記半導体基板のおもて面側に設けられた第2導電型のベース層、前記ベース層内に選択的に設けられた第1導電型のエミッタ領域、前記半導体基板のおもて面側に設けられたゲート絶縁膜およびゲート電極を備えた絶縁ゲート部、前記ベース層と前記エミッタ領域との両方に電気的に接続するエミッタ電極、前記半導体基板の裏面側に選択的に設けられた第2導電型のコレクタ領域、および前記コレクタ領域に電気的に接続するコレクタ電極を備えた絶縁ゲート型バイポーラトランジスタ部と、前記半導体基板のおもて面側に設けられ、かつ前記エミッタ電極に電気的に接続する第2導電型のアノード層、および前記半導体基板の裏面側に選択的に設けられ、かつ前記コレクタ電極に電気的に接続する第1導電型のカソード領域を備えた還流用ダイオード部と、を備える。このような半導体装置の製造方法であって、まず、前記半導体基板の裏面に第1導電型不純物を導入する導入工程をおこなう。次に、前記第1導電型不純物を熱処理により活性化させ、前記半導体基板の裏面から前記コレクタ領域よりも深い位置に、前記ドリフト層よりも不純物濃度が高い第1導電型のフィールドストップ層を形成する第1熱処理工程をおこなう。さらに、前記半導体基板の裏面から軽イオンを照射し、前記ドリフト層内に他の領域よりもキャリアのライフタイムが短い第1低ライフタイム領域を形成する第1照射工程をおこなう。そして、前記半導体基板の裏面から軽イオンを照射し、前記フィールドストップ層内に他の領域よりもキャリアのライフタイムが短い第2低ライフタイム領域を形成する第2照射工程をおこなう。さらに、前記第2照射工程で前記フィールドストップ層内に生じた欠陥の欠陥密度を熱処理により低減する第2熱処理工程をおこなう。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記導入工程では、前記第1導電型不純物としてセレンを導入することを特徴とする。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2熱処理工程では、前記フィールドストップ層内に形成された欠陥の欠陥密度を低減するとともに、前記フィールドストップ層内の軽イオンをドナー化させることを特徴とする。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2熱処理工程は、350℃~370℃の温度で1時間~2時間行うことを特徴とする。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2低ライフタイム領域のライフタイムを、前記第1低ライフタイム領域のライフタイムよりも短くすることを特徴とする。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記軽イオンは、ヘリウムまたはプロトンであることを特徴とする。
 また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、絶縁ゲート型バイポーラトランジスタ部と、還流用ダイオード部と、第1導電型のフィールドストップ層と、第1低ライフタイム領域と、第2低ライフタイム領域と、を備える。絶縁ゲート型バイポーラトランジスタ部は、第1導電型のドリフト層を有する半導体基板、前記半導体基板のおもて面側に設けられた第2導電型のベース層、前記ベース層内に選択的に設けられた第1導電型のエミッタ領域、前記半導体基板のおもて面側に設けられたゲート絶縁膜およびゲート電極を備えた絶縁ゲート部、前記ベース層と前記エミッタ領域との両方に電気的に接続するエミッタ電極、前記半導体基板の裏面側に選択的に設けられた第2導電型のコレクタ領域、および前記コレクタ領域に電気的に接続するコレクタ電極を備える。還流用ダイオード部は、前記半導体基板のおもて面側に設けられ、かつ前記エミッタ電極に電気的に接続する第2導電型のアノード層、および前記半導体基板の裏面側に選択的に設けられ、かつ前記コレクタ電極に電気的に接続する第1導電型のカソード領域を備える。第1導電型のフィールドストップ層は、前記半導体基板の裏面から前記コレクタ領域よりも深い位置に設けられ、前記ドリフト層よりも不純物濃度が高い。第1低ライフタイム領域は、前記ドリフト層内に前記フィールドストップ層と離れて設けられ、他の領域よりもキャリアのライフタイムが短い。第2低ライフタイム領域は、前記フィールドストップ層内に設けられ、他の領域よりもキャリアのライフタイムが短い。
 また、この発明にかかる半導体装置は、上述した発明において、前記フィールドストップ層は、ドーパントとしてセレンを含むことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1低ライフタイム領域は、軽イオンを含むことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2低ライフタイム領域は、軽イオンを含むことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2低ライフタイム領域に、軽イオンがドナー化されてなる領域が設けられていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記軽イオンは、ヘリウムかプロトンであることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2低ライフタイム領域のライフタイムは、前記第1低ライフタイム領域のライフタイムよりも短いことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記絶縁ゲート部は、前記ベース層および前記エミッタ領域を貫通して前記ドリフト層に達するトレンチと、前記トレンチの内壁に沿って設けられた前記ゲート絶縁膜と、前記トレンチの内部に、前記ゲート絶縁膜を介して設けられた前記ゲート電極と、を備えることを特徴とする。
 上述した発明によれば、軽イオン照射により第1,2低ライフタイム領域を形成することで、フィールドストップ(FS)層に形成される欠陥の大きさを、従来のように電子線照射によってライフタイムを制御する場合に比べて小さくすることができる。これにより、薄いウエハを用いたFS構造のRC-IGBTのコレクタ-エミッタ(CE)間のリーク電流を、電子線照射によってライフタイムを制御した従来のRC-IGBTよりも低減させることができる。また、上述した発明によれば、ドーパントとしてセレンを含むFS層を形成することにより、FS層を深い拡散層とすることができ、良品率を向上させることができる。
 また、上述した発明によれば、ドリフト層内に第1低ライフタイム領域を形成することで、還流用ダイオード部におけるFWDの逆回復動作時に吐き出されるキャリアを減少させることで、FWDの逆回復動作時に発生する損失を低減させることができる。また、FS層内に第2低ライフタイム領域を形成することで、絶縁ゲート型バイポーラトランジスタ部におけるIGBTのターンオフ時におけるテール電流を抑制し、かつ還流用ダイオード部におけるFWDの逆回復時間を調整することができる。したがって、FS構造のRC-IGBTにおいて、キャリアのライフタイムを制御するとともに、動作時の電気的損失を低減することができる。
 本発明にかかる半導体装置および半導体装置の製造方法によれば、リーク電流の増加を抑制し、かつ良品率を向上させることができるという効果を奏する。また、本発明にかかる半導体装置および半導体装置の製造方法によれば、電気的損失を低減させることができるという効果を奏する。
図1は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置の構成を示す断面図である。 図2は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図3は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図4は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図5は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図6は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図7は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図8は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図9は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 図10は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置のリーク電流特性を示す特性図である。 図11は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置のターンオフ損失特性を示す特性図である。 図12は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置の逆回復損失特性を示す特性図である。 図13は、実施の形態にかかる半導体装置の耐圧と第1軽イオン照射の照射位置との関係について示す特性図である。 図14は、実施の形態にかかる半導体装置の耐圧と第2軽イオン照射の照射位置との関係について示す特性図である。 図15は、実施の形態にかかる半導体装置のフィールドストップ層の不純物濃度について示す特性図である。 図16は、従来の半導体装置のフィールドストップ層の不純物濃度について示す特性図である。 図17は、従来のフィールドストップ構造のRC-IGBTのリーク電流特性を示す特性図である。
 以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態)
 実施の形態にかかる半導体装置の製造方法により作製(製造)される半導体装置について説明する。図1は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置の構成を示す断面図である。図1に示す実施の形態にかかる半導体装置は、IGBT部21と、FWD部22と、を備える。IGBT部21は、n-型ドリフト層1となる同一のn-型半導体基板上に、絶縁ゲート型バイポーラトランジスタ(IGBT)が設けられたている。FWD部22は、還流用ダイオード(FWD)がている。FWD部22のFWDは、IGBT部21のIGBTに逆並列に接続されている。すなわち、図1に示す実施の形態にかかる半導体装置は、逆導通型IGBT(RC-IGBT)である。
 具体的には、IGBT部21において、n-型半導体基板のおもて面には、IGBTのMOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)構造20が設けられている。MOSゲート構造20は、p型ベース層2、ゲート酸化膜4およびゲート電極5で構成される。p型ベース層2は、n-型半導体基板のおもて面の表面層に設けられている。p型ベース層2を貫通し、n-型ドリフト層1に達するトレンチ3が所定の間隔で設けられている。トレンチ3の内部には、トレンチ3の側壁および底面に沿ってゲート酸化膜4が設けられている。
 また、トレンチ3の内部には、ゲート酸化膜4を介して例えばポリシリコンからなるゲート電極5が設けられている。p型ベース層2の内部には、n+型エミッタ領域6およびp+型コンタクト領域7が選択的に設けられている。n+型エミッタ領域6およびp+型コンタクト領域7は互いに接する。n+型エミッタ領域6は、トレンチ3の側壁に接し、ゲート酸化膜4を介してゲート電極5と対向する。エミッタ電極8は、n+型エミッタ領域6およびp+型コンタクト領域7に接する。また、エミッタ電極8は、層間絶縁膜9によってゲート電極5と電気的に絶縁されている。
 上述したp型ベース層2、トレンチ3、エミッタ電極8および層間絶縁膜9は、IGBT部21からFWD部22にわたって設けられている。すなわち、FWD部22において、n-型半導体基板のおもて面の表面層には、IGBT部21と同様にp型ベース層2、トレンチ3、エミッタ電極8および層間絶縁膜9が設けられている。FWD部22には、n+型エミッタ領域6およびp+型コンタクト領域7は設けられていない。p型ベース層2の一部は、FWDのp型アノード層を兼ねる。また、エミッタ電極8の一部は、アノード電極を兼ねており、隣り合うトレンチ3間のp型ベース層2に接する。
 n-型半導体基板の裏面の表面層には、IGBT部21において、p+型コレクタ領域10が選択的に設けられている。また、n-型半導体基板の裏面の表面層には、FWD部22において、n+型カソード領域11が選択的に設けられている。n+型カソード領域11は、n-型半導体基板の裏面に水平な方向に、p+型コレクタ領域10と並んで設けられている。コレクタ電極13は、p+型コレクタ領域10に接する。また、コレクタ電極13は、カソード電極を兼ねており、n+型カソード領域11に接する。
 n-型ドリフト層1の内部には、ライフタイムキラーとして添加された軽イオン、例えばヘリウム(He+)やプロトン(H+)等により結晶欠陥が形成されてなる、他の領域よりもライフタイムの低い領域(以下、第1低ライフタイム領域とする)31が設けられている。第1低ライフタイム領域31は、n-型半導体基板のおもて面側に、IGBT部21からFWD部22にわたって所定の厚さで設けられている。さらに、第1低ライフタイム領域31は、第1低ライフタイム領域31内で最もライフタイム値の短い第1ライフタイム極小領域31aと、第1ライフタイム極小領域31aよりも長く、他の領域よりも短いライフタイム値である第1ライフタイム通過領域31bとを有する。
 例えば、第1ライフタイム極小領域31aは、照射する軽イオンの飛程Rp1とその付近(±ΔRp1)に対応し、第1ライフタイム通過領域31bは、入射面からRp1-ΔRp1程度までの軽イオンが通過することでライフタイムが短くなった領域に対応する。図1の左側に示す特性図において、符号τ1aが第1ライフタイム極小領域31aのライフタイムであり、符号τ1bが第1ライフタイム通過領域31bのライフタイムである。符号τ0はn-型半導体基板のライフタイムである。第1低ライフタイム領域31を設けることにより、FWDの逆回復動作時に吐き出されるキャリアを減少させることができる。
 また、n-型ドリフト層1の内部には、n-型半導体基板の裏面からp+型コレクタ領域10よりも深い位置に、ドーパントとして例えばセレン(Se)を含むn+型フィールドストップ(FS)層12が設けられている。n+型FS層12は、IGBT部21からFWD部22にわたって設けられ、n-型ドリフト層1、p+型コレクタ領域10およびn+型カソード領域11と接する。また、n+型FS層12は、第1低ライフタイム領域31と離れて設けられている。n+型FS層12は、オフ時にn-型ドリフト層1とp型ベース層2との間のpn接合から伸びる空乏層がp+型コレクタ領域10に達しないように抑制する機能を有する。
 また、n+型FS層12の内部からn-型半導体基板の裏面にわたって、ライフタイムキラーとして添加された軽イオンにより結晶欠陥が形成されてなる、他の領域よりもライフタイムの低い領域(以下、第2低ライフタイム領域とする)32が設けられている。第2低ライフタイム領域32は、n-型半導体基板内で最もライフタイム値の短い第2ライフタイム極小領域32aと、第1ライフタイム極小領域31aよりも長く、第1ライフタイム通過領域31bよりも短いライフタイム値である第2ライフタイム通過領域32bとを有する。例えば、第2ライフタイム極小領域32aは、照射する軽イオンの飛程Rp2とその付近(±ΔRp2)に対応し、第2ライフタイム通過領域32bは、入射面からRp2-ΔRp2程度までの軽イオンが通過することでライフタイムが短くなった領域に対応する。
 図1には、n-型半導体基板の裏面から第2ライフタイム極小領域32aとの境界までを第2ライフタイム通過領域32bとして示す(第2ライフタイム極小領域32aよりも薄いハッチング領域)。図1の左側に示す特性図において、符号τ2aが第2ライフタイム極小領域32aのライフタイムであり、符号τ2bが第2ライフタイム通過領域32bのライフタイムである。第2低ライフタイム領域32を設けることにより、IGBTのターンオフ時におけるテール電流を抑制することができ、かつFWDの逆回復時間を調整することができる。
 第2ライフタイム極小領域32aのライフタイムτ2aは、第1ライフタイム極小領域31aのライフタイムτ1aよりも短いのが好ましい。その理由は、次のとおりである。RC-IGBTは、FWD単体の場合と異なり、n-型半導体基板の裏面側にp+型コレクタ領域10を有する。このため、RC-IGBTでは、FWDの逆回復動作中にp+型コレクタ領域10からn-型ドリフト層1へ過剰なホールが注入され、FWDの逆回復時間が設計上得られる所望の逆回復時間よりも長くなる傾向にある。そこで、第2ライフタイム極小領域32aのライフタイムτ2aを第1ライフタイム極小領域31aのライフタイムτ1aよりも短くすることにより、所望の逆回復時間となるようにFWDの逆回復時間を短くすることができるからである。
 照射する軽イオンの飛程Rp1,Rp2の付近(±ΔRp1,±ΔRp2)の広がり幅は、それぞれ第1,2ライフタイム極小領域31a,32aのライフタイムτ1a,τ2aに依存した大きさとなる。具体的には、第2ライフタイム極小領域32aのライフタイムτ2aが第1ライフタイム極小領域31aのライフタイムτ1aよりも短いことにより、照射する軽イオンの飛程Rp2の付近(±ΔRp2)の広がり幅は、照射する軽イオンの飛程Rp1の付近(±ΔRp1)の広がり幅よりも短い。広がり幅とは、図1に示す特性図の第1,2ライフタイム極小領域31a,32aのライフタイムτ1a,τ2aを示すピーク波形のピーク幅である。第1低ライフタイム領域31の平均的なライフタイムは、主に第1ライフタイム極小領域31aのライフタイムτ1aに依存する。第2低ライフタイム領域32の平均的なライフタイムは、主に第2ライフタイム極小領域32aのライフタイムτ2aに依存する。
 次に、実施の形態にかかる半導体装置の製造方法について、耐圧(定格電圧)が1200Vクラスで、定格電流が400AであるRC-IGBTを製造する場合を例に説明する。図2~9は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。まず、図2に示すように、例えば、FZ(Floating Zone)法で作製された、厚さtが650μmで、直径6インチのシリコン基板(以下、Si基板とする)41を用意する。Si基板41の比抵抗は、耐圧が1200Vクラスである場合に40Ωcm~80Ωcm程度であるため、例えば55Ωcmとしてもよい。
 次に、一般的な方法により、n-型ドリフト層1となるSi基板41のおもて面に、トレンチゲート型のMOSゲート構造20(p型ベース層2、トレンチ3、ゲート酸化膜4およびゲート電極5)、n+型エミッタ領域6、p+型コンタクト領域7、層間絶縁膜9などを形成する。次に、Si基板41のMOSゲート構造20などが形成されたおもて面をレジスト42で保護する。次に、図3に示すように、Si基板41の裏面を研削し、Si基板41の厚さtを例えば125μmまで薄くする。次に、Si基板41の裏面をエッチングして、Si基板41裏面の研削歪層(不図示)を除去する。
 次に、図4に示すように、Si基板41の研削された裏面全面に、例えば、加速エネルギー100keV、ドーズ量3×1014/cm2でセレンを第1イオン注入51する。第1イオン注入51で注入する不純物を拡散係数が比較的大きいセレンとすることで、n+型FS層12を深い拡散層とすることができ、RC-IGBTの良品率を向上させることができる。次に、図5に示すように、Si基板41の研削された裏面全面に、例えば、加速エネルギー40keV、ドーズ量8×1013/cm2でボロン(B)を第2イオン注入52する。第2イオン注入52は、p+型コレクタ領域10を形成するためのイオン注入である。
 次に、図6に示すように、Si基板41の裏面に、レジスト43を例えば2μmの厚さで塗布する。次に、例えば両面アライナーを用いてn+型カソード領域11のパターンをレジスト43に投影した後、フォトリソグラフィによりレジスト43をパターニングし、n+型カソード領域11の形成領域を露出させる。次に、レジスト43をマスクとして、Si基板41の裏面に、例えば、加速エネルギー110keV、ドーズ量2×1015/cm2でリン(P)を第3イオン注入53する。第3イオン注入53は、n+型カソード領域11を形成するためのイオン注入である。第3イオン注入53におけるリンのドーズ量は、例えば1×1015/cm2以上であるのが好ましい。
 次に、図7に示すように、Si基板41のおもて面のレジスト42と、Si基板41の裏面のレジスト43とを剥離する。次に、例えば950℃の温度で30分程度の第1アニール処理(第1熱処理)を行い、第1~3イオン注入51~53で注入した不純物を活性化させる。これにより、Si基板41の裏面の表面層に、p+型コレクタ領域10、n+型カソード領域11およびn+型FS層12が形成される。次に、Si基板41のおもて面に例えばアルミニウムシリコン(Al-Si)膜を5μmの厚さで堆積し、フォトリソグラフィによりアルミニウムシリコン膜をパターニングしてエミッタ電極8を形成する。
 次に、図8に示すように、Si基板41の裏面から当該裏面全面に所定の飛程Rp1でヘリウムやプロトンなどの軽イオンを照射(以下、第1軽イオン照射とする)54し、n-型ドリフト層1の内部の、Si基板41のおもて面側に欠陥層(第1低ライフタイム領域31)を形成する。第1軽イオン照射54の照射位置は、Si基板41おもて面からの距離が例えば20μm以下となる範囲内にあるのが好ましい。その理由は、設計上得られる所望の耐圧以上の耐圧を実現することができるからである。Si基板41裏面から第1軽イオン照射54の照射位置までの距離が、第1軽イオン照射54における軽イオンの飛程Rp1である。
 図8において、n-型ドリフト層1内の×は、第1軽イオン照射54により第1ライフタイム極小領域31aに形成された結晶欠陥をあらわしている(図9においても同様)。Si基板41の裏面からRp1-ΔRp1程度までの軽イオンが通過することでライフタイムが短くなった領域に形成された結晶欠陥は図示を省略する(図9においても同様)。このSi基板41の裏面からRp1-ΔRp1程度までの軽イオンが通過することでライフタイムが短くなった領域が第1ライフタイム通過領域31bである。
 次に、図9に示すように、Si基板41の裏面から当該裏面全面に所定の飛程Rp2で軽イオンを照射(以下、第2軽イオン照射とする)55し、n+型FS層12の内部に欠陥層(第2低ライフタイム領域32)を形成する。第2軽イオン照射55の加速エネルギーは、第1軽イオン照射54の加速エネルギーよりも小さく、例えば4.3MeV以下であるのが好ましい。第2軽イオン照射55における軽イオンの飛程Rp2は、Si基板41の裏面から例えば15μm以下であるのが好ましい。その理由は、第1低ライフタイム領域31のみを設ける場合よりも耐圧を高くすることができるからである。
 図9において、n+型FS層12内の×は、第2軽イオン照射55により第2ライフタイム極小領域32aに形成された結晶欠陥をあらわしている。Si基板41の裏面からRp2-ΔRp2程度までの軽イオンが通過することでライフタイムが短くなった領域に形成された結晶欠陥は図示を省略する。このSi基板41の裏面からRp2-ΔRp2程度までの軽イオンが通過することでライフタイムが短くなった領域が第2ライフタイム通過領域32bである。
 第1,2軽イオン照射54,55のドーズ量は、例えば、1×1010/cm2以上1×1012/cm2以下であってもよい。さらに、第2軽イオン照射55のドーズ量は、第1軽イオン照射54のドーズ量よりも高いことが好ましい。第2軽イオン照射55のドーズ量を第1軽イオン照射54のドーズ量よりも高くすることにより、第2低ライフタイム領域32のライフタイムを第1低ライフタイム領域31のライフタイムよりも短くすることができる。Si基板41の裏面を例えばマスキングし、Si基板41の裏面の一部にのみ第1,2軽イオン照射54,55を行ってもよい。
 第1,2軽イオン照射54,55の照射順序は、上述した順序に限らず種々変更可能であり、例えば、第2軽イオン照射55後に第1軽イオン照射54を行ってもよい。また、第1,2軽イオン照射54,55の照射回数は種々変更可能である。例えば、第1,2軽イオン照射54,55をそれぞれ1回ずつ行ってもよいし、2回以上ずつ行ってもよい。また、第1,2軽イオン照射54,55をそれぞれ複数回ずつ行う場合、第1,2軽イオン照射54,55を交互に行ってもよい。
 次に、例えば370℃の温度で1時間の第2アニール処理(第2熱処理)を行い、第2軽イオン照射55によりn+型FS層12の内部に生じた結晶欠陥の欠陥密度を低減させる。この第2アニール処理により、n+型FS層12の内部に軽イオン(例えばプロトン)によるドナー化領域が形成される。この第2アニール処理は、例えば、350℃~370℃の温度で1時間~2時間程度行うのが好ましい。その後、Si基板41の裏面に例えばアルミニウム(Al)、チタン(Ti)、ニッケル(Ni)および金(Au)をそれぞれ例えば1μm、0.07μm、1μmおよび0.3μmの厚さで順に堆積し、IGBT部21およびFWD部22に共通のコレクタ電極13を形成する。これにより、図1に示すFS構造のRC-IGBTが完成する。
 次に、実施の形態にかかる半導体装置の製造方法により製造された半導体装置のコレクタ-エミッタ(CE)間のリーク電流について検証した。図10は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置のリーク電流特性を示す特性図である。まず、上述した実施の形態にかかる半導体装置の製造方法に従い、実施の形態にかかる半導体装置の製造方法に記載の条件で、耐圧が1200Vクラスで、定格電流が400AであるFS構造のRC-IGBTを作製(製造)した(以下、第1実施例とする)。
 また、本発明の別の実施形態として、ヘリウム(He)を照射してライフタイムを制御したFS構造のRC-IGBTを作製した(以下、第2実施例とする)。さらに、比較例として、電子線照射によりライフタイム制御したFS構造のRC-IGBTも作製した。具体的には、第2実施例では、Si基板の裏面から異なる加速エネルギーで2回のヘリウム照射を行い、第1実施例と同様の位置にライフタイムキラーとしてヘリウムを含む第1,2低ライフタイム領域を形成した。比較例としては、Si基板の表面から電子線を5MeV,300kGyにて照射した。第2実施例および比較例のそれ以外の製造方法は、第1実施例の製造方法と同様である。そして、第1実施例、第2実施例および比較例について、それぞれ室温(例えば25℃)で測定したコレクタ-エミッタ間電圧Vceとコレクタ電流Icesとの関係について図10に示す。
 図10に示す結果より、比較例では、定格電圧が1200VのときのCE間のリーク電流(コレクタ電流Ices)は4.0μAであった。それに対して、第1実施例においては、定格電圧が1200VのときのCE間のリーク電流は1.5μAであり、第2実施例においても定格電圧が1200VのときのCE間のリーク電流は2.0μAであった。すなわち、第1実施例においては、定格電圧が1200VのときのCE間のリーク電流を比較例よりも60%以上低減させることができ、第2実施例についても定格電圧が1200VのときのCE間のリーク電流を比較例より半減させることができることが確認された。その理由は、次のとおりである。
 電子線照射の場合、セレンによってFS層の全体に点欠陥が導入されるため、空孔(複空孔含む)およびセレンと空孔との複合欠陥がFS層全体にわたって分布し、この複合欠陥が発生中心となってリーク電流が大きくなる。一方、ヘリウムやプロトンなどの軽イオンとその格子欠陥は、セレンによるFS層の深さ方向の一部に局在するため、軽イオンとその格子欠陥がない場合に比べてリーク電流が低減する。したがって、第1,2実施例においては、リーク電流を比較例よりも低減させることができる。さらに、プロトンの方がヘリウムよりもリーク電流が低い理由は、プロトンのイオン半径がヘリウムのイオン半径よりも小さいことで、第1実施例のn+型FS層12内に生じた結晶欠陥の大きさを第2実施例のn+型FS層内に生じた結晶欠陥よりも小さくすることができるからである。
 次に、実施の形態にかかる半導体装置の製造方法により製造された半導体装置のスイッチング損失特性について検証した。図11は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置のターンオフ損失特性を示す特性図である。図12は、実施の形態にかかる半導体装置の製造方法により製造される半導体装置の逆回復損失特性を示す特性図である。上述した第1実施例および比較例をそれぞれ複数用意し(以下、第1実施例群61および比較例群62とする)、それぞれIGBTのターンオフ損失EoffおよびFWDの逆回復損失Errを測定した。また、第1実施例群61を作製するにあたり、照射する軽イオンはプロトンとした。
 図11に示す結果より、第1実施例群61のターンオフ損失Eoffは、比較例群62のターンオフ損失Eoffと同程度であることが確認された。また、図12に示す結果より、第1実施例群61の逆回復損失Errは、比較例群62の逆回復損失Errと同程度であることが確認された。このため、第1実施例群61は、比較例群62と同程度にキャリアの再結合による逆回復特性向上の効果が得られることが確認された。したがって、図10~12に示す結果より、軽イオンによるライフタイム制御を行う第1実施例群61は、電子線によるライフタイム制御を行う比較例群62よりもリーク電流が低減されたことで、RC-IGBTの総発熱量を低下させることができることが確認された。
 次に、第1軽イオン照射54によって照射する軽イオンをプロトンとした場合におけるプロトンの飛程Rp1について検証した。図13は、実施の形態にかかる半導体装置の耐圧と第1軽イオン照射の照射位置との関係について示す特性図である。第1軽イオン照射54におけるプロトンの飛程Rp1(すなわち第1軽イオン照射54の加速エネルギー)を種々変更し複数のFS構造のRC-IGBTを作製した(以下、第2実施例とする)。第2実施例では、第1軽イオン照射54におけるプロトンの好適な飛程Rp1を検証するため、第2軽イオン照射55は行っていない。第2実施例の製造方法のそれ以外の条件は、第1実施例の製造方法と同様である。図13に示す結果より、第1軽イオン照射54の照射位置をSi基板41おもて面から20μm以下の範囲内とすることで、約1400V以上の耐圧を実現することができることが確認された。
 次に、第2軽イオン照射55によって照射する軽イオンをプロトンとした場合におけるプロトンの飛程Rp2について検証した。図14は、実施の形態にかかる半導体装置の耐圧と第2軽イオン照射の照射位置との関係について示す特性図である。第2軽イオン照射55におけるプロトンの飛程Rp2(すなわち第2軽イオン照射55の加速エネルギー)を種々変更し複数のFS構造のRC-IGBTを作製した(以下、第3実施例とする)。第3実施例を作製する際の第1軽イオン照射54の照射位置は、Si基板41おもて面から15μmとした。第3実施例の製造方法のそれ以外の条件は、第1実施例の製造方法と同様である。
 また、図14には、比較として、第2軽イオン照射55を行わず、第1軽イオン照射54(プロトン照射)のみを行った実施例2を示す。また、図14には、比較として、Si基板41おもて面から第1軽イオン照射54の照射位置までの距離を15μmとした実施例2の耐圧も示す。図14に示す結果より、第2軽イオン照射55におけるプロトンの飛程Rp2を、Si基板41の裏面から例えば15μm以下とすることで、第1軽イオン照射54のみを行う場合よりも耐圧を向上させることができることが確認された。
 次に、実施の形態にかかる半導体装置のn+型FS層12について検証した。図15は、実施の形態にかかる半導体装置のフィールドストップ層の不純物濃度について示す特性図である。図16は、従来の半導体装置のフィールドストップ層の不純物濃度について示す特性図である。上述した第1実施例について、FWD部22の基板裏面からの不純物濃度を測定した結果を図15に示す。比較として、第2軽イオン照射55を行っていない従来のRC-IGBT(以下、第1,2従来例とする)について、FWD部の基板裏面からの不純物濃度を測定した結果を図16に示す。
 第1従来例では、n+型FS層72-1、p+型コレクタ領域およびn+型カソード領域71-1を形成するための第1~3イオン注入後に、第1~3イオン注入で注入した各不純物を同時に活性化させる第1アニール処理を行っている。第1従来例の第1~3イオン注入および第1アニール処理の条件は、第1実施例の製造方法と同様である。その結果、図16に示すように、第1従来例では、n+型FS層72-1の不純物濃度が通常の不純物濃度よりも低下してしまうことが確認された。通常の不純物濃度とは、第2従来例のn+型FS層72-2の不純物濃度である。
 第2従来例では、第1イオン注入のセレンのドーズ量を例えば3×1014/cm2程度まで高くする、または、第1アニール処理とは別にn+型カソード領域71-2を活性化させるためのレーザーアニールを追加することにより、不純物濃度の低下分を補完したn+型FS層72-2を形成した。このため、第2従来例では、n+型FS層72-2を形成するための第1イオン注入のドーズ量を高くすることで製造工程のスループットが低下したり、レーザーアニールを追加することでリードタイムが増加したりするという問題が生じることが確認された。
 それに対して、図15に示すように、第1実施例においては、第1~3イオン注入51~53および第1アニール処理後に第2低ライフタイム領域32を形成するための第2軽イオン照射55を行うことにより、n+型FS層12内部に軽イオンによるドナー化領域Aが形成される場合があることが確認された。そして、この軽イオンによるドナー化領域Aにより、n+型FS層12の不純物濃度が補完され、第2従来例のn+型FS層72-2の不純物濃度と同程度になることが確認された。軽イオンのドナー化としては、例えばプロトンはシャロードナー、ヘリウムはディープドナーとなることが知られている。したがって、第2軽イオン照射55により、FWD部22の逆回復時間を調整するためのライフタイムキラー効果が得られるとともに、n+型FS層12の不純物濃度を補間するドナー化効果により第1,2従来例で生じた問題を解消することができることが確認された。なお、軽イオンのドナー化としては、好ましくはヘリウムが有効であり、さらに好ましくはプロトンが有効である。
 以上、説明したように、実施の形態によれば、第1,2軽イオン照射により第1,2低ライフタイム領域を形成することで、n+型FS層に形成される結晶欠陥の大きさを、従来のように電子線照射によってライフタイムを制御する場合に比べて小さくすることができる。これにより、薄いウエハを用いたFS構造のRC-IGBTのCE間のリーク電流を、電子線照射によってライフタイムを制御した従来のRC-IGBTよりも50%以上低減させることができる。また、実施の形態によれば、ドーパントとしてセレンを含むn+型FS層を形成することにより、n+型FS層を深い拡散層とすることができ、良品率を向上させることができる。したがって、FS構造のRC-IGBTにおいて、CE間のリーク電流の増加を抑制するとともに、良品率を向上させることができる。
 また、実施の形態によれば、n-型ドリフト層内に第1低ライフタイム領域を形成することで、FWDの逆回復動作時に吐き出されるキャリアを減少させ、FWDの逆回復動作時に発生する損失を低減させることができる。また、n+型FS層内に第2低ライフタイム領域を形成することで、IGBTのターンオフ時におけるテール電流を抑制することができ、かつFWDの逆回復時間を調整することができる。したがって、FS構造のRC-IGBTにおいて、キャリアのライフタイムを制御するとともに、動作時の電気的損失を低減することができる。
 また、実施の形態によれば、第2軽イオン照射によりライフタイムキラーとして軽イオンを含む第2低ライフタイム領域を形成することで、n+型FS層内に軽イオンに起因するディープドナー(ヘリウム)もしくはシャロードナー(プロトン)によるドナー化領域が形成され、n+型FS層の不純物濃度が補間されることがある。これにより、n+型FS層を形成するために必要な第1イオン注入の不純物のドーズ量を低減することができる。このため、製造工程のスループットを向上させることができる。また、第2軽イオン照射を行うだけでn+型FS層の不純物濃度を補間することができるため、従来の製造工程を変更することなく同様の方法でn+型FS層を形成することができる。
 また、n-型半導体基板のおもて面または裏面から電子線を照射しライフタイムを制御する従来の方法では、電子線が基板全体を透過するためにMOSゲート構造のゲート酸化膜に欠陥が生じ、ゲート閾値電圧Vthが低下したり、ゲート閾値電圧のばらつきが大きくなったりするという問題があった。ゲート酸化膜内に生じた欠陥は、欠陥回復のためのアニール処理(熱処理)によっても完全に回復させることはできない。実施の形態においては、n-型半導体基板の裏面から第1,2軽イオン照射を行うため、n-型半導体基板のおもて面側に形成されたMOSゲート構造のゲート酸化膜に軽イオン照射による欠陥は生じない。このため、ゲート閾値電圧が低下したり、ゲート閾値電圧のばらつきが大きくなったりすることを回避することができる。
 以上において本発明では、薄いウエハを用いた高耐圧のFS構造のRC-IGBTを例に説明しているが、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した実施の形態では、IGBT部のMOSゲート構造をトレンチゲート型としているが、トレンチゲート型に代えてプレーナゲート型としてもよい。また、MOSゲート構造のp型ベース層の一部がFWDのp型アノード層を兼ねる構成としているが、n-型半導体基板のおもて面の表面層に、MOSゲート構造のp型ベース層とFWDのp型アノード層とをそれぞれ選択的に設けた構成としてもよい。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、インバータなどの電力変換装置に使用されるパワー半導体装置に有用である。
 1 n-型ドリフト層
 2 p型ベース層
 3 トレンチ
 4 ゲート酸化膜
 5 ゲート電極
 6 n+型エミッタ領域
 7 p+型コンタクト領域
 8 エミッタ電極
 9 層間絶縁膜
 10 p+型コレクタ領域
 11 n+型カソード領域
 12 n+型FS層
 13 コレクタ電極
 20 MOSゲート構造
 21 IGBT部
 22 FWD部
 31 第1低ライフタイム領域
 32 第2低ライフタイム領域

Claims (14)

  1.  第1導電型のドリフト層を有する半導体基板、前記半導体基板のおもて面側に設けられた第2導電型のベース層、前記ベース層内に選択的に設けられた第1導電型のエミッタ領域、前記半導体基板のおもて面側に設けられたゲート絶縁膜およびゲート電極を備えた絶縁ゲート部、前記ベース層と前記エミッタ領域との両方に電気的に接続するエミッタ電極、前記半導体基板の裏面側に選択的に設けられた第2導電型のコレクタ領域、および前記コレクタ領域に電気的に接続するコレクタ電極を備えた絶縁ゲート型バイポーラトランジスタ部と、前記半導体基板のおもて面側に設けられ、かつ前記エミッタ電極に電気的に接続する第2導電型のアノード層、および前記半導体基板の裏面側に選択的に設けられ、かつ前記コレクタ電極に電気的に接続する第1導電型のカソード領域を備えた還流用ダイオード部と、を備えた半導体装置の製造方法であって、
     前記半導体基板の裏面に第1導電型不純物を導入する導入工程と、
     前記第1導電型不純物を熱処理により活性化させ、前記半導体基板の裏面から前記コレクタ領域よりも深い位置に、前記ドリフト層よりも不純物濃度が高い第1導電型のフィールドストップ層を形成する第1熱処理工程と、
     前記半導体基板の裏面から軽イオンを照射し、前記ドリフト層内に他の領域よりもキャリアのライフタイムが短い第1低ライフタイム領域を形成する第1照射工程と、
     前記半導体基板の裏面から軽イオンを照射し、前記フィールドストップ層内に他の領域よりもキャリアのライフタイムが短い第2低ライフタイム領域を形成する第2照射工程と、
     前記第2照射工程で前記フィールドストップ層内に生じた欠陥の欠陥密度を熱処理により低減する第2熱処理工程と、
     を含むことを特徴とする半導体装置の製造方法。
  2.  前記導入工程では、前記第1導電型不純物としてセレンを導入することを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記第2熱処理工程では、前記フィールドストップ層内に形成された欠陥の欠陥密度を低減するとともに、前記フィールドストップ層内の軽イオンをドナー化させることを特徴とする請求項1に記載の半導体装置の製造方法。
  4.  前記第2熱処理工程は、350℃~370℃の温度で1時間~2時間行うことを特徴とする請求項1に記載の半導体装置の製造方法。
  5.  前記第2低ライフタイム領域のライフタイムを、前記第1低ライフタイム領域のライフタイムよりも短くすることを特徴とする請求項1に記載の半導体装置の製造方法。
  6.  前記軽イオンは、ヘリウムまたはプロトンであることを特徴とする請求項1~5のいずれか一つに記載の半導体装置の製造方法。
  7.  第1導電型のドリフト層を有する半導体基板、前記半導体基板のおもて面側に設けられた第2導電型のベース層、前記ベース層内に選択的に設けられた第1導電型のエミッタ領域、前記半導体基板のおもて面側に設けられたゲート絶縁膜およびゲート電極を備えた絶縁ゲート部、前記ベース層と前記エミッタ領域との両方に電気的に接続するエミッタ電極、前記半導体基板の裏面側に選択的に設けられた第2導電型のコレクタ領域、および前記コレクタ領域に電気的に接続するコレクタ電極を備えた絶縁ゲート型バイポーラトランジスタ部と、
     前記半導体基板のおもて面側に設けられ、かつ前記エミッタ電極に電気的に接続する第2導電型のアノード層、および前記半導体基板の裏面側に選択的に設けられ、かつ前記コレクタ電極に電気的に接続する第1導電型のカソード領域を備えた還流用ダイオード部と、
     前記半導体基板の裏面から前記コレクタ領域よりも深い位置に設けられた、前記ドリフト層よりも不純物濃度が高い第1導電型のフィールドストップ層と、
     前記ドリフト層内に前記フィールドストップ層と離れて設けられた、他の領域よりもキャリアのライフタイムが短い第1低ライフタイム領域と、
     前記フィールドストップ層内に設けられた、他の領域よりもキャリアのライフタイムが短い第2低ライフタイム領域と、
     を備えることを特徴とする半導体装置。
  8.  前記フィールドストップ層は、ドーパントとしてセレンを含むことを特徴とする請求項7に記載の半導体装置。
  9.  前記第1低ライフタイム領域は、軽イオンを含むことを特徴とする請求項7に記載の半導体装置。
  10.  前記第2低ライフタイム領域は、軽イオンを含むことを特徴とする請求項9に記載の半導体装置。
  11.  前記第2低ライフタイム領域に、軽イオンがドナー化されてなる領域が設けられていることを特徴とする請求項10に記載の半導体装置。
  12.  前記軽イオンは、ヘリウムかプロトンであることを特徴とする請求項11に記載の半導体装置。
  13.  前記第2低ライフタイム領域のライフタイムは、前記第1低ライフタイム領域のライフタイムよりも短いことを特徴とする請求項7に記載の半導体装置。
  14.  前記絶縁ゲート部は、
     前記ベース層および前記エミッタ領域を貫通して前記ドリフト層に達するトレンチと、
     前記トレンチの内壁に沿って設けられた前記ゲート絶縁膜と、
     前記トレンチの内部に、前記ゲート絶縁膜を介して設けられた前記ゲート電極と、
     を備えることを特徴とする請求項7~13のいずれか一つに記載の半導体装置。
PCT/JP2016/067456 2015-06-17 2016-06-10 半導体装置および半導体装置の製造方法 WO2016204097A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680012544.7A CN107251205B (zh) 2015-06-17 2016-06-10 半导体装置和半导体装置的制造方法
US15/686,216 US10629678B2 (en) 2015-06-17 2017-08-25 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015122469A JP6272799B2 (ja) 2015-06-17 2015-06-17 半導体装置および半導体装置の製造方法
JP2015-122469 2015-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/686,216 Continuation US10629678B2 (en) 2015-06-17 2017-08-25 Semiconductor device and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2016204097A1 true WO2016204097A1 (ja) 2016-12-22

Family

ID=57545839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067456 WO2016204097A1 (ja) 2015-06-17 2016-06-10 半導体装置および半導体装置の製造方法

Country Status (4)

Country Link
US (1) US10629678B2 (ja)
JP (1) JP6272799B2 (ja)
CN (1) CN107251205B (ja)
WO (1) WO2016204097A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019017034A1 (ja) * 2017-07-19 2020-03-19 三菱電機株式会社 半導体装置の製造方法および半導体装置
JPWO2021161668A1 (ja) * 2020-02-12 2021-08-19
DE112020007853T5 (de) 2020-12-15 2023-10-12 Mitsubishi Electric Corporation Verfahren zur Herstellung einer Halbleitereinheit und Halbleitereinheit

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319453B2 (ja) 2014-10-03 2018-05-09 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6903931B2 (ja) * 2017-02-13 2021-07-14 富士電機株式会社 半導体装置および半導体装置の製造方法
EP3576135A4 (en) * 2017-03-29 2020-12-23 Fuji Electric Co., Ltd. SEMICONDUCTOR COMPONENT MANUFACTURING METHOD
JP6777233B2 (ja) * 2017-07-12 2020-10-28 富士電機株式会社 半導体装置の製造方法
US11393812B2 (en) * 2017-12-28 2022-07-19 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
DE112019000094T5 (de) * 2018-03-19 2020-09-24 Fuji Electric Co., Ltd. Halbleitervorrichtung und verfahren zum herstellen einerhalbleitervorrichtung
JP6958732B2 (ja) * 2018-05-10 2021-11-02 富士電機株式会社 半導体装置の製造方法
DE112019001123B4 (de) * 2018-10-18 2024-03-28 Fuji Electric Co., Ltd. Halbleitervorrichtung und herstellungsverfahren davon
CN118676194A (zh) 2018-12-28 2024-09-20 富士电机株式会社 半导体装置
WO2020149354A1 (ja) 2019-01-18 2020-07-23 富士電機株式会社 半導体装置および半導体装置の製造方法
JP7173312B2 (ja) * 2019-05-16 2022-11-16 富士電機株式会社 半導体装置および半導体装置の製造方法
US11450734B2 (en) 2019-06-17 2022-09-20 Fuji Electric Co., Ltd. Semiconductor device and fabrication method for semiconductor device
CN113711364A (zh) 2019-10-11 2021-11-26 富士电机株式会社 半导体装置和半导体装置的制造方法
CN113707706A (zh) * 2020-05-21 2021-11-26 华大半导体有限公司 功率半导体装置及其制备方法
CN111900087B (zh) * 2020-08-31 2022-09-20 华虹半导体(无锡)有限公司 Igbt器件的制造方法
CN112397593B (zh) * 2021-01-20 2021-04-16 中芯集成电路制造(绍兴)有限公司 半导体器件及制造方法
CN113745328A (zh) * 2021-08-31 2021-12-03 上海华虹挚芯电子科技有限公司 Igbt器件的结构及工艺方法
CN113851379A (zh) * 2021-09-24 2021-12-28 上海积塔半导体有限公司 Igbt器件及其制作方法
WO2024009591A1 (ja) * 2022-07-07 2024-01-11 ローム株式会社 半導体装置および半導体装置の製造方法
CN114899147B (zh) * 2022-07-12 2022-10-21 深圳芯能半导体技术有限公司 一种rc-igbt器件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050724A (ja) * 1996-07-30 1998-02-20 Toshiba Corp 半導体装置
JP2011238872A (ja) * 2010-05-13 2011-11-24 Toyota Central R&D Labs Inc 半導体装置
JP2012043891A (ja) * 2010-08-17 2012-03-01 Denso Corp 半導体装置
JP2013074181A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 半導体装置とその製造方法
JP2013138172A (ja) * 2011-11-30 2013-07-11 Denso Corp 半導体装置
JP2013247248A (ja) * 2012-05-25 2013-12-09 Fuji Electric Co Ltd 半導体装置の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE384241T1 (de) * 2000-09-29 2008-02-15 Forensic Technology Wai Inc Verfahren und vorrichtung zur identifikation einer feuerwaffe
JP4791704B2 (ja) 2004-04-28 2011-10-12 三菱電機株式会社 逆導通型半導体素子とその製造方法
JP5272299B2 (ja) 2005-11-10 2013-08-28 富士電機株式会社 半導体装置およびその製造方法
US7728409B2 (en) 2005-11-10 2010-06-01 Fuji Electric Device Technology Co., Ltd. Semiconductor device and method of manufacturing the same
JP5228308B2 (ja) 2006-10-19 2013-07-03 富士電機株式会社 半導体装置の製造方法
JP5320679B2 (ja) 2007-02-28 2013-10-23 富士電機株式会社 半導体装置およびその製造方法
US7932583B2 (en) 2008-05-13 2011-04-26 Infineon Technologies Austria Ag Reduced free-charge carrier lifetime device
JP4905559B2 (ja) * 2009-01-27 2012-03-28 株式会社デンソー 半導体装置
EP2477226B1 (en) * 2009-09-07 2016-06-22 Toyota Jidosha Kabushiki Kaisha Semiconductor device including semiconductor substrate having diode region and igbt region
JP5565134B2 (ja) 2010-06-24 2014-08-06 富士電機株式会社 半導体装置の製造方法
JP2012256628A (ja) * 2011-06-07 2012-12-27 Renesas Electronics Corp Igbtおよびダイオード
US9627517B2 (en) * 2013-02-07 2017-04-18 Infineon Technologies Ag Bipolar semiconductor switch and a manufacturing method therefor
JP2015008235A (ja) * 2013-06-25 2015-01-15 富士電機株式会社 半導体装置の製造方法
JP6037012B2 (ja) * 2013-06-26 2016-11-30 富士電機株式会社 半導体装置および半導体装置の製造方法
US9484221B2 (en) * 2014-01-13 2016-11-01 Infineon Technologies Ag Bipolar semiconductor device and method of manufacturing thereof
JP2016162807A (ja) * 2015-02-27 2016-09-05 トヨタ自動車株式会社 半導体装置とその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050724A (ja) * 1996-07-30 1998-02-20 Toshiba Corp 半導体装置
JP2011238872A (ja) * 2010-05-13 2011-11-24 Toyota Central R&D Labs Inc 半導体装置
JP2012043891A (ja) * 2010-08-17 2012-03-01 Denso Corp 半導体装置
JP2013074181A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 半導体装置とその製造方法
JP2013138172A (ja) * 2011-11-30 2013-07-11 Denso Corp 半導体装置
JP2013247248A (ja) * 2012-05-25 2013-12-09 Fuji Electric Co Ltd 半導体装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019017034A1 (ja) * 2017-07-19 2020-03-19 三菱電機株式会社 半導体装置の製造方法および半導体装置
JPWO2021161668A1 (ja) * 2020-02-12 2021-08-19
WO2021161668A1 (ja) * 2020-02-12 2021-08-19 富士電機株式会社 半導体装置およびその製造方法
JP7364027B2 (ja) 2020-02-12 2023-10-18 富士電機株式会社 半導体装置およびその製造方法
DE112020007853T5 (de) 2020-12-15 2023-10-12 Mitsubishi Electric Corporation Verfahren zur Herstellung einer Halbleitereinheit und Halbleitereinheit

Also Published As

Publication number Publication date
JP2017011000A (ja) 2017-01-12
JP6272799B2 (ja) 2018-01-31
CN107251205A (zh) 2017-10-13
US20170373141A1 (en) 2017-12-28
US10629678B2 (en) 2020-04-21
CN107251205B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
JP6272799B2 (ja) 半導体装置および半導体装置の製造方法
JP6078961B2 (ja) 半導体装置の製造方法
JP5754545B2 (ja) 半導体装置および半導体装置の製造方法
WO2017047285A1 (ja) 半導体装置および半導体装置の製造方法
JP5641055B2 (ja) 半導体装置およびその製造方法
TWI459554B (zh) 最小化場闌igbt的緩衝區及發射極電荷差異的方法
JP3684962B2 (ja) 半導体装置の製造方法
JP6334465B2 (ja) 半導体装置
JP5742962B2 (ja) 半導体装置およびその製造方法
JP2013074181A (ja) 半導体装置とその製造方法
JP2016131224A (ja) 半導体装置
JP2018082007A (ja) 半導体装置の製造方法
JP2018078216A (ja) 半導体装置およびその製造方法
JP5326217B2 (ja) 半導体装置およびその製造方法
JP4910894B2 (ja) 半導体装置の製造方法および半導体装置
JP2003224281A (ja) 半導体装置およびその製造方法
JP5565134B2 (ja) 半導体装置の製造方法
WO2014086075A1 (zh) 一种igbt结构及其制备方法
JP5648379B2 (ja) 半導体装置の製造方法
JP6780335B2 (ja) 逆阻止mos型半導体装置および逆阻止mos型半導体装置の製造方法
JP6268948B2 (ja) Mos型半導体装置の製造方法
JPH0982955A (ja) 半導体装置の製法
JPWO2019224913A1 (ja) 半導体装置
JP2024154232A (ja) ダイオードを有する半導体装置の製造方法
JPH10289999A (ja) 絶縁ゲート型サイリスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811571

Country of ref document: EP

Kind code of ref document: A1