[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015198381A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2015198381A1
WO2015198381A1 PCT/JP2014/066578 JP2014066578W WO2015198381A1 WO 2015198381 A1 WO2015198381 A1 WO 2015198381A1 JP 2014066578 W JP2014066578 W JP 2014066578W WO 2015198381 A1 WO2015198381 A1 WO 2015198381A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
warm
catalyst
predicted
time
Prior art date
Application number
PCT/JP2014/066578
Other languages
English (en)
French (fr)
Inventor
晋吾 伊藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/066578 priority Critical patent/WO2015198381A1/ja
Priority to JP2016528774A priority patent/JP6369542B2/ja
Publication of WO2015198381A1 publication Critical patent/WO2015198381A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control device for a hybrid vehicle including an engine having a catalyst in an exhaust system while intermittently repeating driving and stopping.
  • normal catalyst warm-up is to drive the engine until the catalyst temperature reaches a predetermined temperature, or to drive the engine for a predetermined time. That is, since the engine is driven under the preset conditions to warm up the catalyst, useless fuel consumption may occur.
  • the present invention has been made paying attention to the above problems, and an object of the present invention is to provide a control device for a hybrid vehicle capable of suppressing wasteful fuel consumption and improving fuel efficiency when performing catalyst warm-up.
  • the present invention relates to road information in a hybrid vehicle control device including a plurality of drive sources including an engine having a catalyst that purifies exhaust gas in an exhaust system while driving and stopping intermittently.
  • An acquisition unit, a speed prediction unit, an engine operation prediction unit, a warm-up prediction unit, and an engine control unit are provided.
  • the road information acquisition unit acquires road information related to a planned travel route of the host vehicle.
  • the speed prediction unit predicts a travel speed on the planned travel route based on the road information acquired by the road information acquisition unit.
  • the engine operation prediction unit predicts an operation state of the engine on the planned travel route based on the predicted travel speed predicted by the speed prediction unit.
  • the warm-up prediction unit predicts a catalyst warm-up amount required during traveling on the planned travel route based on the predicted travel speed predicted by the speed prediction unit.
  • the engine control unit changes the output torque of the engine so that the predicted catalyst warm-up amount is required during traveling on the planned travel route.
  • the operating state of the engine on the planned travel route is predicted based on the predicted travel speed, and thereby the required catalyst warm-up amount is predicted. Then, the engine output torque when the engine is driven and the catalyst is warmed up is changed to the required predicted catalyst warmup amount. That is, the engine output torque during catalyst warm-up varies according to the predicted catalyst warm-up amount, and wasteful fuel consumption can be suppressed and fuel consumption can be improved.
  • FIG. 1 is an overall system diagram illustrating a hybrid vehicle to which a control device according to a first embodiment is applied.
  • FIG. 3 is a mode characteristic diagram showing an example of an engine start / stop line map (EV-HEV selection map) used in the first embodiment. It is explanatory drawing about "the amount of catalyst warm-up required when drive
  • FIG. It is explanatory drawing about the "initial warm-up energy” in the control apparatus of Example 1.
  • FIG. It is an example of the map which shows the initial warming-up energy with respect to a catalyst temperature target value. It is explanatory drawing about "normal warming-up energy" in the control apparatus of Example 1.
  • FIG. 3 is a mode characteristic diagram showing an example of an engine start / stop line map (EV-HEV selection map) used in the first embodiment. It is explanatory drawing about "the amount of catalyst warm-up required when drive
  • FIG. It is ex
  • 3 is a flowchart illustrating a flow of engine control processing executed by the hybrid control module according to the first embodiment. It is a time chart which shows each characteristic of the prediction traveling vehicle speed at the time of start-up, prediction operation mode, prediction engine output torque, and catalyst temperature prediction value in the control device of a comparative example. 3 is a time chart showing characteristics of a predicted traveling vehicle speed, a predicted operation mode, a predicted engine output torque, and a predicted catalyst temperature at the time of start in the control device of the first embodiment.
  • 3 is a time chart showing characteristics of a predicted traveling vehicle speed, a predicted operation mode, a catalyst temperature, and a predicted engine output torque during traveling on a predetermined route in the control device of the first embodiment. It is a time chart which shows each characteristic of the prediction traveling vehicle speed at the time of start, prediction operation mode, prediction engine output torque, and catalyst temperature prediction value in the control device of Example 2.
  • 7 is a time chart showing characteristics of a predicted traveling vehicle speed, a predicted operation mode, a catalyst temperature, and a predicted engine output torque during traveling on a predetermined route in the control device according to the second embodiment.
  • 10 is a time chart showing characteristics of a predicted traveling vehicle speed, a predicted operation mode, a catalyst temperature, and a predicted engine output torque during traveling on a predetermined route in the control device of the third embodiment.
  • Example 1 the form for implementing the control apparatus of the hybrid vehicle of this invention is demonstrated based on Example 1 shown in drawing.
  • Example 1 First, the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “the overall system configuration of the hybrid vehicle”, “the detailed configuration of the control system of the hybrid vehicle control device”, and “the engine control processing configuration”.
  • FIG. 1 is an overall system diagram showing a hybrid vehicle to which the control device of the first embodiment is applied.
  • the overall system configuration of the hybrid vehicle according to the first embodiment will be described with reference to FIG.
  • the hybrid vehicle 1 includes an engine 2, a first clutch 3 (abbreviated as “CL1”), a motor / generator (motor) 4 and a second clutch 5 (abbreviated as “CL2”), And an automatic transmission 6.
  • the output shaft of the automatic transmission 6 is transmitted to the drive wheels 8 via the differential gear 7.
  • the engine 2 is an in-line four-cylinder internal combustion engine, and intermittently repeats driving and stopping according to a travel mode described later. Further, a catalyst 9 for purifying exhaust gas is interposed in the exhaust passage 2a (exhaust system) of the engine 2.
  • the catalyst 9 exhibits a necessary purification function when it reaches a predetermined temperature (for example, 300 ° C.). For this reason, it is necessary to perform “initial warm-up” in which the engine 2 is driven immediately after the ignition key is turned on and the engine 2 is stopped when the catalyst temperature reaches the required temperature.
  • the first clutch 3 is a normally open dry multi-plate friction clutch operated between the engine 2 and the motor / generator 4 by hydraulic operation, and the complete clutch / slip engagement / release is controlled by the first clutch hydraulic pressure. Is done.
  • the motor / generator 4 is a three-phase AC permanent magnet type synchronous motor connected to the engine 2 through the first clutch 3.
  • This motor / generator 4 uses a battery 11 (described later) as a power source, and an inverter 12 that converts a direct current to a three-phase alternating current during power running and a three-phase alternating current to a direct current during regeneration is connected to a stator coil via an AC harness 13. Connected.
  • the automatic transmission 6 automatically switches a stepped gear ratio such as forward 5th reverse gear 1st or forward 6th reverse gear 1st according to the vehicle speed, accelerator opening degree, etc. (performs shift control).
  • the second clutch 5 uses a frictional engagement element that exists in the power transmission path of each shift stage among a plurality of frictional engagement elements provided as a transmission element of the automatic transmission 6, and is substantially Further, the automatic transmission 6 is configured inside. Full engagement / slip engagement / release is controlled by the second clutch hydraulic pressure.
  • the control system of the hybrid vehicle 1 includes a hybrid control module 20 (referred to as “HCM” in FIG. 1 hereinafter) as an integrated control unit that has a function of appropriately managing the energy consumption of the entire vehicle.
  • a control unit connected to the HCM 20 an engine control module 21 (referred to as “ECM” in FIG. 1 and hereinafter), a battery controller 22 (referred to as “BC” in FIG. 1 and hereinafter), and a motor controller 23 (referred to as FIG. 1).
  • ECM engine control module 21
  • BC battery controller 22
  • FIG. 1 and hereinafter motor controller 23
  • MC motor controller 23
  • MC motor controller
  • ACU automatic transmission control unit 24
  • NAVI / C navigation controller 25 (refer to FIG. 1 and hereinafter referred to as “NAVI / C”).
  • These control units including the HCM 20 are connected via a CAN communication line 26 (CAN is an abbreviation of “Controller Area Network”) so that bi
  • the HCM 20 includes control units 21, 22, 23, 24, 25, an ignition switch 31, an engine rotation speed sensor 32 that detects the engine rotation speed, a throttle sensor 33 that detects the throttle opening, and an accelerator pedal depression amount.
  • Information is input from an accelerator opening sensor 34 that detects the opening, a vehicle speed sensor 35 that detects the vehicle speed, a catalyst temperature sensor 36 that detects the temperature of the catalyst 9, an outside air temperature sensor 37 that detects the temperature of the outside air, and the like. And based on these input information, a target engine torque command, a target motor torque command, a 1st clutch control command, a 2nd clutch control command, etc. are output.
  • the ECM 21 performs fuel injection control, ignition control, fuel cut control, and the like of the engine 2 according to the target engine torque command, engine speed information, throttle opening information, etc. from the HCM 20, and outputs the output torque from the engine 2. Control.
  • the BC 22 monitors internal state quantities such as the charge capacity of the battery 11 (hereinafter referred to as “battery SOC”) and input / output power and performs protection control of the battery 11. Information on the charge / discharge state of the battery 11 is output from the BC 22 to the HCM 20.
  • battery SOC charge capacity of the battery 11
  • the MC 23 performs power running control and regenerative control of the motor / generator 4 by the inverter 12 according to the target motor torque command from the HCM 20, accelerator opening information, vehicle speed information, etc. Control with power generation torque.
  • the ATCU 24 controls the engagement / disengagement of the second clutch 5 in preference to the second clutch control in the shift control according to the second clutch control command from the HCM 20. That is, the ATCU 24 performs shift control of the automatic transmission 6 in accordance with a shift control command from the HCM 20. Further, the ATCU 24 controls the engagement and disengagement of the first clutch 3 based on the first clutch control command from the HCM 20.
  • the NAVI / C25 detects the position of the vehicle using GPS signals from satellites, and also has a navigation system control function that searches and guides a route to a destination based on map data stored on a DVD or the like. Bear.
  • the vehicle position information, destination information, and planned travel route information on the map obtained by NAVI / C25 are supplied to the HCM 20.
  • the NAVI / C 25 is provided with an input device for a passenger to input various information. The occupant can input the destination, the desired travel route, and the personal characteristic information of the driver using the input device.
  • the “driver's personal characteristic information” is information about the driver's individual such as the driver's age, sex, years of driving experience, and driving mode preference (whether fuel efficiency or driving force is important).
  • the first clutch 3, the motor / generator 4, and the second clutch 5 constitute a one-motor / two-clutch drive system.
  • “HEV mode” and “EV mode” are included.
  • the “HEV mode” is a hybrid vehicle mode in which the first and second clutches 3 and 5 are engaged and the engine 2 and the motor / generator 4 are used as drive sources. That is, in this HEV mode, the engine 2 is driven.
  • the “EV mode” is an electric vehicle mode in which the first clutch 3 is released, the second clutch 5 is engaged, and only the motor / generator 4 is used as a drive source. That is, in this EV mode, the engine 2 is stopped.
  • the HEV mode and the EV mode are set using an engine start / stop line map that is set by the accelerator opening at each vehicle speed shown in FIG. However, if the battery SOC is equal to or less than the predetermined value, the “HEV mode” is forcibly set as the target operation mode.
  • the HCM 20 includes a road information acquisition unit 41, a speed prediction unit 42, an engine operation prediction unit 43, a warm-up prediction unit 44, and an engine control unit 45.
  • the road information acquisition unit 41 acquires road information related to the planned travel route of the host vehicle.
  • map information, own vehicle position information, destination information, planned driving route information and driver's personal characteristics information are acquired from NAVI / C25, and driving from a road traffic information communication system (Vehicle Information and Communication System, abbreviated as VICS). Get traffic information on the planned route. As a result, the planned travel route is recognized.
  • VICS Vehicle Information and Communication System
  • the speed prediction unit 42 predicts the travel speed on the planned travel route based on the road information acquired by the road information acquisition unit 41 (here, including personal characteristic information of the driver).
  • the engine operation predicting unit 43 predicts the operating state (driving or stopping) of the engine 2 on the planned travel route based on the predicted traveling speed predicted by the speed predicting unit 42, and calculates the engine output torque when the engine is driven. Predict. Here, it is predicted that the engine 2 is driven (HEV mode) when the predicted traveling speed is equal to or higher than a preset HEV-EV switching speed, and the engine 2 is stopped when the predicted traveling speed is less than the HEV-EV switching speed. Predicted to be (EV mode). The engine output torque is set according to the predicted traveling speed.
  • the warm-up prediction unit 44 determines a travel schedule route at a timing at which catalyst warm-up is required based on the predicted travel speed predicted by the speed prediction unit 42 and the predicted engine operation predicted by the engine operation prediction unit 43. Predict the amount of catalyst warm-up required when traveling.
  • the “timing when catalyst warm-up is required” is when the ignition switch 31 is turned on (at the time of initial warm-up) or when the catalyst temperature falls below the lower limit temperature Tmin (at the time of catalyst warm-up).
  • the “catalyst warm-up amount required when traveling on the planned travel route” includes “initial warm-up energy” and “normal warm-up energy”.
  • “Initial warm-up energy” is the amount of warm-up energy required during initial warm-up, assuming that the catalyst 9 is at the lower limit temperature Tmin when the engine is driven for the first time after the ignition switch 31 is turned on. (Amount). “Normal warm-up energy” is the warm-up required for warming up the catalyst on the premise that the catalyst 9 is at the lower limit temperature Tmin when the engine is driven for the first time after the catalyst temperature falls below the lower limit temperature Tmin. It is the magnitude (amount) of energy.
  • the initial warm-up energy or the normal warm-up energy is a predicted value (energy) of the catalyst temperature decrease during the period from the catalyst warm-up until the engine is driven (hereinafter referred to as “engine stop period” in FIG. 3).
  • “prediction value of the catalyst temperature decrease (energy)” is predicted travel speed in the predicted ambient temperature in the engine stop period (time t 1 ⁇ t 2), the engine stop period (time t 1 ⁇ t 2) And the length of the engine stop period (time from time t 1 to t 2 : time from engine stop to engine restart).
  • the predicted outside air temperature is obtained based on the outside air temperature at the time when the required catalyst warm-up energy is predicted (predicted time).
  • the outside air temperature at the time of prediction is assumed to be the outside temperature during the engine stop period (time t 1 to t 2 ).
  • the predicted travel speed is the average speed of the predicted travel speed during the engine stop period (time t 1 to t 2 ).
  • the ignition switch 31 has turned ON at time t 3 point in FIG. 4, the first engine drive time (time t 4 point shown in FIG. 4) Request catalyst temperature target value "T1" in the ignition switch oN time necessary for the catalyst temperature target value and the lower limit temperature Tmin (time t 3 time points).
  • the heat radiation temperature of the catalyst 9 depends on the travel air volume corresponding to the catalyst 9, but this travel air volume is proportional to the vehicle speed. Also, the outside air temperature becomes a temperature gradient.
  • the heat release gradient of the catalyst 9 is obtained based on the average vehicle speed and the outside air temperature from when the ignition switch 31 is turned on until the engine is driven for the first time (time t 3 to t 4 ), and from this time t 3 to t 4 .
  • the catalyst temperature at the engine drive time (time t 4 time) also continues to between heat dissipation becomes minimum temperature Tmin, obtaining the catalyst temperature target value "T1".
  • the energy required to set the catalyst temperature to “T1” at the end of the initial warm-up becomes “initial warm-up energy”.
  • the “initial warm-up energy” for the catalyst temperature target value (T1) is uniquely set based on the map shown in FIG. In the initial warm-up, it is assumed that the catalyst temperature at the start of warm-up is zero.
  • the catalyst temperature becomes the lower limit temperature Tmin at time t 5 point in FIG. 6, the first engine-driven time (time t 6 point shown in FIG. 6 required catalyst temperature target value for the lower limit temperature Tmin in), when the time t 5 when (catalyst temperature reaches lower limit temperature Tmin) obtaining the catalyst temperature target value "T2" of.
  • the catalyst temperature becomes minimum temperature Tmin, calculated heat dissipation gradient of the catalyst 9 based on the average vehicle speed and the outside air temperature until the first engine-driven (time t 5 ⁇ t 6), the time t 5 ⁇ t on the assumption that the catalyst temperature becomes minimum temperature Tmin in the engine driving time be continued during heat radiation 6 (time t 6 time), obtaining the catalyst temperature target value "T2". Then, the energy required to set the catalyst temperature to “T2” at the end of catalyst warm-up becomes “normal warm-up energy”.
  • the “normal warm-up energy” for the catalyst temperature target value (T2) is uniquely set based on the map shown in FIG. When the catalyst is warmed up, it is assumed that the catalyst temperature at the start of warming up is the lower limit temperature Tmin. Compared to the initial warm-up, the required warm-up is required even if the catalyst temperature target value is the same. Energy is reduced.
  • the engine control unit 45 controls the engine 2 so that the output torque of the engine 2 becomes “initial warm-up energy” when the engine 2 is driven to warm the catalyst during initial warm-up. Further, during catalyst warm-up, when engine 2 is driven and catalyst warm-up is performed, engine 2 is controlled so that the output torque of engine 2 becomes “normal warm-up energy”.
  • the engine output torque during warm-up with respect to “initial warm-up energy” or “normal warm-up energy” is uniquely set based on the map shown in FIG.
  • the engine 2 outputs engine output torque sufficient to cover the necessary warm-up energy when performing initial warm-up or catalyst warm-up.
  • FIG. 9 is a flowchart illustrating a flow of engine control processing executed by the hybrid control module according to the first embodiment. Hereinafter, each step of FIG. 9 representing the engine control process will be described. This control process is executed when the ignition switch 31 is turned on.
  • step S1 the destination information and desired travel route information input to the NAVI / C 25 are read and necessary information such as the vehicle position information is acquired, and the process proceeds to step S2.
  • step S2 the planned travel route of the host vehicle is set based on the various information acquired in step S1, and the process proceeds to step S3.
  • step S3 following the setting of the planned travel route in step S2, road information (for example, map information, traffic jam information, etc.) regarding the set planned travel route is acquired from the NAVI / C 25, and the process proceeds to step S4.
  • road information for example, map information, traffic jam information, etc.
  • the driver's personal characteristic information is also acquired from the NAVI / C 25.
  • step S4 it is determined whether or not the initial warm-up has been completed. If YES (end of initial warm-up), the process proceeds to step S5. If NO (initial warm-up has not ended), the process proceeds to step S11. Here, the end of the initial warm-up is determined based on whether or not the engine 2 is once driven after the ignition key is turned on and then stopped.
  • step S5 following the determination that the initial warm-up in step S4 is complete, it is determined whether or not the catalyst temperature is lower than the lower limit temperature Tmin. If YES (catalyst temperature ⁇ lower limit temperature Tmin), the catalyst needs to be warmed up and the process proceeds to step S6. If NO (catalyst temperature ⁇ lower limit temperature Tmin), the catalyst warm-up is unnecessary and the process proceeds to step S10. Here, the catalyst temperature is detected by the catalyst temperature sensor 36.
  • step S6 following the determination that catalyst temperature ⁇ lower limit temperature Tmin in step S5, the traveling speed on the planned traveling route is predicted based on the information acquired in step S3, and the process proceeds to step S7.
  • step S7 following the prediction of the travel speed in step S6, the operating state of the engine 2 on the planned travel route is predicted based on the predicted travel speed, and the process proceeds to step S8.
  • driving / stopping of the engine 2 is predicted as the engine operating state.
  • This “drive / stop of engine 2” predicts that the engine 2 is driven (HEV mode) when the predicted traveling speed is equal to or higher than the preset HEV-EV switching speed, and the predicted traveling speed is less than the HEV-EV switching speed. It is predicted that the engine 2 is stopped at the time of (EV mode).
  • step S8 following the prediction of the engine operating state in step S7, it is assumed that the catalyst 9 is set to the lower limit temperature Tmin when the engine is driven for the first time from the current time (calculation time).
  • the “normal warm-up energy” that is the kinetic energy is predicted, and the process proceeds to step S9.
  • step S9 following the prediction of “normal warm-up energy” in step S8, the catalyst 2 is controlled while controlling the engine 2 so that the output torque of the engine 2 becomes the “normal warm-up energy” predicted in step S8. Implement the machine and proceed to step S10.
  • step S10 it is determined whether or not the catalyst temperature is equal to or lower than the minimum temperature Tmin in step S5, or whether or not the destination has been reached following the catalyst warm-up in step S9. If YES (target arrival), the process proceeds to the end, and the engine control process is terminated. If NO (no destination arrived), the process returns to step S5.
  • step S11 following the determination that the initial warm-up in step S4 has not ended, the travel speed on the planned travel route is predicted based on the information acquired in step S3, and the process proceeds to step S12.
  • step S12 following the prediction of the travel speed in step S11, the operating state of the engine 2 on the planned travel route is predicted based on the predicted travel speed, and the process proceeds to step S13.
  • driving / stopping of the engine 2 is predicted as the engine operating state.
  • This “drive / stop of engine 2” predicts that the engine 2 is driven (HEV mode) when the predicted traveling speed is equal to or higher than the preset HEV-EV switching speed, and the predicted traveling speed is less than the HEV-EV switching speed. It is predicted that the engine 2 is stopped at the time of (EV mode).
  • step S13 following the prediction of the engine operating state in step S12, the catalyst warm-up required at the initial warm-up is assumed on the premise that the catalyst 9 is set to the lower limit temperature Tmin when the engine is driven for the first time from the present time (calculation time).
  • step S14 following the prediction of the “initial warm-up energy” in step S13, the initial warm-up is performed while controlling the engine 2 so that the output torque of the engine 2 becomes the “initial warm-up energy” predicted in step S13. Implement the machine and return to step S4.
  • FIG. 10A is a time chart showing characteristics of a predicted traveling vehicle speed, a predicted operation mode, a predicted engine output torque, and a predicted catalyst temperature at the time of starting in the control device of the comparative example.
  • FIG. 10B is a time chart illustrating characteristics of a predicted traveling vehicle speed, a predicted operation mode, a predicted engine output torque, and a predicted catalyst temperature when starting in the control device according to the first embodiment.
  • the initial warm-up control operation of the first embodiment will be described with reference to FIGS. 10A and 10B.
  • the control device of the comparative example regardless of the prediction operation mode in the planned travel route, if it is the ignition switch 31 is ON, a predetermined time after the ignition switch ON time (time t 11 the time in FIG. 10A), outputs a predetermined torque
  • the engine 2 is controlled to perform initial warm-up.
  • the time for the first time the engine driving time t 12 time
  • the catalyst temperature is expected to substantially higher than the lower limit temperature Tmin.
  • the catalyst temperature at the start of engine driving may be the lower limit temperature Tmin.
  • step S11 the travel speed on the planned travel route is predicted.
  • the traveling speed is predicted as shown in FIG. 10B, for example, in a part of the predetermined planned traveling route from the start.
  • step S12 the engine operating state on the planned travel path is predicted based on the predicted travel speed. That is, as shown in FIG. 10B, in the period from time t 21 at time t 22, the predicted travel speed is so lower than the HEV-EV switching line, is expected to EV mode to stop the engine 2. Further, at time t 22 time, estimated travel speed to cross the HEV-EV switching line, is expected to be the HEV mode to drive the engine 2. Further, the estimated travel speed at time t 23 the time is below the HEV-EV switching line, is expected to be the EV mode to stop the engine 2.
  • step S13 the process proceeds to step S13, and the initial warm-up energy is predicted.
  • step S14 the process proceeds to step S14, and the engine 2 is driven and the initial torque is controlled while changing the output torque of the engine 2 so that the engine output torque becomes “initial warm-up energy”.
  • step S14 the engine 2 is driven and the initial torque is controlled while changing the output torque of the engine 2 so that the engine output torque becomes “initial warm-up energy”.
  • FIG. 11A is a time chart showing characteristics of traveling vehicle speed, catalyst temperature, and engine output torque during traveling on a predetermined route in the control device of the comparative example.
  • FIG. 11B is a time chart illustrating characteristics of a predicted traveling vehicle speed, a predicted operation mode, a catalyst temperature, and a predicted engine output torque during traveling on a predetermined route in the control device according to the first embodiment.
  • the catalyst warm-up control action of Example 1 will be described.
  • step S1 if the initial warm-up has been completed, the process proceeds to step S5, if falls below the minimum temperature Tmin catalyst temperature at time t 41 the time in FIG. 11B, Proceeding to step S6, the traveling speed on the planned traveling route is predicted.
  • the traveling speed is predicted in a part on the predetermined planned traveling route, for example, as shown in FIG. 11B. In this FIG. 11B, each value of the time t 41 previously are measured values.
  • step S7 the engine operating state on the planned travel route is predicted based on the predicted travel speed. That is, as shown in FIG. 11B, in the period from time t 41 at time t 42, the estimated travel speed is so lower than the HEV-EV switching line, is expected to EV mode to stop the engine 2. Further, at time t 42 time, estimated travel speed to cross the HEV-EV switching line, is expected to be the HEV mode to drive the engine 2. Further, the estimated travel speed at time t 43 the time is below the HEV-EV switching line, is expected to be the EV mode to stop the engine 2.
  • step S8 normal warm-up energy is predicted.
  • the "normal warm-up energy”, at the time when the catalyst temperature drops below the minimum temperature Tmin (time t 41 time) after the time of the first engine-driven (time t 42 time), that the catalyst temperature becomes minimum temperature Tmin As a premise, this is the energy required to bring the catalyst temperature to “T2” at the end of catalyst warm-up.
  • step S9 the process proceeds to step S9, and the engine 2 is driven to change the catalyst while controlling the output torque of the engine 2 so that the engine output torque becomes “normal warm-up energy”.
  • step S9 the engine 2 is driven to change the catalyst while controlling the output torque of the engine 2 so that the engine output torque becomes “normal warm-up energy”.
  • the prediction accuracy of the traveling speed can be improved, appropriate control can be performed, and fuel consumption can be further improved.
  • a road information acquisition unit 41 that acquires road information related to a planned travel route of the host vehicle; Based on the road information (for example, map information, traffic jam information, etc.) acquired by the road information acquisition unit 41, a speed prediction unit 42 that predicts the travel speed on the planned travel route; An engine operation prediction unit 43 that predicts an operation state of the engine 2 on the planned travel route based on the predicted travel speed predicted by the speed prediction unit 42; A warm-up prediction unit 44 for predicting a catalyst warm-up amount required during traveling on the planned travel route based on the predicted travel speed predicted by the speed prediction unit 42; When the engine 2 is driven and the catalyst is warmed up, the output torque of the engine 2 is adjusted so that the predicted catalyst warm-up amount required during the travel on the planned travel route predicted by the warm-up prediction unit 44 is obtained.
  • the engine control unit 45 to be changed is provided. Thereby, when performing catalyst warm-up, wasteful fuel consumption can be suppressed and fuel consumption can be improved.
  • the engine control unit 45 is configured to warm up the catalyst by driving the engine 2 when the catalyst temperature falls below a preset lower limit temperature Tmin.
  • Tmin a preset lower limit temperature
  • the road information acquisition unit 41 acquires driver's personal characteristic information in addition to the road information (for example, map information, traffic jam information, etc.),
  • the speed prediction unit 42 is configured to predict a travel speed on the planned travel route based on road information and personal characteristic information acquired by the road information acquisition unit 41.
  • the prediction accuracy of the traveling speed can be improved, and appropriate control can be performed, and the fuel efficiency can be further improved.
  • Example 2 The second embodiment is an example in which initial warm-up and catalyst warm-up are performed immediately before the engine is driven during traveling.
  • FIG. 12A is a time chart showing characteristics of a predicted traveling vehicle speed, a predicted operation mode, a predicted engine output torque, and a predicted catalyst temperature when starting in the control device of the second embodiment.
  • FIG. 12B is a time chart illustrating characteristics of a predicted traveling vehicle speed, a predicted operation mode, a catalyst temperature, and a predicted engine output torque during traveling on a predetermined route in the control device according to the second embodiment.
  • the hybrid vehicle control apparatus according to the second embodiment will be described with reference to FIGS. 12A and 12B.
  • the hybrid vehicle 1 of the embodiment 2 at the time the time t 51 shown in FIG. 12A,
  • the ignition switch 31 When the ignition switch 31 is turned ON, first, set the planned travel route, the road information about the planned driving route (e.g., Map information, traffic jam information, etc.) and driver's personal characteristics information. Based on these pieces of acquired information, the traveling speed is predicted as shown in FIG. 12A. Subsequently, based on the predicted traveling speed, the operation state of the engine 2, that is, the operation mode is predicted.
  • the planned driving route e.g., Map information, traffic jam information, etc.
  • the catalyst temperature is the minimum temperature Tmin Based on the assumption that it will be exceeded, the “initial warm-up energy” required at the initial warm-up is predicted.
  • the initial warm-up is performed while changing and controlling the output torque of the engine 2 so that the engine output torque at the initial warm-up becomes this “initial warm-up energy”.
  • Example 2 carrying out the initial warm-up, just prior to the time the ignition switch 31 is turned ON first engine driving time of (time t 51 time) or later (time t 52 time). That is, as shown in FIG. 12A, the engine is driven by entering the HEV mode following the initial warm-up. For this reason, the heat loss of the catalyst 9 generated by the catalyst cooling by the traveling wind after the initial warm-up can be minimized. Thereby, for example, the “initial warm-up energy” can be reduced as compared with the first embodiment in which the warm-up is performed immediately after the ignition switch 31 is turned on. Thereby, the engine output torque at the time of initial warm-up can be suppressed as compared with the first embodiment, and the fuel consumption can be further improved.
  • the catalyst warm-up during traveling and the engine drive period set by switching the operation mode can be continued, so that the number of engine starts can be reduced.
  • engine operating efficiency can be improved and fuel consumption can be further improved.
  • the hybrid vehicle control device can achieve the following effects.
  • the engine control unit 45 is configured to perform the catalyst warm-up immediately before the engine 2 is driven while traveling on the planned travel route. Thereby, in addition to the effect of any one of (1) to (3) above, the heat loss of the catalyst 9 after the catalyst warm-up can be suppressed, and the catalyst warm-up amount required during traveling on the planned travel route can be reduced. (Initial warm-up energy, catalyst warm-up energy) can be suppressed, and fuel consumption can be further improved.
  • Example 3 The third embodiment is an example in which the engine operating point when performing the initial warm-up and the catalyst warm-up is realized with the minimum fuel consumption.
  • FIG. 13A is a time chart showing characteristics of a predicted traveling vehicle speed, a predicted operation mode, a predicted engine output torque, and a predicted catalyst temperature when starting in the control device of the third embodiment.
  • FIG. 13B is a time chart illustrating characteristics of a predicted traveling vehicle speed, a predicted operation mode, a catalyst temperature, and a predicted engine output torque during traveling on a predetermined route in the control device according to the third embodiment.
  • the control apparatus of the hybrid vehicle of Example 3 is demonstrated.
  • the catalyst temperature is the minimum temperature Tmin Based on the assumption that it will be exceeded, the “initial warm-up energy” required at the initial warm-up is predicted.
  • the initial warm-up is performed while changing and controlling the output torque of the engine 2 so that the engine output torque at the initial warm-up becomes this “initial warm-up energy”.
  • the initial warm-up as well as carried out just before the time when the ignition switch 31 is turned ON first engine driving time of (time t 51 time) or later (time t 52 time), this The operating point of the engine 2 during the initial warm-up is controlled so as to become the minimum fuel consumption rate.
  • the warm-up priority operation is aimed at raising the catalyst temperature in a short time, and the operation efficiency of the engine 2 is deteriorated. That is, more fuel is consumed than in normal operation.
  • priority is given to the operating efficiency of the engine 2 even during initial warm-up, and control is performed so that the engine operating point changes along the minimum fuel consumption rate. Thereby, the fuel consumption accompanying initial warm-up can be further suppressed, and the fuel consumption can be improved.
  • the hybrid vehicle control device can achieve the following effects.
  • the engine control unit 45 is configured to control the operating point of the engine 2 when performing the catalyst warm-up so that the fuel consumption rate becomes the minimum.
  • the initial warm-up is performed immediately before the first engine drive after the ignition switch 31 is turned on, and the engine operating point at that time is controlled to be the minimum fuel consumption rate. Indicated.
  • the present invention is not limited to this.
  • the initial warm-up is performed immediately after the ignition switch 31 is turned ON as in the first embodiment, and the engine operating point at this time is controlled to be the minimum fuel consumption rate. Good.
  • control may be performed so that the operating point of the engine 2 becomes the minimum fuel consumption rate.
  • the hybrid vehicle control device of the present invention is applied to a parallel hybrid vehicle in which plug-in charging is impossible.
  • the control device of the present invention is also applied to a parallel type plug-in hybrid vehicle provided with a power generation motor and a drive motor, and a parallel type plug-in hybrid vehicle provided with a motor / generator for both power generation / drive. be able to.
  • a hybrid vehicle including two types of engines and motors as drive sources has been described.
  • the present invention is not limited thereto, and the hybrid vehicle includes a plurality of drive sources including an engine having a catalyst for purifying exhaust gas. If applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Navigation (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

触媒暖機を実施する際に、無駄な燃料消費を抑え、燃費の向上を図ることができるハイブリッド車両の制御装置を提供すること。 駆動と停止を間欠的に繰り返すと共に触媒(9)を有するエンジン(2)を備えたハイブリッド車両の制御装置において、道路情報取得部(41)によって取得した道路情報に基づいて走行予定経路での走行速度を予測する速度予測部(42)と、予測走行速度に基づいて走行予定経路でのエンジン動作状態を予測するエンジン動作予測部(43)と、予測走行速度に基づいて走行中に必要な触媒暖機量を予測する暖機予測部(44)と、触媒暖機を行う際、走行中に必要な予測触媒暖機量となるようにエンジン出力トルクを変更するエンジン制御部(45)と、を備える。

Description

ハイブリッド車両の制御装置
 本発明は、駆動と停止を間欠的に繰り返すと共に排気系に触媒を有するエンジンを含むハイブリッド車両の制御装置に関する発明である。
 従来、エンジンとモータを有するハイブリッド車両では、ナビゲーションシステムからの走行予定経路情報と、電池残量情報に基づき、モータのみで走行予定経路を走行し切れると判定した時には、触媒暖機を禁止するハイブリッド車両の制御装置が知られている(例えば、特許文献1参照)。
特開2010-228618号公報
 しかしながら、従来のハイブリッド車両の制御装置にあっては、モータのみで走行予定経路を走行し切れないと判定した時には、通常の触媒暖機を実施する。
 ここで、この「通常の触媒暖機」は、触媒温度が所定の温度になるまでエンジンを駆動したり、所定時間エンジンを駆動したりするものであった。つまり、予め設定された条件でエンジンを駆動して触媒暖機を行っていたため、無駄な燃料消費が発生することがあった。
 本発明は、上記問題に着目してなされたもので、触媒暖機を実施する際に、無駄な燃料消費を抑え、燃費の向上を図ることができるハイブリッド車両の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明は、駆動と停止を間欠的に繰り返すと共に排気系に排気ガスを浄化する触媒を有するエンジンを含む複数の駆動源を備えたハイブリッド車両の制御装置において、道路情報取得部と、速度予測部と、エンジン動作予測部と、暖機予測部と、エンジン制御部と、を備える。
 前記道路情報取得部は、自車両の走行予定経路に関する道路情報を取得する。
 前記速度予測部は、前記道路情報取得部によって取得した道路情報に基づき、前記走行予定経路での走行速度を予測する。
 前記エンジン動作予測部は、前記速度予測部によって予測した予測走行速度に基づき、前記走行予定経路での前記エンジンの動作状態を予測する。
 前記暖機予測部は、前記速度予測部によって予測した予測走行速度に基づき、前記走行予定経路を走行中に必要となる触媒暖機量を予測する。
 前記エンジン制御部は、前記エンジンを駆動して触媒暖機を行う際、前記走行予定経路を走行中に必要となる予測触媒暖機量となるように前記エンジンの出力トルクを変更する。
 よって、本発明のハイブリッド車両の制御装置では、予測走行速度に基づいて走行予定経路でのエンジンの動作状態が予測され、それによって必要となる触媒暖機量が予測される。そして、エンジンを駆動して触媒暖機を行う際のエンジン出力トルクが、必要となる予測触媒暖機量となるように変更される。
 すなわち、触媒暖機中のエンジン出力トルクが、予測必要触媒暖機量に応じて可変することになり、無駄な燃料消費を抑制して燃費の向上を図ることができる。
実施例1の制御装置が適用されたハイブリッド車両を示す全体システム図である。 実施例1にて用いられるエンジン始動停止線マップ(EV-HEV選択マップ)の一例を示すモード特性図である。 実施例1の制御装置における「走行予定経路を走行する際に必要となる触媒暖機量」についての説明図である。 実施例1の制御装置における「初期暖機エネルギー」についての説明図である。 触媒温度目標値に対する初期暖機エネルギーを示すマップの一例である。 実施例1の制御装置における「通常暖機エネルギー」についての説明図である。 触媒温度目標値に対する通常暖機エネルギーを示すマップの一例である。 初期暖機エネルギー又は通常暖機エネルギーに対するエンジン出力トルクを示すマップの一例である。 実施例1のハイブリッドコントロールモジュールにて実行されるエンジン制御処理の流れを示すフローチャートである。 比較例の制御装置において発進時の際の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。 実施例1の制御装置において発進時の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。 比較例の制御装置において所定の経路を走行中の走行車速・触媒温度・エンジン出力トルクの各特性を示すタイムチャートである。 実施例1の制御装置において所定の経路を走行中の予測走行車速・予測運転モード・触媒温度・予測エンジン出力トルクの各特性を示すタイムチャートである。 実施例2の制御装置において発進時の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。 実施例2の制御装置において所定の経路を走行中の予測走行車速・予測運転モード・触媒温度・予測エンジン出力トルクの各特性を示すタイムチャートである。 実施例3の制御装置において発進時の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。 実施例3の制御装置において所定の経路を走行中の予測走行車速・予測運転モード・触媒温度・予測エンジン出力トルクの各特性を示すタイムチャートである。
 以下、本発明のハイブリッド車両の制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 (実施例1)
 まず、実施例1のハイブリッド車両の制御装置の構成を、「ハイブリッド車両の全体システム構成」、「ハイブリッド車両の制御装置の制御系の詳細構成」、「エンジン制御処理構成」に分けて説明する。
 [ハイブリッド車両の全体システム構成]
 図1は、実施例1の制御装置が適用されたハイブリッド車両を示す全体システム図である。以下、図1に基づいて、実施例1のハイブリッド車両の全体システム構成を説明する。
 実施例1のハイブリッド車両1は、駆動系に、エンジン2と、第1クラッチ3(略称「CL1」)と、モータ/ジェネレータ(モータ)4と、第2クラッチ5(略称「CL2」)と、自動変速機6と、を備えている。ここで、自動変速機6の出力軸は、ディファレンシャルギヤ7を介して駆動輪8に伝達される。
 前記エンジン2は、直列4気筒の内燃機関であり、後述する走行モードに応じて駆動と停止を間欠的に繰り返す。また、このエンジン2の排気通路2a(排気系)には、排気ガスを浄化する触媒9が介装されている。
前記触媒9は、所定の温度(例えば300℃)程度になった時に、必要な浄化機能を発揮するものである。そのため、イグニッションキーがONされた直後にエンジン2を駆動し、触媒温度が必要温度に達したらエンジン2を停止する「初期暖機」を行う必要がある。また、エンジン2を停止した状態で走行することで触媒温度が予め設定した下限温度Tmin(例えば250℃)を下回ったときには、エンジン2を駆動して触媒9を加熱する「触媒暖機」を行う必要がある。
 前記第1クラッチ3は、エンジン2とモータ/ジェネレータ4との間に介装された油圧作動によるノーマルオープンの乾式多板摩擦クラッチであり、第1クラッチ油圧により完全締結/スリップ締結/解放が制御される。
 前記モータ/ジェネレータ4は、第1クラッチ3を介してエンジン2に連結された三相交流の永久磁石型同期モータである。このモータ/ジェネレータ4は、後述するバッテリ11を電源とし、ステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ12が、ACハーネス13を介して接続される。
 前記自動変速機6は、例えば、前進5速後退1速や前進6速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える(変速制御を行う)。
 前記第2クラッチ5は、自動変速機6の変速要素として設けられている複数の摩擦締結要素のうち、各変速段の動力伝達経路に存在する摩擦締結要素を流用したものであって、実質的に自動変速機6の内部に構成されたものである。第2クラッチ油圧により完全締結/スリップ締結/解放が制御される。
 前記ハイブリッド車両1の制御システムとしては、車両全体の消費エネルギーを適切に管理する機能を担う統合制御部として、ハイブリッドコントロールモジュール20(図1及び以下「HCM」と記載する)を備えている。このHCM20に接続される制御部として、エンジンコントロールモジュール21(図1及び以下「ECM」と記載する)と、バッテリコントローラ22(図1及び以下「BC」と記載する)と、モータコントローラ23(図1及び以下「MC」と記載する)と、オートマチックトランスミッションコントロールユニット24(図1及び以下「ATCU」と記載する)と、ナビゲーションコントローラ25(図1及び以下「NAVI/C」と記載する)を有している。HCM20を含むこれらの制御部は、CAN通信線26(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続される。
 前記HCM20は、各制御部21,22,23,24,25、イグニッションスイッチ31、エンジン回転速度を検知するエンジン回転速度センサ32、スロットル開度を検知するスロットルセンサ33、アクセルペダルの踏み込み量からアクセル開度を検知するアクセル開度センサ34、車速を検知する車速センサ35、触媒9の温度を検知する触媒温度センサ36、外気の温度を検知する外気温センサ37等からの情報が入力される。そして、これらの入力情報に基づき、目標エンジントルク指令、目標モータトルク指令、第1クラッチ制御指令、第2クラッチ制御指令等を出力する。
 前記ECM21は、HCM20からの目標エンジントルク指令、エンジン回転速度情報、スロットル開度情報等に応じて、エンジン2の燃料噴射制御や点火制御や燃料カット制御等を行い、エンジン2からの出力トルクを制御する。
 前記BC22は、バッテリ11の充電容量(以下「バッテリSOC」という)や入出力可能パワー等の内部状態量を監視すると共に、バッテリ11の保護制御を行う。このBC22からHCM20にバッテリ11の充放電状態に関する情報を出力する。
 前記MC23は、HCM20からの目標モータトルク指令、アクセル開度情報、車速情報等に応じて、インバータ12によるモータ/ジェネレータ4の力行制御や回生制御等を行い、モータ/ジェネレータ4からの出力トルクや発電トルクと制御する。
 前記ATCU24は、HCM20からの第2クラッチ制御指令に応じ、変速制御における第2クラッチ制御に優先し、第2クラッチ5の締結・解放を制御する。すなわち、このATCU24は、HCM20からの変速制御指令に応じて自動変速機6の変速制御を実施する。また、このATCU24では、HCM20からの第1クラッチ制御指令に基づいて、第1クラッチ3の締結及び解放を制御する。
 前記NAVI/C25は、衛星からのGPS信号を用いて自車位置を検出すると共に、DVD等に記憶された地図データに基づいて、目的地までの経路探索や誘導を行うナビゲーションシステムの制御機能を担う。NAVI/C25により得られた地図上での自車位置情報や目的地情報、走行予定経路情報は、HCM20に対して供給される。また、このNAVI/C25は、乗員が各種情報を入力するための入力装置を備えている。乗員は、入力装置を用いて目的地や走行希望経路、さらにドライバーの個人特性情報を入力することができる。
なお、「ドライバーの個人特性情報」とは、例えばドライバーの年齢、性別、運転経験年数、運転モードの好み(燃費重視か駆動力重視か)等、ドライバー個人の情報である。
 前記ハイブリッド車両1は、第1クラッチ3とモータ/ジェネレータ4と第2クラッチ5により1モータ・2クラッチの駆動システムが構成され、この駆動システムによる運転モードとして、「HEVモード」と、「EVモード」を有する。
 前記「HEVモード」は、第1,第2クラッチ3,5を締結してエンジン2とモータ/ジェネレータ4を駆動源とするハイブリッド車モードである。つまり、このHEVモードでは、エンジン2は駆動する。
 前記「EVモード」は、第1クラッチ3を解放し、第2クラッチ5を締結してモータ/ジェネレータ4のみを駆動源とする電気自動車モードである。つまり、このEVモードでは、エンジン2は停止する。
 ここで、上記HEVモードとEVモードは、図2に示す車速毎のアクセル開度で設定されているエンジン始動停止線マップを用いて設定される。但し、バッテリSOCが所定値以下であれば、強制的に「HEVモード」を目標運転モードとする。
 また、このハイブリッド車両1では、エンジン2を始動する際、第1クラッチ3を締結し、エンジン2をモータ/ジェネレータ4によって所定回転速度まで上昇させてから、燃料噴射を開始してエンジン2を始動させる。
 [ハイブリッド車両の制御装置の制御系の詳細構成]
 前記HCM20は、図1に示すように、道路情報取得部41と、速度予測部42と、エンジン動作予測部43と、暖機予測部44と、エンジン制御部45と、を備えている。
 前記道路情報取得部41は、自車両の走行予定経路に関する道路情報を取得する。すなわち、NAVI/C25から地図情報・自車位置情報・目的地情報・走行予定経路情報及びドライバーの個人特性情報を取得すると共に、道路交通情報通信システム(Vehicle Information and Communication System、略称VICS)から走行予定経路上の渋滞情報を取得する。これにより、走行予定経路が認識される。
 前記速度予測部42は、道路情報取得部41によって取得した道路情報(ここでは、ドライバーの個人特性情報を含む)に基づき、走行予定経路での走行速度を予測する。
 前記エンジン動作予測部43は、速度予測部42によって予測された予測走行速度に基づき、走行予定経路でのエンジン2の動作状態(駆動又は停止)を予測すると共に、エンジン駆動時のエンジン出力トルクを予測する。ここでは、予測走行速度が予め設定されたHEV-EV切替速度以上のときにエンジン2を駆動する(HEVモード)と予測し、予測走行速度がHEV-EV切替速度未満のときにエンジン2を停止する(EVモード)と予測する。また、エンジン出力トルクは、予測走行速度の大きさに応じて設定される。
 前記暖機予測部44は、速度予測部42によって予測された予測走行速度と、エンジン動作予測部43によって予測された予測エンジン動作に基づき、触媒暖機が必要となるタイミングにおける、走行予定経路を走行する際に必要となる触媒暖機量を予測する。
ここで、「触媒暖機が必要となるタイミング」とは、イグニッションスイッチ31をONしたとき(初期暖機時)又は、触媒温度が下限温度Tminを下回ったとき(触媒暖機時)である。
また、「走行予定経路を走行する際に必要となる触媒暖機量」には、「初期暖機エネルギー」と「通常暖機エネルギー」がある。「初期暖機エネルギー」とは、イグニッションスイッチ31をONしてから初めてのエンジン駆動時点で、触媒9を下限温度Tminにすることを前提として、初期暖機時に必要となる暖機エネルギーの大きさ(量)である。
また、「通常暖機エネルギー」とは、触媒温度が下限温度Tminを下回ってから初めてのエンジン駆動時点で、触媒9を下限温度Tminにすることを前提として、触媒暖機時に必要になる暖機エネルギーの大きさ(量)である。
 ここで、初期暖機エネルギー又は通常暖機エネルギーは、触媒暖機を行ってからエンジン駆動するまでの間(以下、「エンジン停止期間」という図3参照)における触媒温度低下の予測値(エネルギー)に基づいて設定する。
ここで、「触媒温度低下の予測値(エネルギー)」は、エンジン停止期間(時刻t~t)での予測外気温と、エンジン停止期間(時刻t~t)での予測走行速度と、エンジン停止期間の長さ(時刻t~tまでの時間:エンジン停止からエンジン再始動までの時間)に基づいて求める。
なお、予測外気温は、必要な触媒暖機エネルギーを予測した時点(予測時点)での外気温に基づいて求める。ここでは、予測時点の外気温をエンジン停止期間(時刻t~t)での予測外気温とする。
また、予測走行速度は、エンジン停止期間(時刻t~t)における予測走行速度の平均速度とする。
 そして、前記「初期暖機エネルギー」を求めるには、まず、図4における時刻t時点にてイグニッションスイッチ31がONしてから、初めてのエンジン駆動時点(図4に示す時刻t時点)における触媒温度目標値を下限温度Tminとするために必要なイグニッションスイッチON時点(時刻t時点)での触媒温度目標値「T1」を求める。
ここで、触媒9の放熱温度は、触媒9にあたる走行風量に依存するが、この走行風量は車速に比例する。また、外気温が温度勾配となる。
つまり、イグニッションスイッチ31がONしてから、初めてエンジン駆動するまでの間(時刻t~t)の平均車速及び外気温に基づき触媒9の放熱勾配を求め、この時刻t~tの間放熱し続けてもエンジン駆動時点(時刻t時点)で触媒温度が下限温度Tminになることを前提に、触媒温度目標値「T1」を求める。
そして、初期暖機終了時点にて触媒温度を「T1」にするために必要なエネルギーが「初期暖機エネルギー」となる。ここでは、触媒温度目標値(T1)に対する「初期暖機エネルギー」は、図5に示すマップに基づいて一義的に設定される。なお、初期暖機時では、暖機開始時点の触媒温度がゼロであることを前提としている。
 また、前記「通常暖機エネルギー」を求めるには、まず、図6における時刻t時点にて触媒温度が下限温度Tminになってから、初めてのエンジン駆動時点(図6に示す時刻t時点)における触媒温度目標値を下限温度Tminとするために必要になる、時刻t時点(触媒温度が下限温度Tminになったとき)の触媒温度目標値「T2」を求める。
つまり、触媒温度が下限温度Tminになってから、初めてエンジン駆動するまでの間(時刻t~t)の平均車速及び外気温に基づき触媒9の放熱勾配を求め、この時刻t~tの間放熱し続けてもエンジン駆動時点(時刻t時点)で触媒温度が下限温度Tminになることを前提に、触媒温度目標値「T2」を求める。
そして、触媒暖機終了時点にて触媒温度を「T2」にするために必要なエネルギーが「通常暖機エネルギー」となる。ここでは、触媒温度目標値(T2)に対する「通常暖機エネルギー」は、図7に示すマップに基づいて一義的に設定される。なお、触媒暖機時では、暖機開始時点の触媒温度が下限温度Tminであることを前提としており、初期暖機時と比べて、触媒温度目標値が同一であっても必要となる暖機エネルギーは小さくなる。
 前記エンジン制御部45は、初期暖機時において、エンジン2を駆動して触媒暖機を行う際、エンジン2の出力トルクが「初期暖機エネルギー」となるように、エンジン2を制御する。また、触媒暖機時において、エンジン2を駆動して触媒暖機を行う際、エンジン2の出力トルクが「通常暖機エネルギー」となるように、エンジン2を制御する。
 ここで、「初期暖機エネルギー」又は「通常暖機エネルギー」に対する暖機中のエンジン出力トルクは、図8に示すマップに基づいて一義的に設定される。
この結果、エンジン2は、初期暖機又は触媒暖機を行う際、必要な暖機エネルギーを賄うだけのエンジン出力トルクを出力することとなる。
 [エンジン制御処理構成]
 図9は、実施例1のハイブリッドコントロールモジュールにて実行されるエンジン制御処理の流れを示すフローチャートである。以下、エンジン制御処理を表す図9の各ステップについて説明する。なお、この制御処理は、イグニッションスイッチ31がONされたら実行される。
 ステップS1では、NAVI/C25に入力された目的地情報、走行希望経路情報を読み込むと共に自車位置情報等の必要情報を取得し、ステップS2へ進む。
 ステップS2では、ステップS1にて取得した各種情報に基づき、自車両の走行予定経路を設定し、ステップS3へ進む。
 ステップS3では、ステップS2での走行予定経路の設定に続き、設定した走行予定経路に関する道路情報(例えば、地図情報、渋滞情報等)をNAVI/C25から取得し、ステップS4へ進む。
また、ここでは、道路情報に加えてドライバーの個人特性情報もNAVI/C25から取得する。
 ステップS4では、初期暖機が終了したか否かを判断する。YES(初期暖機終了)の場合はステップS5へ進む。NO(初期暖機が終了していない)の場合はステップS11へ進む。
ここで、初期暖機の終了は、イグニッションキーがON操作されてからエンジン2が一旦駆動し、その後停止したか否かに基づいて判断する。
 ステップS5では、ステップS4での初期暖機が終了との判断に続き、触媒温度が下限温度Tmin未満であるか否かを判断する。YES(触媒温度<下限温度Tmin)の場合は、触媒暖機が必要としてステップS6へ進む。NO(触媒温度≧下限温度Tmin)の場合は、触媒暖機が不要としてステップS10へ進む。
ここで、触媒温度は、触媒温度センサ36により検出する。
 ステップS6では、ステップS5での触媒温度<下限温度Tminとの判断に続き、ステップS3にて取得した情報に基づいて走行予定経路での走行速度を予測し、ステップS7へ進む。
 ステップS7では、ステップS6での走行速度の予測に続き、予測走行速度に基づいて、走行予定経路でのエンジン2の動作状態を予測し、ステップS8へ進む。
ここでは、エンジン動作状態として、エンジン2の駆動/停止を予測する。この「エンジン2の駆動/停止」は、予測走行速度が予め設定したHEV-EV切替速度以上のときにエンジン2を駆動する(HEVモード)と予測し、予測走行速度がHEV-EV切替速度未満のときにエンジン2を停止する(EVモード)と予測する。
 ステップS8では、ステップS7でのエンジン動作状態の予測に続き、現時点(演算時点)から初めてのエンジン駆動時に、触媒9を下限温度Tminにすることを前提として、触媒暖機時に必要になる触媒暖機エネルギーである「通常暖機エネルギー」を予測し、ステップS9へ進む。
 ステップS9では、ステップS8での「通常暖機エネルギー」の予測に続き、エンジン2の出力トルクをこのステップS8にて予測した「通常暖機エネルギー」となるようにエンジン2を制御しつつ触媒暖機を実施し、ステップS10へ進む。
 ステップS10では、ステップS5での触媒温度≧下限温度Tminとの判断、又は、ステップS9での触媒暖機の実施に続き、目的地に到着したか否かを判断する。YES(目的到着)の場合はエンドへ進み、このエンジン制御処理を終了する。NO(目的地未到着)の場合はステップS5へ戻る。
 ステップS11では、ステップS4での初期暖機が終了していないとの判断に続き、ステップS3にて取得した情報に基づいて走行予定経路での走行速度を予測し、ステップS12へ進む。
 ステップS12では、ステップS11での走行速度の予測に続き、予測走行速度に基づいて、走行予定経路でのエンジン2の動作状態を予測し、ステップS13へ進む。
ここでは、エンジン動作状態として、エンジン2の駆動/停止を予測する。この「エンジン2の駆動/停止」は、予測走行速度が予め設定したHEV-EV切替速度以上のときにエンジン2を駆動する(HEVモード)と予測し、予測走行速度がHEV-EV切替速度未満のときにエンジン2を停止する(EVモード)と予測する。
 ステップS13では、ステップS12でのエンジン動作状態の予測に続き、現時点(演算時点)から初めてのエンジン駆動時に、触媒9を下限温度Tminにすることを前提として、初期暖機時に必要になる触媒暖機エネルギーである「初期暖機エネルギー」を予測し、ステップS14へ進む。
 ステップS14では、ステップS13での「初期暖機エネルギー」の予測に続き、エンジン2の出力トルクをこのステップS13にて予測した「初期暖機エネルギー」となるようにエンジン2を制御しつつ初期暖機を実施し、ステップS4へ戻る。
 次に、実施例1のハイブリッド車両の制御装置における作用を「初期暖機制御作用」と、「触媒暖機制御作用」に分けて説明する。
 [初期暖機制御作用]
 図10Aは、比較例の制御装置において発進時の際の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。図10Bは、実施例1の制御装置において発進時の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。以下、図10A及び図10Bに基づき、実施例1の初期暖機制御作用を説明する。
 比較例の制御装置では、走行予定経路における予測運転モードに拘らず、イグニッションスイッチ31がONされたら、このイグニッションスイッチON時点(図10Aにおいて時刻t11時点)から所定の時間、所定のトルクを出力するようにエンジン2を制御しつつ、初期暖機を実施する。
これにより、初期暖機終了後、初めてエンジン駆動する時点(時刻t12時点)では、触媒温度が下限温度Tminよりも大幅に上回ると予想される。
 ここで、エンジン2が駆動するとエンジン2からの排気熱で触媒9が加熱されるため、エンジン駆動中は触媒温度上昇する。すなわち、エンジン駆動中、触媒温度が下限温度Tminを下回ることはない。そのため、エンジン駆動開始時点の触媒温度は、下限温度Tminであればよい。
 つまり、時刻t12時点において、触媒温度が下限温度Tminを上回っている場合には、初期暖機時に触媒9を余計に加熱している場合であり、無駄な燃料消費を行っていることになる。
 これに対し、実施例1のハイブリッド車両1の制御装置では、イグニッションスイッチ31がON操作されたら、図9に示すエンジン制御処理を実行する。そして、ステップS1→ステップS2→ステップS3→ステップS4へと進み、初期暖機が終了していなければ、ステップS11へ進んで走行予定経路での走行速度が予測される。
ここで、発進時から所定の走行予定経路上の一部において、例えば図10Bに示すように走行速度が予測されたとする。
 そして、走行速度が予測されたら、ステップS12へと進み、予測走行速度に基づいて走行予定経路でのエンジン動作状態が予測される。
すなわち、図10Bに示すように、時刻t21から時刻t22の間では、予測走行速度がHEV-EV切替線を下回っているので、エンジン2を停止したEVモードと予測される。また、時刻t22時点で、予測走行速度がHEV-EV切替線を越えるため、エンジン2を駆動するHEVモードになると予測される。さらに、時刻t23時点において予測走行速度がHEV-EV切替線を下回ると、エンジン2を停止してEVモードになると予測される。
 エンジン動作状態が予測されたら、ステップS13へ進み、初期暖機エネルギーが予測される。この「初期暖機エネルギー」は、イグニッションスイッチ31がONされた時点(時刻t21時点)以降の最初のエンジン駆動時(時刻t22時点)において、触媒温度が下限温度Tminになることを前提に、初期暖機終了時点にて触媒温度を「T1」にするために必要なエネルギーである。
 そして、この初期暖機エネルギーを予測したら、ステップS14へと進み、エンジン出力トルクが「初期暖機エネルギー」となるように、エンジン2の出力トルクを変更制御しつつ、エンジン2を駆動して初期暖機を実施する。
これにより、初期暖機時におけるエンジン出力トルクが、比較例の場合(図10A参照)よりも抑えることができ、無駄な燃料消費を抑制することができる。
 また、初期暖機時のエンジン出力トルクを抑制することで、エンジン音の発生を抑えることができ、発進時の騒音を低減することができる。
 [触媒暖機制御作用]
 図11Aは、比較例の制御装置において所定の経路を走行中の走行車速・触媒温度・エンジン出力トルクの各特性を示すタイムチャートである。図11Bは、実施例1の制御装置において所定の経路を走行中の予測走行車速・予測運転モード・触媒温度・予測エンジン出力トルクの各特性を示すタイムチャートである。以下、図11A及び図11Bに基づき、実施例1の触媒暖機制御作用を説明する。
 比較例の制御装置では、走行中に触媒温度(図11Aにおいて実線で示す)が下限温度Tminを下回ったら、この触媒温度が下限温度Tminを下回った時点(図11Aにおいて時刻t31時点)から所定の時間、所定のトルクを出力するようにエンジン2を制御しつつ、触媒暖機を実施する。
これにより、触媒暖機後、初めてエンジン駆動する時点(時刻t32時点)では、図11Aにおいて二点鎖線で示すように、触媒温度が下限温度Tminよりも大幅に上回ると予想される。
 このように、走行中の触媒暖機時においても、所定のエンジン出力トルクで触媒暖機を実施することで、無駄な燃料消費を行うことになることがあり、燃費の悪化を招いていた。
 これに対し、実施例1のハイブリッド車両1の制御装置では、イグニッションスイッチ31がON操作されたら、図9に示すエンジン制御処理を実行する。そして、ステップS1→ステップS2→ステップS3→ステップS4へと進み、初期暖機が終了していれば、ステップS5へ進み、図11Bにおける時刻t41時点で触媒温度が下限温度Tminを下回れば、ステップS6へ進んで走行予定経路での走行速度が予測される。
ここで、所定の走行予定経路上の一部において、例えば図11Bに示すように走行速度が予測されたとする。なお、この図11Bでは、時刻t41以前の各値は実測値である。
 そして、走行速度が予測されたら、ステップS7へと進み、予測走行速度に基づいて走行予定経路でのエンジン動作状態が予測される。
すなわち、図11Bに示すように、時刻t41から時刻t42の間では、予測走行速度がHEV-EV切替線を下回っているので、エンジン2を停止したEVモードと予測される。また、時刻t42時点で、予測走行速度がHEV-EV切替線を越えるため、エンジン2を駆動するHEVモードになると予測される。さらに、時刻t43時点において予測走行速度がHEV-EV切替線を下回ると、エンジン2を停止してEVモードになると予測される。
 エンジン動作状態が予測されたら、ステップS8へ進み、通常暖機エネルギーが予測される。この「通常暖機エネルギー」は、触媒温度が下限温度Tminを下回った時点(時刻t41時点)以降の最初のエンジン駆動時(時刻t42時点)において、触媒温度が下限温度Tminになることを前提に、触媒暖機終了時点にて触媒温度を「T2」にするために必要なエネルギーである。
 そして、この通常暖機エネルギーを予測したら、ステップS9へと進み、エンジン出力トルクが「通常暖機エネルギー」となるように、エンジン2の出力トルクを変更制御しつつ、エンジン2を駆動して触媒暖機を実施する。
これにより、触媒暖機時におけるエンジン出力トルクが、比較例の場合(図11A参照)よりも抑えることができ、無駄な燃料消費を抑制することができる。
 なお、触媒温度が下限温度Tminを下回った時点(時刻t41時点)以降において、目的地までの間にエンジン2を駆動するHEVモードが発生しない場合、つまり、EVモードで目的地まで走行しきれる場合には、通常暖機エネルギーはゼロになる。
そのため、触媒温度は下限温度Tminを下回ったままとなるが、触媒暖機を実施することはない。これにより、無駄な触媒暖機の実施を防止して、燃費の向上を図ることができる。
 そして、この実施例1では、走行予定経路でのエンジン2の運転状態や触媒温度を予測する際の基準となる走行速度を予測する際、道路情報(例えば、地図情報、渋滞情報等)に加えてドライバーの個人特性情報をも用いて予測する。
そのため、走行速度の予測精度を向上し、適切な制御を行うことができて、さらに燃費の向上を図ることができる。
 次に、効果を説明する。
 実施例1のハイブリッド車両の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1) 駆動と停止を間欠的に繰り返すと共に排気系に排気ガスを浄化する触媒9を有するエンジン2を含む複数の駆動源を備えたハイブリッド車両1の制御装置において、
 自車両の走行予定経路に関する道路情報を取得する道路情報取得部41と、
 前記道路情報取得部41によって取得した道路情報(例えば、地図情報、渋滞情報等)に基づき、前記走行予定経路での走行速度を予測する速度予測部42と、
 前記速度予測部42によって予測した予測走行速度に基づき、前記走行予定経路での前記エンジン2の動作状態を予測するエンジン動作予測部43と、
 前記速度予測部42によって予測した予測走行速度に基づき、前記走行予定経路を走行中に必要となる触媒暖機量を予測する暖機予測部44と、
 前記エンジン2を駆動して触媒暖機を行う際、前記暖機予測部44によって予測した前記走行予定経路を走行中に必要となる予測触媒暖機量となるように前記エンジン2の出力トルクを変更するエンジン制御部45と、を備える構成とした。
 これにより、触媒暖機を実施する際に、無駄な燃料消費を抑え、燃費の向上を図ることができる。
 (2) 前記エンジン制御部45は、触媒温度が予め設定した下限温度Tminを下回ったら前記エンジン2を駆動して触媒暖機を行う構成とした。
 これにより、上記(1)の効果に加え、冷間発進時の触媒暖機(初期暖機)に加え、触媒温度低下時の再暖機(触媒暖機)においても、無駄な燃料消費を抑制し、燃費の向上を図ることができる。
 (3) 前記道路情報取得部41は、前記道路情報(例えば、地図情報、渋滞情報等)に加えて、ドライバーの個人特性情報を取得し、
 前記速度予測部42は、前記道路情報取得部41によって取得した道路情報及び個人特性情報に基づき、前記走行予定経路での走行速度を予測する構成とした。
  これにより、(1)又は(2)の効果に加え、走行速度の予測精度が向上することができて、適切な制御を行うことが可能となり、さらに燃費の向上を図ることができる。
 (実施例2)
 実施例2は、初期暖機や触媒暖機を、走行中にエンジン駆動を行う直前に実施する例である。
 図12Aは、実施例2の制御装置において発進時の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。図12Bは、実施例2の制御装置において所定の経路を走行中の予測走行車速・予測運転モード・触媒温度・予測エンジン出力トルクの各特性を示すタイムチャートである。以下、図12A及び図12Bに基づき、実施例2のハイブリッド車両の制御装置について説明する。
 実施例2のハイブリッド車両1の制御装置では、図12Aに示す時刻t51時点において、イグニッションスイッチ31がON操作されたら、まず、走行予定経路を設定し、この走行予定経路に関する道路情報(例えば、地図情報、渋滞情報等)及びドライバーの個人特性情報を取得する。そして、これらの取得情報に基づいて図12Aに示すように走行速度を予測する。続いて、予測走行速度に基づき、エンジン2の動作状態、つまり運転モードを予測する。
 そして、エンジン2の動作状態を予測したら、まず、イグニッションスイッチ31がON操作された時点(時刻t51時点)以降の最初のエンジン駆動時点(時刻t52時点)において、触媒温度が下限温度Tminを上回ることを前提に、初期暖機時に必要となる「初期暖機エネルギー」を予測する。
 そして、「初期暖機エネルギー」を予測したら、初期暖機時のエンジン出力トルクがこの「初期暖機エネルギー」となるように、エンジン2の出力トルクを変更制御しつつ、初期暖機を実施する。
 このとき、実施例2では、この初期暖機を、イグニッションスイッチ31がON操作された時点(時刻t51時点)以降の最初のエンジン駆動時点(時刻t52時点)の直前に実施する。
つまり、図12Aに示すように、初期暖機に続いて、HEVモードとなることでエンジン駆動する。このため、初期暖機後に走行風による触媒冷却で発生する触媒9の熱損失を最小限に抑えることができる。
これにより、例えばイグニッションスイッチ31をON操作した直後に初期暖機を行う実施例1と比較して、「初期暖機エネルギー」を低減することができる。これにより、実施例1よりも初期暖機時のエンジン出力トルクを抑えることができて、さらに燃費の向上を図ることができる。
 また、イグニッションスイッチON以降の最初のエンジン駆動時点(時刻t52時点)の直前に初期暖機を実施することで、図12Aに示すように、時刻tα時点から開始する初期暖機と、時刻t52時点から運転モードが切り替わって設定されるエンジン駆動期間は連続することになる。これにより、エンジン始動回数の低減を図ることができて、エンジン運転効率を向上し、さらに燃費を向上することができる。
 また、この実施例2では、図12Bに示すように、時刻t61時点において、走行中に触媒温度が下限温度Tminを下回っても、直ちに触媒暖機を実施しない。そして、触媒温度が下限温度Tminを下回った時点(時刻t61時点)以降の最初のエンジン駆動時点(時刻t62時点)の直前に触媒暖機を実施する。
 これにより、触媒暖機後に走行風による触媒冷却で発生する触媒9の熱損失を最小限に抑えることができる。このため、例えば触媒温度が下限温度Tminを下回ったタイミングで触媒暖機を行う実施例1と比較して、「通常暖機エネルギー」を低減することができる。これにより、実施例1よりも触媒暖機時のエンジン出力トルクを抑えることができて、さらに燃費の向上を図ることができる。
 また、走行中の触媒暖機と運転モードが切り替わって設定されるエンジン駆動期間とを連続することができて、エンジン始動回数の低減を図ることができる。この結果、エンジン運転効率を向上し、さらに燃費を向上することができる。
 すなわち、実施例2のハイブリッド車両の制御装置では、以下に挙げる効果を奏することができる。
 (4) 前記エンジン制御部45は、前記走行予定経路を走行中に、前記エンジン2が駆動する直前に、前記触媒暖機を行う構成とした。
 これにより、上記(1)から(3)のいずれかの効果に加え、触媒暖機後の触媒9の熱損失を抑えることができ、走行予定経路を走行中に必要となる触媒暖機量を(初期暖機エネルギー、触媒暖機エネルギー)を抑制して、さらに燃費の向上を図ることができる。
 (実施例3)
 実施例3は、初期暖機や触媒暖機を行う際のエンジン運転点を最小燃料消費量で実現する例である。
 図13Aは、実施例3の制御装置において発進時の予測走行車速・予測運転モード・予測エンジン出力トルク・触媒温度予測値の各特性を示すタイムチャートである。図13Bは、実施例3の制御装置において所定の経路を走行中の予測走行車速・予測運転モード・触媒温度・予測エンジン出力トルクの各特性を示すタイムチャートである。以下、図13A及び図13Bに基づき、実施例3のハイブリッド車両の制御装置について説明する。
 実施例3のハイブリッド車両1の制御装置では、図13Aに示す時刻t71時点において、イグニッションスイッチ31がON操作されたら、まず、走行予定経路を設定し、この走行予定経路に関する道路情報(例えば、地図情報、渋滞情報等)及びドライバーの個人特性情報を取得する。そして、これらの取得情報に基づいて図13Aに示すように走行速度を予測する。続いて、予測走行速度に基づき、エンジン2の動作状態、つまり運転モードを予測する。
 そして、エンジン2の動作状態を予測したら、まず、イグニッションスイッチ31がON操作された時点(時刻t71時点)以降の最初のエンジン駆動時点(時刻t72時点)において、触媒温度が下限温度Tminを上回ることを前提に、初期暖機時に必要となる「初期暖機エネルギー」を予測する。
 そして、「初期暖機エネルギー」を予測したら、初期暖機時のエンジン出力トルクがこの「初期暖機エネルギー」となるように、エンジン2の出力トルクを変更制御しつつ、初期暖機を実施する。
 このとき、実施例3では、この初期暖機を、イグニッションスイッチ31がON操作された時点(時刻t51時点)以降の最初のエンジン駆動時点(時刻t52時点)の直前に実施すると共に、この初期暖機中のエンジン2の運転点を最小燃料消費率となるように制御する。
 すなわち、通常的に初期暖機や触媒暖機を行うときには、短時間で触媒温度を上昇させることを目的とした暖機優先運転となり、エンジン2の運転効率は悪化する。つまり、通常運転よりも多くの燃料を消費する。
これに対し、実施例3では、初期暖機中であってもエンジン2の運転効率を優先し、最小燃料消費率に沿ってエンジン運転点が推移するように制御する。これにより、初期暖機に伴う燃料消費量をさらに抑制し、燃費の向上を図ることができる。
 また、この実施例3では、図13Bに示すように、時刻t81時点において、走行中に触媒温度が下限温度Tminを下回った場合には、触媒温度が下限温度Tminを下回った時点(時刻t81時点)以降の最初のエンジン駆動時点(時刻t82時点)の直前に触媒暖機を実施すると共に、このときのエンジン2の運転点を最小燃料消費率となるように制御する。
 これにより、触媒温度が下限温度Tminを下回り、走行中に再暖機する場合であっても、触媒暖機に伴う燃料消費をさらに抑制し、さらなる燃費向上を図ることができる。
 すなわち、実施例3のハイブリッド車両の制御装置では、以下に挙げる効果を奏することができる。
 (5) エンジン制御部45は、前記触媒暖機を行う際の前記エンジン2の運転点を、最小燃料消費率となるように制御する構成とした。
 これにより、上記(1)~(4)のいずれかの効果に加え、触媒暖機や初期暖機を実施する際の燃料消費をさらに抑制し、さらなる燃費の向上を図ることができる。
 以上、本発明のハイブリッド車両の制御装置を実施例1~実施例3に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例3では、イグニッションスイッチ31がON操作された時点以降で最初のエンジン駆動時の直前に初期暖機を行うと共に、そのときのエンジン運転点が最小燃料消費率となるように制御する例を示した。しかしながら、これに限らず、例えば実施例1のようにイグニッションスイッチ31をON操作した直後に初期暖機を実施すると共に、このときのエンジン運転点を最小燃料消費率となるように制御してもよい。
また、走行中に触媒温度が下限温度Tminを下回ったタイミングで触媒暖機を行う場合においても、エンジン2の運転点が最小燃料消費率となるように制御してもよい。
 さらに、実施例1では、本発明のハイブリッド車両の制御装置を、プラグイン充電が不可能なパラレル方式のハイブリッド車両に適用する例を示した。しかし、本発明の制御装置は、発電モータと駆動モータを備えたパラレル式のプラグインハイブリッド車両や、発電/駆動兼用のモータ/ジェネレータを備えたパラレル式のプラグインハイブリッド車両に対しても適用することができる。
また、実施例1では、エンジンとモータの2種類を駆動源として備えるハイブリッド車両について示したが、これに限らず、排気ガスを浄化する触媒を有するエンジンを含む複数の駆動源を備えたハイブリッド車両であれば適用できる。

Claims (5)

  1.  駆動と停止を間欠的に繰り返すと共に排気系に排気ガスを浄化する触媒を有するエンジンを含む複数の駆動源を備えたハイブリッド車両の制御装置において、
     自車両の走行予定経路に関する道路情報を取得する道路情報取得部と、
     前記道路情報取得部によって取得した道路情報に基づき、前記走行予定経路での走行速度を予測する速度予測部と、
     前記速度予測部によって予測した予測走行速度に基づき、前記走行予定経路での前記エンジンの動作状態を予測するエンジン動作予測部と、
     前記速度予測部によって予測した予測走行速度に基づき、前記走行予定経路を走行中に必要となる触媒暖機量を予測する暖機予測部と、
     前記エンジンを駆動して触媒暖機を行う際、前記暖機予測部によって予測した前記走行予定経路を走行中に必要となる予測触媒暖機量となるように前記エンジンの出力トルクを変更するエンジン制御部と、
     を備えることを特徴とするハイブリッド車両の制御装置。
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記エンジン制御部は、前記走行予定経路を走行中に前記エンジンを駆動する直前に、前記触媒暖機を行う
     ことを特徴とするハイブリッド車両の制御装置。
  3.  請求項1又は請求項2に記載されたハイブリッド車両の制御装置において、
     前記エンジン制御部は、前記触媒暖機を行う際の前記エンジンの運転点を、最小燃料消費率となるように制御する
     ことを特徴とするハイブリッド車両の制御装置。
  4.  請求項1から請求項3のいずれか一項に記載されたハイブリッド車両の制御装置において、
     前記エンジン制御部は、触媒温度が予め設定した下限温度を下回ったときに、前記エンジンを駆動して触媒暖機を行う
     ことを特徴とするハイブリッド車両の制御装置。
  5.   請求項1から請求項4のいずれか一項に記載されたハイブリッド車両の制御装置において、
     前記道路情報取得部は、前記道路情報に加えて、ドライバーの個人特性情報を取得し、
     前記速度予測部は、前記道路情報取得部によって取得した道路情報及び前記個人特性情報に基づき、前記走行予定経路での走行速度を予測する
     ことを特徴とするハイブリッド車両の制御装置。
PCT/JP2014/066578 2014-06-23 2014-06-23 ハイブリッド車両の制御装置 WO2015198381A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/066578 WO2015198381A1 (ja) 2014-06-23 2014-06-23 ハイブリッド車両の制御装置
JP2016528774A JP6369542B2 (ja) 2014-06-23 2014-06-23 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066578 WO2015198381A1 (ja) 2014-06-23 2014-06-23 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2015198381A1 true WO2015198381A1 (ja) 2015-12-30

Family

ID=54937519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066578 WO2015198381A1 (ja) 2014-06-23 2014-06-23 ハイブリッド車両の制御装置

Country Status (2)

Country Link
JP (1) JP6369542B2 (ja)
WO (1) WO2015198381A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463992A (zh) * 2017-08-01 2017-12-12 北京理工大学 一种混合动力车辆行驶工况基于片段波形训练的工况预测方法
EP3533678A1 (en) * 2018-03-02 2019-09-04 Toyota Jidosha Kabushiki Kaisha Control device
KR20190111782A (ko) * 2018-03-22 2019-10-02 도요타 지도샤(주) 차량 및, 차량의 제어 방법
EP3653458A1 (en) * 2018-11-16 2020-05-20 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle, control method for hybrid vehicle, and recording medium
US20210179068A1 (en) * 2019-12-16 2021-06-17 Hyundai Motor Company Hybrid Electric Vehicle and Engine Operation Control Method Therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527113B (zh) * 2017-08-01 2021-03-23 北京理工大学 一种混合动力车辆行驶工况的工况预测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012605A (ja) * 2007-07-04 2009-01-22 Toyota Motor Corp 車両の制御装置および制御方法
JP2013001214A (ja) * 2011-06-15 2013-01-07 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217991B2 (ja) * 2008-12-09 2013-06-19 トヨタ自動車株式会社 ハイブリッド車およびその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012605A (ja) * 2007-07-04 2009-01-22 Toyota Motor Corp 車両の制御装置および制御方法
JP2013001214A (ja) * 2011-06-15 2013-01-07 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463992A (zh) * 2017-08-01 2017-12-12 北京理工大学 一种混合动力车辆行驶工况基于片段波形训练的工况预测方法
EP3533678A1 (en) * 2018-03-02 2019-09-04 Toyota Jidosha Kabushiki Kaisha Control device
KR20190111782A (ko) * 2018-03-22 2019-10-02 도요타 지도샤(주) 차량 및, 차량의 제어 방법
KR102183178B1 (ko) 2018-03-22 2020-11-25 도요타 지도샤(주) 차량 및, 차량의 제어 방법
EP3653458A1 (en) * 2018-11-16 2020-05-20 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle, control method for hybrid vehicle, and recording medium
US11254301B2 (en) 2018-11-16 2022-02-22 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle, control method for hybrid vehicle, and recording medium
US20210179068A1 (en) * 2019-12-16 2021-06-17 Hyundai Motor Company Hybrid Electric Vehicle and Engine Operation Control Method Therefor

Also Published As

Publication number Publication date
JPWO2015198381A1 (ja) 2017-05-25
JP6369542B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6331749B2 (ja) ハイブリッド車両の制御装置
JP6369542B2 (ja) ハイブリッド車両の制御装置
WO2016098327A1 (ja) ハイブリッド車の制御装置
KR101923933B1 (ko) 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
EP2808213B1 (en) Hybrid vehicle management system, hybrid vehicle control apparatus, and hybrid vehicle control method
JP2010155590A (ja) ハイブリッド車両の発進制御装置。
JP2009208567A (ja) ハイブリッド車両
JP2011031659A (ja) ハイブリッド車両
JP6725880B2 (ja) ハイブリッド車両の制御装置
JP6021776B2 (ja) 電気自動車のバッテリ冷却装置
JP5553019B2 (ja) ハイブリッド車両の内燃機関始動制御装置
JP3951847B2 (ja) 車両の制御装置、制御方法、その制御方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP2009107502A (ja) ハイブリッド車両の制御装置
US20210188125A1 (en) Acceleration control system for an electric vehicle
JP2016113040A (ja) 車両用バッテリ温調システム
KR20190013015A (ko) 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
JP2010241185A (ja) ハイブリッド車両の充電制御装置
JP2009035121A (ja) ハイブリッド車両の内燃機関の始動制御装置
JP5063829B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP2012086769A (ja) ハイブリッド車両の制御装置
JP6163841B2 (ja) ハイブリッド車両の制御装置
JP2014113974A (ja) ハイブリッド電気自動車の走行制御装置
JP5212001B2 (ja) ハイブリッド車両の制御装置及び制御方法
JP5900645B2 (ja) 車両の制御装置
JP2017030595A (ja) ハイブリッド車両及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895991

Country of ref document: EP

Kind code of ref document: A1