WO2015182614A1 - 複層フィルム及び巻回体 - Google Patents
複層フィルム及び巻回体 Download PDFInfo
- Publication number
- WO2015182614A1 WO2015182614A1 PCT/JP2015/065117 JP2015065117W WO2015182614A1 WO 2015182614 A1 WO2015182614 A1 WO 2015182614A1 JP 2015065117 W JP2015065117 W JP 2015065117W WO 2015182614 A1 WO2015182614 A1 WO 2015182614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- layer
- optical film
- protective film
- multilayer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/022—Mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/06—Interconnection of layers permitting easy separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0006—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2551/00—Optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24364—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating
Definitions
- the present invention relates to a multilayer film and a wound body.
- an optical film such as a retardation film, a polarizing film, and a brightness enhancement film.
- Such an optical film is manufactured in a long shape by collecting a certain amount from the viewpoint of manufacturing efficiency, and the long film is stored as a wound body. Pull out the long film from the wound body after storage for a certain period, and bond it with other long films as necessary using the roll-to-roll method. It is used in.
- a technique in which a protective film is bonded to the optical film in order to protect the optical film and improve handling properties (see Patent Document 1).
- An advantageous effect can be obtained by laminating a protective film on the optical film to form a multilayer film, and winding the multilayer film into a wound body.
- the protective film used for such applications is often prepared as a long film prior to bonding with an optical film.
- Such a long film is usually stored in a state of being wound into a wound body, drawn out from the wound body prior to bonding with the optical film, and used.
- a protective film having a specific property may be used as a protective film constituting the multilayer film.
- a protective film having a certain degree of roughness on the surface opposite to the surface to be bonded to the optical film in the multilayer film and having a low elastic modulus and thus easily deformable can be used.
- an object of the present invention is to provide a multilayer film in which the occurrence of defects such as gauge bands and winding wrinkles in the case of a wound body is suppressed, and the occurrence of undesirable uneven shapes on the optical film surface is suppressed. Is to provide.
- a further object of the present invention is to provide a wound film of a multilayer film in which the occurrence of defects such as gauge bands and winding wrinkles is suppressed, and the occurrence of undesired uneven shapes on the optical film surface is suppressed. It is in.
- the present inventor has studied to solve the above-mentioned problems, and as a result, the surface roughness and elastic modulus of the optical film and the protective film, and the ratio thereof can be solved within a predetermined range. I found it.
- a protective film having a tensile modulus higher than the range that has been considered to be suitable is used. Further, the tensile modulus of the optical film, the surface roughness of the optical film and the protective film, and the two
- the ratio of the tensile elastic modulus and the ratio of the surface roughness within a predetermined range, the occurrence of defects such as gauge bands and winding wrinkles is suppressed, and the occurrence of undesired uneven shapes on the optical film surface is suppressed.
- the present invention has been completed. That is, according to the present invention, the following [1] to [5] are provided.
- a long multilayer film comprising a long optical film and a long protective film that can be peeled off from the long optical film, Three-dimensional centerline average roughness R1 of the surface of the optical film opposite to the surface on the protective film side, three-dimensional centerline average of the surface of the protective film opposite to the surface on the optical film side
- the optical film is a multilayer film having a layer configuration of b layer / a layer / b layer,
- the a layer is a layer made of a resin containing a polystyrene-based polymer
- the layer b is a multilayer film according to [1] or [2], which is a layer made of a resin containing a polymethyl methacrylate polymer.
- the protective film includes an adhesive layer that adheres to the optical film, and a back layer that is located on the opposite side of the adhesive layer from the optical film and does not adhere to the optical film.
- the multilayer film according to any one of [3] to [3].
- the thickness of the back layer is a ratio (adhesive layer / back layer) to the thickness of the adhesive layer, and is from 1/40 to 1/1, and any one of [4] to [7] A multilayer film according to Item.
- the multilayer film of the present invention suppresses the occurrence of defects such as gauge bands and winding wrinkles when used as a wound body, and also suppresses the occurrence of undesired uneven shapes on the optical film surface. It can be a multilayer film suitable for storage and transportation as a body.
- the wound body of the present invention is suitable for storing and transporting a multilayer film because the occurrence of defects such as gauge bands and winding wrinkles is suppressed, and the generation of undesired uneven shapes on the optical film surface is suppressed.
- FIG. 1 is a schematic view schematically showing a wound body obtained by winding a multilayer film according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing a cross section of a multilayer film according to an embodiment of the present invention.
- the “long” film refers to a film having a length of at least about 200 times the width.
- the long film preferably has a length of 300 times or more with respect to the width.
- the long film can have a length enough to be wound and stored or transported.
- the upper limit of length is not specifically limited, For example, it can be set to 10,000 times or less of the width.
- the multilayer film of the present invention includes a long optical film and a long protective film that can be peeled off from the long optical film.
- the multilayer film of the present invention has a structure in which a long optical film and a long protective film are provided one by one and these are bonded.
- FIG. 1 is a schematic view schematically showing a wound body obtained by winding a multilayer film according to an embodiment of the present invention.
- FIG. 2 is sectional drawing which shows typically the cross section of the multilayer film which concerns on one Embodiment of this invention.
- the wound body 10 is obtained by winding a multilayer film 100 in a roll shape.
- the multilayer film 100 is a film provided with the elongate optical film 120 and the elongate protective film 110 bonded to the optical film 120 so that peeling was possible.
- the three-dimensional centerline average roughness R2, the tensile elastic modulus M1 in the longitudinal direction of the optical film, and the tensile elastic modulus M2 in the longitudinal direction of the protective film satisfy the relationships of the following formulas (1) to (6).
- R1 is the three-dimensional centerline average roughness of the surface 120X of the optical film 120 opposite to the surface 120Y on the protective film side.
- R2 is the three-dimensional centerline average roughness of the surface 110X of the protective film 110 opposite to the surface 110Y on the optical film side.
- the surface of the optical film on the protective film side may be referred to as the front surface of the optical film, and the surface opposite to the surface of the optical film on the protective film side may be referred to as the back surface of the optical film.
- the surface on the optical film side of the protective film may be referred to as the front surface of the protective film, and the surface opposite to the optical film side surface of the protective film may be referred to as the back surface of the protective film.
- the three-dimensional centerline average roughness R1 on the back surface of the optical film is 0.01 ⁇ m or more and 0.05 ⁇ m or less.
- R1 is preferably 0.04 ⁇ m or less.
- R1 is less than 0.01 ⁇ m, the amount of air that is wound when the multilayer film is wound into a wound body is reduced, and defects such as gauge bands are likely to occur.
- R1 exceeds 0.05 ⁇ m, the amount of air that is wound when the multilayer film is wound to form a wound body becomes too large, and winding deviation is likely to occur.
- the three-dimensional centerline average roughness R2 on the back surface of the protective film is 0.01 ⁇ m or more and 0.20 ⁇ m or less.
- R2 is preferably 0.02 ⁇ m or more, more preferably 0.03 ⁇ m or more, while preferably 0.18 ⁇ m or less, more preferably 0.15 ⁇ m or less.
- R2 is less than 0.01 ⁇ m, the amount of air entrained when the multilayer film is wound into a wound body is reduced, and defects such as gauge bands are likely to occur.
- R2 exceeds 0.20 ⁇ m, an undesirable uneven shape is easily transferred from the protective film to the optical film.
- the ratio R2 / R1 between R2 and R1 is 1.0 or more and 5.0 or less.
- R2 / R1 is preferably 1.5 or more, while preferably 4.5 or less.
- R1 and R2 are within the above range, if the value of R2 / R1 is equal to or greater than the lower limit, the amount of air entrained when the multilayer film is wound into a wound body is reduced, and thus the gauge Defects such as bands and winding wrinkles can be suppressed.
- the R2 / R1 value is less than or equal to the upper limit, thereby suppressing the uneven shape of the protective film from being transferred to the optical film, which is undesirable on the optical film surface. Generation of uneven shapes can be suppressed.
- the three-dimensional centerline average roughness of the back surface is measured for the optical film and the protective film before the bonding, and R1 and R2 are measured. It can be R2.
- the three-dimensional centerline average roughness can be measured based on JIS B 0601: 1994 using a surface roughness meter (product name “SJ400” manufactured by Mitutoyo Corporation).
- the tensile modulus M1 in the longitudinal direction of the optical film is 1,500 MPa or more and 3,000 MPa or less.
- M1 is preferably 1,600 MPa or more, more preferably 1,800 MPa or more, while preferably 2,700 MPa or less, more preferably 2,500 MPa or less.
- the M1 is less than 1500 MPa, appearance defects such as winding wrinkles occur.
- M1 exceeds 3000 MPa, undesired imprints derived from foreign matters are likely to be generated.
- the tensile elastic modulus M2 in the longitudinal direction of the protective film is 2,500 MPa or more and 6,000 MPa or less.
- M2 is preferably 3,000 MPa or more, more preferably 3,500 MPa or more, while preferably 5,500 MPa or less, more preferably 5,000 MPa or less.
- M2 is less than 2500 MPa, poor appearance such as winding wrinkles occurs.
- M2 exceeds 6000 MPa, undesired uneven transfer to the optical film may be strong.
- the ratio M2 / M1 between M2 and M1 is 1.0 or more and 3.0 or less.
- M2 / M1 is preferably 1.5 or more, while preferably 2.5 or less.
- the M2 / M1 value is not less than the above lower limit, whereby the strain of the multilayer film can be set to a moderately high value.
- the body can be formed.
- the M2 / M1 value is less than or equal to the upper limit, thereby suppressing the uneven shape of the protective film from being transferred to the optical film, which is undesirable on the optical film surface. Generation of uneven shapes can be suppressed.
- the tensile modulus can be measured with a tensile testing machine (Instron, 5564 type digital material testing machine) in accordance with JIS K 7113.
- the tensile elastic modulus of the optical film and the protective film can be measured at a point before they are bonded to form a multilayer film.
- the protective film is provided with a release film that protects the adhesive surface and is peeled off from the release film and then laminated with an optical film to obtain a multilayer film, the tensile elastic modulus is obtained with the release film peeled off. taking measurement.
- the width and length of the multilayer film are not particularly limited, and are suitable for the width and length of the optical film to be protected and stored, and for producing a wound body and storing it in the wound state. Suitable width and length.
- the width of the multilayer film is preferably 800 mm or more, and more preferably 1,000 mm or more.
- a wound body in which a wide film is wound tends to cause wrinkles or gauge bands.
- variety of a multilayer film can be normally 2500 mm or less.
- the optical film which comprises a multilayer film can be used as the arbitrary elongate film used for an optical use.
- the optical film include a retardation film, a polarizing film, a brightness enhancement film, a light diffusion film, a light collecting film, and a reflection film.
- the material of the optical film is usually a resin, preferably a thermoplastic resin.
- resin what contains various polymers as a main component can be used.
- polymers include olefin polymers such as polyethylene and polypropylene, polyester polymers such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, polyarylene sulfide polymers such as polyphenylene sulfide, polyvinyl alcohol polymers, polycarbonate polymers.
- Polymers polyarylate polymers, cellulose ester polymers, polyethersulfone polymers, polysulfone polymers, polyallylsulfone polymers, polyvinyl chloride polymers, norbornene polymers, rod-like liquid crystal polymers, homopolymers of styrene or styrene derivatives Or a polystyrene-based polymer including a copolymer with another monomer, a polyacrylonitrile polymer, a polymethyl methacrylate polymer, and a multi-component copolymer thereof. It is below.
- styrene derivatives include those in which a substituent is substituted at the benzene ring or ⁇ -position of styrene.
- substituents include an alkyl group such as a methyl group, a halogen atom such as chlorine, and an alkoxy group such as methoxy.
- Specific examples of the styrene derivative include alkyl styrene such as methyl styrene and 2,4-dimethyl styrene; halogenated styrene such as chlorostyrene; halogen-substituted alkyl styrene such as chloromethyl styrene; and alkoxy styrene such as methoxy styrene. Can be mentioned.
- styrene and styrene derivatives styrene having no substituent is preferable. As these polymers, one type may be used alone, or two or more types may be used in combination at any ratio.
- the resin as the material of the optical film can contain particles.
- the particles may be made of a polymer, or may be made of a component other than the polymer.
- Examples of the particles made of a polymer include rubber particles such as acrylic rubber particles.
- Acrylic rubber particles are particles having rubber elasticity obtained by polymerizing in the presence of a polyfunctional monomer mainly composed of alkyl acrylate such as butyl acrylate or 2-ethylhexyl acrylate.
- the proportion of particles in the total amount of the resin is preferably 5% by weight or more, more preferably 10% by weight or more, while preferably 50%. % By weight or less, more preferably 40% by weight or less.
- the particle diameter is preferably 50 to 1,000 nm as the number average particle diameter.
- the resin as the material of the optical film may contain an optional component other than the components described above as long as the effects of the present invention are not significantly impaired.
- optional components include antioxidants, heat stabilizers, light stabilizers, UV absorbers, antistatic agents, dispersants, chlorine scavengers, flame retardants, crystallization nucleating agents, reinforcing agents, antifogging agents, release agents.
- known additives such as molds, pigments, neutralizers, lubricants, decomposition agents, metal deactivators, antifouling agents, and antibacterial agents. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the amount of the optional component is within a range that does not impair the effects of the present invention, and is usually 50 parts by weight or less, preferably 30 parts by weight or less with respect to 100 parts by weight of the polymer, and the lower limit is zero.
- an optical film material an optical film having both desired optical characteristics and a desired tensile elastic modulus M1 can be obtained by appropriately selecting one of the materials listed above.
- the optical film may be a single layer film consisting of only one layer or a multilayer film including two or more layers.
- each layer can be a layer made of the resin described above.
- the materials constituting these layers may be the same or different.
- particularly suitable multilayer films include one or more layers comprising a layer made of a resin containing a polystyrene-based polymer and one or more layers b made of a resin containing a polymethyl methacrylate polymer. It is done.
- the multilayer film including the a layer and the b layer
- the multilayer film having a layer configuration of b layer / a layer / b layer, that is, the a layer and the front surface and the back surface thereof were provided.
- the multilayer film containing a pair of b layer is mentioned.
- the optical film 120 that is a component of the multilayer film 100 is provided in contact with the layer 122a as the a layer, and the front side surface and the back side surface of the layer 122a. And layers 121b and 123b as the b layer.
- a desired back surface three-dimensional centerline average roughness R1 can be imparted to the back surface 120X of the optical film 120 by adding the particles described above as the material of the layer 123b while adjusting the ratio.
- desired optical characteristics as an optical film can be obtained by appropriately adjusting the thicknesses of the layers 121b, 122a, and 123b.
- polystyrene-based polymer has a negative intrinsic birefringence value
- desired optical characteristics as an optical film such as a retardation film
- a desired tensile elastic modulus M1 can be obtained by appropriately selecting the material of the layers 121b, 122a, and 123b.
- the thickness of the optical film is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, while preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less.
- the thickness of the optical film can be measured using an on-line infrared film thickness meter (trade name RX-200, manufactured by Kurabo Industries). Specifically, the optical film being transported was measured at least 10 times or more in the film width direction at an interval of 2 mm in the width direction at a transport speed of 10 m / min (that is, 10 or more distributed in the width direction). The average thickness in the film width direction is calculated from the average value of all measurement results measured at the measurement points, and this value can be used as the thickness of the optical film.
- an on-line infrared film thickness meter trade name RX-200, manufactured by Kurabo Industries.
- the width and length of the optical film are not particularly limited, and may be a width and length that can be used for a desired application. Specifically, the width and length can be the same as the width and length of the multilayer film described above.
- the optical film usually has high transparency. Specifically, the total light transmittance of the optical film is preferably 85% or more, more preferably 90% or more. The upper limit is ideally 100%. Here, the total light transmittance can be measured according to JIS K7361-1997. Moreover, although an optical film depends on a use, it usually has a small haze. Specifically, the haze of the optical film is usually 10% or less, preferably 5% or less, more preferably 1% or less. The lower limit value is ideally zero, but is usually 0.1% or more. Here, haze can be measured according to JIS K7361-1997.
- the optical film can be manufactured by any manufacturing method.
- the production method include a melt molding method and a solution casting method. More specific examples of the melt molding method include an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, and a stretch molding method.
- an extrusion molding method, an inflation molding method, or a press molding method is preferable, and in particular, efficiency while suppressing the development of retardation more reliably.
- the extrusion method is particularly preferred from the viewpoint that an optical film can be produced easily and easily.
- a coextrusion molding method such as a coextrusion T-die method, a coextrusion inflation method, a coextrusion lamination method; a film lamination molding method such as dry lamination; Known methods such as a coating molding method for coating the resin solution constituting the other layers can be appropriately used.
- the coextrusion molding method is preferable from the viewpoint of good production efficiency and preventing volatile components such as a solvent from remaining in the optical film.
- the coextrusion molding methods the coextrusion T-die method is preferable.
- examples of the coextrusion T-die method include a feed block method and a multi-manifold method, but the multi-manifold method is more preferable in that variation in layer thickness can be reduced.
- a stretching process for stretching the film can be performed as necessary.
- the protective film is a long film that is bonded to the optical film to form a multilayer film.
- a protective film is bonded together directly on the surface of an optical film, without passing through another layer.
- a film that can be peeled off from the optical film is used as the protective film. That is, the protective film is a film that can be bonded to an optical film to form a multilayer film, and can be peeled off from the optical film when the optical film is used.
- the three-dimensional centerline average roughness R2 on the back side and the tensile elastic modulus M2 in the longitudinal direction satisfy the formulas (2), (4), (5) and (6).
- Such a protective film having the tensile modulus M2 and the back surface three-dimensional centerline average roughness R2 can be obtained, for example, by appropriately selecting the material and appropriately adjusting the components of the material.
- the degree of ease of peeling between the optical film and the protective film after bonding them so that the front surface of the optical film and the front surface of the protective film are in contact with each other can be arbitrarily set.
- the adhesive force between the optical film and the protective film is usually 20 mN / cm or more, usually 800 mN / cm or less, preferably 400 mN / cm or less. It is preferable that peeling is easy, but if it can be peeled off too easily, peeling may occur when the multilayer film is wound and pulled out.
- the adhesive strength between the optical film and the protective film is affected by the surface roughness of the optical film, and generally the adhesive strength can be lowered as the surface roughness of the optical film is increased. By appropriately selecting the material of the surface of the protective film on the side of the optical film, the adhesive strength with respect to a certain optical film can be set to a desired range.
- the thickness of the protective film can be appropriately set in accordance with the thickness of the optical film so that a desired level of protection of the optical film is achieved.
- the thickness of the protective film is preferably 20 ⁇ m to 100 ⁇ m from the viewpoints of moldability and handling properties.
- the width and length of the protective film are not particularly limited, and may be a width and a length that match the width and length of the optical film that is to be protected and stored.
- the protective film may be a single-layer film composed of only one layer, but is usually a multilayer protective film having two or more layers.
- Preferable examples of the protective film include a multilayer protective film that includes an adhesive layer and a back layer, and further includes an intermediate layer between the adhesive layer and the back layer as necessary.
- the protective film 110 that is a constituent element of the multilayer film 100 is a multilayer protective film including an adhesive layer 112 and a back layer 111.
- the surface on the adhesive layer 112 side of the protective film 110 constitutes a front surface 110Y of the protective film 110, while the surface on the back layer side of the protective film 110 constitutes a back surface 110X of the protective film 110. Therefore, by appropriately selecting the material of the adhesive layer 112, the protective film 110 can be provided with desired peelable adhesiveness.
- the tensile elastic modulus M2 and the back surface three-dimensional centerline average roughness R2 can be set to desired values.
- the pressure-sensitive adhesive layer of the multilayer protective film can be formed by providing a pressure-sensitive adhesive layer on the surface of another layer such as a back layer.
- the pressure-sensitive adhesive include a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, a polyvinyl ether-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive.
- the pressure-sensitive adhesive one type may be used alone, or two or more types may be used in combination at any ratio.
- the pressure-sensitive adhesive include a block copolymer represented by the general formula ABA or the general formula AB (wherein, A represents a styrenic polymer block, and B represents butadiene)
- the styrene polymer block A has a weight average molecular weight of 12,000 to 100,000 and a glass transition temperature of 20. Those having a temperature of at least ° C are preferred.
- the polymer block B selected from the group consisting of a butadiene polymer block, an isoprene polymer block, and an olefin polymer block obtained by hydrogenation thereof has a weight average molecular weight of 10,000 to 300,000, glass Those having a transition temperature of ⁇ 20 ° C. or lower are preferred.
- Examples of the block copolymer represented by the general formula ABA can include styrene-ethylene / propylene-styrene, styrene-ethylene / butylene-styrene, and hydrogenated products thereof.
- Examples of the block copolymer represented by the formula AB include styrene-ethylene / propylene, styrene-ethylene / butylene and hydrogenated products thereof.
- acrylic polymers contained in acrylic adhesives include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobutyl (meth) acrylate, hexyl Alkyl (meth) acrylates such as (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; alkoxyalkyl (meta) such as methoxyethyl (meth) acrylate and butoxyethyl (meth) acrylate ) Acrylates; cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, vinyl acetate, (meth) acrylamide, N-methylol (meth) acrylamide, etc.
- (meth) acrylamides styrene, acrylonitrile, vinyl pyridine, vinyl pyrrolidone, vinyl alkyl ethers, homo- or copolymers and the like.
- (meth) acrylate means acrylate, methacrylate or a combination thereof
- (meth) acryl means acrylic, methacryl or a combination thereof.
- the acrylic polymer include a copolymer of a monomer composition including a monomer such as those exemplified above and an acrylic monomer having a functional group.
- acrylic monomers having a functional group include unsaturated acids such as maleic acid, fumaric acid and (meth) acrylic acid; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2 -Hydroxyhexyl (meth) acrylate, dimethylaminoethyl methacrylate, (meth) acrylamide, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, maleic anhydride and the like.
- the acrylic monomer having a functional group one type may be used alone, or two or more types may be used in combination at any ratio.
- the acrylic pressure-sensitive adhesive may contain a crosslinking agent as necessary.
- the cross-linking agent is a compound that undergoes a thermal cross-linking reaction with the functional group of the copolymer, and finally forms a three-dimensional network structure.
- the adhesion between the adhesive layer and other layers (intermediate layer, back layer, etc.) in the protective film, the toughness of the protective film, solvent resistance, water resistance, and the like can be improved.
- the crosslinking agent include isocyanate compounds, melamine compounds, urea compounds, epoxy compounds, amino compounds, amide compounds, aziridine compounds, oxazoline compounds, silane coupling agents, and modified products thereof. .
- the crosslinking agent one kind may be used alone, or two or more kinds may be used in combination at any ratio.
- an isocyanate compound and a modified product thereof is a compound having two or more isocyanate groups in one molecule, and is roughly classified into an aromatic compound and an aliphatic compound.
- aromatic isocyanate compounds include tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, naphthalene diisocyanate, tolidine diisocyanate, and paraphenylene diisocyanate.
- Examples of aliphatic isocyanate compounds include hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, tetramethylxylene diisocyanate, and xylylene diisocyanate.
- examples of modified products of these isocyanate compounds include biuret bodies, isocyanurate bodies, and trimethylolpropane adduct bodies of isocyanate compounds.
- the pressure-sensitive adhesive may further contain a crosslinking catalyst such as dibutyltin laurate in order to promote the crosslinking reaction.
- a crosslinking catalyst such as dibutyltin laurate
- the pressure-sensitive adhesive may contain a tackifying polymer as necessary.
- tackifying polymers include aromatic hydrocarbon polymers, aliphatic hydrocarbon polymers, terpene polymers, terpene phenol polymers, aromatic hydrocarbon modified terpene polymers, chroman indene polymers, styrene-based polymers Examples thereof include a polymer, a rosin polymer, a phenol polymer, and a xylene polymer. Among them, an aliphatic hydrocarbon polymer such as low density polyethylene is preferable.
- the specific type of tackifying polymer is appropriately selected from the viewpoint of the compatibility with the block copolymer, the melting point of the resin, and the adhesive strength of the adhesive layer. As the tackifying polymer, one type may be used alone, or two or more types may be used in combination at any ratio.
- the amount of the tackifying polymer is, for example, preferably 5 parts by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less, with respect to 100 parts by weight of the block copolymer. If the amount of the tackifying polymer is too small, the protective film may be lifted or peeled off when it is bonded to the optical film. If the amount is too large, the feeding tension increases and the optical film is bonded. In this case, wrinkles and scratches may occur, or bleed-out of the tackifying polymer may occur and the adhesive force may be easily reduced.
- the pressure-sensitive adhesive may contain additives such as a softening agent, an anti-aging agent, a filler, and a colorant (such as a dye or a pigment) as necessary.
- a softening agent such as a softening agent, an anti-aging agent, a filler, and a colorant (such as a dye or a pigment) as necessary.
- a colorant such as a dye or a pigment
- one type may be used alone, or two or more types may be used in combination at any ratio.
- softeners include process oil, liquid rubber, and plasticizer.
- fillers include barium sulfate, talc, calcium carbonate, mica, silica, and titanium oxide.
- the adhesive strength of the adhesive layer to other layers (intermediate layer, back layer, etc.) in the protective film is preferably 2 mN / cm or more, more preferably 4 mN / cm or more, preferably 200 mN / cm or less, and 160 mN / cm or less. More preferred. If the adhesive strength is too low, the protective film may be lifted or peeled off when bonded to the optical film. If the adhesive strength is too high, the feeding tension will increase and the wrinkle will be reduced when bonding to the optical film. Or scratches may occur.
- the thickness of the adhesive layer is usually 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less. If the pressure-sensitive adhesive layer is too thin, the pressure-sensitive adhesive force is lowered and the protective film may be lifted or peeled off. On the other hand, if the adhesive layer is too thick, the adhesive force becomes excessively high and the feeding tension increases, which may cause wrinkles and scratches when bonded to the optical film. In addition, the stiffness of the protective film may become strong and handling properties may deteriorate.
- the back surface layer of the multilayer protective film is a layer that is located on the back surface of the protective film and does not adhere to the optical film.
- the back layer can be a layer made of a resin containing a polymer.
- the polymer contained in the resin forming the back layer may be a homopolymer or a copolymer.
- Preferable examples of the polymer include a polyester polymer and a polyolefin polymer.
- polyester polymer examples include polyethylene terephthalate and polyethylene naphthalate.
- polyolefin polymers examples include polyethylene, polypropylene, ethylene-propylene copolymer, propylene- ⁇ -olefin copolymer, ethylene- ⁇ -olefin copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene- Examples include methyl (meth) acrylate copolymer, ethylene-n-butyl (meth) acrylate copolymer, and ethylene-vinyl acetate copolymer.
- examples of polyethylene include low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene.
- examples of the ethylene-propylene copolymer include a random copolymer and a block copolymer.
- examples of the ⁇ -olefin include butene-1, hexene-1, 4-methylpentene-1, octene-1, pentene-1, and heptene-1.
- polyethylene terephthalate and polypropylene are particularly preferable from the viewpoint of easily obtaining a desired value such as M2.
- the resin forming the back layer may contain particles.
- the particles may be made of a polymer, or may be made of a component other than the polymer.
- Examples of the back layer particles include inorganic particles such as calcium carbonate particles and silica particles.
- the proportion of particles in the total amount of resin forming the back layer is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, while preferably 1.0% by weight or less, more preferably 0.00%. 8% by weight or less.
- the particle diameter is preferably 0.01 to 10 ⁇ m as the number average particle diameter.
- the resin forming the back layer may contain an optional component other than the components described above as long as the effects of the present invention are not significantly impaired.
- optional components include additives such as fillers such as talc, stearamide, and calcium stearate, lubricants, antioxidants, ultraviolet absorbers, pigments, antistatic agents, and nucleating agents.
- additives such as fillers such as talc, stearamide, and calcium stearate, lubricants, antioxidants, ultraviolet absorbers, pigments, antistatic agents, and nucleating agents.
- one type may be used alone, or two or more types may be used in combination at any ratio.
- the thickness of the back layer is a ratio (adhesive layer / back layer) to the thickness of the adhesive layer, usually 1/40 or more, preferably 1/20 or more, usually 1/1 or less, preferably 1/2 or less. It is. If the thickness of the back layer is too small compared to the adhesive layer, the film formability may deteriorate and a lot of fish eyes may be generated. If it is too thick, the feeding tension will increase and the protective film will be bonded to the optical film. Wrinkles and scratches are likely to occur.
- An intermediate layer may be provided between the adhesive layer and the back layer as necessary.
- the intermediate layer is usually formed of a resin, but among them, it is preferably formed of a resin containing a polyolefin polymer.
- Examples of the polyolefin polymer contained in the intermediate layer include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene- ⁇ -olefin copolymer, polypropylene, and ethylene-propylene copolymer. (Random copolymer and / or block copolymer), ⁇ -olefin-propylene copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene-methyl (meth) acrylate copolymer, ethylene-n-butyl (Meth) acrylate copolymer, ethylene-vinyl acetate copolymer and the like.
- the polyolefin polymer one kind may be used alone, or two or more kinds may be used in combination at an arbitrary ratio.
- the polyolefin polymer contained in the intermediate layer is preferably a polyolefin polymer of a different type from the polymers contained in the adhesive layer and the back layer.
- the intermediate layer may include a material for forming the adhesive layer and a material for forming the back layer as necessary. Normally, when a protective film is produced by a coextrusion molding method, the non-uniform thickness at the end is slit and removed by a slitting process, etc., but the removed portion is used as a raw material for the intermediate layer. As a result, the amount of raw materials used can be reduced.
- the intermediate layer is, for example, a filler such as talc, stearamide, calcium stearate, lubricant, antioxidant, ultraviolet absorber, pigment, antistatic agent, nucleating agent, etc.
- Additives can be included. As the additive, one type may be used alone, or two or more types may be used in combination at any ratio.
- the thickness of the intermediate layer is usually 13 ⁇ m to 70 ⁇ m.
- the production method (i) is capable of achieving strong adhesion between the pressure-sensitive adhesive layer and the back layer or the intermediate layer, is difficult to cause adhesive residue on the optical film, This is preferable in that the cost is low because the process is simplified.
- glue residue refers to a phenomenon in which the adhesive remains on the optical film after the protective film is peeled off.
- the production method (iii) is preferable from the viewpoint of easily obtaining layers such as an adhesive layer and a back layer having a uniform thickness. More specifically, in the production method (iii), a pressure-sensitive adhesive layer as a material for the pressure-sensitive adhesive layer is formed on an arbitrary film such as a release film to form a pressure-sensitive adhesive layer. This can be done by transferring it onto the surface. Specifically, a multilayer film having a layer configuration of a release film / adhesive layer is prepared, and this is laminated with a back layer (or a multilayer film having a layer configuration of an intermediate layer / back layer) to release the film.
- a protective film having a layer structure of / adhesive layer / back layer (or release film / adhesive layer / intermediate layer / back layer) can be prepared. Furthermore, the release film can be peeled off and used as a protective film immediately before being bonded to the optical film (in this application, for the protective film, a multilayer film including the release film is also a release film.
- the multi-layer film after peeling is also sometimes referred to as a “protective film” without distinction if it is clear from the context.
- an operation for deforming the surface of the back layer may be performed as necessary. Thereby, the three-dimensional centerline average roughness R2 on the back side of the protective film can be adjusted to a desired range.
- the operation of deforming the surface of the back layer is a method in which the surface is pressed with a shaping roll having a concavo-convex structure; a release film having a concavo-convex structure is stacked on the surface and pressed to form the concavo-convex structure of the release film.
- the step of deforming the surface of the back layer may be before or after the back layer and the adhesive layer are bonded together.
- the back surface of the protective film may be subjected to a surface modification treatment.
- the surface modification treatment include energy beam irradiation treatment and chemical treatment.
- the multilayer film of the present invention can be usually produced by separately producing an optical film and a protective film by a method such as the method described above and bonding them.
- the pasting operation is usually performed while applying a predetermined tension to the optical film and the protective film.
- the bonding is performed by overlapping the optical film and the protective film so that the front surface of the optical film and the front surface of the protective film are in contact with each other with the longitudinal direction thereof aligned. And it can carry out by pressing from the back surface of a protective film.
- the pressurization can be continuously performed using a roll such as a nip roll.
- the wound body of the present invention is obtained by winding the long multilayer film in a roll shape.
- winding a long multilayer film in a roll shape it is preferable to wind the multilayer film so that the optical film side surface is on the inside and the protective film side surface is on the outside.
- one surface of the multilayer film is in contact with the other surface of the multilayer film wound thereon. That is, in the wound body of the present invention, the back surface of the protective film is in contact with the back surface of the optical film.
- the back three-dimensional center line average roughness R1 of the optical film the back three-dimensional center line average roughness R2 of the protective film, the tensile elastic modulus M1 in the longitudinal direction of the optical film, and the tensile elastic modulus in the longitudinal direction of the protective film
- M2 satisfies the relations of the above formulas (1) to (6), the occurrence of defects such as gauge bands and wrinkles in the wound body is suppressed, and undesired uneven shapes on the optical film surface are formed. Occurrence is suppressed.
- limiting in the winding frequency of a wound body Usually, 40 times or more, Preferably it is 60 times or more, Usually, 27000 times or less, Preferably it is 13000 times or less.
- limiting in the outer diameter of a wound body Usually, it is 160 mm or more, Preferably it is 190 mm or more, Usually, 2300 mm or less, Preferably it is 1200 mm or less.
- the wound body of the present invention is manufactured by winding a multilayer film in a roll shape.
- an appropriate winding core is used as necessary, and the production can be performed by winding a multilayer film around the winding core.
- the winding speed of the multilayer film 10 is usually 5 m / min or more, preferably 10 m / min or more, and is usually 50 m / min or less, preferably 45 m / min or less, more preferably 40 m / min or less.
- the tensile elastic modulus (M1 and M2) of the film was measured with a tensile tester (Instron, 5564 type digital material tester) according to JIS K7113.
- the measurement conditions were a tensile speed of 5 m / min, a test count of 5 times, a room temperature of 23 ° C., and a humidity of 50% RH.
- a test piece was cut out from the film.
- the shape of the test piece was a rectangle having a long side parallel to the longitudinal direction of the film (width 10 mm ⁇ long side length 250 mm). The stress was measured when the specimen was distorted by pulling in the long side direction.
- the measurement was performed based on JIS K7113 using a tensile testing machine with a constant temperature and humidity chamber (5564 type digital material testing machine manufactured by Instron Japan).
- the measurement conditions were a temperature of 23 ° C., a humidity of 60 ⁇ 5% RH, a distance between chucks of 115 mm, and a tensile speed of 100 mm / min. Such a measurement was performed three times. Then, from the measured stress and the strain measurement data corresponding to the stress, 4 points of measurement data (ie, strain every 0.2% when the strain of the test piece is in the range of 0.6% to 1.2%). Was measured at 0.6%, 0.8%, 1.0% and 1.2%). The tensile modulus of the film was calculated from the measurement data of 4 points of 3 measurements (12 points in total) using the least square method.
- the three-dimensional centerline average roughness Ra (R1 and R2) on the back of the optical film and the protective film is a surface roughness meter (product name “SJ400” manufactured by Mitutoyo Corporation). ) was measured based on JIS B 0601: 1994.
- This silica particle is prepared in advance by preparing an ethylene glycol slurry of silica containing 0.1 part of a sodium tripolyphosphate aqueous solution in terms of sodium atom with respect to 100 parts of silica particle, and then centrifuging the coarse particle part. It is a particle obtained by cutting 35% and then performing a filtration treatment with a metal filter having an opening of 5 ⁇ m. After 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can and subjected to a polycondensation reaction under reduced pressure at 280 ° C. to obtain a polyethylene terephthalate resin.
- Example 1 (1-1.
- the film raw material was supplied to an extruder, melted, extruded from a die, and cast on a cooling drum to prepare an unstretched film.
- the obtained unstretched film was stretched 3.5 times in the MD direction (longitudinal direction of the film) using a roll stretching machine at a stretching temperature of 120 ° C., and then the TD direction (film width) using a tenter stretching machine.
- the back layer film 1 having a thickness of 30 ⁇ m was obtained.
- the pressure-sensitive adhesive composition layer was applied to a thickness of 20 ⁇ m, and the pressure-sensitive adhesive composition layer was heat-dried at 90 ° C. for 1 minute to form a pressure-sensitive adhesive layer, thereby obtaining a multilayer having a release film / pressure-sensitive adhesive layer structure.
- the multi-layered product obtained in (1-2) is bonded to one surface of the back layer film obtained in (1-1) so that the surface on the adhesive layer side is in contact with the back layer film.
- a protective film (with a release film) having a layer configuration of mold film / adhesive layer / back layer film was prepared.
- three-dimensional centerline average roughness R2 of the surface at the back layer film side was measured.
- the release film was peeled from the obtained protective film, and the tensile elastic modulus M2 in the longitudinal direction was measured.
- Resin A a styrene-maleic anhydride copolymer resin (product name: DILARK D332, manufactured by Nova Chemical Japan), which is a resin having a negative intrinsic birefringence value, was prepared.
- resin B a methacrylic resin composition containing rubber particles (SUMIPEX HT50Y: manufactured by Sumitomo Chemical Co., Ltd.) was prepared.
- Resin A and Resin B are supplied to a film forming apparatus for coextrusion molding of 3 types and 3 layers (a type in which a film consisting of 3 layers is formed by 3 types of resins) and simultaneously extruded from a multi-manifold die I made it.
- the unstretched laminated body c which has b layer which consists of resin B in order of b layer / a layer / b layer was obtained.
- the thickness of b layer / a layer / b layer was 33 ⁇ m / 16 ⁇ m / 33 ⁇ m, respectively.
- the obtained unstretched laminate “c” was simultaneously biaxially stretched at a stretching temperature of 135 ° C.
- Multi-layer film and wound body Release the release film from the protective film (with release film) obtained in (1-3), and bond the surface on the adhesive layer side with one side of the optical film obtained in (1-4) And the multilayer film provided with a protective film and an optical film was obtained.
- the drawing-out tension of the protective film was 250 N
- the tension during conveyance of the optical film was 150 N. Bonding was performed by matching the longitudinal directions of the protective film and the optical film, and the obtained multilayer film was wound as it was to obtain a wound body.
- the multilayer film in the obtained wound body was 2000 m in length and 1490 mm in width.
- the number of windings of the wound body was 2089 times.
- the winding tension during winding of the multilayer film was 120 N to 140 N, and the winding speed was 10 m / min.
- the appearance of the obtained wound body and the uneven shape in the multilayer film in the wound body were evaluated.
- Example 2 (2-1. Back layer film) A back layer film 2 was obtained in the same manner as in Example 1-1 (1-1) except for the following changes. -Instead of polyethylene terephthalate resin, polypropylene resin (F113G: manufactured by Prime Polymer Co., Ltd.) was used. -Silica particles having a number average particle diameter of 1.5 ⁇ m were used instead of silica particles having a number average particle diameter of 5.0 ⁇ m. The obtained unstretched film was biaxially stretched successively at a stretching temperature of 160 ° C. in the MD direction using a roll stretching machine and 10 times in the TD direction using a tenter stretching machine, and a back surface having a thickness of 30 ⁇ m. A layer film 2 was obtained.
- Example 3 (3-1. Back layer film) A back layer film 3 was obtained in the same manner as in Example 1-1 (1-1) except for the following changes. -Silica particles having a number average particle diameter of 1.5 ⁇ m were used instead of silica particles having a number average particle diameter of 5.0 ⁇ m. -The draw ratio of sequential biaxial stretching was 3.7 times in the MD direction and 3.8 times in the TD direction.
- a protective film was prepared in the same manner as in (1-2) to (1-5) of Example 1 except that the back layer film 3 obtained in (3-1) was used instead of the back layer film 1.
- An optical film, a multilayer film, and a wound body of the multilayer film were obtained and measured and evaluated.
- Example 4 (4-1. Back layer film) Except for the following changes, the same operation as in (2-1) of Example 2 was performed to obtain a back layer film 4.
- -Silica particles having a number average particle size of 10.0 ⁇ m were used instead of silica particles having a number average particle size of 5.0 ⁇ m.
- Example 1 (4-2. Multi-layer film and wound body, etc.) Example 1 except that the back layer film 4 obtained in (4-1) was used instead of the back layer film 1 and the optical film 2 obtained in Example 2 was used instead of the optical film 1.
- the same operations as in (1-2), (1-3) and (1-5) were performed to obtain a protective film, a multilayer film, and a wound film of the multilayer film, and were measured and evaluated. .
- Example 5 (5-1. Back layer film) Except for the following changes, the same operation as in (1-1) of Example 1 was performed to obtain a back layer film 5.
- -Silica particles having a number average particle size of 10.0 ⁇ m were used instead of silica particles having a number average particle size of 5.0 ⁇ m.
- a protective film was prepared in the same manner as in (1-2) to (1-5) of Example 1 except that the back layer film 5 obtained in (5-1) was used instead of the back layer film 1.
- An optical film, a multilayer film, and a wound body of the multilayer film were obtained and measured and evaluated.
- Example 6 (6-1. Back layer film) A back layer film 12 was obtained in the same manner as in Example 1-1 (1-1) except for the following changes. -Silica particles having a number average particle diameter of 16.0 ⁇ m were used instead of silica particles having a number average particle diameter of 5.0 ⁇ m.
- Example 1 (C1-2. Multi-layer film and wound body, etc.) Example 1 except that the back layer film 2 obtained in Example 2 was used instead of the back layer film 1 and the optical film 3 obtained in (C1-1) was used instead of the optical film 1.
- the same operations as in (1-2), (1-3) and (1-5) were performed to obtain a protective film, a multilayer film, and a wound film of the multilayer film, and were measured and evaluated. .
- Example 1 (C2-2. Multi-layer film and wound body, etc.) Example 1 except that the back layer film 6 obtained in (C2-1) was used instead of the back layer film 1 and the optical film 2 obtained in Example 2 was used instead of the optical film 1
- the same operations as in (1-2), (1-3) and (1-5) were performed to obtain a protective film, a multilayer film, and a wound film of the multilayer film, and were measured and evaluated. .
- Example 1 (C3-2. Multi-layer film and wound body, etc.) Example 1 except that the back layer film 7 obtained in (C3-1) was used instead of the back layer film 1 and the optical film 2 obtained in Example 2 was used instead of the optical film 1
- the same operations as in (1-2), (1-3) and (1-5) were performed to obtain a protective film, a multilayer film, and a wound film of the multilayer film, and were measured and evaluated. .
- Example 1 (C4-2. Multi-layer film and wound body, etc.) Example 1 except that the back layer film 8 obtained in (C4-1) was used instead of the back layer film 1 and the optical film 2 obtained in Example 2 was used instead of the optical film 1
- the same operations as in (1-2), (1-3) and (1-5) were performed to obtain a protective film, a multilayer film, and a wound film of the multilayer film, and were measured and evaluated. .
- a protective film was prepared in the same manner as in (1-2) to (1-5) of Example 1, except that the back layer film 9 obtained in (C5-1) was used instead of the back layer film 1.
- An optical film, a multilayer film, and a wound body of the multilayer film were obtained and measured and evaluated.
- Example 1-4 (C6-2. Optical film) Except for the following changes, the same operation as in Example 1-4 (1-4) was carried out to obtain an optical film 4, and R1 and M1 were measured.
- Example 8 (C8-1. Optical film) Except for the following changes, the same operation as in (1-4) of Example 1 was carried out to obtain an optical film 6, and R1 and M1 were measured.
- a cooling roll for casting the molten resin coextruded into a film a mirror surface cooling roll (surface Ra 0.005 ⁇ m) having higher surface flatness was used instead of a mirror surface cooling roll with a surface Ra 0.01 ⁇ m. .
- Example 9 (C9-1. Optical film) Except for the following changes, the same operation as in (1-4) of Example 1 was performed to obtain an optical film 7, and R1 and M1 were measured.
- a back layer film 13 was obtained in the same manner as in Example 1-1 (1-1) except for the following changes. -Silica particles having a number average particle diameter of 30.0 ⁇ m were used instead of silica particles having a number average particle diameter of 5.0 ⁇ m.
- Example 1 except that the optical film 7 obtained in (C9-1) was used instead of the optical film 1 and the back layer film 13 obtained in (C9-2) was used instead of the back layer film 1.
- the same operation as in (1-2), (1-3) and (1-5) was performed to obtain a protective film, an optical film, a multilayer film, and a wound film of the multilayer film, and the measurement and evaluation were performed. went.
- Tables 1 and 2 show the results of measurement and evaluation in Examples and Comparative Examples.
- the ratio of the three-dimensional centerline average roughness R2 on the back surface of the protective film to the three-dimensional centerline average roughness R1 on the back surface of the optical film is smaller than the range defined in the present invention (Comparative Examples 1 and 6), and the tertiary on the back surface of the optical film.
- the original centerline average roughness R1 was outside the range defined in the present invention (Comparative Example 8)
- a gauge band was generated and the wound body appearance was deteriorated.
- the tensile elastic modulus M2 in the longitudinal direction of the protective film relative to the tensile elastic modulus M1 in the longitudinal direction of the optical film is smaller than the range specified in the present invention (Comparative Examples 2 and 4)
- winding wrinkles are generated and winding is performed. Body appearance deteriorated.
- Multi-layer film 120 Optical film 110: Protection film 120Y: Optical film front side surface 120X: Optical film back side surface 110Y: Protection film front side surface 110X: Protection film back side surface 122a: a layer 121b: b layer 123b: b layer 112: adhesive layer 111: back layer 110Y: surface on the front side of the protective film 110X: surface on the back side of the protective film
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Polarising Elements (AREA)
Abstract
Description
本発明のさらなる目的は、ゲージバンド、巻きシワ等の不良の発生が抑制され、且つ、光学フィルム表面における不所望な凹凸形状の発生が抑制された、複層フィルムの巻回体を提供することにある。
すなわち、本発明によれば、以下の〔1〕~〔5〕が提供される。
前記光学フィルムの、前記保護フィルム側の面とは反対側の面の三次元中心線平均粗さR1、前記保護フィルムの、前記光学フィルム側の面とは反対側の面の三次元中心線平均粗さR2、前記光学フィルムの長手方向の引張弾性率M1、及び前記保護フィルムの長手方向の引張弾性率M2が、下記式(1)~(6)の関係を満たす、複層フィルム。
0.01μm≦R1≦0.05μm (1)
0.01μm≦R2≦0.2μm (2)
1,500MPa≦M1≦3,000MPa (3)
2,500MPa≦M2≦6,000MPa (4)
1.0≦R2/R1≦5.0 (5)
1.0≦M2/M1≦3.0 (6)
〔2〕 前記光学フィルムの厚さが15~50μmである、〔1〕に記載の複層フィルム。
〔3〕 前記光学フィルムは、b層/a層/b層の層構成を有する多層フィルムであり、
前記a層は、ポリスチレン系重合体を含む樹脂からなる層であり、
前記b層は、ポリメチルメタクリレート重合体を含む樹脂からなる層である、〔1〕または〔2〕に記載の複層フィルム。
〔4〕 前記保護フィルムは、前記光学フィルムに粘着する粘着層と、この粘着層における前記光学フィルムとは反対側に位置し、前記光学フィルムとは粘着しない背面層と、を備える、〔1〕~〔3〕のいずれか1項に記載の複層フィルム。
〔5〕 前記背面層は、重合体を含む樹脂からなる層であり、前記樹脂は粒子を含む、〔4〕に記載の複層フィルム。
〔6〕 前記背面層を形成する前記樹脂全量中の前記粒子の割合は、0.05重量%以上1.0重量%以下である〔5〕に記載の複層フィルム。
〔7〕 前記粒子の粒径が、0.01~10μmである、〔5〕又は〔6〕に記載の複層フィルム。
〔8〕 前記背面層の厚さは、前記粘着層の厚さとの比(粘着層/背面層)で、1/40以上1/1以下である、〔4〕~〔7〕のいずれか1項に記載の複層フィルム。
〔9〕 〔1〕~〔8〕のいずれか1項に記載の複層フィルムをロール状に巻回してなる巻回体。
本発明の巻回体は、ゲージバンド、巻きシワ等の不良の発生が抑制され、且つ、光学フィルム表面における不所望な凹凸形状の発生が抑制されるので、複層フィルムの保存及び運搬に適した巻回体としうる。
本発明の複層フィルムは、長尺の光学フィルムと、長尺の光学フィルムから剥離可能な長尺の保護フィルムとを備える。通常、本発明の複層フィルムは、長尺の光学フィルムと、長尺の保護フィルムとを1層ずつ備え、これらが貼合された構造を有する。
図1は、本発明の一実施形態に係る、複層フィルムを巻回した巻回体を模式的に示す概略図である。また、図2は、本発明の一実施形態に係る複層フィルムの断面を模式的に示す断面図である。
図1に示す通り、巻回体10は、複層フィルム100をロール状に巻回してなるものである。また、図2に示す通り、複層フィルム100は、長尺の光学フィルム120と、光学フィルム120に剥離可能に貼合された長尺の保護フィルム110とを備えるフィルムである。
本発明の複層フィルムにおいては、光学フィルムの、保護フィルム側の面とは反対側の面の三次元中心線平均粗さR1、保護フィルムの、光学フィルム側の面とは反対側の面の三次元中心線平均粗さR2、光学フィルムの長手方向の引張弾性率M1、及び保護フィルムの長手方向の引張弾性率M2が、下記式(1)~(6)の関係を満たす。
0.01μm≦R1≦0.05μm (1)
0.01μm≦R2≦0.2μm (2)
1,500MPa≦M1≦3,000MPa (3)
2,500MPa≦M2≦6,000MPa (4)
1.0≦R2/R1≦5.0 (5)
1.0≦M2/M1≦3.0 (6)
式(2)に示す通り、保護フィルムの背面の三次元中心線平均粗さR2は、0.01μm以上であり、0.20μm以下である。R2は、好ましくは0.02μm以上、より好ましくは0.03μm以上であり、一方好ましくは0.18μm以下、より好ましくは0.15μm以下である。R2が0.01μm未満であると、複層フィルムを巻回して巻回体とする際に巻き込まれる空気の量が少なくなり、ゲージバンド等の不良が発生しやすくなる。R2が0.20μmを超えると保護フィルムから光学フィルムに不所望な凹凸形状が転写されやすくなる。
式(5)に示す通り、R2とR1との比R2/R1は、1.0以上であり、5.0以下である。R2/R1は、好ましくは1.5以上であり、一方好ましくは4.5以下である。
式(4)に示す通り、保護フィルムの長手方向の引張弾性率M2は、2,500MPa以上であり、6,000MPa以下である。M2は、好ましくは3,000MPa以上、より好ましくは3,500MPa以上であり、一方好ましくは5,500MPa以下、より好ましくは5,000MPa以下である。前記M2が2500MPa未満であると、巻きシワ等の外観不良が発生する。M2が6000MPaを超えると、光学フィルムへの不所望な凹凸の転写が強くなるおそれがある。
式(6)に示す通り、M2とM1との比M2/M1は、1.0以上であり、3.0以下である。M2/M1は、好ましくは1.5以上であり、一方好ましくは2.5以下である。
複層フィルムを構成する光学フィルムは、光学用途に用いる任意の長尺のフィルムとしうる。光学フィルムの例としては、位相差フィルム、偏光フィルム、輝度向上フィルム、光拡散フィルム、集光フィルム、及び反射フィルムが挙げられる。
これらの重合体としては、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
また、光学フィルムは、用途にもよるが、通常はヘイズが小さい。具体的には、光学フィルムのヘイズは、通常10%以下、好ましくは5%以下、より好ましくは1%以下である。なお、下限値は理想的にはゼロであるが、通常は0.1%以上である。ここで、ヘイズは、JIS K7361-1997に準拠して測定しうる。
保護フィルムは、光学フィルムを保護するため、光学フィルムに貼合され複層フィルムを構成する長尺のフィルムである。通常、保護フィルムは、他の層を介さずに、光学フィルムの表面に直接に貼り合わせられる。
保護フィルムとしては、光学フィルムから剥離可能なフィルムを用いる。即ち、保護フィルムは、光学フィルムと貼合して複層フィルムとすることができ、さらに、光学フィルムの使用時に光学フィルムから剥離することができるフィルムである。
保護フィルムの幅及び長さは、特に限定されず、保護及び保存の対象である光学フィルムの幅及び長さに適合した幅及び長さとしうる。
保護フィルムは、1層のみからなる単層構造のフィルムであってもよいが、通常は2層以上の層を備える多層保護フィルムである。保護フィルムの好適な例としては、粘着層及び背面層を備え、さらに必要に応じて粘着層及び背面層の間に中間層を備える多層保護フィルムが挙げられる。
多層保護フィルムの粘着層は、粘着剤の層を、背面層等の他の層の表面上に設けることにより形成しうる。
粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、ポリビニルエーテル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などを挙げることができる。粘着剤としては、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
軟化剤の例としては、プロセスオイル、液状ゴム、及び可塑剤が挙げられる。
充填剤の例としては、硫酸バリウム、タルク、炭酸カルシウム、マイカ、シリカ、及び酸化チタンが挙げられる。
多層保護フィルムの背面層は、保護フィルムの背面に位置し、光学フィルムとは粘着しない層である。通常、背面層は、重合体を含む樹脂からなる層としうる。背面層を形成する樹脂に含まれる重合体は、単独重合体でもよく、共重合体でもよい。重合体の好適な例としては、ポリエステル系重合体、及びポリオレフィン系重合体が挙げられる。
粘着層と背面層との間には、必要に応じて中間層を設けてもよい。中間層は通常は樹脂により形成されるが、中でも、ポリオレフィン系重合体を含む樹脂によって形成することが好ましい。
保護フィルムの製造方法に制限はなく、任意の方法を採用しうる。保護フィルムの製造方法の例としては、下記の製造方法(i)~(iii)が挙げられる。
(i)粘着層の材料及び背面層の材料、並びに必要に応じて中間層の材料を共押し出しする方法。
(ii)背面層のフィルム(又は背面層と中間層とが積層されたフィルム)を用意し、その表面に粘着剤を塗布して粘着層を形成する方法。
(iii)粘着層及び背面層、並びに必要に応じて中間層を別々に用意し、用意した各層を貼り合わせて一体化する方法。
また、保護フィルムの背面には、必要に応じ印刷を行なってもよい。
本発明の複層フィルムは、通常、光学フィルムと保護フィルムとを上に述べた方法等の方法により別々に製造し、これらを貼合することにより製造しうる。貼合に際しては、通常、光学フィルム及び保護フィルムの皺及び弛みをなくすため、所定の大きさの張力を光学フィルム及び保護フィルムにかけながら貼合の操作を行なう。貼合は、具体的には、光学フィルム及び保護フィルムを、その長手方向を揃えた状態で、光学フィルムの正面側の面と保護フィルムの正面側の面が接するよう重ね合わせ、光学フィルムの背面及び保護フィルムの背面から加圧することにより行いうる。加圧は、ニップロール等のロールを用いて連続的に行いうる。
本発明の巻回体は、前記の長尺の複層フィルムをロール状に巻回してなるものである。長尺の複層フィルムをロール状に巻回する際は、複層フィルムの光学フィルム側の面が内側、保護フィルム側の面が外側になるように巻回することが好ましい。本発明の巻回体においては、複層フィルムの一方の面と、その上に巻回された複層フィルムの別の一方の面とが接する状態となる。即ち、本発明の巻回体においては、保護フィルムの背面と、光学フィルムの背面とが接する状態となる。ここで、光学フィルムの背面三次元中心線平均粗さR1、保護フィルムの背面三次元中心線平均粗さR2、光学フィルムの長手方向の引張弾性率M1、及び保護フィルムの長手方向の引張弾性率M2が、前記式(1)~(6)の関係を満たすことにより、巻回体において、ゲージバンド、巻きシワ等の不良の発生が抑制され、且つ、光学フィルム表面における不所望な凹凸形状の発生が抑制される。
また、巻回体の外径に制限はないが、通常160mm以上、好ましくは190mm以上であり、通常2300mm以下、好ましくは1200mm以下である。
複層フィルム10の巻回速度は、通常5m/分以上、好ましくは10m/分以上であり、通常50m/分以下、好ましくは45m/分以下、より好ましくは40m/分以下である。巻回速度を前記範囲の下限値以上とすることにより製造効率を高めることができ、上限値以下とすることにより空気の巻き込み量を抑制することができる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。
(1)フィルムの厚みの測定方法
光学フィルムの膜厚は、オンライン赤外線膜厚計(クラボウ社製、商品名RX-200)を用い、搬送中の光学フィルムを、幅方向2mm間隔で、搬送速度は10m/分で、フィルム幅方向に少なくとも10回以上測定した全測定結果(即ち、フィルム幅方向10点以上測定した全測定結果)の平均値から算出した。
フィルムの引張弾性率(M1及びM2)は、JIS K7113に則り、引張試験機(インストロン社製、5564型デジタル材料試験機)にて測定した。測定条件は、引張速度を5m/分、試験回数を5回、室温を23℃、湿度を50%RHとした。
フィルムから、試験片を切り出した。試験片の形状は、フィルムの長手方向に平行な長辺を有する矩形(幅10mm×長辺長さ250mm)とした。この試験片を長辺方向に引っ張って歪ませる際の応力を測定した。測定は、JIS K7113に基づき、恒温恒湿槽付き引張試験機(インストロンジャパン社製の5564型デジタル材料試験機)を用いて行った。測定の条件は、温度23℃、湿度60±5%RH、チャック間距離115mm、引張速度100mm/minとした。このような測定を、3回行った。そして、測定された応力とその応力に対応した歪みの測定データから、試験片の歪が0.6%~1.2%の範囲で0.2%毎に4点の測定データ(即ち、歪みが0.6%、0.8%、1.0%及び1.2%の時の測定データ)を選択した。3回の測定の4点の測定データ(合計12点)から最小二乗法を用いてフィルムの引張弾性率を計算した。
光学フィルム及び保護フィルムの背面の三次元中心線平均粗さRa(R1及びR2)は、表面粗さ計(ミツトヨ社製、製品名「SJ400」)を用い、JIS B 0601:1994に基づき測定を行った。
巻き上がり後の巻回体の外観を、目視及び触診にて観察し、巻きシワ、ゲージバンド等の不良の有無を評価した。不良が見出されないものは「良好」と評価し、不良が見出されたものについては、どのような不良が見出されたかを記録した。
複層フィルムの巻回体から、複層フィルムを引き出し、保護フィルムを剥離した後、光学フィルムに蛍光灯の光を当て、反射光を観察することにより、光学フィルムの面上の凹凸形状の有無を検査した。観察範囲は、全幅×1mとした。凹凸形状が観察されなかった場合を凹凸形状転写なしとし、凹凸形状が1つ以上観察された場合を転写ありとした。
200℃に加熱したエステル化反応器に、テレフタル酸86.4部およびエチレングリコール64.6部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017部、酢酸マグネシウム4水和物を0.064部、トリエチルアミンを0.16部供給した。ついで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った。その後、エステル化反応器を常圧に戻し、リン酸トリメチル0.014部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012部を添加した。次いで15分後に、高圧分散機で分散処理を行い、さらに数平均粒子径2.50μmのシリカ粒子のエチレングリコールスラリーを粒子含有量を基準として0.03部添加した。このシリカ粒子は、シリカ粒子100部に対してナトリウム原子換算で、0.1部のトリポリリン酸ナトリウム水溶液を含む、シリカのエチレングリコールスラリーを予め調製し、これを遠心分離処理して粗粒部を35%カットし、その後、目開き5μmの金属フィルターでろ過処理を行って得られた粒子である。15分後に、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行い、ポリエチレンテレフタレート樹脂を得た。
(1-1.背面層フィルム)
製造例1で得られたポリエチレンテレフタレート樹脂に、数平均粒径5.0μmのシリカ粒子を0.05重量%添加し、フィルム原料を調製した。フィルム原料を押出機に供給して溶融して、口金から押出し、冷却ドラム上にキャストして未延伸フィルムを作成した。得られた未延伸フィルムを、延伸温度120℃で、ロール延伸機を用いてMD方向(フィルムの長手方向)に3.5倍延伸し、その後テンター式延伸機を用いてTD方向(フィルムの幅方向)に3.6倍に逐次二軸延伸し、厚さ30μmの背面層フィルム1を得た。
アクリル酸n-ブチル97重量部とアクリル酸2-ヒドロキシエチル3重量部とを共重合した共重合体100重量部に対して、架橋剤としてポリイソシアネートを1重量部添加し、さらに溶媒としてトルエン200重量部を加え、粘着剤組成物を調製した。
厚さ38μmの離型フィルム(商品名「SP-PET」、三井化学東セロ社製)の離型処理面に、上記で得た粘着剤組成物を、ナイフ式塗工機により、乾燥厚さが20μmになるように塗布し、粘着剤組成物の層を90℃にて1分間加熱乾燥して、粘着層を形成し、離型フィルム/粘着層の層構成を有する複層物を得た。
(1-1)で得られた背面層フィルムの一方の面に、(1-2)で得られた複層物を、粘着層側の面が背面層フィルムに接するよう貼合して、離型フィルム/粘着層/背面層フィルムの層構成を有する保護フィルム(離型フィルム付き)を作製した。
得られた保護フィルムについて、背面層フィルム側の面の三次元中心線平均粗さR2を測定した。また、得られた保護フィルムから離型フィルムを剥離し、長手方向の引張弾性率M2を測定した。
樹脂Aとして、固有複屈折値が負の樹脂であるスチレン-無水マレイン酸共重合体樹脂(ノヴァケミカルジャパン社製、品名ダイラークD332)を用意した。
また、樹脂Bとして、ゴム粒子を含むメタクリル樹脂組成物(スミペックスHT50Y:住友化学社製)を用意した。
樹脂A及び樹脂Bを、3種3層(3種類の樹脂により3層からなるフィルムを形成するタイプのもの)の共押出成形用のフィルム成形装置に供給し、マルチマニホールドダイから同時に押し出しフィルム状にした。このようにフィルム状に共押出しされた溶融樹脂を、表面が鏡面の冷却ロール(表面のRa=0.01μm)にキャストし、次いで2本の冷却ロール間に通して、樹脂Aからなるa層と、樹脂Bからなるb層とを、b層/a層/b層の順に有する未延伸の積層体cを得た。共押出の条件を制御することにより、b層/a層/b層の厚さはそれぞれ33μm/16μm/33μmとした。
得られた未延伸の積層体cを、延伸温度135℃で、MD方向に延伸倍率1.8倍及びTD方向に延伸倍率1.3倍に同時二軸延伸し、厚みが35μmの光学フィルム1を得た。
得られた光学フィルム1について、背面の三次元中心線平均粗さR1を測定した。また、得られた光学フィルムの長手方向の引張弾性率M1を測定した。
(1-3)で得られた保護フィルム(離型フィルム付き)から離型フィルムを剥離し、粘着層側の面を、(1-4)で得られた光学フィルムの一方の面と貼合し、保護フィルム及び光学フィルムを備える複層フィルムを得た。貼合に際して、保護フィルムの繰り出し張力は250N、光学フィルムの搬送時の張力は150Nとした。貼合は、保護フィルムと光学フィルムの長手方向を一致させて行ない、得られた複層フィルムは、そのまま巻き取り、巻回体とした。得られた巻回体における複層フィルムは、長さ2000m、幅1490mmであった。巻回体の巻回数は、2089回であった。複層フィルムの巻き取りの際の巻き取り張力は120N~140Nとし、巻き取り速度は10m/分とした。
得られた巻回体の外観、及び巻回体中の複層フィルムにおける凹凸形状を評価した。
(2-1.背面層フィルム)
下記の変更点の他は、実施例1の(1-1)と同様に操作を行い、背面層フィルム2を得た。
・ポリエチレンテレフタレート樹脂に代えて、ポリプロピレン樹脂(F113G:プライムポリマー社製)を用いた。
・数平均粒径5.0μmのシリカ粒子に代えて数平均粒径1.5μmのシリカ粒子を用いた。
・得られた未延伸フィルムを、延伸温度160℃で、ロール延伸機を用いてMD方向に5倍、テンター延伸機を用いてTD方向に10倍に逐次二軸延伸し、厚さ30μmの背面層フィルム2を得た。
下記の変更点の他は、実施例1の(1-4)と同様に操作を行い、光学フィルム2を得て、R1及びM1を測定した。
・ゴム粒子を含むメタクリル樹脂組成物(スミペックスHT50Y:住友化学社製)に代えて、別のゴム粒子を含むメタクリル樹脂組成物(スミペックスHT55X:住友化学社製)を用いた。
背面層フィルム1に代えて(2-1)で得た背面層フィルム2を用いた点、及び光学フィルム1に代えて(2-2)で得た光学フィルム2を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(3-1.背面層フィルム)
下記の変更点の他は、実施例1の(1-1)と同様に操作を行い、背面層フィルム3を得た。
・数平均粒径5.0μmのシリカ粒子に代えて数平均粒径1.5μmのシリカ粒子を用いた。
・逐次二軸延伸の延伸倍率を、MD方向に3.7倍、TD方向に3.8倍とした。
背面層フィルム1に代えて(3-1)で得た背面層フィルム3を用いた点以外は、実施例1の(1-2)~(1-5)と同様に操作を行い、保護フィルム、光学フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(4-1.背面層フィルム)
下記の変更点の他は、実施例2の(2-1)と同様に操作を行い、背面層フィルム4を得た。
・数平均粒径5.0μmのシリカ粒子に代えて数平均粒径10.0μmのシリカ粒子を用いた。
背面層フィルム1に代えて(4-1)で得た背面層フィルム4を用いた点、及び光学フィルム1に代えて実施例2で得た光学フィルム2を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(5-1.背面層フィルム)
下記の変更点の他は、実施例1の(1-1)と同様に操作を行い、背面層フィルム5を得た。
・数平均粒径5.0μmのシリカ粒子に代えて数平均粒径10.0μmのシリカ粒子を用いた。
背面層フィルム1に代えて(5-1)で得た背面層フィルム5を用いた点以外は、実施例1の(1-2)~(1-5)と同様に操作を行い、保護フィルム、光学フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(6-1.背面層フィルム)
下記の変更点の他は、実施例1の(1-1)と同様に操作を行い、背面層フィルム12を得た。
・数平均粒径5.0μmのシリカ粒子に代えて数平均粒径16.0μmのシリカ粒子を用いた。
下記の変更点の他は、実施例1の(1-4)と同様に操作を行い、光学フィルム5を得て、R1及びM1を測定した。
・フィルム状に共押出しされた溶融樹脂をキャストする冷却ロールとして、表面が鏡面の冷却ロールに代えて、表面に凹凸形状を賦型した冷却ロール(表面のRa=0.3μm)を用いた。
背面層フィルム1に代えて(6-1)で得た背面層フィルム12を用いた点、及び光学フィルム1に代えて(6-2)で得た光学フィルム5を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C1-1.光学フィルム)
下記の変更点の他は、実施例2の(2-2)と同様に操作を行い、光学フィルム3を得て、R1及びM1を測定した。
・フィルム状に共押出しされた溶融樹脂をキャストする冷却ロールとして、表面が鏡面の冷却ロールに代えて、表面に凹凸形状を賦型した冷却ロール(表面のRa=0.3μm)を用いた。
背面層フィルム1に代えて実施例2で得た背面層フィルム2を用いた点、及び光学フィルム1に代えて(C1-1)で得た光学フィルム3を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C2-1.背面層フィルム)
下記の変更点の他は、実施例2の(2-1)と同様に操作を行い、背面層フィルム6を得た。
・逐次二軸延伸の延伸倍率を、MD方向に3倍、TD方向に4倍とした。
背面層フィルム1に代えて(C2-1)で得た背面層フィルム6を用いた点、及び光学フィルム1に代えて実施例2で得た光学フィルム2を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C3-1.背面層フィルム)
下記の変更点の他は、実施例2の(2-1)と同様に操作を行い、背面層フィルム7を得た。
・数平均粒径1.5μmのシリカ粒子に代えて数平均粒径16.0μmのシリカ粒子を用いた。
背面層フィルム1に代えて(C3-1)で得た背面層フィルム7を用いた点、及び光学フィルム1に代えて実施例2で得た光学フィルム2を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C4-1.背面層フィルム)
下記の変更点の他は、比較例2の(C2-1)と同様に操作を行い、背面層フィルム8を得た。
・数平均粒径1.5μmのシリカ粒子に代えて数平均粒径10.0μmのシリカ粒子を用いた。
背面層フィルム1に代えて(C4-1)で得た背面層フィルム8を用いた点、及び光学フィルム1に代えて実施例2で得た光学フィルム2を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C5-1.背面層フィルム)
下記の変更点の他は、実施例3の(3-1)と同様に操作を行い、背面層フィルム9を得た。
・逐次二軸延伸の延伸倍率を、MD方向に4.5倍、TD方向に4.2倍とした。
背面層フィルム1に代えて(C5-1)で得た背面層フィルム9を用いた点以外は、実施例1の(1-2)~(1-5)と同様に操作を行い、保護フィルム、光学フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C6-1.背面層フィルム)
下記の変更点の他は、実施例5の(5-1)と同様に操作を行い、背面層フィルム10を得た。
・数平均粒径10.0μmのシリカ粒子に代えて数平均粒径1.5μmのシリカ粒子を用いた。
下記の変更点の他は、実施例1の(1-4)と同様に操作を行い、光学フィルム4を得て、R1及びM1を測定した。
・フィルム状に共押出しされた溶融樹脂をキャストする冷却ロールとして、表面が鏡面の冷却ロールに代えて、表面に凹凸形状を賦型した冷却ロール(表面のRa=0.3μm)を用いた。
背面層フィルム1に代えて(C6-1)で得た背面層フィルム10を用いた点、及び光学フィルム1に代えて(C6-2)で得た光学フィルム4を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C7-1.背面層フィルム)
下記の変更点の他は、比較例5の(C5-1)と同様に操作を行い、背面層フィルム11を得た。
・数平均粒径1.5μmのシリカ粒子に代えて数平均粒径16.0μmのシリカ粒子を用いた。
背面層フィルム1に代えて(C7-1)で得た背面層フィルム11を用いた点以外は、実施例1の(1-2)~(1-5)と同様に操作を行い、保護フィルム、光学フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C8-1.光学フィルム)
下記の変更点の他は、実施例1の(1-4)と同様に操作を行い、光学フィルム6を得て、R1及びM1を測定した。
・フィルム状に共押出しされた溶融樹脂をキャストする冷却ロールとして、表面Ra0.01μmの鏡面の冷却ロールに代えて、さらに表面の平坦性が高い鏡面の冷却ロール(表面Ra0.005μm)を用いた。
光学フィルム1に代えて(C8-1)で得た光学フィルム6を用い、背面層フィルム1に代えて実施例3の(3-1)で得た背面層フィルム3を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、光学フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
(C9-1.光学フィルム)
下記の変更点の他は、実施例1の(1-4)と同様に操作を行い、光学フィルム7を得て、R1及びM1を測定した。
・フィルム状に共押出しされた溶融樹脂をキャストする冷却ロールとして、表面が鏡面の冷却ロールに代えて、表面に凹凸形状を賦型した冷却ロール(表面のRa=0.5μm)を用いた。
下記の変更点の他は、実施例1の(1-1)と同様に操作を行い、背面層フィルム13を得た。
・数平均粒径5.0μmのシリカ粒子に代えて数平均粒径30.0μmのシリカ粒子を用いた。
光学フィルム1に代えて(C9-1)で得た光学フィルム7を用い、背面層フィルム1に代えて(C9-2)で得た背面層フィルム13を用いた点以外は、実施例1の(1-2)、(1-3)及び(1-5)と同様に操作を行い、保護フィルム、光学フィルム、複層フィルム、及び複層フィルムの巻回体を得て、測定及び評価を行った。
これに対して、光学フィルム背面の三次元中心線平均粗さR1に対する保護フィルム背面の三次元中心線平均粗さR2の割合が本発明に規定する範囲より大きい場合(比較例3及び7)、光学フィルムの長手方向の引張弾性率M1に対する保護フィルムの長手方向の引張弾性率M2が本発明に規定する範囲より大きい場合(比較例5及び7)、並びに保護フィルム背面の三次元中心線平均粗さR2の割合が本発明に規定する範囲外である場合(比較例9)では、光学フィルムの面上への凹凸形状の転写が観察された。光学フィルム背面の三次元中心線平均粗さR1に対する保護フィルム背面の三次元中心線平均粗さR2の割合が本発明に規定する範囲より小さい場合(比較例1及び6)及び光学フィルム背面の三次元中心線平均粗さR1が本発明に規定する範囲外である場合(比較例8)では、ゲージバンドが発生して巻回体外観が悪化した。さらに、光学フィルムの長手方向の引張弾性率M1に対する保護フィルムの長手方向の引張弾性率M2が本発明に規定する範囲より小さい場合(比較例2及び4)では、巻きシワが発生して巻回体外観が悪化した。
100:複層フィルム
120:光学フィルム
110:保護フィルム
120Y:光学フィルム正面側の面
120X:光学フィルム背面側の面
110Y:保護フィルム正面側の面
110X:保護フィルム背面側の面
122a:a層
121b:b層
123b:b層
112:粘着層
111:背面層
110Y:保護フィルム正面側の面
110X:保護フィルム背面側の面
Claims (9)
- 長尺の光学フィルムと、前記長尺の光学フィルムから剥離可能な長尺の保護フィルムとを備える長尺の複層フィルムであって、
前記光学フィルムの、前記保護フィルム側の面とは反対側の面の三次元中心線平均粗さR1、前記保護フィルムの、前記光学フィルム側の面とは反対側の面の三次元中心線平均粗さR2、前記光学フィルムの長手方向の引張弾性率M1、及び前記保護フィルムの長手方向の引張弾性率M2が、下記式(1)~(6)の関係を満たす、複層フィルム。
0.01μm≦R1≦0.05μm (1)
0.01μm≦R2≦0.2μm (2)
1,500MPa≦M1≦3,000MPa (3)
2,500MPa≦M2≦6,000MPa (4)
1.0≦R2/R1≦5.0 (5)
1.0≦M2/M1≦3.0 (6) - 前記光学フィルムの厚さが15~50μmである、請求項1に記載の複層フィルム。
- 前記光学フィルムは、b層/a層/b層の層構成を有する多層フィルムであり、
前記a層は、ポリスチレン系重合体を含む樹脂からなる層であり、
前記b層は、ポリメチルメタクリレート重合体を含む樹脂からなる層である、請求項1または2に記載の複層フィルム。 - 前記保護フィルムは、前記光学フィルムに粘着する粘着層と、この粘着層における前記光学フィルムとは反対側に位置し、前記光学フィルムとは粘着しない背面層と、を備える、請求項1~3のいずれか1項に記載の複層フィルム。
- 前記背面層は、重合体を含む樹脂からなる層であり、前記樹脂は粒子を含む、請求項4に記載の複層フィルム。
- 前記背面層を形成する前記樹脂全量中の前記粒子の割合は、0.05重量%以上1.0重量%以下である請求項5に記載の複層フィルム。
- 前記粒子の粒径が、0.01~10μmである、請求項5又は6に記載の複層フィルム。
- 前記背面層の厚さは、前記粘着層の厚さとの比(粘着層/背面層)で、1/40以上1/1以下である、請求項4~7のいずれか1項に記載の複層フィルム。
- 請求項1~8のいずれか1項に記載の複層フィルムをロール状に巻回してなる巻回体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/311,657 US10328675B2 (en) | 2014-05-30 | 2015-05-26 | Multilayer film and wound body |
KR1020167032522A KR102363884B1 (ko) | 2014-05-30 | 2015-05-26 | 복층 필름 및 권회체 |
JP2016523509A JP6565907B2 (ja) | 2014-05-30 | 2015-05-26 | 複層フィルム及び巻回体 |
CN201580025813.9A CN106457786B (zh) | 2014-05-30 | 2015-05-26 | 复层膜和卷绕体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-112927 | 2014-05-30 | ||
JP2014112927 | 2014-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015182614A1 true WO2015182614A1 (ja) | 2015-12-03 |
Family
ID=54698939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065117 WO2015182614A1 (ja) | 2014-05-30 | 2015-05-26 | 複層フィルム及び巻回体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10328675B2 (ja) |
JP (1) | JP6565907B2 (ja) |
KR (1) | KR102363884B1 (ja) |
CN (1) | CN106457786B (ja) |
TW (1) | TWI654083B (ja) |
WO (1) | WO2015182614A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108700699A (zh) * | 2016-06-22 | 2018-10-23 | 株式会社Lg化学 | 光学膜和包括其的偏光板 |
WO2021084751A1 (ja) * | 2019-11-01 | 2021-05-06 | コニカミノルタ株式会社 | 積層体、積層体の製造方法、偏光板の製造方法 |
JP7430480B2 (ja) | 2018-04-27 | 2024-02-13 | 日東電工株式会社 | 保護フィルム付き導電性フィルム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007076046A (ja) * | 2005-09-12 | 2007-03-29 | Hitachi Maxell Ltd | 光学フィルムの製造方法 |
JP2010017932A (ja) * | 2008-07-10 | 2010-01-28 | Toyobo Co Ltd | 離型フィルム |
JP2010221625A (ja) * | 2009-03-25 | 2010-10-07 | Nippon Zeon Co Ltd | ロール状巻回体 |
JP2012061712A (ja) * | 2010-09-16 | 2012-03-29 | Nippon Zeon Co Ltd | 光学フィルムロール及び光学フィルムロールの製造方法 |
JP2013060555A (ja) * | 2011-09-14 | 2013-04-04 | Lintec Corp | 離型フィルム及びその製造方法 |
JP2013075429A (ja) * | 2011-09-30 | 2013-04-25 | Dainippon Printing Co Ltd | 積層シート、光学シート、積層シートの製造方法、光学シートの製造方法 |
JP2014012372A (ja) * | 2012-07-05 | 2014-01-23 | Mitsubishi Plastics Inc | 積層ポリエステルフィルム |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100215330B1 (ko) * | 1994-12-22 | 1999-08-16 | 기타지마 요시토시 | 복합 필름 |
US5968666A (en) * | 1996-03-08 | 1999-10-19 | 3M Innovative Properties Company | Multilayer polyester film |
US6022677A (en) * | 1997-12-24 | 2000-02-08 | Eastman Kodak Company | Imaging element with biaxially oriented backside with improved surface |
TW500662B (en) * | 1998-07-21 | 2002-09-01 | Teijin Ltd | Aromatic polyamide film laminate |
US6465075B2 (en) * | 1999-03-04 | 2002-10-15 | Teijin Limited | Biaxially oriented laminate polyester film |
DE60008153T2 (de) * | 1999-03-04 | 2004-12-09 | Teijin Ltd. | Biaxial verstreckte, mehrschichtige Polyesterfolie |
TWI225499B (en) * | 1999-04-15 | 2004-12-21 | Konishiroku Photo Ind | Protective film for polarizing plate |
US20010055674A1 (en) * | 1999-07-05 | 2001-12-27 | Joerg Hellman | Multilayer, biaxially oriented polyester film, process for its production and its use as a magnetic tape film without a backing coating |
TW539704B (en) * | 2000-12-08 | 2003-07-01 | Toyo Boseki | Coating film for optical application |
JP2002341115A (ja) * | 2001-05-17 | 2002-11-27 | Dainippon Printing Co Ltd | 保護拡散フィルム及びその製造方法、面光源装置及び液晶表示装置 |
DE60310282T2 (de) * | 2002-03-01 | 2007-05-10 | Dai Nippon Printing Co., Ltd. | Thermisch übertragbares Bildschutzblatt, Verfahren zur Schutzschicht-Bildung und durch das Verfahren hergestellte Aufnahme |
JP2004143327A (ja) | 2002-10-25 | 2004-05-20 | Tatsuta Kagaku Kk | 光学部材用の表面保護フィルム |
JP4506070B2 (ja) * | 2002-11-01 | 2010-07-21 | コニカミノルタホールディングス株式会社 | 防眩層の形成方法、防眩フィルムの製造方法及び防眩層形成用のインクジェット装置 |
JP2004237451A (ja) * | 2003-02-03 | 2004-08-26 | Teijin Dupont Films Japan Ltd | 偏光板離形用ポリエステルフィルム |
WO2004081090A1 (ja) * | 2003-03-11 | 2004-09-23 | Mitsubishi Polyester Film Corporation | 二軸配向ポリエステルフィルム及び離型フィルム |
JP4213616B2 (ja) | 2004-03-31 | 2009-01-21 | 大日本印刷株式会社 | 液晶パネル用ベースフィルム、液晶パネル用機能フィルム、機能フィルムの製造方法、および機能フィルムの製造装置 |
JP3826145B2 (ja) * | 2004-07-16 | 2006-09-27 | 株式会社クラレ | 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法 |
JP4655663B2 (ja) * | 2005-02-21 | 2011-03-23 | コニカミノルタオプト株式会社 | 塗布層を有するロール状フィルムの製造方法、ロール状光学フィルム、偏光板、液晶表示装置 |
JP2006272616A (ja) * | 2005-03-28 | 2006-10-12 | Konica Minolta Opto Inc | 光学フィルム、及びその製造装置 |
JP4611084B2 (ja) * | 2005-03-31 | 2011-01-12 | リンテック株式会社 | 剥離フィルム |
ATE411161T1 (de) * | 2005-04-06 | 2008-10-15 | 3M Innovative Properties Co | Optische körper mit rauen abziehbaren grenzschichten und asymmetrischen oberflächenstrukturen |
US7622185B2 (en) * | 2005-04-15 | 2009-11-24 | Nitto Denko Corporation | Protective cover sheet comprising a UV-absorbing layer for a polarizer plate and method of making the same |
CN1955765B (zh) * | 2005-08-02 | 2010-06-16 | 富士胶片株式会社 | 光学膜和抗反射膜以及它们的生产方法、偏振片及液晶显示装置 |
WO2007029843A1 (en) * | 2005-09-05 | 2007-03-15 | Fujifilm Corporation | Polarizing plate and liquid crystal display device using the same |
US20070103910A1 (en) * | 2005-11-08 | 2007-05-10 | Eastman Kodak Company | Light redirecting films having multiple layers and an adhesion layer |
US7655289B2 (en) * | 2005-12-12 | 2010-02-02 | Eastman Kodak Company | Optical film composite having spatially controlled adhesive strength |
US20070153384A1 (en) * | 2005-12-30 | 2007-07-05 | Ouderkirk Andrew J | Reinforced reflective polarizer films |
KR101274848B1 (ko) * | 2006-02-22 | 2013-06-13 | 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 | 반사 방지 필름, 반사 방지 필름의 제조 방법, 하드 코팅 필름, 편광판 및 표시 장치 |
JP2008102271A (ja) * | 2006-10-18 | 2008-05-01 | Nitto Denko Corp | 表面保護フィルムおよび表面保護フィルム付き光学フィルム |
CN101687403B (zh) * | 2007-06-26 | 2015-04-01 | 柯尼卡美能达精密光学株式会社 | 透明硬涂膜,使用其的防反射薄膜,偏光板,及显示装置 |
WO2009011229A1 (ja) * | 2007-07-19 | 2009-01-22 | Konica Minolta Opto, Inc. | セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板保護フィルム、偏光板、及び液晶表示装置 |
US20110070400A1 (en) * | 2008-02-25 | 2011-03-24 | Mitsubishi Plastics, Inc. | Release film |
JP5457745B2 (ja) * | 2008-07-15 | 2014-04-02 | サン・トックス株式会社 | 基材フィルム |
JP2010247513A (ja) * | 2009-03-25 | 2010-11-04 | Sekisui Chem Co Ltd | 表面保護フィルム |
JP2010243903A (ja) * | 2009-04-08 | 2010-10-28 | Nitto Denko Corp | 偏光板およびそれを用いた液晶表示装置 |
JP5075234B2 (ja) * | 2009-09-02 | 2012-11-21 | ソニー株式会社 | 光学素子、および表示装置 |
JP5540669B2 (ja) * | 2009-11-27 | 2014-07-02 | 日本ゼオン株式会社 | ロール状巻回体 |
KR101750357B1 (ko) * | 2010-03-31 | 2017-07-03 | 도레이 필름 카코우 가부시키가이샤 | 표면 보호 필름 |
KR101808140B1 (ko) * | 2010-04-13 | 2017-12-13 | 도레이 필름 카코우 가부시키가이샤 | 표면 보호 필름 |
US20120003426A1 (en) * | 2010-07-01 | 2012-01-05 | Sipix Chemical Inc. | Decoration device and method for fabricating decoration device |
JP5831540B2 (ja) * | 2011-03-22 | 2015-12-09 | コニカミノルタ株式会社 | 偏光板用保護フィルム、その製造方法、偏光板、及び液晶表示装置 |
US20140120377A1 (en) * | 2011-06-30 | 2014-05-01 | Dupont Teijin Films U.S. Limited Partnership | Dimensionally stable multi-layer polyester films |
TWI519423B (zh) * | 2011-08-16 | 2016-02-01 | 三菱麗陽股份有限公司 | 附有保護膜的微細凹凸構造體及其製造方法 |
JP5938189B2 (ja) * | 2011-10-12 | 2016-06-22 | デクセリアルズ株式会社 | 光学体、窓材、建具および日射遮蔽装置 |
US9993954B2 (en) * | 2011-11-29 | 2018-06-12 | Toray Advanced Film Co., Ltd. | Surface protection film fabrication method and fabrication apparatus and surface protection film |
JP5394561B2 (ja) * | 2011-12-19 | 2014-01-22 | 日東電工株式会社 | 透明導電フィルム用キャリアフィルム及び積層体 |
US20140363628A1 (en) * | 2011-12-27 | 2014-12-11 | Mitsubishi Rayon Co., Ltd. | Laminate Structure |
KR20140113700A (ko) * | 2011-12-28 | 2014-09-24 | 도요보 가부시키가이샤 | 액정표시장치, 편광판 및 편광자 보호 필름 |
US9776387B2 (en) * | 2012-01-13 | 2017-10-03 | Taica Corporation | Method for producing transparent adhesive sheet for optical applications, transparent adhesive sheet for optical applications, and display device using same |
EP2634208A1 (en) * | 2012-02-28 | 2013-09-04 | Bayer MaterialScience AG | Process for the production of low stress and optical quality film for use in opto-electronic devices |
KR102059326B1 (ko) * | 2012-03-29 | 2019-12-26 | 린텍 가부시키가이샤 | 가스 배리어성 적층체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스 |
JP6097619B2 (ja) * | 2012-04-06 | 2017-03-15 | 富士フイルム株式会社 | 光学フィルム、偏光板及びこれを用いた画像表示装置 |
KR102023442B1 (ko) * | 2012-04-23 | 2019-09-20 | 린텍 코포레이션 | 그린 시트 제조용 박리 필름 |
KR102111380B1 (ko) * | 2012-07-31 | 2020-05-15 | 다이니폰 인사츠 가부시키가이샤 | 반사 방지 물품, 화상 표시 장치 및 반사 방지 물품의 제조용 금형 |
US10099462B2 (en) * | 2013-06-28 | 2018-10-16 | Toray Plastics (America), Inc. | Releasable polyester high gloss metal transfer film |
US9870107B2 (en) * | 2013-04-10 | 2018-01-16 | Zeon Corporation | Display device with capacitive touch panel |
KR102249572B1 (ko) * | 2013-05-24 | 2021-05-07 | 미츠비시 가스 가가쿠 가부시키가이샤 | 보호 필름 부착 기능성 시트 |
WO2015016361A1 (ja) * | 2013-08-01 | 2015-02-05 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
JP6558736B2 (ja) * | 2013-09-27 | 2019-08-14 | パナソニックIpマネジメント株式会社 | 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路 |
KR101614211B1 (ko) * | 2013-09-30 | 2016-04-20 | 주식회사 엘지화학 | 편면형 박형 편광판의 제조방법 |
JP6342791B2 (ja) * | 2013-12-27 | 2018-06-13 | 住友化学株式会社 | 偏光板用保護フィルム及びそれを用いた偏光板 |
JP6249820B2 (ja) * | 2014-02-27 | 2017-12-20 | 住友化学株式会社 | 偏光板の製造方法及び偏光板 |
KR20160138407A (ko) * | 2014-03-26 | 2016-12-05 | 코베스트로 엘엘씨 | 표면 보호 복합체의 제조 방법 |
JP2015196313A (ja) * | 2014-03-31 | 2015-11-09 | ソニー株式会社 | 保護フィルム、積層体、表示装置および被着体 |
TWI735411B (zh) * | 2014-06-18 | 2021-08-11 | 日商味之素股份有限公司 | 附保護薄膜之接著片 |
WO2016003107A1 (ko) * | 2014-06-30 | 2016-01-07 | 주식회사 엘지화학 | 편광판의 제조방법 및 편광판 |
KR20160040922A (ko) * | 2014-10-06 | 2016-04-15 | 삼성전자주식회사 | 방현 필름을 포함하는 편광판 및 이를 포함하는 디스플레이 장치 |
US20180052255A1 (en) * | 2015-03-30 | 2018-02-22 | Zeon Corporation | Optical-film wound body, method for storing the same, and method for manufacturing base film/polarizing plate laminate |
-
2015
- 2015-05-26 CN CN201580025813.9A patent/CN106457786B/zh active Active
- 2015-05-26 US US15/311,657 patent/US10328675B2/en active Active
- 2015-05-26 KR KR1020167032522A patent/KR102363884B1/ko active IP Right Grant
- 2015-05-26 JP JP2016523509A patent/JP6565907B2/ja active Active
- 2015-05-26 WO PCT/JP2015/065117 patent/WO2015182614A1/ja active Application Filing
- 2015-05-28 TW TW104117117A patent/TWI654083B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007076046A (ja) * | 2005-09-12 | 2007-03-29 | Hitachi Maxell Ltd | 光学フィルムの製造方法 |
JP2010017932A (ja) * | 2008-07-10 | 2010-01-28 | Toyobo Co Ltd | 離型フィルム |
JP2010221625A (ja) * | 2009-03-25 | 2010-10-07 | Nippon Zeon Co Ltd | ロール状巻回体 |
JP2012061712A (ja) * | 2010-09-16 | 2012-03-29 | Nippon Zeon Co Ltd | 光学フィルムロール及び光学フィルムロールの製造方法 |
JP2013060555A (ja) * | 2011-09-14 | 2013-04-04 | Lintec Corp | 離型フィルム及びその製造方法 |
JP2013075429A (ja) * | 2011-09-30 | 2013-04-25 | Dainippon Printing Co Ltd | 積層シート、光学シート、積層シートの製造方法、光学シートの製造方法 |
JP2014012372A (ja) * | 2012-07-05 | 2014-01-23 | Mitsubishi Plastics Inc | 積層ポリエステルフィルム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108700699A (zh) * | 2016-06-22 | 2018-10-23 | 株式会社Lg化学 | 光学膜和包括其的偏光板 |
US10816712B2 (en) | 2016-06-22 | 2020-10-27 | Lg Chem, Ltd. | Optical film and polarization plate comprising the same |
CN108700699B (zh) * | 2016-06-22 | 2021-01-15 | 株式会社Lg化学 | 光学膜和包括其的偏光板 |
JP7430480B2 (ja) | 2018-04-27 | 2024-02-13 | 日東電工株式会社 | 保護フィルム付き導電性フィルム |
WO2021084751A1 (ja) * | 2019-11-01 | 2021-05-06 | コニカミノルタ株式会社 | 積層体、積層体の製造方法、偏光板の製造方法 |
JPWO2021084751A1 (ja) * | 2019-11-01 | 2021-05-06 | ||
JP7388443B2 (ja) | 2019-11-01 | 2023-11-29 | コニカミノルタ株式会社 | 積層体、積層体の製造方法、偏光板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6565907B2 (ja) | 2019-08-28 |
TW201601917A (zh) | 2016-01-16 |
KR102363884B1 (ko) | 2022-02-15 |
CN106457786A (zh) | 2017-02-22 |
US20170080689A1 (en) | 2017-03-23 |
JPWO2015182614A1 (ja) | 2017-04-20 |
CN106457786B (zh) | 2018-10-09 |
TWI654083B (zh) | 2019-03-21 |
US10328675B2 (en) | 2019-06-25 |
KR20170012245A (ko) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5565230B2 (ja) | 光学フィルムロール及び光学フィルムロールの製造方法 | |
JP5540669B2 (ja) | ロール状巻回体 | |
JP5975414B2 (ja) | 表面保護フィルム | |
JP4904525B2 (ja) | 表面保護フィルム | |
JP6593168B2 (ja) | 加熱工程用表面保護フィルム | |
US10061066B2 (en) | One-sided-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same | |
WO2011129167A1 (ja) | 表面保護フィルム | |
WO2017145607A1 (ja) | 偏光子、片保護偏光フィルム、粘着剤層付偏光フィルム並びに画像表示装置およびその連続製造方法 | |
JP6565907B2 (ja) | 複層フィルム及び巻回体 | |
JP2020019172A (ja) | 表面保護フィルム | |
WO2009054519A1 (ja) | 光学表示パネルの製造方法 | |
JP5525764B2 (ja) | 離型フィルム、該離型フィルムを用いた偏光板用保護フィルム、および該偏光板用保護フィルムを用いた偏光板 | |
JP6728681B2 (ja) | 積層フィルム、その製造方法および表面保護フィルム | |
JP5888031B2 (ja) | 光学フィルムロール及び光学フィルムロールの製造方法 | |
CN114207485B (zh) | 易粘接薄膜及其制造方法、偏光板、以及图像显示装置 | |
KR102498697B1 (ko) | 적층체 | |
JP2013109110A (ja) | 3dメガネ用偏光子の保護フィルム兼位相差板および3dメガネ用レンズの製造方法 | |
KR20240146569A (ko) | 공정 필름 부착 광학 필름, 권회체, 공정 필름 부착 광학 필름의 제조 방법, 공정 필름의 제조 방법 | |
JP2019028385A (ja) | 易接着性光学フィルム | |
TW202323044A (zh) | 多層延伸薄膜及其製造方法 | |
JP2016064654A (ja) | 二軸配向ポリプロピレンフィルムおよび表面保護フィルム | |
JP2011242579A (ja) | ロール状偏光板のセットおよびその製造方法、並びに液晶パネルの製造方法 | |
TW201443179A (zh) | 低剝離力表面保護膜及其使用方法 | |
JP2010228431A (ja) | 粘着部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15798984 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016523509 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15311657 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167032522 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15798984 Country of ref document: EP Kind code of ref document: A1 |