WO2016024566A1 - 医療器具、細胞培養方法、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および培養細胞 - Google Patents
医療器具、細胞培養方法、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および培養細胞 Download PDFInfo
- Publication number
- WO2016024566A1 WO2016024566A1 PCT/JP2015/072631 JP2015072631W WO2016024566A1 WO 2016024566 A1 WO2016024566 A1 WO 2016024566A1 JP 2015072631 W JP2015072631 W JP 2015072631W WO 2016024566 A1 WO2016024566 A1 WO 2016024566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- cells
- cyclic olefin
- olefin polymer
- culture
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/20—Material Coatings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/06—Plates; Walls; Drawers; Multilayer plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/02—Separating microorganisms from the culture medium; Concentration of biomass
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/04—Cell isolation or sorting
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2535/00—Supports or coatings for cell culture characterised by topography
Definitions
- the present invention relates to a medical instrument, a cell culture method, a fluorine-containing cyclic olefin polymer, a fluorine-containing cyclic olefin polymer composition, and cultured cells.
- Such cell culture is usually performed together with a culture solution in a fixed container.
- Cell culture in particular, many animal cells have adhesion dependency that grows by attaching to substances, and the culture of cells having such adhesion dependency is a base material for cell attachment. (Equipment) is required.
- the cell culture substrate polystyrene molded products are generally used as the material, and those obtained by subjecting the surface of the substrate to low temperature plasma treatment, corona discharge treatment, etc. and imparting hydrophilicity are petri dishes, flasks, multiplates. It is commercially available as a culture instrument.
- gel and sponge-like collagen are placed on the culture substrate and seeded and cultured with fibroblasts and keratinocytes to produce cultured mucosa and skin.
- Patent Document 1 a method has been disclosed (Patent Document 1), most of the collagen species utilized are collagens that have been solubilized and extracted from the connective tissue of bovine or swine, and recently BSE (bovine spongiform encephalopathy) and foot-and-mouth disease Due to such problems, its use has become difficult when considering medical applications.
- Patent Document 3 a subculture operation for adjusting the cell concentration by connecting cell bags made of a gas-permeable resin and mixing the culture solution in the bag is disclosed.
- this subculture operation involves very complicated work such as frequent liquid exchange, and the cells adhering to the substrate are peeled off and transferred to a new culture vessel.
- Non-Patent Document 1 when the cell density after 1 hour of the start of cultivation is measured for a substrate having a water contact angle in the range of 43 ° to 116 °, the substrate in the range of 60 ° to 70 ° is used regardless of the type of substrate. It is described that the density of the cells using the material is high and the adhesiveness of the cells is good.
- Patent Documents 4 and 5 a culture technique using a base material in which a concavo-convex structure is formed on the surface of the base material in contact with cells.
- the culture using the base material having a concavo-convex structure is a spheroid culture, and the cells grow in a massive form.
- the material of the base material that shapes the concavo-convex structure is a conventionally known cell-adhesive material such as cycloolefin polymer (Patent Document 4) and polydimethylsiloxane (Patent Document 5).
- a medical device that includes a base material and that contacts or holds cells on one surface of the base material, wherein the one surface that holds at least cells of the base material is represented by the following general formula (1)
- a medical device composed of a fluorine-containing cyclic olefin polymer containing a repeating structural unit. (In the formula (1), at least one of R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms Selected from alkoxy and alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different from each other, and R 1 to R 4 are bonded to each other to form a ring structure; May be good.) (2) The medical instrument according to (1), wherein a water contact angle on the one surface that contacts or holds cells is 70 ° or more and 160 ° or less.
- the medical device according to (1) or (2), wherein a water contact angle on the one surface that contacts or holds cells is 70 ° or more and 120 ° or less.
- a water contact angle on the one surface that contacts or holds cells is 70 ° or more and 120 ° or less.
- at least one surface of the base material that comes into contact with a cell has an uneven structure.
- the medical instrument according to (4), wherein a water contact angle of the one surface that contacts the cell is 121 ° or more and 160 ° or less.
- the one surface that contacts or holds at least cells of the substrate is constituted by a fluorine-containing cyclic olefin polymer composition containing the fluorine-containing cyclic olefin polymer, a photocurable compound, and a photocuring initiator.
- the medical device according to any one of (1) to (5).
- the mass ratio of the fluorine-containing cyclic olefin polymer to the photocurable compound (fluorine-containing cyclic olefin polymer / photocurable compound) in the fluorine-containing cyclic olefin polymer composition is 99.9 / 0.1 to The medical device according to (6), which is 50/50.
- (10) The medical device according to (8) or (9), wherein the cultured cells are floated with a buffer solution and detached from the one surface.
- (11) a step of seeding cells on the one surface of the base material of the medical device according to any one of (1) to (10) so as to contact or hold the one surface; Culturing the cells to obtain cultured cells; Adding a buffer solution on the one surface to suspend the cultured cells from the one surface;
- a cell culture method comprising: (12) A fluorine-containing cyclic olefin polymer constituting the one surface for holding at least cells of the base material of a medical device comprising a base material and causing cells to contact or hold on one side of the base material, A fluorine-containing cyclic olefin polymer containing a repeating structural unit represented by formula (1).
- R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine. alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms Selected from alkoxy and alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different from each other, and R 1 to R 4 are bonded to each other to form a ring structure; May be good.) (13) A fluorine-containing cyclic olefin polymer composition comprising a base material and constituting the one surface for holding at least cells of the base material of a medical device that contacts or holds cells on one surface of the base material, A fluorine-containing cyclic olefin poly
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms Selected from alkoxy and alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different from each other, and R 1 to R 4 are bonded to each other to form a ring structure; May be good.) (14) Cultured cells maintaining drug metabolic enzyme activity for at least 7 days.
- Mouse embryo fibroblasts that have been immersed in phosphate buffered saline and suspended in sheet form.
- 2 is a fluorescence micrograph of cell nuclei of human dermal fibroblasts and cytoskeletal proteins cultured in the cell culture container described in Example 23 for 7 days.
- 2 is a fluorescence micrograph of cell nuclei of human skin fibroblasts and cytoskeletal proteins cultured in the TCPS multiwell plate described in Comparative Example 6 for 7 days.
- 2 is a fluorescence micrograph of observing killed autofluorescence of cultured human cells cultured in the cell culture container described in Example 23 for 7 days.
- the medical device is a medical device that includes a base material and causes cells to contact or hold on one surface of the base material. Further, at least one surface for holding the cells of the substrate is composed of a fluorine-containing cyclic olefin polymer containing a repeating structural unit represented by the following general formula (1).
- R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms Selected from alkoxy and alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different from each other, and R 1 to R 4 are bonded to each other to form a ring structure; May be.
- the substituents such as alkyl, alkoxy, and alkoxyalkyl may be described as an alkyl group, an alkoxy group, and an alkoxyalkyl group, respectively.
- the “repeating structural unit” in this specification can be simply
- the inventor of the present invention provides a fluorine-containing cyclic olefin polymer containing a repeating structural unit represented by the general formula (1), or the fluorine-containing cyclic olefin, on one surface for contacting or holding cells of a base material constituting a medical device. It has been newly found that, when formed using a composition containing a polymer, cells held on the one surface can be easily suspended with a buffer solution such as phosphate buffered saline. Therefore, according to the medical instrument according to the present embodiment, the cells that are in contact with or held on one surface of the substrate can be detached from the substrate without being damaged by suspending the cells using the buffer solution. Become.
- the medical device is a medical device that includes a base material and is used in a form in which cells and / or a culture solution are in contact with or held on one surface of the base material.
- a medical instrument is used, for example, for culturing cells that are in contact with or held on one surface of a substrate, or for performing an examination using cells that are in contact with or held on one surface of a substrate.
- a culture bag, a culture plate, a culture dish, a culture dish, a culture flask, a culture tube, etc. can be mentioned as an example of the said medical instrument, for example.
- the one surface can be a culture surface for culturing cells.
- At least one surface for contacting or holding the cells of the base material is constituted by a fluorine-containing cyclic olefin polymer containing a repeating structural unit represented by the general formula (1).
- the cells held on the single surface can be On the other hand, it is possible to realize a base material that does not adhere and adhere firmly to the one surface while forming an appropriate scaffold. Thereby, in a cell culture, a cell can be proliferated, forming a colony in the thickness direction.
- the morphology of the cells grown while forming colonies in the thickness direction can be observed by, for example, a bright / dark field microscope, a phase contrast microscope, or a fluorescence microscope.
- a fluorescence microscope observation that can be observed with a fluorescent color obtained by staining a cell nucleus or cytoskeletal protein of a cell with a fluorescent reagent for each site is suitable as a cell morphology observation method.
- the proliferated cells proliferate while adhering to or adhering to the culture surface, so that the cells proliferate in a uniform plane state with respect to the thickness direction.
- the cells cover the culture surface, there is no scaffold to which the cells adhere or adhere, so that growth is hindered by the influence of contact inhibition or the like.
- the subculture operation involves very complicated work such as frequent liquid exchange.
- the grown cells adhere and adhere to one surface of the base material. Can be suppressed. For this reason, even if it does not depend on a subculture operation, it becomes possible to proliferate a cell so that a colony may be formed with respect to the thickness direction. Therefore, more efficient cell culture can be performed while suppressing the occurrence of cell damage and complication of operation.
- the cultured cell produced using the medical instrument of this embodiment is a cultured cell which maintained the drug metabolic system enzyme activity for at least 7 days.
- viable cells can be cultured normally except for very limited cell types such as viruses or bacteria that have a high probability of causing a gene mutation.
- the drug metabolic enzyme activity of the cell is maintained for at least 7 days without being stored at a low temperature or subjected to a special culture storage operation (for example, storage with excess oxygen, etc.), preferably a culture maintained for 10 days. It is a cell. Particularly preferred are cultured cells maintained for 14 days.
- the shape of the cell is not particularly limited, but examples thereof include sheet-like cells, clustered (including spheroid) cells, and nervous system morphological cells.
- the cultured cells of this embodiment can be expected to maintain a similar function for a long period of time in drug discovery, biopharmaceuticals, and beauty, and is an invention that can become a global trend.
- the moldability of the base material can be improved, and a new industrially valuable medical device is realized.
- That at least one surface for contacting or holding the cells of the base material is constituted by the fluorine-containing cyclic olefin polymer means, for example, a film constituted by the fluorine-containing cyclic olefin polymer on one surface of a support formed of another material. (Also referred to as a cultured cell sheet) is applied to form a base material, or a coating film composed of the above-mentioned fluorine-containing cyclic olefin polymer is applied and dried on one surface of a support formed of another material.
- the case where the substrate is formed by forming the substrate includes the case where the entire substrate is formed of a molded article formed of the fluorine-containing cyclic olefin polymer.
- a laminate in which the cultured cells produced on the medical device of the present embodiment are covered with cotton, cloth, nonwoven fabric, etc. may be provided.
- the laminate may be impregnated with a humectant such as glycerin.
- the cultured cells produced with the medical device of the present embodiment are used for a medical practice such as removing the covering provided as a laminate, pasting it directly to the affected area for regenerative medicine, and then removing the film. You can also.
- the water contact angle on the one surface that contacts or holds the cells of the substrate can be, for example, 70 ° or more and 160 ° or less.
- a family of proteins such as vitronectin and fibronectin (adhesion molecules and proteins) present in the extracellular matrix of the culture solution.
- the cell and the matrix containing extracellular matrix, the main component including the extracellular matrix was grown while suppressing adhesion and adhesion.
- Cells can be more easily suspended using, for example, a buffer such as phosphate buffered saline.
- the water contact angle is more preferably 75 ° to 155 °, and particularly preferably 80 ° to 150 °.
- the water contact angle on one surface of the substrate is preferably used when the water contact angle on the surface of the substrate is 70 ° or more and 120 ° or less, and in the material constituting one surface of the substrate or the method for manufacturing the substrate It is possible to control by appropriately selecting various conditions. From the viewpoint of suppressing cell damage and efficient cell culture, the water contact angle is more preferably 75 ° to 115 °, and particularly preferably 80 ° to 110 °. . In another embodiment, a higher water contact angle can be set. For example, the water contact angle on one surface of the substrate can be set in a range of 121 ° to 160 °.
- the water contact angle is more preferably 123 ° to 155 °, and particularly preferably 125 ° to 150 °. .
- forming one surface of the base material using the fluorine-containing cyclic olefin polymer containing the repeating structural unit represented by the general formula (1) makes the water contact angle a desired range. This is one of the important elements.
- the water contact angle is measured in accordance with Japanese Industrial Standard JIS-R3257 (wetting test method for substrate glass surface), and the shape of the water droplet can be regarded as a spherical shape under constant temperature and humidity conditions of 25 ⁇ 5 ° C and 50 ⁇ 10%.
- numerical values within one minute immediately after contact with water droplets can be handled as the physical property values by the above method.
- the types of cells that can be handled by the medical device according to the present embodiment are animal cells, regardless of whether they are suspension cells or adhesion cells, for example, fibroblasts, mesenchymal stem cells, hematopoietic stem cells, neural stem cells , Nerve cells, corneal epithelial cells, oral mucosal cells, retinal pigment cells, periodontal ligament stem cells, myofibroblasts, cardiomyocytes, hepatocytes, splenic endocrine cells, skin keratinocytes, skin fibroblasts, subcutaneous fat Progenitor cells, kidney cells, bottom root sheath cells, nasal mucosal epithelial cells, mesenchymal stem cells, vascular endothelial progenitor cells, vascular endothelial cells, vascular smooth muscle cells, osteoblasts, chondrocytes, skeletal muscle cells, immortalized cells, Examples include cancer cells, keratinocytes, embryonic stem cells (ES cells), EBV-transformed B cells, induced pl
- ⁇ cell may be either a primary cell or a passaged cell.
- These cells are derived from various organisms such as cells of humans, dogs, rats, mice, birds, pigs, cows, insects, etc., or tissues, organs, microorganisms, viruses, etc. formed by assembling them.
- human cervical cancer derived from Chinese hamster ovary, derived from CV-1 cells, derived from human myeloid leukemia, derived from human breast cancer, derived from human T cell leukemia, derived from African green monkey kidney, human adrenal gland From medullary brown cell types, from human myeloid leukemia, from C3H mouse subcutaneous tissue, from human fetal kidney, from human liver cancer, from human histiocytic leukemia, from human colon cancer, from human lung cancer, from mouse melanoma, from dog kidney , Balb / c mouse embryo origin, Chinese hamster lung origin, Swiss3T3 origin, NIH S iss mouse fetal origin, human Burkitt lymphoma origin, human lung non-small cell carcinoma origin, human skin Epidermoid Carcinoid origin, moth larvae ovary origin, human neuroblastoma origin, Sirian golden hamster kidney origin, mouse macrophage origin, mouse muscle Tissue-derived, mixed Swiss mouse embryo-derived, human
- the fluorine-containing cyclic olefin polymer contains a repeating structural unit represented by the following general formula (1).
- this fluorine-containing cyclic olefin polymer can be used to form at least one surface of the base material of a medical device in which cells are brought into contact with or held on one surface of the base material.
- R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine. alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms Selected from alkoxy and alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different from each other, and R 1 to R 4 are bonded to each other to form a ring structure; May be.)
- R 1 to R 4 are fluorine; fluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl, hexafluoro-2- 1 to 1 carbon atoms containing fluorine such as alkyl in which part or all of hydrogen of the alkyl group such as methylisopropyl, perfluoro-2-methylisopropyl, n-perfluorobutyl, n-perfluoropentyl, perfluorocyclopentyl is substituted with fluorine 10 alkyls; fluoromethoxy, difluoromethoxy, trifluoromethoxy, trifluoroethoxy, pentafluoroethoxy, heptafluoropropoxy, hexafluoroisopropoxy, h
- R 1 to R 4 may be bonded to each other to form a ring structure, and a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
- other R 1 to R 4 not containing fluorine are hydrogen; alkyl having 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl, etc .; methoxy And alkoxy having 1 to 10 carbon atoms such as ethoxy, propoxy, butoxy and pentoxy; or alkoxyalkyl having 2 to 10 carbon atoms such as methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl and pentoxymethyl.
- the fluorine-containing cyclic olefin polymer may have only the structural unit represented by the general formula (1), or may have another structural unit together with the structural unit represented by the general formula (1). Also good.
- the fluorine-containing cyclic olefin polymer may be a structural unit represented by the general formula (1), and may include two or more types of structural units in which at least one of R 1 to R 4 is different from each other.
- fluorine-containing cyclic olefin polymer containing the repeating structural unit represented by the general formula (1) include poly (1-fluoro-2-trifluoromethyl-3,5-cyclopentylene ethylene), poly (1-fluoro-1-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1-methyl-1-fluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1 , 1-difluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1,2-difluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1-perfluoro Ethyl-3,5-cyclopentyleneethylene), poly (1,1-bis (trifluoromethyl) -3,5-cyclopentyleneethylene) Poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1,2-bis (trifluoromethyl) -3,5-cyclopent
- the molecular weight of the fluorine-containing cyclic olefin polymer is, for example, 5,000 to 1 in terms of polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) at a sample concentration of 3.0 to 9.0 mg / ml. It is preferably 1,000,000, more preferably 10,000 to 300,000. By making this weight average molecular weight (Mw) equal to or more than the above lower limit value, cracks caused by external stress such as bending do not occur in a molded product molded by the solution cast method or a molded product coated on a base material. It becomes possible to obtain a molded product in a stable state.
- Mw polystyrene-equivalent weight average molecular weight
- the weight average molecular weight (Mw) is set to be equal to or less than the above upper limit value, it becomes possible to have fluidity that facilitates melt molding.
- the numerical range indicated by “to” includes the upper limit value and the lower limit value thereof.
- the molecular weight distribution (Mw / Mn) to the upper limit value or less, it is possible to suppress elution of particularly low molecular weight components such as oligomers, and the water contact angle on the substrate surface is changed to change the cell of this embodiment. It becomes possible to suppress more reliably that the form of proliferation is prevented.
- Mw weight average molecular weight
- Mw / Mn molecular weight distribution
- the glass transition temperature of the fluorine-containing cyclic olefin polymer by differential scanning calorimetry is preferably 50 to 300 ° C, more preferably 80 to 280 ° C, and further preferably 100 to 250 ° C.
- heat sterilization treatment can be performed, and the shape can be maintained under the use environment. It becomes possible to suitably obtain a medical device as a base material for cell culture and examination using cells that are excellent in hue.
- the partially fluorinated polymer of the general formula (1) of the present embodiment is different from the fully fluorinated polymer in that it has a structure in which the main chain is a partially fluorinated polymer having a hydrocarbon and a fluorine atom in a side chain. Therefore, it dissolves well in polar solvents such as commercially available ethers and ketones, which are solvents for polymer synthesis, and exhibits excellent solubility in polar compounds such as photo-curable compounds.
- the molded product exhibits excellent adhesion to molded products made of general-purpose resins such as PET and acrylic resin, and has a hydrophobic surface property that is a characteristic of a fluorine-based polymer.
- the fluorine-containing cyclic olefin polymer which consists of a repeating structural unit substantially represented by General formula (1) can be manufactured by the method mentioned later. Thereby, it is possible to suitably obtain a fluorine-containing cyclic olefin polymer that is a raw material of a base material for cell culture and cell-based examination characterized by suppressing cell adhesion or adhesion according to this embodiment. it can.
- a fluorine-containing cyclic olefin polymer is obtained by polymerizing a cyclic olefin monomer represented by the following general formula (2) with a ring-opening metathesis polymerization catalyst, and hydrogenating the olefin portion of the main chain of the resulting polymer. Can be synthesized.
- monomers other than the cyclic olefin monomer represented by the general formula (2) may be included.
- the main chain double bond is hydrogenated after ring-opening metathesis polymerization of the monomer represented by the general formula (2).
- This is an added fluorine-containing polymer.
- a Schrock catalyst is preferably used, and a Grubbs catalyst may be used. This makes it possible to increase the polymerization catalytic activity for polar monomers and realize an industrially excellent production method.
- These ring-opening metathesis polymerization catalysts may be used alone or in combination of two or more.
- a ring-opening metathesis polymerization catalyst comprising a combination of a classic organic transition metal complex, transition metal halide or transition metal oxide and a Lewis acid as a cocatalyst can also be used.
- the molar ratio of the cyclic olefin monomer to the ring-opening metathesis polymerization catalyst is 1 mole of the transition metal alkylidene catalyst in the case of a transition metal alkylidene catalyst such as tungsten, molybdenum, or ruthenium.
- the monomer is preferably 100 to 30,000 mol, more preferably 1,000 to 20,000 mol.
- an olefin or a diene can be used as a chain transfer agent in order to control the molecular weight and its distribution within the above-mentioned range.
- the olefin include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and fluorine-containing olefins thereof.
- vinyltrimethylsilane, allyltrimethylsilane examples thereof include silicon-containing olefins such as allyltriethylsilane and allyltriisopropylsilane, and fluorine and silicon-containing olefins thereof.
- diene examples include nonconjugated dienes such as 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, and fluorine-containing nonconjugated dienes thereof.
- nonconjugated dienes such as 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, and fluorine-containing nonconjugated dienes thereof.
- olefins, fluorine-containing olefins or dienes may be used alone or in combination of two or more.
- the amount of the chain transfer agent used is preferably from 0.001 to 1,000 mol, more preferably from 0.01 to 100 mol, based on 1 mol of the cyclic olefin monomer.
- the chain transfer agent is preferably 0.1 to 1,000 moles, more preferably 1 to 500 moles per mole of the transition metal alkylidene catalyst.
- the ring-opening metathesis polymerization of the cyclic olefin monomer may be solvent-free or may use a solvent.
- the solvent to be used includes ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane or dioxane, and ethyl acetate.
- Esters such as propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene or ethylbenzene, aliphatic hydrocarbons such as pentane, hexane or heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane or decalin Aliphatic cyclic hydrocarbons, methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, halogenated hydrocarbons such as chlorobenzene or trichlorobenzene, fluoro Fluorine-containing aromatic hydrocarbons such as benzene, difluorobenzene, hexafluorobenzene, trifluoromethylbenzene, metaxylene hexafluoride, fluorine-containing aliphatic hydrocarbons such as perfluorohex
- the concentration of the cyclic olefin monomer with respect to the monomer solution is preferably 5 to 100% by mass, although it varies depending on the reactivity of the monomer and the solubility in the polymerization solvent. More preferably, it is mass%.
- the reaction temperature is preferably ⁇ 30 to 150 ° C., more preferably 30 to 100 ° C.
- the reaction time is preferably 10 minutes to 120 hours, more preferably 30 minutes to 48 hours.
- the reaction can be stopped with an aldehyde such as butyraldehyde, a ketone such as acetone, an alcohol such as methanol, or a quenching agent such as water, to obtain a polymer solution.
- the cyclic olefin polymer of this embodiment can be obtained by hydrogenating a olefin portion of the main chain of a polymer obtained by ring-opening metathesis polymerization of a cyclic olefin monomer using a catalyst.
- the hydrogenation catalyst can be a homogeneous metal complex catalyst or a heterogeneous metal supported catalyst as long as it can hydrogenate the olefin part of the main chain of the polymer without causing a hydrogenation reaction of the solvent used.
- Any homogeneous metal complex catalyst may be used, for example, chlorotris (triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) osmium, dichlorohydridobis (triphenylphosphine) iridium, dichlorotris (triphenylphosphine).
- Examples include ruthenium, dichlorotetrakis (triphenylphosphine) ruthenium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, dichlorotris (trimethylphosphine) ruthenium, and the heterogeneous metal-supported catalyst includes, for example, active Palladium on carbon, alumina-supported palladium, activated carbon-supported rhodium, alumina-supported rhodium, active carbon supported ruthenium, alumina-supported ruthenium and the like. These hydrogenation catalysts may be used alone or in combination of two or more. In particular, from the viewpoint of cell culture, palladium on activated carbon or palladium on alumina that can be easily removed by filtration is preferably used.
- the amount of the hydrogenation catalyst used is that the metal component in the hydrogenation catalyst is hydrogenated.
- the amount is preferably 5 ⁇ 10 ⁇ 4 to 100 parts by mass, more preferably 1 ⁇ 10 ⁇ 2 to 30 parts by mass with respect to 100 parts by mass of the polymer before treatment.
- the solvent used for hydrogenation is not particularly limited as long as it dissolves the cyclic olefin polymer and the solvent itself is not hydrogenated.
- ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, Esters such as ethyl acetate, propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbons such as pentane, hexane and heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, Aliphatic cyclic hydrocarbons such as decalin, methylene dichloride, halogenated hydrocarbons such as chloroform, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene
- the hydrogen pressure is preferably from normal pressure to 30 MPa, more preferably from 0.5 to 20 MPa, and particularly preferably from 2 to 15 MPa.
- the reaction temperature is preferably 0 to 300 ° C., more preferably room temperature to 250 ° C., and particularly preferably 50 to 200 ° C.
- the mode of carrying out the hydrogenation reaction is not particularly limited. For example, there are a method in which the catalyst is dispersed or dissolved in a solvent, a method in which the catalyst is packed in a column and the polymer solution is circulated as a stationary phase, and the like. Can be mentioned.
- the hydrogenation treatment of the olefin portion of the main chain may be performed by precipitating the polymer solution of the cyclic olefin polymer before the hydrogenation treatment in a poor solvent and isolating the polymer, and then dissolving the solution again in the solvent and performing the hydrogenation treatment.
- the hydrogenation treatment may be performed with the above hydrogenation catalyst without isolating the polymer from the polymerization solution, and there is no particular limitation.
- the hydrogenation rate of the olefin part of the cyclic olefin polymer is preferably 50% or more, more preferably 70 to 100%, and particularly preferably 90 to 100%.
- the method for obtaining the cyclic olefin polymer from the polymer solution after hydrogenation particularly when a solid catalyst such as palladium on activated carbon or palladium on alumina is preferably used is not particularly limited.
- a method of obtaining a polymer by a method such as separation or decantation and discharging the reaction solution to a poor solvent under stirring a method of depositing a polymer by a method such as steam stripping in which steam is blown into the reaction solution, or a reaction solution And a method of evaporating and removing the solvent by heating or the like.
- the cyclic olefin polymer can be obtained by the above-described method after the synthesis solution is filtered to separate the metal-supported catalyst.
- a catalyst component having a large particle size is preliminarily settled in a polymer solution by a method such as decantation or stretch separation, the supernatant is collected, the solution from which the catalyst component is roughly removed is filtered, and the cyclic olefin polymer is obtained by the method described above. You may get it.
- the opening of the filter is preferably 10 ⁇ m to 0.05 ⁇ m, particularly preferably 10 ⁇ m to 0.1 ⁇ m, and more preferably 5 ⁇ m to 0.1 ⁇ m. It is.
- the medical device according to the present embodiment includes a base material made of, for example, a film or a sheet-like single layer film, or a base material obtained by forming a coat film on another material.
- Examples of a method for producing such a substrate include a solution casting method using a varnish obtained by dissolving the fluorine-containing cyclic olefin polymer represented by the general formula (1) exemplified above in an organic solvent. Can do.
- fluorine content such as metaxylene hexafluoride, benzotrifluoride, fluorobenzene, difluorobenzene, hexafluorobenzene, trifluoromethylbenzene, bis (trifluoromethyl) benzene, etc.
- Fluorine-containing aliphatic hydrocarbons such as aromatic hydrocarbons, perfluorohexane and perfluorooctane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, fluorine-containing ethers such as perfluoro-2-butyltetrahydrofuran, chloroform, chlorobenzene, Halogenated hydrocarbons such as trichlorobenzene, ethers such as tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dioxane, esters such as ethyl acetate, propyl acetate, butyl acetate, Alternatively, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone can be used.
- solubility and film forming property it can select in consideration of solubility and film forming property. Moreover, these may be used independently and may be used in combination of 2 or more types.
- a solvent having a boiling point of 70 ° C. or higher under atmospheric pressure is preferable. Thereby, it can suppress reliably that an evaporation rate becomes too quick. For this reason, it can suppress reliably that the deterioration of film thickness precision and the nonuniformity in the film
- the concentration at which the fluorine-containing cyclic olefin polymer is dissolved is preferably 1.0 to 99.0% by mass, more preferably 5.0 to 90.0% by mass, and 10.0 to 80.0% by mass. % Is particularly preferred.
- the concentration may be selected in consideration of the solubility of the polymer, adaptability to the filtration process, film forming property, and film thickness.
- other known components may be added as necessary.
- Other components include anti-aging agents, leveling agents, wettability improvers, surfactants, modifiers such as plasticizers, stabilizers such as UV absorbers, preservatives, and antibacterial agents, photosensitizers, and silanes.
- a coupling agent etc. are mentioned.
- the varnish prepared by the above method is filtered through a filter.
- a filter As a result, polymer insolubles, gels, foreign substances, etc. can be greatly reduced from the varnish, and the surface of the substrate as a culture instrument for culturing cells or a test instrument for performing tests using cells can be made smooth and hydrophobic.
- the surface texture can be formed uniformly over the entire surface.
- the opening of the filtration filter is preferably 10 ⁇ m to 0.05 ⁇ m, particularly preferably 10 ⁇ m to 0.1 ⁇ m, and further preferably 5 ⁇ m to 0.1 ⁇ m.
- the filtration process may be a multistage process in which the polymer solution is sent from a filter with a large pore size to a small filter, or a single process in which the varnish is sent directly to a filter with a small pore size.
- the material of the filter may be made of an organic material such as Teflon (registered trademark), PP, PES, or cellulose, or may be made of an inorganic material such as glass fiber or metal. You can choose from process adaptability.
- the filtration temperature is selected in consideration of filter performance, solution viscosity, and polymer solubility, and is preferably ⁇ 10 to 200 ° C., more preferably 0 ° C. to 150 ° C., and room temperature to A temperature of 100 ° C. is particularly preferable.
- a film is formed from the varnish.
- a polymer solution (varnish) is applied on the support by a method such as table coating, spin coating, dip coating, die coating, spray coating, bar coating, roll coating, curtain flow coating, etc. Apply and form a film.
- Supports include metal materials such as stainless steel and silicon, inorganic materials such as glass and quartz, polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyacrylate, epoxy resin, and silicone resin. It can be selected from those made of a resin material.
- the coating film may be dried by placing a support on which a solution has been cast on a heating plate and drying by heating, or by placing a base material to which the solution has been cast in a heated drying furnace, Hot air heated with a gas such as air or nitrogen may be applied to the coating film and dried, or may be dried using a process combining these.
- the drying temperature is preferably 10 to 250 ° C., more preferably 20 to 220 ° C., particularly preferably 30 to 200 ° C., and characteristics of the varnish, film thickness, and heat resistance of the substrate Selected in consideration of sex.
- the coating film may be dried by setting a multi-stage drying temperature with two or more temperature settings. The time for drying the coating film can be selected from the conditions considering the boiling point of the varnish solvent, the film thickness of the film, and the process requirements. As a result, a film is formed on the support.
- the substrate can be produced by, for example, peeling the film from the support. Peeling of the film from the support may be performed by applying a commercially available tape to the end of the film and applying a stress to the film to release the liquid, such as water or a solvent, at the contact interface between the film and the support. The film may be peeled off by utilizing the difference in surface tension between the support surface and the contact surface of the film.
- the support and the fluorine-containing cyclic olefin polymer of this embodiment are used.
- the base material comprised by the coating film which consists of can be manufactured.
- the support is particularly preferably selected from organic materials such as PET and acrylic resin, or inorganic materials such as glass and silicon.
- a method for producing a film to be a base material by a melt molding method may be mentioned.
- the method for producing a film by the melt molding method include a method in which the fluorine-containing cyclic olefin polymer exemplified above is formed into a film through a T die using a melt kneader, an inflation method, and the like.
- a melt-extruded film using a T-die for example, a cyclic olefin polymer blended with additives as necessary is put into an extruder, and is preferably 50 to 200 ° C.
- the glass transition temperature higher than the glass transition temperature, more preferably 80 It can be processed into a film by melt-kneading at a high temperature of 150 ° C. to 150 ° C., extruding from a T-die, and cooling the molten polymer with a cooling roll or the like.
- additives such as a ultraviolet absorber, antioxidant, a flame retardant, an antistatic agent, and a coloring agent, in the range which does not impair the effect of this invention.
- the thickness of the film produced using the fluorine-containing cyclic olefin polymer is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and particularly preferably 10 to 200 ⁇ m. These are suitable ranges from the viewpoint of producing medical instruments used for cell culture such as culture bags, culture plates, and culture dishes. Moreover, the film thickness of a film can be set according to the process which produces those instruments.
- medical devices in the form of bags, tubes, etc. can be manufactured from films manufactured by the solution casting method or melt molding method by heat sealing method or sealing method using adhesive, etc.
- a medical device such as a petri dish can be manufactured.
- the melt molding temperature is preferably 330 ° C. or less, more preferably 300 ° C. or less, and particularly preferably 280 ° C. or less.
- the medical device using the fluorine-containing cyclic olefin polymer according to the present embodiment is, for example, a base material made of a film or a sheet-like single layer film having a concavo-convex structure formed on one surface for holding or contacting cells, or other It may be provided with a base material obtained by sticking a film or sheet-shaped single layer film with a concavo-convex structure on the material with an adhesive or an adhesive, and in particular, water contact at 121 ° to 160 ° It is preferably used to realize a corner.
- the size of the concavo-convex structure is obtained by shaping a pattern having a convex-convex distance of 40 nm to 90 ⁇ m, preferably 60 nm to 80 ⁇ m, particularly preferably 80 nm to 70 ⁇ m, so that the water contact angle is within a desired range.
- the shape is not particularly limited.
- the concavo-convex structure may be formed by various methods such as screen printing, embossing, submicron imprint, and nanoimprint.
- the various patterns of the mold made of quartz, silicon, nickel, resist, and the like contain, for example, the structural unit represented by the general formula (1) exemplified above.
- Examples thereof include a solution casting method in which a varnish obtained by dissolving a fluorine-containing cyclic olefin polymer in an organic solvent is applied.
- a varnish is prepared by dissolving a fluorine-containing cyclic olefin polymer containing a structural unit represented by the general formula (1) in an organic solvent in a manner similar to the above-described method for producing a substrate using the solution casting method. And filter through a filter.
- the substrate having the concavo-convex structure can be obtained by transferring the pattern of the mold by bringing the varnish and the pattern surface of the mold having the concavo-convex structure into contact with each other and evaporating the solvent.
- a metal material such as nickel, iron, stainless steel, germanium, titanium, silicon, glass, etc.
- Inorganic materials such as quartz and alumina
- resin materials such as polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyarylate, epoxy resin and silicone resin, carbon materials such as diamond and graphite, etc. Is mentioned.
- a table coat A method of applying a polymer solution (varnish) on the fine pattern surface of the mold by spin coating, die coating, spray coating, bar coating, roll coating, or a metal material such as stainless steel or silicon, glass, quartz Table coat, spin coat, etc. on substrates such as inorganic materials such as polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyarylate, epoxy resin, silicone resin, etc.
- Die coat, Playing coating, bar coating, a polymer solution was applied by a method such as roll coating, a fine pattern surface of the mold may be any of a method of contacting covered therewith.
- (1) a method comprising a step of applying a solution (varnish) comprising a fluorine-containing cyclic olefin polymer and an organic solvent to a mold surface having a fine pattern, and a step of evaporating the solvent from the solution; (2) A step of applying a solution (varnish) comprising a fluorine-containing cyclic olefin polymer and an organic solvent to a support (base material), a step of pressing the upper surface of the coating layer with a mold surface on which a fine pattern is formed, And a method including a step of evaporating the solvent from the coating layer.
- the solvent can be evaporated from the coating layer and then pressed with a mold.
- the temperature for evaporating the solvent from the transfer body and drying is usually 10 to 300 ° C., preferably 50 to 200 ° C.
- the pressure is usually 133 Pa to atmospheric pressure
- the drying time is usually 10 ° C.
- the reaction time is from min to 120 hours, preferably from 30 minutes to 48 hours. Further, the drying temperature, pressure, and time may be changed stepwise according to each setting.
- the method includes the step of evaporating the solvent to form a transfer body on the mold and then peeling the transfer body. Peeling of the transfer body is preferably performed at a temperature not higher than the glass transition temperature, and more preferably at a temperature not higher than (glass transition temperature ⁇ 20 ° C.), whereby the pattern shape formed on the transfer body is reduced. Holds accurately and can be easily peeled off.
- the mold can be released from the mold by peeling, or after the mold and the transfer body are brought into contact with a medium such as water by a method such as immersion or spraying, peeling can be performed using surface tension. .
- a resin material or an inorganic material such as glass may be attached to the back surface of the transfer body, and the substrate may be peeled off from the support.
- the one-sided base material that holds or contacts the cells in which the uneven structure of the present embodiment is formed is a film made of a fluorine-containing cyclic olefin polymer containing a structural unit represented by the general formula (1). It can also be obtained by transferring the pattern of the mold by pressing in contact with the pattern surface.
- a method in which a mold heated to a glass transition temperature or higher is pressure-bonded to a film a method in which a film is heated to a glass transition temperature or higher and a mold is pressure-bonded, or a film and a mold are heated to a glass transition temperature or higher to
- the method of pressure bonding is preferred, and the heating temperature is in the range of glass transition temperature to (glass transition temperature + 100 ° C.), preferably (glass transition temperature + 5 ° C.) to (glass transition temperature + 50 ° C.).
- the pressure is usually from 1 MPa to 100 MPa, preferably from 1 MPa to 60 MPa.
- the transfer body formed on the mold by pressure bonding is preferably peeled at a temperature not higher than the glass transition temperature, and more preferably at a temperature not higher than (glass transition temperature ⁇ 20 ° C.).
- the pattern shape formed on the transfer body can be held with high accuracy and easily separated.
- the mold can be peeled off by peeling, or after the mold and the transfer body are brought into contact with a medium such as water by a method such as immersion or spraying, peeling can be performed using surface tension.
- a resin material or an inorganic material such as glass may be attached to the back surface of the transfer body, and the substrate may be peeled off from the support.
- a method of producing a film to be a base material on which a concavo-convex structure is formed by melt molding examples include a method in which the fluorine-containing cyclic olefin polymer exemplified above is formed into a film through a T die using a melt kneader.
- a melt-extruded film using a T-die for example, a cyclic olefin polymer blended with additives as necessary is put into an extruder, and is preferably 50 to 200 ° C.
- the heating temperature of the roll having a fine pattern on the surface is used in the same range as the heating temperature when forming the concavo-convex structure by thermocompression bonding of the above-mentioned film and the mold.
- additives such as a ultraviolet absorber, antioxidant, a flame retardant, an antistatic agent, and a coloring agent, in the range which does not impair the effect of this invention.
- the film thickness of the one-sided substrate film that holds or contacts the cells having the concavo-convex structure produced using the fluorine-containing cyclic olefin polymer is preferably 1 to 1000 ⁇ m, and more preferably 5 to 500 ⁇ m. More preferred is 10 to 200 ⁇ m. These are suitable ranges from the viewpoint of producing medical instruments used for cell culture such as culture bags, culture plates, and culture dishes. Moreover, the film thickness of a film can be set according to the process which produces those instruments.
- a film or sheet having a concavo-convex structure produced by a solution casting method, a thermocompression bonding method, or a melt molding method for example, in the form of a bag, a tube, or the like by a heat sealing method or a sealing method using an adhesive.
- the uneven structure of this embodiment is formed on the surface of a substrate made of other materials such as polystyrene, polyethylene, metal, etc., for holding or contacting cells of medical instruments such as petri dishes, multiwell plates, flasks, etc. It is also possible to manufacture a medical device in a form in which a film or sheet is attached.
- the fluorine-containing cyclic olefin polymer composition includes a fluorine-containing cyclic olefin polymer represented by the general formula (1) exemplified above (hereinafter also referred to as a fluorine-containing cyclic olefin polymer (A)), and a photocurable compound (B). And a photocuring initiator (C).
- a fluorine-containing cyclic olefin polymer represented by the general formula (1) exemplified above
- B a photocurable compound
- C photocuring initiator
- the medical device includes a base material made of, for example, a film or a sheet-like single layer film, or a base material obtained by forming a coat film on another material.
- a method for producing such a substrate include a solution casting method using a varnish obtained by dissolving a fluorine-containing cyclic olefin polymer composition containing the fluorine-containing cyclic olefin polymer (A) in an organic solvent. it can.
- a varnish is obtained by dissolving a fluorine-containing cyclic olefin polymer composition containing a fluorine-containing cyclic olefin polymer (A) in an organic solvent.
- the varnish of the fluorine-containing cyclic olefin polymer composition according to the present embodiment is prepared, for example, by preparing a fluorine-containing cyclic olefin polymer (A) in a solution at an arbitrary concentration in advance, and then adding the fluorine-containing cyclic olefin polymer (A) and photocuring described later.
- the mass ratio (A) / (B) of the functional compound (B) is preferably 99.9 / 0.1 to 50/50, more preferably 99.9 / 0.1 to 55/45, particularly preferably 99. It can be obtained by adding and mixing the photocurable compound (B) so that the ratio becomes 0.9 / 0.1 to 60/40.
- the organic solvent used in preparing the fluorine-containing cyclic olefin polymer composition is not particularly limited.
- metaxylene hexafluoride, benzotrifluoride, fluorobenzene, difluorobenzene, hexafluorobenzene, trifluoromethylbenzene Fluorine-containing aromatic hydrocarbons such as bis (trifluoromethyl) benzene and meta-xylene hexafluoride, fluorine-containing aliphatic hydrocarbons such as perfluorohexane and perfluorooctane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, and perfluoro Fluorine-containing ethers such as -2-butyltetrahydrofuran, halogenated hydrocarbons such as chloroform, chlorobenzene, trichlorobenzene, tetrahydrofuran, dibutyl ether
- solubility and film forming property it can select in consideration of solubility and film forming property. Moreover, these may be used independently and may be used in combination of 2 or more types.
- a solvent having a boiling point of 70 ° C. or higher under atmospheric pressure is preferable. Thereby, it can suppress reliably that an evaporation rate becomes too quick. For this reason, it can suppress reliably that the deterioration of film thickness precision and the nonuniformity in the film
- the fluorine-containing cyclic olefin polymer composition may contain other known components other than the fluorine-containing cyclic olefin polymer (A), the photocurable compound (B), and the photocuring initiator (C) as necessary. It can also be added. Examples of such components include anti-aging agents, leveling agents, wettability improvers, surfactants, modifiers such as plasticizers, stabilizers such as ultraviolet absorbers, preservatives, and antibacterial agents, and photosensitization. Agents, silane coupling agents and the like.
- the mass ratio (A) / (B) of the fluorine-containing cyclic olefin polymer (A) and the photocurable compound (B) is 99.9 / 0.1 to 50/50. It is preferably 99.9 / 0.1 to 55/45, more preferably 99.9 / 0.1 to 60/40.
- the photocurable compound (B) include a compound having a reactive double bond group and a ring-opening polymerizable compound capable of cationic polymerization.
- a ring-opening polymerizable compound that can be cationically polymerized is selected from the viewpoint of suppressing deformation of the base material due to volume shrinkage after curing when used by coating and compatibility with the fluorine-containing cyclic olefin polymer (A). It is.
- the compound having a reactive double bond group and the ring-opening polymerizable compound capable of cationic polymerization may have one or more reactive groups in one molecule. Moreover, you may mix and use the compound of a different reactive group number in arbitrary ratios in a photocurable compound (B). Furthermore, as the photocurable compound (B), a compound in which a compound having a reactive double bond group and a ring-opening polymerizable compound capable of cationic polymerization are mixed in an arbitrary ratio may be used. By these, it becomes possible to make the fluorine-containing cyclic olefin polymer composition of this embodiment closely adhere to a member made of another material with high dimensional accuracy. In addition, it is possible to suitably obtain a medical device as a base material for inspecting cells or cell culture capable of expressing the effects of the present embodiment.
- examples of the ring-opening polymerizable compound capable of cationic polymerization include, for example, cyclohexene epoxide, dicyclopentadiene oxide, limonene dioxide, 4-vinylcyclohexene dioxide, and 3,4-epoxycyclohexylmethyl.
- Epoxy compounds such as: 3-methyl-3- (butoxymethyl) oxetane, 3-methyl-3- (pentyloxymethyl) oxetane, 3-methyl-3- (hexyloxymethyl) oxetane 3-methyl-3- (2-ethylhexyloxymethyl) oxetane, 3-methyl-3- (octyloxymethyl) oxetane, 3-methyl-3- (decanyloxymethyl) oxetane, 3-methyl-3- (Dodecanyloxymethyl) oxetane, 3-methyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- (butoxymethyl) oxetane, 3-ethyl-3- (pentyloxymethyl) oxetane, 3-ethyl-3 -(Hexyloxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl)
- Photocuring initiator (C) examples include a photocationic initiator that generates cations when irradiated with light, and a photoradical initiator that generates radicals when irradiated with light.
- the amount of the photocuring initiator (C) used is preferably 0.05 parts by mass or more, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the photocurable compound (B). .
- the photocation initiator that generates cations by light irradiation may be any compound that initiates cationic polymerization of the ring-opening polymerizable compounds capable of cationic polymerization by light irradiation.
- a compound that reacts with light and releases a Lewis acid is preferable, such as an onium salt with an anion paired with an onium cation.
- onium cations include diphenyliodonium, 4-methoxydiphenyliodonium, bis (4-methylphenyl) iodonium, bis (4-tert-butylphenyl) iodonium, bis (dodecylphenyl) iodonium, triphenylsulfonium, diphenyl -4-thiophenoxyphenylsulfonium, bis [4- (diphenylsulfonio) -phenyl] sulfide, bis [4- (di (4- (2-hydroxyethyl) phenyl) sulfonio) -phenyl] sulfide, ⁇ 5- 2,4- (cyclopentagenyl) [1,2,3,4,5,6- ⁇ - (methylethyl) benzene] -iron (1+) and the like.
- photocationic initiators may be used alone or in combination of two or more.
- anions include tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, hexachloroantimonate, tetra (fluorophenyl) borate, tetra (difluorophenyl) borate, tetra (trifluoro).
- Phenyl) borate tetra (tetrafluorophenyl) borate, tetra (pentafluorophenyl) borate, tetra (perfluorophenyl) borate, tetra (trifluoromethylphenyl) borate, tetra [di (trifluoromethyl) phenyl] borate, etc. It is done. Moreover, these photocationic initiators may be used alone or in combination of two or more.
- photocation initiators that are more preferably used include, for example, Irgacure 250 (BASF), Irgacure 784 (BASF), Esacure 1064 (Lamberti), WPI-124 (Wako Pure Chemicals).
- CYRAURE UVI 6990 manufactured by Union Carbide Japan
- CPI-100P manufactured by Sun Apro
- Adekaoptomer SP-172 made by ADEKA
- Adeka optomer SP-170 made by ADEKA
- Optomer SP-152 manufactured by ADEKA
- Adeka optomer SP-150 manufactured by ADEKA
- photocationic initiators may be used alone or in combination of two or more.
- examples of the photoradical initiator that generates radicals upon irradiation with light include acetophenone, p-tert-butyltrichloroacetophenone, chloroacetophenone, 2,2-diethoxyacetophenone, Acetophenones such as hydroxyacetophenone, 2,2-dimethoxy-2′-phenylacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl Phenylketone, 2-hydroxy-2-methyl-1-phenyl-2-methylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2 Benzoins such as methylpropan-1-one; benzophenone, benzoylbenzoic acid, methyl benzoylbenzoic acid, methyl benzoyl
- photo radical initiators that are preferably used include, for example, Irgacure 651 (manufactured by BASF), Irgacure 184 (manufactured by BASF), Darocur 1173 (manufactured by BASF), benzophenone, 4-phenylbenzophenone, and Irga.
- Cure 500 (made by BASF), Irgacure 2959 (made by BASF), Irgacure 127 (made by BASF), Irgacure 907 (made by BASF), Irgacure 369 (made by BASF), Irgacure 1300 (BASF) Irgacure 819 (BASF), Irgacure 1800 (BASF), Darocur TPO (BASF), Darocur 4265 (BASF), Irgacure OXE01 (BASF), Irgacure O E02 (BASF), Esacure KT55 (Lamberti), Esacure KIP150 (Lamberti), Esacure KIP100F (Lamberti), Esacure KT37 (Lamberti), Esacure KTO46 (Lamberti) ), Esacure 1001M (Lamberti), Esacure KIP / EM (Lamberti), Esacure DP250 (Lamberti
- radical photopolymerization initiator that is preferably used, Irgacure 184 (manufactured by BASF), Darocur 1173 (manufactured by BASF), Irgacure 500 (manufactured by BASF), Irgacure 819 (manufactured by BASF) ), Darocur TPO (BASF), Esacure KIP100F (Lamberti), Esacure KT37 (Lamberti) and Esacure KTO46 (Lamberti). These photo radical initiators may be used alone or in combination of two or more.
- the photocurable compound (B) and the photocuring initiator (C) can be used as a photocurable composition containing them.
- the photocurable composition can be obtained by dissolving the photocuring initiator (C) in the photocurable compound (B), and the photocurable compound (B) and the photocuring initiator (C) together. It can also be obtained by dissolving in an organic solvent.
- other known components as a third component as required, for example, anti-aging agents, leveling agents, wettability improvers, surfactants, modifiers such as plasticizers, ultraviolet absorbers, preservatives, antibacterial agents You may add stabilizers, such as an agent, a photosensitizer, a silane coupling agent.
- the organic solvent used for preparing the photocurable composition is not particularly limited.
- Fluorine-containing aromatic hydrocarbons such as bis (trifluoromethyl) benzene and metaxylene hexafluoride, fluorine-containing aliphatic hydrocarbons such as perfluorohexane and perfluorooctane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, Fluorine-containing ethers such as perfluoro-2-butyltetrahydrofuran, halogenated hydrocarbons such as chloroform, chlorobenzene, trichlorobenzene, tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dioxa , Ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, esters such as ethyl acetate, propyl acetate and butyl acetate, or ketones such as
- solubility and film-forming property it can be selected in consideration of solubility and film-forming property, and may be the same as or different from the organic solvent for dissolving the fluorine-containing cyclic olefin polymer (A), or may be used in combination of two or more.
- a solvent having a boiling point of 70 ° C. or higher under atmospheric pressure is preferable from the viewpoint of film forming properties.
- the fluorine-containing cyclic olefin polymer composition in the present embodiment uses a specific fluorine-containing cyclic olefin polymer having a hydrocarbon structure in the main chain and a fluorine-containing aliphatic ring structure in the side chain, it has a large polarity and is photocurable.
- a transparent substrate can also be produced in a form after curing with good compatibility with the compound and the photocuring initiator.
- the material is based on a fluorine-containing cyclic olefin polymer, the water contact angle on the substrate surface can be maintained at 70 ° to 160 °.
- inspection of various cells can proliferate, the adhesion
- the fluorine-containing cyclic olefin polymer composition is in a form after curing, and the photocurable compound forms a three-dimensional network structure, so that the surface hardness can be modified to be hard. For this reason, when it mounts on a medical instrument etc., the damage property can be improved, and when using as a base material for a cell culture or a test
- the varnish prepared by the above method is filtered through a filter.
- polymer insolubles, gels, foreign substances, and the like can be greatly reduced from the varnish, and the surface of the substrate as a culture instrument for culturing cells can be made smooth and the hydrophobic surface properties can be uniformly formed over the entire surface.
- the opening of the filtration filter is preferably 10 ⁇ m to 0.05 ⁇ m, particularly preferably 10 ⁇ m to 0.1 ⁇ m, and further preferably 5 ⁇ m to 0.1 ⁇ m.
- the filtration process may be a multistage process in which the polymer solution is sent from a filter with a large pore size to a small filter, or a single process in which the varnish is sent directly to a filter with a small pore size.
- the material of the filter may be made of an organic material such as Teflon (registered trademark), PP, PES, or cellulose, or may be made of an inorganic material such as glass fiber or metal. You can choose from process adaptability.
- the filtration temperature is selected in the range considering filter performance, solution viscosity, thermal stability of the photocurable compound, and polymer solubility, and is preferably ⁇ 10 to 200 ° C., preferably 0 ° C. to 150 ° C. It is more preferable that the temperature is in the range of room temperature to 100 ° C.
- a film is formed from the varnish.
- a polymer solution (varnish) is applied on the support by a method such as table coating, spin coating, dip coating, die coating, spray coating, bar coating, roll coating, curtain flow coating, etc. Apply and form a film.
- Supports include metal materials such as stainless steel and silicon, inorganic materials such as glass and quartz, polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyacrylate, epoxy resin, and silicone resin. The thing which consists of resin materials, etc. can be mentioned.
- the coating film may be dried by placing a substrate on which a solution is cast on a heating plate and drying by heating, or by placing a support in which the solution is cast in a heated drying furnace, Hot air heated with a gas such as air or nitrogen may be applied to the coating film and dried, or may be dried using a process combining these.
- the drying temperature is preferably 10 to 250 ° C., more preferably 20 to 220 ° C., particularly preferably 30 to 200 ° C., and characteristics of the varnish, film thickness, and heat resistance of the substrate Selected in consideration of sex.
- the coating film may be dried by setting a multi-stage drying temperature with two or more temperature settings. The time for drying the coating film can be selected from the conditions considering the boiling point of the varnish solvent, the film thickness of the film, and the process requirements. Thereby, a film is formed on the support.
- Irradiation light is not particularly limited as long as energy that causes radical reaction or ionic reaction can be given by irradiating light to the photocuring initiator (C).
- this light source light having a wavelength of 400 nm or less, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp and a metal halide lamp, i-line, G-line, KrF excimer Laser light or ArF excimer laser light can be used.
- the irradiation intensity to the film made of the fluorine-containing cyclic olefin polymer composition is controlled for each target product and is not particularly limited.
- the light irradiation intensity of the light wavelength region effective for activation of the photocuring initiator (C) described later (which varies depending on the photocuring initiator (C), but, for example, 300 to 420 nm light) is 0.1. It is preferably ⁇ 100 mW / cm 2 . By setting the irradiation intensity to 0.1 mW / cm 2 or more, it is possible to reliably suppress the reaction time from becoming too long.
- the irradiation intensity 100 mW / cm 2 or less, the heat radiated from the lamp and the decrease in the cohesive force of the cured product resulting from the heat generated during polymerization of the composition, yellowing, or the support It is possible to more reliably suppress the occurrence of deterioration.
- the light irradiation time is controlled for each target product and is not particularly limited.
- the integrated light amount expressed as the product of the light irradiation intensity and the light irradiation time in the light wavelength region is calculated.
- it can be set to 3 to 1000 mJ / cm 2 . More preferably, it is 5 to 500 mJ / cm 2 , and particularly preferably 10 to 300 mJ / cm 2 .
- active species can be sufficiently generated from the photopolymerization initiator (C), and the properties of the obtained cured product can be improved.
- it can contribute to productivity improvement by making integrated light quantity below into the said upper limit.
- the temperature when curing the curable resin by irradiating light is usually preferably 0 to 150 ° C., more preferably 0 to 60 ° C.
- the substrate can be produced by, for example, peeling the film from the support. Peeling of the film from the support may be performed by applying a commercially available tape to the end of the film and applying a stress to the film to release the liquid, such as water or a solvent, at the contact interface between the film and the support. The film may be peeled off by utilizing the difference in surface tension between the support surface and the contact surface of the film.
- the support and the fluorine-containing cyclic olefin polymer of this embodiment are used.
- the base material comprised by the coating film which consists of can be manufactured.
- the support is particularly preferably selected from organic materials such as PET and acrylic resin, or inorganic materials such as glass and silicon.
- the film thickness of the cured film obtained by forming a fluorine-containing cyclic olefin polymer composition on a support, heating, and then curing by irradiation with light is not particularly limited, but is preferably 1 ⁇ m to 10 mm. More preferably, it is 5 ⁇ m to 1 mm, and even more preferably 10 ⁇ m to 0.5 mm. Within these ranges, a self-supporting single layer film or a coating film can be obtained. Moreover, the volume shrinkage at the time of photocuring is small, and the deformation of the substrate can be surely suppressed. Moreover, it is a suitable range from a viewpoint of producing medical instruments used for cell culture, such as a culture bag, a culture plate, and a culture dish. Moreover, the film thickness of a film can be set according to the process which produces those instruments.
- an uneven structure made of the fluorine-containing cyclic olefin polymer composition of the present embodiment is formed on one surface for holding or contacting cells.
- a material may be provided, and is particularly preferably used to realize a water contact angle of 121 ° to 160 °.
- the size of the concavo-convex structure is obtained by shaping a pattern having a convex-convex distance of 40 nm to 90 ⁇ m, preferably 60 nm to 80 ⁇ m, particularly preferably 80 nm to 70 ⁇ m, so that the water contact angle is within a desired range.
- the shape is not particularly limited.
- the concavo-convex structure may be formed by various methods such as screen printing, embossing, submicron imprint, and nanoimprint.
- the general formula (1) which is the fluorine-containing cyclic olefin polymer composition exemplified above, for example, in various patterns of a mold made of quartz, silicon, nickel, resist or the like.
- a solution casting method in which a varnish obtained by dissolving a photocurable compound (B) and a photocuring initiator (C) in an organic solvent is applied. Can do.
- the fluorine-containing cyclic olefin polymer (A) represented by the general formula (1), the photocurable compound (B), and the photocuring initiator (C) are dissolved in an organic solvent.
- the solution obtained by letting it pass is filtered through a filter to prepare a varnish.
- the pattern of the mold was transferred by bringing the solution (varnish) composed of the above-mentioned fluorine-containing cyclic olefin polymer composition into contact with the pattern surface of the mold on which the concavo-convex structure was formed, evaporating the solvent and irradiating with UV to peel it off.
- a base material having an uneven structure can be obtained.
- the method includes (1) a step of applying a solution (varnish) comprising a fluorine-containing cyclic olefin polymer composition and an organic solvent to the mold surface having a fine pattern, and a step of evaporating the solvent from the solution.
- a solution (varnish) comprising a fluorine-containing cyclic olefin polymer composition and an organic solvent to a support (base material), and pressing the upper surface of the coating layer with a mold surface on which a fine pattern is formed.
- the solvent can be evaporated from the coating layer and then pressed with a mold.
- the material of the base material of the mold in which the fine pattern is formed on the surface used for the production of the base material on which the uneven structure of the present embodiment is formed, the method of contacting the varnish composed of the mold and the fluorine-containing cyclic olefin polymer composition, and The method for drying the coating film is not particularly limited, and can be carried out in the same manner as the method for producing a substrate on which an uneven structure is formed from a varnish obtained by dissolving the above-mentioned fluorine-containing cyclic olefin polymer in an organic solvent.
- a UV irradiation step is performed on the fluorine-containing cyclic olefin polymer composition formed on the mold to cure the photocurable compound (B). Further, the UV irradiation process may also be sterilized.
- Each condition of the light source, the irradiation intensity, the irradiation time, and the temperature at the time of irradiation in the UV irradiation step is not particularly limited, and can be performed by the same method as the method for producing a substrate from the above-described fluorine-containing cyclic olefin polymer composition. .
- the base material can be produced by peeling the film from the mold after UV irradiation. Peeling of the film from the support may be performed by applying a commercially available tape to the end of the film and applying a stress to the film to release the liquid, such as water or a solvent, at the contact interface between the film and the support. The film may be peeled off by utilizing the difference in surface tension between the support surface and the contact surface of the film.
- the process up to the drying step of the coating film coated on the support is performed among the above steps.
- the fluorine-containing cyclic olefin polymer composition is coated on the support.
- the fluorine-containing cyclic olefin polymer composition of this embodiment is placed on the support by bringing the pattern surface of the mold into contact with the coating surface of the fluorine-containing cyclic olefin polymer composition, pressing as necessary, UV irradiation, and peeling.
- the base material which formed the coating film which formed the uneven structure which consists of can be manufactured.
- the support is particularly preferably selected from organic materials such as polyethylene terephthalate (PET) and acrylic resin, or inorganic materials such as glass, silicon, and aluminum.
- the pressure at the time of bringing the pattern surface of the mold into contact with the coated surface of the fluorine-containing cyclic olefin polymer composition is 0.01 to 5 MPa, preferably 0.05 to 4 MPa, more preferably 0.1 to 3 MPa.
- UV irradiation may be performed while pressure bonding, or UV irradiation may be performed after pressure bonding using a pressure bonding apparatus such as a laminator.
- the film thickness of the cured film obtained by forming a fluorine-containing cyclic olefin polymer composition on a support, heating, press-bonding as necessary, and curing by irradiation with light is not particularly limited, but preferably Is 1 ⁇ m to 10 mm, more preferably 5 ⁇ m to 1 mm, and still more preferably 10 ⁇ m to 0.5 mm. Within these ranges, a self-supporting monolayer film or a coating film on the support can be obtained. Moreover, volume shrinkage at the time of photocuring is small, and deformation of the substrate can be reliably suppressed while transferring the pattern with high accuracy. Moreover, it is a suitable range from a viewpoint of producing medical instruments used for cell culture, such as a culture bag, a culture plate, and a culture dish. Furthermore, the film thickness of the film can be set in accordance with the process for producing these instruments.
- a medical device in the form of a bag, a tube, or the like can be produced by a heat sealing method or a sealing method using an adhesive.
- the film or sheet of the present embodiment is applied to the surface of a base material that is made of other materials such as polystyrene, polyethylene, metal, and holds or contacts cells of a medical device such as a petri dish, a multi-well plate, and a flask.
- a pasted medical device can also be manufactured.
- the cell culturing method includes a step of seeding cells on one surface of a base material constituting the medical device according to the present embodiment so as to be in contact with or held on the one surface, and culturing and culturing the cells. A step of obtaining cells, and a step of adding a buffer solution on the one surface to suspend the cultured cells from the one surface. Thereby, the cultured cells can be detached from the base material without damage, and a cell culture capable of efficient proliferation can be realized.
- floating cells can be cultured in a stationary state after seeding the cells in a medical instrument.
- one surface that contacts or holds the cells of the substrate is constituted by the fluorine-containing cyclic olefin polymer or the fluorine-containing cyclic olefin polymer composition according to this embodiment, and in particular, the water contact angle of the one surface.
- the cells may be cultured with vibration, cultured while flowing the culture solution, or cultured with stirring, and there is no particular limitation.
- a culture method for example, a stationary culture, a rotary culture, a microcarrier culture, a swivel culture, a spheroid culture, an in-gel culture using a medical device in which the substrate according to the present embodiment is processed into a container according to various culture methods.
- Cell culture can be carried out by methods such as culture, three-dimensional carrier culture, and pressure circulation culture. Among these, it is preferably selected in consideration of cell characteristics, culture form, or productivity, and may be used alone or in combination of two or more.
- the temperature in these various culture methods is preferably 35 to 40 ° C., more preferably 36 to 38 ° C., and particularly preferably 36.5 to 37.5 ° C.
- the pressure is preferably 0.02 to 0.5 MPa, more preferably 0.05 to 0.3 MPa, and particularly preferably 0.08 to 0.2 MPa.
- the hydrogen ion index (pH) is preferably 8 to 6, and more preferably 7.5 to 6.5.
- Sterilization methods when using the medical device according to this embodiment as a culture device include, for example, wet sterilization immersed in alcohol, etc., gas sterilization with ethylene oxide, ultraviolet sterilization, radiation sterilization, autoclave sterilization with high-temperature, high-pressure steam, and direct Dry heat sterilization used for items that should not be exposed to steam, filter sterilization suitable for base materials containing components that are unstable to heat can be raised.
- wet sterilization immersed in alcohol, etc. gas sterilization with ethylene oxide, ultraviolet sterilization, radiation sterilization, autoclave sterilization with high-temperature, high-pressure steam, and direct Dry heat sterilization used for items that should not be exposed to steam, filter sterilization suitable for base materials containing components that are unstable to heat can be raised.
- filter sterilization suitable for base materials containing components that are unstable to heat can be raised.
- two or more sterilization methods may be used in combination.
- the type of medium used for the culture can be selected according to the characteristics of the cell and the culture form, regardless of the form of liquid, gel, solid (powder), for example, BME medium, MEM medium, DMEM medium, 199 medium, RPMI medium, Ham F10 medium, Ham F12 medium, MCDB104, 107, 131, 151, 170, 202 medium, RITC80-7 medium, MCDB153 medium and the like. These may be used singly or in combination of two or more, and may be further used by mixing with serum derived from organisms such as humans, dogs, rats, mice, birds, pigs and cows.
- collagen such as laminin-5, laminin-511, laminin-521, fluorine-containing cyclic olefin polymer of the present embodiment, or fluorine-containing cyclic An olefin polymer composition or the like may be applied to the inner wall of the substrate of the present embodiment, a part of one surface that contacts or holds cells, or the entire surface. You may use these individually or in mixture of 2 or more types.
- a cell culture solution or a buffer solution can be selected according to the type of cell and the application of the cultured cell, and a fluorescent dye or a cell immobilization reagent may be freely selected.
- any buffer that does not change the hydrogen ion index (pH) in the system during cell growth may be used.
- phosphate buffer phosphate buffered saline, hydrochloric acid buffer, acetate buffer, citrate buffer, borate buffer, tartaric acid buffer, Tris buffer, Tris hydrochloride buffer, ethylenediaminetetraacetic acid buffer Solution, Tris EDTA buffer, Tris acetate EDTA buffer, Tris borate EDTA buffer, Concentrated SSC buffer, Concentrated SSPE buffer, Sodium citrate buffer, Carbonate bicarbonate buffer, Sodium borate buffer, Maleic acid buffer The solution may be used alone or containing an enzyme such as trypsin, pepsin, rennet, chymotrypsin, elastase, NADPH dehydrogenase or NADH dehydrogenase.
- enzymes such as trypsin, pepsin, rennet, chymotrypsin, elastase, NADPH dehydrogenase or NADH dehydrogenase.
- phosphate buffer phosphate buffered saline, Tris hydrochloride buffer, ethylenediaminetetraacetic acid buffer, Tris EDTA buffer, Tris acetate EDTA buffer, trisborate EDTA buffer, concentrated SSC buffer, concentrated SSPE buffer, sodium citrate buffer, carbonate bicarbonate buffer, sodium borate buffer, etc. alone or enzymes such as trypsin, pepsin, rennet, chymotrypsin, elastase, NADPH dehydrogenase or NADH dehydrogenase May be used.
- the present inventor for example, in the process of culturing mouse embryo fibroblasts and collecting cells for examination using the culture instrument of the present embodiment, for example, phosphate buffered saline
- a buffer solution such as was added
- cells were found to detach from the substrate in a state of floating naturally. That is, according to the present embodiment, by culturing cells using a culture instrument comprising a specific fluorine-containing cyclic olefin polymer or a fluorine-containing cyclic olefin polymer composition, the cells proliferate while forming colonies.
- a culture instrument comprising a specific fluorine-containing cyclic olefin polymer or a fluorine-containing cyclic olefin polymer composition
- Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer dissolved in tetrahydrofuran (THF) or trifluoromethylbenzene (TFT) using gel permeation chromatography (GPC) under the following conditions was measured with a molecular weight calibrated by polystyrene standards.
- Detector RI-2031 and 875-UV manufactured by JASCO Corporation or Model 270 manufactured by Viscotec, series connection column: Shodex K-806M, 804, 803, 802.5, column temperature: 40 ° C., flow rate: 1.0 ml / min Sample concentration: 3.0-9.0 mg / ml
- the cured coating film was cured by irradiating LED light having a wavelength of 365 nm using a UV irradiation device manufactured by CCS as a light source or 375 nm LED light using a UV-type imprinting device manufactured by Engineering System.
- BALB / 3T3 cells mouse embryo fibroblasts (hereinafter abbreviated as BALB / 3T3 cells), 10% calf serum (Calf Bovine Serum, CBS), high glucose, D-MEM medium (L-glutamine, phenol red, pyruvate) All subcultures and cell proliferation tests were performed in a solution containing sodium (containing sodium) (hereinafter also referred to as BALB / 3T3 cell solution).
- BALB / 3T3 cell solution a solution containing sodium (containing sodium)
- the frozen cell suspension was thawed by immersing in a 37 ° C. water bath, and 10% calf serum D-MEM medium cooled on ice was added to the thawed cell suspension and centrifuged. After centrifugation, the supernatant was removed and the cell mass was loosened by tapping, and 10% calf serum D-MEM medium kept warm in a 37 ° C. water bath was added. The number of cells was counted with a hemocytometer, a cell suspension was prepared using 10% calf serum D-MEM medium kept warm in a water bath, the cells were seeded in a culture flask, and then cultured in a humidified incubator.
- a cell suspension was prepared with 10% calf serum D-MEM medium, the cells were seeded in a culture flask, and cultured in a humidified incubator. In the cell growth evaluation described in the Examples, those having passage numbers 3 to 20 were used.
- a circular culture film cut to a diameter of 15 mm is placed in a hole of a TCPS multiwell plate (Corning), 70% ethanol aqueous solution is added and immersed for 40 minutes to 1 hour, then the 70% ethanol aqueous solution is removed and Dulbecco PBS It was immersed in ( ⁇ ) for 15 to 40 minutes. Next, PBS (-) was removed, the culture device was turned over, and the same operation was performed to sterilize the front and back surfaces of the culture device. After completion of the sterilization treatment, it was dried overnight in a clean bench.
- BALB / 3T3 cells which were about 60% confluent in a 25 cm 2 culture flask, were detached by treatment with 0.025 w / v% trypsin-EDTA in the same manner as in the above-described cell passage operation. The number of cells was counted with a hemocytometer, and a cell suspension of 7500 cells / mL was prepared with 10% calf serum D-MEM medium.
- the obtained polymer 1 contained a repeating structural unit represented by the general formula (1).
- the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 83000, the molecular weight distribution (Mw / Mn) was 1.73, and the glass transition temperature was 109 ° C.
- Culture film 3 A culture film 3 having a coating film thickness of 5 ⁇ m was prepared in the same manner as in Production Example 3 except that the coating substrate was changed to an acrylic film (Acryprene, Mitsubishi Rayon) and the drying conditions after coating were changed to 90 ° C. and 40 minutes. Produced. The water contact angle of the film was 94.1 ° in 15 seconds. Furthermore, no change was observed in the time until the water droplet disappeared at 88.0 ° after 10 minutes.
- the solution was filtered through a filter to prepare a methyl isobutyl ketone solution of polymer 1, a photocurable compound and a photocuring initiator.
- a PET film Limirror, Toray
- the cured film was cured by irradiating with UV to produce a culture film 4 having a coating thickness of 5 ⁇ m.
- the water contact angle of the coated surface was 88.1 ° in 15 seconds. Furthermore, no change was observed in the time until the water droplet disappeared at 84.9 ° after 10 minutes.
- Culture film 6 A culture film 6 having a coating film thickness of 5 ⁇ m was prepared in the same manner as in Production Example 6 except that the coating substrate was changed to an acrylic film (Acryprene, Mitsubishi Rayon) and the drying conditions after coating were changed to 90 ° C. and 40 minutes. Produced. The water contact angle of the film was 84.3 ° in 15 seconds. Furthermore, there was no change in the time until the water droplet disappeared after 8 minutes at 81.0 °.
- Example 1 Place the sterilized culture film 1 produced in Production Example 2 on the bottom of the hole of the 24-well TCPS multiwell plate and attach it to the SUS O-ring (11 mm inner diameter) with sterilized grease (Toray Dow Corning). After fixing, the BALB / 3T3 cell solution (1 mL) was seeded on the culture film 1. The same operation was performed nine times to prepare nine samples by the number of specimens. Then, the lid was capped and moved to a humidified incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide gas concentration of 5%.
- SUS O-ring 11 mm inner diameter
- sterilized grease Toray Dow Corning
- the absorbance after 1 day was 0.10 ⁇ 0.02, 0.35 ⁇ 0.08 after 3 days, and 0.73 ⁇ after 7 days. 0.24.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 2 The sterilized culture film 2 produced in Production Example 3 was fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and seeded with a thawed BALB / 3T3 cell solution (1 mL). The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.11 ⁇ 0.02, 0.33 ⁇ 0.05 after 3 days, and 0.78 ⁇ after 7 days. It was 0.13.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 3 The sterilized culture film 3 produced in Production Example 4 was fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and seeded with a thawed BALB / 3T3 cell solution (1 mL). The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.11 ⁇ 0.04, 0.38 ⁇ 0.04 after 3 days, and 0.83 ⁇ after 7 days. It was 0.11. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 4 The sterilized culture film 4 produced in Production Example 5 was fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and seeded with the thawed BALB / 3T3 cell solution (1 mL). The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.11 ⁇ 0.03, 0.23 ⁇ 0.04 after 3 days, and 0.51 ⁇ after 7 days. It was 0.11. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 5 The sterilized culture film 5 produced in Production Example 6 was fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and seeded with a thawed BALB / 3T3 cell solution (1 mL). The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.11 ⁇ 0.02, 0.27 ⁇ 0.04 after 3 days, and 0.55 ⁇ after 7 days. It was 0.18.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 6 The sterilized culture film 6 produced in Production Example 7 was fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and seeded with a thawed BALB / 3T3 cell solution (1 mL). The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.11 ⁇ 0.04, 0.23 ⁇ 0.02 after 3 days, and 0.53 ⁇ after 7 days. It was 0.13.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 7 Place the sterilized culture film 7 produced in Production Example 8 on the bottom of the hole of the 24-hole TCPS multiwell plate and fix it in close contact with the SUS O-ring (inner diameter 16 mm) with sterilized grease (Toray Dow Corning). After that, thawed BALB / 3T3 cell solution (1 mL) was seeded on the culture film 7. The same operation was performed nine times to prepare nine samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- SUS O-ring inner diameter 16 mm
- sterilized grease Toray Dow Corning
- the absorbance after 1 day was 0.11 ⁇ 0.05, 0.42 ⁇ 0.15 after 3 days, and 0.96 ⁇ after 7 days. 0.06.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 8 Same as Production Example 1 except that the type of fluorine-containing cyclic olefin monomer was changed to 5,6-difluoro-5-pentafluoroethyl-6-trifluoromethylbicyclo [2.2.1] hept-2-ene 97 g of polymer 2 was obtained by a simple method.
- the obtained polymer 2 contained a repeating structural unit represented by the general formula (1).
- the hydrogenation rate was 100%
- the weight average molecular weight (Mw) was 91000
- the molecular weight distribution (Mw / Mn) was 1.93
- the glass transition temperature was 104 ° C.
- a culture film 8 having a thickness of 55 ⁇ m was produced by the same method as in Production Example 2.
- the water contact angle of the film was 101.6 ° in 15 seconds. Furthermore, it was 99.7 ° after 10 minutes, and no change was observed in the time until the water droplets disappeared.
- the culture of BALB / 3T3 cells performed in the same manner as in Example 1 using the culture film 8 has an absorbance of 0.10 ⁇ 0.01 after 1 day in the evaluation of cell proliferation by the WST-8 method. It was 0.33 ⁇ 0.05 after 7 days and 0.74 ⁇ 0.17 after 7 days. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- the culture film 9 was produced by coating a PET film (Lumilar, Toray). The water contact angle of the film was 95.3 ° in 15 seconds. Furthermore, it was 94.9 ° after 10 minutes, and no change was observed in the time until the water droplets disappeared.
- the culture of BALB / 3T3 cells carried out by the culture film 9 in the same manner as in Example 1 has an absorbance of 0.10 ⁇ 0.01 after 1 day in the evaluation of cell proliferation by the WST-8 method. It was 0.25 ⁇ 0.07 after elapse of day, and 0.60 ⁇ 0.13 after elapse of 7 days. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 10 Production examples except that the type of fluorine-containing cyclic olefin monomer was changed to 5,6-difluoro-5-heptafluoro-iso-propyl-6-trifluoromethylbicyclo [2.2.1] hept-2-ene
- 98 g of Polymer 3 was obtained.
- the obtained polymer 3 contained a repeating structural unit represented by the general formula (1).
- the hydrogenation rate was 100%
- the weight average molecular weight (Mw) was 142000
- the molecular weight distribution (Mw / Mn) was 1.40
- the glass transition temperature was 137 ° C.
- a culture film 10 having a thickness of 58 ⁇ m was produced in the same manner as in Production Example 2.
- the water contact angle of the film was 103.9 ° in 15 seconds. Furthermore, there was no change in the time until the water droplet disappeared at 102.2 ° after 10 minutes.
- the culture of BALB / 3T3 cells performed in the same manner as in Example 1 using the culture film 10 has an absorbance of 0.11 ⁇ 0.03 after 1 day in the evaluation of cell proliferation by the WST-8 method. It was 0.32 ⁇ 0.03 after elapse of day, and 0.79 ⁇ 0.21 after elapse of 7 days. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in the form of a colony in the thickness direction, and the sheet-like form was maintained when phosphate buffered saline was added. Floated in the state.
- Example 11 The culture film 13 produced in Production Example 9 is sterilized, the pattern surface is placed on the bottom of the hole of the 24-hole TCPS multiwell plate, and an SUS O-ring (inner diameter 11 mm) is prepared with sterilized grease (Toray Dow Corning).
- the BALB / 3T3 cell solution (1 mL) was seeded on the pattern surface of the culture film 13. The same operation was performed nine times to prepare nine samples by the number of specimens. Then, the lid was capped and moved to a humidified incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide gas concentration of 5%.
- the absorbance after 1 day was 0.10 ⁇ 0.03, 0.33 ⁇ 0.06 after 3 days, and 0.68 ⁇ after 7 days. 0.09. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in the form of colonies in the thickness direction, and when phosphate-buffered saline was added, the cells floated while maintaining the formation of the colonies .
- Example 12 The culture film 14 produced in Production Example 10 is sterilized, fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and the thawed BALB / 3T3 cell solution (1 mL) is applied to the pattern surface of the culture film 14 Sowing. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%. In the evaluation of cell proliferation by the WST-8 method, the absorbance after 1 day was 0.10 ⁇ 0.01, 0.33 ⁇ 0.06 after 3 days, and 0.67 ⁇ after 7 days. It was 0.10.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in the form of colonies in the thickness direction, and when phosphate-buffered saline was added, the cells floated while maintaining the formation of the colonies .
- Example 13 The culture film 15 produced in Production Example 11 is sterilized, fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and the thawed BALB / 3T3 cell solution (1 mL) is applied to the pattern surface of the culture film 15 Sowing. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%. In the evaluation of cell proliferation by the WST-8 method, the absorbance after 1 day was 0.10 ⁇ 0.02, 0.34 ⁇ 0.03 after 3 days, and 0.70 ⁇ after 7 days. 0.09.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in the form of colonies in the thickness direction, and when phosphate-buffered saline was added, the cells floated while maintaining the formation of the colonies .
- Example 14 The culture film 16 produced in Production Example 12 is sterilized, fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and the thawed BALB / 3T3 cell solution (1 mL) is applied to the pattern surface of the culture film 16. Sowing. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%. In the evaluation of cell proliferation by the WST-8 method, the absorbance after 1 day was 0.09 ⁇ 0.02, 0.33 ⁇ 0.03 after 3 days, and 0.66 ⁇ after 7 days. 0.08.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in the form of colonies in the thickness direction, and when phosphate-buffered saline was added, the cells floated while maintaining the formation of the colonies .
- Example 15 The culture film 17 produced in Production Example 13 is sterilized, fixed to a 24-well TCPS multiwell plate in the same manner as in Example 1, and the thawed BALB / 3T3 cell solution (1 mL) is applied to the pattern surface of the culture film 17 Sowing. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%. In the evaluation of cell proliferation by the WST-8 method, the absorbance after 1 day was 0.10 ⁇ 0.04, 0.26 ⁇ 0.02 after 3 days, and 0.52 ⁇ after 7 days. It was 0.12.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in a state of forming a colony in the thickness direction, and when phosphate buffered saline was added, the cells floated in a state of maintaining the formation of the colony. .
- Example 16 Using the polymer 2 produced in Example 8, a pillar-shaped culture film 18 having a thickness of 55 ⁇ m was produced in the same manner as in Production Example 9. The water contact angle of the culture film 18 (when 15 seconds had elapsed) was 150.5 °.
- the culture of BALB / 3T3 cells carried out using the culture film 18 in the same manner as in Example 1 has an absorbance of 0.10 ⁇ 0.03 after one day in the evaluation of cell proliferation by the WST-8 method. It was 0.32 ⁇ 0.03 after 3 days and 0.72 ⁇ 0.10 after 7 days. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in a state of forming a colony in the thickness direction, and when phosphate buffered saline was added, the cells floated in a state of maintaining the formation of the colony. .
- Example 17 A hole-shaped culture film 19 having a thickness of 58 ⁇ m was produced in the same manner as in Production Example 9 except that the polymer 3 produced in Example 10 was used and the mold was changed to the pillar-shaped nickel mold used in Production Example 11. did.
- the water contact angle of the culture film 19 (when 15 seconds had elapsed) was 130.3 °.
- the absorbance after 1 day was 0.09 ⁇ 0.02 in the evaluation of cell proliferation by the WST-8 method. It was 0.32 ⁇ 0.04 after the lapse of days, and 0.78 ⁇ 0.19 after the lapse of 7 days.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in a state of forming a colony in the thickness direction, and when phosphate buffered saline was added, the cells floated in a state of maintaining the formation of the colony. .
- Example 18 A film having a thickness of 50 ⁇ m prepared from the polymer 1 synthesized in Production Example 1 was placed on the pattern surface of the hole-shaped nickel mold used in Production Example 9, heated to 150 ° C., thermocompression bonded at 10 MPa, and held for 5 seconds. After cooling to 50 ° C., the mold was removed to produce a pillar-shaped culture film 20. The water contact angle of the culture film 20 (when 15 seconds had elapsed) was 148.1 °.
- the culture of BALB / 3T3 cells carried out in the same manner as in Example 1 using the culture film 20 has an absorbance of 0.11 ⁇ 0.03 after one day in the evaluation of cell proliferation by the WST-8 method.
- the water contact angle of the culture film 21 (when 15 seconds had elapsed) was 146.9 °.
- the culture of BALB / 3T3 cells carried out by the culture film 21 in the same manner as in Example 1 has an absorbance of 0.11 ⁇ 0.02 after one day in the evaluation of cell proliferation by the WST-8 method. It was 0.26 ⁇ 0.03 after 7 days and 0.53 ⁇ 0.10 after 7 days. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells proliferated in a state of forming a colony in the thickness direction, and when phosphate buffered saline was added, the cells floated in a state of maintaining the formation of the colony. .
- Example 20 The cell type was changed to human skin fibroblasts (hereinafter abbreviated as Hs-68 cells), and cells were thawed, passaged, and prepared by the same method as mouse embryo fibroblasts. A cell suspension of 7500 cells / mL was prepared in serum D-MEM medium. Next, using the sterilized culture film 1 prepared in Production Example 2, the thawed Hs-68 cell solution (1 mL) was seeded by the same method as in Example 1. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- Hs-68 cells human skin fibroblasts
- the absorbance after 1 day was 0.34 ⁇ 0.07, 1.55 ⁇ 0.10 after 3 days, and 4.27 ⁇ after 7 days. It was 0.16.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in a sheet-like form in the form of a colony in the thickness direction.
- trypsin-containing phosphate buffered saline was added, the sheet-like morphology was observed. It floated while keeping.
- Example 21 Using the sterilized culture film 5 produced in Production Example 6, the thawed Hs-68 cell solution (1 mL) was seeded in the same manner as in Example 20. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.31 ⁇ 0.03, 1.49 ⁇ 0.09 after 3 days, and 3.77 ⁇ after 7 days. It was 0.19.
- the absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in a sheet-like form in the form of a colony in the thickness direction.
- trypsin-containing phosphate buffered saline was added, the sheet-like morphology was observed. It floated while keeping.
- the drug metabolism enzyme activity was evaluated with NADPH dehydrogenase of the cultured cells, it was found that almost 100% had the drug metabolism enzyme activity similar to that of the ecosystem. Further, when autofluorescence was observed, it was confirmed that 100% of the cultured cells were living cells.
- Example 22 Using the sterilized culture film 10 described in Example 10, the thawed Hs-68 cell solution (1 mL) was seeded in the same manner as in Example 20. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.33 ⁇ 0.04, 1.53 ⁇ 0.05 after 3 days, and 4.17 ⁇ after 7 days. It was 0.11. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- Example 23 The bottom surface of the concave portion of a 6-hole TCPS multiwell plate (manufactured by Corning) was cut out, and the film 1 prepared in Production Example 2 was attached to the bottom surface of all 6 holes to prepare a cell culture container, which was sterilized with ethanol. Subsequently, the thawed Hs-68 cell solution was seeded by the same method as in Example 20 except that the amount of the cell solution was changed to 10 mL. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.52 ⁇ 0.03, 1.70 ⁇ 0.03 after 3 days, and 4.35 ⁇ after 7 days. 0.09. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the cells cultured for 7 days were observed with a microscope, the cells grew in a sheet-like form in the form of a colony in the thickness direction, and when trypsin-containing phosphate buffered saline was added, the sheet-like morphology was obtained. It floated while keeping.
- Example 24 Using the sterilized culture film 15 described in Example 13, the thawed Hs-68 cell solution (1 mL) was seeded in the same manner as in Example 20. The same operation was repeated 9 times to prepare 9 samples by the number of specimens. Thereafter, the lid was put on, moved to an incubator, and the culture was started under sterilized air with an internal temperature of 37 ° C. and a carbon dioxide concentration of 5%.
- the absorbance after 1 day was 0.25 ⁇ 0.02, 0.78 ⁇ 0.04 after 3 days, and 1.80 ⁇ after 7 days. 0.09. The absorbance increased linearly with respect to the number of days elapsed, and no change was observed in the proliferation even after 7 days.
- the absorbance after 1 day was 0.27 ⁇ 0.03, 1.08 ⁇ 0.11 after 3 days, and 1.51 ⁇ after 7 days. It was 0.23. Absorbance tended to gradually decline with respect to the number of days elapsed, and the degree of cell proliferation decreased with the number of days elapsed. In addition, when the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in a uniform plane state with respect to the thickness direction, and even if phosphate-buffered saline was added, the cells floated without change. There wasn't.
- Example 2 A low-density polyethylene film (manufactured by Mitsui Chemicals, water contact angle 96.8 ° after 15 seconds, and 59.5 ° after 10 minutes) was cut out and sterilized in the same manner as the culture film handling method of the example. Next, BALB / 3T3 cells were cultured by the same method as in Example 1.
- the absorbance after 1 day was 0.22 ⁇ 0.02, 0.71 ⁇ 0.09 after 3 days, and 1.11 ⁇ after 7 days. It was 0.18. Absorbance tended to gradually decline with respect to the number of days elapsed, and the degree of cell proliferation decreased with the number of days elapsed. In addition, when the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in a uniform plane state with respect to the thickness direction, and even if phosphate-buffered saline was added, the cells floated without change. There wasn't.
- the solution was pressure filtered through a filter with a pore size of 5 ⁇ m, the solution was added to methanol, the white polymer was filtered off and dried to obtain 51 g of polymer 4.
- the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 82000, the molecular weight distribution (Mw / Mn) was 2.26, and the glass transition temperature was 104 ° C.
- a culture film 11 having a thickness of 55 ⁇ m was produced in the same manner as in Production Example 2 except that the solvent was changed to cyclohexane.
- the water contact angle of the film was 92.1 ° in 15 seconds. Furthermore, it was 55.4 degrees after 10 minutes, and the water contact angle changed.
- BALB / 3T3 cells were cultured by the same method as in Example 1.
- the absorbance after 1 day was 0.20 ⁇ 0.04, 0.53 ⁇ 0.10 after 3 days, and 0.85 ⁇ after 7 days. It was 0.13. Absorbance tended to gradually decline with respect to the number of days elapsed, and the degree of cell proliferation decreased with the number of days elapsed. In addition, when the cells cultured for 7 days were observed with a microscope, the cells grew in the form of a sheet in a uniform plane state with respect to the thickness direction, and even if phosphate-buffered saline was added, the cells floated without change. There wasn't.
- Example 4 A Teflon (registered trademark) AF1600 (manufactured by Aldrich) powder was hot-pressed under a heating condition of 200 ° C. to produce a culture film 12 having a thickness of 200 ⁇ m.
- the water contact angle at the time of preparing the substrate was 111.6 ° after 15 seconds. Further, it was 110.3 ° after 10 minutes.
- BALB / 3T3 cells were cultured by the same method as in Example 1.
- the absorbance after 1 day was 0.06 ⁇ 0.02, 0.14 ⁇ 0.11 after 3 days, and 0.18 ⁇ after 7 days. 0.09. Absorbance tended to gradually decline with respect to the number of days elapsed, and the degree of cell proliferation decreased with the number of days elapsed.
- the cells cultured for 7 days were observed with a microscope, the cells were scattered and proliferated, and even when phosphate buffered saline was added, the cells did not change in shape and did not float.
- Comparative Example 6 Incubation was started under sterile air with an incubator temperature of 37 ° C. and a carbon dioxide gas concentration of 5%, as in Comparative Example 1, except that the cell suspension was changed to Hs-68 cell solution (10 mL).
- the absorbance after 1 day was 0.33 ⁇ 0.06, 1.49 ⁇ 0.11 after 3 days, and 3.10 ⁇ after 7 days. It was 0.13. Absorbance tended to gradually decline with respect to the number of days elapsed, and the degree of cell proliferation decreased with the number of days elapsed.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Clinical Laboratory Science (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
また本発明は、薬物代謝系酵素活性を長期間維持可能な培養細胞を提供することを課題とする。薬物代謝系酵素活性維持出来る培養細胞は、再生医療などに好適に展開出来ると考えられるので、本発明の意義は極めて大きい。
(1) 基材を備え、かつ前記基材の一面に細胞を接触または保持させる医療器具であって、前記基材の少なくとも細胞を保持する前記一面は、下記一般式(1)で表される繰返し構造単位を含有するフッ素含有環状オレフィンポリマーにより構成される医療器具。
(2)細胞を接触または保持する前記一面の水接触角が70°以上160°以下である(1)に記載の医療器具。
(3)細胞を接触または保持する前記一面の水接触角が70°以上120°以下である(1)または(2)に記載の医療器具。
(4) 前記基材の少なくとも細胞と接触する前記一面が、凹凸構造を備える(1)に記載の医療器具。
(5) 細胞と接触する前記一面の水接触角が121°以上160°以下である(4)に記載の医療器具。
(6) 前記基材の少なくとも細胞を接触または保持する前記一面は、前記フッ素含有環状オレフィンポリマーと、光硬化性化合物と、光硬化開始剤と、を含むフッ素含有環状オレフィンポリマー組成物により構成される(1)~(5)のいずれか一項に記載の医療器具。
(7) 前記フッ素含有環状オレフィンポリマー組成物中における前記フッ素含有環状オレフィンポリマーと前記光硬化性化合物の質量比(フッ素含有環状オレフィンポリマー/光硬化性化合物)が、99.9/0.1~50/50である(6)に記載の医療器具。
(8) 前記一面に接触または保持させた細胞を培養するために用いられる(1)~(7)のいずれか一項に記載の医療器具。
(9) 細胞培養において、細胞が群体を形成しながら増殖する(8)に記載の医療器具。
(10) 培養した細胞を緩衝液により浮遊して前記一面から離脱させる(8)または(9)に記載の医療器具。
(11) (1)~(10)のいずれか一項に記載の医療器具の前記基材の前記一面上に、前記一面に接触または保持するよう細胞を播種する工程と、
前記細胞を培養して培養細胞を得る工程と、
前記一面上に緩衝液を添加して、前記一面から前記培養細胞を浮遊させる工程と、
を備える細胞培養方法。
(12) 基材を備え、かつ前記基材の一面に細胞を接触または保持させる医療器具の、前記基材の少なくとも細胞を保持させる前記一面を構成するフッ素含有環状オレフィンポリマーであって、下記一般式(1)で表される繰返し構造単位を含有するフッ素含有環状オレフィンポリマー。
(13) 基材を備え、かつ前記基材の一面に細胞を接触または保持させる医療器具の、前記基材の少なくとも細胞を保持させる前記一面を構成するフッ素含有環状オレフィンポリマー組成物であって、
下記一般式(1)で表される繰返し構造単位を含有するフッ素含有環状オレフィンポリマーと、
光硬化性化合物と、
光硬化開始剤と、
を含むフッ素含有環状オレフィンポリマー組成物。
(14) 薬物代謝系酵素活性を少なくとも7日間維持した培養細胞。
尚、前記のアルキル、アルコキシ、アルコキシアルキル等の置換基は、本明細書においてはそれぞれアルキル基、アルコキシ基、アルコキシアルキル基と記載することがある。
また、本明細書中の「繰り返し構造単位」について、単に「構造単位」と表現することもできる。
これに対し、本実施形態によれば、上記一般式(1)のフッ素含有環状オレフィンポリマーによって細胞を保持させる基材の一面を構成することにより、増殖した細胞が基材の一面に接着および付着することを抑制することができる。このため、継代操作によらずとも、厚み方向に対して群体を形成するように細胞を増殖させることが可能となる。したがって、細胞の損傷の発生や操作の煩雑化を抑えつつ、より効率的な細胞培養を行うことが可能となる。
また、本実施形態の医療器具を用いて作製した培養細胞は、薬物代謝系酵素活性を少なくとも7日間維持した培養細胞である。すなわち、生体内での細胞増殖とほぼ同じ機能を維持したまま成長させた培養細胞であり、細胞の種類を限定的に選ばない。もしくは、遺伝子変異を起こす確率の高いウイルスまたは細菌などごく限られた細胞の種類を除いて正常に生細胞を培養することができる。その細胞の薬物代謝系酵素活性は、低温下で保存するまたは特別な培養保存操作(例えば、酸素過多で保存するなど)をすることなく、少なくとも7日間維持され、好ましくは、10日間維持した培養細胞である。特に好ましくは14日間維持された培養細胞である。一方、細胞の形状は、特に限定する必要は無いが、例示するならば、例えば、シート状細胞、群生状(含むスフェロイド)細胞、神経系形態細胞などである。特に、再生医療の分野では、短期間で、かつ、生体細胞と同様な薬物代謝系酵素活性を維持していることが望まれており、本実施形態の培養細胞のように好適に生産できることが、重要な訴求点になる。
また、本実施形態の培養細胞は、創薬やバイオ薬品、美容においても同様の機能を長期間維持することが期待でき、世界的な潮流となりうる発明である。
また、他の態様においては、より高い水接触角とすることもでき、たとえば、基材の一面における水接触角を121°~160°の範囲に設定することもできる。このように121°~160°の水接触角を実現するためには、基材の一面に凹凸構造を形成させて制御する方法が好ましく用いられる。細胞の損傷を抑える観点や、効率的な細胞培養を行う観点からは、上記の水接触角が123°以上155°以下であることがより好ましく、125°以上150°以下とすることが特に好ましい。本実施形態においては、上記一般式(1)で表される繰返し構造単位を含有するフッ素含有環状オレフィンポリマーを用いて上記基材の一面を形成することが、水接触角を所望の範囲とするために重要な要素の一つである。
これらの細胞の由来としては各種生物、例えば、ヒト、イヌ、ラット、マウス、トリ、ブタ、ウシ、昆虫等の細胞、または、これらが集合して形成された組織、器官、微生物、ウイルスなどが挙げられ、より具体的には、ヒト子宮頚部癌由来、Chinese hamster卵巣由来、CV-1細胞由来、ヒト骨髄性白血病由来、ヒト乳癌由来、ヒトT細胞白血病由来、Africa green monkey腎由来、ヒト副腎髄褐色細胞種由来、ヒト骨髄性白血病由来、C3Hマウス皮下組織由来、ヒト胎児腎由来、ヒト肝癌由来、ヒト組織球性白血病由来、ヒト大腸癌由来、ヒト肺癌由来、マウスメラノーマ由来、イヌ腎臓由来、Balb/cマウス胎仔由来、Chinese hamster肺由来、Swiss3T3由来、NIH Swissマウス胎仔由来、ヒトバーキットリンパ腫由来、ヒト肺非小細胞癌由来、ヒト皮膚Epidermoid Carcinoid由来、蛾の幼虫卵巣由来、ヒト神経芽細胞腫由来、Sirian golden hamster腎由来、マウスマクロファージ由来、マウス筋組織由来、雑系Swissマウス胎仔由来、ヒト急性T細胞白血病由来、マウスEC細胞OTT6050由来、マウスcalvaria由来、ヒト表皮角化細胞由来、DBA/2マウス胸腺腫瘍由来、ヒト幹細胞癌由来、ラット結合織由来、ヒト骨肉腫由来、ヒト胎児肺由来、ヒト胎児肺由来、ヒト神経芽細胞腫由来、マウスインスリノーマ由来、ヒト胃癌由来、C3Hマウス胎仔由来、ニワトリB細胞白血病由来、マウス自然発生乳癌由来、などが例示される。
フッ素含有環状オレフィンポリマーは、上述したとおり、下記一般式(1)で表される繰返し構造単位を含有するものである。本実施形態においては、このフッ素含有環状オレフィンポリマーを用いて、基材の一面に細胞を接触または保持させる医療器具の当該基材の少なくとも一面を形成することができる。
また、R1~R4が互いに結合して環構造を形成していてもよく、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
さらに、フッ素を含有しないその他のR1~R4は、水素;メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等の炭素数1~10のアルキル;メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ等の炭素数1~10のアルコキシ;またはメトキシメチル、エトキシメチル、プロポキシメチル、ブトキシメチル、ペントキシメチル等の炭素数2~10のアルコキシアルキルが例示される。
ポリ(1,1-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-プロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-プロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-tert-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロエトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-ペルフルオロエトキシ-2,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-ペルフルオロプロポキシ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロヘトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロヘトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロヘトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシル-2-ペルフルオロヘトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-オクチル-2-ペルフルオロヘトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロヘプトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロオクトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロデトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-ペルフルオロペントキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロヘトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロへトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 2´-トリフルオロエトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´,2´,2´-トリフルオロエトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-(2´, 2´, 2´-トリフルオロエトキシ)-2,2-ビス(トリフルオロメトキシ))-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ)-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシル-2-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-オクチル-2-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,7´-トリデカフルオロヘプトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,8´-ペンタデカフルオロオクトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,9´,9´,9´-ヘプタデカフルオロデトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-ペルフルオロエチル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-ペルフルオロ-iso-プロピル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)等が挙げられる。
なお、本明細書中において、「~」で示した数値範囲は、その上限値および下限値を含むものとする。
以下に記載の製造方法によって得られるフッ素含有環状オレフィンポリマーからなるフィルム、または成形物を、細胞培養および細胞を利用した検査のための基材として用いる事により、本実施形態の細胞が接着および付着しづらいことを特徴とする医療器具を好適に得ることができる。
本実施形態において、実質的に一般式(1)で表される繰返し構造単位からなるフッ素含有環状オレフィンポリマーは、後述する方法で製造することができる。これにより、本実施形態の細胞の接着または付着が抑制されることを特徴とする細胞培養および細胞を利用した検査のための基材の原料となる、フッ素含有環状オレフィンポリマーを好適に得ることができる。
具体的には、下記一般式(2)で表わされる環状オレフィンモノマーを開環メタセシス重合触媒によって重合し、得られる重合体の主鎖のオレフィン部を水素添加することによって、フッ素含有環状オレフィンポリマーを合成することができる。
環状オレフィンモノマーの開環メタセシス重合において、環状オレフィンモノマーと開環メタセシス重合触媒とのモル比は、タングステン、モリブデン、またはルテニウム等の遷移金属アルキリデン触媒の場合は、遷移金属アルキリデン触媒1モルに対して、該モノマーを100~30,000モルとすることが好ましく、1,000~20,000モルとすることがより好ましい。
本実施形態において上述のように製造したフッ素含有環状オレフィンポリマーから、細胞の培養、または細胞の検査のために用いる医療器具を作製する方法について記載する。たとえば、以下に示す方法により、本実施形態の基材表面の水接触角が70°以上120°以下である医療器具を作製することが可能になる。本実施形態に係る医療器具は、たとえばフィルムやシート状の単層膜からなる基材や、他の材料の上にコート膜を形成して得られる基材を備える。このような基材を作製する方法としては、たとえば上記において例示した一般式(1)で表されるフッ素含有環状オレフィンポリマーを有機溶剤に溶解させて得られるワニスを用いた溶液キャスト法を挙げることができる。
まず、上述したとおり、上記において例示した一般式(1)で表されるフッ素含有環状オレフィンポリマーを有機溶剤に溶解させてワニスを得る。
次に、本実施形態においてはフッ素含有環状オレフィンポリマー組成物から、細胞の培養、または細胞の検査のために用いる医療器具を作製する方法について記載する。たとえば、以下に示す方法により、本実施形態の基材表面の水接触角が70°以上120°以下である医療器具を作製することが可能になる。
これにより、各種部材との強固な密着性を発現しつつ、細胞培養バッグ、またはプレートなどの各種培養器具の細胞を接触または保持する基材表面の性状を改質することができ、細胞の接着および付着を抑制しつつ増殖させることが可能な医療器具を提供することができる。
まず、上述したとおり、フッ素含有環状オレフィンポリマー(A)を含むフッ素含有環状オレフィンポリマー組成物を有機溶剤に溶解させてワニスを得る。
フッ素含有環状オレフィンポリマー組成物において、フッ素含有環状オレフィンポリマー(A)と光硬化性化合物(B)の質量比(A)/(B)は、99.9/0.1~50/50であることが好ましく、99.9/0.1~55/45であることがより好ましく、99.9/0.1~60/40であることがさらに好ましい。光硬化性化合物(B)としては、反応性二重結合基を有する化合物、カチオン重合可能な開環重合性化合物等が挙げられる。好ましくは、コートして用いる際の硬化後の体積収縮にともなう基材の変形の抑制や、フッ素含有環状オレフィンポリマー(A)との相溶性の観点からカチオン重合可能な開環重合性化合物が選ばれる。
光硬化開始剤(光重合開始剤)(C)としては、光の照射によってカチオンを生成する光カチオン開始剤、光の照射によってラジカルを生成する光ラジカル開始剤、などが挙げられる。光硬化開始剤(C)の使用量は、光硬化性化合物(B)100質量部に対して0.05質量部以上であることが好ましく、0.1~10質量部であることがより好ましい。
オニウム陽イオンの具体例としては、ジフェニルヨードニウム、4-メトキシジフェニルヨードニウム、ビス(4-メチルフェニル)ヨードニウム、ビス(4-tert-ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、トリフェニルスルホニウム、ジフェニル-4-チオフェノキシフェニルスルホニウム、ビス〔4-(ジフェニルスルフォニオ)-フェニル〕スルフィド、ビス〔4-(ジ(4-(2-ヒドロキシエチル)フェニル)スルホニオ)-フェニル〕スルフィド、η5-2,4-(シクロペンタジェニル)〔1,2,3,4,5,6-η-(メチルエチル)ベンゼン〕-鉄(1+)等が挙げられる。また、オニウム陽イオン以外に、過塩素酸イオン、トリフルオロメタンスルホン酸イオン、トルエンスルホン酸イオン、トリニトロトルエンスルホン酸イオン等が挙げられる。また、これらの光カチオン開始剤は、単独で用いても、2種以上組み合わせて用いてもよい。
一方、陰イオンの具体例としては、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、ヘキサクロロアンチモネート、テトラ(フルオロフェニル)ボレート、テトラ(ジフルオロフェニル)ボレート、テトラ(トリフルオロフェニル)ボレート、テトラ(テトラフルオロフェニル)ボレート、テトラ(ペンタフルオロフェニル)ボレート、テトラ(ペルフルオロフェニル)ボレート、テトラ(トリフルオロメチルフェニル)ボレート、テトラ〔ジ(トリフルオロメチル)フェニル〕ボレート等が挙げられる。また、これらの光カチオン開始剤は、単独で用いても、2種以上組み合わせて用いてもよい。
さらに好ましく用いられる光ラジカル開始剤の具体例としては、例えば、イルガキュアー651(BASF社製)、イルガキュアー184(BASF社製)、ダロキュアー1173(BASF社製)、ベンゾフェノン、4-フェニルベンゾフェノン、イルガキュアー500(BASF社製)、イルガキュアー2959(BASF社製)、イルガキュアー127(BASF社製)、イルガキュアー907(BASF社製)、イルガキュアー369(BASF社製)、イルガキュアー1300(BASF社製)、イルガキュアー819(BASF社製)、イルガキュアー1800(BASF社製)、ダロキュアーTPO(BASF社製)、ダロキュアー4265(BASF社製)、イルガキュアーOXE01(BASF社製)、イルガキュアーOXE02(BASF社製)、エサキュアーKT55(ランベルティー社製)、エサキュアーKIP150(ランベルティー社製)、エサキュアーKIP100F(ランベルティー社製)、エサキュアーKT37(ランベルティー社製)、エサキュアーKTO46(ランベルティー社製)、エサキュアー1001M(ランベルティー社製)、エサキュアーKIP/EM(ランベルティー社製)、エサキュアーDP250(ランベルティー社製)、エサキュアーKB1(ランベルティー社製)、2,4-ジエチルチオキサントンが挙げられる。これらの中で、さらに好ましく用いられる光ラジカル重合開始剤としては、イルガキュアー184(BASF社製)、ダロキュアー1173(BASF社製)、イルガキュアー500(BASF社製)、イルガキュアー819(BASF社製)、ダロキュアーTPO(BASF社製)、エサキュアーKIP100F(ランベルティー社製)、エサキュアーKT37(ランベルティー社製)およびエサキュアーKTO46(ランベルティー社製)が挙げられる。また、これらの光ラジカル開始剤は、単独で用いても、2種以上組み合わせて用いてもよい。
また、フッ素含有環状オレフィンポリマー組成物は硬化後の形態で、光硬化性化合物が3次元の網目構造を形成することで、表面硬度を硬く改質することができる。このため、医療器具等に実装した場合の傷付き性を改善でき、細胞培養や細胞の検査のための基材として用いる際に、利便性良く使用することができる。
本実施形態に係る細胞培養方法は、本実施形態に係る医療器具を構成する基材の一面上に、当該一面に接触または保持されるよう細胞を播種する工程と、当該細胞を培養して培養細胞を得る工程と、上記一面上に緩衝液を添加して、前記一面から前記培養細胞を浮遊させる工程と、を備える。これにより、培養細胞を損傷なく基材から離脱させることができ、かつ効率的な増殖が可能な細胞培養を実現することができる。
好ましくは、リン酸緩衝液、リン酸緩衝生理食塩水、塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液、トリス塩酸緩衝液、エチレンジアミン四酢酸緩衝液、トリスEDTA緩衝液、トリス酢酸EDTA緩衝液、トリスホウ酸EDTA緩衝液、濃縮SSC緩衝液、濃縮SSPE緩衝液、クエン酸ナトリウム緩衝液、炭酸重炭酸緩衝液、ホウ酸ナトリウム緩衝液、マレイン酸緩衝液などが単独もしくはトリプシン、ペプシン、レンネット、キモトリプシン、エラスターゼ、NADPHデハイドロゲナアゼまたはNADHデハイドロゲナアゼなどの酵素を含有させて用いてもよい。
さらに好ましくは、リン酸緩衝液、リン酸緩衝生理食塩水、トリス塩酸緩衝液、エチレンジアミン四酢酸緩衝液、トリスEDTA緩衝液、トリス酢酸EDTA緩衝液、トリスホウ酸EDTA緩衝液、濃縮SSC緩衝液、濃縮SSPE緩衝液、クエン酸ナトリウム緩衝液、炭酸重炭酸緩衝液、ホウ酸ナトリウム緩衝液などを単独もしくはトリプシン、ペプシン、レンネット、キモトリプシン、エラスターゼ、NADPHデハイドロゲナアゼまたはNADHデハイドロゲナアゼなどの酵素を含有させて用いてもよい。
下記の条件下でゲルパーミュエーションクロマトグラフィー(GPC)を使用して、テトラヒドロフラン(THF)または、トリフルオロメチルベンゼン(TFT)に溶解したポリマーの重量平均分子量(Mw)および数平均分子量(Mn)を、ポリスチレンスタンダードによって分子量を較正して測定した。
検出器:日本分光社製RI-2031および875-UVまたはViscotec社製Model270、直列連結カラム:Shodex K-806M、804、803、802.5、カラム温度:40℃、流量:1.0ml/分、試料濃度:3.0~9.0 mg/ml
島津製作所社製DSC-50を用い、測定試料を窒素雰囲下で10℃/分の昇温速度で加熱し測定した。
協和界面科学社製固体表面エナジー解析装置CA-XE型を使用してJIS R3257(基板ガラス表面のぬれ性試験方法)に準拠し、2μlの水滴を基材表面に滴下し、静滴法により、基材表面に水滴が接触してから1分以内に接触角を測定した。
塗布膜の硬化には光源として、シーシーエス社製UV照射装置を用いて波長365nmのLED光、またはエンジニアリングシステム社製UV式インプリント装置を用いて375nmのLED光を照射して硬化した。
マウス胚繊維芽細胞(以下、BALB/3T3細胞と略す)を用い、10%仔ウシ血清(Calf Bovine Serum、CBS)と、高グルコースと、D-MEM培地(L-グルタミン、フェノールレッド、ピルビン酸ナトリウム含有)と、を含む溶液(以下、BALB/3T3細胞液とも呼ぶ)中で、すべての継代培養および細胞増殖性試験を行った。
凍結した細胞懸濁液を37℃ウォーターバスに浸けて解凍し、解凍した細胞懸濁液に氷上冷却した10%仔ウシ血清D-MEM培地を添加して遠心分離した。遠心後、上澄み液を除去して細胞塊をタッピングによりほぐした後、37℃ウォーターバスで保温した10%仔ウシ血清D-MEM培地を添加した。血球計算盤で細胞数を計数し、ウォーターバスで保温した10%仔ウシ血清D-MEM培地を用いて細胞懸濁液を調製し培養フラスコに細胞を播種した後、加湿インキュベーターで培養した。
加湿インキュベーターから培養フラスコを取り出して培地をアスピレーターで除去し、37℃ウォーターバス中で保温したダルベッコPBS(-)を加え、上澄みをアスピレーターで除去した。再度、同様な操作行った後、37℃ウォーターバス中で保温した0.025w/v%トリプシン-EDTA溶液を加えて加湿インキュベーター内で静置した後、10%仔ウシ血清D-MEM培地を加えて剥がれた細胞を回収して遠沈管に移し遠心分離して上澄み液を除去し、タッピングにより細胞塊をほぐした後、10%仔ウシ血清D-MEM培地を加えた。血球計算盤で細胞数を計数した後、10%仔ウシ血清D-MEM培地で細胞懸濁液を調製し、培養フラスコに細胞を播種して、加湿インキュベーターで培養した。実施例に記載の細胞胞増殖性評価では、継代数3~20代のものを用いた。
直径15mmに切り出した円形の培養フィルムをTCPSマルチウェルプレート(コーニング社製)穴部に置き、70%エタノール水溶液を加えて40分~1時間浸漬した後、70%エタノール水溶液を除去してダルベッコPBS(-)に15分~40分間浸漬した。次に、PBS(-)を除去して、培養器具をひっくり返し、同様な操作を行い、培養器具の表裏面を滅菌処理した。滅菌処理終了後、クリーンベンチ内で一晩乾燥させた。
25cm2培養フラスコで約60%コンフレント状態になったBALB/3T3細胞を、上記、細胞の継代操作と同様な方法で0.025w/v%トリプシン-EDTAで処理して剥がした。血球計算盤で細胞数を計数して、10%仔ウシ血清D-MEM培地で7500 cells/mLの細胞懸濁液を調製した。
培養開始後1、3、および7日経過後のTCPSマルチウェルプレートを加湿インキュベーターから取り出して培地を除去し、10%WST-8(Cell Counting Kit-8)/10%仔ウシ血清D-MEM培地の混合溶液を添加して、加湿インキュベーターで3時間インキュベートした。その後、培地200μlを96ウェルプレートに移し、プレートリーダー(SPECTRA max PLUS384、Molecular Devices社製)で波長450nmの吸光度を測定した。各培養器具の細胞増殖性は、吸光度の経時変化により確認した。
各種培養器具について、細胞を播種したサンプルを9検体準備して培養し、吸光度の測定結果をPrism 6 for Windows(登録商標) 6.01(エムデーエフ社製)により数値解析して、結果の平均値を吸光度として算出し、標準偏差に±の符号を付しバラツキの範囲とした。
7日間細胞培養した容器から培地を除去して、4%グルタルアルデヒド/リン酸緩衝液を添加し1時間静置した後、4%グルタルアルデヒド/リン酸緩衝液を除去した。その後、滅菌水で洗浄し、Image-iT Fixation/Permeabilizationキット(ライフサイエンス社製)を使用し細胞核、および細胞骨格タンパクを染色して蛍光顕微鏡観察に用いる試料を調製した。蛍光顕微鏡観察は、オールインワン蛍光顕微鏡BZ-X700(キーエンス社製)を使用した。
5,5,6-トリフルオロ-6-(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(100g)と1-ヘキセン(0.268g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OBut)2(50mg)のテトラヒドロフラン溶液を添加し、70℃で開環メタセシス重合を行った。得られたポリマーのオレフィン部を、パラジウムアルミナ(5g)によって160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。その溶液を孔径5μmのフィルターで加圧ろ過しパラジウムアルミナを除去した溶液をメタノールに加え、白色のポリマーをろ別、乾燥し99gのポリマー1を得た。得られたポリマー1は、上記一般式(1)により表される繰り返し構造単位を含有していた。また、水素添加率は100%、重量平均分子量(Mw)は83000、分子量分布(Mw/Mn)は1.73、ガラス転移温度は109℃であった。
製造例1で合成したポリマー1をメチルイソブチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターでろ過してポリマー1のメチルイソブチルケトン溶液を調製した。次いで、ポリマー1のメチルイソブチルケトン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、140℃で60分乾燥して剥離する事で厚み60μmのフィルムを作製した。フィルムの水接触角は15秒で93.6°であった。さらに、10分経過後で88.1°であり水滴が消失するまでの時間において変化は見られなかった。
製造例2で調製したポリマー1のメチルイソブチルケトン溶液を、コート基材であるPETフィルム(ルミラー、東レ)にバーコーターを用いて均一に塗布し、100℃で20分乾燥して室温まで放冷し、コート膜の厚みが5μmの培養フィルム2を作製した。フィルムの水接触角は15秒で93.7°であった。さらに、10分経過後で87.7°であり水滴が消失するまでの時間において変化は見られなかった。
コート基材をアクリルフィルム(アクリプレン、三菱レイヨン)に、コート後の乾燥条件を90℃、40分に変更したこと以外は製造例3と同じ方法で、コート膜の厚みが5μmの培養フィルム3を作製した。フィルムの水接触角は15秒で94.1°であった。さらに、10分経過後で88.0°であり水滴が消失するまでの時間において変化は見られなかった。
製造例1で合成したフッ素含有環状オレフィンポリマー(A)であるポリマー1を30質量%濃度で溶解したメチルイソブチルケトン溶液100gに、光硬化性化合物(B)として3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンと1,7-オクタジエンジエポキシドの質量比9/1の混合物を7.5g[(A)/(B)=80/20]、および光重合開始剤(C)として光カチオン開始剤(アデカオプトマーSP-172、旭電化社製)を0.4g加えた溶液を調製し、孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターでろ過してポリマー1と光硬化性化合物および光硬化開始剤のメチルイソブチルケトン溶液を調製した。次いで、コート基材であるPETフィルム(ルミラー、東レ)に塗布して、バーコーターを用いて均一にコートし、100℃で10分乾燥して室温まで放冷した後、200mJ/cm2の光量でUV照射して硬化樹脂を硬化させコート厚み5μmの培養フィルム4を作製した。コート面の水接触角は15秒で88.1°であった。さらに、10分経過後で84.9°であり水滴が消失するまでの時間において変化は見られなかった。
フッ素含有環状オレフィンポリマー(A)であるポリマー1と、光硬化性化合物(B)である3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンと1、7-オクタジエンジエポキシドの質量比9/1の混合物と、の質量比を[(A)/(B)=60/40]に変更した以外は製造例5と同様な方法でコート厚み5μmの培養フィルム5を作製した。コート面の水接触角は15秒で84.2°であった。さらに、10分経過後で81.3°であり水滴が消失するまでの時間において変化は見られなかった。
コート基材をアクリルフィルム(アクリプレン、三菱レイヨン)に、コート後の乾燥条件を90℃、40分に変更したこと以外は製造例6と同じ方法で、コート膜の厚みが5μmの培養フィルム6を作製した。フィルムの水接触角は15秒で84.3°であった。さらに、10分経過後で81.0°であり水滴が消失するまでの時間において変化は見られなかった。
製造例1で合成したポリマー1に耐熱酸化防止剤としてスミライザーGP(住友化学社製)を0.5質量%添加して、ペレタイザーによりペレット化した後、メイホー製小型射出成型機Micro-1を用いて、加熱混練部の温度を260℃、金型の温度を90℃に設定し、射出速度20mm/sec、射出圧力40MPaの条件で直径20mm×厚み3mmの培養フィルム7を作製した。基材表面の水接触角は15秒で94.0°であった。さらに、10分経過後で88.4°であり水滴が消失するまでの時間において変化は見られなかった。
製造例2で作製した滅菌済みの培養フィルム1を24穴TCPSマルチウェルプレートの穴部底面に置き、滅菌グリース(東レ・ダウコーニング社製)でSUS製O-リング(内径11mm)と密着させて固定した後、BALB/3T3細胞液(1mL)を培養フィルム1の上に播種した。同操作を9回実施して、検体数で9個のサンプルを準備した。その後、蓋をして加湿インキュベーターに移動し、庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
製造例3で作製した滅菌済みの培養フィルム2を実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
製造例4で作製した滅菌済みの培養フィルム3を実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
製造例5で作製した滅菌済みの培養フィルム4を実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
製造例6で作製した滅菌済みの培養フィルム5を実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
製造例7で作製した滅菌済みの培養フィルム6を実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
製造例8で作製した滅菌済みの培養フィルム7を24穴TCPSマルチウェルプレートの穴部底面に置き、滅菌グリース(東レ・ダウコーニング製)でSUS製O-リング(内径16mm)と密着させて固定した後、解凍済みのBALB/3T3細胞液(1mL)を培養フィルム7の上に播種した。同操作を9回実施して、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
フッ素含有環状オレフィンモノマーの種類を5,6-ジフルオロ-5-ペンタフルオロエチル-6-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エンに変更したこと以外は、製造例1と同様な方法により97gのポリマー2を得た。得られたポリマー2は、上記一般式(1)により表される繰り返し構造単位を含有していた。また、水素添加率は100%、重量平均分子量(Mw)は91000、分子量分布(Mw/Mn)は1.93、ガラス転移温度は104℃であった。
フッ素含有環状オレフィンポリマー(A)である実施例8で製造したポリマー2と、光硬化性化合物(B)として3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンと1、7-オクタジエンジエポキシドの質量比9/1の混合物と、を製造例5と同じ方法で混合し、[質量比(A)/(B)=80/20]の組成物を調製した。次に、PETフィルム(ルミラー、東レ)にコートして、培養フィルム9を作製した。フィルムの水接触角は15秒で95.3°であった。さらに、10分経過後で94.9°であり水滴が消失するまでの時間において変化は見られなかった。
フッ素含有環状オレフィンモノマーの種類を5,6-ジフルオロ-5-へプタフルオロ-iso-プロピル-6-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エンに変更したこと以外は、製造例1と同様な方法により98gのポリマー3を得た。得られたポリマー3は、上記一般式(1)により表される繰り返し構造単位を含有していた。また、水素添加率は100%、重量平均分子量(Mw)は142000、分子量分布(Mw/Mn)は1.40、ガラス転移温度は137℃であった。
製造例1で合成したポリマー1をメチルイソブチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターでろ過してポリマー1のメチルイソブチルケトン溶液を調製した。次いで、直径150nm、ピッチ250nmのホール形状を有するサイズが4cm×4cmのニッケルモールドにポリマー1のメチルイソブチルケトン溶液を塗布し、アプリケーターを用いて均一にコートした後、140℃で60分乾燥して剥離する事で、厚み50μmのピラー形状の培養フィルム13を作製した。培養フィルム13の水接触角(15秒経過時)は147.0°であった。
製造例9で使用したポリマー1のメチルイソブチルケトン溶液を、ライン幅200nm、ピッチ400nmでラインとスペースが2μm周期で縦横最密充填配列したサイズが5cm×5cmのシリコンモールドに塗布し、アプリケーターを用いて均一にコートした後、140℃で60分乾燥して剥離する事で、厚み50μmのホール形状の培養フィルム14を作製した。培養フィルム14の水接触角(15秒経過時)は136.0°であった。
製造例9で使用したポリマー1のメチルイソブチルケトン溶液を、直径150nm、ピッチ250nmのピラー形状を有するサイズが4cm×4cmのニッケルモールドに塗布し、アプリケーターを用いて均一にコートした後、140℃で60分乾燥して剥離する事で、厚み50μmのホール形状の培養フィルム15を作製した。培養フィルム15の水接触角(15秒経過時)は124.3°であった。
製造例9で使用したポリマー1のメチルイソブチルケトン溶液を、直径が25μmのドーム形状の反転パターンを有するサイズが4cm×4cmの石英モールドにポリマー1のメチルイソブチルケトン溶液を塗布し、アプリケーターを用いて均一にコートした後、140℃で60分乾燥して剥離する事で、厚み60μmのドーム形状の培養フィルム16を作製した。培養フィルム16の水接触角(15秒経過時)は127.3°であった。
製造例1で合成したポリマー1を30質量%濃度で溶解したメチルイソブチルケトン溶液100gに、光硬化性化合物(B)として3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンと1,7-オクタジエンジエポキシドの質量比9/1の混合物を20g[(A)/(B)=60/40]、および光硬化開始剤(C)として(アデカオプトマーSP-172、ADEKA社製)を0.8g加えた溶液を調製し、孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターでろ過して光硬化性組成物1を調製した。次いで、製造例12で使用した石英モールドに光硬化性組成物1をアプリケーターを用いて均一にコートした後、140℃で30分乾燥し、コート面の背面から波長365nmのUV光を200mJ/cm2の積算光量で照射し、その後モールドから剥離する事で、厚み60μmのドーム形状の培養フィルム17を作製した。培養フィルム17の水接触角(15秒経過時)は129.5°であった。
製造例9で作製した培養フィルム13を滅菌し、パターン面を上方に24穴TCPSマルチウェルプレートの穴部底面に置き、滅菌グリース(東レ・ダウコーニング社製)でSUS製O-リング(内径11mm)と密着させて固定した後、BALB/3T3細胞液(1mL)を培養フィルム13のパターン面に播種した。同操作を9回実施して、検体数で9個のサンプルを準備した。その後、蓋をして加湿インキュベーターに移動し、庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.10±0.03であり、3日経過後で0.33±0.06であり、7日経過後で0.68±0.09であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
製造例10で作製した培養フィルム14を滅菌し、実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を培養フィルム14のパターン面に播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.10±0.01であり、3日経過後で0.32±0.06であり、7日経過後で0.67±0.10であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
製造例11で作製した培養フィルム15を滅菌し、実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を培養フィルム15のパターン面に播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.10±0.02であり、3日経過後で0.34±0.03であり、7日経過後で0.70±0.09であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
製造例12で作製した培養フィルム16を滅菌し、実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を培養フィルム16のパターン面に播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.09±0.02であり、3日経過後で0.32±0.03であり、7日経過後で0.66±0.08であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
製造例13で作製した培養フィルム17を滅菌し、実施例1と同様な方法で24穴TCPSマルチウェルプレートに固定し、解凍済みのBALB/3T3細胞液(1mL)を培養フィルム17のパターン面に播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.10±0.04であり、3日経過後で0.26±0.02であり、7日経過後で0.52±0.12であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
実施例8で製造したポリマー2を用いて、製造例9と同様な方法により厚み55μmのピラー形状の培養フィルム18を作製した。培養フィルム18の水接触角(15秒経過時)は150.5°であった。
培養フィルム18を用い、実施例1と同様な方法で実施したBALB/3T3細胞の培養は、WST-8法による細胞増殖性の評価で1日経過後の吸光度が0.10±0.03であり、3日経過後で0.32±0.03であり、7日経過後で0.72±0.10であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
実施例10で製造したポリマー3を用いてモールドを製造例11で使用したピラー形状のニッケルモールドに変更したこと以外は、製造例9と同様な方法により厚み58μmのホール形状の培養フィルム19を作製した。培養フィルム19の水接触角(15秒経過時)は130.3°であった。
培養フィルム19による実施例1と同様な方法で実施したBALB/3T3細胞の培養は、WST-8法による細胞増殖性の評価で1日経過後の吸光度が0.09±0.02であり、3日経過後で0.32±0.04であり、7日経過後で0.78±0.19であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
製造例1で合成したポリマー1から作製した厚み50μmのフィルムを製造例9で使用したホール形状のニッケルモールドのパターン面に被せ、150℃に加熱し10MPaで熱圧着しそのまま5秒間保持した。50℃に冷却後、モールドを離脱させピラー形状の培養フィルム20を作製した。培養フィルム20の水接触角(15秒経過時)は148.1°であった。
培養フィルム20を用い、実施例1と同様な方法で実施したBALB/3T3細胞の培養は、WST-8法による細胞増殖性の評価で1日経過後の吸光度が0.11±0.03であり、3日経過後で0.39±0.04であり、7日経過後で0.81±0.11であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
製造例13で調製した光硬化性組成物1[(A)/(B)=60/40]をPETフィルムにスピンコートして、100℃で1分間加熱した後に、製造例9で使用したホール形状のニッケルモールドのパターン面と光硬化性組成物1のコート面が接触するようにPETフィルムを被せ、0.3MPaの圧力で圧着しながら波長375nmのUV光を200mJ/cm2の積算光量で照射した。次いで、ニッケルモールドからPETフィルムを剥離して、PETフィルムの表面にピラー形状を形成した培養フィルム21を作製した。培養フィルム21の水接触角(15秒経過時)は146.9°であった。
培養フィルム21による実施例1と同様な方法で実施したBALB/3T3細胞の培養は、WST-8法による細胞増殖性の評価で1日経過後の吸光度が0.11±0.02であり、3日経過後で0.26±0.03であり、7日経過後で0.53±0.10であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、リン酸緩衝生理食塩水を添加すると群体形成の形態を保った状態で浮遊した。
細胞種をヒト皮膚繊維芽細胞(以下、Hs-68細胞と略す)に変更し、マウス胚繊維芽細胞と同様な方法により細胞の解凍、継代、懸濁液を調製し、10%仔ウシ血清D-MEM培地で7500 cells/mLの細胞懸濁液を調製した。
次に、製造例2で作製した滅菌済みの培養フィルム1を使用して、実施例1と同様な方法により、解凍済みのHs-68細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.34±0.07であり、3日経過後で1.55±0.10であり、7日経過後で4.27±0.16であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞はシート状に、厚み方向に対して群体を形成した状態で増殖しており、トリプシン含有リン酸緩衝生理食塩水を添加するとシート状の形態を保った状態で浮遊した。
この培養細胞のNADPHデハイドロゲナーゼで薬物代謝系酵素活性評価を行うとほぼ100%が、生態系と同様の薬物代謝系酵素活性があることが分かった。さらに、自家蛍光を観察すると同様に100%の培養細胞が生細胞であることを確認した。
製造例6で作製した滅菌済みの培養フィルム5を使用して、実施例20と同様な方法により、解凍済みのHs-68細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.31±0.03であり、3日経過後で1.49±0.09であり、7日経過後で3.77±0.19であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞はシート状に、厚み方向に対して群体を形成した状態で増殖しており、トリプシン含有リン酸緩衝生理食塩水を添加するとシート状の形態を保った状態で浮遊した。
この培養細胞のNADPHデハイドロゲナーゼで薬物代謝系酵素活性評価を行うとほぼ100%が、生態系と同様の薬物代謝系酵素活性があることが分かった。さらに、自家蛍光を観察すると同様に100%の培養細胞が生細胞であることを確認した。
実施例10で記載した滅菌済みの培養フィルム10を使用して、実施例20と同様な方法により、解凍済みのHs-68細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.33±0.04であり、3日経過後で1.53±0.05であり、7日経過後で4.17±0.11であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞はシート状に、厚み方向に対して群体を形成した状態で増殖しており、トリプシン含有リン酸緩衝生理食塩水を添加するとシート状の形態を保った状態で浮遊した。
この培養細胞のNADPHデハイドロゲナーゼで薬物代謝系酵素活性評価を行うとほぼ100%が、生態系と同様の薬物代謝系酵素活性があることが分かった。さらに、自家蛍光を観察すると同様に100%の培養細胞が生細胞であることを確認した。
6穴TCPSマルチウェルプレート(コーニング社製)の凹部底面を切り抜き、製造例2で作製したフィルム1を6穴全ての凹部底面に貼り付け細胞培養容器を作製し、エタノールにより滅菌処理した。
次いで、細胞液の量を10mLに変更したこと以外は、実施例20と同様な方法により、解凍済みのHs-68細胞液を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.52±0.03であり、3日経過後で1.70±0.03であり、7日経過後で4.35±0.09であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞はシート状に、厚み方向に対して群体を形成した状態で増殖しており、トリプシン含有リン酸緩衝生理食塩水を添加するとシート状の形態を保った状態で浮遊した。
さらに、7日間培養した細胞を蛍光発光試薬で染色して細胞核、および細胞骨格タンパクの形態を蛍光顕微鏡観察すると、青色蛍光発光(図2の白色部)した細胞核、および緑色蛍光発光(図2の灰色部)した細胞骨格タンパクは、二次元的に密度斑を伴いながら、三次元的には厚み方向に細胞が重なった状態の群体を形成した形態で観察された(図2参照)。
この培養細胞のNADPHデハイドロゲナーゼで薬物代謝系酵素活性評価を行うとほぼ100%が、生態系と同様の薬物代謝系酵素活性があることが分かった。さらに、自家蛍光を観察しても、殆ど蛍光が観察されないことから、同様に99.98%の培養細胞が生細胞であることを確認した(図4参照)。
実施例13で記載した滅菌済みの培養フィルム15を使用して、実施例20と同様な方法により、解凍済みのHs-68細胞液(1mL)を播種した。同操作を9回繰り返し、検体数で9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.25±0.02であり、3日経過後で0.78±0.04であり、7日経過後で1.80±0.09であった。経過日数に対して吸光度は直線的に増大しており、7日経過しても増殖性に変化は見られなかった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成した状態で増殖しており、トリプシン含有リン酸緩衝生理食塩水を添加するとシート状の形態を保った状態で浮遊した。
この培養細胞のNADPHデハイドロゲナーゼで薬物代謝系酵素活性評価を行うとほぼ100%が、生態系と同様の薬物代謝系酵素活性があることが分かった。さらに、自家蛍光を観察すると同様に100%の培養細胞が生細胞であることを確認した。
γ線滅菌済み24穴TCPSマルチウェルプレート(コーニング製、水接触角は15秒後で46.1°。さらに、10分後で11.2°)の穴部底面に解凍済みのBALB/3T3細胞液(1mL)を播種した。同操作を9回繰り返し、検体数9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
低密度ポリエチレンフィルム(三井化学製、水接触角は15秒後で96.8°。さらに10分後で59.5°)を実施例の培養フィルムの取扱法と同様に切出して滅菌処理した。次に、実施例1と同様な方法によりBALB/3T3細胞を培養した。
製造例1に記載のモノマーを5-メチル-ビシクロ[2.2.1]ヘプト-2-エン(20.0g)と8-メチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(32.2g)に、溶媒をシクロヘキサンに変更した以外は製造例1と同様な方法によって、ポリ(1-メチル-シクロペンチレンエチレン)とポリ(3-メチル-トリシクロ[4.3.0.12,5]デカニレンエチレン)のシクロヘキサン溶液を得た。その溶液を孔径5μmのフィルターで加圧ろ過し、溶液をメタノールに加え、白色のポリマーをろ別、乾燥し51gのポリマー4を得た。水素添加率は100%、重量平均分子量(Mw)は82000、分子量分布(Mw/Mn)は2.26、ガラス転移温度は104℃であった。
テフロン(登録商標)AF1600(アルドリッチ製)の粉末を200℃の加熱条件で熱プレスして厚み200μmの培養フィルム12を作製し、実施例の培養フィルムの取扱法と同様に切出して滅菌処理した。基材作製時の水接触角は15秒後で111.6°であった。さらに、10分後で110.3°であった。次に、実施例1と同様な方法によりBALB/3T3細胞を培養した。
滅菌済み24穴ナノカルチャープレート(S社製、水接触角(15秒経過時)は125°)の穴部底面のパターン面に解凍済みのBALB/3T3細胞液(1mL)を播種した。同操作を9回繰り返し、検体数9個のサンプルを準備した。その後、蓋をしてインキュベーターに移動し庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.07±0.03であり、3日経過後で0.09±0.02であり、7日経過後で0.10±0.09であった。経過日数に対して吸光度は徐々に減衰する傾向を示し、経過日数に応じて細胞増殖の程度は小さくなった。また、7日間培養した細胞を顕微鏡観察すると、細胞は厚み方向に対して群体を形成して増殖し、リン酸緩衝生理食塩水を添加しても形態に変化なく浮遊しなかった。
細胞懸濁液をHs-68細胞液(10mL)に変更したこと以外は、比較例1と同様にインキュベーターの庫内温度37℃、炭酸ガス濃度5%の滅菌空気下で培養を開始した。
WST-8法による細胞増殖性の評価では、1日経過後の吸光度が0.33±0.06であり、3日経過後で1.49±0.11であり、7日経過後で3.10±0.13であった。経過日数に対して吸光度は徐々に減衰する傾向を示し、経過日数に応じて細胞増殖の程度は小さくなった。また、7日間培養した細胞を顕微鏡観察すると、シート状に細胞は増殖しており、トリプシン含有リン酸緩衝生理食塩水を添加しても形態に変化なく浮遊しなかった。
さらに、7日間培養した細胞を蛍光発光試薬で染色して細胞核、および細胞骨格タンパクの形態を蛍光顕微鏡観察すると、青色蛍光発光(図3の白色部)した細胞核、および緑色蛍光発光(図3の灰色部)した細胞骨格タンパクは、二次元的に広がったシート形状の蛍光発光分布が観察された(図3参照)。実施例23に記載の細胞培養容器で培養したHs-68細胞に見られる厚み方向に細胞が重なった群体形成は確認できなかった。
この培養細胞のNADPHデハイドロゲナーゼで薬物代謝系酵素活性評価を行うとほぼ0%が、生態系と同様の薬物代謝系酵素活性があることが分かった。さらに、自家蛍光観察は、γ線滅菌済み24穴TCPSマルチウェルプレートの蛍光吸収で測定することができず、酵素活性評価のみで実証した。
Claims (14)
- 基材を備え、かつ前記基材の一面に細胞を接触または保持させる医療器具であって、
前記基材の少なくとも細胞を保持する前記一面は、下記一般式(1)で表される繰返し構造単位を含有するフッ素含有環状オレフィンポリマーにより構成される医療器具。
- 細胞を接触または保持する前記一面の水接触角が70°以上160°以下である請求項1に記載の医療器具。
- 細胞を接触または保持する前記一面の水接触角が70°以上120°以下である請求項1または2に記載の医療器具。
- 前記基材の少なくとも細胞と接触する前記一面が、凹凸構造を備える請求項1に記載の医療器具。
- 細胞と接触する前記一面の水接触角が121°以上160°以下である請求項4に記載の医療器具。
- 前記基材の少なくとも細胞を接触または保持する前記一面は、前記フッ素含有環状オレフィンポリマーと、光硬化性化合物と、光硬化開始剤と、を含むフッ素含有環状オレフィンポリマー組成物により構成される請求項1~5のいずれか一項に記載の医療器具。
- 前記フッ素含有環状オレフィンポリマー組成物中における前記フッ素含有環状オレフィンポリマーと前記光硬化性化合物の質量比(フッ素含有環状オレフィンポリマー/光硬化性化合物)が、99.9/0.1~50/50である請求項6に記載の医療器具。
- 前記一面に接触または保持させた細胞を培養するために用いられる請求項1~7のいずれか一項に記載の医療器具。
- 細胞培養において、細胞が群体を形成しながら増殖する請求項8に記載の医療器具。
- 培養した細胞を緩衝液により浮遊して前記一面から離脱させる請求項8または9に記載の医療器具。
- 請求項1~10のいずれか一項に記載の医療器具の前記基材の前記一面上に、前記一面に接触または保持するよう細胞を播種する工程と、
前記細胞を培養して培養細胞を得る工程と、
前記一面上に緩衝液を添加して、前記一面から前記培養細胞を浮遊させる工程と、
を備える細胞培養方法。 - 基材を備え、かつ前記基材の一面に細胞を接触または保持させる医療器具の、前記基材の少なくとも細胞を保持させる前記一面を構成するフッ素含有環状オレフィンポリマーであって、下記一般式(1)で表される繰返し構造単位を含有するフッ素含有環状オレフィンポリマー。
- 基材を備え、かつ前記基材の一面に細胞を接触または保持させる医療器具の、前記基材の少なくとも細胞を保持させる前記一面を構成するフッ素含有環状オレフィンポリマー組成物であって、
下記一般式(1)で表される繰返し構造単位を含有するフッ素含有環状オレフィンポリマーと、
光硬化性化合物と、
光硬化開始剤と、
を含むフッ素含有環状オレフィンポリマー組成物。
- 薬物代謝系酵素活性を少なくとも7日間維持した培養細胞。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016542576A JP6420838B2 (ja) | 2014-08-13 | 2015-08-10 | 医療器具、細胞培養方法、フッ素含有環状オレフィンポリマーおよびフッ素含有環状オレフィンポリマー組成物 |
EP15832009.3A EP3181681A4 (en) | 2014-08-13 | 2015-08-10 | Medical device, method for culturing cells, fluorine-containing cyclic olefin polymer, fluorine-containing cyclic olefin polymer composition, and cultured cells |
CN201580043114.7A CN106661537B (zh) | 2014-08-13 | 2015-08-10 | 医疗器具、细胞培养方法、含氟环状烯烃聚合物、含氟环状烯烃聚合物组合物及培养细胞 |
KR1020177004697A KR101960203B1 (ko) | 2014-08-13 | 2015-08-10 | 의료 기구, 세포 배양 방법, 불소 함유 환상 올레핀 폴리머, 불소 함유 환상 올레핀 폴리머 조성물, 및 배양 세포 |
US15/502,507 US11597910B2 (en) | 2014-08-13 | 2015-08-10 | Medical instrument, cell culture method, fluorine-containing cyclic olefin polymer and fluorine-containing cyclic olefin polymer composition for it, and cultured cells |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-164912 | 2014-08-13 | ||
JP2014164912 | 2014-08-13 | ||
JP2015019996 | 2015-02-04 | ||
JP2015-019996 | 2015-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016024566A1 true WO2016024566A1 (ja) | 2016-02-18 |
Family
ID=55304193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072631 WO2016024566A1 (ja) | 2014-08-13 | 2015-08-10 | 医療器具、細胞培養方法、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および培養細胞 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11597910B2 (ja) |
EP (1) | EP3181681A4 (ja) |
JP (2) | JP6420838B2 (ja) |
KR (1) | KR101960203B1 (ja) |
CN (1) | CN106661537B (ja) |
TW (1) | TWI675674B (ja) |
WO (1) | WO2016024566A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017163898A (ja) * | 2016-03-16 | 2017-09-21 | 株式会社日本触媒 | 神経幹細胞の培養方法、およびニューロスフェロイドの形成方法 |
JPWO2016158039A1 (ja) * | 2015-03-31 | 2017-09-28 | 三井化学株式会社 | 医療器具、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および細胞培養方法 |
JP2017176829A (ja) * | 2016-03-25 | 2017-10-05 | 三井化学株式会社 | 医療器具用部材および医療器具 |
CN107828770A (zh) * | 2017-10-30 | 2018-03-23 | 北京化工大学 | 一种在无纺布上光固化有机磷水解酶方法 |
WO2018187808A1 (en) | 2017-04-07 | 2018-10-11 | Epibone, Inc. | System and method for seeding and culturing |
JP2018201394A (ja) * | 2017-06-02 | 2018-12-27 | 日本ゼオン株式会社 | 細胞シートの製造方法 |
JP2019154294A (ja) * | 2018-03-12 | 2019-09-19 | 三井化学株式会社 | 医療器具用部材、医療器具および放射線滅菌済み医療器具の製造方法 |
WO2020255905A1 (ja) * | 2019-06-17 | 2020-12-24 | 株式会社住化分析センター | 培養基材および/または培地溶液の評価方法、並びに当該評価方法の利用 |
US11464640B2 (en) | 2009-03-03 | 2022-10-11 | The Trustees Of Columbia University In The City Of New York | Method of making a personalized bone graft |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11760863B2 (en) * | 2017-09-29 | 2023-09-19 | Zeon Corporation | Biochemical tool |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007177046A (ja) * | 2005-12-27 | 2007-07-12 | Mitsui Chemicals Inc | フッ素含有環状オレフィンポリマーを用いた光学部品 |
JP2008306977A (ja) * | 2007-06-14 | 2008-12-25 | Nitto Denko Corp | 細胞培養基材 |
WO2009099152A1 (ja) * | 2008-02-06 | 2009-08-13 | Public University Corporation Yokohama City University | 細胞培養方法及びスクリーニング方法 |
WO2010150521A1 (ja) * | 2009-06-23 | 2010-12-29 | 株式会社日立製作所 | 培養器材、培養シート、及び細胞培養方法 |
WO2011024421A1 (ja) * | 2009-08-26 | 2011-03-03 | 三井化学株式会社 | フッ素含有環状オレフィンポリマー組成物、該組成物から得られた転写体およびその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0747105A (ja) | 1993-08-03 | 1995-02-21 | Nissho Corp | 培養液分離操作用接続チューブおよびその使用方法 |
JPH08308562A (ja) * | 1995-05-16 | 1996-11-26 | Sumitomo Bakelite Co Ltd | 動物細胞培養器及びそれを用いる薬物代謝活性の測定方法 |
JP3764959B2 (ja) | 2002-10-10 | 2006-04-12 | 独立行政法人理化学研究所 | 細胞培養用容器および細胞培養方法 |
EP1416303B8 (en) * | 2002-10-30 | 2010-10-13 | Hitachi, Ltd. | Method for manufacturing functional substrates comprising columnar micro-pillars |
JP4313021B2 (ja) | 2002-10-31 | 2009-08-12 | コージンバイオ株式会社 | 培養粘膜・皮膚の製造法及び培養粘膜・皮膚 |
EP1602383B1 (en) * | 2003-02-06 | 2015-05-27 | Cellseed Inc. | Cell sheets for ectocornea formation, method of producing the same and method of using the same |
CA2847260C (en) * | 2003-12-19 | 2016-06-21 | The University Of North Carolina At Chapel Hill | Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography |
US20050153438A1 (en) * | 2004-01-09 | 2005-07-14 | Akio Shirasu | Vessel for cell culture |
US9056125B2 (en) * | 2004-05-17 | 2015-06-16 | Florida State University Research Foundation, Inc. | Films for controlled cell growth and adhesion |
JP5397934B2 (ja) | 2006-02-21 | 2014-01-22 | Scivax株式会社 | スフェロイド群およびその製造方法 |
US10202711B2 (en) * | 2007-05-09 | 2019-02-12 | Massachusetts Institute Of Technology | Tunable surface |
JP5578779B2 (ja) | 2008-10-08 | 2014-08-27 | 国立大学法人東北大学 | スフェロイド培養方法及びスフェロイド培養容器 |
US20140037900A1 (en) | 2011-04-15 | 2014-02-06 | Mitsubishi Rayon Co., Ltd. | Active-Energy-Curable Resin Composition, Molding, Microrelief Structure, Water-Repellent Article, Mold, and Method for Producing Microrelief Structure |
JP5892002B2 (ja) | 2011-12-16 | 2016-03-23 | Jsr株式会社 | 環状オレフィン系開環共重合体 |
JP6414918B2 (ja) | 2015-03-31 | 2018-10-31 | 三井化学株式会社 | 医療器具、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および細胞培養方法 |
-
2015
- 2015-08-10 EP EP15832009.3A patent/EP3181681A4/en active Pending
- 2015-08-10 CN CN201580043114.7A patent/CN106661537B/zh active Active
- 2015-08-10 KR KR1020177004697A patent/KR101960203B1/ko active IP Right Grant
- 2015-08-10 WO PCT/JP2015/072631 patent/WO2016024566A1/ja active Application Filing
- 2015-08-10 JP JP2016542576A patent/JP6420838B2/ja active Active
- 2015-08-10 US US15/502,507 patent/US11597910B2/en active Active
- 2015-08-12 TW TW104126178A patent/TWI675674B/zh active
-
2018
- 2018-07-27 JP JP2018141065A patent/JP6580221B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007177046A (ja) * | 2005-12-27 | 2007-07-12 | Mitsui Chemicals Inc | フッ素含有環状オレフィンポリマーを用いた光学部品 |
JP2008306977A (ja) * | 2007-06-14 | 2008-12-25 | Nitto Denko Corp | 細胞培養基材 |
WO2009099152A1 (ja) * | 2008-02-06 | 2009-08-13 | Public University Corporation Yokohama City University | 細胞培養方法及びスクリーニング方法 |
WO2010150521A1 (ja) * | 2009-06-23 | 2010-12-29 | 株式会社日立製作所 | 培養器材、培養シート、及び細胞培養方法 |
WO2011024421A1 (ja) * | 2009-08-26 | 2011-03-03 | 三井化学株式会社 | フッ素含有環状オレフィンポリマー組成物、該組成物から得られた転写体およびその製造方法 |
Non-Patent Citations (8)
Title |
---|
"Kogata Kansaibo Baiyo Kit", 1 June 2013 (2013-06-01), XP055405409, Retrieved from the Internet <URL:https://www.cosmobio.co.jp/upfiles/catalog/pdf/catalog_11868.pdf> [retrieved on 20151005] * |
AKANE KITAMURA ET AL.: "Ion Beam Shosha ni yoru Fussokei Kobunshi Zairyo Hyomen no Keijo Jiko Soshikika Seigyo", DAI 13 KAI HOSHASEN PROCESS SYMPOSIUM, 12 November 2009 (2009-11-12), pages P-22, XP055357440, Retrieved from the Internet <URL:http://www.riken.jp/ap/doc/20091113kitamura.pdf> [retrieved on 20150826] * |
HIRONA IWANE ET AL.: "PLLA-kei Kyojugotai no Micro-so Bunri o Riyo shita Biointerface no Seigyo", POLYMER PREPRINTS, vol. 62, no. 1, 2013, pages 1823, XP009500155 * |
ISHIDA Y. ET AL.: "In vitro evaluation of fresh human hepatocytes isolated fromchimeric mice with humanized livers (PXB-mice®", THE JOURUNAL OF EXPERIMENTAL & APPLIED CELL CULTURE RESEARCH, vol. 33, no. 1, 26 July 2014 (2014-07-26), pages 103, XP009500164, ISSN: 1881-3704 * |
KAZUO SUGIYAMA ET AL.: "Preparation of Poly (methyl methacrylate-co-1H,1H,7H- dodecafluoroheptyl methacrylate) Microspheres as Biomedical Materials", vol. 3, 2012, pages 39 - 46, XP055317568, Retrieved from the Internet <URL:http://kuring.hiro.kindai.ac.jp/hokoku/data03/039.pdf> [retrieved on 20150826] * |
KOSUKE KUWABARA: "Nanoimprint ni yoru Bisai Kako to sono Oyo Tenkai", THESIS OR DISSERTATION, 23 March 2011 (2011-03-23), pages 1 - 107, XP009500156, Retrieved from the Internet <URL:http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/142220/2/D_Kuwabara_Kosuke.pdf> [retrieved on 20150826] * |
See also references of EP3181681A4 * |
SEIGO SANO ET AL.: "Acetaminophen-induced hepatotoxicity in three-dimensional culture system with rat hepatocytes", DAI 40 KAI ANNUAL MEETING OF THE JAPANESE SCIETY OF TOXICOLOGY SESSION ID, 14 August 2013 (2013-08-14), pages P-57, XP009500158 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11464640B2 (en) | 2009-03-03 | 2022-10-11 | The Trustees Of Columbia University In The City Of New York | Method of making a personalized bone graft |
JPWO2016158039A1 (ja) * | 2015-03-31 | 2017-09-28 | 三井化学株式会社 | 医療器具、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および細胞培養方法 |
JP2017163898A (ja) * | 2016-03-16 | 2017-09-21 | 株式会社日本触媒 | 神経幹細胞の培養方法、およびニューロスフェロイドの形成方法 |
JP2017176829A (ja) * | 2016-03-25 | 2017-10-05 | 三井化学株式会社 | 医療器具用部材および医療器具 |
US10961501B2 (en) | 2017-04-07 | 2021-03-30 | Epibone, Inc. | System and method for seeding and culturing |
WO2018187808A1 (en) | 2017-04-07 | 2018-10-11 | Epibone, Inc. | System and method for seeding and culturing |
US11946068B2 (en) | 2017-04-07 | 2024-04-02 | Epibone, Inc. | System and method for seeding and culturing |
IL269839A (en) * | 2017-04-07 | 2019-11-28 | Epibone Inc | System and method for sowing and growing in culture |
CN110892060A (zh) * | 2017-04-07 | 2020-03-17 | 埃皮博恩股份有限公司 | 用于播种和培养的系统和方法 |
EP3607046A4 (en) * | 2017-04-07 | 2020-05-27 | Epibone, Inc. | SOWING AND CROP SYSTEM AND METHOD |
JP2018201394A (ja) * | 2017-06-02 | 2018-12-27 | 日本ゼオン株式会社 | 細胞シートの製造方法 |
CN107828770A (zh) * | 2017-10-30 | 2018-03-23 | 北京化工大学 | 一种在无纺布上光固化有机磷水解酶方法 |
JP2019154294A (ja) * | 2018-03-12 | 2019-09-19 | 三井化学株式会社 | 医療器具用部材、医療器具および放射線滅菌済み医療器具の製造方法 |
WO2020255905A1 (ja) * | 2019-06-17 | 2020-12-24 | 株式会社住化分析センター | 培養基材および/または培地溶液の評価方法、並びに当該評価方法の利用 |
Also Published As
Publication number | Publication date |
---|---|
CN106661537A (zh) | 2017-05-10 |
JPWO2016024566A1 (ja) | 2017-04-27 |
US20170233696A1 (en) | 2017-08-17 |
KR101960203B1 (ko) | 2019-03-19 |
TWI675674B (zh) | 2019-11-01 |
TW201605500A (zh) | 2016-02-16 |
JP2019004884A (ja) | 2019-01-17 |
JP6580221B2 (ja) | 2019-09-25 |
EP3181681A1 (en) | 2017-06-21 |
CN106661537B (zh) | 2019-06-25 |
JP6420838B2 (ja) | 2018-11-07 |
EP3181681A4 (en) | 2018-07-04 |
US11597910B2 (en) | 2023-03-07 |
KR20170031770A (ko) | 2017-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6580221B2 (ja) | 医療器具、細胞培養方法およびフッ素含有環状オレフィンポリマー組成物 | |
JP6414918B2 (ja) | 医療器具、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および細胞培養方法 | |
JP6056111B2 (ja) | 光分解性架橋剤、光分解性ゲル、細胞培養器具、細胞配列・分別装置、細胞配列方法、細胞分別方法、組織体形成方法および組織体 | |
Yamazoe et al. | Facile cell patterning on an albumin-coated surface | |
Zhu et al. | Three-dimensional printing of bisphenol A-free polycarbonates | |
JP2013099282A (ja) | 細胞培養容器及び培養細胞回収方法 | |
Li et al. | Creating “living” polymer surfaces to pattern biomolecules and cells on common plastics | |
JP6892299B2 (ja) | 医療器具用部材および医療器具 | |
WO2010010837A1 (ja) | 細胞培養支持体および細胞培養方法 | |
US20120295353A1 (en) | Methods of making and using polymers and compositions | |
JP7219891B2 (ja) | 細胞培養用積層体、医療器具および医療器具の使用方法 | |
JP2018201394A (ja) | 細胞シートの製造方法 | |
Ozulumba et al. | Mitigating reactive oxygen species production and increasing gel porosity improves lymphocyte motility and fibroblast spreading in photocrosslinked gelatin-thiol hydrogels | |
JP6988480B2 (ja) | 浮遊培養馴化接着型細胞の調製方法、接着型上皮細胞の上皮間葉転換誘導方法、及びそれらの利用 | |
JP2019154294A (ja) | 医療器具用部材、医療器具および放射線滅菌済み医療器具の製造方法 | |
JP6973082B2 (ja) | 接着型細胞の培養方法 | |
JP2023178108A (ja) | 細胞培養基材 | |
JP2022169458A (ja) | 細胞培養基材及びその製造方法、並びに細胞培養キット | |
AU2022289307A1 (en) | Composition for forming coating film, coating film and cell culture container | |
JP2020156348A (ja) | 多能性幹細胞の分化誘導方法 | |
KR20110090852A (ko) | 이온빔을 이용한 이종세포의 패턴 형성 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15832009 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016542576 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177004697 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015832009 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015832009 Country of ref document: EP |