WO2016157905A1 - 磁性キャリア - Google Patents
磁性キャリア Download PDFInfo
- Publication number
- WO2016157905A1 WO2016157905A1 PCT/JP2016/001854 JP2016001854W WO2016157905A1 WO 2016157905 A1 WO2016157905 A1 WO 2016157905A1 JP 2016001854 W JP2016001854 W JP 2016001854W WO 2016157905 A1 WO2016157905 A1 WO 2016157905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- particles
- magnetic
- magnetic carrier
- mass
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/107—Developers with toner particles characterised by carrier particles having magnetic components
- G03G9/108—Ferrite carrier, e.g. magnetite
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/08—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
- G03G15/09—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
- G03G15/0921—Details concerning the magnetic brush roller structure, e.g. magnet configuration
- G03G15/0928—Details concerning the magnetic brush roller structure, e.g. magnet configuration relating to the shell, e.g. structure, composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/107—Developers with toner particles characterised by carrier particles having magnetic components
- G03G9/1075—Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/107—Developers with toner particles characterised by carrier particles having magnetic components
- G03G9/108—Ferrite carrier, e.g. magnetite
- G03G9/1085—Ferrite carrier, e.g. magnetite with non-ferrous metal oxide, e.g. MgO-Fe2O3
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/113—Developers with toner particles characterised by carrier particles having coatings applied thereto
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/113—Developers with toner particles characterised by carrier particles having coatings applied thereto
- G03G9/1131—Coating methods; Structure of coatings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/113—Developers with toner particles characterised by carrier particles having coatings applied thereto
- G03G9/1139—Inorganic components of coatings
Definitions
- the present invention relates to a magnetic carrier used in an image forming method having a step of developing (developing) an electrostatic latent image (electrostatic image) using electrophotography.
- a two-component development method using a two-component developer in which toner is mixed with a magnetic carrier is high. It is suitably used for full-color copying machines or printers that require high image quality.
- the magnetic carrier imparts an appropriate amount of positive or negative charge to the toner by frictional charging, and the toner is carried on the surface of the magnetic carrier by electrostatic attraction of the frictional charging.
- the magnetic carrier and toner constituting the above two-component developer there are various characteristics required for the magnetic carrier and toner constituting the above two-component developer, but particularly important characteristics for the magnetic carrier include appropriate chargeability, pressure resistance against alternating voltage, and impact resistance. Properties, abrasion resistance, spent resistance, developability and the like.
- Magnetic carriers have characteristics such as powder characteristics, electrical characteristics, and magnetic characteristics, and each performance according to the development system is required.
- magnetic carriers in which a core material (core material) is coated with a coating resin (coating material) have been widely used in order to improve environmental stability and durability.
- a magnetic carrier having at least two layers of coating resin is used.
- an outermost layer resin contains a condensate of an N-alkoxyalkylated polyamide and a silicone resin, and an intermediate layer containing a resin containing fine particles between the outermost surface layer resin and the core material.
- a magnetic carrier is described. This improves the charging stability and the abrasion resistance of the coating under long-term use, and improves the durability of the two-component developer.
- Patent Document 2 describes a magnetic carrier that improves the film quality of the resin layer by containing the lipophilicly treated ferrite particles in the lowermost layer of the coating resin, and provides a toner image with excellent fine line reproducibility. ing.
- the carrier which expresses the effect that the carrier scrapes off the spent component of the carrier surface by containing the alumina fine particles subjected to the hydrophobization treatment in the first coating resin layer covering the outer periphery of the core material. Is described. As a result, the coating resin not subjected to stress is always exposed to the surface, carrier performance is maintained, and excellent life stability is realized.
- Patent Document 4 further includes an inner resin coat layer coated on the surface of the core particle and an outer resin coat layer coated on the surface of the inner resin coat layer.
- the inner resin coat layer has fatty acid metal fine particles on the surface.
- a carrier containing coated non-magnetic fine particles is disclosed.
- Patent Document 5 the coating resin peeled off due to wear is fixed by an electrophotographic carrier in which carbon black is present at the interface between the first coating resin and the second coating resin sequentially formed on the magnetic particles. The problem of shifting to an image and turbidity of a fixed image is solved.
- the burden on the developer in the developing device tends to increase, such as a decrease in the developer capacity accompanying the downsizing of the developing device and an increase in the developer stirring speed due to the increase in the output speed.
- the burden on the developer in the developing device tends to increase, such as a decrease in the developer capacity accompanying the downsizing of the developing device and an increase in the developer stirring speed due to the increase in the output speed.
- the spent of the toner and the external additive advances on the surface of the magnetic carrier, and the charge imparting property of the magnetic carrier decreases. To do. Further, moisture adsorption on the surface of the magnetic carrier proceeds, and the strength of the coating resin of the magnetic carrier is temporarily reduced, so that the coating resin of the magnetic carrier is scraped and the charge imparting ability is lowered.
- JP 2005-49478 A Japanese Patent Laid-Open No. 2004-333931 JP 2008-70662 A JP 2007-121911 A JP 2009-229907 A
- An object of the present invention is to provide a magnetic carrier that solves the above problems. Specifically, even when used for a long time in a high-temperature and high-humidity environment, the film has excellent wear resistance, maintains a stable charge-providing ability, The object is to provide a magnetic carrier having a stable taste variation.
- the carrier of the present invention is a magnetic carrier having magnetic ferrite core particles and a coating resin
- the coating resin has a surface resin layer and a resin composition existing between the ferrite core material particles and the surface resin layer,
- the resin composition includes a resin and at least one selected from the group consisting of hydrophilic-treated inorganic particles and carbon black
- the surface resin layer is i) including a resin; ii) does not contain the hydrophilically treated inorganic particles or carbon black, iii)
- the film thickness is in the range of 0.01 ⁇ m to 4.00 ⁇ m
- the magnetic carrier has a moisture content (A) when left in an environment of 30 ° C.
- the moisture content (B) when left for a period of time and the moisture content change (AB) are 0.030% by mass or less.
- the film even when used for a long time in a high-temperature and high-humidity environment, the film has excellent wear resistance, maintains a stable charge imparting ability, and has an image density and a color tone against changes from a high-humidity environment to a low-humidity environment A magnetic carrier with stable fluctuations can be obtained.
- 1 is a schematic view of an example of an image forming apparatus used in the present invention.
- 1 is a schematic view of an example of an image forming apparatus used in the present invention. It is a schematic sectional drawing of the apparatus which measures the specific resistance of a magnetic core, and is a figure in the blank state before putting a sample. It is a schematic sectional drawing of the apparatus which measures the specific resistance of a magnetic core, and is a figure showing the state when a sample is put.
- At least one selected from the group consisting of hydrophilic particles and carbon black (hereinafter, also referred to as hydrophilic particles) is dispersed on the surface of the ferrite core particles.
- a resin composition obtained by applying and drying the prepared resin solution is provided.
- a surface resin layer containing a resin is formed by applying a resin solution that does not contain hydrophilic treated inorganic particles or carbon black.
- the film thickness of the surface resin layer is 0.01 ⁇ m or more and 4.00 ⁇ m or less.
- the moisture content of the magnetic carrier increases when the environment changes due to the influence of the hydrophilically treated particles.
- the change in the amount of moisture that greatly affects the charging characteristics of the carrier becomes large with respect to the change from the high temperature and high humidity environment to the normal temperature and low humidity environment, so the environmental change becomes large and stable charge imparting ability cannot be maintained. .
- the whitening and gradation change when the environment changes deteriorates.
- the resin contained in the resin composition (hereinafter referred to as the intermediate resin layer) existing between the surface resin layer and the ferrite core material particles has an affinity for the surface resin layer and an affinity for the ferrite core material particles.
- Acrylic resins are preferably used because they are high and rich in toughness.
- the method of coating the surface of the ferrite core material particles with a resin is not particularly limited, and examples thereof include a coating method such as a dipping method, a spray method, a brush coating method, a dry method, and a fluidized bed.
- the amount of the resin to be coated is preferably 0.1 parts by mass or more and 5.0 parts by mass or less with respect to 100 parts by mass of the ferrite core material particles.
- the intermediate resin layer (resin composition)
- An acrylic resin is preferably used because of its high affinity and high toughness.
- the method of coating the surface of the intermediate resin layer with the resin for the surface resin layer is not particularly limited, and examples thereof include a coating method such as a dipping method, a spray method, a brush coating method, a dry method, and a fluidized bed. It is done.
- the amount of the resin to be coated is preferably 0.1 parts by mass or more and 5.0 parts by mass or less with respect to 100 parts by mass of the ferrite core material particles.
- the magnetic carrier of the present invention is the moisture content (A) of the magnetic carrier when left in an environment at a temperature of 30 ° C. and a humidity of 80% RH, and after being left in an environment of a temperature of 30 ° C. and a humidity of 80% RH for 24 hours.
- the change in moisture content (AB) with respect to the moisture content (B) of the magnetic carrier when left in an environment of temperature 23 ° C. and humidity 5% RH for 24 hours is 0.030 mass% or less.
- Inorganic particles, carbon black At least one particle selected from the group consisting of hydrophilic particles and carbon black (carbon black particles) contained in the intermediate resin layer of the present invention will be described.
- the inorganic particles and carbon black (hereinafter also referred to as particles to be treated) used in the present invention carbon black, SrTiO 3 , TiO 2 , Al 2 O 3 , MgO, and SiO 2 can be preferably used.
- the moisture content change of the carrier may increase due to the moisture adsorption ability of the particles to be treated, which may reduce the environmental stability.
- the inorganic particles and carbon black listed above may be used in combination.
- the present invention it is preferable not to use organic fine particles in the intermediate resin layer.
- a thermosetting resin is used as the organic fine particles (processed particles)
- the resin molecular chain is messed up randomly due to the manufacturing method, and the functional group showing hydrophilicity is hardly oriented on the resin surface layer. Therefore, the effects of the present invention such as durability due to improved adhesion and environmental stability may be difficult to express.
- a thermoplastic resin there is a possibility that a part thereof is dissolved in the resin solution, and it is difficult to form a uniform coating layer, and it may be difficult to obtain the effect of the present invention.
- At least one selected from the group consisting of inorganic particles and carbon black used in the present invention has an ester group and / or a carboxyl group on the substrate surface, and the total functional group concentration of the ester group and the carboxyl group Is 20% or more, more preferably 30% or more.
- the functional group concentration indicates the ratio of functional groups (ester groups, carboxyl groups) to elements derived from the particles to be treated in X-ray photoelectron spectroscopy (hereinafter, XPS) measurement.
- the functional group concentration is in the above range
- the carboxy group or ester group present on the surface of the hydrophilically treated particles and water molecules in the surface resin layer form hydrogen bonds, and the interaction causes the intermediate resin layer. Adhesion between the surface resin layer and the surface resin layer is improved.
- an acrylic resin is used in the surface resin layer, a ⁇ - ⁇ interaction occurs between the ⁇ bond portion in the acrylic resin and the carboxy group or ester group present on the surface of the hydrophilically treated particles, and the intermediate resin The adhesion between the layer and the surface resin layer is improved.
- the adhesion between the intermediate resin layer and the ferrite core material particles is improved by the interaction between the functional groups on the surface of the particles subjected to hydrophilic treatment and the hydroxy groups on the surface of the ferrite core material particles.
- a stable charge imparting ability can be maintained due to the excellent wear resistance of the surface resin layer.
- the stability of the color variation of the mixed color, the anti-glare property (dot reproducibility), the developability, and the stability of the gradation are improved.
- the functional group concentration is less than 20%
- the number of carboxy groups and ester groups present on the surface of the hydrophilically treated particles is small, thereby reducing the interaction with the surface resin layer.
- the adhesion between the intermediate resin layer and the surface resin layer is reduced.
- an acrylic resin is used in the surface resin layer
- the ⁇ - ⁇ interaction generated between the ⁇ bond portion in the acrylic resin and the carboxy group or ester group present on the surface of the hydrophilically treated particles is small.
- the adhesion between the intermediate resin layer and the surface resin layer is reduced.
- the interaction between the functional group on the surface of the hydrophilically treated particle and the hydroxy group on the surface of the ferrite core material particle is reduced, and the adhesion between the intermediate resin layer and the ferrite core material particle is reduced.
- the wear resistance of the surface resin layer is reduced, and stable charge imparting ability cannot be maintained.
- the charging characteristics of the toner are not stable over a long period of time, and the stability of the color fluctuation of the mixed color, the rust resistance (dot reproducibility), the developability, and the gradation stability are deteriorated.
- the charge of the magnetic carrier itself is reduced, and carrier adhesion is likely to occur.
- the volume average diameter of primary particles of inorganic particles and carbon black (treated particles) used in the present invention is preferably 10 nm or more and 1000 nm or less.
- the particles When it is smaller than 10 nm, the particles tend to aggregate and are dispersed in the state of aggregate in the intermediate resin layer. In that case, it is thought that the convex part resulting from the aggregate in the intermediate resin layer arises on the magnetic carrier surface. Therefore, under actual use, stress due to friction between the magnetic carriers concentrates on the convex portions on the surface of the magnetic carrier, and the agglomerates may be detached from the intermediate resin layer with the separation of the surface resin layer. is there. Therefore, the charge imparting ability may be reduced at that portion.
- the charging characteristics of the toner cannot be maintained over a long period of time, the stability of the color variation of the mixed color, the rust resistance (dot reproducibility), the developability, and the change in gradation may be deteriorated. Furthermore, carrier adhesion in a solid image that appears prominently when the electric charge of the magnetic carrier itself is small tends to deteriorate. Further, since water molecules in the surface resin layer are difficult to stably hold due to the detachment of the agglomerates, the moisture content of the magnetic carrier changes greatly when the environment changes.
- the intermediate resin layer of the present invention preferably contains 1.0 to 20.0 parts by mass of the hydrophilically treated particles when the resin is 100 parts by mass.
- the number of hydrophilically treated particles is less than 1.0 part by mass, the absolute amount of functional groups on the surface of the hydrophilically treated particles that interact with water molecules in the surface resin layer is reduced, so that the intermediate resin layer and the surface resin Adhesion with the layer is not improved.
- the wear resistance of the surface resin layer is reduced, so that stable charge imparting ability cannot be maintained. That is, since the charging characteristics of the toner cannot be maintained over a long period of time, the stability of the color variation of the mixed color, the rust resistance (dot reproducibility), the developability, and the change in gradation may be deteriorated.
- the amount of hydrophilically treated particles is more than 20.0 parts by mass
- the absolute amount of functional groups on the surface of the hydrophilically treated particles that interact with the water molecules of the surface resin layer increases, so that the water molecules are more intermediate. It is thought that it is attracted in the direction of the resin layer.
- water molecules in the vicinity of the surface layer of the surface resin layer are reduced, and the moisture content of the entire resin is increased by adsorbing water molecules in the air.
- the wear resistance of the surface resin layer is reduced, so that stable charge imparting ability cannot be maintained.
- the charging characteristics of the toner cannot be maintained over a long period of time, the stability of the color variation of the mixed color, the rust resistance (dot reproducibility), the developability, and the change in gradation may be deteriorated. Furthermore, carrier adhesion in a solid image that appears prominently when the electric charge of the magnetic carrier itself is small tends to deteriorate. Further, when the moisture content of the surface resin layer increases, the moisture content change of the magnetic carrier increases when the environment changes. As a result, the change in the amount of moisture that greatly affects the charging characteristics of the carrier becomes large with respect to the change from the high temperature and high humidity environment to the normal temperature and low humidity environment, so the environmental change becomes large and stable charge imparting ability cannot be maintained. . As a result, the whitening or the change in gradation when the environment changes may deteriorate.
- At least one selected from the group consisting of inorganic particles and carbon black contained in the intermediate resin layer of the present invention is required to hydrophilically treat the particle surface.
- hydrophilic treatment methods for example, there is a method of introducing hydrophilic groups by oxidizing commercially available inorganic particles, neutral or basic carbon black or acidic carbon black.
- the oxidation treatment method there is a gas phase oxidation method by reaction with nitrogen oxide or ozone in the oxidation method by air contact.
- liquid phase oxidation using an oxidizing agent such as nitric acid, potassium permanganate, potassium dichromate, chlorous acid, perchloric acid, hypohalogen hydrochloric acid, hydrogen peroxide, aqueous bromine solution, aqueous ozone solution, etc. .
- an oxidizing agent such as nitric acid, potassium permanganate, potassium dichromate, chlorous acid, perchloric acid, hypohalogen hydrochloric acid, hydrogen peroxide, aqueous bromine solution, aqueous ozone solution, etc.
- the same can be applied to carbon black whose surface is oxidized by plasma treatment or the like.
- a hydrophilic group by oxidizing the particle surface there are various methods for introducing a hydrophilic group by oxidizing the particle surface as described above.
- the following method is preferred.
- carbon black is placed in a suitable container, and after adding an aqueous nitric acid solution to reflux, washing and drying can be performed to obtain hydrophilically treated particles.
- each particle is put into a cylindrical ozone treatment device, ozone is generated by the ozone generator, and the particles are exposed to an ozone atmosphere to obtain hydrophilic treated particles. it can.
- hydrophilic treatment methods for example, a hydrophilic ester group or carboxyl group of a lower fatty acid is introduced into a hydroxy group on the particle surface using a hydrophilic esterifying agent or a carboxylating agent of a lower fatty acid. A method is mentioned.
- hydrophilic esterifying agent examples include acetic anhydride, acetic chloride, acetic acid, propionic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, polyglycerin fatty acid ester, alginic acid and the like. Two or more of these lower fatty acid hydrophilic esterifying agents or carboxylating agents may be used in combination.
- hydrophilic treatment method there are various methods of introducing a hydrophilic ester group or carboxyl group of a lower fatty acid into a hydroxy group on the particle surface using a hydrophilic esterifying agent or a carboxylating agent of a lower fatty acid.
- a hydrophilic esterifying agent or a carboxylating agent of a lower fatty acid Exists. For example, it is preferable to take the following method. Each particle type is put in a suitable container, and the system is placed in a nitrogen atmosphere. Then, anhydrous toluene, triethylamine, dimethylaminopyridine and acetic anhydride are added and reacted at room temperature to obtain chemically modified particles. Then, put the chemically modified particles obtained in a suitable container, add methanol and calcium carbonate, react at room temperature, then stop the reaction, wash and dry the particles that have been hydrophilically treated. Obtainable.
- the ferrite core material particles used in the present invention will be described. Magnetite or ferrite is preferable as the material of the core particles (ferrite core particles) of the magnetic carrier. Furthermore, the ferrite core material particle may be a resin-filled magnetic core material having porous magnetic core material particles and a resin filled in the pores of the porous magnetic core material particles.
- the material of the porous magnetic particles (porous magnetic core particles) is more preferably ferrite, since the porous structure of the porous magnetic particles can be controlled and the resistance can be adjusted.
- M1 and M2 are preferably one or more metal atoms selected from the group consisting of Li, Fe, Mn, Mg, Sr, Cu, Zn, and Ca.
- Ni, Co, Ba, Y, V, Bi, In, Ta, Zr, B, Mo, Na, Sn, Ti, Cr, Al, Si, rare earth, and the like can be used.
- the manufacturing method of the ferrite core material particles is, for example, as follows. A metal oxide, carbonate, or nitrate is mixed in a wet or dry manner, and pre-fired to obtain a desired ferrite composition. Next, the obtained ferrite core material particles are pulverized to submicron. In order to adjust the particle size of the core (core particle) of the magnetic carrier, water is added in an amount of 20% by mass to 50% by mass to the pulverized ferrite particles. Then, for example, polyvinyl alcohol (molecular weight of 500 or more and 10,000 or less) is added as a binder resin by 0.1% by mass or more and 10% by mass or less to prepare a slurry. Ferrite core particles can be obtained by granulating this slurry with a spray dryer or the like and firing it.
- porous magnetic core particles In the case of porous magnetic core particles, it is required to maintain a moderate amount of magnetization, to make the pore diameter within a desired range, and to make the surface of the porous magnetic core particles uneven. Moreover, it is required that the rate of the ferritization reaction can be easily controlled, and the specific resistance and magnetic force of the porous magnetic core particles can be suitably controlled.
- Mn-based ferrite, Mn—Mg-based ferrite, Mn—Mg—Sr-based ferrite and Li—Mn-based ferrite containing Mn element are more preferable.
- the ferrite raw materials are weighed and mixed.
- the ferrite raw material include metal particles of the above metal atoms, oxides, hydroxides, oxalates, and carbonates.
- the mixing apparatus include the following. Ball mill, planetary mill, Giotto mill, vibration mill. A ball mill is particularly preferable from the viewpoint of mixing properties. Specifically, a weighed ferrite raw material and balls are placed in a ball mill, and pulverized and mixed for 0.1 to 20.0 hours.
- Step 2 (temporary firing step)>
- the ferrite raw material thus pulverized and mixed is calcined in the air at a firing temperature of 700 ° C. or higher and 1200 ° C. or lower for 0.5 hour or longer and 5.0 hour or shorter to be converted into ferrite.
- a firing temperature 700 ° C. or higher and 1200 ° C. or lower for 0.5 hour or longer and 5.0 hour or shorter to be converted into ferrite.
- the following furnace is used. Burner type incinerator, rotary type kiln, electric furnace, etc.
- Step 3 (grinding step)>
- the calcined ferrite produced in step 2 is pulverized with a pulverizer.
- the pulverizer is not particularly limited as long as a desired particle size can be obtained. Examples include the following. Crusher, hammer mill, ball mill, bead mill, planetary mill, Giotto mill, etc.
- the material, particle size, and operation time of the balls and beads used in the ball mill and bead mill it is preferable to control the material, particle size, and operation time of the balls and beads used in the ball mill and bead mill.
- a ball having a high specific gravity may be used or the pulverization time may be increased.
- the particle size distribution of the calcined ferrite it can be obtained by using balls and beads having a high specific gravity and shortening the grinding time.
- the wet type is higher than the dry type in that the pulverized product does not rise in the mill and the pulverization efficiency is higher. For this reason, the wet type is more preferable than the dry type.
- the pore adjuster include a foaming agent and resin fine particles.
- the foaming agent include sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, ammonium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, and ammonium carbonate.
- resin fine particles examples include polyester, polystyrene, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid ester copolymer, styrene- ⁇ -chloromethacrylic acid.
- Styrene copolymer such as acid methyl copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer
- Polyvinyl chloride phenolic resin, modified phenolic resin, maleic resin, acrylic resin, methacrylic resin, polyvinyl acetate, silicone resin; aliphatic polyhydric alcohol, aliphatic dicarboxylic acid, aromatic dicarboxylic acid, aromatic dialcohol Oh
- Polyester resin having a monomer selected from diphenols as a structural unit; polyurethane resin, polyamide resin, polyvinyl butyral, terpene resin, coumarone indene resin, petroleum resin, polyester unit and vinyl polymer unit Examples include fine particles of hybrid resin.
- binder for example, polyvinyl alcohol is used.
- Step 3 when wet pulverization is performed, it is preferable to add a binder and, if necessary, a pore adjuster in consideration of water contained in the ferrite slurry.
- the obtained ferrite slurry is dried and granulated using a spray dryer in a heated atmosphere of 100 ° C. or higher and 200 ° C. or lower.
- the spray dryer is not particularly limited as long as a desired porous magnetic particle diameter can be obtained.
- a spray dryer can be used.
- Step 5 (main firing step)> Next, the granulated product is fired at 800 ° C. to 1400 ° C. for 1 hour to 24 hours. By raising the firing temperature and lengthening the firing time, the firing of the porous magnetic core particles proceeds, and as a result, the pore diameter is small and the number of pores is also reduced.
- the volume distribution reference 50% particle size (D50) of the ferrite core material particles is more preferably 18.0 ⁇ m or more and 68.0 ⁇ m or less in order to suppress carrier adhesion to the image and suppression of roughness.
- the porous magnetic core particles may have a low physical strength depending on the internal pore volume. In order to increase the physical strength as a magnetic carrier, at least a part of the pores of the porous magnetic core particles is used. It is preferable to charge the resin.
- the amount of the resin filled in the porous magnetic core particles is preferably 2% by mass or more and 15% by mass or less with respect to the porous magnetic core particles. If there is little variation in the resin content for each magnetic carrier, the resin is filled only in the voids near the surface of the porous magnetic core particles, even if the resin is filled only in a part of the inner voids, and there are voids in the interior. Even if it remains, the internal space may be completely filled with resin.
- the method of filling the pores of the porous magnetic core particles with the resin is not particularly limited, but the porous magnetic core particles are resinized by a coating method such as dipping, spraying, brushing, or fluidized bed. A method of impregnating in a solution and then volatilizing the solvent can be mentioned.
- a method for filling the voids in the porous magnetic core particles with the resin a method in which the resin is diluted with a solvent to form a resin solution and added to the voids in the porous magnetic core particles can be employed.
- the solvent used here should just be what can melt
- the resin When the resin is soluble in an organic solvent, examples of the organic solvent include toluene, xylene, cellosolve butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and methanol.
- the organic solvent include toluene, xylene, cellosolve butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and methanol.
- water may be used as a solvent.
- the amount of resin solids in the resin solution is preferably 1% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 40% by mass or less. If a resin solution having a resin solid content greater than 50% by mass is used, the resin solution is difficult to uniformly penetrate into the voids of the porous magnetic core particles because the viscosity is high. Further, if it is less than 1% by mass, the amount of resin solids is small, and the adhesive force of the resin to the porous magnetic core particles may be low.
- thermoplastic resin examples include novolak resin, saturated alkyl polyester resin, polyarylate, and polyamide resin.
- thermosetting resins include silicone resins, phenolic resins, epoxy resins, and unsaturated polyester resins.
- the toner contains a binder resin and a colorant, and may contain a magnetic material, a release agent, a charge control agent, and the like as necessary. Further, external additives that improve various properties such as fluidity may be attached to the surface of the toner particles.
- binder resin used in the present invention examples include vinyl resins, polyester resins, and epoxy resins. Of these, vinyl resins and polyester resins are more preferable from the viewpoints of chargeability and fixability.
- vinyl monomer monopolymer or copolymer polyester, polyurethane, epoxy resin, polyvinyl butyral, rosin, modified rosin, terpene resin, phenol resin, aliphatic or alicyclic hydrocarbon resin, aromatic Petroleum resin or the like can be used by mixing with the above-described binder resin as necessary.
- the glass transition temperature (Tg) of the binder resin is preferably 45 ° C. or higher and 80 ° C. or lower, more preferably 55 ° C. or higher and 70 ° C. or lower.
- the number average molecular weight (Mn) of the binder resin is preferably 1,000 or more and 50,000 or less, and the weight average molecular weight (Mw) is preferably 5,000 or more and 1,000,000 or less.
- the binder resin the following polyester resins are also preferable.
- polyester resin 45 mol% or more and 55 mol% or less of all components are alcohol components, and 55 mol% or more and 45 mol% or less are acid components.
- the acid value of the polyester resin is preferably 90 mgKOH / g or less, more preferably 50 mgKOH / g or less, and the OH value (hydroxyl value) is preferably 50 mgKOH / g or less, more preferably 30 mgKOH / g or less. . This is because as the number of terminal groups of the molecular chain increases, the dependency of the toner on the environment increases in the environment.
- the glass transition temperature (Tg) of the polyester resin is preferably 50 ° C. or higher and 75 ° C. or lower, more preferably 55 ° C. or higher and 65 ° C. or lower.
- the number average molecular weight (Mn) of the polyester resin is preferably 1,500 or more and 50,000 or less, more preferably 2,000 or more and 20,000 or less.
- the weight average molecular weight (Mw) of the polyester resin is preferably 6,000 or more and 100,000 or less, more preferably 10,000 or more and 90,000 or less.
- the magnetic toner contains a magnetic material.
- Magnetic materials contained in the magnetic toner include iron oxides such as magnetite, maghemite and ferrite, and iron oxides including other metal oxides; metals such as Fe, Co and Ni, or these metals and Al, Examples thereof include alloys with metals such as Co, Cu, Pb, Mg, Ni, Sn, Zn, Sb, Be, Bi, Cd, Ca, Mn, Se, Ti, W, and V, and mixtures thereof.
- examples of magnetic materials include triiron tetroxide (Fe 3 O 4 ), iron sesquioxide ( ⁇ -Fe 2 O 3 ), zinc iron oxide (ZnFe 2 O 4 ), and iron yttrium oxide (Y 3 Fe 5 O 12 ), iron cadmium oxide (CdFe 2 O 4 ), iron gadolinium oxide (Gd 3 Fe 5 O 12 ), iron oxide copper (CuFe 2 O 4 ), iron oxide lead (PbFe 12 O 19 ), nickel iron oxide (NiFe 2 O 4 ), iron oxide neodymium (NdFe 2 O 3 ), barium oxide (BaFe 12 O 19 ), magnesium iron oxide (MgFe 2 O 4 ), iron manganese oxide (MnFe 2 O 4 ), iron lanthanum oxide (LaFeO 3 ), iron powder (Fe), cobalt powder (Co), nickel powder (Ni) and the like.
- Fe 3 O 4 triiron tetroxide
- Fe 2 O 3 iron sesquioxid
- the magnetic toner preferably contains 20 to 150 parts by mass of a magnetic material with respect to 100 parts by mass of the binder resin. More preferably, they are 50 to 130 mass parts, More preferably, they are 60 to 120 mass parts.
- non-magnetic colorant used in the present invention examples include the following.
- black colorant examples include carbon black; those adjusted to black using a yellow colorant, a magenta colorant, and a cyan colorant.
- Examples of the color pigment for magenta toner include the following. Examples include condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinones, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds. Specifically, C.I. I.
- the colorant may be a pigment alone, but it is preferable from the viewpoint of the image quality of a full-color image to improve the sharpness by using a dye and a pigment together.
- magenta toner dye examples include the following. C. I solvent red 1, 3, 8, 23, 24, 25, 27, 30, 49, 81, 82, 83, 84, 100, 109, 121, C.I. I. Disper thread 9, C.I. I. Solvent Violet 8, 13, 14, 21, 27, C.I. I. Oil-soluble dyes such as Disper Violet 1, C.I. I. Basic Red 1, 2, 9, 12, 13, 14, 15, 17, 18, 22, 23, 24, 27, 29, 32, 34, 35, 36, 37, 38, 39, 40, C.I. I. Basic dyes such as Basic Violet 1, 3, 7, 10, 14, 15, 21, 25, 26, 27, 28, etc.
- Examples of the color pigment for cyan toner include the following. C. I. Pigment Blue 1, 2, 3, 7, 15: 2, 15: 3, 15: 4, 16, 17, 60, 62, 66; I. Bat Blue 6, C.I. I. Acid Blue 45, a copper phthalocyanine pigment in which 1 to 5 phthalimidomethyls are substituted on the phthalocyanine skeleton.
- yellow coloring pigment examples include the following. Condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal compounds, methine compounds, allylamide compounds. Specifically, C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 23, 62, 65, 73, 74, 83, 93, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 155, 168, 174, 180, 181, 185, 191; I. Bat yellow 1, 3, and 20 are mentioned. In addition, C.I. I. Direct Green 6, C.I. I. Basic Green 4, C.I. I. Dyes such as Basic Green 6 and Solvent Yellow 162 can also be used.
- the content of the colorant in the toner particles is preferably 0.1 parts by mass or more and 30 parts by mass or less, and more preferably 0.5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin. Yes, most preferably 3 parts by mass or more and 15 parts by mass or less.
- the colorant in the above toner, it is preferable to use a toner obtained by mixing a colorant with a binder resin in advance to form a master batch. Then, the colorant can be favorably dispersed in the toner by melt-kneading this colorant masterbatch and other raw materials (binder resin, wax, etc.).
- a charge control agent can be used as necessary in order to further stabilize the chargeability.
- the content of the charge control agent is preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the binder resin. If it is 0.5 parts by mass or more, more sufficient charging characteristics can be obtained, and if it is 10 parts by mass or less, deterioration of compatibility with other materials can be suppressed, and excessive charging under low humidity can be suppressed.
- charge control agents include the following.
- an organometallic complex or a chelate compound is effective as the negative charge control agent for controlling the toner to be negative charge.
- organometallic complex or a chelate compound examples include monoazo metal complexes, aromatic hydroxycarboxylic acid metal complexes, and aromatic dicarboxylic acid metal complexes.
- Others include aromatic hydroxycarboxylic acids, aromatic mono and polycarboxylic acids and their metal salts, anhydrides or esters thereof, or phenol derivatives of bisphenols.
- Examples of the positive charge control agent for controlling the toner to be positively charged include modified products such as nigrosine and fatty acid metal salts, tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylammonium tetrafluoroborate and the like.
- onium salts such as quaternary ammonium salts, and phosphonium salts that are analogs thereof and chelating pigments thereof, triphenylmethane dyes and lake lake pigments (as rake agents, phosphotungstic acid, phosphomolybdic acid, phosphotungsten) Molybdic acid, tannic acid, lauric acid, gallic acid, ferricyanic acid, ferrocyanic compounds, etc.) and diorganotin oxides such as dibutyltin oxide, dioctyltin oxide, dicyclohexyltin oxide as metal salts of higher fatty acids Id and dibutyl tin borate, dioctyl tin borate include diorgano tin borate such as dicyclohexyl tin borate.
- one or more release agents may be contained in the toner particles.
- the release agent include the following.
- An aliphatic hydrocarbon wax such as low molecular weight polyethylene, low molecular weight polypropylene, microcrystalline wax or paraffin wax can be preferably used.
- oxides of aliphatic hydrocarbon waxes such as oxidized polyethylene wax, or block copolymers thereof; waxes mainly composed of fatty acid esters such as carnauba wax, sazol wax, and montanic acid ester wax; and Examples include those obtained by partially or fully deoxidizing fatty acid esters such as deoxidized carnauba wax.
- the content of the release agent in the toner particles is preferably from 0.1 parts by weight to 20 parts by weight, and more preferably from 0.5 parts by weight to 10 parts by weight with respect to 100 parts by weight of the binder resin. .
- the melting point defined by the maximum endothermic peak temperature at the time of temperature rise measured by a differential scanning calorimeter (DSC) of the release agent is preferably 65 ° C. or higher and 130 ° C. or lower. More preferably, it is 80 degreeC or more and 125 degrees C or less.
- DSC differential scanning calorimeter
- an external additive capable of increasing the fluidity before and after the addition by externally adding to the toner particles may be used as a fluidity improver.
- fluorine resin particles such as vinylidene fluoride fine particles and polytetrafluoroethylene fine particles
- silica fine particles such as wet-process silica fine particles and dry-process silica fine particles, titanium oxide fine particles, and alumina fine particles can be used as silane coupling agents and titanium cups.
- Examples include a surface treatment with a ring agent and silicone oil, and a hydrophobic treatment. Among those subjected to hydrophobic treatment, those treated so that the degree of hydrophobicity measured by a methanol titration test is in the range of 30 to 80 are particularly preferable.
- the content of the external additive in the present invention is preferably 0.1 parts by mass or more and 10 parts by mass or less, and 0.2 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the toner particles. More preferred.
- the carrier mixing ratio at that time is 2% by mass or more and 15% by mass or less as the toner concentration in the developer. Is preferable, and it is more preferable that it is 4 mass% or more and 13 mass% or less. If the toner concentration is less than 2% by mass, the image density tends to decrease, and if it exceeds 15% by mass, fogging or in-machine scattering tends to occur.
- the toner amount is 2 parts by mass or more and 50 masses per 1 part by mass of the magnetic carrier for replenishment Or less.
- the electrostatic latent image carrier 1 rotates in the direction of the arrow in the figure.
- the electrostatic latent image carrier 1 is charged by a charger 2 that is a charging unit, and the surface of the charged electrostatic latent image carrier 1 is exposed by an exposure unit 3 that is an electrostatic latent image forming unit.
- the developing device 4 has a developing container 5 for storing a two-component developer, a developer carrier 6 is disposed in a rotatable state, and a magnet (magnetic pole) is provided inside the developer carrier 6 as a magnetic field generating means. ) 7 is included. At least one of the magnets 7 is installed so as to face the electrostatic latent image carrier 1.
- the two-component developer is held on the developer carrier 6 by the magnetic field of the magnet 7, the amount of the two-component developer is regulated by the regulating member 8, and the developer component is opposed to the electrostatic latent image carrier 1.
- a magnetic brush is formed by a magnetic field generated by the magnet 7.
- the electrostatic latent image is visualized as a toner image by applying a developing bias in which an alternating electric field is superimposed on a DC electric field.
- the toner image formed on the electrostatic latent image carrier 1 is electrostatically transferred to the recording medium 12 by the transfer charger 11.
- the image may be temporarily transferred from the electrostatic latent image carrier 1 to the intermediate transfer member 9 and then electrostatically transferred to a transfer material (recording medium) 12. Thereafter, the recording medium 12 is conveyed to a fixing device 13 where the toner is fixed on the recording medium 12 by being heated and pressurized. Thereafter, the recording medium 12 is discharged out of the apparatus as an output image. Note that the toner remaining on the electrostatic latent image carrier 1 after the transfer process is removed by the cleaner 15. Thereafter, the electrostatic latent image carrier 1 cleaned by the cleaner 15 is electrically initialized by light irradiation from the pre-exposure device 16, and the image forming operation is repeated.
- FIG. 2 shows an example of a schematic diagram in which the image forming method according to the present invention is applied to a full-color image forming apparatus.
- the arrows indicating the arrangement and rotation direction of image forming units such as K, Y, C, and M in the figure are not limited to these.
- K means black
- Y means yellow
- C means cyan
- M means magenta.
- the electrostatic latent image carriers 1K, 1Y, 1C, 1M rotate in the direction of the arrow in the figure.
- the electrostatic latent image carriers 1K, 1Y, 1C, and 1M are charged by the chargers 2K, 2Y, 2C, and 2M that are charging means. Exposure is performed by the exposure devices 3K, 3Y, 3C, and 3M, which are image forming means, to form an electrostatic latent image.
- the electrostatic latent image can be converted into a toner image by the two-component developer carried on the developer carrying members 6K, 6Y, 6C, and 6M provided in the developing devices 4K, 4Y, 4C, and 4M as developing means.
- the image is transferred to the intermediate transfer member 9 by intermediate transfer chargers (primary transfer rollers) 10K, 10Y, 10C, and 10M serving as transfer means.
- the image is transferred to a recording medium 12 by a transfer charger (secondary transfer roller) 11 serving as a transfer unit, and the recording medium 12 is heated and pressure-fixed by a fixing unit 13 serving as a fixing unit and output as an image.
- the intermediate transfer body cleaner 14 which is a cleaning member for the intermediate transfer body 9 collects transfer residual toner and the like.
- the toner remaining on the electrostatic latent image carriers 1K, 1Y, 1C, and 1M after being transferred to the intermediate transfer member 9 is respectively cleaned by cleaners (electrostatic latent image carrier cleaners) 15K, 15Y, 15C, and 15M.
- cleaners electrostatic latent image carrier cleaners
- an alternating voltage is applied to the developer carrying member to form an alternating electric field in the developing region, and the developing is performed while the magnetic brush is in contact with the photosensitive member. Preferably it is done.
- the distance (SD distance) between the developer carrying member (developing sleeve) 6 and the electrostatic latent image carrying member (electrophotographic photosensitive drum) 1 is 100 ⁇ m or more and 1000 ⁇ m or less to suppress carrier adhesion and dot It is preferable from the viewpoint of improving reproducibility. If it is smaller than 100 ⁇ m, the supply of the developer tends to be insufficient, and the image density is lowered. If it exceeds 1000 ⁇ m, the magnetic lines of force from the magnetic poles spread and the density of the magnetic brush is lowered, so that the dot reproducibility is inferior, or the force for restraining the magnetic carrier is weakened and carrier adhesion is likely to occur.
- the voltage (Vpp) between the peaks of the alternating electric field is 300 V to 3000 V, preferably 500 V to 1800 V.
- the frequency is 500 Hz to 10000 Hz, preferably 1000 Hz to 7000 Hz.
- the waveform of the AC bias for forming the alternating electric field includes a triangular wave, a rectangular wave, a sine wave, or a waveform with a changed duty ratio.
- the applied voltage When the applied voltage is lower than 300 V, it is difficult to obtain a sufficient image density, and the fog toner in the non-image portion may not be recovered well. If the applied voltage exceeds 3000 V, the electrostatic latent image may be disturbed via the magnetic brush, resulting in a deterioration in image quality.
- Vback anti-fogging voltage
- the contrast potential is preferably 100 V or more and 400 V or less so that a sufficient image density is obtained.
- the configuration of the electrophotographic photosensitive member may be the same as that of an electrophotographic photosensitive member used in a normal image forming apparatus.
- an electrophotographic photoreceptor having a structure in which a conductive layer, an undercoat layer, a charge generation layer, a charge transport layer, and a charge injection layer as necessary are provided on a conductive substrate such as aluminum or SUS in order.
- the conductive layer, undercoat layer, charge generation layer, and charge transport layer may be those used for ordinary electrophotographic photoreceptors.
- a charge injection layer or a protective layer may be used as the outermost surface layer of the photoreceptor.
- a sample feeder for dry measurement “One-shot dry-type sample conditioner Turbotrac” (manufactured by Microtrack Bell) is attached. went.
- a dust collector was used as a vacuum source, the air volume was about 33 l / s, and the pressure was about 17 kPa.
- Control is automatically performed on software.
- a 50% particle size (D50) which is a cumulative value of volume average, is obtained.
- Control and analysis are performed using the attached software (version 10.3.3-202D).
- the measurement conditions are as follows.
- weight average particle diameter (D4) and number average particle diameter (D1) of toner are measured by a fine particle size distribution measuring apparatus “Coulter Counter Multisizer 3” (registered trademark, Beckman And a dedicated software “Beckman Coulter Multisizer 3 Version 3.51” (manufactured by Beckman Coulter, Inc.) for setting measurement conditions and analyzing data. Measurement was performed with 25,000 effective measurement channels, and measurement data was analyzed and calculated.
- electrolytic aqueous solution used for the measurement special grade sodium chloride is dissolved in ion exchange water so as to have a concentration of about 1% by mass, for example, “ISOTON II” (manufactured by Beckman Coulter, Inc.) can be used.
- the dedicated software Prior to measurement and analysis, the dedicated software was set as follows.
- SOM Standard Measurement Method
- the dedicated software set the total count in the control mode to 50000 particles, set the number of measurements once, and set the Kd value to “standard particles 10.0 ⁇ m” (Beckman Coulter, Inc.) Set the value obtained using The threshold and noise level are automatically set by pressing the threshold / noise level measurement button.
- the current is set to 1600 ⁇ A
- the gain is set to 2
- the electrolyte is set to ISOTON II
- the aperture tube flash after measurement is checked.
- the bin interval is set to logarithmic particle size
- the particle size bin is set to 256 particle size bin
- the particle size range is set to 2 ⁇ m to 60 ⁇ m.
- the specific measurement method is as follows. (1) About 200 ml of the electrolytic solution is placed in a glass 250 ml round bottom beaker exclusively for Multisizer 3, set on a sample stand, and the stirrer rod is stirred counterclockwise at 24 rpm. Then, dirt and bubbles in the aperture tube are removed by the “aperture flush” function of the analysis software. (2) About 30 ml of the electrolytic aqueous solution is put into a glass 100 ml flat bottom beaker. In this, “Contaminone N” (nonionic surfactant, anionic surfactant, 10% by weight aqueous solution of neutral detergent for pH7 precision measuring instrument cleaning, made by organic builder, manufactured by Wako Pure Chemical Industries, Ltd.
- the beaker of (2) is set in the beaker fixing hole of the ultrasonic disperser, and the ultrasonic disperser is operated. And the height position of a beaker is adjusted so that the resonance state of the liquid level of the electrolyte solution in a beaker may become the maximum.
- (5) In a state where the electrolytic aqueous solution in the beaker of (4) is irradiated with ultrasonic waves, about 10 mg of toner is added to the electrolytic aqueous solution little by little and dispersed. Then, the ultrasonic dispersion process is continued for another 60 seconds. In ultrasonic dispersion, the temperature of the water tank is appropriately adjusted so as to be 10 ° C. or higher and 40 ° C. or lower.
- the electrolyte solution of (5) in which the toner is dispersed is dropped using a pipette, and the measurement concentration is adjusted to about 5%. . Measurement is performed until the number of measured particles reaches 50,000.
- the measurement data is analyzed with the dedicated software attached to the apparatus, and the weight average particle diameter (D4) and the number average particle diameter (D1) are calculated.
- the “average diameter” on the analysis / volume statistics (arithmetic average) screen is the weight average particle size (D4)
- the graph / number% is set with the dedicated software.
- the “average diameter” on the analysis / number statistic (arithmetic average) screen is the number average particle diameter (D1).
- the number-based fine powder amount (number%) in the toner is calculated as follows. For example, the number% of particles having a particle diameter of 4.00 ⁇ m or less in the toner is measured by the above-mentioned Multisizer 3 and (1) graph / number% is set with dedicated software, and the measurement result chart is set to number%. Display. (2) Check “ ⁇ ” in the particle size setting portion on the format / particle size / particle size statistics screen, and enter “4” in the particle size input section below. (3) When the analysis / number statistics (arithmetic average) screen is displayed, the numerical value of the “ ⁇ 4 ⁇ m” display portion is the number% of particles of 4.00 ⁇ m or less in the toner.
- volume-based coarse powder amount (volume%) in the toner is calculated as follows. For example, the volume% of particles having a particle diameter of 10.0 ⁇ m or more in the toner is measured by the above-mentioned Multisizer 3 and (1) graph / volume% is set with dedicated software, and the measurement result chart is volume%. Display. (2) Check “>” in the particle size setting portion on the format / particle size / particle size statistics screen, and enter “10” in the particle size input section below. (3) When the analysis / volume statistics (arithmetic average) screen is displayed, the numerical value of the “> 10 ⁇ m” display portion is the volume% of particles of 10.0 ⁇ m or more in the toner.
- ⁇ Measuring method of surface resin layer thickness of magnetic carrier> In measuring the thickness of the intermediate resin layer and the surface resin layer, the cross section of the magnetic carrier was observed with a transmission electron microscope (TEM) (50,000 times each), and the thickness of the coating layer was measured. Specifically, in the magnetic carrier 100 particles, the surface resin layer thickness of each magnetic carrier cross section is arbitrarily measured at 10 points, the minimum value and the maximum value of the surface resin layer thickness are selected, the minimum film thickness ( ⁇ m) and The maximum film thickness ( ⁇ m) was used. Moreover, the minimum film thickness ( ⁇ m) and the maximum film thickness ( ⁇ m) were also measured in the same manner for the intermediate resin layer thickness. In the magnetic carrier of the present invention, the types of particles contained in the intermediate resin layer and the surface resin layer and the amounts thereof are different, so that the intermediate resin layer and the surface resin layer can also be determined by this measurement method.
- TEM transmission electron microscope
- ⁇ Measurement method of surface functional group concentration of particles (particles subjected to hydrophilic treatment)> ⁇ Measurement method of carboxyl group concentration Affix 10 mg of particles on indium foil. At that time, the particles are uniformly pasted so that the indium foil portion is not exposed. 1.0 ml of 2,2,2-trifluoroethanol is dropped into a 30 ml screw tube and the system is saturated with steam. The particles together with the indium foil are put into the system, and left for 12 hours in a state where the particles are exposed in a 2,2,2-trifluoroethanol atmosphere. At this time, care should be taken so that the particles do not directly adhere to the 2,2,2-trifluoroethanol liquid.
- the particles were taken out from the system together with the indium foil, and left in a drier at a preset temperature of 25 ° C. for 6 hours.
- a C 1S XPS peak (P1) derived from 2,2,2-trifluoroethyl ester and an XPS peak (P2) of the element derived from the particles are detected.
- P1 C 1S XPS peak
- P2 XPS peak
- the surface functional group concentration of the particles was calculated.
- the measurement conditions are as follows.
- the pore size distribution of the porous magnetic core particles is measured by a mercury intrusion method.
- the measurement principle is as follows.
- the pressure applied to mercury is changed, and the amount of mercury that has entered the pores is measured.
- a fully automatic multifunctional mercury porosimeter PoleMaster series / PoreMaster-GT series, manufactured by Cantachrome Instruments (formerly Yuasa Ionics), Shimadzu Corporation, automatic porosimeter Autopore IV 9500 series, etc. are used. Can be measured.
- Measurement conditions and measurement environment 20 ° C ⁇ Measurement cell: sample volume 5 cm 3 , press-fitting volume 1.1 cm 3 , use for powder ⁇ Measurement range: 2.0 psia (13.8 kPa) or more, 5999.6 psia (413.7 kPa) or less ⁇ Measurement step: 80 steps ( (When the logarithm of the pore diameter is taken, the steps are engraved so that they are equally spaced) ⁇ Press-fit parameter: Exhaust pressure 50 ⁇ mHg Exhaust time 5.0min Mercury injection pressure 2.0 psia (13.8 kPa) Equilibrium time 5 secs ⁇ High pressure parameter: Equilibrium time 5 secs ⁇ Mercury parameters: Advancing contact angle 130.0 degrees Receding contact angle 130.0 degrees Surface tension 485.0 mN / m (485.0 dynes / cm) Mercury density 13.5335 g /
- Measurement procedure (1) About 1.0 g of porous magnetic core particles are weighed and placed in a sample cell. Enter the weighing value. (2) In the low pressure part, a range of 2.0 psia (13.8 kPa) to 45.8 psia (315.6 kPa) is measured. (3) In the high pressure part, the range of 45.9 psia (316.3 kPa) or more and 59989.6 psia (413.6 kPa) or less is measured. (4) The pore size distribution is calculated from the mercury injection pressure and the mercury injection amount.
- the pore diameter that maximizes the differential pore volume in the pore diameter range of 0.1 ⁇ m to 3.0 ⁇ m is read, and the differential pore volume is maximized.
- the pore diameter is read, and the differential pore volume is maximized.
- the total pore volume obtained by integrating the differential pore volume in the range of the pore diameter of 0.1 ⁇ m or more and 3.0 ⁇ m or less was calculated using the attached software.
- Magnetic core particle ⁇ Method for measuring true density of magnetic carrier and carrier core (magnetic core particle)> The true density was measured using a dry automatic densimeter auto pycnometer (manufactured by Cantachrome Instruments).
- the resistance measuring cell A has a cylindrical container (made of PTFE resin) 17, a lower electrode (made of stainless steel) 18, a support base (made of PTFE resin) 19, an upper electrode (made of stainless steel) having a hole with a cross-sectional area of 2.4 cm 2. 20 is comprised.
- the cylindrical container 18 is placed on the support base 19, the sample 21 is filled to a thickness of about 1 mm, the upper electrode 20 is placed on the filled sample 21, and the thickness of the sample is measured.
- the mass of the sample is appropriately changed so that the thickness d of the sample is 0.95 mm or more and 1.04 mm or less.
- the specific resistance of the sample can be determined by applying a DC voltage between the electrodes and measuring the current flowing at that time.
- an electrometer 22 Kersley 6517A, manufactured by Kesley Instruments
- a processing computer 23 are used for control.
- a control system and control software (LabVIEW, manufactured by National Instruments) manufactured by National Instruments were used as a control processing computer.
- the upper electrode load is 270 g and the maximum applied voltage is 1000 V.
- Specific resistance ( ⁇ ⁇ cm) (applied voltage (V) / measured current (A)) ⁇ S (cm 2 ) / d (cm)
- Electric field strength (V / cm) applied voltage (V) / d (cm)
- the specific resistance at the electric field strength of the magnetic carrier core particles is obtained by reading the specific resistance at the electric field strength on the graph from the graph.
- volume average particle diameter of primary particles of inorganic particles and carbon black (treated particles) The volume average particle size of the primary particles of the inorganic particles and carbon black in the present invention was observed with a transmission electron microscope, and the average value of the major and minor axes of the particles was taken as the particle size. Further, the particle diameter of 100 particles was measured, and the average value was defined as the volume average particle diameter of the primary particles.
- Process 2 temporary firing process
- the mixed slurry is dried with a spray dryer (Okawara Kako Co., Ltd.) and then calcined in a batch-type electric furnace under a nitrogen atmosphere (oxygen concentration: 1.0% by volume) at a temperature of 1050 ° C. for 3.0 hours. Ferrite was produced.
- Process 3 After roughly pulverizing the calcined ferrite to about 0.5 mm with a crusher, water was added to prepare a coarsely pulverized slurry.
- the solid content concentration of the coarsely pulverized slurry was set to 70% by mass.
- the mixture was finely pulverized with a wet ball mill using 1/8 inch stainless beads for 3 hours to obtain a finely pulverized slurry. Further, this finely pulverized slurry was pulverized by a wet bead mill using zirconia having a diameter of 1 mm for 4 hours to obtain a calcined ferrite slurry having a volume-based 50% particle diameter (D50) of 1.3 ⁇ m.
- D50 volume-based 50% particle diameter
- Process 4 After adding 100 parts by weight of the calcined ferrite slurry at a ratio of 1.0 part by weight of ammonium polycarboxylate as a dispersant and 1.5 parts by weight of polyvinyl alcohol as a binder, a spray dryer (manufactured by Okawara Chemical Co., Ltd.) And then granulated into spherical particles and dried. After adjusting the particle size of the obtained granulated product, it was heated at 700 ° C. for 2 hours using a rotary electric furnace to remove organic substances such as a dispersant and a binder.
- Process 5 Under a nitrogen atmosphere (oxygen concentration: 1.0% by volume), the time from the room temperature to the firing temperature (1100 ° C.) was set to 2 hours, maintained at a temperature of 1100 ° C. for 4 hours, and fired in a tunnel electric furnace. Thereafter, the temperature was lowered to 60 ° C. over 8 hours, returned to the atmosphere from the nitrogen atmosphere, and taken out at a temperature of 40 ° C. or lower.
- Process 6 After pulverizing the agglomerated particles, coarse particles are removed by sieving with a sieve having an opening of 150 ⁇ m, fine powder is removed by air classification, and low magnetic force is removed by magnetic separation, thereby obtaining a porous magnetic core 1. It was. The obtained porous magnetic core 1 was porous and had pores. Table 1 shows the manufacturing conditions of each step of the obtained porous magnetic core 1, and Table 2 shows the physical properties.
- Additive particle 1 was prepared as follows. 100 parts by mass of carbon black (# 4400, manufactured by Tokai Carbon Co., Ltd.) was placed in a 500 ml rubbing round bottom flask, and 200 parts by mass of an aqueous nitric acid solution (50% by mass) was added. A ball cooler was connected to the flask, a round bottom flask was installed in the mantle heater, and refluxing was started, followed by oxidation for 30 minutes. After completion of the reflux, the carbon black was filtered and separated, and dried at 125 ° C. in a dryer to obtain additive particles 1. Table 3 shows the treatment conditions and physical property values of the obtained additive particles 1. In Table 3, “CB” represents carbon black.
- the additive particle 2 was prepared as follows. 100 parts by mass of strontium titanate (trade name: SW-540, manufactured by Titanium Kogyo Co., Ltd.) was put into a 500 ml rubbing round bottom flask, and the system was brought to a nitrogen atmosphere, and then 300 parts by mass of anhydrous toluene was added. After ice cooling, 5 parts by mass of triethylamine, 10 parts by mass of dimethylaminopyridine, and 10 parts by mass of acetic anhydride were added, and the temperature was raised to 25 ° C. and stirred for 2 hours. The reaction was stopped by adding 100 parts by mass of a saturated aqueous sodium hydrogen carbonate solution to the resulting mixture, washed with water and a toluene solvent, and chemically modified particles were obtained by air drying and drying under reduced pressure.
- strontium titanate trade name: SW-540, manufactured by Titanium Kogyo Co., Ltd.
- the additive particle 6 was prepared as follows. 100 parts by mass of carbon black (# 4400, manufactured by Tokai Carbon Co., Ltd.) was placed in a cylindrical ozone processor. Subsequently, 3 parts by mass of ozone are generated per hour with an ozone generator (KQS-120, manufactured by Kotohira Kogyo Co., Ltd.), the treatment temperature is kept at 40 ° C. in an ozone atmosphere, and the carbon black is oxidized for 2 hours. This was carried out to obtain additive particles 6. Table 3 shows the treatment conditions and physical property values of the obtained additive particles 6.
- the additive particles 14 were prepared as follows. 100 parts by mass (# 4400, manufactured by Tokai Carbon Co., Ltd.) was put into a 500 ml rubbing round-bottom flask, and after the system was put in a nitrogen atmosphere, 300 parts by mass of anhydrous toluene was added. After ice cooling, 5 parts by mass of triethylamine, 10 parts by mass of dimethylaminopyridine and 1.0 part by mass of alginic acid were added, and the mixture was heated to 25 ° C. and stirred for 2 hours. 100 parts by mass of a saturated aqueous sodium hydrogen carbonate solution was added to the resulting mixture to stop the reaction, and the mixture was washed with water and a toluene solvent, and added particles 14 were obtained by air drying and drying under reduced pressure.
- Table 3 shows treatment conditions and physical property values of the obtained additive particles 14 and 16 to 23.
- additive particle 15 As the additive particles 15, carbon black (NEROX 505, manufactured by Evonik Degussa) was used without any special treatment. Table 3 shows the physical property values of the additive particles 15.
- additive particles 24 As the additive particles 24, carbon black (# 4400, manufactured by Tokai Carbon Co., Ltd.) was used without any special treatment. The physical property values of the additive particles 24 are shown in Table 3.
- Process 1 (filling process) 100 parts by mass of the porous magnetic core 1 was placed in a stirring vessel of a mixing stirrer (a universal stirrer NDMV type manufactured by Dalton), and nitrogen was introduced while maintaining the temperature at 60 ° C. and reducing the pressure to 2.3 kPa. Next, 0.5 parts by mass of ⁇ -aminopropyltriethoxysilane and 20 parts by mass of resin component 1 (see Table 4) were diluted with 79.5 parts by mass of toluene to prepare a resin solution. The solution was dropped on the porous magnetic core 1.
- a mixing stirrer a universal stirrer NDMV type manufactured by Dalton
- the dropping amount was adjusted so that the solid content of the resin component (resin component 1 and ⁇ -aminopropyltriethoxysilane) was 5.0 parts by mass with respect to 100 parts by mass of the magnetic core particles (porous magnetic core 1).
- the obtained resin-filled magnetic core particles are transferred to a mixer having a spiral blade in a rotatable mixing container (Drum mixer UD-AT type manufactured by Sugiyama Heavy Industries Co., Ltd.).
- the temperature was increased to a set temperature of the stirrer of 220 ° C. at a rate of temperature increase per minute.
- heating and stirring are performed for 1.0 hour (stirring time at the time of curing in Table 7-1) to cure the resin, and further 1.0 hour (holding time at the time of curing in Table 7-1), Stirring was continued while holding.
- Process 2 intermediate resin layer forming process
- the obtained resin-filled ferrite particles and the resin solution 9 shown in Table 5 were placed in a planetary motion mixer (Nauta mixer VN type manufactured by Hosokawa Micron Corporation) maintained at a temperature of 60 ° C. under reduced pressure (1.5 kPa).
- the solid content of the resin component solid resin not containing added particles after removing the solvent
- the method of input was as follows. First, the resin solution 9 having an amount of 1/3 of the total amount was charged, and the solvent was removed and the coating operation was performed for 20 minutes.
- the resin solution 9 having an amount of 1/3 of the total charged amount was further charged, and the solvent was removed and the coating operation was performed for 20 minutes. Further, the resin solution 9 having an amount of 1/3 of the total charged amount is added, the solvent removal and coating operation are performed for 20 minutes, the charging of all the resin solution 9 is completed, and the resin-filled ferrite particles are replaced with resin. Coated with the composition.
- the resin-filled ferrite particles coated with the resin composition were transferred to a mixer having a spiral blade in a rotatable mixing container (a drum mixer UD-AT type manufactured by Sugiyama Heavy Industries Co., Ltd.).
- the mixing container was heat-treated at a temperature of 120 ° C. (coating apparatus temperature in Table 7-2) for 2 hours (treatment time in Table 7-2) under a nitrogen atmosphere while stirring at 10 revolutions per minute.
- a low magnetic force product was separated by magnetic separation, passed through a sieve having an opening of 150 ⁇ m, and then classified by an air classifier to obtain resin composition-coated particles.
- Process 3 surface resin layer forming process
- a planetary motion type mixer (Nauta mixer VN type manufactured by Hosokawa Micron Corporation) maintained at a temperature of 60 ° C. under reduced pressure (1.5 kPa)
- 100 parts by mass of the resin composition-coated particles described above in Table 6 were added.
- the resin component was added so that the solid content of the resin component (solid resin containing no added particles after removal of the solvent) was 0.9 parts by mass.
- the method of input was as follows. First, 1/3 of the total amount of the resin solution 1 was added, and solvent removal and coating operation were performed for 20 minutes. Subsequently, the resin solution 1 having an amount of 1/3 of the total charged amount was added, and the solvent was removed and the coating operation was performed for 20 minutes. Further, the resin solution in an amount of 1/3 of the total charged amount is charged, the solvent removal and coating operation are performed for 20 minutes, the charging of all the resin solutions 1 is completed, and the magnetic carrier coated with the resin composition Got.
- the magnetic carrier coated with the resin composition was transferred to a mixer having a spiral blade in a rotatable mixing container (a drum mixer UD-AT type manufactured by Sugiyama Heavy Industries Co., Ltd.).
- the mixing container was heat-treated in a nitrogen atmosphere at a temperature of 120 ° C. (coating apparatus temperature in Table 7-3) for 2 hours (treatment temperature in Table 7-3) while stirring at 10 revolutions per minute.
- the magnetic carrier 1 was obtained by classifying the low magnetic product from the obtained heat-treated magnetic carrier by magnetic separation, passing through a sieve having an opening of 150 ⁇ m, and classifying with an air classifier.
- Table 7-1 to Table 7-3 show manufacturing conditions for each step of the obtained magnetic carrier 1, and Table 8 shows physical property values.
- magnetic carriers 2 to 11 and 13 to 33 were prepared in the same manner as the magnetic carrier 1 except that the manufacturing conditions shown in Tables 7-1 to 7-3 were used, and the physical property values of these were shown in Table 8. .
- the resin solutions 1 to 32 described in Table 7-2 to Table 7-3 are described in Table 5 and Table 6.
- the resin component 1 listed in Table 7-1 and the resin components 2 and 3 listed in Table 6 are listed in Table 4.
- “Eposter S” in Tables 5 and 6 represents a melamine / formaldehyde condensate (manufactured by Nippon Shokubai Co., Ltd.).
- the magnetic carrier 12 was produced in the same manner as the magnetic carrier 1 except that the coating process was changed as follows.
- Process 2 intermediate resin layer forming process
- a stirrer 100 parts by mass of the porous magnetic core 12 and the solvent were removed from Nobilta (manufactured by Hosokawa Micron Corporation), the resin solid content was taken out, and the resin solution 20 pulverized to a weight average particle size of 50 ⁇ m 0.9 part by mass of resin solid content was added.
- the outermost peripheral speed of the stirring member was stirred and mixed for 2 minutes at 1 m / s, and then coated for 15 minutes while adjusting to 10 m / s to obtain magnetic particles.
- the obtained magnetic particles were separated from low magnetic products by magnetic separation, passed through a sieve having an opening of 150 ⁇ m, and then classified by an air classifier to obtain resin composition-coated particles.
- Table 7-1 to Table 7-3 show manufacturing conditions for each step of the obtained magnetic carrier 12, and Table 8 shows physical property values.
- Polyester resin 100 parts by mass Tg: 58 ° C Acid value: 15 mgKOH / g Hydroxyl value: 15 mg KOH / g Molecular weight: Mp5800, Mn3350, Mw94000 ⁇ C.
- Pigment Blue 15 3 4.5 parts by mass, 1,4-di-t-butylsalicylic acid aluminum compound 0.5 part by mass, normal paraffin wax 6.0 parts by mass Melting point: 78 ° C.
- the ingredients of the above formulation were mixed well with a Henschel mixer (FM-75J type, manufactured by Nippon Coke Kogyo Co., Ltd.), and then a twin-screw kneader (PCM-30 type, Ikegai Co., Ltd. (former: (Ikegai Steel Co., Ltd.)) was kneaded with a feed amount of 10 kg / h (kneaded material temperature at the time of discharge was about 150 ° C.). The obtained kneaded product was cooled and coarsely crushed with a hammer mill, and then fed with a mechanical pulverizer (T-250: Freund's Turbo Co., Ltd.
- a particle having a weight average particle size of 5.5 ⁇ m, 55.6% by number of particles having a particle size of 4.0 ⁇ m or less, and 0.8% by volume of particles having a particle size of 10.0 ⁇ m or more is obtained. It was. “Tg” represents a glass transition temperature, “Mp” represents a peak molecular weight, “Mn” represents a number average molecular weight, and “Mw” represents a weight average molecular weight.
- the obtained particles were classified using a rotary classifier (TTSP100, manufactured by Hosokawa Micron Corporation) to cut fine powder and coarse powder.
- Cyan toner particles 1 having a weight average particle size of 6.3 ⁇ m, an abundance of particles having a particle size of 4.0 ⁇ m or less, 25.8% by number, and 2.4% by volume of particles having a particle size of 10.0 ⁇ m or more Got.
- cyan toner particles 1 4.5 parts by mass of C.I. I. Pigment Blue 15: 3, and 7.0 parts by mass of C.I. I. Pigment Yellow 74, 6.3 parts by mass of C.I. I. Pigment Red 122 and 5.0 parts by mass of carbon black were used to obtain yellow, magenta, and black toner particles 1, respectively.
- Example 1 10 parts by weight of cyan toner 1 is added to 90 parts by weight of magnetic carrier 1 and shaken with a shaker (YS-8D type: manufactured by Yayoi Co., Ltd.). 300 g of two-component cyan developer 1 is added. Prepared. The amplitude condition of the shaker was 200 rpm for 2 minutes. Similarly to the two-component cyan developer 1, 300 g of each color two-component developer 1 was prepared using each color toner 1.
- cyan toner 1 90 parts by mass of cyan toner 1 is added to 10 parts by mass of magnetic carrier 1, and a V-type mixer is used in an environment of normal temperature and normal humidity 23 ° C./50% RH (normal temperature and normal humidity, hereinafter “N / N”). For 5 minutes to obtain a cyan developer 1 for replenishment. Similarly to the replenishment cyan developer 1, each color toner 1 was used to obtain each color replenishment developer 1.
- the two-component developer 1 and the replenishment developer 1 were dried at 25 ° C. in a reduced pressure environment with stirring for 5 hours.
- a remodeling machine of Canon color complex machine imageRUNNER ADVANCE C9075 PRO was used as an image forming apparatus.
- the two-component developer 1 was placed in each color developing device of this multifunction device, a replenishment developer container containing each color replenishment developer 1 was set, an image was formed, and various evaluations were performed.
- H / Ha which is the leaving environment of the multi-function peripheral, means that the temperature is 23 ° C./humidity from the environment left at a temperature of 30 ° C./humidity of 80% RH (high temperature and high humidity, hereinafter “H / H”) for 24 hours.
- H / H high temperature and high humidity
- N / L room temperature and low humidity
- FFH is a value representing 256 gradations in hexadecimal
- 00h is the first gradation (white background) of 256 gradations
- FFH is the 256th gradation (solid part) of 256 gradations.
- Each evaluation item is shown below.
- (1) White spotting Half-tone horizontal band (30H width 10mm) and solid horizontal band (FFH width 10mm) alternately in the transfer direction of the transfer paper in the initial stage and immediately after 2000 continuous sheets in H / Ha environment Output the charts arranged in.
- the image is read by a scanner and binarized.
- the luminance distribution (256 gradations) of a certain line in the transport direction of the binarized image was taken.
- the evaluation was performed with cyan single color.
- Judgment criteria are as follows. A: All pattern images satisfy the above density range (very good) B: One pattern image is out of the above density range (good) C: Two pattern images deviate from the above density range (slightly good) D: Three pattern images deviate from the above density range (in the present invention, usable levels) E: Four or more pattern images deviate from the above density range (at a level considered difficult to use in the present invention).
- the color variation difference is determined by measuring a * and b * using SpectroScan Transmission (manufactured by GretagMacbeth). Specifically, the measurement was performed under the following measurement conditions.
- a * and b * are values used in the L * a * b * color system, which is a useful means for expressing a color numerically.
- a * and b * both represent a hue.
- Hue is a measure of hue, such as red, yellow, green, blue, and purple.
- Each of a * and b * represents a color direction, a * represents a red-green direction, and b * represents a yellow-blue direction.
- the difference in color variation ( ⁇ C) is defined as follows.
- ⁇ C ⁇ (a * of H / H environment endurance image a * ⁇ H / H environment initial image a * ) 2 + (H / H environment endurance image b * ⁇ H / H environment initial image b * ) 2 ⁇ 1/2
- Pattern 1 0.10 or more and 0.13 or less
- Pattern 2 0.25 or more and 0.28 or less
- Pattern 3 0.45 or more and 0.48 or less
- Pattern 4 0.65 or more and 0.68 or less
- Pattern 5 0.85 More than 0.88 or less
- Pattern 6 1.05 or more and 1.08 or less
- Pattern 7 1.25 or more and 1.28 or less
- Pattern 8 1.45 or more and 1.48 or less
- Judgment criteria are as follows. A: All pattern images satisfy the above density range (very good). B: One pattern image is out of the above density range (good). C: Two pattern images deviate from the above density range (slightly good). D: Three pattern images deviate from the above density range (in the present invention, usable levels). E: Four or more pattern images deviate from the above density range (in the present invention, a level considered difficult to use).
- evaluation item (1) performs comprehensive determination with the evaluation rank after durability.
- Example 1 was a very good result in any evaluation.
- the evaluation results are shown in Table 10-1 to Table 10-3.
- Example 2 and 4 Similarly to Example 1, two-component developers 2 and 4 and replenishment developers 2 and 4 were prepared at the same ratio as Example 1 using magnetic carriers 2 and 4. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developers 2 and 4 and replenishment developers 2 and 4 were used.
- Example 2 compared with Example 1, the treatment method for the additive particle type and the hydroxyl group on the surface of the additive particle was different, but the moisture content change was small, and the results were very good.
- the evaluation results are shown in Table 10-1 to Table 10-3.
- Example 3 In the same manner as in Example 1, a two-component developer 3 and a replenishment developer 3 were prepared using the magnetic carrier 3 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 3 and replenishment developer 3 were used.
- Example 3 compared with Example 1, since the treatment method for the additive particle type and the hydroxyl group on the surface of the additive particle is different, the charging characteristics are affected and the developability is good. Other than that, the results were very good.
- the evaluation results are shown in Table 10-1 to Table 10-3.
- Example 5 In the same manner as in Example 1, a two-component developer 5 and a replenishment developer 5 were prepared using the magnetic carrier 5 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 5 and replenishment developer 5 were used.
- Example 5 compared with Example 1, since the treatment method for the additive particle type and the hydroxyl group on the surface of the additive particle is different, the charging characteristics are affected, the developability is slightly lowered, and good results are obtained. It was. Other than that, the results were very good.
- the evaluation results are shown in Table 10-1 to Table 10-3.
- Example 6 and 8 Similarly to Example 1, two-component developers 6 and 8 and replenishment developers 6 and 8 were prepared using magnetic carriers 6 and 8 in the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developers 6 and 8 and replenishment developers 6 and 8 were used.
- Examples 6 and 8 were different from Example 1 in the treatment method for the hydroxyl group on the surface of the additive particles, but the moisture content change was small and the results were very good.
- the evaluation results are shown in Table 10-1 to Table 10-3.
- Example 7 Similarly to Example 1, a two-component developer 7 and a replenishment developer 7 were prepared using the magnetic carrier 7 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 7 and replenishment developer 7 were used.
- Example 7 as compared with Example 1, the treatment method for the hydroxyl group on the surface of the additive particles was different, so that the charging characteristics were affected and the developability was good. Other than that, the results were very good.
- the evaluation results are shown in Table 10-1 to Table 10-3.
- Example 9 and 10 In the same manner as in Example 1, two-component developers 9 and 10 and replenishment developers 9 and 10 were prepared using magnetic carriers 9 and 10 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developers 9 and 10 and replenishment developers 9 and 10 were used.
- Examples 9 and 10 have different additive particle types compared to Example 1. Moreover, the processing method with respect to the hydroxyl group of the addition particle
- Example 11 and 12 Similarly to Example 1, two-component developers 11 and 12 and replenishment developers 11 and 12 were prepared using magnetic carriers 11 and 12 in the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developers 11 and 12 and replenishment developers 11 and 12 were used.
- Examples 11 and 12 have different additive particle types compared to Example 1. Moreover, the processing method with respect to the hydroxyl group of the addition particle
- grain surface differs. As a result, there was an effect on the color tone and developability after endurance, but both were good results. Other than that, the results were very good.
- the evaluation results are shown in Table 10-1 to Table 10-3.
- Example 13 Similarly to Example 1, a two-component developer 13 and a replenishment developer 13 were prepared using the magnetic carrier 13 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 13 and replenishment developer 13 were used.
- Example 13 is different from Example 1 in the additive particle type. Moreover, the processing method with respect to the hydroxyl group of the addition particle
- the use of a true-density bulk core affects the charging characteristics, white spots, carrier adhesion after endurance, rust resistance after endurance of halftone images, and levels before and after endurance. The change in tone was slightly worse, but all were good results. Other than that, the results were very good. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 14 Similarly to Example 1, a two-component developer 14 and a replenishment developer 14 were prepared using the magnetic carrier 14 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 14 and replenishment developer 14 were used.
- Example 14 is different from Example 1 in that chemical modification is performed on a hydroxy group using an esterifying agent as a treatment method for the added particle type. This affected white spots, gradation fluctuations, post-endurance carrier adhesion, post-endurance developability, and changes in gradation before and after endurance, all of which were good results. Further, the roughness resistance after endurance of the halftone image was somewhat good. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 15 In the same manner as in Example 1, a two-component developer 15 and a replenishment developer 15 were prepared using the magnetic carrier 15 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 15 and replenishment developer 15 were used.
- Example 15 is different from Example 1 in that the additive particle type is not treated. As a result, white spots, gradation fluctuations, and mixed color hue fluctuations were affected, but all were good results. In addition, the carrier adhesion after endurance, the roughness resistance after endurance of halftone images, the developability after endurance, and the change in gradation before and after endurance deteriorated, but all were somewhat good results. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 16 In the same manner as in Example 1, a two-component developer 16 and a replenishment developer 16 were prepared using the magnetic carrier 16 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 16 and replenishment developer 16 were used.
- Example 16 is different from Example 1 in that chemical modification is performed on a hydroxy group using an esterifying agent as a treatment method for the added particle type. Another difference is that a bulk core having a high true density is used as the magnetic core, and that the same resin is used for the surface resin layer and the intermediate resin layer as the coating resin. As a result, white spots, gradation fluctuations, and mixed-color hue fluctuations were affected, but all were somewhat favorable results. Further, the carrier adhesion after endurance, the roughness resistance after endurance of halftone images, the developability after endurance, and the change in gradation before and after endurance deteriorated, all of which were usable levels in the present invention. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 17 In the same manner as in Example 1, a two-component developer 17 and a replenishment developer 17 were prepared using the magnetic carrier 17 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 17 and replenishment developer 17 were used.
- Example 17 is different from Example 1 in that chemical modification is performed on a hydroxy group using an esterifying agent as a treatment method for the added particle type. Another difference is that a bulk core having a high true density is used as the magnetic core, and that the same resin is used for the surface resin layer and the intermediate resin layer as the coating resin. Furthermore, the film thickness of the surface resin layer is different. As a result, white spots and gradation fluctuations were affected, but all were somewhat good results. In addition, the color change of the mixed color, the carrier adhesion after the durability, the roughness resistance after the durability of the halftone image, the developability after the durability, and the change in gradation before and after the deterioration are deteriorated, and any of them can be used in the present invention. It was a level. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 18 In the same manner as in Example 1, a two-component developer 18 and a replenishment developer 18 were prepared using the magnetic carrier 18 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 18 and replenishment developer 18 were used.
- Example 18 is different from Example 1 in that chemical modification is performed on a hydroxy group using an esterifying agent as a treatment method for the added particle type. Further, it differs in that a bulk core having a high true density is used as the magnetic core and the same resin is used for the surface resin layer and the intermediate resin layer as the coating resin. Furthermore, the film thickness of the surface resin layer is different. As a result, white spots and gradation fluctuations were affected, but all were somewhat good results. In addition, the color change of the mixed color, the carrier adhesion after the durability, the roughness resistance after the durability of the halftone image, the developability after the durability, and the change in gradation before and after the deterioration are deteriorated, and any of them can be used in the present invention. It was a level. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 19 Similarly to Example 1, a two-component developer 19 and a replenishment developer 19 were prepared using the magnetic carrier 19 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 19 and replenishment developer 19 were used.
- Example 19 is different from Example 1 in that chemical modification is performed on a hydroxy group using an esterifying agent as a treatment method for the added particle type. Further, it differs in that a bulk core having a high true density is used as the magnetic core and the same resin is used for the surface resin layer and the intermediate resin layer as the coating resin. Furthermore, the film thickness of the surface resin layer is different. As a result, white spots were affected, but all were slightly good results. In addition, gradation fluctuations, mixed color hue fluctuations, post-durability carrier adhesion, roughness resistance after half-tone image durability, developability after durability, and gradation change before and after deterioration are all deteriorated in the present invention. Was at a usable level. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 20 In the same manner as in Example 1, a two-component developer 20 and a replenishment developer 20 were prepared using the magnetic carrier 20 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 20 and replenishment developer 20 were used.
- Example 20 is different from Example 1 in that chemical modification is performed on a hydroxy group using an esterifying agent as a treatment method for the added particle type. Further, it differs in that a bulk core having a high true density is used as the magnetic core and the same resin is used for the surface resin layer and the intermediate resin layer as the coating resin. Furthermore, the film thickness of the surface resin layer is different. As a result, white spots were affected, but all were slightly good results. In addition, gradation fluctuations, mixed color hue fluctuations, post-durability carrier adhesion, roughness resistance after half-tone image durability, developability after durability, and gradation change before and after deterioration are all deteriorated in the present invention. Was at a usable level. The evaluation results are shown in Table 10-1 to Table 10-3.
- Example 1 In the same manner as in Example 1, a two-component developer 21 and a replenishment developer 21 were prepared using the magnetic carrier 21 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 21 and replenishment developer 21 were used.
- Comparative Example 1 differs from Example 19 in that the solid content coating amount is changed in the intermediate resin layer forming step. As a result, white spots, gradation fluctuations, and color mixture fluctuations are affected, all of which are difficult to use in the present invention. In addition, all other levels were usable levels in the present invention.
- the evaluation results are shown in Tables 10-1 to 10-3.
- Example 2 Similarly to Example 1, a two-component developer 22 and a replenishment developer 22 were prepared using the magnetic carrier 22 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 22 and replenishment developer 22 were used.
- Comparative Example 2 differs from Example 19 in that organic fine particles are used as additive particles. As a result, white spots, gradation fluctuations, mixed color hue fluctuations, and gradation changes before and after endurance are affected, all of which are difficult to use in the present invention. In addition, all other levels were usable levels in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- Example 3 Similarly to Example 1, a two-component developer 23 and a replenishment developer 23 were prepared using the magnetic carrier 23 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 23 and replenishment developer 23 were used.
- Comparative Example 3 is different from Example 19 in the type of esterification agent for the added particles, and has lipophilic functional groups introduced on the particle surfaces. As a result, white spots, gradation fluctuations, mixed color hue fluctuations, and gradation changes before and after endurance are affected, all of which are difficult to use in the present invention. In addition, all other levels were usable levels in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- Example 4 In the same manner as in Example 1, a two-component developer 24 and a replenishment developer 24 were prepared using the magnetic carrier 24 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 24 and replenishment developer 24 were used.
- Comparative Example 4 is different from Example 19 in that the additive particle type is treated with lauric acid.
- white spots, gradation fluctuations, mixed color hue fluctuations, carrier adhesion after durability, and gradation changes before and after durability are affected, all of which are difficult to use in the present invention.
- all other levels were usable levels in the present invention.
- the evaluation results are shown in Tables 10-1 to 10-3.
- Example 5 In the same manner as in Example 1, a two-component developer 25 and a replenishment developer 25 were prepared using the magnetic carrier 25 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 25 and replenishment developer 25 were used.
- Comparative Example 5 is different from Example 19 in the type of esterification agent for the added particles, and has lipophilic functional groups introduced on the particle surfaces. As a result, white spots, gradation fluctuations, mixed color hue fluctuations, carrier adhesion after durability, and gradation changes before and after durability are affected, all of which are difficult to use in the present invention. In addition, all other levels were usable levels in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- Example 6 In the same manner as in Example 1, a two-component developer 26 and a replenishment developer 26 were prepared using the magnetic carrier 26 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 26 and replenishment developer 26 were used.
- Comparative Example 6 is different from Example 19 in the type of esterification treatment agent for the added particles, and has lipophilic functional groups introduced on the particle surfaces.
- white spots, gradation fluctuations, color fluctuations of mixed colors, carrier adhesion after durability, developability after durability, and changes in gradation before and after durability are affected, all of which are difficult to use in the present invention. there were.
- the roughness resistance before and after endurance in a halftone image was at a usable level in the present invention.
- the evaluation results are shown in Tables 10-1 to 10-3.
- Example 7 In the same manner as in Example 1, a two-component developer 27 and a replenishment developer 27 were prepared using the magnetic carrier 27 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 27 and replenishment developer 27 were used.
- Comparative Example 7 is different from Example 19 in the type of esterification agent for the added particles, and has lipophilic functional groups introduced on the particle surfaces.
- white spots, gradation fluctuations, color fluctuations of mixed colors, carrier adhesion after durability, developability after durability, and changes in gradation before and after durability are affected, all of which are difficult to use in the present invention. there were.
- the roughness resistance before and after endurance in a halftone image was at a usable level in the present invention.
- the evaluation results are shown in Tables 10-1 to 10-3.
- Comparative Examples 8 and 9 differ from Example 19 in the type of esterification treatment agent added to the particles and introduce lipophilic functional groups on the particle surfaces. As a result, all evaluations were affected, and all of them were difficult to use in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- Example 10 Similarly to Example 1, a two-component developer 30 and a replenishment developer 30 were prepared using the magnetic carrier 30 in the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 30 and replenishment developer 30 were used.
- Comparative Example 10 is different from Example 19 in the type of esterification agent for the added particles, and introduced lipophilic functional groups on the particle surface. As a result, all evaluations were affected, and all of them were difficult to use in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- Example 11 Similarly to Example 1, a two-component developer 31 and a replenishment developer 31 were prepared using the magnetic carrier 31 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 31 and replenishment developer 31 were used.
- Comparative Example 11 is different from Example 19 in the type of esterification treatment agent for the added particles, and has lipophilic functional groups introduced on the particle surfaces. As a result, all evaluations were affected, and all of them were difficult to use in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- Example 12 Similarly to Example 1, a two-component developer 32 and a replenishment developer 32 were prepared using the magnetic carrier 32 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 32 and replenishment developer 32 were used.
- Comparative Example 12 is different from Example 19 in the type of esterification agent for the added particles, and has lipophilic functional groups introduced on the particle surfaces. As a result, all evaluations were affected, and all of them were difficult to use in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- Example 13 In the same manner as in Example 1, a two-component developer 33 and a replenishment developer 33 were prepared using the magnetic carrier 33 at the same ratio as in Example 1. Evaluation was performed in the same manner as in Example 1 except that the obtained two-component developer 33 and replenishment developer 33 were used.
- Comparative Example 13 differs from Example 19 in the type of esterification agent for the added particles, and has lipophilic functional groups introduced on the particle surfaces. As a result, all evaluations were affected, and all of them were difficult to use in the present invention. The evaluation results are shown in Tables 10-1 to 10-3.
- 1, 1K, 1Y, 1C, 1M electrostatic latent image carrier, 2, 2K, 2Y, 2C, 2M: charger, 3, 3K, 3Y, 3C, 3M: exposure unit, 4, 4K, 4Y, 4C 4M: developing device, 5: developing container, 6, 6K, 6Y, 6C, 6M: developer carrier, 7: magnet, 8: regulating member, 9: intermediate transfer member, 10K, 10Y, 10C, 10M: intermediate Transfer charger (primary transfer roller), 11: transfer charger (secondary transfer roller), 12: transfer material (recording medium), 13: fixing device, 14: intermediate transfer body cleaner, 15, 15K, 15Y, 15C, 15M: cleaner (electrostatic latent image carrier cleaner), 16: pre-exposure device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
高温高湿環境下において長期使用しても、被膜の耐摩耗性に優れ、安定した帯電付与能を保ち、低湿環境から高湿環境への変動に対して、画像濃度および色味変動が安定した磁性キャリアを提供する。 フェライト芯材粒子と、被覆樹脂とを有する磁性キャリアであって、 前記被覆樹脂は、表面側から表面樹脂層と、樹脂組成物とをこの順に有し、 前記樹脂組成物は、樹脂と、親水性処理された無機粒子もしくはカーボンブラックと、を含み、 前記表面樹脂層は、 i)樹脂を含み、 ii)前記親水性処理された無機粒子もしくはカーボンブラックを含まず、 iii)膜厚が0.01μm以上4.00μm以下の範囲であり、 前記磁性キャリアは、温度30℃湿度80%RHの環境下に24時間放置したときの水分率(A)と、その後、温度23℃湿度5%RHの環境下に24時間放置したときの水分率(B)との水分率変化(A-B)が、0.030質量%以下である。
Description
本発明は、電子写真法を用いて静電潜像(静電荷像)を現像する(顕像化する)工程を有する画像形成方法に使用される磁性キャリアに関するものである。
近年、複写装置やプリンタは、より高速で、より信頼性が高いことが厳しく追求されてきている。一方、複写装置やプリンタは種々な点でよりシンプルな要素で構成されるようになってきている。その結果、現像剤に要求される性能はより高度になり、現像剤の性能向上が達成できなければ、より優れた複写装置やプリンタが成り立たなくなってきている。
静電潜像担持体上に形成された静電潜像を、トナーを用いて現像する方法のうち、トナーを磁性キャリアと混合した二成分系現像剤を使用する二成分系現像方法が、高画質を要求されるフルカラー複写機またはプリンタに好適に用いられている。二成分系現像方法において、磁性キャリアは摩擦帯電により適当量の正または負の帯電量をトナーに付与し、また、該摩擦帯電の静電引力により磁性キャリア表面にトナーを担持する。
上記二成分系現像剤を構成する磁性キャリアとトナーに対して要求される特性は種々あるが、磁性キャリアに対して特に重要な特性として、適当な帯電付与性、交番電圧に対する耐圧性、耐衝撃性、耐摩耗性、耐スペント性、現像性などが挙げられる。
磁性キャリアには、粉体特性、電気特性および磁気特性といった特性があり、現像システムに合わせた各性能が要求される。近年では、環境安定性および耐久性向上のためにコア材(芯材)をコート樹脂(被覆材)で被覆した磁性キャリアが広く使用されている。
例えば、特許文献1~5の二成分系現像剤では、少なくとも二層の被覆樹脂を有する磁性キャリアを使用している。
特許文献1では、最表面層の樹脂がN-アルコキシアルキル化ポリアミドとシリコーン樹脂との縮合物を含有し、最表面層の樹脂と芯材との中間に微粒子を含む樹脂を含有する中間層を有する磁性キャリアが記載されている。これによって、長期使用下における帯電安定性および被膜の耐摩耗性を向上させ、二成分現像剤の耐久性を向上させている。
また、特許文献2では、被覆樹脂の最下層に親油性処理されたフェライト粒子を含有することによって、樹脂層の膜質を向上させ、細線再現性に優れたトナー画像の得られる磁性キャリアが記載されている。
また、特許文献3では、コア材の外周を被覆する第一のコート樹脂層に疏水化処理されたアルミナ微粒子を含有することで、キャリア表面のスペント成分をキャリア同士が削り取るという効果を発現するキャリアが記載されている。その結果、ストレスを受けていない被覆樹脂が常に表面へ露出し、キャリア性能が保持され、優れたライフ安定性を実現している。
また、特許文献4では、コア粒子表面にコーティングされた内側樹脂コート層と、内側樹脂コート層の表面にコーティングされた外側樹脂コート層とを備え、内側樹脂コート層が、表面に脂肪酸金属微粒子がコーティングされた非磁性微粒子を含有するキャリアが開示されている。その結果、長期にわたる現像によっても、コア粒子およびトナー間のファンデルワールス力の増大を防止でき、帯電性能が安定して維持することができる。
また、特許文献5では、磁性体粒子上に順次形成された第一の被覆樹脂と第二の被覆樹脂との界面にカーボンブラックが存在する電子写真用キャリアによって、摩耗により剥がれた被覆樹脂が定着画像へ移行し、定着画像の色味を濁らすという問題を解決している。
ところが昨今、現像器の小型化に伴う現像剤容量の減少や出力速度の高速化による現像剤撹拌スピードの高速化など、現像器内での現像剤にかかる負担は増大する傾向にある。その結果、特に高温高湿環境下においては、磁性キャリアとトナー間にて働く水架橋力によって、磁性キャリアの表面にはトナーや外添剤のスペントが進行し、磁性キャリアの帯電付与性が低下する。また、磁性キャリアの表面に対する水分吸着が進行し、磁性キャリアの被覆樹脂の強度が一時的に低下することによって、磁性キャリアの被覆樹脂の削れが発生し、帯電付与能が低下する。
ここで、特許文献1、2に記載された現像剤を使用する場合であっても、昨今の現像器内における現像剤に対する過酷な負担によって、磁性キャリアの表面の被覆樹脂にクラックが生じ、その部分にトナー由来のワックスが付着する場合があった。その結果、磁性キャリアの表面のワックス付着部にトナー由来の微粒子が付着し、初期状態のキャリア特性を維持できない耐久性が不十分な磁性キャリアとなる。また、磁性キャリアの表面の被覆樹脂に発生したクラック部から、水分吸着が進行し、帯電付与能が低下する。このように、特許文献1、2に記載されたキャリアであっても、さらなる改善の余地があった。
また、特許文献3、4、5では、いずれの場合も被覆樹脂の削れを完全に防止できていない。
また、特許文献3、4、5では、いずれの場合も被覆樹脂の削れを完全に防止できていない。
本発明の目的は、上記のような課題を解決した磁性キャリアを提供するものである。具体的には、高温高湿環境下において長期使用しても、被膜の耐摩耗性に優れ、安定した帯電付与能を保ち、高湿環境から低湿環境への変動に対して、画像濃度および色味変動が安定した磁性キャリアを提供することにある。
上記目的を達成するために、本発明のキャリアは、磁性を有するフェライト芯材粒子と、被覆樹脂と、を有する磁性キャリアであって、
前記被覆樹脂は、表面樹脂層と、前記フェライト芯材粒子および前記表面樹脂層の間に存在する樹脂組成物と、を有し、
前記樹脂組成物は、樹脂と、親水性処理された無機粒子およびカーボンブラックからなる群より選択される少なくとも1つと、を含み、
前記表面樹脂層は、
i)樹脂を含み、
ii)前記親水性処理された無機粒子もしくはカーボンブラックを含まず、
iii)膜厚が0.01μm以上4.00μm以下の範囲であり、
前記磁性キャリアは、温度30℃湿度80%RHの環境下に24時間放置したときの水分率(A)と、前記環境下に24時間放置後、温度23℃湿度5%RHの環境下に24時間放置したときの水分率(B)と、の水分率変化(A-B)が、0.030質量%以下であることを特徴としている。
前記被覆樹脂は、表面樹脂層と、前記フェライト芯材粒子および前記表面樹脂層の間に存在する樹脂組成物と、を有し、
前記樹脂組成物は、樹脂と、親水性処理された無機粒子およびカーボンブラックからなる群より選択される少なくとも1つと、を含み、
前記表面樹脂層は、
i)樹脂を含み、
ii)前記親水性処理された無機粒子もしくはカーボンブラックを含まず、
iii)膜厚が0.01μm以上4.00μm以下の範囲であり、
前記磁性キャリアは、温度30℃湿度80%RHの環境下に24時間放置したときの水分率(A)と、前記環境下に24時間放置後、温度23℃湿度5%RHの環境下に24時間放置したときの水分率(B)と、の水分率変化(A-B)が、0.030質量%以下であることを特徴としている。
本発明により、高温高湿環境下において長期使用しても、被膜の耐摩耗性に優れ、安定した帯電付与能を保ち、高湿環境から低湿環境への変動に対して、画像濃度および色味変動が安定した磁性キャリアを得ることができる。
以下、本発明の実施形態について述べる。
(キャリア)
本発明の磁性キャリアは、フェライト芯材粒子の表面に、親水性処理された無機粒子およびカーボンブラックからなる群より選択される少なくとも1つ(以下、親水性処理された粒子とも称する。)を分散した樹脂溶液を塗布、乾燥させた樹脂組成物を設ける。続いて、親水性処理された無機粒子もしくはカーボンブラックを含まない樹脂溶液を塗布することで、樹脂を含む表面樹脂層が形成される。
本発明の磁性キャリアは、フェライト芯材粒子の表面に、親水性処理された無機粒子およびカーボンブラックからなる群より選択される少なくとも1つ(以下、親水性処理された粒子とも称する。)を分散した樹脂溶液を塗布、乾燥させた樹脂組成物を設ける。続いて、親水性処理された無機粒子もしくはカーボンブラックを含まない樹脂溶液を塗布することで、樹脂を含む表面樹脂層が形成される。
本発明では、前記表面樹脂層の膜厚は、0.01μm以上4.00μm以下である。
表面樹脂層の膜厚において、0.01μm未満の領域が存在する場合、親水性処理された粒子の影響を受け、環境変化の際に磁性キャリアの水分率変化が上昇する。その結果、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量の変化が大きくなるため、環境変動が大きくなり安定した帯電付与能を保つことができない。その結果、環境が変化した際の白ぬけや階調の変化が悪化する。
一方、表面樹脂層の膜厚において、4.00μmを超える領域が存在する場合、表面樹脂層の水分脱着の影響を受け、環境変化の際に磁性キャリアの水分率変化が上昇する。その結果、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量の変化が大きくなるため、環境変動が大きくなり安定した帯電付与能を保つことができない。その結果、環境が変化した際の白ぬけや階調の変化が悪化する。
表面樹脂層とフェライト芯材粒子との間に存在する樹脂組成物(以下、中間樹脂層とする)に含まれる樹脂としては、表面樹脂層との親和性およびフェライト芯材粒子との親和性が高く、かつ靭性に富むことから、アクリル樹脂が好ましく用いられる。
フェライト芯材粒子の表面を樹脂で被覆する方法としては、特に限定されないが、浸漬法、スプレー法、ハケ塗り法、乾式法、および流動床のような塗布方法により被覆する方法が挙げられる。被覆する樹脂の量としては、フェライト芯材粒子100質量部に対して、0.1質量部以上5.0質量部以下であることが好ましい。
こうして形成された中間樹脂層の外側に形成される、磁性キャリアの最表面を形成する表面樹脂層に含まれる樹脂(表面樹脂層用樹脂)としてとしては、中間樹脂層(樹脂組成物)との親和性が高く、かつ靭性に富むことから、アクリル樹脂が好ましく用いられる。
中間樹脂層の表面を表面樹脂層用樹脂で被覆する方法としては、特に限定されないが、浸漬法、スプレー法、ハケ塗り法、乾式法、および流動床のような塗布方法により被覆する方法が挙げられる。被覆する樹脂の量としては、フェライト芯材粒子100質量部に対して、0.1質量部以上5.0質量部以下であることが好ましい。
本発明の磁性キャリアは、温度30℃湿度80%RHの環境下に24時間放置したときの前記磁性キャリアの水分率(A)と、温度30℃湿度80%RHの環境下に24時間放置後、温度23℃湿度5%RHの環境下に24時間放置したときの前記磁性キャリアの水分率(B)との水分率変化(A-B)が、0.030質量%以下である。
水分率変化が0.030質量%を超える場合では、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量の変化が大きくなるため、環境変動が大きくなり安定した帯電付与能を保つことができない。その結果、環境が変化した際の白ぬけや階調の変化が悪化する。
(無機粒子、カーボンブラック)
本発明の中間樹脂層に含有される、親水性処理された無機粒子およびカーボンブラック(カーボンブラック粒子)からなる群より選択される少なくとも1つの粒子について説明する。
本発明で用いられる無機粒子およびカーボンブラック(以下、被処理粒子とも称する。)としては、カーボンブラック、SrTiO3、TiO2、Al2O3、MgO、SiO2を好ましく使用することができる。これ以外の被処理粒子を用いた場合、被処理粒子自体の水分吸着能によりキャリアの水分率変化が増大することがあり、環境安定性が低減する可能性がある。上記に挙げた無機粒子およびカーボンブラックは、複数種併用してもよい。
本発明の中間樹脂層に含有される、親水性処理された無機粒子およびカーボンブラック(カーボンブラック粒子)からなる群より選択される少なくとも1つの粒子について説明する。
本発明で用いられる無機粒子およびカーボンブラック(以下、被処理粒子とも称する。)としては、カーボンブラック、SrTiO3、TiO2、Al2O3、MgO、SiO2を好ましく使用することができる。これ以外の被処理粒子を用いた場合、被処理粒子自体の水分吸着能によりキャリアの水分率変化が増大することがあり、環境安定性が低減する可能性がある。上記に挙げた無機粒子およびカーボンブラックは、複数種併用してもよい。
また、本発明においては中間樹脂層に有機微粒子を用いないことが好ましい。有機微粒子(被処理粒子)として熱硬化性樹脂を用いた場合、その製法上、樹脂分子鎖が乱雑に絡み合い、親水性を示す官能基が樹脂表層には配向しにくいと考えられる。そのため、密着性向上による耐久性、および環境安定性などの本発明の効果が発現しにくい可能性がある。熱可塑性樹脂を用いた場合においては、樹脂溶液中に一部が溶解してしまう可能性があり、均一なコート層を形成しにくく、やはり本発明の効果を得られにくい場合がある。
本発明で用いられる無機粒子およびカーボンブラックからなる群より選択される少なくとも1つは、その基体表面にエステル基および/またはカルボキシル基を有し、該エステル基と該カルボキシル基の合計の官能基濃度が20%以上であり、より好ましくは、30%以上である。
官能基濃度とは、X線光電子分光(以下、XPS)測定において、被処理粒子由来の元素に対する、官能基(エステル基、カルボキシル基)の割合を示したものである。
官能基濃度が上記範囲であることにより、親水性処理された粒子の表面に存在するカルボキシ基もしくはエステル基と表面樹脂層中の水分子とが水素結合を形成し、その相互作用によって中間樹脂層と表面樹脂層との密着性が向上する。また、表面樹脂層中にアクリル樹脂を用いた場合、アクリル樹脂中のπ結合部と親水性処理された粒子の表面に存在するカルボキシ基もしくはエステル基とでπ-π相互作用が生じ、中間樹脂層と表面樹脂層との密着性が向上する。また、親水性処理された粒子の表面の官能基と、フェライト芯材粒子の表面のヒドロキシ基と、の相互作用によって、中間樹脂層とフェライト芯材粒子との密着性が向上する。その結果、高温高湿環境下において長期間使用した場合でも、表面樹脂層の耐摩耗性が優れることで、安定した帯電付与能を保つことができる。すなわち、長期にわたりトナーの帯電特性が安定するため、混色の色味変動の安定性、耐ガサツキ性(ドット再現性)、現像性、階調の安定性が向上する。さらに、磁性キャリア自体の電荷が小さい場合に顕著に現れるベタ画像におけるキャリア付着も発現しにくい傾向となる。また、表面樹脂層中の水分子を保持するため、環境が変化した場合でも、磁性キャリアの水分率は変化しにくい。このため、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量が変化しにくいため、環境変動が小さく安定した帯電付与能を保つことができる。その結果、環境が変化した際の白ぬけが抑制され、階調の安定性が向上する。
一方、官能基濃度が20%未満の場合は、親水性処理された粒子の表面に存在するカルボキシ基およびエステル基の数が少ないことにより、表面樹脂層との相互作用が小さくなる。その結果、中間樹脂層と表面樹脂層との密着性が低減する。また、表面樹脂層中にアクリル樹脂を用いた場合、アクリル樹脂中のπ結合部と親水性処理された粒子の表面に存在するカルボキシ基もしくはエステル基との間で生じるπ-π相互作用が小さくなり、中間樹脂層と表面樹脂層との密着性が低減する。また、親水性処理された粒子の表面の官能基とフェライト芯材粒子の表面のヒドロキシ基との相互作用が小さくなり、中間樹脂層とフェライト芯材粒子との密着性は低減する。その結果、高温高湿環境下において長期間使用した場合、表面樹脂層の耐摩耗性が低減し、安定した帯電付与能を保つことができない。すなわち、長期にわたりトナーの帯電特性が安定せず、混色の色味変動の安定性、耐ガサツキ性(ドット再現性)、現像性、階調の安定性が悪化する。さらに、磁性キャリア自体の電荷が低減し、キャリア付着が発現しやすい。また、表面樹脂層中の水分子を保持しにくく、環境が変化した場合に磁性キャリアの水分率変化は大きくなる。このため、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量が変化し、帯電付与能の安定性が低減する。その結果、環境が変化した際の白ぬけや階調の変化が悪化する。
本発明で用いられる無機粒子およびカーボンブラック(被処理粒子)の一次粒子の体積平均径は、10nm以上1000nm以下であることが好ましい。
10nmより小さい場合、粒子同士が凝集しやすく、中間樹脂層中に凝集塊の状態で分散される。その場合、磁性キャリア表面に中間樹脂層中の凝集塊に起因した凸部が生じると考えられる。ゆえに、実使用下においては、磁性キャリア表面の凸部に対して、磁性キャリア同士の摩擦によるストレスが集中し、表面樹脂層の剥離を伴って中間樹脂層から凝集塊が脱離する可能性がある。そのため、その部分で帯電付与能が低減することがある。すなわち、トナーの帯電特性が長期にわたり維持できないため、混色の色味変動の安定性、耐ガサツキ性(ドット再現性)、現像性、階調の変化が悪化する場合がある。さらに、磁性キャリア自体の電荷が小さい場合に顕著に現れるベタ画像におけるキャリア付着も悪化する傾向となる。また、凝集塊の脱離によって表面樹脂層中の水分子を安定的に保持しにくくため、環境が変化した場合において、磁性キャリアの水分率は変化が大きくなる。このため、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量の変化が大きくなり、環境変動が大きくなり安定した帯電付与能を保つことができない。その結果、環境が変化した際の白ぬけや階調の変化が悪化する場合がある。
1000nmより大きい場合、磁性キャリア表面に中間樹脂層中の凝集塊に起因した凸部が生じると考えられる。ゆえに、実使用下においては、磁性キャリア表面の凸部に対して、磁性キャリア同士の摩擦によるストレスが集中し、表面樹脂層の剥離を伴って中間樹脂層から凝集塊が脱離する可能性がある。そのため、その部分で帯電付与能が低減することがある。すなわち、トナーの帯電特性が長期にわたり維持できないため、混色の色味変動の安定性、耐ガサツキ性(ドット再現性)、現像性、階調の変化が悪化する場合がある。さらに、磁性キャリア自体の電荷が小さい場合に顕著に現れるベタ画像におけるキャリア付着も悪化する傾向となる。また、凝集塊の脱離によって表面樹脂層中の水分子を安定的に保持しにくくため、環境が変化した場合において、磁性キャリアの水分率は変化が大きくなる。このため、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量の変化が大きくなり、環境変動が大きくなり安定した帯電付与能を保つことができない。その結果、環境が変化した際の白ぬけや階調の変化が悪化する場合がある。
本発明の中間樹脂層は、前記樹脂を100質量部としたとき、前記親水性処理された粒子を1.0質量部以上20.0質量部以下含有することが好ましい。
親水性処理された粒子が1.0質量部より少ない場合、表面樹脂層中の水分子と相互作用する親水処理された粒子表面の官能基の絶対量が少なくなるため、中間樹脂層と表面樹脂層との密着性は向上しない。その結果、高温高湿環境下において長期間使用した場合に、表面樹脂層の耐摩耗性が低減することで、安定した帯電付与能を維持できなくなる。すなわち、トナーの帯電特性が長期にわたり維持できないため、混色の色味変動の安定性、耐ガサツキ性(ドット再現性)、現像性、階調の変化が悪化する場合がある。さらに、磁性キャリア自体の電荷が小さい場合に顕著に現れるベタ画像におけるキャリア付着も悪化する傾向となる。また、表面樹脂層中の水分子を保持する作用が小さくなるため、環境が変化した場合に樹脂中の水分率変化は上昇する。その結果、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量の変化が大きくなるため、環境変動が大きくなり安定した帯電付与能を保つことができない。その結果、環境が変化した際の白ぬけや階調の変化が悪化する場合がある。
一方、親水性処理された粒子が20.0質量部より多い場合、表面樹脂層の水分子と相互作用する親水処理された粒子表面の官能基の絶対量が多くなるため、水分子がより中間樹脂層方向に引き付けられると考えられる。その結果、表面樹脂層のごく表層付近の水分子が減少し、空気中の水分子を吸着することで、樹脂全体の水分率が上昇する。その結果、高温高湿環境下において長期間使用した場合に、表面樹脂層の耐摩耗性が低減することで、安定した帯電付与能を維持できなくなる。すなわち、トナーの帯電特性が長期にわたり維持できないため、混色の色味変動の安定性、耐ガサツキ性(ドット再現性)、現像性、階調の変化が悪化する場合がある。さらに、磁性キャリア自体の電荷が小さい場合に顕著に現れるベタ画像におけるキャリア付着も悪化する傾向となる。また、表面樹脂層の水分率が上昇することによって、環境が変化した場合において、磁性キャリアの水分率変化が大きくなる。その結果、高温高湿環境から常温低湿環境への変動に対して、キャリアの帯電特性に大きく影響する水分量の変化が大きくなるため、環境変動が大きくなり安定した帯電付与能を保つことができない。その結果、環境が変化した際の白ぬけや階調の変化が悪化する場合がある。
(親水性処理方法)
本発明の中間樹脂層に含有される無機粒子およびカーボンブラックからなる群より選択される少なくとも1つは、粒子表面を親水性処理することを要件とする。
本発明の中間樹脂層に含有される無機粒子およびカーボンブラックからなる群より選択される少なくとも1つは、粒子表面を親水性処理することを要件とする。
親水性処理方法の一つとして、例えば、市販の無機粒子、中性若しくは塩基性カーボンブラックまたは酸性カーボンブラックを酸化処理して親水性基を導入する方法が挙げられる。
酸化処理法の具体例としては、空気接触による酸化法では窒素酸化物やオゾンとの反応による気相酸化法などがある。また、硝酸、過マンガン酸カリウム、重クロム酸カリウム、亜塩素酸、過塩素酸、次亜ハロゲン塩酸、過酸化水素、臭素水溶液、オゾン水溶液などの酸化剤を用いる液相酸化法などが挙げられる。その他、プラズマ処理などにより表面を酸化処理したカーボンブラックについても同様に適用することができる。
上記のように粒子表面を酸化処理することによって、親水性基を導入する方法は種々あるが、例えば、次のような方法をとることが好ましい。液相酸化法を行う場合、適当な容器にカーボンブラックをいれ、硝酸水溶液を加えて還流した後、洗浄および乾燥を行うことで親水性処理された粒子を得ることができる。気相酸化法を行う場合、各粒子を筒状のオゾン処理器に入れ、オゾン発生器にてオゾンを発生させ、粒子をオゾン雰囲気下にさらすことによって、親水性処理された粒子を得ることができる。
また、親水性処理方法の一つとして、例えば、低級脂肪酸の親水性エステル化剤もしくはカルボキシル化剤を用いて、粒子表面のヒドロキシ基に対して低級脂肪酸の親水性エステル基若しくはカルボキシル基を導入する方法が挙げられる。
親水性のエステル化剤の具体例としては、例えば、無水酢酸、酢酸塩化物、酢酸、無水プロピオン酸、無水コハク酸、無水マレイン酸、無水フタル酸、ポリグリセリン脂肪酸エステル、アルギン酸などが挙げられる。これらの低級脂肪酸の親水性エステル化剤若しくはカルボキシル化剤は、二種類以上混合して使用してもよい。
上記のような親水性処理方法として、低級脂肪酸の親水性エステル化剤若しくはカルボキシル化剤を用いて、粒子表面のヒドロキシ基に対して低級脂肪酸の親水性エステル基若しくはカルボキシル基を導入する方法が種々存在する。例えば、次のような方法をとることが好ましい。適当な容器に各粒子種を入れ、系中を窒素雰囲気下とした後、無水トルエン、トリエチルアミン、ジメチルアミノピリジン、無水酢酸を加え、室温にて反応させることで、化学修飾粒子を得る。その後、適当な容器に得られた化学修飾粒子を入れ、メタノール、炭酸カルシウムを加え、室温にて反応させる、その後、反応停止処理を行い、洗浄および乾燥を行うことで親水性処理された粒子を得ることができる。
(フェライト芯材粒子)
本発明に使用されるフェライト芯材粒子について説明する。
磁性キャリアのコア粒子(フェライト芯材粒子)の材質としては、マグネタイトまたはフェライトが好ましい。
さらに、フェライト芯材粒子は、多孔質磁性芯材粒子と、該多孔質磁性芯材粒子の空孔に充填された樹脂と、を有する樹脂充填型磁性芯材であってもよい。多孔質磁性粒子(多孔質磁性芯材粒子)の材質は、フェライトであることが多孔質磁性粒子の多孔質の構造を制御したり、抵抗を調整したりできるため、より好ましい。
本発明に使用されるフェライト芯材粒子について説明する。
磁性キャリアのコア粒子(フェライト芯材粒子)の材質としては、マグネタイトまたはフェライトが好ましい。
さらに、フェライト芯材粒子は、多孔質磁性芯材粒子と、該多孔質磁性芯材粒子の空孔に充填された樹脂と、を有する樹脂充填型磁性芯材であってもよい。多孔質磁性粒子(多孔質磁性芯材粒子)の材質は、フェライトであることが多孔質磁性粒子の多孔質の構造を制御したり、抵抗を調整したりできるため、より好ましい。
フェライトは次の一般式で表される焼結体である。
(M12O)x(M2O)y(Fe2O3)z
(式中、M1は1価、M2は2価の金属であり、x+y+z=1.0とした時、xおよびyは、それぞれ0≦(x,y)≦0.8であり、zは、0.2<z<1.0である。)
(M12O)x(M2O)y(Fe2O3)z
(式中、M1は1価、M2は2価の金属であり、x+y+z=1.0とした時、xおよびyは、それぞれ0≦(x,y)≦0.8であり、zは、0.2<z<1.0である。)
式中において、M1およびM2としては、Li、Fe、Mn、Mg、Sr、Cu、Zn、Ca、からなる群から選ばれる1種類以上の金属原子であることが好ましい。そのほかにもNi、Co、Ba、Y、V、Bi、In、Ta、Zr、B、Mo、Na、Sn、Ti、Cr、Al、Si、希土類なども用いることができる。
フェライト芯材粒子の製造方法は、例えば、以下のとおりである。金属の酸化物、炭酸塩、または硝酸塩を湿式あるいは乾式にて混合し、所望のフェライト組成となるように仮焼成する。次いで、得られたフェライト芯材粒子をサブミクロンまで粉砕する。磁性キャリアのコア(芯材粒子)の粒径を調整するために、粉砕されたフェライト粒子に水を20質量%以上50質量%以下加える。そして、結着樹脂として例えばポリビニルアルコール(分子量500以上10,000以下)を0.1質量%以上10質量%以下加えて、スラリーを調製する。このスラリーをスプレードライヤーなどにより造粒し、焼成することでフェライト芯材粒子を得ることができる。
多孔質磁性芯材粒子の場合、磁化量を適度に維持し、細孔径を所望の範囲にすることや多孔質磁性芯材粒子の表面の凹凸状態を好適にすることが求められる。また、フェライト化反応の速度を容易にコントロールでき、多孔質磁性芯材粒子の比抵抗と磁気力を好適にコントロールできることも求められる。以上の観点から、Mn元素を含有する、Mn系フェライト、Mn-Mg系フェライト、Mn-Mg-Sr系フェライト、Li-Mn系フェライトがより好ましい。
以下に、多孔質磁性芯材粒子としてフェライト芯材粒子を用いる場合の製造工程を詳細に説明する。
<工程1(秤量・混合工程)>
フェライトの原料を、秤量し、混合する。フェライト原料としては、上記金属原子の金属粒子、酸化物、水酸化物、シュウ酸塩、炭酸塩が挙げられる。
混合する装置としては、例えば以下のものが挙げられる。ボールミル、遊星ミル、ジオットミル、振動ミル。特にボールミルが混合性の観点から好ましい。具体的には、ボールミル中に、秤量したフェライト原料、ボールを入れ、0.1時間以上20.0時間以下、粉砕・混合する。
フェライトの原料を、秤量し、混合する。フェライト原料としては、上記金属原子の金属粒子、酸化物、水酸化物、シュウ酸塩、炭酸塩が挙げられる。
混合する装置としては、例えば以下のものが挙げられる。ボールミル、遊星ミル、ジオットミル、振動ミル。特にボールミルが混合性の観点から好ましい。具体的には、ボールミル中に、秤量したフェライト原料、ボールを入れ、0.1時間以上20.0時間以下、粉砕・混合する。
<工程2(仮焼成工程)>
粉砕・混合したフェライト原料を、大気中で焼成温度700℃以上1200℃以下の範囲で、0.5時間以上5.0時間以下、仮焼成し、フェライト化する。焼成には、例えば以下の炉が用いられる。バーナー式焼却炉、ロータリー式焼成炉、電気炉など。
粉砕・混合したフェライト原料を、大気中で焼成温度700℃以上1200℃以下の範囲で、0.5時間以上5.0時間以下、仮焼成し、フェライト化する。焼成には、例えば以下の炉が用いられる。バーナー式焼却炉、ロータリー式焼成炉、電気炉など。
<工程3(粉砕工程)>
工程2で作製した仮焼フェライトを粉砕機で粉砕する。
粉砕機としては、所望の粒径が得られれば特に限定されない。例えば以下のものがあげられる。クラッシャーやハンマーミル、ボールミル、ビーズミル、遊星ミル、ジオットミルなど。
工程2で作製した仮焼フェライトを粉砕機で粉砕する。
粉砕機としては、所望の粒径が得られれば特に限定されない。例えば以下のものがあげられる。クラッシャーやハンマーミル、ボールミル、ビーズミル、遊星ミル、ジオットミルなど。
フェライト粉砕品を所望の粒径にするために、例えば、ボールミルやビーズミルでは用いるボールやビーズの素材、粒径、運転時間を制御することが好ましい。具体的には、仮焼フェライトスラリーの粒径を小さくするためには、比重の重いボールを用いたり、粉砕時間を長くしたりすればよい。また、仮焼フェライトの粒度分布を広くするためには、比重の重いボールやビーズを用い、粉砕時間を短くすることで得ることができる。また、粒径の異なる複数の仮焼フェライトを混合することでも粒度分布の広い仮焼フェライトを得ることができる。
また、ボールミルやビーズミルは、乾式より湿式の方が、粉砕品がミルの中で舞い上がることがなく粉砕効率が高い。このため、乾式より湿式の方がより好ましい。
また、ボールミルやビーズミルは、乾式より湿式の方が、粉砕品がミルの中で舞い上がることがなく粉砕効率が高い。このため、乾式より湿式の方がより好ましい。
<工程4(造粒工程)>
仮焼フェライトの粉砕品に対して、水、バインダーと、必要に応じて、細孔調整剤を加える。細孔調整剤としては、発泡剤や樹脂微粒子が挙げられる。
発泡剤として、例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸アンモニウムが挙げられる。
樹脂微粒子として、例えば、ポリエステル、ポリスチレン、スチレン-ビニルトルエン共重合体、スチレン-ビニルナフタリン共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体、スチレン-α-クロルメタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-アクリロニトリル-インデン共重合体のようなスチレン共重合体;ポリ塩化ビニル、フェノール樹脂、変性フェノール樹脂、マレイン樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂;脂肪族多価アルコール、脂肪族ジカルボン酸、芳香族ジカルボン酸、芳香族ジアルコール類およびジフェノール類から選択されるモノマーを構造単位として有するポリエステル樹脂;ポリウレタン樹脂、ポリアミド樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油樹脂、ポリエステルユニットとビニル系重合体ユニットを有しているハイブリッド樹脂の微粒子が挙げられる。
仮焼フェライトの粉砕品に対して、水、バインダーと、必要に応じて、細孔調整剤を加える。細孔調整剤としては、発泡剤や樹脂微粒子が挙げられる。
発泡剤として、例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸アンモニウムが挙げられる。
樹脂微粒子として、例えば、ポリエステル、ポリスチレン、スチレン-ビニルトルエン共重合体、スチレン-ビニルナフタリン共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体、スチレン-α-クロルメタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-アクリロニトリル-インデン共重合体のようなスチレン共重合体;ポリ塩化ビニル、フェノール樹脂、変性フェノール樹脂、マレイン樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂;脂肪族多価アルコール、脂肪族ジカルボン酸、芳香族ジカルボン酸、芳香族ジアルコール類およびジフェノール類から選択されるモノマーを構造単位として有するポリエステル樹脂;ポリウレタン樹脂、ポリアミド樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油樹脂、ポリエステルユニットとビニル系重合体ユニットを有しているハイブリッド樹脂の微粒子が挙げられる。
上記バインダーとしては、例えば、ポリビニルアルコールが用いられる。
工程3において、湿式で粉砕した場合は、フェライトスラリー中に含まれている水も考慮し、バインダーと必要に応じて細孔調整剤を加えることが好ましい。
得られたフェライトスラリーを、噴霧乾燥機を用い、100℃以上200℃以下の加温雰囲気下で、乾燥・造粒する。噴霧乾燥機としては、所望の多孔質磁性粒子の粒径が得られれば特に限定されない。例えば、スプレードライヤーが使用できる。
<工程5(本焼成工程)>
次に、造粒品を800℃以上1400℃以下で1時間以上24時間以下焼成する。焼成温度を上げ、焼成時間を長くすることで、多孔質磁性芯材粒子の焼成が進み、その結果、細孔径は小さく、かつ、細孔の数も減る。
次に、造粒品を800℃以上1400℃以下で1時間以上24時間以下焼成する。焼成温度を上げ、焼成時間を長くすることで、多孔質磁性芯材粒子の焼成が進み、その結果、細孔径は小さく、かつ、細孔の数も減る。
<工程6(選別工程)>
以上のように焼成した粒子を解砕した後に、必要に応じて、分級や篩で篩分して粗大粒子や微粒子を除去してもよい。フェライト芯材粒子(磁性コア粒子)の体積分布基準50%粒径(D50)は、18.0μm以上68.0μm以下であることが、画像へのキャリア付着とガサツキの抑制のためより望ましい。
以上のように焼成した粒子を解砕した後に、必要に応じて、分級や篩で篩分して粗大粒子や微粒子を除去してもよい。フェライト芯材粒子(磁性コア粒子)の体積分布基準50%粒径(D50)は、18.0μm以上68.0μm以下であることが、画像へのキャリア付着とガサツキの抑制のためより望ましい。
多孔質磁性芯材粒子は、内部の細孔容積によっては物理的強度が低くなることがあり、磁性キャリアとしての物理的強度を高めるために、多孔質磁性芯材粒子の空孔の少なくとも一部に樹脂の充填を行うことが好ましい。多孔質磁性芯材粒子に充填される樹脂の量としては、多孔質磁性芯材粒子に対して2質量%以上15質量%以下であることが好ましい。磁性キャリア毎の樹脂含有量にバラつきが少なければ、内部空隙内の一部にのみ樹脂が充填されていても、多孔質磁性芯材粒子の表面近傍の空隙にのみ樹脂が充填され内部に空隙が残っていても、内部空隙が完全に樹脂で充填されていてもよい。
多孔質磁性芯材粒子の空孔に樹脂を充填する方法としては、特に限定されないが、浸漬法、スプレー法、ハケ塗り法、または流動床のような塗布方法により多孔質磁性芯材粒子を樹脂溶液に含浸させ、その後、溶剤を揮発させる方法が挙げられる。多孔質磁性芯材粒子の空隙に樹脂を充填させる方法としては、樹脂を溶剤に希釈して樹脂溶液とし、これを多孔質磁性芯材粒子の空隙に添加する方法が採用できる。ここで用いられる溶剤は、樹脂を溶解できるものであればよい。有機溶剤に可溶な樹脂である場合は、有機溶剤として、トルエン、キシレン、セルソルブブチルアセテート、メチルエチルケトン、メチルイソブチルケトン、メタノールが挙げられる。また、水溶性の樹脂またはエマルジョンタイプの樹脂である場合には、溶剤として水を用いればよい。
上記樹脂溶液における樹脂固形分の量は、好ましくは1質量%以上50質量%以下であり、より好ましくは1質量%以上40質量%以下である。50質量%より樹脂固形分の量が多い樹脂溶液を用いると粘度が高いため多孔質磁性芯材粒子の空隙に樹脂溶液が均一に浸透しにくい。また、1質量%未満であると樹脂固形分の量が少なく、多孔質磁性芯材粒子への樹脂の付着力が低くなる場合がある。
上記充填する樹脂として、熱可塑性樹脂としては、ノボラック樹脂、飽和アルキルポリエステル樹脂、ポリアリレート、ポリアミド樹脂が挙げられる。また、熱硬化性樹脂としては、シリコーン樹脂、フェノール系樹脂、エポキシ樹脂、不飽和ポリエステル樹脂などが挙げられる。
(トナー)
本発明においてその目的を達成するに好ましいトナーの構成を以下に詳述するが、本発明はこれに何ら限定されるものではない。
トナーは、結着樹脂と、着色剤と、を含有し、必要に応じて磁性体、離型剤、荷電制御剤などを含有してもよい。さらに、トナー粒子の表面には流動性などの各種の性質を向上させる外添剤を付着させてもよい。
本発明においてその目的を達成するに好ましいトナーの構成を以下に詳述するが、本発明はこれに何ら限定されるものではない。
トナーは、結着樹脂と、着色剤と、を含有し、必要に応じて磁性体、離型剤、荷電制御剤などを含有してもよい。さらに、トナー粒子の表面には流動性などの各種の性質を向上させる外添剤を付着させてもよい。
本発明に用いられる結着樹脂としては、ビニル系樹脂、ポリエステル系樹脂、エポキシ樹脂などが挙げられる。中でもビニル系樹脂とポリエステル系樹脂が帯電性や定着性の観点からより好ましい。
本発明において、ビニル系モノマーの単重合体または共重合体、ポリエステル、ポリウレタン、エポキシ樹脂、ポリビニルブチラール、ロジン、変性ロジン、テルペン樹脂、フェノール樹脂、脂肪族または脂環族炭化水素樹脂、芳香族系石油樹脂などを、必要に応じて前述した結着樹脂に混合して用いることができる。
2種以上の樹脂を混合して結着樹脂として用いる場合、より好ましい形態としては分子量の異なるものを適当な割合で混合することが好ましい。
結着樹脂のガラス転移温度(Tg)は、好ましくは45℃以上80℃以下、より好ましくは55℃以上70℃以下である。また、結着樹脂の数平均分子量(Mn)は、1,000以上50,000以下が好ましく、重量平均分子量(Mw)は5,000以上1,000,000以下であることが好ましい。
結着樹脂としては以下に示すポリエステル樹脂も好ましい。
ポリエステル樹脂は、全成分中45mol%以上55mol%以下がアルコール成分であり、55mol%以上45mol%以下が酸成分である。
ポリエステル樹脂の酸価は、好ましくは90mgKOH/g以下、より好ましくは50mgKOH/g以下であり、OH価(水酸基価)は好ましくは50mgKOH/g以下、より好ましくは30mgKOH/g以下であることがよい。これは、分子鎖の末端基数が増えるとトナーの帯電特性において環境依存性が大きくなるためである。
ポリエステル樹脂のガラス転移温度(Tg)は好ましくは50℃以上75℃以下、より好ましくは55℃以上65℃以下である。ポリエステル樹脂の数平均分子量(Mn)は好ましくは1,500以上50,000以下、より好ましくは2,000以上20,000以下である。ポリエステル樹脂の重量平均分子量(Mw)は、好ましくは6,000以上100,000以下、より好ましくは10,000以上90,000以下である。
本発明に係るトナーを磁性トナーとして用いる場合、磁性トナーは磁性体を含む。磁性トナーに含まれる磁性材料としては、マグネタイト、マグヘマイト、フェライトのような酸化鉄、および他の金属酸化物を含む酸化鉄;Fe,Co,Niのような金属、あるいは、これらの金属とAl,Co,Cu,Pb,Mg,Ni,Sn,Zn,Sb,Be,Bi,Cd,Ca,Mn,Se,Ti,W,Vのような金属との合金、およびこれらの混合物などが挙げられる。
具体的には、磁性材料としては、四三酸化鉄(Fe3O4)、三二酸化鉄(γ-Fe2O3)、酸化鉄亜鉛(ZnFe2O4)、酸化鉄イットリウム(Y3Fe5O12)、酸化鉄カドミウム(CdFe2O4)、酸化鉄ガドリニウム(Gd3Fe5O12)、酸化鉄銅(CuFe2O4)、酸化鉄鉛(PbFe12O19)、酸化鉄ニッケル(NiFe2O4)、酸化鉄ネオジム(NdFe2O3)、酸化鉄バリウム(BaFe12O19)、酸化鉄マグネシウム(MgFe2O4)、酸化鉄マンガン(MnFe2O4)、酸化鉄ランタン(LaFeO3)、鉄粉(Fe)、コバルト粉(Co)、ニッケル粉(Ni)などが挙げられる。
磁性トナーは、結着樹脂100質量部に対して、磁性体を20質量部以上150質量部以下含有することが好ましい。より好ましくは50質量部以上130質量部以下であり、さらに好ましくは60質量部以上120質量部である。
本発明で使用される非磁性の着色剤としては、以下のものが挙げられる。
黒色着色剤としては、カーボンブラック;イエロー着色剤、マゼンタ着色剤およびシアン着色剤を用いて黒色に調整したものが挙げられる。
マゼンタトナー用着色顔料しては、以下のものが挙げられる。縮合アゾ化合物、ジケトピロロピロール化合物、アンスラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が挙げられる。具体的には、C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48:2、48:3,48:4、49、50、51、52、53、54、55、57:1、58、60、63、64、68、81:1、83、87、88、89、90、112、114、122、123、144、146、150、163、166、169、177、184、185、202、206、207、209、220、221、238、254、269;C.I.ピグメントバイオレット19、C.I.バットレッド1、2、10、13、15、23、29、35が挙げられる。
着色剤には、顔料単独で使用してもかまわないが、染料と顔料とを併用してその鮮明度を向上させた方がフルカラー画像の画質の点から好ましい。
マゼンタトナー用染料としては、以下のものが挙げられる。C.Iソルベントレッド1、3、8、23、24、25、27、30、49、81、82、83、84、100、109、121、C.I.ディスパースレッド9、C.I.ソルベントバイオレット8、13、14、21、27、C.I.ディスパーバイオレット1のような油溶染料、C.I.ベーシックレッド1、2、9、12、13、14、15、17、18、22、23、24、27、29、32、34、35、36、37、38、39、40、C.I.ベーシックバイオレット1、3、7、10、14、15、21、25、26、27、28などのような塩基性染料。
シアントナー用着色顔料としては、以下のものが挙げられる。C.I.ピグメントブルー1、2、3、7、15:2、15:3、15:4、16、17、60、62、66;C.I.バットブルー6、C.I.アシッドブルー45、フタロシアニン骨格にフタルイミドメチルを1~5個置換した銅フタロシアニン顔料。
イエロー用着色顔料としては、以下のものが挙げられる。縮合アゾ化合物、イソインドリノン化合物、アンスラキノン化合物、アゾ金属化合物、メチン化合物、アリルアミド化合物。具体的には、C.I.ピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、15、16、17、23、62、65、73、74,83、93、95、97,109、110、111、120、127、128、129、147、155、168、174、180、181、185、191;C.I.バットイエロー1、3、20が挙げられる。また、C.I.ダイレクトグリーン6、C.I.ベーシックグリーン4、C.I.ベーシックグリーン6、ソルベントイエロー162などの染料も使用することができる。
トナー粒子中の着色剤の含有量は、結着樹脂100質量部に対して、好ましくは0.1質量部以上30質量部以下であり、より好ましくは0.5質量部以上20質量部以下であり、最も好ましくは3質量部以上15質量部以下である。
また、上記トナーにおいて、あらかじめ結着樹脂に着色剤を混合し、マスターバッチ化させたものを用いることが好ましい。そして、この着色剤マスターバッチとその他の原材料(結着樹脂およびワックスなど)を溶融混練させることにより、トナー中に着色剤を良好に分散させることができる。
本発明に係るトナーは、その帯電性をさらに安定化させるために、必要に応じて、荷電制御剤を用いることができる。荷電制御剤の含有量は、結着樹脂100質量部に対して0.5質量部以上10質量部以下であることが好ましい。0.5質量部以上であれば、より十分な帯電特性が得られ、10質量部以下であれば、他材料との相溶性の悪化が抑えられ、また、低湿下における帯電過剰が抑えられる。
荷電制御剤としては、以下のものが挙げられる。
トナーを負荷電性に制御する負荷電性制御剤として、例えば有機金属錯体またはキレート化合物が有効である。モノアゾ金属錯体、芳香族ヒドロキシカルボン酸の金属錯体、芳香族ジカルボン酸系の金属錯体が挙げられる。他には、芳香族ハイドロキシカルボン酸、芳香族モノおよびポリカルボン酸およびその金属塩、その無水物、またはそのエステル類、または、ビスフェノールのフェノール誘導体類が挙げられる。
トナーを正荷電性に制御する正荷電性制御剤としては、ニグロシンおよび脂肪酸金属塩などによる変性物、トリブチルベンジルアンモニウム-1-ヒドロキシ-4-ナフトスルホン酸塩、テトラブチルアンモニウムテトラフルオロボレートなどの4級アンモニウム塩、およびこれらの類似体であるホスホニウム塩などのオニウム塩およびこれらのキレート顔料として、トリフェニルメタン染料およびこれらのレーキ顔料(レーキ化剤としては、燐タングステン酸、燐モリブデン酸、燐タングステンモリブデン酸、タンニン酸、ラウリン酸、没食子酸、フェリシアン酸、フェロシアン化合物など)、高級脂肪酸の金属塩として、ジブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキシドなどのジオルガノスズオキサイドやジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレートなどのジオルガノスズボレートが挙げられる。
本発明において、必要に応じて一種または二種以上の離型剤を、トナー粒子中に含有させてもよい。離型剤としては次のものが挙げられる。
低分子量ポリエチレン、低分子量ポリプロピレン、マイクロクリスタリンワックス、パラフィンワックスなどの脂肪族炭化水素系ワックスが好ましく使用できる。また、酸化ポリエチレンワックスなどの脂肪族炭化水素系ワックスの酸化物、または、それらのブロック共重合物;カルナバワックス、サゾールワックス、モンタン酸エステルワックスなどの脂肪酸エステルを主成分とするワックス類;および脱酸カルナバワックスなどの脂肪酸エステル類を一部または全部を脱酸化したものなどが挙げられる。
トナー粒子中の離型剤の含有量は、結着樹脂100質量部に対して0.1質量部以上20質量部以下であることが好ましく、0.5質量部以上10質量部以下がより好ましい。
また、該離型剤の示差走査型熱量計(DSC)で測定される昇温時の最大吸熱ピーク温度で規定される融点は、65℃以上130℃以下であることが好ましい。より好ましくは80℃以上125℃以下であることがよい。融点が65℃以上であれば、電子写真感光体へのトナー付着が抑制される。融点が130℃以下であれば、低温定着性の悪化が抑制される。
本発明に係るトナーには、トナー粒子に外添することにより、流動性が添加前後を比較すると増加し得る外添剤を流動性向上剤として用いてもよい。例えば、フッ化ビニリデン微粒子、ポリテトラフルオロエチレン微粒子のようなフッ素系樹脂粒子;湿式製法シリカ微粒子、乾式製法シリカ微粒子のようなシリカ微粒子、酸化チタン微粒子、アルミナ微粒子などをシランカップリング剤、チタンカップリング剤、シリコーンオイルにより表面処理を施し、疎水化処理したものが挙げられる。疎水化処理したものの中でも、メタノール滴定試験によって測定された疎水化度が30以上80以下の範囲の値を示すように処理したものが特に好ましい。
本発明における外添剤の含有量は、トナー粒子100質量部に対して、0.1質量部以上10質量部以下であることが好ましく、0.2質量部以上8質量部以下であることがより好ましい。
本発明に係るトナーを磁性キャリアと混合して二成分系現像剤として使用する場合、その際のキャリア混合比率は、現像剤中のトナーの濃度として、2質量%以上15質量%以下であることが好ましく、4質量%以上13質量%以下であることがより好ましい。トナー濃度が2質量%未満では画像濃度が低下しやすく、15質量%を超えるとカブリや機内飛散が発生しやすい。
また、現像器内の二成分系現像剤のトナー濃度の低下に応じて現像器に補給するための補給用現像剤では、補給用磁性キャリア1質量部に対しトナー量は2質量部以上50質量部以下である。
次に本発明の磁性キャリア、二成分系現像剤を用いる現像装置を備えた画像形成装置について例を挙げて説明するが、本発明に係る現像方法に使用される現像装置はこれに限るものではない。
<画像形成方法>
図1において、静電潜像担持体1は図中矢印方向に回転する。静電潜像担持体1は帯電手段である帯電器2により帯電され、帯電した静電潜像担持体1表面には、静電潜像形成手段である露光器3により露光させ、静電潜像を形成する。現像器4は、二成分系現像剤を収容する現像容器5を有し、現像剤担持体6は回転可能な状態で配置され、かつ、現像剤担持体6内部に磁界発生手段としてマグネット(磁極)7を内包している。マグネット7の少なくとも一つは静電潜像担持体1に対して対向の位置になるように設置されている。二成分系現像剤は、マグネット7の磁界により現像剤担持体6上に保持され、規制部材8により、二成分系現像剤量が規制され、静電潜像担持体1と対向する現像部に搬送される。現像部においては、マグネット7の発生する磁界により磁気ブラシを形成する。その後、直流電界に交番電界を重畳してなる現像バイアスを印加することにより静電潜像はトナー像として可視像化される。静電潜像担持体1上に形成されたトナー像は、転写帯電器11によって記録媒体12に静電的に転写される。ここで、図2に示すように、静電潜像担持体1から中間転写体9に一旦転写し、その後、転写材(記録媒体)12へ静電的に転写してもよい。その後記録媒体12は、定着器13に搬送され、ここで加熱、加圧されることにより、記録媒体12上にトナーが定着される。その後、記録媒体12は、出力画像として装置外へ排出される。なお、転写工程後、静電潜像担持体1上に残留したトナーは、クリーナー15により除去される。その後、クリーナー15により清掃された静電潜像担持体1は、前露光器16からの光照射により電気的に初期化され、上記画像形成動作が繰り返される。
図1において、静電潜像担持体1は図中矢印方向に回転する。静電潜像担持体1は帯電手段である帯電器2により帯電され、帯電した静電潜像担持体1表面には、静電潜像形成手段である露光器3により露光させ、静電潜像を形成する。現像器4は、二成分系現像剤を収容する現像容器5を有し、現像剤担持体6は回転可能な状態で配置され、かつ、現像剤担持体6内部に磁界発生手段としてマグネット(磁極)7を内包している。マグネット7の少なくとも一つは静電潜像担持体1に対して対向の位置になるように設置されている。二成分系現像剤は、マグネット7の磁界により現像剤担持体6上に保持され、規制部材8により、二成分系現像剤量が規制され、静電潜像担持体1と対向する現像部に搬送される。現像部においては、マグネット7の発生する磁界により磁気ブラシを形成する。その後、直流電界に交番電界を重畳してなる現像バイアスを印加することにより静電潜像はトナー像として可視像化される。静電潜像担持体1上に形成されたトナー像は、転写帯電器11によって記録媒体12に静電的に転写される。ここで、図2に示すように、静電潜像担持体1から中間転写体9に一旦転写し、その後、転写材(記録媒体)12へ静電的に転写してもよい。その後記録媒体12は、定着器13に搬送され、ここで加熱、加圧されることにより、記録媒体12上にトナーが定着される。その後、記録媒体12は、出力画像として装置外へ排出される。なお、転写工程後、静電潜像担持体1上に残留したトナーは、クリーナー15により除去される。その後、クリーナー15により清掃された静電潜像担持体1は、前露光器16からの光照射により電気的に初期化され、上記画像形成動作が繰り返される。
図2は、本発明に係る画像形成方法をフルカラー画像形成装置に適用した概略図の一例を示す。
図中のK、Y、C、Mなどの画像形成ユニットの並びや回転方向を示す矢印は何らこれに限定されるものではない。ちなみにKはブラック、Yはイエロー、Cはシアン、Mはマゼンタを意味している。図2において、静電潜像担持体1K、1Y、1C、1Mは図中矢印方向に回転する。各静電潜像担持体1K、1Y、1C、1Mは帯電手段である帯電器2K、2Y、2C、2Mにより帯電され、帯電した各静電潜像担持体1の表面には、静電潜像形成手段である露光器3K、3Y、3C、3Mにより露光し、静電潜像を形成する。その後、現像手段である現像器4K、4Y、4C、4Mに具備される現像剤担持体6K、6Y、6C、6M上に担持された二成分系現像剤により静電潜像はトナー像として可視像化される。さらに転写手段である中間転写帯電器(一次転写ローラ)10K、10Y、10C、10Mにより中間転写体9に転写される。さらに転写手段である転写帯電器(二次転写ローラ)11により、記録媒体12に転写され、記録媒体12は、定着手段である定着器13により加熱圧力定着され、画像として出力される。そして、中間転写体9のクリーニング部材である中間転写体クリーナー14は、転写残トナーなどを回収する。また、中間転写体9に転写された後に静電潜像担持体1K、1Y、1C、1M上に残留したトナーは、クリーナー(静電潜像担持体クリーナー)15K、15Y、15C、15Mによってそれぞれ除去される。本発明に係る現像方法としては、具体的には、現像剤担持体に交流電圧を印加して、現像領域に交番電界を形成しつつ、磁気ブラシが感光体に接触している状態で現像を行うことが好ましい。現像剤担持体(現像スリーブ)6と静電潜像担持体(電子写真感光ドラム)1との距離(S-D間距離)は、100μm以上1000μm以下であることが、キャリア付着の抑制およびドット再現性の向上の観点から好ましい。100μmより狭いと現像剤の供給が不十分になりやすく、画像濃度が低くなる。1000μmを超えると磁極からの磁力線が広がり磁気ブラシの密度が低くなり、ドット再現性が劣ったり、磁性キャリアを拘束する力が弱まりキャリア付着が生じやすくなる。
交番電界のピーク間の電圧(Vpp)は300V以上3000V以下、好ましくは500V以上1800V以下である。また周波数は500Hz以上10000Hz以下、好ましくは1000Hz以上7000Hz以下である。それぞれプロセスにより適宜選択して用いることができる。この場合、交番電界を形成するための交流バイアスの波形としては三角波、矩形波、正弦波、あるいはDuty比を変えた波形が挙げられる。ときにトナー像の形成速度の変化に対応するためには、非連続の交流バイアス電圧を有する現像バイアス電圧(断続的な交番重畳電圧)を現像剤担持体に印加して現像を行うことが好ましい。印加電圧が300Vより低いと十分な画像濃度が得られにくく、また非画像部のカブリトナーを良好に回収することができない場合がある。また、印加電圧3000Vを超える場合には磁気ブラシを介して、静電潜像を乱してしまい、画質低下を招く場合がある。
良好に帯電したトナーを有する二成分系現像剤を使用することで、カブリ取り電圧(Vback)を低くすることができ、電子写真感光体の一次帯電を低めることができるために感光体寿命を長寿命化できる。Vbackは、現像システムにも依るが200V以下、より好ましくは150V以下がよい。コントラスト電位としては、十分な画像濃度が出るように100V以上400V以下が好ましく用いられる。
また、周波数が500Hzより低いと、プロセススピードにも関係するが、電子写真感光体の構成としては、通常の画像形成装置に用いられる電子写真感光体と同じでよい。例えば、アルミニウム、SUSなどの導電性基体の上に、順に導電層、下引き層、電荷発生層、電荷輸送層、必要に応じて電荷注入層を設ける構成の電子写真感光体が挙げられる。
導電層、下引き層、電荷発生層、電荷輸送層は、通常の電子写真感光体に用いられるものでよい。感光体の最表面層として、例えば電荷注入層あるいは保護層を用いてもよい。
<磁性キャリア、多孔質磁性芯材粒子の体積平均粒径(D50)の測定方法>
粒度分布測定は、レーザー回折・散乱方式の粒度分布測定装置「マイクロトラックMT3300EX」(マイクロトラック・ベル社(旧:日機装社)製)にて測定を行った。
粒度分布測定は、レーザー回折・散乱方式の粒度分布測定装置「マイクロトラックMT3300EX」(マイクロトラック・ベル社(旧:日機装社)製)にて測定を行った。
磁性キャリア、多孔質磁性芯材粒子の体積平均粒径(D50)の測定には、乾式測定用の試料供給機「ワンショットドライ型サンプルコンディショナーTurbotrac」(マイクロトラック・ベル社製)を装着して行った。Turbotracの供給条件として、真空源として集塵機を用い、風量約33l/s、圧力約17kPaとした。制御は、ソフトウエア上で自動的に行う。粒径は体積平均の累積値である50%粒径(D50)を求める。制御および解析は付属ソフト(バージョン10.3.3-202D)を用いて行う。測定条件は以下のとおりである。
SetZero時間 :10秒
測定時間 :10秒
測定回数 :1回
粒子屈折率 :1.81%
粒子形状 :非球形
測定上限 :1408μm
測定下限 :0.243μm
測定環境 :23℃、50%RH
SetZero時間 :10秒
測定時間 :10秒
測定回数 :1回
粒子屈折率 :1.81%
粒子形状 :非球形
測定上限 :1408μm
測定下限 :0.243μm
測定環境 :23℃、50%RH
<トナーの重量平均粒径(D4)、個数平均粒径(D1)の測定方法>
トナーの重量平均粒径(D4)および個数平均粒径(D1)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定および測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いた。実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出した。
トナーの重量平均粒径(D4)および個数平均粒径(D1)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定および測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いた。実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出した。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
なお、測定、解析を行う前に、以下のように専用ソフトの設定を行った。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れる。この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行ない、重量平均粒径(D4)および個数平均粒径(D1)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)であり、専用ソフトでグラフ/個数%と設定したときの、分析/個数統計値(算術平均)画面の「平均径」が個数平均粒径(D1)である。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れる。この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行ない、重量平均粒径(D4)および個数平均粒径(D1)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)であり、専用ソフトでグラフ/個数%と設定したときの、分析/個数統計値(算術平均)画面の「平均径」が個数平均粒径(D1)である。
<微粉量の算出方法>
トナー中の個数基準の微粉量(個数%)は、以下のようにして算出する。
例えば、トナー中の粒径が4.00μm以下の粒子の個数%は、前記のMultisizer3の測定を行った後、(1)専用ソフトでグラフ/個数%に設定して測定結果のチャートを個数%表示とする。(2)書式/粒径/粒径統計画面における粒径設定部分の「<」にチェック、その下の粒径入力部に「4」を入力する。そして、(3)分析/個数統計値(算術平均)画面を表示したときの「<4μm」表示部の数値が、トナー中の4.00μm以下の粒子の個数%である。
トナー中の個数基準の微粉量(個数%)は、以下のようにして算出する。
例えば、トナー中の粒径が4.00μm以下の粒子の個数%は、前記のMultisizer3の測定を行った後、(1)専用ソフトでグラフ/個数%に設定して測定結果のチャートを個数%表示とする。(2)書式/粒径/粒径統計画面における粒径設定部分の「<」にチェック、その下の粒径入力部に「4」を入力する。そして、(3)分析/個数統計値(算術平均)画面を表示したときの「<4μm」表示部の数値が、トナー中の4.00μm以下の粒子の個数%である。
<粗粉量の算出方法>
トナー中の体積基準の粗粉量(体積%)は、以下のようにして算出する。
例えば、トナー中の粒径が10.0μm以上の粒子の体積%は、前記のMultisizer3の測定を行った後、(1)専用ソフトでグラフ/体積%に設定して測定結果のチャートを体積%表示とする。(2)書式/粒径/粒径統計画面における粒径設定部分の「>」にチェック、その下の粒径入力部に「10」を入力する。そして、(3)分析/体積統計値(算術平均)画面を表示したときの「>10μm」表示部の数値が、トナー中の10.0μm以上の粒子の体積%である。
トナー中の体積基準の粗粉量(体積%)は、以下のようにして算出する。
例えば、トナー中の粒径が10.0μm以上の粒子の体積%は、前記のMultisizer3の測定を行った後、(1)専用ソフトでグラフ/体積%に設定して測定結果のチャートを体積%表示とする。(2)書式/粒径/粒径統計画面における粒径設定部分の「>」にチェック、その下の粒径入力部に「10」を入力する。そして、(3)分析/体積統計値(算術平均)画面を表示したときの「>10μm」表示部の数値が、トナー中の10.0μm以上の粒子の体積%である。
<磁性キャリアの水分率変化の測定方法>
磁性キャリアをステンレス皿に精密天秤で10g秤量し、設定温度60℃、減圧した乾燥機に5時間放置したときのキャリア質量をW1とする。その後、得られた磁性キャリアを温度30℃、湿度80%RHの雰囲気下に24時間放置したときのキャリア質量をW2とする。また、このときの磁性キャリアの水分率をAとする。その後、続けて温度23℃、湿度5%RHの環境下に24時間放置したときのキャリア質量をW3とする。また、このときの磁性キャリアの水分率をBとする。下記式(1)に従い、磁性キャリアの水分率変化を算出した。
磁性キャリアの水分率変化(質量%)
=[(W2-W1)×100/W1]-[(W3-W1)×100/W1]
=[A]-[B] (式1)
磁性キャリアをステンレス皿に精密天秤で10g秤量し、設定温度60℃、減圧した乾燥機に5時間放置したときのキャリア質量をW1とする。その後、得られた磁性キャリアを温度30℃、湿度80%RHの雰囲気下に24時間放置したときのキャリア質量をW2とする。また、このときの磁性キャリアの水分率をAとする。その後、続けて温度23℃、湿度5%RHの環境下に24時間放置したときのキャリア質量をW3とする。また、このときの磁性キャリアの水分率をBとする。下記式(1)に従い、磁性キャリアの水分率変化を算出した。
磁性キャリアの水分率変化(質量%)
=[(W2-W1)×100/W1]-[(W3-W1)×100/W1]
=[A]-[B] (式1)
<磁性キャリアの表面樹脂層膜厚の測定方法>
該中間樹脂層および表面樹脂層の膜厚の測定方法は、磁性キャリアの断面を透過電子顕微鏡(TEM)(各50,000倍)で観察し、被覆層の厚みを計測した。具体的には、前記磁性キャリア100粒子において、各磁性キャリア断面の表面樹脂層厚みを任意に10点測定し、表面樹脂層厚みの最小値および最大値を選出し、最小膜厚(μm)および最大膜厚(μm)とした。また、中間樹脂層厚みにおいても同様の方法にて、最小膜厚(μm)および最大膜厚(μm)を測定した。本発明の磁性キャリアでは、中間樹脂層と表面樹脂層に含有される粒子種、およびその量が異なるため、該測定方法でも中間樹脂層と表面樹脂層とを断定することができる。
該中間樹脂層および表面樹脂層の膜厚の測定方法は、磁性キャリアの断面を透過電子顕微鏡(TEM)(各50,000倍)で観察し、被覆層の厚みを計測した。具体的には、前記磁性キャリア100粒子において、各磁性キャリア断面の表面樹脂層厚みを任意に10点測定し、表面樹脂層厚みの最小値および最大値を選出し、最小膜厚(μm)および最大膜厚(μm)とした。また、中間樹脂層厚みにおいても同様の方法にて、最小膜厚(μm)および最大膜厚(μm)を測定した。本発明の磁性キャリアでは、中間樹脂層と表面樹脂層に含有される粒子種、およびその量が異なるため、該測定方法でも中間樹脂層と表面樹脂層とを断定することができる。
<粒子(親水性処理された粒子)の表面官能基濃度の測定法>
・カルボキシル基濃度の測定法
インジウム箔上に粒子10mg張り付ける。その際、インジウム箔部が露出しないように粒子を均一に張り付ける。30mlスクリュー管瓶に2,2,2-トリフルオロエタノール1.0mlを滴下し、系中を蒸気で飽和させる。系中にインジウム箔ごと粒子を入れ、2,2,2-トリフルオロエタノール雰囲気中に粒子を晒した状態で12時間放置する。この際、粒子が2,2,2-トリフルオロエタノール液に直接付着しないように注意する。粒子をインジウム箔ごと系中から取り出し、設定温度25℃、減圧した乾燥機中に6時間放置した。得られた粒子に対して、XPS分析を行うと、2,2,2-トリフルオロエチルエステル由来のC1SXPSピーク(P1)と粒子由来元素のXPSピーク(P2)が検出されるため、下記式(2)に従い、粒子の表面官能基濃度を算出した。なお、測定条件は以下のとおりである。
装置 :PHI5000VERSAPROBEII(アルバック・ファイ株式会社)
照射線 :Al Kd線
出力 :25W 15kV
PassEnergy:29.35eV
Stepsize :0.125eV
XPSピーク(P2):C1S(CB)、Ti2P(TiO2、SrTiO2)、Al2P(Al2O3)、Mg2P(MgO)、Zn2P3/2(ZnO)、Si2P(SiO2)
粒子の表面官能基濃度[%]=P1/P2×100 (式2)
・カルボキシル基濃度の測定法
インジウム箔上に粒子10mg張り付ける。その際、インジウム箔部が露出しないように粒子を均一に張り付ける。30mlスクリュー管瓶に2,2,2-トリフルオロエタノール1.0mlを滴下し、系中を蒸気で飽和させる。系中にインジウム箔ごと粒子を入れ、2,2,2-トリフルオロエタノール雰囲気中に粒子を晒した状態で12時間放置する。この際、粒子が2,2,2-トリフルオロエタノール液に直接付着しないように注意する。粒子をインジウム箔ごと系中から取り出し、設定温度25℃、減圧した乾燥機中に6時間放置した。得られた粒子に対して、XPS分析を行うと、2,2,2-トリフルオロエチルエステル由来のC1SXPSピーク(P1)と粒子由来元素のXPSピーク(P2)が検出されるため、下記式(2)に従い、粒子の表面官能基濃度を算出した。なお、測定条件は以下のとおりである。
装置 :PHI5000VERSAPROBEII(アルバック・ファイ株式会社)
照射線 :Al Kd線
出力 :25W 15kV
PassEnergy:29.35eV
Stepsize :0.125eV
XPSピーク(P2):C1S(CB)、Ti2P(TiO2、SrTiO2)、Al2P(Al2O3)、Mg2P(MgO)、Zn2P3/2(ZnO)、Si2P(SiO2)
粒子の表面官能基濃度[%]=P1/P2×100 (式2)
・カルボニル基濃度の測定法
反応試薬を2,2,2-トリフルオロエタノールからジアミンに変更した以外は、カルボキシル基濃度の測定と同様の方法にて、XPS分析を行った。イミノ基由来のN1SXPSピーク(P3)が検出されるため、下記式(3)に従い、粒子の表面官能基濃度を算出した。
粒子の表面官能基濃度[%]=P3/P2×100 (式3)
反応試薬を2,2,2-トリフルオロエタノールからジアミンに変更した以外は、カルボキシル基濃度の測定と同様の方法にて、XPS分析を行った。イミノ基由来のN1SXPSピーク(P3)が検出されるため、下記式(3)に従い、粒子の表面官能基濃度を算出した。
粒子の表面官能基濃度[%]=P3/P2×100 (式3)
<多孔質磁性芯材粒子の細孔径および総細孔容積の測定>
多孔質磁性芯材粒子の細孔径分布は、水銀圧入法により測定される。
測定原理は、以下の通りである。
多孔質磁性芯材粒子の細孔径分布は、水銀圧入法により測定される。
測定原理は、以下の通りである。
本測定では、水銀に加える圧力を変化させ、その際の細孔中に浸入した水銀の量を測定する。細孔内に水銀が浸入し得る条件は、圧力P、細孔直径D、水銀の接触角と表面張力をそれぞれθとσとすると、ちからの釣り合いから、PD=-4σCOSθで表せる。接触角と表面張力を定数とすれば、圧力Pとそのとき水銀が浸入し得る細孔直径Dは反比例することになる。このため、圧力Pとそのときに浸入液量Vを、圧力を変えて測定し得られる、P-V曲線の横軸Pを、そのままこの式から細孔直径に置き換え、細孔分布を求めている。
測定装置としては、カンタクロームインスツルメンツ社(旧:ユアサアイオニクス社)製、全自動多機能水銀ポロシメータPoreMasterシリーズ・PoreMaster-GTシリーズや、島津製作所社製、自動ポロシメータオートポアIV 9500 シリーズなどを用いて測定することができる。
具体的には、株式会社 島津製作所社のオートポアIV9520を用いて、下記条件・手順にて測定を行った。
測定条件
・測定環境 :20℃
・測定セル :試料体積 5cm3、圧入体積 1.1cm3、用途 粉体用
・測定範囲 :2.0psia(13.8kPa)以上、59989.6psia(413.7kPa)以下
・測定ステップ :80ステップ
(細孔径を対数で取った時に、等間隔になるようにステップを刻む)
・圧入パラメータ:排気圧力 50μmHg
排気時間 5.0min
水銀注入圧力 2.0psia(13.8kPa)
平衡時間 5secs
・高圧パラメータ:平衡時間 5secs
・水銀パラメータ:前進接触角 130.0degrees
後退接触角 130.0degrees
表面張力 485.0mN/m(485.0dynes/cm)
水銀密度 13.5335g/mL
測定条件
・測定環境 :20℃
・測定セル :試料体積 5cm3、圧入体積 1.1cm3、用途 粉体用
・測定範囲 :2.0psia(13.8kPa)以上、59989.6psia(413.7kPa)以下
・測定ステップ :80ステップ
(細孔径を対数で取った時に、等間隔になるようにステップを刻む)
・圧入パラメータ:排気圧力 50μmHg
排気時間 5.0min
水銀注入圧力 2.0psia(13.8kPa)
平衡時間 5secs
・高圧パラメータ:平衡時間 5secs
・水銀パラメータ:前進接触角 130.0degrees
後退接触角 130.0degrees
表面張力 485.0mN/m(485.0dynes/cm)
水銀密度 13.5335g/mL
測定手順
(1)多孔質磁性芯材粒子を、約1.0g秤量し試料セルに入れる。
秤量値を入力する。
(2)低圧部で、2.0psia(13.8kPa)以上、45.8psia(315.6kPa)以下の範囲を測定。
(3)高圧部で、45.9psia(316.3kPa)以上、59989.6psia(413.6kPa)以下の範囲を測定。
(4)水銀注入圧力および水銀注入量から、細孔径分布を算出する。
(1)多孔質磁性芯材粒子を、約1.0g秤量し試料セルに入れる。
秤量値を入力する。
(2)低圧部で、2.0psia(13.8kPa)以上、45.8psia(315.6kPa)以下の範囲を測定。
(3)高圧部で、45.9psia(316.3kPa)以上、59989.6psia(413.6kPa)以下の範囲を測定。
(4)水銀注入圧力および水銀注入量から、細孔径分布を算出する。
(2)、(3)、(4)は、装置付属のソフトウエアにて、自動で行った。
上記のようにして計測した細孔径分布から、0.1μm以上3.0μm以下の細孔径の範囲における微分細孔容積が最大となる細孔径を読み取り、それをもって、微分細孔容積が極大となる細孔径とする。
また、0.1μm以上3.0μm以下の細孔径の範囲における微分細孔容積を積分した総細孔容積を、付属のソフトウエアを用いて算出した。
<磁性キャリアおよびキャリアコア(磁性コア粒子)の真密度の測定方法>
真密度は、乾式自動密度計オートピクノメータ(カンタクロームインスツルメンツ社製)を用いて測定した。
真密度は、乾式自動密度計オートピクノメータ(カンタクロームインスツルメンツ社製)を用いて測定した。
<磁性キャリア芯材粒子(磁性コア粒子)の比抵抗測定>
磁性キャリア芯材粒子の抵抗は、図3Aおよび図3Bに概略される測定装置を用いて測定する。電界強度300(V/cm)における比抵抗を測定する。
磁性キャリア芯材粒子の抵抗は、図3Aおよび図3Bに概略される測定装置を用いて測定する。電界強度300(V/cm)における比抵抗を測定する。
抵抗測定セルAは、断面積2.4cm2の穴の開いた円筒状容器(PTFE樹脂製)17、下部電極(ステンレス製)18、支持台座(PTFE樹脂製)19、上部電極(ステンレス製)20から構成される。支持台座19上に円筒状容器18を載せ、試料21を厚さ約1mmになるように充填し、充填された試料21に上部電極20を載せ、試料の厚みを測定する。図3Aに示す如く、試料のないときの間隙をd1とし、図3Bに示す如く、厚さ約1mmになるように試料を充填したときの間隙d2とすると、試料の厚みdは下記式で算出される。
d=d2-d1(mm)
d=d2-d1(mm)
このとき、試料の厚みdが0.95mm以上1.04mm以下となるように試料の質量を適宜変える。
電極間に直流電圧を印加し、そのときに流れる電流を測定することによって試料の比抵抗を求めることができる。測定には、エレクトロメーター22(ケスレー6517A ケスレーインスツルメンツ社製)および制御用に処理コンピュータ23を用いる。
制御用の処理コンピュータにナショナルインスツルメンツ社製の制御系と制御ソフトウエア(LabVIEW ナショナルインスツルメンツ社製)を用いた。
測定条件として、試料と電極との接触面積S=2.4cm2、試料の厚み0.95mm以上1.04mm以下になるように実測した値dを入力する。また、上部電極の荷重270g、最大印加電圧1000Vとする。
比抵抗(Ω・cm)=(印加電圧(V)/測定電流(A))×S(cm2)/d(cm)
電界強度(V/cm)=印加電圧(V)/d(cm)
比抵抗(Ω・cm)=(印加電圧(V)/測定電流(A))×S(cm2)/d(cm)
電界強度(V/cm)=印加電圧(V)/d(cm)
磁性キャリア芯材粒子の前記電界強度における比抵抗は、グラフ上の前記電界強度における比抵抗をグラフから読み取る。
<無機粒子およびカーボンブラック(被処理粒子)の一次粒子の体積平均粒子径の測定方法>
本発明における無機粒子およびカーボンブラックの一次粒子の体積平均粒子径は、透過型電子顕微鏡にて観察し、粒子の長軸と短軸の平均値を粒径とした。また粒子100個の粒径を測定してその平均値を一次粒子の体積平均粒子径とした。
本発明における無機粒子およびカーボンブラックの一次粒子の体積平均粒子径は、透過型電子顕微鏡にて観察し、粒子の長軸と短軸の平均値を粒径とした。また粒子100個の粒径を測定してその平均値を一次粒子の体積平均粒子径とした。
以下、実施例を参照して本発明をより具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
<多孔質磁性コア(多孔質磁性芯材粒子)1の製造例>
工程1(秤量・混合工程)
・Fe2O3 68.3質量%
・MnCO3 28.5質量%
・Mg(OH)2 2.0質量%
・SrCO3 1.2質量%
上記フェライト原材料を秤量し、該フェライト原材料80質量部に水20質量部を加え、その後、直径(φ)10mmのジルコニアを用いてボールミルで3時間湿式混合しスラリーを調製した。スラリーの固形分濃度は、80質量%とした。
工程1(秤量・混合工程)
・Fe2O3 68.3質量%
・MnCO3 28.5質量%
・Mg(OH)2 2.0質量%
・SrCO3 1.2質量%
上記フェライト原材料を秤量し、該フェライト原材料80質量部に水20質量部を加え、その後、直径(φ)10mmのジルコニアを用いてボールミルで3時間湿式混合しスラリーを調製した。スラリーの固形分濃度は、80質量%とした。
工程2(仮焼成工程)
混合したスラリーをスプレードライヤー(大川原化工機社製)により乾燥した後、バッチ式電気炉で、窒素雰囲気下(酸素濃度1.0体積%)、温度1050℃で3.0時間焼成し、仮焼フェライトを作製した。
混合したスラリーをスプレードライヤー(大川原化工機社製)により乾燥した後、バッチ式電気炉で、窒素雰囲気下(酸素濃度1.0体積%)、温度1050℃で3.0時間焼成し、仮焼フェライトを作製した。
工程3(粉砕工程)
仮焼フェライトをクラッシャーで0.5mm程度に粗粉砕した後に、水を加え、粗粉砕スラリーを調製した。粗粉砕スラリーの固形分濃度を70質量%とした。1/8インチのステンレスビーズを用いた湿式ボールミルで3時間微粉砕し、微粉砕スラリーを得た。さらにこの微粉砕スラリーを直径1mmのジルコニアを用いた湿式ビーズミルで4時間粉砕し、体積基準の50%粒子径(D50)が1.3μm仮焼フェライトスラリーを得た。
仮焼フェライトをクラッシャーで0.5mm程度に粗粉砕した後に、水を加え、粗粉砕スラリーを調製した。粗粉砕スラリーの固形分濃度を70質量%とした。1/8インチのステンレスビーズを用いた湿式ボールミルで3時間微粉砕し、微粉砕スラリーを得た。さらにこの微粉砕スラリーを直径1mmのジルコニアを用いた湿式ビーズミルで4時間粉砕し、体積基準の50%粒子径(D50)が1.3μm仮焼フェライトスラリーを得た。
工程4(造粒工程)
上記仮焼フェライトスラリー100質量部に対して、分散剤としてポリカルボン酸アンモニウム1.0質量部、バインダーとしてポリビニルアルコール1.5質量部の割合で添加した後、スプレードライヤー(大川原化工機社製)で球状粒子に造粒、乾燥した。得られた造粒物に対して、粒度調整を行った後、ロータリー式電気炉を用いて700℃で2時間加熱し、分散剤やバインダーなどの有機物を除去した。
上記仮焼フェライトスラリー100質量部に対して、分散剤としてポリカルボン酸アンモニウム1.0質量部、バインダーとしてポリビニルアルコール1.5質量部の割合で添加した後、スプレードライヤー(大川原化工機社製)で球状粒子に造粒、乾燥した。得られた造粒物に対して、粒度調整を行った後、ロータリー式電気炉を用いて700℃で2時間加熱し、分散剤やバインダーなどの有機物を除去した。
工程5(焼成工程)
窒素雰囲気下(酸素濃度1.0体積%)で、室温から焼成温度(1100℃)になるまでの時間を2時間とし、温度1100℃で4時間保持し、トンネル式電気炉で焼成した。その後、8時間をかけて温度60℃まで降温し、窒素雰囲気から大気に戻し、温度40℃以下で取り出した。
窒素雰囲気下(酸素濃度1.0体積%)で、室温から焼成温度(1100℃)になるまでの時間を2時間とし、温度1100℃で4時間保持し、トンネル式電気炉で焼成した。その後、8時間をかけて温度60℃まで降温し、窒素雰囲気から大気に戻し、温度40℃以下で取り出した。
工程6(選別工程)
凝集した粒子を解砕した後に、目開き150μmの篩で篩分して粗大粒子を除去、風力分級により微粉を除去し、さらに磁力選鉱により低磁力分を除去して多孔質磁性コア1を得た。得られた多孔質磁性コア1は、多孔質状で孔を有していた。得られた多孔質磁性コア1の各工程の製造条件を表1、各物性値を表2に示す。
凝集した粒子を解砕した後に、目開き150μmの篩で篩分して粗大粒子を除去、風力分級により微粉を除去し、さらに磁力選鉱により低磁力分を除去して多孔質磁性コア1を得た。得られた多孔質磁性コア1は、多孔質状で孔を有していた。得られた多孔質磁性コア1の各工程の製造条件を表1、各物性値を表2に示す。
<多孔質磁性コア2~13および磁性コア(フェライト芯材粒子)1~7の製造例>
多孔質磁性コア1の製造例のうち、各工程の製造条件を表1に示すように変更した以外、同様にして多孔質磁性コア2~13および磁性コア1~7を作製した。得られた多孔質磁性コア2~18、および磁性コア1~7の各工程の製造条件を表1、各物性値を表2に示す。
多孔質磁性コア1の製造例のうち、各工程の製造条件を表1に示すように変更した以外、同様にして多孔質磁性コア2~13および磁性コア1~7を作製した。得られた多孔質磁性コア2~18、および磁性コア1~7の各工程の製造条件を表1、各物性値を表2に示す。
<添加粒子(親水性処理された粒子)1の製造例>
添加粒子1を次のように調製した。
容積500mlの擦り合わせ丸底フラスコにカーボンブラック(#4400、東海カーボン社製)100質量部を入れ、硝酸水溶液(50質量%)200質量部を加えた。フラスコに玉付き冷却器を接続し、マントル加熱器に丸底フラスコを設置して還流を開始してから30分間酸化処理を行った。還流終了後、カーボンブラックをろ過して分離し、乾燥機中、125℃で乾燥し、添加粒子1を得た。得られた添加粒子1の処理条件および各物性値を表3に示す。なお、表3において「CB」はカーボンブラックを表す。
添加粒子1を次のように調製した。
容積500mlの擦り合わせ丸底フラスコにカーボンブラック(#4400、東海カーボン社製)100質量部を入れ、硝酸水溶液(50質量%)200質量部を加えた。フラスコに玉付き冷却器を接続し、マントル加熱器に丸底フラスコを設置して還流を開始してから30分間酸化処理を行った。還流終了後、カーボンブラックをろ過して分離し、乾燥機中、125℃で乾燥し、添加粒子1を得た。得られた添加粒子1の処理条件および各物性値を表3に示す。なお、表3において「CB」はカーボンブラックを表す。
<添加粒子2~5、7~13の製造例>
添加粒子2を次のように調製した。
容積500mlの擦り合わせ丸底フラスコにチタン酸ストロンチウム(商品名:SW-540、チタン工業社製)100質量部を入れ、系中を窒素雰囲気とした後、無水トルエン300質量部を加えた。これを氷冷後、トリエチルアミン5質量部、ジメチルアミノピリジン10質量部、無水酢酸10質量部を加え、25℃まで昇温し2時間撹拌した。撹拌して得られたものに飽和炭酸水素ナトリウム水溶液100質量部を加えて反応を停止し、水、トルエン溶媒により洗浄し、風乾、減圧乾燥により化学修飾粒子を得た。
添加粒子2を次のように調製した。
容積500mlの擦り合わせ丸底フラスコにチタン酸ストロンチウム(商品名:SW-540、チタン工業社製)100質量部を入れ、系中を窒素雰囲気とした後、無水トルエン300質量部を加えた。これを氷冷後、トリエチルアミン5質量部、ジメチルアミノピリジン10質量部、無水酢酸10質量部を加え、25℃まで昇温し2時間撹拌した。撹拌して得られたものに飽和炭酸水素ナトリウム水溶液100質量部を加えて反応を停止し、水、トルエン溶媒により洗浄し、風乾、減圧乾燥により化学修飾粒子を得た。
得られた化学修飾粒子100質量部を容積500mlの擦り合わせ丸底フラスコに入れ、メタノール200質量部を加えた。これを氷冷後、炭酸カルシウム30質量部を加え、25℃まで昇温し2時間撹拌した。撹拌して得られたものに飽和塩化アンモニウム水溶液100質量部を加えて反応を停止し、水により洗浄し、風乾、減圧乾燥により化学修飾粒子である添加粒子2を得た。
また、添加粒子種(カーボンブラックもしくは無機粒子の種類)、処理剤の種類および量を変更した以外は、添加粒子2と同様の処理を行い、添加粒子3~5、7~13を得た。得られた添加粒子2~5、7~13の処理条件および各物性値を表3に示す。
<添加粒子6の製造例>
添加粒子6を次のように調製した。
カーボンブラック(#4400、東海カーボン社製)100質量部を筒状のオゾン処理器に入れた。続いて、オゾン発生器(KQS-120、コトヒラ工業株式会社製)にて、1時間当たりオゾン3質量部を発生させ、オゾン雰囲気下、処理温度は40℃に保ちカーボンブラックの酸化処理を2時間実施し、添加粒子6を得た。得られた添加粒子6の処理条件および各物性値を表3に示す。
添加粒子6を次のように調製した。
カーボンブラック(#4400、東海カーボン社製)100質量部を筒状のオゾン処理器に入れた。続いて、オゾン発生器(KQS-120、コトヒラ工業株式会社製)にて、1時間当たりオゾン3質量部を発生させ、オゾン雰囲気下、処理温度は40℃に保ちカーボンブラックの酸化処理を2時間実施し、添加粒子6を得た。得られた添加粒子6の処理条件および各物性値を表3に示す。
<添加粒子14、16~23の製造例>
添加粒子14を以下のように調製した。
容積500mlの擦り合わせ丸底フラスコに(#4400、東海カーボン社製)100質量部を入れ、系中を窒素雰囲気とした後、無水トルエン300質量部を加えた。これを氷冷後、トリエチルアミン5質量部、ジメチルアミノピリジン10質量部、アルギン酸1.0質量部を加え、25℃まで昇温し2時間撹拌した。撹拌して得られたものに飽和炭酸水素ナトリウム水溶液100質量部を加えて反応を停止し、水、トルエン溶媒により洗浄し、風乾、減圧乾燥により添加粒子14を得た。
添加粒子14を以下のように調製した。
容積500mlの擦り合わせ丸底フラスコに(#4400、東海カーボン社製)100質量部を入れ、系中を窒素雰囲気とした後、無水トルエン300質量部を加えた。これを氷冷後、トリエチルアミン5質量部、ジメチルアミノピリジン10質量部、アルギン酸1.0質量部を加え、25℃まで昇温し2時間撹拌した。撹拌して得られたものに飽和炭酸水素ナトリウム水溶液100質量部を加えて反応を停止し、水、トルエン溶媒により洗浄し、風乾、減圧乾燥により添加粒子14を得た。
また、処理剤の種類および量を変更した以外は、添加粒子14と同様の処理を行い、添加粒子16~23を得た。得られた添加粒子14、16~23の処理条件および各物性値を表3に示す。
<添加粒子15>
添加粒子15は、カーボンブラック(NEROX505、エボニックデグサ社製)を特別な処理をしない状態で使用した。添加粒子15の各物性値を表3に示す。
添加粒子15は、カーボンブラック(NEROX505、エボニックデグサ社製)を特別な処理をしない状態で使用した。添加粒子15の各物性値を表3に示す。
<添加粒子24>
添加粒子24は、カーボンブラック(#4400、東海カーボン社製)を特別な処理をしない状態で使用した。添加粒子24の各物性値を表3に示す。
添加粒子24は、カーボンブラック(#4400、東海カーボン社製)を特別な処理をしない状態で使用した。添加粒子24の各物性値を表3に示す。
<磁性キャリア1の製造例>
工程1(充填工程)
混合撹拌機(ダルトン社製の万能撹拌機NDMV型)の撹拌容器内に多孔質磁性コア1を100質量部入れ、60℃に温度を保ち、2.3kPaまで減圧しながら窒素を導入した。次に、0.5質量部のγ-アミノプロピルトリエトキシシランおよび20質量部の樹脂成分1(表4参照)を79.5質量部のトルエンで希釈して樹脂溶液を調製した後、この樹脂溶液を多孔質磁性コア1に滴下した。滴下量は、磁性コア粒子(多孔質磁性コア1)100質量部対して樹脂成分の固形分(樹脂成分1およびγ-アミノプロピルトリエトキシシラン)が5.0質量部となるように調整した。
工程1(充填工程)
混合撹拌機(ダルトン社製の万能撹拌機NDMV型)の撹拌容器内に多孔質磁性コア1を100質量部入れ、60℃に温度を保ち、2.3kPaまで減圧しながら窒素を導入した。次に、0.5質量部のγ-アミノプロピルトリエトキシシランおよび20質量部の樹脂成分1(表4参照)を79.5質量部のトルエンで希釈して樹脂溶液を調製した後、この樹脂溶液を多孔質磁性コア1に滴下した。滴下量は、磁性コア粒子(多孔質磁性コア1)100質量部対して樹脂成分の固形分(樹脂成分1およびγ-アミノプロピルトリエトキシシラン)が5.0質量部となるように調整した。
滴下終了後もそのまま2.5時間撹拌を続けた後、70℃まで温度を上げ、減圧下で溶剤を除去して、多孔質磁性コア1の粒子内に樹脂成分1とγ-アミノプロピルトリエトキシシランからなる樹脂組成物を充填した。
冷却後、得られた樹脂充填型磁性コア粒子を、回転可能な混合容器内にスパイラル羽根を有する混合機(杉山重工社製のドラムミキサーUD-AT型)に移し、窒素雰囲気下で、2℃/分の昇温速度で、撹拌機の設定温度220℃に昇温した。この温度で1.0時間(表7-1の硬化時における撹拌時間)加熱撹拌を行い、樹脂を硬化させ、さらに1.0時間(表7-1の硬化時における保持時間)、200℃を保持しながら撹拌を続けた。
その後、室温まで冷却し、樹脂が充填、硬化されたフェライト粒子を取り出し、磁力選鉱機を用いて、非磁性物を取り除いた。さらに、振動篩にて粗大粒子を取り除き、樹脂が充填された樹脂充填フェライト粒子を得た。
工程2(中間樹脂層形成工程)
減圧下(1.5kPa)、温度60℃で維持されている遊星運動型混合機(ホソカワミクロン社製のナウタミキサVN型)に、得られた樹脂充填フェライト粒子および表5に示す樹脂溶液9を、樹脂充填フェライト粒子100質量部に対して、樹脂成分の固形分(溶媒除去後においては添加粒子を含まない固形樹脂)が0.8質量部になるように投入した。
投入の仕方はつぎの手順で行った。まず、全投入量の1/3の量の樹脂溶液9を投入し、20分間溶媒除去および塗布操作を行った。次いで、さらに全投入量の1/3の量の樹脂溶液9を投入し、20分間溶媒除去および塗布操作を行った。そして、さらに全投入量の1/3の量の樹脂溶液9を投入し、20分間溶媒除去および塗布操作を行って、全ての量の樹脂溶液9の投入を完了し、樹脂充填フェライト粒子を樹脂組成物で被覆した。
減圧下(1.5kPa)、温度60℃で維持されている遊星運動型混合機(ホソカワミクロン社製のナウタミキサVN型)に、得られた樹脂充填フェライト粒子および表5に示す樹脂溶液9を、樹脂充填フェライト粒子100質量部に対して、樹脂成分の固形分(溶媒除去後においては添加粒子を含まない固形樹脂)が0.8質量部になるように投入した。
投入の仕方はつぎの手順で行った。まず、全投入量の1/3の量の樹脂溶液9を投入し、20分間溶媒除去および塗布操作を行った。次いで、さらに全投入量の1/3の量の樹脂溶液9を投入し、20分間溶媒除去および塗布操作を行った。そして、さらに全投入量の1/3の量の樹脂溶液9を投入し、20分間溶媒除去および塗布操作を行って、全ての量の樹脂溶液9の投入を完了し、樹脂充填フェライト粒子を樹脂組成物で被覆した。
その後、樹脂組成物で被覆された樹脂充填フェライト粒子を、回転可能な混合容器内にスパイラル羽根を有する混合機(杉山重工社製のドラムミキサーUD-AT型)に移した。この混合容器を1分間に10回転させて撹拌しながら、窒素雰囲気下において温度120℃(表7-2における被覆装置温度)で2時間(表7-2における処理時間)熱処理した。得られた熱処理後の樹脂充填フェライト粒子から磁力選鉱により低磁力品を分別し、開口150μmの篩を通した後、風力分級器で分級することで樹脂組成物被覆粒子を得た。
工程3(表面樹脂層形成工程)
減圧下(1.5kPa)、温度60℃で維持されている遊星運動型混合機(ホソカワミクロン社製のナウタミキサVN型)に、表6に示す樹脂溶液1を前述の樹脂組成物被覆粒子100質量部に対して、樹脂成分の固形分(溶媒除去後においては添加粒子を含まない固形樹脂)が0.9質量部になるように投入した。
投入の仕方はつぎの手順で行った。まず、全投入量の1/3の量の樹脂溶液1を投入し、20分間溶媒除去および塗布操作を行った。次いで、さらに全投入量の1/3の量の樹脂溶液1を投入し、20分間溶媒除去および塗布操作を行った。そして、さらに全投入量の1/3の量の樹脂溶液を投入し、20分間溶媒除去および塗布操作を行って、全ての樹脂溶液1の投入を完了し、樹脂組成物で被覆された磁性キャリアを得た。
減圧下(1.5kPa)、温度60℃で維持されている遊星運動型混合機(ホソカワミクロン社製のナウタミキサVN型)に、表6に示す樹脂溶液1を前述の樹脂組成物被覆粒子100質量部に対して、樹脂成分の固形分(溶媒除去後においては添加粒子を含まない固形樹脂)が0.9質量部になるように投入した。
投入の仕方はつぎの手順で行った。まず、全投入量の1/3の量の樹脂溶液1を投入し、20分間溶媒除去および塗布操作を行った。次いで、さらに全投入量の1/3の量の樹脂溶液1を投入し、20分間溶媒除去および塗布操作を行った。そして、さらに全投入量の1/3の量の樹脂溶液を投入し、20分間溶媒除去および塗布操作を行って、全ての樹脂溶液1の投入を完了し、樹脂組成物で被覆された磁性キャリアを得た。
その後、樹脂組成物で被覆された磁性キャリアを、回転可能な混合容器内にスパイラル羽根を有する混合機(杉山重工社製のドラムミキサーUD-AT型)に移した。この混合容器を1分間に10回転させて撹拌しながら、窒素雰囲気下に温度120℃(表7-3における被覆装置温度)で2時間(表7-3における処理温度)熱処理した。得られた熱処理後の磁性キャリアから磁力選鉱により低磁力品を分別し、開口150μmの篩を通した後、風力分級器で分級することで磁性キャリア1を得た。
得られた磁性キャリア1の各工程の製造条件を表7-1~表7-3、各物性値を表8に示す。
<磁性キャリア2~33の製造例>
さらに、表7-1~表7-3に示す製造条件とした以外は磁性キャリア1と同様にして磁性キャリア2~11および13~33を作製し、これらの各物性値を表8に示した。
なお、表7-2~表7-3に記載の樹脂溶液1~32は、表5および表6に記載されている。また、表7-1に記載の樹脂成分1および表6に記載の樹脂成分2,3は、表4に記載されている。ここで、表5および表6における「エポスターS」は、メラミン・ホルムアルデヒド縮合物(日本触媒社製)を表す。
さらに、表7-1~表7-3に示す製造条件とした以外は磁性キャリア1と同様にして磁性キャリア2~11および13~33を作製し、これらの各物性値を表8に示した。
なお、表7-2~表7-3に記載の樹脂溶液1~32は、表5および表6に記載されている。また、表7-1に記載の樹脂成分1および表6に記載の樹脂成分2,3は、表4に記載されている。ここで、表5および表6における「エポスターS」は、メラミン・ホルムアルデヒド縮合物(日本触媒社製)を表す。
磁性キャリア12に関しては、被覆工程を以下のように変更した以外は磁性キャリア1と同様にして作製した。
工程2(中間樹脂層形成工程)
撹拌機として、ノビルタ(ホソカワミクロン社製)に、多孔質磁性コア12を100質量部と、溶媒を除去し、樹脂固形分のみを取り出し、さらに重量平均粒子径で50μmに粉砕された樹脂溶液20の樹脂固形分を0.9質量部投入した。予備混合工程として、撹拌部材の最外端周速が1m/sで2分間撹拌混合し、その後10m/sに調整しながら、15分間被覆処理し、磁性粒子を得た。得られた磁性粒子を、磁力選鉱により低磁力品を分別し、開口150μmの篩を通した後、風力分級器で分級することで樹脂組成物被覆粒子を得た。
撹拌機として、ノビルタ(ホソカワミクロン社製)に、多孔質磁性コア12を100質量部と、溶媒を除去し、樹脂固形分のみを取り出し、さらに重量平均粒子径で50μmに粉砕された樹脂溶液20の樹脂固形分を0.9質量部投入した。予備混合工程として、撹拌部材の最外端周速が1m/sで2分間撹拌混合し、その後10m/sに調整しながら、15分間被覆処理し、磁性粒子を得た。得られた磁性粒子を、磁力選鉱により低磁力品を分別し、開口150μmの篩を通した後、風力分級器で分級することで樹脂組成物被覆粒子を得た。
工程3(表面樹脂層被覆工程)
引き続き、撹拌機として、ノビルタ(ホソカワミクロン社製)に、前述の樹脂組成物被覆粒子100質量部と、溶媒を除去し、樹脂固形分のみを取り出し、さらに重量平均粒子径で50μmに粉砕された樹脂溶液1の樹脂固形分を1.0質量部投入した。予備混合工程として、撹拌部材の最外端周速が1m/sで2分間撹拌混合し、その後10m/sに調整しながら、15分間被覆処理し、磁性キャリアを得た。得られた磁性キャリアを、磁力選鉱により低磁力品を分別し、開口150μmの篩を通した後、風力分級器で分級することで磁性キャリア12を得た。
引き続き、撹拌機として、ノビルタ(ホソカワミクロン社製)に、前述の樹脂組成物被覆粒子100質量部と、溶媒を除去し、樹脂固形分のみを取り出し、さらに重量平均粒子径で50μmに粉砕された樹脂溶液1の樹脂固形分を1.0質量部投入した。予備混合工程として、撹拌部材の最外端周速が1m/sで2分間撹拌混合し、その後10m/sに調整しながら、15分間被覆処理し、磁性キャリアを得た。得られた磁性キャリアを、磁力選鉱により低磁力品を分別し、開口150μmの篩を通した後、風力分級器で分級することで磁性キャリア12を得た。
得られた磁性キャリア12の各工程の製造条件を表7-1~表7-3、各物性値を表8に示す。
<トナー1の製造例>
・ポリエステル樹脂 100質量部
Tg :58℃
酸価 :15mgKOH/g
水酸基価:15mgKOH/g
分子量 :Mp5800、Mn3350、Mw94000
・C.I.ピグメントブルー15:3 4.5質量部
・1,4-ジ-t-ブチルサリチル酸アルミニウム化合物 0.5質量部
・ノルマルパラフィンワックス 6.0質量部
融点 :78℃
上記の処方の材料を、ヘンシェルミキサー(FM-75J型、日本コークス工業社製)でよく混合した後、温度130℃に設定した2軸混練機(PCM-30型、(株)池貝(旧:池貝鉄鋼(株))製)にて10kg/hのFeed量で混練(吐出時の混練物温度は約150℃)した。得られた混練物を冷却し、ハンマーミルで粗砕した後、機械式粉砕機(T-250:フロイント・ターボ(株)(旧:ターボ工業(株))製)にて15kg/hのFeed量で微粉砕した。そして、重量平均粒径が5.5μmであり、粒径4.0μm以下の粒子を55.6個数%含有し、かつ粒径10.0μm以上の粒子を0.8体積%含有する粒子を得た。なお、「Tg」はガラス転移温度、「Mp」はピーク分子量、「Mn」は数平均分子量、「Mw」は重量平均分子量をそれぞれ表す。
・ポリエステル樹脂 100質量部
Tg :58℃
酸価 :15mgKOH/g
水酸基価:15mgKOH/g
分子量 :Mp5800、Mn3350、Mw94000
・C.I.ピグメントブルー15:3 4.5質量部
・1,4-ジ-t-ブチルサリチル酸アルミニウム化合物 0.5質量部
・ノルマルパラフィンワックス 6.0質量部
融点 :78℃
上記の処方の材料を、ヘンシェルミキサー(FM-75J型、日本コークス工業社製)でよく混合した後、温度130℃に設定した2軸混練機(PCM-30型、(株)池貝(旧:池貝鉄鋼(株))製)にて10kg/hのFeed量で混練(吐出時の混練物温度は約150℃)した。得られた混練物を冷却し、ハンマーミルで粗砕した後、機械式粉砕機(T-250:フロイント・ターボ(株)(旧:ターボ工業(株))製)にて15kg/hのFeed量で微粉砕した。そして、重量平均粒径が5.5μmであり、粒径4.0μm以下の粒子を55.6個数%含有し、かつ粒径10.0μm以上の粒子を0.8体積%含有する粒子を得た。なお、「Tg」はガラス転移温度、「Mp」はピーク分子量、「Mn」は数平均分子量、「Mw」は重量平均分子量をそれぞれ表す。
得られた粒子を回転式分級機(TTSP100、ホソカワミクロン(株)製)にて、微粉および粗粉をカットする分級を行った。重量平均粒径が6.3μmであり、粒径4.0μm以下の粒子の存在率が25.8個数%、かつ粒径10.0μm以上の粒子を2.4体積%含有するシアントナー粒子1を得た。
さらに、下記材料をヘンシェルミキサー(FM-75型、日本コークス工業社製)に投入し、回転羽根の周速を35.0(m/s)とし、混合時間3分で混合することにより、シアントナー粒子1の表面に、シリカ微粒子と酸化チタン微粒子を付着させシアントナー1を得た。
・シアントナー粒子1 100質量部
・シリカ微粒子 3.5質量部
(ゾルゲル法で作製したシリカ微粒子にヘキサメチルジシラザン処理1.5質量%で表面処理した後、分級によって所望の粒度分布に調整したもの。)
・酸化チタン微粒子 0.5質量部
(アナターゼ形の結晶性を有するメタチタン酸をオクチルシラン化合物で表面処理したもの。)
・シアントナー粒子1 100質量部
・シリカ微粒子 3.5質量部
(ゾルゲル法で作製したシリカ微粒子にヘキサメチルジシラザン処理1.5質量%で表面処理した後、分級によって所望の粒度分布に調整したもの。)
・酸化チタン微粒子 0.5質量部
(アナターゼ形の結晶性を有するメタチタン酸をオクチルシラン化合物で表面処理したもの。)
また、シアントナー粒子1のうち、4.5質量部のC.I.ピグメントブルー15:3に変えて、7.0質量部のC.I.ピグメントイエロー74、6.3質量部のC.I.ピグメントレッド122、5.0質量部のカーボンブラックを使用して、それぞれイエロー、マゼンタ、およびブラックトナー粒子1を得た。
さらに、シアントナー1と同様にして、表面にシリカ微粒子と酸化チタン微粒子を付着させ、それぞれイエロー、マゼンタ、およびブラックトナー1を得た。
得られたトナーの処方、および物性値を表9に示す。
得られたトナーの処方、および物性値を表9に示す。
〔実施例1〕
90質量部の磁性キャリア1に対して、シアントナー1を10質量部加え、振とう機(YS-8D型:(株)ヤヨイ製)にて振とうし、二成分系シアン現像剤1を300g調製した。振とう機の振幅条件は200rpm、2分間とした。また、二成分系シアン現像剤1と同様にして、各色トナー1を用いて各色二成分系現像剤1を300gずつ調製した。
90質量部の磁性キャリア1に対して、シアントナー1を10質量部加え、振とう機(YS-8D型:(株)ヤヨイ製)にて振とうし、二成分系シアン現像剤1を300g調製した。振とう機の振幅条件は200rpm、2分間とした。また、二成分系シアン現像剤1と同様にして、各色トナー1を用いて各色二成分系現像剤1を300gずつ調製した。
一方、10質量部の磁性キャリア1に対して、シアントナー1を90質量部加え、常温常湿23℃/50%RH(常温常湿、以下「N/N」)環境において、V型混合機により5分間混合し、補給用シアン現像剤1を得た。また、補給用シアン現像剤1と同様にして、各色トナー1を用いて各色補給用現像剤1を得た。
上記二成分系現像剤1および補給用現像剤1を25℃、減圧環境下で、5時間撹拌しながら乾燥処理を行った。
上記二成分系現像剤1および補給用現像剤1を用いて以下の評価を行った。
画像形成装置として、キヤノン製カラー複合機imageRUNNER ADVANCE C9075 PROの改造機を用いた。
この複合機の各色現像器に二成分系現像剤1を入れ、各色補給用現像剤1を入れた補給用現像剤容器をセットし、画像を形成し、各種評価を行った。
画像形成装置として、キヤノン製カラー複合機imageRUNNER ADVANCE C9075 PROの改造機を用いた。
この複合機の各色現像器に二成分系現像剤1を入れ、各色補給用現像剤1を入れた補給用現像剤容器をセットし、画像を形成し、各種評価を行った。
ここで、複合機の放置環境であるH/Haとは、温度30℃/湿度80%RH(高温高湿、以下「H/H」)にて24時間放置した環境から、温度23℃/湿度5%RH(常温低湿、以下「N/L」)に24時間かけて変更したときの環境状態である。
耐久試験において、温度30℃/湿度80%RH(H/H)の印刷環境の下では、画像比率40%のFFH出力のチャートを用いた。FFHとは、256階調を16進数で表示した値であり、00hが256階調の1階調目(白地部)であり、FFHが256階調の256階調目(ベタ部)である。
出力画像の種類や出力枚数は、各評価項目によって変更した。
〈条件〉
紙 :レーザービームプリンター用紙CS-814(81.4g/m2)
(キヤノンマーケティングジャパン株式会社)
画像形成速度:A4サイズ、フルカラーで、80(枚/min)で出力できるように改造した。
現像条件 :現像コントラストを任意値で調整可能にし、複合機本体による自動補正が作動しないように改造した。現像バイアスにおいて重畳される交番電界は、周波数2.0kHz、ピーク間の電圧(Vpp)が0.7kVから1.8kVまで0.1kV刻みで変えられるように改造した。各色とも、画像形成部が他の色の画像形成部と連動することなく単色で作動し(他の色の画像形成部とは独立して作動し)、画像が出力できるように改造した。
〈条件〉
紙 :レーザービームプリンター用紙CS-814(81.4g/m2)
(キヤノンマーケティングジャパン株式会社)
画像形成速度:A4サイズ、フルカラーで、80(枚/min)で出力できるように改造した。
現像条件 :現像コントラストを任意値で調整可能にし、複合機本体による自動補正が作動しないように改造した。現像バイアスにおいて重畳される交番電界は、周波数2.0kHz、ピーク間の電圧(Vpp)が0.7kVから1.8kVまで0.1kV刻みで変えられるように改造した。各色とも、画像形成部が他の色の画像形成部と連動することなく単色で作動し(他の色の画像形成部とは独立して作動し)、画像が出力できるように改造した。
各評価項目を以下に示す。
(1)白抜け
H/Ha環境下で初期、および連続通紙2000枚直後、転写紙の搬送方向に対して、ハーフトーン横帯(30H 幅10mm)とベタ横帯(FFH 幅10mm)を交互に並べたチャートを出力する。その画像をスキャナで読みとり、二値化処理を行う。二値化画像の、搬送方向におけるあるラインの輝度分布(256階調)をとった。そのときのハーフトーンの輝度に接線を引き、ベタ部輝度と交わるまでのハーフトーン部後端の接線からずれた輝度の領域(面積:輝度数の和)をもって、白抜け度とし、以下の基準に基づき評価した。評価はシアン単色で行った。
A:20未満(非常に良好)
B:20以上30未満(良好)
C:30以上40未満(やや良好)
D:40以上50未満(本発明においては、使用可能なレベル)
E:50以上(本発明においては、使用することは難しいと考えるレベル)
(1)白抜け
H/Ha環境下で初期、および連続通紙2000枚直後、転写紙の搬送方向に対して、ハーフトーン横帯(30H 幅10mm)とベタ横帯(FFH 幅10mm)を交互に並べたチャートを出力する。その画像をスキャナで読みとり、二値化処理を行う。二値化画像の、搬送方向におけるあるラインの輝度分布(256階調)をとった。そのときのハーフトーンの輝度に接線を引き、ベタ部輝度と交わるまでのハーフトーン部後端の接線からずれた輝度の領域(面積:輝度数の和)をもって、白抜け度とし、以下の基準に基づき評価した。評価はシアン単色で行った。
A:20未満(非常に良好)
B:20以上30未満(良好)
C:30以上40未満(やや良好)
D:40以上50未満(本発明においては、使用可能なレベル)
E:50以上(本発明においては、使用することは難しいと考えるレベル)
(2)H/Ha環境下での階調の変化
H/Ha環境下で各パターンを以下に示す濃度に設定した画像を10枚出力する。画像はX-Riteカラー反射濃度計(Color reflection densitometer X-Rite 404A)により、10枚の画像のパターンの平均値を算出する。
パターン1:0.10以上0.15以下
パターン2:0.25以上0.30以下
パターン3:0.45以上0.50以下
パターン4:0.65以上0.70以下
パターン5:0.85以上0.90以下
パターン6:1.05以上1.10以下
パターン7:1.25以上1.30以下
パターン8:1.45以上1.50以下
H/Ha環境下で各パターンを以下に示す濃度に設定した画像を10枚出力する。画像はX-Riteカラー反射濃度計(Color reflection densitometer X-Rite 404A)により、10枚の画像のパターンの平均値を算出する。
パターン1:0.10以上0.15以下
パターン2:0.25以上0.30以下
パターン3:0.45以上0.50以下
パターン4:0.65以上0.70以下
パターン5:0.85以上0.90以下
パターン6:1.05以上1.10以下
パターン7:1.25以上1.30以下
パターン8:1.45以上1.50以下
判断基準は、以下の通りである。
A:すべてのパターン画像が上記の濃度範囲を満足する(非常に良好)
B:一つのパターン画像が上記の濃度範囲をはずれる(良好)
C:二つのパターン画像が上記の濃度範囲をはずれる(やや良好)
D:三つのパターン画像が上記の濃度範囲をはずれる(本発明においては、使用可能なレベル)
E:四つ以上のパターン画像が上記の濃度範囲をはずれる(本発明においては、使用することは難しいと考えるレベル)
A:すべてのパターン画像が上記の濃度範囲を満足する(非常に良好)
B:一つのパターン画像が上記の濃度範囲をはずれる(良好)
C:二つのパターン画像が上記の濃度範囲をはずれる(やや良好)
D:三つのパターン画像が上記の濃度範囲をはずれる(本発明においては、使用可能なレベル)
E:四つ以上のパターン画像が上記の濃度範囲をはずれる(本発明においては、使用することは難しいと考えるレベル)
(3)耐久後の混色の色味変動
イエローとマゼンタの混色である、レッドの色味変動を評価した。
耐久試験前に、各色単色の紙上のベタ画像反射濃度が1.5となるように、現像コントラストを調整した。その後、H/H環境下で20000枚連続通紙直後のレッドのベタ画像を出力し、耐久前後における色味変動の度合いを確認した。
イエローとマゼンタの混色である、レッドの色味変動を評価した。
耐久試験前に、各色単色の紙上のベタ画像反射濃度が1.5となるように、現像コントラストを調整した。その後、H/H環境下で20000枚連続通紙直後のレッドのベタ画像を出力し、耐久前後における色味変動の度合いを確認した。
<色味変動差の測定方法>
色味変動差はa*、b*をSpectroScan Transmission(GretagMacbeth社製)を用いて測定することによって求められる。具体的には、以下に示す測定条件で測定した。
色味変動差はa*、b*をSpectroScan Transmission(GretagMacbeth社製)を用いて測定することによって求められる。具体的には、以下に示す測定条件で測定した。
(測定条件)
観測光源:D50
観測視野:2°
濃度:DIN NB
白色基準:Pap
フィルター:なし
一般に、a*、b*とは、色を数値化して表現するのに有用な手段であるL*a*b*表色系で用いられている値である。a*およびb*は、両者で色相を表す。色相とは、赤、黄、緑、青、紫など、色あいを尺度化したものである。a*およびb*のそれぞれは、色の方向を示しており、a*は赤-緑方向、b*は黄-青方向を表している。本発明において色味変動の差(ΔC)を以下のように定義した。
ΔC={(H/H環境の耐久後画像のa*-H/H環境の初期画像のa*)2+(H/H環境の耐久後画像のb*-H/H環境の初期画像のb*)2}1/2
観測光源:D50
観測視野:2°
濃度:DIN NB
白色基準:Pap
フィルター:なし
一般に、a*、b*とは、色を数値化して表現するのに有用な手段であるL*a*b*表色系で用いられている値である。a*およびb*は、両者で色相を表す。色相とは、赤、黄、緑、青、紫など、色あいを尺度化したものである。a*およびb*のそれぞれは、色の方向を示しており、a*は赤-緑方向、b*は黄-青方向を表している。本発明において色味変動の差(ΔC)を以下のように定義した。
ΔC={(H/H環境の耐久後画像のa*-H/H環境の初期画像のa*)2+(H/H環境の耐久後画像のb*-H/H環境の初期画像のb*)2}1/2
測定は、画像中の任意の5点を測定してその平均値を求めた。評価方法は、それぞれの環境で出力したベタ画像のa*、b*を測定し、上記式によってΔCを求めた。
A:0≦ΔC<2.0(非常に良好)
B:2.0≦ΔC<3.5(良好)
C:3.5≦ΔC<5.0(やや良好)
D:5.0≦ΔC<6.5(本発明においては、使用可能なレベル)
E:6.5≦ΔC(本発明においては、使用することは難しいと考えるレベル)
A:0≦ΔC<2.0(非常に良好)
B:2.0≦ΔC<3.5(良好)
C:3.5≦ΔC<5.0(やや良好)
D:5.0≦ΔC<6.5(本発明においては、使用可能なレベル)
E:6.5≦ΔC(本発明においては、使用することは難しいと考えるレベル)
(4)耐久後キャリア付着
H/H環境下において耐久画像出力評価を行った後、キャリア付着を評価した。00H画像、およびFFH画像を出力し、画像出力途中で電源を切り、クリーニングされる前の静電潜像担持体上を透明な粘着テープを密着させてサンプリングした。そして、3cm×3cm中の静電荷潜像担持体上に付着していた磁性キャリア粒子の個数をカウントし、1cm2当りの付着キャリア粒子の個数を算出し、以下の基準により評価した。評価はシアン単色で行った。
A:2個以下(非常に良好)
B:3個以上4個以下(良好)
C:5個以上6個以下(やや良好)
D:7個以上8個以下(本発明においては、使用可能なレベル)
E:9個以上(本発明においては、使用することは難しいと考えるレベル)
H/H環境下において耐久画像出力評価を行った後、キャリア付着を評価した。00H画像、およびFFH画像を出力し、画像出力途中で電源を切り、クリーニングされる前の静電潜像担持体上を透明な粘着テープを密着させてサンプリングした。そして、3cm×3cm中の静電荷潜像担持体上に付着していた磁性キャリア粒子の個数をカウントし、1cm2当りの付着キャリア粒子の個数を算出し、以下の基準により評価した。評価はシアン単色で行った。
A:2個以下(非常に良好)
B:3個以上4個以下(良好)
C:5個以上6個以下(やや良好)
D:7個以上8個以下(本発明においては、使用可能なレベル)
E:9個以上(本発明においては、使用することは難しいと考えるレベル)
(5)ハーフトーン画像の耐久後の耐ガサツキ性
H/H環境下で初期、および耐久画像出力評価(5万枚)を行った後、ハーフトーン画像(30H)をA4で1枚印刷した。画像はデジタルマイクロスコープVHX-500(レンズワイドレンジズームレンズVH-Z100 キーエンス社製)を用い、ドット1000個の面積を測定した。ドット面積の個数平均(S)とドット面積の標準偏差(σ)を算出し、ドット再現性指数を下記式により算出した。そして、ハーフトーン画像のガサツキをドット再現性指数(I)とし、初期との差を比較した。
ドット再現性指数(I)=σ/S×100
H/H環境下で初期、および耐久画像出力評価(5万枚)を行った後、ハーフトーン画像(30H)をA4で1枚印刷した。画像はデジタルマイクロスコープVHX-500(レンズワイドレンジズームレンズVH-Z100 キーエンス社製)を用い、ドット1000個の面積を測定した。ドット面積の個数平均(S)とドット面積の標準偏差(σ)を算出し、ドット再現性指数を下記式により算出した。そして、ハーフトーン画像のガサツキをドット再現性指数(I)とし、初期との差を比較した。
ドット再現性指数(I)=σ/S×100
ガサツキの評価基準としては、シアン単色で、以下の基準により評価した。
A:初期との差が3.0未満(非常に良好)
B:初期との差が3.0以上5.0未満(良好)
C:初期との差が5.0以上8.0未満:(やや良好)
D:初期との差が8.0以上10.0未満(本発明においては、使用可能なレベル)
E:初期との差が10.0以上(本発明においては、使用することは難しいと考えるレベル)
A:初期との差が3.0未満(非常に良好)
B:初期との差が3.0以上5.0未満(良好)
C:初期との差が5.0以上8.0未満:(やや良好)
D:初期との差が8.0以上10.0未満(本発明においては、使用可能なレベル)
E:初期との差が10.0以上(本発明においては、使用することは難しいと考えるレベル)
(6)耐久後現像性
耐久後における現像性の評価は、H/H環境下、初期Vppを1.3kVに固定し、シアン単色ベタ画像の濃度が1.50(反射濃度)になるときのコンストラスト電位を設定した。
その設定で2万枚耐久後、Vppは1.3kVで、画像濃度1.50になるコントラスト電位を求め、初期との差を比較した。評価はシアン単色で行った。
反射濃度は、分光濃度計500シリーズ(X-Rite社製)を用いて測定した。
耐久後における現像性の評価は、H/H環境下、初期Vppを1.3kVに固定し、シアン単色ベタ画像の濃度が1.50(反射濃度)になるときのコンストラスト電位を設定した。
その設定で2万枚耐久後、Vppは1.3kVで、画像濃度1.50になるコントラスト電位を求め、初期との差を比較した。評価はシアン単色で行った。
反射濃度は、分光濃度計500シリーズ(X-Rite社製)を用いて測定した。
〈現像性の評価基準〉
A:初期との差が、40V未満(非常に良好)
B:初期との差が、40V以上60V未満(良好)
C:初期との差が、60V以上80V未満(やや良好)
D:初期との差が、80V以上100V未満(本発明においては、使用可能なレベル)
E:初期との差が、100V以上(本発明においては、使用することは難しいと考えるレベル)
A:初期との差が、40V未満(非常に良好)
B:初期との差が、40V以上60V未満(良好)
C:初期との差が、60V以上80V未満(やや良好)
D:初期との差が、80V以上100V未満(本発明においては、使用可能なレベル)
E:初期との差が、100V以上(本発明においては、使用することは難しいと考えるレベル)
(7)耐久前後の階調の変化
初期設定で、各パターンを以下に示す濃度に設定した画像を、H/H環境下で2000枚通紙直後に出力し、初期と2000枚通紙直後との階調性のズレを確認した。画像はX-Riteカラー反射濃度計(Color reflection densitometer X-Rite 404A)によりそれぞれの画像濃度を測定することにより判断した。評価はシアン単色で行った。
パターン1:0.10以上0.13以下
パターン2:0.25以上0.28以下
パターン3:0.45以上0.48以下
パターン4:0.65以上0.68以下
パターン5:0.85以上0.88以下
パターン6:1.05以上1.08以下
パターン7:1.25以上1.28以下
パターン8:1.45以上1.48以下
初期設定で、各パターンを以下に示す濃度に設定した画像を、H/H環境下で2000枚通紙直後に出力し、初期と2000枚通紙直後との階調性のズレを確認した。画像はX-Riteカラー反射濃度計(Color reflection densitometer X-Rite 404A)によりそれぞれの画像濃度を測定することにより判断した。評価はシアン単色で行った。
パターン1:0.10以上0.13以下
パターン2:0.25以上0.28以下
パターン3:0.45以上0.48以下
パターン4:0.65以上0.68以下
パターン5:0.85以上0.88以下
パターン6:1.05以上1.08以下
パターン7:1.25以上1.28以下
パターン8:1.45以上1.48以下
判断基準は、以下の通りである。
A:すべてのパターン画像が上記の濃度範囲を満足する(非常に良好)。
B:一つのパターン画像が上記の濃度範囲をはずれる(良好)。
C:二つのパターン画像が上記の濃度範囲をはずれる(やや良好)。
D:三つのパターン画像が上記の濃度範囲をはずれる(本発明においては、使用可能なレベル)。
E:四つ以上のパターン画像が上記の濃度範囲をはずれる(本発明においては、使用することは難しいと考えるレベル)。
A:すべてのパターン画像が上記の濃度範囲を満足する(非常に良好)。
B:一つのパターン画像が上記の濃度範囲をはずれる(良好)。
C:二つのパターン画像が上記の濃度範囲をはずれる(やや良好)。
D:三つのパターン画像が上記の濃度範囲をはずれる(本発明においては、使用可能なレベル)。
E:四つ以上のパターン画像が上記の濃度範囲をはずれる(本発明においては、使用することは難しいと考えるレベル)。
(8)総合判定
上記評価項目(1)~(7)における評価ランクを数値化し、合計値を以下の基準により判定を行った。なお、評価項目(1)は、耐久後の評価ランクをもって、総合判定を行う。また、評価項目(6)以外の評価ランクは、「A=5、B=4、C=3、D=2、E=0」とし、評価項目(6)の評価ランクは、「A=10、B=8、C=6、D=4、E=2」とする。
A:35以上:非常に良好。
B:28以上34以下:良好。
C:20以上27以下:やや良好。
D:15以上19以下:本発明においては、使用可能なレベル。
E:14以下:本発明においては、使用することは難しいと考えるレベル。
上記評価項目(1)~(7)における評価ランクを数値化し、合計値を以下の基準により判定を行った。なお、評価項目(1)は、耐久後の評価ランクをもって、総合判定を行う。また、評価項目(6)以外の評価ランクは、「A=5、B=4、C=3、D=2、E=0」とし、評価項目(6)の評価ランクは、「A=10、B=8、C=6、D=4、E=2」とする。
A:35以上:非常に良好。
B:28以上34以下:良好。
C:20以上27以下:やや良好。
D:15以上19以下:本発明においては、使用可能なレベル。
E:14以下:本発明においては、使用することは難しいと考えるレベル。
実施例1では、いずれの評価においても、非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例2、4〕
実施例1と同様に、磁性キャリア2、4を使用して実施例1と同じ比率で二成分系現像剤2、4および補給用現像剤2、4を調製した。得られた二成分系現像剤2、4および補給用現像剤2、4を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア2、4を使用して実施例1と同じ比率で二成分系現像剤2、4および補給用現像剤2、4を調製した。得られた二成分系現像剤2、4および補給用現像剤2、4を用いる以外は実施例1と同様にして評価を行った。
実施例2、4では、実施例1と比較して、添加粒子種および添加粒子表面のヒドロキシル基に対する処理方法が異なるが、水分率変化が小さく、非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例3〕
実施例1と同様に、磁性キャリア3を使用して実施例1と同じ比率で二成分系現像剤3および補給用現像剤3を調製した。得られた二成分系現像剤3および補給用現像剤3を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア3を使用して実施例1と同じ比率で二成分系現像剤3および補給用現像剤3を調製した。得られた二成分系現像剤3および補給用現像剤3を用いる以外は実施例1と同様にして評価を行った。
実施例3では、実施例1と比較して、添加粒子種および添加粒子表面のヒドロキシル基に対する処理方法が異なるため、帯電特性に影響が生じ、現像性が良好な結果となった。また、それ以外は非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例5〕
実施例1と同様に、磁性キャリア5を使用して実施例1と同じ比率で二成分系現像剤5および補給用現像剤5を調製した。得られた二成分系現像剤5および補給用現像剤5を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア5を使用して実施例1と同じ比率で二成分系現像剤5および補給用現像剤5を調製した。得られた二成分系現像剤5および補給用現像剤5を用いる以外は実施例1と同様にして評価を行った。
実施例5では、実施例1と比較して、添加粒子種および添加粒子表面のヒドロキシル基に対する処理方法が異なるため、帯電特性に影響が生じ、現像性が僅かに低下し、良好な結果となった。また、それ以外は非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例6、8〕
実施例1と同様に、磁性キャリア6、8を使用して実施例1と同じ比率で二成分系現像剤6、8および補給用現像剤6、8を調製した。得られた二成分系現像剤6、8および補給用現像剤6、8を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア6、8を使用して実施例1と同じ比率で二成分系現像剤6、8および補給用現像剤6、8を調製した。得られた二成分系現像剤6、8および補給用現像剤6、8を用いる以外は実施例1と同様にして評価を行った。
実施例6、8は、実施例1と比較して、添加粒子表面のヒドロキシル基に対する処理方法が異なるが、水分率変化が小さく、非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例7〕
実施例1と同様に、磁性キャリア7を使用して実施例1と同じ比率で二成分系現像剤7および補給用現像剤7を調製した。得られた二成分系現像剤7および補給用現像剤7を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア7を使用して実施例1と同じ比率で二成分系現像剤7および補給用現像剤7を調製した。得られた二成分系現像剤7および補給用現像剤7を用いる以外は実施例1と同様にして評価を行った。
実施例7では、実施例1と比較して、添加粒子表面のヒドロキシル基に対する処理方法が異なるため、帯電特性に影響が生じ、現像性が良好な結果となった。また、それ以外は非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例9、10〕
実施例1と同様に、磁性キャリア9、10を使用して実施例1と同じ比率で二成分系現像剤9、10および補給用現像剤9、10を調製した。得られた二成分系現像剤9、10および補給用現像剤9、10を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア9、10を使用して実施例1と同じ比率で二成分系現像剤9、10および補給用現像剤9、10を調製した。得られた二成分系現像剤9、10および補給用現像剤9、10を用いる以外は実施例1と同様にして評価を行った。
実施例9、10は、実施例1と比較して、添加粒子種が異なる。また、添加粒子表面のヒドロキシル基に対する処理方法が異なる。このため、耐久後の色味や現像性に影響が生じたが、いずれも良好な結果であった。また、それ以外は非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例11、12〕
実施例1と同様に、磁性キャリア11、12を使用して実施例1と同じ比率で二成分系現像剤11、12および補給用現像剤11、12を調製した。得られた二成分系現像剤11、12および補給用現像剤11、12を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア11、12を使用して実施例1と同じ比率で二成分系現像剤11、12および補給用現像剤11、12を調製した。得られた二成分系現像剤11、12および補給用現像剤11、12を用いる以外は実施例1と同様にして評価を行った。
実施例11、12は、実施例1と比較して、添加粒子種が異なる。また、添加粒子表面のヒドロキシル基に対する処理方法が異なる。これにより、耐久後の色味や現像性に影響が生じたが、いずれも良好な結果であった。また、それ以外は非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例13〕
実施例1と同様に、磁性キャリア13を使用して実施例1と同じ比率で二成分系現像剤13および補給用現像剤13を調製した。得られた二成分系現像剤13および補給用現像剤13を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア13を使用して実施例1と同じ比率で二成分系現像剤13および補給用現像剤13を調製した。得られた二成分系現像剤13および補給用現像剤13を用いる以外は実施例1と同様にして評価を行った。
実施例13は、実施例1と比較して、添加粒子種が異なる。また、添加粒子表面のヒドロキシル基に対する処理方法が異なる。これにより、耐久後の色味や現像性に影響が生じたが、いずれも良好な結果であった。また、磁性コアとしては、真密度の高いバルクコアを使用していることによって、帯電特性に影響が生じ、白抜け、耐久後キャリア付着、ハーフトーン画像の耐久後の耐ガサツキ性、耐久前後の階調の変化が若干悪化したが、いずれも良好な結果であった。また、それ以外は非常に良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例14〕
実施例1と同様に、磁性キャリア14を使用して実施例1と同じ比率で二成分系現像剤14および補給用現像剤14を調製した。得られた二成分系現像剤14および補給用現像剤14を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア14を使用して実施例1と同じ比率で二成分系現像剤14および補給用現像剤14を調製した。得られた二成分系現像剤14および補給用現像剤14を用いる以外は実施例1と同様にして評価を行った。
実施例14は、実施例1と比較して、添加粒子種の処理方法としてエステル化剤を使用したヒドロキシ基に対する化学修飾を行っている点で異なる。これにより、白抜け、階調の変動、耐久後キャリア付着、耐久後現像性、耐久前後の階調の変化に影響が生じたが、いずれも良好な結果であった。また、ハーフトーン画像の耐久後の耐ガサツキ性はやや良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例15〕
実施例1と同様に、磁性キャリア15を使用して実施例1と同じ比率で二成分系現像剤15および補給用現像剤15を調製した。得られた二成分系現像剤15および補給用現像剤15を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア15を使用して実施例1と同じ比率で二成分系現像剤15および補給用現像剤15を調製した。得られた二成分系現像剤15および補給用現像剤15を用いる以外は実施例1と同様にして評価を行った。
実施例15は、実施例1と比較して、添加粒子種に処理を行っていない点で異なる。その結果、白抜け、階調の変動、混色の色味変動に影響が生じたが、いずれも良好な結果であった。また、耐久後キャリア付着、ハーフトーン画像の耐久後の耐ガサツキ性、耐久後現像性、耐久前後の階調の変化が悪化したが、いずれもやや良好な結果であった。評価結果を表10-1~表10-3に示す。
〔実施例16〕
実施例1と同様に、磁性キャリア16を使用して実施例1と同じ比率で二成分系現像剤16および補給用現像剤16を調製した。得られた二成分系現像剤16および補給用現像剤16を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア16を使用して実施例1と同じ比率で二成分系現像剤16および補給用現像剤16を調製した。得られた二成分系現像剤16および補給用現像剤16を用いる以外は実施例1と同様にして評価を行った。
実施例16は、実施例1と比較して、添加粒子種の処理方法としてエステル化剤を使用したヒドロキシ基に対する化学修飾を行っている点で異なる。また、磁性コアとして、真密度の高いバルクコアを使用している点、被覆樹脂として、表面樹脂層および中間樹脂層に同一の樹脂を使用している点でも異なる。その結果、白抜け、階調の変動、混色の色味変動に影響が生じたが、いずれもやや良好な結果であった。また、耐久後キャリア付着、ハーフトーン画像の耐久後の耐ガサツキ性、耐久後現像性、耐久前後の階調の変化が悪化し、いずれも本発明においては、使用可能なレベルであった。評価結果を表10-1~表10-3に示す。
〔実施例17〕
実施例1と同様に、磁性キャリア17を使用して実施例1と同じ比率で二成分系現像剤17および補給用現像剤17を調製した。得られた二成分系現像剤17および補給用現像剤17を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア17を使用して実施例1と同じ比率で二成分系現像剤17および補給用現像剤17を調製した。得られた二成分系現像剤17および補給用現像剤17を用いる以外は実施例1と同様にして評価を行った。
実施例17は、実施例1と比較して、添加粒子種の処理方法としてエステル化剤を使用したヒドロキシ基に対する化学修飾を行っている点で異なる。また、磁性コアとして、真密度の高いバルクコアを使用している点、被覆樹脂として、表面樹脂層および中間樹脂層に同一の樹脂を使用している点でも異なる。さらに、表面樹脂層の膜厚が異なる。これらの結果、白抜け、階調の変動に影響が生じたが、いずれもやや良好な結果であった。また、混色の色味変動、耐久後キャリア付着、ハーフトーン画像の耐久後の耐ガサツキ性、耐久後現像性、耐久前後の階調の変化が悪化し、いずれも本発明においては、使用可能なレベルであった。評価結果を表10-1~表10-3に示す。
〔実施例18〕
実施例1と同様に、磁性キャリア18を使用して実施例1と同じ比率で二成分系現像剤18および補給用現像剤18を調製した。得られた二成分系現像剤18および補給用現像剤18を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア18を使用して実施例1と同じ比率で二成分系現像剤18および補給用現像剤18を調製した。得られた二成分系現像剤18および補給用現像剤18を用いる以外は実施例1と同様にして評価を行った。
実施例18は、実施例1と比較して、添加粒子種の処理方法としてエステル化剤を使用したヒドロキシ基に対する化学修飾を行っている点で異なる。また、磁性コアとして、真密度の高いバルクコアを使用している点、被覆樹脂として、表面樹脂層および中間樹脂層に同一の樹脂を使用している点で異なる。さらに、表面樹脂層の膜厚が異なる。これらの結果、白抜け、階調の変動に影響が生じたが、いずれもやや良好な結果であった。また、混色の色味変動、耐久後キャリア付着、ハーフトーン画像の耐久後の耐ガサツキ性、耐久後現像性、耐久前後の階調の変化が悪化し、いずれも本発明においては、使用可能なレベルであった。評価結果を表10-1~表10-3に示す。
〔実施例19〕
実施例1と同様に、磁性キャリア19を使用して実施例1と同じ比率で二成分系現像剤19および補給用現像剤19を調製した。得られた二成分系現像剤19および補給用現像剤19を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア19を使用して実施例1と同じ比率で二成分系現像剤19および補給用現像剤19を調製した。得られた二成分系現像剤19および補給用現像剤19を用いる以外は実施例1と同様にして評価を行った。
実施例19は、実施例1と比較して、添加粒子種の処理方法としてエステル化剤を使用したヒドロキシ基に対する化学修飾を行っている点で異なる。また、磁性コアとして、真密度の高いバルクコアを使用している点、被覆樹脂として、表面樹脂層および中間樹脂層に同一の樹脂を使用している点で異なる。さらに、表面樹脂層の膜厚が異なる。これらの結果、白抜けに影響が生じたが、いずれもやや良好な結果であった。また、階調の変動、混色の色味変動、耐久後キャリア付着、ハーフトーン画像の耐久後の耐ガサツキ性、耐久後現像性、耐久前後の階調の変化が悪化し、いずれも本発明においては、使用可能なレベルであった。評価結果を表10-1~表10-3に示す。
〔実施例20〕
実施例1と同様に、磁性キャリア20を使用して実施例1と同じ比率で二成分系現像剤20および補給用現像剤20を調製した。得られた二成分系現像剤20および補給用現像剤20を用いる以外は実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア20を使用して実施例1と同じ比率で二成分系現像剤20および補給用現像剤20を調製した。得られた二成分系現像剤20および補給用現像剤20を用いる以外は実施例1と同様にして評価を行った。
実施例20は、実施例1と比較して、添加粒子種の処理方法としてエステル化剤を使用したヒドロキシ基に対する化学修飾を行っている点で異なる。また、磁性コアとして、真密度の高いバルクコアを使用している点、被覆樹脂として、表面樹脂層および中間樹脂層に同一の樹脂を使用している点で異なる。さらに、表面樹脂層の膜厚が異なる。これらの結果、白抜けに影響が生じたが、いずれもやや良好な結果であった。また、階調の変動、混色の色味変動、耐久後キャリア付着、ハーフトーン画像の耐久後の耐ガサツキ性、耐久後現像性、耐久前後の階調の変化が悪化し、いずれも本発明においては、使用可能なレベルであった。評価結果を表10-1~表10-3に示す。
〔比較例1〕
実施例1と同様に、磁性キャリア21を使用して実施例1と同じ比率で二成分系現像剤21および補給用現像剤21を調製した。得られた二成分系現像剤21および補給用現像剤21を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア21を使用して実施例1と同じ比率で二成分系現像剤21および補給用現像剤21を調製した。得られた二成分系現像剤21および補給用現像剤21を用いる以外は、実施例1と同様にして評価を行った。
比較例1は、実施例19と比較して、中間樹脂層形成工程で、固形分被覆量を変更している点で異なる。その結果、白抜け、階調の変動、混色の色味変動に影響が生じ、いずれも本発明において実使用上難しいレベルであった。また、それ以外は、いずれも本発明においては、使用可能なレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例2〕
実施例1と同様に、磁性キャリア22を使用して実施例1と同じ比率で二成分系現像剤22および補給用現像剤22を調製した。得られた二成分系現像剤22および補給用現像剤22を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア22を使用して実施例1と同じ比率で二成分系現像剤22および補給用現像剤22を調製した。得られた二成分系現像剤22および補給用現像剤22を用いる以外は、実施例1と同様にして評価を行った。
比較例2は、実施例19と比較して、添加粒子に有機微粒子を使用している点で異なる。その結果、白抜け、階調の変動、混色の色味変動、耐久前後の階調の変化に影響が生じ、いずれも本発明において実使用上難しいレベルであった。また、それ以外は、いずれも本発明においては、使用可能なレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例3〕
実施例1と同様に、磁性キャリア23を使用して実施例1と同じ比率で二成分系現像剤23および補給用現像剤23を調製した。得られた二成分系現像剤23および補給用現像剤23を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア23を使用して実施例1と同じ比率で二成分系現像剤23および補給用現像剤23を調製した。得られた二成分系現像剤23および補給用現像剤23を用いる以外は、実施例1と同様にして評価を行った。
比較例3は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、白抜け、階調の変動、混色の色味変動、耐久前後の階調の変化に影響が生じ、いずれも本発明において実使用上難しいレベルであった。また、それ以外は、いずれも本発明においては、使用可能なレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例4〕
実施例1と同様に、磁性キャリア24を使用して実施例1と同じ比率で二成分系現像剤24および補給用現像剤24を調製した。得られた二成分系現像剤24および補給用現像剤24を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア24を使用して実施例1と同じ比率で二成分系現像剤24および補給用現像剤24を調製した。得られた二成分系現像剤24および補給用現像剤24を用いる以外は、実施例1と同様にして評価を行った。
比較例4は、実施例19と比較して、添加粒子種にラウリン酸処理を行っている点で異なる。その結果、白抜け、階調の変動、混色の色味変動、耐久後キャリア付着、耐久前後の階調の変化に影響が生じ、いずれも本発明において実使用上難しいレベルであった。また、それ以外は、いずれも本発明においては、使用可能なレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例5〕
実施例1と同様に、磁性キャリア25を使用して実施例1と同じ比率で二成分系現像剤25および補給用現像剤25を調製した。得られた二成分系現像剤25および補給用現像剤25を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア25を使用して実施例1と同じ比率で二成分系現像剤25および補給用現像剤25を調製した。得られた二成分系現像剤25および補給用現像剤25を用いる以外は、実施例1と同様にして評価を行った。
比較例5は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、白抜け、階調の変動、混色の色味変動、耐久後キャリア付着、耐久前後の階調の変化に影響が生じ、いずれも本発明において実使用上難しいレベルであった。また、それ以外は、いずれも本発明においては、使用可能なレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例6〕
実施例1と同様に、磁性キャリア26を使用して実施例1と同じ比率で二成分系現像剤26および補給用現像剤26を調製した。得られた二成分系現像剤26および補給用現像剤26を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア26を使用して実施例1と同じ比率で二成分系現像剤26および補給用現像剤26を調製した。得られた二成分系現像剤26および補給用現像剤26を用いる以外は、実施例1と同様にして評価を行った。
比較例6は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、白抜け、階調の変動、混色の色味変動、耐久後キャリア付着、耐久後現像性、耐久前後の階調の変化に影響が生じ、いずれも本発明において実使用上難しいレベルであった。また、ハーフトーン画像における耐久前後の耐ガサツキ性は、いずれも本発明においては、使用可能なレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例7〕
実施例1と同様に、磁性キャリア27を使用して実施例1と同じ比率で二成分系現像剤27および補給用現像剤27を調製した。得られた二成分系現像剤27および補給用現像剤27を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア27を使用して実施例1と同じ比率で二成分系現像剤27および補給用現像剤27を調製した。得られた二成分系現像剤27および補給用現像剤27を用いる以外は、実施例1と同様にして評価を行った。
比較例7は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、白抜け、階調の変動、混色の色味変動、耐久後キャリア付着、耐久後現像性、耐久前後の階調の変化に影響が生じ、いずれも本発明において実使用上難しいレベルであった。また、ハーフトーン画像における耐久前後の耐ガサツキ性は、いずれも本発明においては、使用可能なレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例8、9〕
実施例1と同様に、磁性キャリア28、29を使用して実施例1と同じ比率で二成分系現像剤28、29および補給用現像剤28、29を調製した。得られた二成分系現像剤28、29および補給用現像剤28、29を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア28、29を使用して実施例1と同じ比率で二成分系現像剤28、29および補給用現像剤28、29を調製した。得られた二成分系現像剤28、29および補給用現像剤28、29を用いる以外は、実施例1と同様にして評価を行った。
比較例8、9は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、全ての評価に影響が生じ、いずれも本発明において実使用上難しいレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例10〕
実施例1と同様に、磁性キャリア30を使用して実施例1と同じ比率で二成分系現像剤30および補給用現像剤30を調製した。得られた二成分系現像剤30および補給用現像剤30を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア30を使用して実施例1と同じ比率で二成分系現像剤30および補給用現像剤30を調製した。得られた二成分系現像剤30および補給用現像剤30を用いる以外は、実施例1と同様にして評価を行った。
比較例10は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、全ての評価に影響が生じ、いずれも本発明において実使用上難しいレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例11〕
実施例1と同様に、磁性キャリア31を使用して実施例1と同じ比率で二成分系現像剤31および補給用現像剤31を調製した。得られた二成分系現像剤31および補給用現像剤31を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア31を使用して実施例1と同じ比率で二成分系現像剤31および補給用現像剤31を調製した。得られた二成分系現像剤31および補給用現像剤31を用いる以外は、実施例1と同様にして評価を行った。
比較例11は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、全ての評価に影響が生じ、いずれも本発明において実使用上難しいレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例12〕
実施例1と同様に、磁性キャリア32を使用して実施例1と同じ比率で二成分系現像剤32および補給用現像剤32を調製した。得られた二成分系現像剤32および補給用現像剤32を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア32を使用して実施例1と同じ比率で二成分系現像剤32および補給用現像剤32を調製した。得られた二成分系現像剤32および補給用現像剤32を用いる以外は、実施例1と同様にして評価を行った。
比較例12は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、全ての評価に影響が生じ、いずれも本発明において実使用上難しいレベルであった。評価結果は表10-1~表10-3に示す。
〔比較例13〕
実施例1と同様に、磁性キャリア33を使用して実施例1と同じ比率で二成分系現像剤33および補給用現像剤33を調製した。得られた二成分系現像剤33および補給用現像剤33を用いる以外は、実施例1と同様にして評価を行った。
実施例1と同様に、磁性キャリア33を使用して実施例1と同じ比率で二成分系現像剤33および補給用現像剤33を調製した。得られた二成分系現像剤33および補給用現像剤33を用いる以外は、実施例1と同様にして評価を行った。
比較例13は、実施例19と比較して、添加粒子に対するエステル化処理剤種が異なり、粒子表面に親油性官能基を導入している。その結果、全ての評価に影響が生じ、いずれも本発明において実使用上難しいレベルであった。評価結果は表10-1~表10-3に示す。
この出願は2015年3月31日に出願された日本国特許出願第2015-070601からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
1、1K、1Y、1C、1M:静電潜像担持体、2、2K、2Y、2C、2M:帯電器、3、3K、3Y、3C、3M:露光器、4、4K、4Y、4C、4M:現像器、5:現像容器、6、6K、6Y、6C、6M:現像剤担持体、7:マグネット、8:規制部材、9:中間転写体、10K、10Y、10C、10M:中間転写帯電器(一次転写ローラ)、11:転写帯電器(二次転写ローラ)、12:転写材(記録媒体)、13:定着器、14:中間転写体クリーナー、15、15K、15Y、15C、15M:クリーナー(静電潜像担持体クリーナー)、16:前露光器
Claims (3)
- 磁性を有するフェライト芯材粒子と、被覆樹脂と、を有する磁性キャリアであって、
前記被覆樹脂は、表面樹脂層と、前記フェライト芯材粒子および前記表面樹脂層の間に存在する樹脂組成物と、を有し、
前記樹脂組成物は、樹脂と、親水性処理された無機粒子およびカーボンブラックからなる群より選択される少なくとも1つと、を含み、
前記表面樹脂層は、
i)樹脂を含み、
ii)前記親水性処理された無機粒子もしくはカーボンブラックを含まず、
iii)膜厚が0.01μm以上4.00μm以下の範囲であり、
前記磁性キャリアは、温度30℃湿度80%RHの環境下に24時間放置したときの水分率(A)と、前記環境下に24時間放置後、温度23℃湿度5%RHの環境下に24時間放置したときの水分率(B)と、の水分率変化(A-B)が、0.030質量%以下であることを特徴とする磁性キャリア。 - 前記親水性処理された無機粒子およびカーボンブラックからなる群より選択される少なくとも1つは、基体表面にエステル基および/またはカルボキシル基を有し、該エステル基と該カルボキシル基との合計の官能基の濃度が20%以上である、請求項1に記載の磁性キャリア。
- 前記フェライト芯材粒子が、多孔質磁性芯材粒子と、該多孔質磁性芯材粒子の空孔に充填された樹脂と、を有する樹脂充填型磁性芯材である、請求項1または2に記載の磁性キャリア。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016001562.3T DE112016001562B4 (de) | 2015-03-31 | 2016-03-30 | Magnetischer träger |
US15/248,375 US9778598B2 (en) | 2015-03-31 | 2016-08-26 | Magnetic carrier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-070601 | 2015-03-31 | ||
JP2015070601 | 2015-03-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/248,375 Continuation US9778598B2 (en) | 2015-03-31 | 2016-08-26 | Magnetic carrier |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157905A1 true WO2016157905A1 (ja) | 2016-10-06 |
Family
ID=57004402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/001854 WO2016157905A1 (ja) | 2015-03-31 | 2016-03-30 | 磁性キャリア |
Country Status (4)
Country | Link |
---|---|
US (1) | US9778598B2 (ja) |
JP (1) | JP6700909B2 (ja) |
DE (1) | DE112016001562B4 (ja) |
WO (1) | WO2016157905A1 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6403816B2 (ja) | 2016-02-08 | 2018-10-10 | キヤノン株式会社 | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 |
JP6750849B2 (ja) | 2016-04-28 | 2020-09-02 | キヤノン株式会社 | トナー及びトナーの製造方法 |
JP6921609B2 (ja) | 2016-05-02 | 2021-08-18 | キヤノン株式会社 | トナーの製造方法 |
JP6815753B2 (ja) | 2016-05-26 | 2021-01-20 | キヤノン株式会社 | トナー |
US10036970B2 (en) | 2016-06-08 | 2018-07-31 | Canon Kabushiki Kaisha | Magenta toner |
JP6879453B2 (ja) * | 2016-11-21 | 2021-06-02 | 株式会社リコー | 静電潜像現像剤用キャリア、二成分現像剤、補給用現像剤、画像形成装置、トナー収容ユニット、及び画像形成方法 |
US10197936B2 (en) | 2016-11-25 | 2019-02-05 | Canon Kabushiki Kaisha | Toner |
JP6849409B2 (ja) | 2016-11-25 | 2021-03-24 | キヤノン株式会社 | トナー |
US10409188B2 (en) | 2017-02-10 | 2019-09-10 | Canon Kabushiki Kaisha | Magnetic carrier, two-component developer, replenishing developer, and image forming method |
JP6808538B2 (ja) | 2017-02-28 | 2021-01-06 | キヤノン株式会社 | トナー |
US10451985B2 (en) | 2017-02-28 | 2019-10-22 | Canon Kabushiki Kaisha | Toner |
JP6833570B2 (ja) | 2017-03-10 | 2021-02-24 | キヤノン株式会社 | トナー |
JP6900245B2 (ja) | 2017-06-09 | 2021-07-07 | キヤノン株式会社 | トナー |
JP6914741B2 (ja) | 2017-06-16 | 2021-08-04 | キヤノン株式会社 | トナーおよび画像形成方法 |
JP6938345B2 (ja) | 2017-11-17 | 2021-09-22 | キヤノン株式会社 | トナー |
US10599060B2 (en) | 2017-12-06 | 2020-03-24 | Canon Kabushiki Kaisha | Toner |
JP7293010B2 (ja) | 2018-08-08 | 2023-06-19 | キヤノン株式会社 | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 |
JP7293009B2 (ja) | 2018-08-08 | 2023-06-19 | キヤノン株式会社 | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 |
JP7341781B2 (ja) | 2018-08-23 | 2023-09-11 | キヤノン株式会社 | トナー及び画像形成方法 |
JP7171314B2 (ja) | 2018-08-28 | 2022-11-15 | キヤノン株式会社 | トナー |
JP7229701B2 (ja) | 2018-08-28 | 2023-02-28 | キヤノン株式会社 | トナー |
JP7130518B2 (ja) | 2018-09-28 | 2022-09-05 | キヤノン株式会社 | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 |
US10955765B2 (en) | 2018-11-22 | 2021-03-23 | Canon Kabushiki Kaisha | Magnetic carrier and two-component developer |
JP7433869B2 (ja) | 2018-12-05 | 2024-02-20 | キヤノン株式会社 | トナー |
US11249410B2 (en) | 2018-12-12 | 2022-02-15 | Canon Kabushiki Kaisha | Toner |
JP7350565B2 (ja) | 2019-08-21 | 2023-09-26 | キヤノン株式会社 | トナー |
CN114556229A (zh) | 2019-10-07 | 2022-05-27 | 佳能株式会社 | 调色剂 |
JP2021081711A (ja) * | 2019-11-13 | 2021-05-27 | キヤノン株式会社 | 磁性キャリア、二成分現像剤、及び磁性キャリアの製造方法 |
US12099326B2 (en) | 2020-03-31 | 2024-09-24 | Canon Kabushiki Kaisha | Toner |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03111859A (ja) * | 1989-09-27 | 1991-05-13 | Fuji Xerox Co Ltd | 静電荷現像用キャリア |
JP2001272827A (ja) * | 2000-03-24 | 2001-10-05 | Powdertech Co Ltd | 電子写真現像剤用キャリア及び該キャリアを用いた現像剤 |
US20060246369A1 (en) * | 2005-04-29 | 2006-11-02 | Xerox Corporation | Coated carriers |
JP2007121911A (ja) * | 2005-10-31 | 2007-05-17 | Kyocera Mita Corp | キャリア |
JP2009192959A (ja) * | 2008-02-15 | 2009-08-27 | Sharp Corp | キャリア、キャリアの製造方法、2成分現像剤および画像形成装置 |
JP2009217059A (ja) * | 2008-03-11 | 2009-09-24 | Fuji Xerox Co Ltd | 静電荷像現像用キャリア、静電荷像現像剤、プロセスカートリッジ及び画像形成装置 |
JP2009229907A (ja) * | 2008-03-24 | 2009-10-08 | Fuji Xerox Co Ltd | 電子写真用キャリア、電子写真用現像剤、電子写真用現像剤カートリッジ、プロセスカートリッジ、及び画像形成装置 |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5478687A (en) | 1993-03-08 | 1995-12-26 | Konica Corporation | Carrier for negatively chargeable developer |
US5512402A (en) | 1993-05-20 | 1996-04-30 | Canon Kabushiki Kaisha | Carrier for electrophotography, two-component type developer, and image forming method |
JP2992924B2 (ja) | 1993-06-28 | 1999-12-20 | キヤノン株式会社 | カラートナー及びその製造方法 |
DE69517229T2 (de) | 1994-02-10 | 2000-11-09 | Canon K.K., Tokio/Tokyo | Toner für die Entwicklung elektrostatischer Bilder |
DE69512882T2 (de) | 1994-12-28 | 2000-04-20 | Canon K.K. | Toner für die Entwicklung elektrostatischer Bilder |
JP3154088B2 (ja) | 1995-05-02 | 2001-04-09 | キヤノン株式会社 | 静電荷像現像用トナー |
US5700617A (en) | 1995-10-12 | 1997-12-23 | Canon Kabushiki Kaisha | Toner for developing electrostatic images and charge-controlling agent |
US5851714A (en) | 1996-04-02 | 1998-12-22 | Canon Kabushiki Kaisha | Toner for developing electrostatic image and fixing method |
EP0822460B1 (en) | 1996-08-02 | 2003-11-05 | Canon Kabushiki Kaisha | Magenta toner, process for producing same and color image forming method using same |
DE69711551T2 (de) | 1996-11-19 | 2002-08-22 | Canon K.K., Tokio/Tokyo | Toner für die Entwicklung elektrostatischer Bilder |
EP0862090B1 (en) | 1997-02-28 | 2001-05-30 | Canon Kabushiki Kaisha | Yellow toner for developing electrostatic images |
KR100282952B1 (ko) | 1997-06-18 | 2001-03-02 | 미다라이 후지오 | 토너, 2성분계 현상제 및 화상 형성 방법 |
DE69822419T2 (de) | 1997-12-18 | 2004-12-30 | Canon K.K. | Farbtoner und Bildherstellungsverfahren |
JP3652161B2 (ja) | 1998-04-30 | 2005-05-25 | キヤノン株式会社 | トナー |
EP0961176A1 (en) | 1998-05-26 | 1999-12-01 | Nashua Corporation | Electrophotographic carrier comprising a coating of a grafted fluoropolymer |
US6326114B1 (en) | 1999-04-14 | 2001-12-04 | Canon Kabushiki Kaisha | Toner, and process for producing a toner |
ES2236094T3 (es) | 2000-07-10 | 2005-07-16 | Canon Kabushiki Kaisha | Toner. |
EP1172703B1 (en) | 2000-07-10 | 2015-09-09 | Canon Kabushiki Kaisha | Toner and full-color image forming method |
JP4387613B2 (ja) | 2000-07-10 | 2009-12-16 | キヤノン株式会社 | マゼンタトナー |
JP2003167389A (ja) | 2001-05-24 | 2003-06-13 | Ricoh Co Ltd | 電子写真用キャリア及び現像剤 |
US6808852B2 (en) | 2001-09-06 | 2004-10-26 | Canon Kabushiki Kaisha | Toner and heat-fixing method |
EP1336903B1 (en) | 2001-12-28 | 2014-09-10 | Canon Kabushiki Kaisha | Image-forming method having at least two speed modes |
US20030137675A1 (en) | 2001-12-28 | 2003-07-24 | Hironori Minagawa | Developing recovery container |
US6929894B2 (en) | 2002-07-10 | 2005-08-16 | Canon Kabushiki Kaisha | Toner and fixing method |
EP1388762B1 (en) | 2002-07-30 | 2006-05-03 | Canon Kabushiki Kaisha | Black toner |
DE60306080T2 (de) | 2002-11-29 | 2006-11-30 | Canon K.K. | Toner |
JP4290015B2 (ja) | 2003-01-10 | 2009-07-01 | キヤノン株式会社 | カラートナー及び画像形成装置 |
EP1455237B1 (en) | 2003-03-07 | 2011-05-25 | Canon Kabushiki Kaisha | Toner and two-component developer |
JP4289980B2 (ja) | 2003-03-07 | 2009-07-01 | キヤノン株式会社 | トナー及び画像形成方法 |
JP2004333931A (ja) | 2003-05-08 | 2004-11-25 | Canon Inc | 磁性キャリア及び二成分系現像剤 |
JP4289981B2 (ja) | 2003-07-14 | 2009-07-01 | キヤノン株式会社 | トナー及び画像形成方法 |
US7297455B2 (en) | 2003-07-30 | 2007-11-20 | Canon Kabushiki Kaisha | Toner, and image forming method |
JP4089893B2 (ja) | 2003-07-31 | 2008-05-28 | 株式会社リコー | 静電潜像現像用キャリア、現像剤、およびプロセスカートリッジ |
DE602004022115D1 (de) | 2003-09-12 | 2009-09-03 | Canon Kk | Farbtoner und Verfahren zur Farbbilderzeugung |
US7544457B2 (en) | 2003-11-06 | 2009-06-09 | Canon Kabushiki Kaisha | Color toner and two-component developer |
US20050106488A1 (en) | 2003-11-07 | 2005-05-19 | Canon Kabushiki Kaisha | Yellow toner, image forming apparatus and a method for producing a toner |
US7279262B2 (en) | 2003-11-20 | 2007-10-09 | Canon Kabushiki Kaisha | Magnetic carrier and two-component developer |
US7396629B2 (en) | 2004-04-26 | 2008-07-08 | Canon Kabushiki Kaisha | Image forming method and image forming apparatus |
WO2005106598A1 (ja) | 2004-04-28 | 2005-11-10 | Canon Kabushiki Kaisha | トナー |
JP2008070662A (ja) | 2006-09-14 | 2008-03-27 | Sharp Corp | キャリアおよび二成分現像剤 |
KR101523868B1 (ko) | 2011-02-21 | 2015-05-28 | 캐논 가부시끼가이샤 | 열처리 장치 및 토너 제조 방법 |
WO2012173164A1 (en) | 2011-06-13 | 2012-12-20 | Canon Kabushiki Kaisha | Heat treatment apparatus and method of obtaining toner |
WO2012173263A1 (en) | 2011-06-13 | 2012-12-20 | Canon Kabushiki Kaisha | Heat treating apparatus for powder particles and method of producing toner |
KR101547779B1 (ko) | 2011-06-13 | 2015-09-04 | 캐논 가부시끼가이샤 | 분체 입자의 열처리 장치 및 토너의 제조 방법 |
KR20160055955A (ko) | 2011-06-13 | 2016-05-18 | 캐논 가부시끼가이샤 | 분체 입자용 열처리 장치 및 토너의 제조 방법 |
US9158217B2 (en) | 2013-06-26 | 2015-10-13 | Canon Kabushiki Kaisha | Toner |
US9703216B2 (en) | 2013-07-12 | 2017-07-11 | Canon Kabushiki Kaisha | Toner using small-particle size magnetic iron oxide |
JP6470588B2 (ja) | 2014-02-27 | 2019-02-13 | キヤノン株式会社 | 磁性キャリアおよび二成分系現像剤 |
JP6487730B2 (ja) | 2014-03-20 | 2019-03-20 | キヤノン株式会社 | トナーおよび二成分現像剤 |
JP6624805B2 (ja) | 2014-04-24 | 2019-12-25 | キヤノン株式会社 | 磁性トナー |
JP6632249B2 (ja) | 2014-08-26 | 2020-01-22 | キヤノン株式会社 | 磁性キャリア及び二成分系現像剤 |
JP6418992B2 (ja) | 2015-03-13 | 2018-11-07 | キヤノン株式会社 | 磁性キャリアおよびその製造方法 |
-
2016
- 2016-03-30 WO PCT/JP2016/001854 patent/WO2016157905A1/ja active Application Filing
- 2016-03-30 DE DE112016001562.3T patent/DE112016001562B4/de active Active
- 2016-03-30 JP JP2016068710A patent/JP6700909B2/ja active Active
- 2016-08-26 US US15/248,375 patent/US9778598B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03111859A (ja) * | 1989-09-27 | 1991-05-13 | Fuji Xerox Co Ltd | 静電荷現像用キャリア |
JP2001272827A (ja) * | 2000-03-24 | 2001-10-05 | Powdertech Co Ltd | 電子写真現像剤用キャリア及び該キャリアを用いた現像剤 |
US20060246369A1 (en) * | 2005-04-29 | 2006-11-02 | Xerox Corporation | Coated carriers |
JP2007121911A (ja) * | 2005-10-31 | 2007-05-17 | Kyocera Mita Corp | キャリア |
JP2009192959A (ja) * | 2008-02-15 | 2009-08-27 | Sharp Corp | キャリア、キャリアの製造方法、2成分現像剤および画像形成装置 |
JP2009217059A (ja) * | 2008-03-11 | 2009-09-24 | Fuji Xerox Co Ltd | 静電荷像現像用キャリア、静電荷像現像剤、プロセスカートリッジ及び画像形成装置 |
JP2009229907A (ja) * | 2008-03-24 | 2009-10-08 | Fuji Xerox Co Ltd | 電子写真用キャリア、電子写真用現像剤、電子写真用現像剤カートリッジ、プロセスカートリッジ、及び画像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6700909B2 (ja) | 2020-05-27 |
US20160363889A1 (en) | 2016-12-15 |
DE112016001562B4 (de) | 2021-12-09 |
US9778598B2 (en) | 2017-10-03 |
DE112016001562T5 (de) | 2017-12-28 |
JP2016194692A (ja) | 2016-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016157905A1 (ja) | 磁性キャリア | |
JP6418992B2 (ja) | 磁性キャリアおよびその製造方法 | |
JP6632249B2 (ja) | 磁性キャリア及び二成分系現像剤 | |
JP6403816B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP6470588B2 (ja) | 磁性キャリアおよび二成分系現像剤 | |
JP6320147B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP7293010B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP7293009B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP6659142B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP6362425B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP7130518B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP6362426B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP6061603B2 (ja) | 磁性キャリア、二成分系現像剤及び補給用現像剤 | |
JP6270522B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤及び画像形成方法 | |
JP6711626B2 (ja) | 磁性キャリア、二成分系現像剤、画像形成方法、補給用現像剤 | |
JP6914773B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP2015203742A (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤及び画像形成方法 | |
JP6659145B2 (ja) | 磁性キャリア、二成分現像剤、補給用現像剤及び画像形成方法 | |
JP2020034875A (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP7551437B2 (ja) | 磁性キャリア | |
JP7387337B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP6914772B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP6987657B2 (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法ならびに磁性キャリアの製造方法 | |
JP2015152654A (ja) | 磁性キャリア、二成分系現像剤、補給用現像剤、及び画像形成方法 | |
JP2024089772A (ja) | 磁性キャリア、及び二成分系現像剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16771791 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016001562 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16771791 Country of ref document: EP Kind code of ref document: A1 |