[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015194373A1 - 部品内蔵多層基板 - Google Patents

部品内蔵多層基板 Download PDF

Info

Publication number
WO2015194373A1
WO2015194373A1 PCT/JP2015/065985 JP2015065985W WO2015194373A1 WO 2015194373 A1 WO2015194373 A1 WO 2015194373A1 JP 2015065985 W JP2015065985 W JP 2015065985W WO 2015194373 A1 WO2015194373 A1 WO 2015194373A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
base material
multilayer substrate
material layer
wiring pattern
Prior art date
Application number
PCT/JP2015/065985
Other languages
English (en)
French (fr)
Inventor
西野耕輔
用水邦明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201590000447.7U priority Critical patent/CN206602721U/zh
Priority to JP2016529226A priority patent/JP6304376B2/ja
Publication of WO2015194373A1 publication Critical patent/WO2015194373A1/ja
Priority to US15/298,366 priority patent/US10091886B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets

Definitions

  • the present invention relates to a component built-in multilayer substrate in which components are incorporated in a multilayer substrate in which base material layers are laminated.
  • the component-embedded multilayer substrate for example, there is a component-embedded wiring substrate described in Patent Document 1.
  • a built-in IC chip is housed in a housing hole formed in the core substrate.
  • a gap between the wall surface of the housing hole and the IC chip is filled with a resin filler that fixes the IC chip to the core substrate.
  • Built-up layers are formed on both main surfaces of the core substrate.
  • An object of the present invention is to provide a component-embedded multilayer board that can be manufactured without performing a process of forming a cavity.
  • the component is embedded in the multilayer substrate formed by laminating a plurality of base material layers formed of a thermoplastic resin.
  • the number of the base material layers is equal between the portion overlapping the component when viewed from the stacking direction and the peripheral portion of the component when viewed from the stacking direction.
  • a thickness adjusting member for adjusting the thickness of the multilayer substrate is formed on the main surface of the base material layer so as to surround the component around the component as viewed from the stacking direction.
  • the number of stacked base layers is equal between the portion overlapping the component when viewed from the stacking direction and the peripheral portion of the component when viewed from the stacking direction. That is, a cavity for housing components is not formed in the manufacturing process of the component built-in multilayer substrate. For this reason, the component built-in multilayer substrate is thicker than the case where the cavity is formed in the portion where the component is located when viewed from the stacking direction.
  • the thickness adjusting member is formed in the peripheral portion of the component, the multilayer board with a built-in component is thicker in the peripheral portion of the component as compared with the case where the thickness adjusting member is not formed.
  • the thickness adjusting member can reduce the difference in thickness between the portion of the multilayer substrate that overlaps the component and the peripheral portion of the component as viewed from the stacking direction. For this reason, it becomes easy to manufacture a multilayer board with built-in components by hot pressing the thermoplastic resin base material laminated with the components sandwiched therebetween. As a result, it is possible to obtain a component-embedded multilayer board without performing a step of forming a cavity.
  • the thickness adjusting member is formed in the peripheral portion of the component, when the laminated thermoplastic resin base material is hot pressed, the resin is restrained by the thickness adjusting member in the peripheral portion of the component, and the resin flows. It becomes difficult to occur. For this reason, the positional accuracy of components can be made high.
  • the thickness adjusting member is formed on the main surface of the plurality of base material layers. In this configuration, since the plurality of thickness adjusting members are formed along the stacking direction, the effect of the present invention becomes remarkable.
  • the total thickness of the thickness adjusting members in the stacking direction is substantially equal to the thickness of the component.
  • the thickness of the portion overlapping the components viewed from the stacking direction is substantially equal to the thickness of the peripheral portion of the components viewed from the stacking direction.
  • both main surfaces of the multilayer board are flat.
  • a component-embedded multilayer substrate having both main surfaces flat can be obtained without performing a step of forming a cavity.
  • the thickness adjusting member is preferably a conductor pattern.
  • the thickness adjusting member can be formed by patterning the metal foil bonded to the thermoplastic resin substrate.
  • the thickness adjusting member constitutes at least a part of a wiring pattern forming a circuit.
  • the wiring pattern is also used as the thickness adjusting member, it is not necessary to separately form the thickness adjusting member.
  • the thickness adjusting member is preferably a coil pattern. In this configuration, it is not necessary to form a separate thickness adjusting member, and a thickness adjusting member that surrounds the part can be obtained.
  • the thickness adjusting member is formed within the component arrangement range in the stacking direction. In this configuration, since the thickness adjusting member is formed in the vicinity of the side surface of the component, the resin flow is less likely to occur in the peripheral portion of the component when heat-pressing. For this reason, the positional accuracy of components can be further increased.
  • a component built-in multilayer substrate can be manufactured without performing a process of forming a cavity.
  • FIG. 2A is an external perspective view of the LC composite component according to the first embodiment.
  • FIG. 2B is an exploded perspective view of the LC composite component according to the first embodiment. It is an exploded plan view of the LC composite component according to the first embodiment.
  • It is sectional drawing of LC composite component which concerns on 1st Embodiment. It is sectional drawing which shows the manufacturing method of LC composite component which concerns on 1st Embodiment. It is sectional drawing which shows a part of multilayer multilayer substrate with a component which concerns on 2nd Embodiment. It is a top view of the base material layer concerning the modification of a 2nd embodiment.
  • FIG. 1 is an equivalent circuit diagram of the LC composite component 10.
  • the LC composite component 10 includes an inductor L1, a capacitor C1, and terminals P1 to P3.
  • the terminal P2 is connected to the terminal P3 via the inductor L1.
  • a connection point between the inductor L1 and the terminal P3 is connected to the terminal P1 through the capacitor C1.
  • the LC composite component 10 functions as a low-pass filter by using the terminal P1 as a ground connection terminal and using the terminals P2 and P3 as input / output terminals.
  • FIG. 2A is an external perspective view of the LC composite component 10.
  • FIG. 2B is an exploded perspective view of the LC composite component 10.
  • FIG. 3 is an exploded plan view of the LC composite component 10.
  • the chip capacitor 22 is not shown.
  • a temperature for example, a liquid crystal polymer (LCP)
  • LCP liquid crystal polymer
  • a chip capacitor 22 made of a material (for example, metal, ceramic, etc.) that does not flow at the plasticizing temperature of LCP (240 degrees or more and 300 degrees or less) is incorporated.
  • the chip capacitor 22 is an example of the component of the present invention.
  • the multilayer substrate 21 is formed by laminating rectangular base material layers 11A to 11E in a plan view in this order from the top.
  • the chip capacitor 22 is disposed on the upper surface of the base material layer 11D and realizes the capacitor C1.
  • On the upper surfaces of the base material layer 11B and the base material layer 11C a loop-shaped wiring pattern 12A and a wiring pattern 12B corresponding to the inductor L1 are formed.
  • On the lower surface of the base material layer 11E wiring patterns 13A to 13C corresponding to the terminals P1 to P3 are formed.
  • the chip capacitor 22, the wiring pattern 12A, the wiring pattern 12B, and the terminals P1 to P3 are connected as described later, whereby a low-pass filter is formed in the LC composite component 10.
  • the number of substrate layers stacked is equal between the portion overlapping the chip capacitor 22 as viewed from the stacking direction and the peripheral portion of the chip capacitor 22 as viewed from the stacking direction.
  • the base material layer 11A to the base material layer 11E are not formed with openings for accommodating the chip capacitors 22.
  • a wiring pattern 12A and a wiring pattern 12B for adjusting the thickness of the multilayer substrate are formed on the main surfaces of the base material layer 11B and the base material layer 11C so as to surround the chip capacitor 22 around the chip capacitor 22 when viewed from the stacking direction. ing.
  • the wiring pattern 12A and the wiring pattern 12B function as the inductor L1 as described above, and adjust the thickness of the multilayer substrate 21 as described later.
  • the wiring pattern 12A and the wiring pattern 12B which are examples of the thickness adjusting member of the present invention, are formed on the main surface of the plurality of base material layers, constitute at least a part of the wiring pattern forming the circuit, and are a conductor pattern. It is a coil pattern.
  • the wiring pattern formed on the main surface of each base material layer does not flow at a temperature at which the thermoplastic resin is crimped.
  • the chip capacitor 22 has a rectangular flat plate shape, and is arranged at the center of the base material layer 11D in a plan view so that its main surface faces the stacking direction. External electrodes 15A and 15B are formed at both ends of the chip capacitor 22 in the longitudinal direction.
  • the wiring pattern 12A is formed so as to go around the edge of the base material layer 11B. The first end and the second end of the wiring pattern 12A are formed at the corners of the base material layer 11B and are close to each other. The first end of the wiring pattern 12A extends inward from the edge of the base material layer 11B.
  • the wiring pattern 12B is formed so as to go around the edge of the base material layer 11C.
  • the first end and the second end of the wiring pattern 12B are formed at the corners of the base material layer 11C and are close to each other. In the vicinity of the first end of the wiring pattern 12B, the wiring pattern 12C extends from the wiring pattern 12B.
  • the wiring pattern 12C extends so as to overlap the external electrode 15B of the chip capacitor 22 in plan view.
  • the second end of the wiring pattern 12A and the second end of the wiring pattern 12B are connected via an interlayer connection conductor 14A that penetrates the base material layer 11B in the stacking direction.
  • the wiring pattern 13A is formed on the edge of the base material layer 11E.
  • the wiring pattern 13B and the wiring pattern 13C are formed side by side along the edge opposite to the edge on which the wiring pattern 13A is formed.
  • Wiring patterns 12D to 12F are formed on the lower surface of the base material layer 11D.
  • the wiring pattern 12D extends so as to overlap the external electrode 15A and the wiring pattern 13A of the chip capacitor 22 in plan view.
  • the wiring pattern 12E extends so as to overlap the external electrode 15B and the wiring pattern 13C of the chip capacitor 22 in plan view.
  • the wiring pattern 12F extends so as to overlap the first end portion of the wiring pattern 12A and the wiring pattern 13B in plan view.
  • the external electrode 15A of the chip capacitor 22 is connected to the wiring pattern 13A via the interlayer connection conductor 14D that penetrates the base material layer 11D, the wiring pattern 12D, and the interlayer connection conductor 14F that penetrates the base material layer 11E.
  • the first end of the wiring pattern 12A is connected to the wiring pattern 13B via the interlayer connection conductor 14B that penetrates the base material layer 11B to the base material layer 11D, and the interlayer connection conductor 14G that penetrates the wiring pattern 12F and the base material layer 11E. Has been.
  • the external electrode 15B of the chip capacitor 22 is connected to the wiring pattern 12C through an interlayer connection conductor 14C penetrating the base material layer 11C. Furthermore, the external electrode 15B of the chip capacitor 22 is connected to the wiring pattern 13C via the interlayer connection conductor 14E that penetrates the base material layer 11D, the wiring pattern 12E, and the interlayer connection conductor 14H that penetrates the base material layer 11E. .
  • the base material layer 11A to the base material layer 11E are made of a thermoplastic resin such as a liquid crystal polymer (LCP) as described above.
  • the wiring patterns 12A to 12F and the wiring patterns 13A to 13C are made of copper foil or the like.
  • the interlayer connection conductors 14A to 14H are formed by curing the conductive paste filled in the via holes.
  • the chip capacitor 22 is made of a material that does not flow at a temperature at which the thermoplastic resins of the base material layers 11A to 11E are thermocompression bonded.
  • FIG. 4 is a cross-sectional view of the LC composite component 10.
  • the base material layer 11 ⁇ / b> B and the base material layer 11 ⁇ / b> C are displaced upward in the portion overlapping the chip capacitor 22 in plan view.
  • the base material layer 11A to the base material layer 11C are thin at the portion overlapping the chip capacitor 22 in plan view.
  • the chip capacitor 22 is disposed in a space generated by the base material layer 11B and the base material layer 11C being displaced upward and the base material layers 11A to 11C becoming thin.
  • the LC composite component 10 is thicker in the peripheral portion of the chip capacitor 22 in plan view than the case where the wiring pattern 12A and the wiring pattern 12B are not formed due to the thickness of the wiring pattern 12A and the wiring pattern 12B. .
  • the wiring pattern 12 ⁇ / b> A and the wiring pattern 12 ⁇ / b> B are formed near the side surface of the chip capacitor 22.
  • the chip capacitor 22 and the wiring pattern 12B are arranged such that their side surfaces (end surfaces) face each other. That is, the wiring pattern 12B is formed within the arrangement range of the chip capacitors 22 in the stacking direction. Both main surfaces of the LC composite component 10, that is, both main surfaces of the multilayer substrate 21 are flat.
  • FIG. 5 is a cross-sectional view showing a method for manufacturing the LC composite component 10.
  • LC composite component 10 which is not shown by FIG. 5, it forms by the process similar to the process shown by FIG. 5 in parallel with the process shown by FIG.
  • a base material 25D having a metal foil affixed to the entire surface of one side is prepared, and the metal foil is patterned by etching or the like to form a wiring pattern 12D and a wiring pattern 12E.
  • the base material 25D is a thermoplastic resin base material made of a liquid crystal polymer (LCP) or the like.
  • a via hole that penetrates the base material 25D but does not penetrate the wiring pattern 12D is formed by laser processing or the like at a position where the interlayer connection conductor 14D (see FIG. 2) is formed. To do. A via hole that penetrates the base material 25D but does not penetrate the wiring pattern 12E is formed at a position where the interlayer connection conductor 14E is formed. Then, the conductive paste 26 is filled in these via holes.
  • the chip capacitor 22 is arranged on the upper surface of the base material 25D so that the external electrode 15A and the external electrode 15B overlap with the conductive paste 26 in plan view. Then, by simultaneously pressing (heating press) the base material 25D on which the chip capacitor 22 is disposed, the chip capacitor 22 is thermocompression bonded to the base material 25D.
  • the base materials 25A to 25E are laminated in this order from the top.
  • the side on which the wiring pattern is formed on the main surfaces of the base material 25B and the base material 25C faces upward, and the side on which the wiring pattern is formed on the main surfaces of the base material 25D and base material 25E faces downward.
  • a wiring pattern and a via hole filled with a conductive paste are formed in a predetermined arrangement by a process similar to the process shown in FIGS. 5 (A) and 5 (B). Yes. Note that an opening for accommodating the chip capacitor 22 is not formed in the base material 25B and the base material 25C.
  • the base materials 25A to 25E are thermocompression bonded by simultaneously pressing the laminated base materials 25A to 25E while heating them. Thereby, the LC composite component 10 in which the chip capacitor 22 is built in the multilayer substrate 21 is completed.
  • the multilayer substrate 21 does not have a cavity formed by connecting openings formed in the base material.
  • the cavity for housing the chip capacitor 22 is not formed in the manufacturing process of the LC composite component 10.
  • the LC composite component 10 is thicker than the case where a cavity is formed in a portion where the chip capacitor 22 is located in plan view.
  • the wiring pattern 12A and the wiring pattern 12B are formed in the peripheral portion of the chip capacitor 22 when viewed in plan.
  • the LC composite component 10 is also thicker in the peripheral portion of the chip capacitor 22 in plan view than when the wiring pattern 12A and the wiring pattern 12B are not formed.
  • the wiring pattern 12A and the wiring pattern 12B allow the thickness of the portion of the multilayer substrate 21 that overlaps the chip capacitor 22 and the peripheral portion of the chip capacitor 22 in plan view. The difference can be reduced. As a result, it becomes easy to heat-press the laminated base materials 25A to 25E so that both main surfaces of the LC composite component are flat. Therefore, it is possible to form the LC composite component 10 having both main surfaces flat without performing the step of forming the cavity.
  • the wiring pattern 12A and the wiring pattern 12B are formed in the vicinity of the side surface of the chip capacitor 22, the resin is restrained near the side surface of the chip capacitor 22 during the heat pressing, and the resin does not easily flow. For this reason, the positional accuracy of the chip capacitor 22 can be increased.
  • FIG. 6A is a cross-sectional view showing a part of the component built-in multilayer substrate 30.
  • FIG. 6B is an exploded cross-sectional view showing a part of the component built-in multilayer substrate 30.
  • FIG. 6C is a plan view showing a part of the base material layer 31D.
  • the number of base material layers stacked is equal between the portion overlapping the component when viewed from the stacking direction and the peripheral portion of the component when viewed from the stacking direction.
  • An adjustment pattern 41 for adjusting the thickness of the multilayer substrate is formed on the main surfaces of the base material layer 31A to the base material layer 31F so as to surround the part 51 around the part 51 when viewed from the stacking direction.
  • the base material layer 31A to the base material layer 31F are laminated in this order from the top.
  • the component 51 is disposed between the base material layer 31C and the base material layer 31D.
  • the adjustment pattern 41 is formed on the lower surfaces of the base material layers 31A to 31C and the upper surfaces of the base material layers 31D to 31F.
  • the adjustment pattern 41 has a frame shape and is made of copper foil.
  • the adjustment pattern 41 formed on the base material layer 31 ⁇ / b> A is located above the upper surface of the component 51.
  • the adjustment pattern 41 formed on the base material layer 31 ⁇ / b> F is located below the lower surface of the component 51.
  • An adjustment pattern 41 is formed on the layers 31A to 31F. In the stacking direction, the total thickness of the adjustment patterns 41 is substantially equal to the thickness of the component 51.
  • the total thickness of the adjustment pattern 41 is substantially equal to the thickness of the component 51.
  • the thickness of the portion overlapping the component 51 when viewed from the stacking direction is substantially equal to the thickness of the peripheral portion of the component 51 when viewed from the stacking direction. For this reason, it becomes easier to heat-press the laminated base material so that both main surfaces of the component built-in multilayer substrate 30 become flat.
  • FIG. 7 is a plan view of a base material layer 31D according to a modification of the second embodiment.
  • a frame-shaped adjustment pattern 42 made of a non-conductor such as resin is provided on the main surface of the base material layer 31D so as to surround the component 51 in a plan view. Is formed.
  • the same thing as the adjustment pattern formed in base material layer 31D is formed also in another base material layer. The same applies to other modified examples of the second embodiment.
  • a ceramic ferrite core 52 is disposed on the main surface of the base material layer 31D.
  • the ceramic ferrite core 52 is an example of the component of the present invention.
  • An adjustment pattern 43 made of copper foil is formed on the main surface of the base material layer 31D so as to surround the ceramic ferrite core 52 in plan view.
  • the adjustment pattern 43 is a coil pattern.
  • the adjustment pattern 44 is formed so that its side surface faces a corner of the side surface of the component 51.
  • the adjustment pattern 44 has a shape in which the central portion in the longitudinal direction of each linear portion is removed from the frame-shaped adjustment pattern.
  • the adjustment pattern 45 is formed so that the side surface thereof faces each side surface of the component 51.
  • the adjustment pattern 45 has a shape in which corner portions are removed from the frame-shaped adjustment pattern.
  • the component incorporated in the multilayer substrate of the present invention is not limited to the above-described embodiment, and a member made of a material that does not flow at a temperature at which the thermoplastic resin of the multilayer substrate is thermocompression bonded, for example, a magnet (ferrite sintered body) ) Etc.
  • Capacitor L1 ... Inductors P1 to P3 ... Terminal 10 ... LC composite parts 11A to 11E, 31A to 31F ... Base material layers 12A and 12B ... Wiring patterns (thickness adjusting members) 12C to 12F, 13A to 13C ... Wiring patterns 14A to 14H ... Interlayer connection conductors 15A, 15B ... External electrodes 21, 32 ... Multilayer substrate 22 ... Chip capacitor (component) 25A to 25E ... base material 26 ... conductive paste 30 ... component built-in multilayer substrate 41 to 45 ... adjustment pattern 51 ... component 52 ... ceramic ferrite core

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 部品内蔵多層基板の一例であるLC複合部品(10)では、熱可塑性樹脂から形成される複数の基材層(11A~11E)が積層されてなる多層基板にチップコンデンサ(22)が内蔵されている。多層基板において、積層方向から見て部品に重なる部分と、積層方向から見て部品の周辺部分とでは、基材層の積層数が等しい。積層方向から見てチップコンデンサ(22)の周辺でチップコンデンサ(22)を囲むように、基材層(11B)および基材層(11C)の主面に、多層基板の厚みを調整する配線パターン(12A)および配線パターン(12B)が形成されている。

Description

部品内蔵多層基板
 本発明は、基材層が積層されてなる多層基板に部品が内蔵されている部品内蔵多層基板に関する。
 部品内蔵多層基板として、例えば、特許文献1に記載の部品内蔵配線基板がある。この部品内蔵配線基板では、内蔵されるICチップがコア基板に形成された収容穴部に収容されている。収容穴部の壁面とICチップとの間の隙間は、ICチップをコア基板に固定する樹脂充填剤によって埋められている。コア基板の両主面には、ビルトアップ層が形成されている。
特開2009-260318号公報
 特許文献1の記載の部品内蔵配線基板では、コア基板にICチップを収容するために、コア基板に収容穴部を形成する必要がある。すなわち、部品内蔵配線基板の製造工程は、部品を内蔵しない場合に比べて煩雑となる。
 本発明の目的は、キャビティを形成する工程を行うことなく製造することが可能な部品内蔵多層基板を提供することにある。
 本発明の部品内蔵多層基板では、熱可塑性樹脂から形成される複数の基材層が積層されてなる多層基板に部品が内蔵されている。多層基板において、積層方向から見て部品に重なる部分と、積層方向から見て部品の周辺部分とでは、基材層の積層数が等しい。積層方向から見て部品の周辺で部品を囲むように、基材層の主面に、多層基板の厚みを調整する厚み調整部材が形成されている。
 この構成では、多層基板において、積層方向から見て部品に重なる部分と、積層方向から見て部品の周辺部分とでは、基材層の積層数が等しい。すなわち、部品内蔵多層基板の製造工程において部品を収納するためのキャビティが形成されない。このため、部品内蔵多層基板は、積層方向から見て部品が位置する部分において、キャビティが形成される場合より厚くなる。一方、部品の周辺部分に厚み調整部材が形成されるので、部品内蔵多層基板は、部品の周辺部分においても、厚み調整部材が形成されない場合に比べて厚くなる。すなわち、部品を収納するためのキャビティを設けなくても、厚み調整部材により、積層方向から見て多層基板の部品に重なる部分と部品の周辺部分との厚みの差を小さくすることができる。このため、部品を挟んで積層された熱可塑性樹脂基材を加熱プレスして部品内蔵多層基板を製造することが容易となる。この結果、キャビティを形成する工程を行うことなく、部品内蔵多層基板を得ることができる。
 また、部品の周辺部分に厚み調整部材が形成されているので、積層された熱可塑性樹脂基材を加熱プレスする際、部品の周辺部分で、厚み調整部材により樹脂が拘束されて樹脂の流動が生じにくくなる。このため、部品の位置精度を高くすることができる。
 本発明の部品内蔵多層基板では、厚み調整部材は複数の基材層の主面に形成されていることが好ましい。この構成では、積層方向に沿って複数の厚み調整部材が形成されるので、本発明の効果が顕著となる。
 本発明の部品内蔵多層基板では、積層方向において、厚み調整部材の厚みの合計値は部品の厚みにほぼ等しいことが好ましい。この構成では、部品を挟んで積層された熱可塑性樹脂基材において、積層方向から見て部品に重なる部分の厚みと、積層方向から見たときの部品の周辺部分の厚みとは、ほぼ等しくなる。このため、部品を挟んで積層された熱可塑性樹脂基材を加熱プレスして部品内蔵多層基板を製造することがさらに容易となる。
 本発明の部品内蔵多層基板では、多層基板の両主面が平坦であることが好ましい。本発明では、上記からわかるように、キャビティを形成する工程を行わなくても、両主面が平坦な部品内蔵多層基板を得ることができる。
 本発明の部品内蔵多層基板では、厚み調整部材は導体パターンであることが好ましい。この構成では、熱可塑性樹脂基材に貼り合わされた金属箔をパターニングすることで、厚み調整部材を形成することができる。
 本発明の部品内蔵多層基板では、厚み調整部材は回路を形成する配線パターンの少なくとも一部を構成していることが好ましい。この構成では、配線パターンを厚み調整部材としても利用するので、別途厚み調整部材を形成する必要がない。
 本発明の部品内蔵多層基板では、厚み調整部材はコイルパターンであることが好ましい。この構成では、別途厚み調整部材を形成する必要がなく、部品を囲むような厚み調整部材を得ることができる。
 本発明の部品内蔵多層基板では、厚み調整部材は積層方向において部品の配置範囲内に形成されていることが好ましい。この構成では、厚み調整部材が部品の側面付近に形成されるので、加熱プレスする際、部品の周辺部分で樹脂の流動がさらに生じにくくなる。このため、部品の位置精度をさらに高くすることができる。
 本発明の部品内蔵多層基板では、積層方向から見て部品の周辺部分で部品の積層方向の一方側に位置する基材層から部品の積層方向の他方側に位置する基材層までの其々の基材層に、厚み調整部材が形成されていることが好ましい。この構成では、加熱プレスする際、部品の周辺部分で樹脂の流動がさらに生じにくくなるので、部品の位置精度をさらに高くすることができる。
 本発明によれば、キャビティを形成する工程を行うことなく部品内蔵多層基板を製造することができる。
第1の実施形態に係るLC複合部品の等価回路図である。 図2(A)は、第1の実施形態に係るLC複合部品の外観斜視図である。図2(B)は、第1の実施形態に係るLC複合部品の分解斜視図である。 第1の実施形態に係るLC複合部品の分解平面図である。 第1の実施形態に係るLC複合部品の断面図である。 第1の実施形態に係るLC複合部品の製造方法を示す断面図である。 第2の実施形態に係る部品内蔵多層基板の一部を示す断面図である。 第2の実施形態の変形例に係る基材層の平面図である。
《第1の実施形態》
 本発明の第1の実施形態に係るLC複合部品10について説明する。LC複合部品10は本発明の部品内蔵多層基板の一例である。図1はLC複合部品10の等価回路図である。LC複合部品10は、インダクタL1、キャパシタC1および端子P1~端子P3を備える。端子P2はインダクタL1を介して端子P3に接続されている。インダクタL1と端子P3との接続点はキャパシタC1を介して端子P1に接続されている。端子P1をグランド接続端子として用い、端子P2および端子P3を入出力端子として用いることで、LC複合部品10はローパスフィルタとして機能する。
 図2(A)はLC複合部品10の外観斜視図である。図2(B)はLC複合部品10の分解斜視図である。図3はLC複合部品10の分解平面図である。なお、図3では、チップコンデンサ22の図示を省略している。LC複合部品10では、複数の熱可塑性樹脂から形成される基材層11A~基材層11Eが積層されてなる多層基板21に、熱可塑性樹脂を圧着させる温度(たとえば、液晶ポリマー(LCP)を用いる場合、LCPの塑化温度程度(240度以上300度以下))で流動しない材料(たとえば、金属やセラミック等)で構成されたチップコンデンサ22が内蔵されている。チップコンデンサ22は本発明の部品の一例である。
 多層基板21は、平面視で矩形状の基材層11A~基材層11Eが上からこの順に積層されてなる。チップコンデンサ22は、基材層11Dの上面に配置され、キャパシタC1を実現している。基材層11Bおよび基材層11Cの上面には、インダクタL1に対応するループ状の配線パターン12Aおよび配線パターン12Bが形成されている。基材層11Eの下面には、端子P1~端子P3に対応する配線パターン13A~配線パターン13Cが形成されている。チップコンデンサ22、配線パターン12A、配線パターン12Bおよび端子P1~端子P3が後述のように接続されることにより、LC複合部品10にローパスフィルタが形成される。
 多層基板21において、積層方向から見てチップコンデンサ22に重なる部分と、積層方向から見てチップコンデンサ22の周辺部分とでは、基材層の積層数が等しい。言い換えると、基材層11A~基材層11Eには、チップコンデンサ22を収納するための開口部は形成されていない。積層方向から見てチップコンデンサ22の周辺でチップコンデンサ22を囲むように、基材層11Bおよび基材層11Cの主面に、多層基板の厚みを調整する配線パターン12Aおよび配線パターン12Bが形成されている。配線パターン12Aおよび配線パターン12Bは、上述のようにインダクタL1として機能するとともに、後述のように多層基板21の厚みを調整する。本発明の厚み調整部材の一例である配線パターン12Aおよび配線パターン12Bは、複数の基材層の主面に形成されており、回路を形成する配線パターンの少なくとも一部を構成し、導体パターンであるとともに、コイルパターンである。各基材層の主面に形成された配線パターンは、熱可塑性樹脂を圧着させる温度で流動しない。
 チップコンデンサ22は、矩形平板状であり、平面視で基材層11Dの中央部に、その主面が積層方向を向くように配置されている。チップコンデンサ22の長手方向の両端部には、外部電極15Aおよび外部電極15Bが形成されている。配線パターン12Aは、基材層11Bの縁を一周するように形成されている。配線パターン12Aの第1端部および第2端部は、基材層11Bの角に形成され、互いに近接している。配線パターン12Aの第1端部は基材層11Bの縁から内側に延伸している。
 配線パターン12Bは、基材層11Cの縁を一周するように形成されている。配線パターン12Bの第1端部および第2端部は、基材層11Cの角に形成され、互いに近接している。配線パターン12Bの第1端部付近では、配線パターン12Bから配線パターン12Cが延出している。配線パターン12Cは、平面視でチップコンデンサ22の外部電極15Bに重なるように延伸している。配線パターン12Aの第2端部と配線パターン12Bの第2端部とは、基材層11Bを積層方向に貫通する層間接続導体14Aを介して接続されている。
 配線パターン13Aは基材層11Eの縁に形成されている。配線パターン13Bおよび配線パターン13Cは、配線パターン13Aが形成された縁に対して反対側の縁に沿って並んで形成されている。基材層11Dの下面には、配線パターン12D~配線パターン12Fが形成されている。配線パターン12Dは、平面視でチップコンデンサ22の外部電極15Aおよび配線パターン13Aに重なるように延伸している。配線パターン12Eは、平面視でチップコンデンサ22の外部電極15Bおよび配線パターン13Cに重なるように延伸している。配線パターン12Fは、平面視で、配線パターン12Aの第1端部および配線パターン13Bに重なるように延伸している。
 チップコンデンサ22の外部電極15Aは、基材層11Dを貫通する層間接続導体14D、配線パターン12D、および基材層11Eを貫通する層間接続導体14Fを介して配線パターン13Aに接続されている。配線パターン12Aの第1端部は、基材層11B~基材層11Dを貫通する層間接続導体14B、配線パターン12Fおよび基材層11Eを貫通する層間接続導体14Gを介して配線パターン13Bに接続されている。
 チップコンデンサ22の外部電極15Bは、基材層11Cを貫通する層間接続導体14Cを介して配線パターン12Cに接続されている。さらに、チップコンデンサ22の外部電極15Bは、基材層11Dを貫通する層間接続導体14E、配線パターン12E、および基材層11Eを貫通する層間接続導体14Hを介して配線パターン13Cに接続されている。
 基材層11A~基材層11Eは、上述のように、液晶ポリマー(LCP)等の熱可塑性樹脂を材料とする。配線パターン12A~配線パターン12Fおよび配線パターン13A~配線パターン13Cは銅箔等からなる。層間接続導体14A~層間接続導体14Hは、ビアホールに充填された導電ペーストが硬化することで形成される。チップコンデンサ22は、上述のように、基材層11A~基材層11Eの熱可塑性樹脂を熱圧着させる温度では流動しない材料で構成されている。
 図4はLC複合部品10の断面図である。基材層11Bおよび基材層11Cは、平面視してチップコンデンサ22に重なる部分で他の部分より上方向に変位している。基材層11A~基材層11Cは、平面視してチップコンデンサ22に重なる部分で薄くなっている。チップコンデンサ22は、基材層11Bおよび基材層11Cが上方向に変位することおよび基材層11A~基材層11Cが薄くなることにより生じた空間に配置されている。
 LC複合部品10は、平面視したときのチップコンデンサ22の周辺部分で、配線パターン12Aおよび配線パターン12Bの厚みにより、配線パターン12Aおよび配線パターン12Bが形成されていない場合に比べて厚くなっている。配線パターン12Aおよび配線パターン12Bはチップコンデンサ22の側面付近に形成されている。チップコンデンサ22と配線パターン12Bとは、互いの側面(端面)が対向するように配置されている。すなわち、配線パターン12Bは、積層方向においてチップコンデンサ22の配置範囲内に形成されている。LC複合部品10の両主面、すなわち、多層基板21の両主面は平坦となっている。
 図5は、LC複合部品10の製造方法を示す断面図である。なお、図5に示されていないLC複合部品10の構造については、図5に示された工程と並行して、図5に示された工程と同様の工程により形成する。まず、図5(A)に示すように、片面全面に金属箔が貼られた基材25Dを用意し、エッチング等により金属箔をパターニングすることで配線パターン12Dおよび配線パターン12Eを形成する。基材25Dは、液晶ポリマー(LCP)等からなる熱可塑性樹脂基材である。
 次に、図5(B)に示すように、レーザ加工等により、層間接続導体14D(図2参照)を形成する位置に、基材25Dを貫通するが、配線パターン12Dを貫通しないビアホールを形成する。層間接続導体14Eを形成する位置に、基材25Dを貫通するが、配線パターン12Eを貫通しないビアホールを形成する。そして、これらのビアホールに導電ペースト26を充填する。
 次に、図5(C)に示すように、基材25Dの上面に、平面視で外部電極15Aおよび外部電極15Bと導電ペースト26とが重なるように、チップコンデンサ22を配置する。そして、チップコンデンサ22が配置された基材25Dを加熱しながら同時に加圧する(加熱プレス)ことにより、基材25Dにチップコンデンサ22を熱圧着させる。
 次に、図5(D)に示すように、基材25A~基材25Eを上からこの順に積層する。この際、基材25Bおよび基材25Cの主面のうち配線パターンが形成された側を上に向け、基材25Dおよび基材25Eの主面のうち配線パターンが形成された側を下に向ける。基材25B~基材25Eには、図5(A)および図5(B)に示す工程と同様の工程により、配線パターンと、導電ペーストが充填されたビアホールとが所定の配置で形成されている。なお、基材25Bおよび基材25Cには、チップコンデンサ22を収納するための開口部は形成されていない。
 次に、図5(E)に示すように、積層された基材25A~基材25Eを加熱しながら同時に加圧することにより、基材25A~基材25Eを熱圧着させる。これにより、多層基板21にチップコンデンサ22が内蔵されたLC複合部品10が完成する。なお、多層基板21には、基材に形成される開口部が連接してなるキャビティが形成されていない。
 第1の実施形態では、上述のように、LC複合部品10の製造工程においてチップコンデンサ22を収納するためのキャビティを形成しない。このため、LC複合部品10は、平面視でチップコンデンサ22が位置する部分において、キャビティを形成する場合より厚くなる。一方、平面視したときのチップコンデンサ22の周辺部分には、配線パターン12Aおよび配線パターン12Bを形成する。これにより、LC複合部品10は、平面視したときのチップコンデンサ22の周辺部分においても、配線パターン12Aおよび配線パターン12Bが形成されない場合に比べて厚くなる。
 すなわち、チップコンデンサ22を収納するためのキャビティを設けなくても、配線パターン12Aおよび配線パターン12Bにより、平面視で多層基板21のチップコンデンサ22に重なる部分とチップコンデンサ22の周辺部分との厚みの差を小さくすることができる。この結果、LC複合部品の両主面が平坦になるように、積層された基材25A~基材25Eを加熱プレスすることが容易となる。従って、キャビティを形成する工程を行うことなく、両主面が平坦なLC複合部品10を形成することができる。
 また、チップコンデンサ22の側面付近に配線パターン12Aおよび配線パターン12Bが形成されているので、加熱プレスの際、チップコンデンサ22の側面付近で、樹脂が拘束されて樹脂の流動が生じにくくなる。このため、チップコンデンサ22の位置精度を高くすることができる。
《第2の実施形態》
 本発明の第2の実施形態に係る部品内蔵多層基板30について説明する。図6(A)は、部品内蔵多層基板30の一部を示す断面図である。図6(B)は、部品内蔵多層基板30の一部を示す分解断面図である。図6(C)は、基材層31Dの一部を示す平面図である。
 部品内蔵多層基板30では、熱可塑性樹脂から形成される複数の基材層31A~31Fが積層されてなる多層基板32に、熱可塑性樹脂を圧着させる温度で流動しない材料で構成された部品51が内蔵されている。多層基板32において、積層方向から見て部品に重なる部分と、積層方向から見て部品の周辺部分とでは、基材層の積層数が等しい。積層方向から見て部品51の周辺で部品51を囲むように、基材層31A~基材層31Fの主面に、多層基板の厚みを調整する調整パターン41が形成されている。
 部品内蔵多層基板30では、基材層31A~基材層31Fが上からこの順に積層されている。部品51は基材層31Cと基材層31Dとの間に配置されている。調整パターン41は、基材層31A~基材層31Cの下面および基材層31D~基材層31Fの上面に形成されている。調整パターン41は、枠状であり、銅箔からなる。基材層31Aに形成された調整パターン41は部品51の上面より上方に位置している。基材層31Fに形成された調整パターン41は部品51の下面より下方に位置している。すなわち、積層方向から見て部品51の周辺部分で部品51の積層方向の一方側に位置する基材層31Aから部品51の積層方向の他方側に位置する基材層31Fまでのそれぞれの基材層31A~基材層31Fに、調整パターン41が形成されている。積層方向において、調整パターン41の厚みの合計値は部品51の厚みにほぼ等しい。
 第2の実施形態では、上述のように、調整パターン41の厚みの合計値は部品51の厚みにほぼ等しい。このため、部品51を挟んで積層された基材において、積層方向から見て部品51に重なる部分の厚みと、積層方向から見たときの部品51の周辺部分の厚みとは、ほぼ等しくなる。このため、部品内蔵多層基板30の両主面が平坦になるように、積層された基材を加熱プレスすることがさらに容易となる。
 図7は、第2の実施形態の変形例に係る基材層31Dの平面図である。以下では、第2の実施形態の変形例において部品内蔵多層基板30と異なる点について説明する。第1の変形例では、図7(A)に示すように、基材層31Dの主面に、平面視で部品51を囲むように、樹脂等の非導体からなる枠状の調整パターン42が形成されている。なお、他の基材層にも、基材層31Dに形成された調整パターンと同様のものが形成される。このことは第2の実施形態の他の変形例でも同様である。
 第2の変形例では、図7(B)に示すように、基材層31Dの主面にセラミックフェライトコア52が配置されている。セラミックフェライトコア52は本発明の部品の一例である。基材層31Dの主面に、平面視でセラミックフェライトコア52を囲むように、銅箔からなる調整パターン43が形成されている。調整パターン43はコイルパターンである。
 第3の変形例では、図7(C)に示すように、基材層31Dの主面に4つの調整パターン44が形成されている。調整パターン44は、その側面が部品51の側面のうち角になる部分に対向するように形成されている。言い換えると、調整パターン44は、枠状の調整パターンから各直線部分の長手方向の中央部分が取り除かれた形状を有する。
 第4の変形例では、図7(D)に示すように、基材層31Dの主面に4つの調整パターン45が形成されている。調整パターン45は、その側面が部品51の各側面に対向するように形成されている。言い換えると、調整パターン45は、枠状の調整パターンから角部分が取り除かれた形状を有する。
 なお、本発明の多層基板に内蔵される部品は、上述の実施形態に限定されず、多層基板の熱可塑性樹脂を熱圧着させる温度で流動しない材料からなる部材、例えば、磁石(フェライト焼結体)等を含む。
C1…キャパシタ
L1…インダクタ
P1~P3…端子
10…LC複合部品
11A~11E,31A~31F…基材層
12A,12B…配線パターン(厚み調整部材)
12C~12F,13A~13C…配線パターン
14A~14H…層間接続導体
15A,15B…外部電極
21,32…多層基板
22…チップコンデンサ(部品)
25A~25E…基材
26…導電ペースト
30…部品内蔵多層基板
41~45…調整パターン
51…部品
52…セラミックフェライトコア

Claims (9)

  1.  熱可塑性樹脂から形成される複数の基材層が積層されてなる多層基板に部品が内蔵されている部品内蔵多層基板であって、
     前記多層基板において、積層方向から見て前記部品に重なる部分と、積層方向から見て前記部品の周辺部分とでは、前記基材層の積層数が等しく、
     積層方向から見て前記部品の周辺で前記部品を囲むように、前記基材層の主面に、前記多層基板の厚みを調整する厚み調整部材が形成されている、部品内蔵多層基板。
  2.  前記厚み調整部材は複数の前記基材層の主面に形成されている、請求項1に記載の部品内蔵多層基板。
  3.  積層方向において、前記厚み調整部材の厚みの合計値は前記部品の厚みにほぼ等しい、請求項2に記載の部品内蔵多層基板。
  4.  前記多層基板の両主面が平坦である、請求項1ないし3のいずれかに記載の部品内蔵多層基板。
  5.  前記厚み調整部材は導体パターンである、請求項1ないし4のいずれかに記載の部品内蔵多層基板。
  6.  前記厚み調整部材は回路を形成する配線パターンの少なくとも一部を構成している、請求項5に記載の部品内蔵多層基板。
  7.  前記厚み調整部材はコイルパターンである、請求項6に記載の部品内蔵多層基板。
  8.  前記厚み調整部材は積層方向において前記部品の配置範囲内に形成されている、請求項1ないし7のいずれかに記載の部品内蔵多層基板。
  9.  積層方向から見て前記部品の周辺部分で前記部品の積層方向の一方側に位置する前記基材層から前記部品の積層方向の他方側に位置する前記基材層までの其々の前記基材層に、前記厚み調整部材が形成されている、請求項1ないし8のいずれかに記載の部品内蔵多層基板。
PCT/JP2015/065985 2014-06-18 2015-06-03 部品内蔵多層基板 WO2015194373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201590000447.7U CN206602721U (zh) 2014-06-18 2015-06-03 元器件内置多层基板
JP2016529226A JP6304376B2 (ja) 2014-06-18 2015-06-03 部品内蔵多層基板
US15/298,366 US10091886B2 (en) 2014-06-18 2016-10-20 Component built-in multilayer board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014124872 2014-06-18
JP2014-124872 2014-06-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/298,366 Continuation US10091886B2 (en) 2014-06-18 2016-10-20 Component built-in multilayer board

Publications (1)

Publication Number Publication Date
WO2015194373A1 true WO2015194373A1 (ja) 2015-12-23

Family

ID=54935363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065985 WO2015194373A1 (ja) 2014-06-18 2015-06-03 部品内蔵多層基板

Country Status (4)

Country Link
US (1) US10091886B2 (ja)
JP (1) JP6304376B2 (ja)
CN (1) CN206602721U (ja)
WO (1) WO2015194373A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608609B2 (en) 2016-08-12 2020-03-31 Murata Manufacturing Co., Ltd. LC filter and method of manufacturing LC filter
US10716212B2 (en) 2016-12-12 2020-07-14 Murata Manufacturing Co., Ltd. LC device and method of manufacturing LC device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958758A (zh) * 2018-09-26 2020-04-03 奥特斯(中国)有限公司 部件承载件及板件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211275A (ja) * 1991-02-18 1993-08-20 Toshiba Corp 半導体装置及びその製造方法
JP2004235523A (ja) * 2003-01-31 2004-08-19 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2005072229A (ja) * 2003-08-25 2005-03-17 Toppan Printing Co Ltd キャパシタ素子内蔵多層プリント配線板
JP2006287008A (ja) * 2005-04-01 2006-10-19 Seiko Epson Corp 多層構造基板の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916514A (en) * 1988-05-31 1990-04-10 Unisys Corporation Integrated circuit employing dummy conductors for planarity
US5766803A (en) * 1996-06-05 1998-06-16 Advanced Micro Devices, Inc. Mask generation technique for producing an integrated circuit with optimal metal interconnect layout for achieving global planarization
JP3882540B2 (ja) * 2001-07-04 2007-02-21 株式会社デンソー プリント基板の製造方法およびその製造方法によって形成されるプリント基板
JP3867593B2 (ja) * 2001-06-13 2007-01-10 株式会社デンソー プリント基板の製造方法およびその製造方法によって形成されるプリント基板
JP4392157B2 (ja) * 2001-10-26 2009-12-24 パナソニック電工株式会社 配線板用シート材及びその製造方法、並びに多層板及びその製造方法
JP2003188538A (ja) * 2001-12-18 2003-07-04 Murata Mfg Co Ltd 多層基板、および多層モジュール
JP4239530B2 (ja) * 2002-09-04 2009-03-18 株式会社村田製作所 多層セラミック基板
JP2006073763A (ja) * 2004-09-01 2006-03-16 Denso Corp 多層基板の製造方法
JP2006344887A (ja) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp プリント配線板およびその製造方法
JP2007324550A (ja) * 2006-06-05 2007-12-13 Denso Corp 多層基板
JP4862641B2 (ja) * 2006-12-06 2012-01-25 株式会社デンソー 多層基板及び多層基板の製造方法
US8130507B2 (en) 2008-03-24 2012-03-06 Ngk Spark Plug Co., Ltd. Component built-in wiring board
JP5333680B2 (ja) * 2010-10-08 2013-11-06 株式会社村田製作所 部品内蔵基板およびその製造方法
JP2012186440A (ja) * 2011-02-18 2012-09-27 Ibiden Co Ltd インダクタ部品とその部品を内蔵しているプリント配線板及びインダクタ部品の製造方法
WO2012137548A1 (ja) * 2011-04-04 2012-10-11 株式会社村田製作所 チップ部品内蔵樹脂多層基板およびその製造方法
JP2012238797A (ja) * 2011-05-13 2012-12-06 Murata Mfg Co Ltd 多層回路モジュール
JP5533914B2 (ja) * 2011-08-31 2014-06-25 株式会社デンソー 多層基板
JP5910163B2 (ja) * 2012-02-28 2016-04-27 株式会社村田製作所 部品内蔵樹脂多層基板およびその製造方法
JP5967028B2 (ja) * 2012-08-09 2016-08-10 株式会社村田製作所 アンテナ装置、無線通信装置およびアンテナ装置の製造方法
WO2014054387A1 (ja) * 2012-10-03 2014-04-10 株式会社村田製作所 部品内蔵基板およびその製造方法
JPWO2014069107A1 (ja) * 2012-10-31 2016-09-08 株式会社村田製作所 部品内蔵基板および通信端末装置
CN105981484B (zh) * 2014-04-10 2018-11-09 株式会社村田制作所 元器件内置多层基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211275A (ja) * 1991-02-18 1993-08-20 Toshiba Corp 半導体装置及びその製造方法
JP2004235523A (ja) * 2003-01-31 2004-08-19 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2005072229A (ja) * 2003-08-25 2005-03-17 Toppan Printing Co Ltd キャパシタ素子内蔵多層プリント配線板
JP2006287008A (ja) * 2005-04-01 2006-10-19 Seiko Epson Corp 多層構造基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608609B2 (en) 2016-08-12 2020-03-31 Murata Manufacturing Co., Ltd. LC filter and method of manufacturing LC filter
US10716212B2 (en) 2016-12-12 2020-07-14 Murata Manufacturing Co., Ltd. LC device and method of manufacturing LC device

Also Published As

Publication number Publication date
CN206602721U (zh) 2017-10-31
JPWO2015194373A1 (ja) 2017-04-20
US10091886B2 (en) 2018-10-02
JP6304376B2 (ja) 2018-04-04
US20170042033A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
TWI466146B (zh) 共模濾波器及其製造方法
JP6424453B2 (ja) 多層基板の製造方法および多層基板
US10051730B2 (en) Multilayer substrate manufacturing method and multilayer substrate
WO2014185438A1 (ja) 部品内蔵多層基板の製造方法および部品内蔵多層基板
JP6705567B2 (ja) 多層基板、多層基板の実装構造、多層基板の製造方法、および電子機器の製造方法
JP6304376B2 (ja) 部品内蔵多層基板
JP6380717B2 (ja) Lcフィルタおよびlcフィルタの製造方法
US20200395167A1 (en) Coil component
KR20060043994A (ko) 임베디드 캐패시터와 임베디드 캐패시터의 제작 방법
WO2015119004A1 (ja) 高周波信号伝送線路及びその製造方法
JP5817954B1 (ja) 部品内蔵基板
JP6263167B2 (ja) 多層基板および多層基板の製造方法
WO2014125894A1 (ja) 積層回路基板
WO2014185204A1 (ja) 部品内蔵基板及び通信モジュール
WO2017010228A1 (ja) 樹脂基板、部品搭載樹脂基板およびその製造方法
CN210075747U (zh) 多层基板
JP2015149337A (ja) 多層基板およびその製造方法
WO2018074104A1 (ja) 磁気素子
CN215265794U (zh) 树脂多层基板
WO2011043382A1 (ja) 回路基板及びその製造方法
JP6070290B2 (ja) 樹脂多層部品およびその製造方法
JP5674077B2 (ja) インダクタ素子
US10231342B2 (en) Component built-in substrate
JP6707970B2 (ja) Icチップ実装基板
JP7095739B2 (ja) 電気素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809025

Country of ref document: EP

Kind code of ref document: A1