WO2015182406A1 - ポリエステルフィルムおよび蒸着ポリエステルフィルム - Google Patents
ポリエステルフィルムおよび蒸着ポリエステルフィルム Download PDFInfo
- Publication number
- WO2015182406A1 WO2015182406A1 PCT/JP2015/063987 JP2015063987W WO2015182406A1 WO 2015182406 A1 WO2015182406 A1 WO 2015182406A1 JP 2015063987 W JP2015063987 W JP 2015063987W WO 2015182406 A1 WO2015182406 A1 WO 2015182406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester film
- film
- vapor
- width
- width direction
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
Definitions
- the present invention relates to a polyester film and a vapor-deposited polyester film which are film bases suitable for obtaining a vapor-deposited film excellent in oxygen and water vapor gas barrier properties.
- polyester films are widely used in a wide range of fields such as packaging materials and industrial materials because of their excellent mechanical strength, thermal characteristics, optical characteristics, and the like.
- the polyester film has poor gas barrier properties such as oxygen and water vapor, there is a problem that the contents are deteriorated or deteriorated in packaging applications such as foods, retort products, and pharmaceuticals.
- a gas barrier property in oxygen, water vapor or the like is imparted to the polyester film used for packaging.
- a method for imparting a gas barrier property to a polyester film a method of laminating a film having a good gas barrier property such as polyvinylidene chloride or polyethylene vinyl alcohol copolymer, a metal oxide such as a metal such as aluminum or aluminum oxide on a polyester film.
- a method of depositing an object to form a thin film is used.
- the polyester film obtained by vapor deposition of the latter metal or metal oxide (hereinafter referred to as vapor deposition polyester film) is excellent in heat resistance and transparency, and is used in many applications.
- the performance of the gas barrier property of the obtained vapor-deposited polyester film is greatly dependent on the surface condition and physical properties of the film as the base material.
- the surface roughness and the number of protrusions of the polyester film as the base material are known.
- Patent Document 1 those for which the thermal shrinkage rate in the longitudinal direction and the width direction of the polyester film (for example, refer to Patent Document 2), and the polyester film for which the amount of oligomer generated in the film is defined
- the thing (for example, refer patent document 3) etc. by which the outstanding gas barrier film is obtained by using as a base material is proposed.
- Patent Documents 1 to 3 although there is a description about the molecular orientation and heat shrinkage of the polyester film as the base material, there is no description about variations in physical properties and distortion in the roll width direction. When the width is increased, it is difficult to obtain a vapor-deposited polyester film having excellent gas barrier properties.
- such a polyester film for vapor deposition is a biaxially stretched polyester film from the viewpoint of mechanical strength and heat resistance.
- a typical method for forming a biaxially stretched polyester film a tubular method, a sequential biaxial stretching method, and a simultaneous biaxial stretching method are generally used.
- the stretching method is mainly adopted.
- this sequential biaxial stretching method generally, an unstretched polyester sheet is first stretched in the longitudinal direction between rolls having a speed difference obtained by heating the glass sheet to a glass transition point or higher. Then, the film is stretched in the width direction by gripping the end of the film on the clip in the tenter, and then wound in a roll shape through a heat setting process, a heat relaxation process in the width direction, and a cooling process, and biaxial stretching.
- a polyester film can be obtained.
- the stretching process in the width direction which is the process in the tenter, heat setting, thermal relaxation, and cooling process
- the Boeing phenomenon is known. Boeing phenomenon here means that, when viewed geometrically, the straight line drawn in the width direction of the film at the tenter entrance changes to a bow-like curve with the center of the film delayed at the tenter exit.
- the main axis of molecular chain orientation is inclined from the central part toward the end part. Therefore, distortion and variations are generated in the width direction even in heat shrinkage characteristics.
- Non-Patent Document 1 As methods for reducing bowing, for example, a method of heat treatment after transverse stretching, cooling to below the glass transition temperature, a method of lowering the shrinkage stress by lowering the heat setting temperature, a method of increasing the stretching ratio in the width direction, etc. Have been proposed (Patent Documents 4 to 6, Non-Patent Document 1).
- JP-A-10-119172 Japanese Patent Application Laid-Open No. 11-010725 JP 2006-299078 A JP 2004-018588 A JP 2005-014545 A Japanese Patent No. 2936688
- the production facility becomes large-scale and complicated, and in the method of lowering the heat setting temperature, the heat shrinkage rate in the longitudinal direction and the width direction becomes large, and vapor deposition is performed.
- Deformation and wrinkles occur during processing, resulting in partial unevenness and loss of the deposited thin film, resulting in deterioration of gas barrier properties, and the method of increasing the stretching ratio in the width direction breaks the orientation balance in the vertical and horizontal directions. For example, deformation and wrinkles are generated during processing, and gas barrier properties are deteriorated.
- the purpose of the present invention is to improve the above-mentioned problems of the prior art and to use a widened film roll with improved productivity, and is excellent in vapor deposition workability and gas barrier properties such as oxygen and water vapor.
- Another object of the present invention is to provide a vapor deposition polyester film and a gas barrier film.
- the present inventors controlled not only the orientation balance and heat shrinkage rate of the polyester film as a base material, but also the inclination of the molecular orientation main axis with respect to the film width direction and the distortion of the heat shrinkage rate. It has been found that the above problems can be achieved.
- the polyester film of the present invention has the following configuration.
- the difference between the refractive index Nx in the longitudinal direction and the refractive index Ny in the width direction (Nx ⁇ Ny) is in the range of ⁇ 0.030 or more and 0.015 or less in the entire film width (2) in the entire film width
- the thermal shrinkage rate when heat-treated at 150 ° C. for 30 minutes is in the range of 0.8% to 2.0% in the longitudinal direction and ⁇ 0.5% to 1.0% in the width direction (3 )
- the amount of change in the orientation angle with respect to the film width direction is 0 ° or more and 20 ° or less per meter.
- a vapor-deposited polyester film having excellent gas barrier properties such as oxygen and water vapor can be obtained even when a wide film roll with improved productivity is used.
- the present invention is a biaxially stretched polyester film made of a polyester resin.
- the polyester resin used in the present invention is a polymer synthesized from a dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. Examples thereof include polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate, and polyethylene terephthalate is preferable from the viewpoint of mechanical properties, heat resistance, cost, and the like.
- polyesters may be copolymerized with other components as long as the object of the present invention is not impaired.
- the copolymer component include isophthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, adipic acid, sebacic acid, and ester-forming derivatives thereof as dicarboxylic acid components.
- the diol component include diethylene glycol, hexamethylene glycol, neopentyl glycol, and cyclohexane dimethanol.
- polyoxyalkylene glycols such as polyethylene glycol and polypropylene glycol are also included.
- the amount of copolymerization is preferably within 10 mol%, more preferably within 5 mol%, per repeating unit.
- esterification or transesterification was carried out according to a conventional method using the above-mentioned dicarboxylic acid or its ester-forming derivative and diol or its ester-forming derivative as main starting materials. Thereafter, a method of producing the product by performing a polycondensation reaction at a higher temperature and reduced pressure may be used.
- the intrinsic viscosity of the polyester of the present invention is preferably in the range of 0.50 to 0.9 dl / g, more preferably in the range of 0.55 to 0.8 dl / g, from the viewpoint of film forming property and recollectability. is there.
- grains with the polyester film of this invention from the point of the slipperiness at the time of film forming or a vapor deposition process.
- inorganic particles such as silica, calcium carbonate, barium sulfate, calcium sulfate, titanium oxide, kaolin, and talc, are mentioned, cross-linked polystyrene resin, cross-linked acrylic resin, etc.
- Organic particles may be used.
- the particle size of the particles contained in the polyester film is 0.5 &# 12316 in terms of average particle size (measured by laser diffraction scattering method) from the viewpoints of particle aggregation and transparency, and deterioration of gas barrier properties due to coarse protrusions.
- the range of 10 ⁇ m is preferable, the range of 1 〜 7 ⁇ m is more preferable, and the range of 1.2 〜 5 ⁇ m is more preferable.
- the content of the particles contained in the polyester film is preferably in the range of 0.01 〜 1% by mass from the viewpoints of particle aggregation and transparency, and deterioration of gas barrier properties due to coarse protrusions.
- the range is preferably 0.01 〜 0.5% by mass.
- these polyesters contain a small amount of other polymers, antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, plasticizers, pigments or other additives. Etc. may be contained.
- the polyester of the present invention is obtained by drying the above-mentioned polyester resin by a normal method, melt-extruding it into a sheet form from a T-shaped base, and making it adhere to a casting drum by an electrostatic application method or the like to cool and solidify to obtain an unstretched polyester sheet. .
- the obtained unstretched sheet is heated to a glass transition temperature (hereinafter referred to as Tg) or higher and stretched in the longitudinal direction between rolls having a speed difference. Thereafter, the film is heated in the tenter at Tg or more and stretched in the width direction.
- Tg glass transition temperature
- the biaxially stretched polyester film can be obtained by trimming the ear portion held by the clip through a heat setting treatment, a heat relaxation treatment in the width direction, and a cooling step, and winding it in a roll shape. Then, it slits to the designated vapor deposition processing roll width
- the difference between the refractive index Nx in the longitudinal direction and the refractive index Ny in the width direction (Nx ⁇ Ny) by the evaluation method described later is ⁇ 0.030 or more and 0.015 or less in the entire film width. Is more preferable, and more preferably ⁇ 0.025 or more and 0.010 or less.
- the sampling position of the sample in the full width is the center position in the width direction and the position at intervals of 500 mm from the center position toward both ends, and when the 500 mm interval cannot be secured in the vicinity of both ends, the sampling position is the end position that can be collected. . Moreover, paying attention to the maximum value and the minimum value of each measurement position data, both satisfy the said range, and are within the range.
- the polyester film of the present invention has a thermal shrinkage ratio of 0.8% or more and 2.0% or less in the longitudinal direction and ⁇ 0.5% in the width direction when heat-treated at 150 ° C. for 30 minutes according to the evaluation method described later. % Or more and 1.0% or less, more preferably 1.0% or more and 1.8% or less in the longitudinal direction, and ⁇ 0.3% or more and 0.8% or less in the width direction.
- the sampling position of the sample in the full width is the center position in the width direction and the position at intervals of 500 mm from the center position toward both ends, and when the 500 mm interval cannot be secured in the vicinity of both ends, the sampling position is the end position that can be collected. . Moreover, paying attention to the maximum value and the minimum value of each measurement position data, both satisfy the said range, and shall be within the range.
- the polyester film of the present invention preferably has a change in orientation angle of 0 ° or more and 20 ° or less per 1 m, more preferably 0 ° or more and 16 ° or less, with respect to the film width direction. Preferably they are 0 degree or more and 12 degrees or less.
- the orientation angle is the inclination of the principal axis of the molecular chain orientation with respect to the width direction.
- the amount of change in the orientation angle is larger than 20 ° per meter, the main molecular orientation direction in the vapor deposition processing roll width is greatly different. Therefore, when a wide roll is used, the runnability deteriorates during the vapor deposition processing.
- the sampling position of the sample in the full width is a central position and a position at intervals of 500 mm from the central position toward both ends, and an end position where sampling can be performed when a 500 mm interval cannot be secured in the vicinity of both ends.
- the above range is satisfied because the maximum value of each variation obtained from between two adjacent sampling positions is within the range.
- the biaxially stretched polyester film of the present invention has a heat of + 45 ° direction with the clockwise direction as the positive direction with respect to the longitudinal direction when heat-treated for 30 minutes at 150 ° C. according to the evaluation method described later with respect to the film width direction.
- the amount of change in the difference between the shrinkage rate and the thermal shrinkage rate in the -45 ° direction (hereinafter referred to as the oblique heat shrinkage rate difference) is preferably 0% or more and 0.25% or less, more preferably 0%. It is 0.20% or less, more preferably 0% or more and 0.15% or less.
- the shrinkage behavior due to heat within the vapor deposition processing roll width is greatly different. It is not preferable because wrinkles are likely to occur, unevenness or omission of the deposited thin film occurs partially, and gas barrier properties deteriorate.
- the difference in the oblique heat shrinkage rate is large, the variation in the heat shrinkage rate in the longitudinal direction and the width direction in the entire film width is also not preferable.
- the sampling position of the sample in the full width is a central position and a position at intervals of 500 mm from the central position toward both ends, and an end position where sampling can be performed when a 500 mm interval cannot be secured in the vicinity of both ends.
- Obtaining a biaxially stretched polyester film having the desired properties of the present invention that is, obtaining an orientation balance and a heat shrinkage rate suitable for vapor deposition, while maintaining a difference in orientation angle and oblique heat shrinkage rate within a wide film roll width
- film forming conditions such as the following stretching conditions in the longitudinal and width directions, heat setting conditions, and heat relaxation conditions. This will be described in detail below.
- a uniaxially stretched polyester film with reduced longitudinal shrinkage stress is obtained as a longitudinal stretching method.
- this can suppress the stress in the longitudinal direction generated in the tenter, which is the next step, so that bowing can be reduced.
- the stretching temperature is preferably (Tg + 15) to (Tg + 55) ° C., and the stretching ratio is preferably stretched to 3.3 to 4.7 times. When the stretching temperature is higher than (Tg + 55) ° C.
- the both ends of the unstretched film have a neck-in phenomenon that shrinks in the width direction until the resin coming out of the T-shaped base comes into contact with the casting drum. Therefore, at the time of stretching in the longitudinal direction, the molecular orientation and shrinkage stress at both ends become higher than the central part, and when the uniaxially stretched film is stretched in the width direction, not only an increase in bowing but also biaxiality obtained. The difference in physical properties between the center and both ends of the stretched polyester film is increased. Therefore, it is preferable to obtain a uniaxially stretched polyester film in which the molecular orientation and shrinkage stress at the end are reduced to reduce the difference in physical properties in the width direction.
- Examples of methods for reducing molecular orientation and shrinkage stress at both ends include, for example, a method in which both ends of a film are heated separately from the central portion, a method in which a tapered roll is used as a nip roll used in stretching in the longitudinal direction, and a plurality of methods.
- stretching between rolls etc. is mentioned.
- both ends thicker than the central portion are separately heated with an infrared heater or the like to obtain a uniaxially stretched polyester film with reduced molecular orientation and shrinkage stress at both ends.
- the temperature condition is preferably a range in which the film temperature at both ends is 0 to 20 ° C. higher than the center, and more preferably in the range of 2 to 15 ° C.
- both end portions are heated and whitened, and breakage occurs during stretching in the width direction, which is not preferable.
- the ratio of heating both ends of the film is preferably in the range of 5 to 30% from the end with respect to the total width of the film, and more preferably in the range of 10 to 20%.
- the method of using a tapered roll as a nip roll used for stretching in the longitudinal direction is a useful means for making uniform the stretching point in the film width direction during stretching.
- a nip roll is provided at the upper part of the roll to fix the stretching point, but because the thickness of both ends is thick due to the neck-in phenomenon, the stretching point in the film width direction should be matched. Is difficult and cannot be uniformly stretched in the film width direction. Therefore, variations in molecular orientation and contraction stress occur in the width direction, and in particular, the molecular orientation and contraction stress at both ends tend to increase. Therefore, by using a nip roll with a tapered part with a narrow roll diameter from the center to both ends, it becomes possible to stretch uniformly in the film width direction, reducing molecular orientation and shrinkage stress at both ends. Can be made.
- the stretching temperature is preferably (Tg + 15) to (Tg + 60) ° C.
- the stretching ratio is preferably 3.5 to 4.7 times.
- the planarity of the obtained biaxially stretched polyester film deteriorates, it is not preferable.
- it is lower than (Tg + 15) ° C. or higher than 4.7 times, bowing is reduced, and the amount of change in the orientation angle of the resulting biaxially stretched polyester film is reduced, but the width direction is longer than the longitudinal direction. This is not preferable because the molecular orientation is too large and the alignment balance is lost.
- the molecular orientation in the width direction is too large, the inclination of the orientation angle and the change in distortion of the heat shrinkage rate do not have a proportional relationship, and the amount of change in the orientation angle is reduced. The amount of change in the heat shrinkage difference is rather undesirable because it shows an increasing tendency.
- the heat setting temperature is preferably 220 to 245 ° C.
- the heat setting temperature is higher than 245 ° C.
- bowing increases, and the amount of change in the orientation angle and the oblique heat shrinkage difference of the resulting biaxially stretched polyester film increases, which is not preferable.
- a temperature lower than 220 ° C. is not preferable because the thermal shrinkage rate is increased in both the longitudinal direction and the width direction, and the thermal dimensional stability at the time of vapor deposition is deteriorated.
- the thermal relaxation method includes thermal relaxation while achieving a thermal contraction rate in the width direction suitable for vapor deposition.
- a condition in which the restraining force in the width direction is reduced by the processing and the bowing due to being easily deformed is suppressed is preferable.
- the thermal relaxation rate in the width direction is preferably 4 to 8%.
- the thermal relaxation rate is less than 4%, the resulting biaxially stretched polyester film has a high thermal shrinkage rate in the width direction, which is not preferable because the dimensional stability at the time of vapor deposition is deteriorated.
- the thermal relaxation rate is larger than 8%, bowing increases, and the amount of change in the orientation angle and oblique heat shrinkage difference of the resulting biaxially stretched polyester film increases, such being undesirable.
- the restraining force in the width direction decreases until the film is shrunk due to thermal relaxation, and the film relaxes due to its own weight, or the film may swell due to the accompanying air flow.
- the film is in a situation where it tends to fluctuate up and down.
- the amount of change in the orientation angle and the oblique heat shrinkage difference of the resulting biaxially stretched polyester film varies greatly depending on the film transport state.
- the film can be kept parallel by appropriately adjusting the wind speed blown from the upper and lower nozzles.
- the maximum bulge of the central portion is ⁇ 100 mm or less, more preferably ⁇ 50 mm or less with respect to the surface connecting both ends of the film held by the clip with a straight line.
- the bulge to the upper part was set to +, and the bulge to the lower part was set to-.
- the thickness of the biaxially stretched polyester film of the present invention is preferably 5 to 20 ⁇ m, more preferably 8 to 16 ⁇ m, from the viewpoint of maintaining mechanical strength and flexibility for packaging applications.
- the biaxially stretched polyester film of the present invention may be a single layer as a layer structure, two layers of A / B, three layers of A / B / A or A / B / C, and further a multilayer structure of three or more layers.
- the thickness ratio of each layer is not particularly limited.
- the surface roughness of the surface to be deposited can be controlled, and it can also be used as a means for controlling transparency, such as providing a layer that does not contain particles on one side.
- a lamination method by a coextrusion molding method can be suitably employed.
- the polyester film of the present invention is preferably subjected to a corona discharge treatment on at least one surface, and the surface subjected to the corona discharge treatment is preferably a surface on which a vapor deposition layer is laminated.
- the corona discharge treatment By performing the corona discharge treatment, the adhesion with the vapor deposition layer is improved, and a polyester film having excellent gas barrier properties can be obtained.
- the width of the master roll made of the polyester film of the present invention is not particularly limited, but is preferably 4000 mm or more, more preferably 5000 mm or more, and still more preferably 6000 mm or more from the viewpoint of productivity. However, since the handling becomes difficult if the width of the master roll is too wide, it is preferably 20000 mm or less.
- the roll width of the polyester film for vapor deposition obtained by slitting the master roll made of the biaxially stretched polyester film of the present invention is not particularly limited, but is preferably 1500 mm or more, more preferably 1750 mm or more, from the viewpoint of productivity. More preferably, it is 2000 mm or more. However, if the width of the slit roll is too wide, handling becomes difficult.
- the deposited polyester film obtained by the biaxial stretching method of the present invention is provided with a deposited layer on at least one side.
- Examples of the method for providing the vapor deposition layer include a vacuum vapor deposition method, a sputtering method, and an ion beam method, but are not particularly limited.
- the thin film deposited on the biaxially stretched polyester film of the present invention includes a metal or a metal oxide, and aluminum oxide, silicon oxide or a mixture thereof is preferable from the viewpoint of oxygen and water vapor barrier properties, productivity, and transparency.
- the vapor-deposited polyester film obtained in the present invention preferably has an oxygen permeation amount of 20 ml / m 2 ⁇ day ⁇ MPa or less from the viewpoint of maintaining the quality of the contents when used as a packaging material.
- the vapor-deposited polyester film obtained by the present invention preferably has a water vapor transmission rate of 2.0 g / m 2 / day or less from the viewpoint of quality retention of the contents when used as a packaging material.
- the data of the diagonal difference (%) of the heat shrinkage rate may be positive data or negative data.
- Equation 3 if the absolute value of the difference in oblique heat shrinkage rate (%) between two adjacent points is calculated, which one of the oblique difference (%) in the heat shrinkage rate at the sampling positions of the two adjacent points? The same positive value can be obtained by subtracting, and the change amount (% / m) of the difference in oblique heat shrinkage per 1 m can be calculated regardless of which is subtracted from either.
- Oxygen transmission rate The oxygen transmission rate was measured under the conditions of a temperature of 23 ° C. and a humidity of 65% using an oxygen transmission rate measuring device (OX-TRAN100 manufactured by Modern Controls) and evaluated as follows. . A: 0 or more and less than 20 (ml / m 2 ⁇ day ⁇ MPa) ⁇ : 20 or more and less than 40 (ml / m 2 ⁇ day ⁇ MPa) ⁇ : 40 (ml / m 2 ⁇ day ⁇ MPa) or more
- Water vapor transmission rate was measured under the conditions of a temperature of 40 ° C and a humidity of 90% using a water vapor transmission rate measuring device (PERMATRAN-W manufactured by Modern Controls) and evaluated as follows. .
- an infrared heater was installed at a position of 10% from both ends with respect to the full width of the unstretched sheet, and the film temperature at the end rather than the center was set to + 3 ° C. Subsequently, the film was stretched in the width direction at a temperature of 115 ° C. and a stretch ratio of 4.3 times, heat-fixed at 235 ° C., and heat-relaxed by 5% in the width direction. At this time, the bulge at the center of the film in the heat relaxation zone was adjusted to +50 mm by adjusting the nozzle air volume at the top and bottom.
- edge part was trimmed and the master roll of the biaxially-stretched polyethylene terephthalate film of thickness 12 micrometers and roll width 6300mm was obtained by winding in roll shape through a corona discharge process.
- the obtained film was measured for refractive index, thermal shrinkage, and orientation angle.
- the obtained master roll was slit to each 2200 mm width, and the film roll for vapor deposition processing was obtained.
- An inorganic oxide layer of aluminum oxide was formed as an inorganic thin film layer on the corona-treated surface of the film roll for vapor deposition processing obtained above by an electron beam vapor deposition method.
- a particulate Al 2 O 3 (purity: 99.9%) having a size of about 3 to 5 mm is used as a deposition source, an electron gun is used as a heating source, the supply of oxygen gas is adjusted, and the degree of vacuum is 10 -4 Deposition was performed under the condition of Torr or less.
- the film thickness of the obtained aluminum oxide thin film layer was 20 nm. Oxygen and water vapor transmission rates were measured. The results are shown in Table 1.
- Example 2 As stretching conditions in the longitudinal direction, the temperature is 105 ° C., the first stage is 1.3 times, the second stage is 2.77 times, the total stretching ratio is 3.6 times, and the film temperature at the end is higher than the center part. + 2 ° C., except that the stretching conditions in the width direction were changed so that the temperature was 118 ° C., the stretching ratio was 4.5 times, the heat setting temperature was 230 ° C., and the bulge at the center of the film in the thermal relaxation zone was 0 mm.
- a biaxially stretched polyethylene terephthalate film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1. In the same manner as in Example 1, slitting and aluminum oxide vapor deposition were performed, and oxygen and water vapor transmission rates were measured. The results are shown in Table 1.
- the temperature was 116 ° C.
- the first stage was 1.5 times
- the second stage was 2.85 times
- the total stretching ratio was 4.3 times.
- the stretching conditions in the width direction are as follows: the temperature is 112 ° C.
- the stretching ratio is 4.2 times
- the heat setting temperature is 235 ° C.
- the thermal relaxation treatment is performed in the width direction by 4%.
- the biaxially stretched polyethylene terephthalate film was obtained in the same manner as in Example 1 except that the bulge was +50 mm.
- slitting and aluminum oxide vapor deposition were performed, and oxygen and water vapor transmission rates were measured. The results are shown in Table 1.
- Example 4 As stretching conditions in the longitudinal direction, the temperature is 110 ° C., the first stage is 1.3 times, the second stage is 3.0 times, the total stretching ratio is 3.9 times, and the film temperature at the end is higher than that at the center.
- a biaxially stretched polyethylene terephthalate film having a thickness of 9 ⁇ m was obtained in the same manner as in Example 1 except that the temperature was + 3 ° C., the heat setting temperature was 225 ° C., and the heat relaxation treatment was changed in the width direction by 6%.
- slitting and aluminum oxide vapor deposition were performed, and oxygen and water vapor transmission rates were measured. The results are shown in Table 1.
- Example 5 Using the film roll for vapor deposition processing obtained by the method of Example 1, an inorganic oxide layer of silicon dioxide was formed on the corona-treated surface as an inorganic vapor deposition layer by an electron beam vapor deposition method. Supply of oxygen gas by using particulate Si (purity 99.99%) and SiO 2 (purity 99.9%) with a size of about 3 to 5 mm as an evaporation source, using an electron gun as a heating source was adjusted, and vapor deposition was performed under a condition of a degree of vacuum of 10 ⁇ 4 Torr or less. The film thickness of the obtained silicon dioxide thin film layer was 20 nm. Oxygen and water vapor transmission rates were measured. The results are shown in Table 1.
- Example 6 Using the film roll for vapor deposition processing obtained by the method of Example 1, a composite inorganic oxide layer of silicon dioxide and aluminum oxide was formed as an inorganic vapor deposition layer on the corona-treated surface by an electron beam vapor deposition method.
- the evaporation source particulate SiO 2 (purity 99.9%) and A1 2 O 3 (purity 99.9%) of about 3 mm to 5 mm were used.
- An electron gun was used as a heating source, and vapor deposition was performed under a vacuum degree of 10 ⁇ 4 Torr or less.
- the film thickness of the obtained silicon dioxide and aluminum oxide thin film layer was 20 nm. Oxygen and water vapor transmission rates were measured. The results are shown in Table 1.
- the film for vapor deposition using the biaxially stretched polyethylene terephthalate film obtained from the examples as a base material was excellent in vapor deposition processability, and a gas barrier film excellent in oxygen and water vapor barrier properties was obtained.
- the film for vapor deposition using the biaxially stretched polyethylene terephthalate film obtained from Comparative Examples 1 to 3 as a base material is poor in wrinkling and running during vapor deposition processing, and the obtained film has oxygen and water vapor gas barriers. It was inferior in nature.
- steam gas barrier property can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Physical Vapour Deposition (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
【課題】酸素および水蒸気ガスバリア性に優れた蒸着フィルムを得るのに好適なポリエステルフィルムおよびそれを用いた蒸着ポリエステルフィルムを提供すること。 【解決手段】厚みが5~20μmの二軸延伸ポリエステルフィルムであって、下記要件(1)~(4)が特定の範囲を満たすとするポリエステルフィルム。 (1)フィルム全幅において、長手方向の屈折率Nxと幅方向の屈折率Nyとの差(Nx-Ny) (2)フィルム全幅において、150℃で30分間熱処理したときの長手方向及び幅方向の熱収縮率 (3)フィルム幅方向に対する配向角の変化量 (4)フィルム幅方向に対して、150℃で30分間熱処理したとき、長手方向に対して、時計回り方向を正方向として+45°方向の熱収縮率と-45°方向の熱収縮率との差の変化量
Description
本発明は、酸素および水蒸気ガスバリア性に優れた蒸着フィルムを得るために好適なフィルム基材であるポリエステルフィルムおよび蒸着ポリエステルフィルムに関するものである。
従来、ポリエステルフィルムは、その優れた機械的強度、熱的特性および光学特性等から、包装用材料や工業用材料など広範囲の分野に数多く利用されている。しかしながら、ポリエステルフィルムは酸素や水蒸気等のガスバリア性に乏しいため、食品用やレトルト品用、医薬品用などの包装用途において、内容物の変質や劣化が生じてしまう問題がある。
そのため、包装用途で使用されるポリエステルフィルムには、酸素や水蒸気等におけるガスバリア性が付与される。従来、ポリエステルフィルムにガスバリア性を付与する方法として、ポリ塩化ビニリデンやポリエチレンビニルアルコール共重合体などのガスバリア性の良好なフィルムを張り合わせる方法、ポリエステルフィルムにアルミニウムなどの金属や酸化アルミニウムなどの金属酸化物を蒸着させ、薄膜を形成させる方法が利用されている。特に、後者の金属や金属酸化物を蒸着して得られるポリエステルフィルム(以後、蒸着ポリエステルフィルムと呼ぶ)は、耐熱性や透明性の面で優れているため、数多くの用途で利用されている。
また、得られる蒸着ポリエステルフィルムのガスバリア性の性能は、基材であるフィルムの表面状態や物性等に大きく依存していることが知られており、基材であるポリエステルフィルムの表面粗さや突起数を規定したもの(例えば、特許文献1参照)、ポリエステルフィルムの長手方向と幅方向の熱収縮率を規定したもの(例えば、特許文献2参照)、フィルム内のオリゴマー発生量を規定したポリエステルフィルムを基材として使用することで、優れたガスバリア性フィルムが得られるもの(例えば、特許文献3参照)、などが提案されている。
近年、蒸着ポリエステルフィルムの加工工程は、生産性向上のため、高速化や基材となるフィルムロールの広幅化、長尺化が進められている。特にロールの広幅化がなされる場合、加工時の熱や張力の影響が大きくなるため、幅方向で安定した蒸着薄膜を得ることが難しく、部分的に蒸着薄膜のムラや抜けが生じてしまい、ガスバリア性の優れた蒸着ポリエステルフィルムロールを得ることが困難である。そのため、基材となるポリエステルフィルムのロール幅方向における物性の均一化が求められている。特に、ロール幅方向における分子配向性や熱収縮率のバラツキや歪みの低減が求められている。よって、前述の特許文献1~3では、基材となるポリエステルフィルムの分子配向性や熱収縮率などの記載はあるものの、ロール幅方向における各物性のバラツキや歪みに関する記載がないため、ロールを広幅化した場合、ガスバリア性の優れた蒸着ポリエステルフィルムを得ることは困難である。
また、かかる蒸着用ポリエステルフィルムは、機械的強度や耐熱性の点から、二軸延伸ポリエステルフィルムが使用されている。代表的な二軸延伸ポリエステルフィルムの製膜方法としては、一般的にチューブラー法、逐次二軸延伸法、同時二軸延伸法が挙げられるが、生産性および平面性の点から、逐次二軸延伸法が主として採用されている。この逐次二軸延伸法は、一般的に、まず未延伸のポリエステルシートをガラス転移点以上に加熱した速度差のあるロール間にて、長手方向に延伸される。そして、テンター内でクリップにフィルムの端部を把持することで幅方向に延伸し、その後、熱固定処理、幅方向の熱弛緩処理、冷却工程を経て、ロール状に巻き取られ、二軸延伸ポリエステルフィルムを得ることができる。しかし、この逐次二軸延伸法は、テンター内での工程である幅方向の延伸、熱固定、熱弛緩および冷却工程において、クリップで把持されている端部と比較的拘束力が小さい中央部では、幅方向の延伸によって生じる長手方向の延伸応力や熱固定工程で生じる長手方向の収縮応力、テンター内で発生する張力の影響に差が生じるため、フィルムの幅方向で物性の不均一性が生じるボーイング現象が知られている。ここでいうボーイング現象とは、幾何学的に捉えた場合、テンター入口にてフィルムの幅方向に描いた直線が、テンター出口ではフィルム中央部が遅れた弓なりの曲線に変化するものであり、得られる二軸延伸ポリエステルフィルムは、中央部から端部に向かうほど分子鎖配向の主軸が傾き、そのため、熱収縮特性などにおいても幅方向で歪みやバラツキが発生する。
これまで、ボーイングを低減させる方法として、例えば、横延伸後、ガラス転移温度以下に冷却した後熱処理する方法、熱固定温度を下げて収縮応力を下げる方法、幅方向の延伸倍率を大きくする方法などが提案されている(特許文献4~6、非特許文献1)。
野々村千里、山田敏郎、松尾達樹、「ボーイング現象の解析」、成形加工、1992年、4巻、5号、p312-317
しかし、ガラス転移温度以下の冷却ゾーンを設ける方法では、生産設備が大規模、複雑化してしまうこと、熱固定温度を下げる方法では、長手方向および幅方向の熱収縮率が大きくなってしまい、蒸着加工時における変形やシワが発生し、部分的に蒸着薄膜のムラや抜けが生じ、ガスバリア性が悪化してしまうこと、幅方向の延伸倍率を大きくする方法では、縦横の配向バランスが崩れ、蒸着加工時における変形やシワが発生し、ガスバリア性が悪化してしまうことが挙げられる。そのため、上記の方法では、蒸着加工に好適な分子配向バランスと熱収縮率を獲得しつつ、かつ幅方向の分子配向主軸の傾きや熱収縮率の歪みやバラツキを改善させることは難しい。
本発明の目的は、上記の従来技術の問題点を改善し、生産性を向上させた広幅化したフィルムロールの使用においても、蒸着加工性に優れ、かつ酸素や水蒸気などのガスバリア性にも優れた蒸着用ポリエステルフィルムおよびガスバリア性フィルムを提供することにある。
本発明者らは、鋭意検討を行った結果、基材となるポリエステルフィルムの配向バランスおよび熱収縮率だけでなく、フィルム幅方向に対する分子配向主軸の傾きと熱収縮率の歪みを制御することで上記課題を達成できることを見出した。
すなわち、本発明のポリエステルフィルムは、以下の構成よりなる。
1. 厚みが5~20μmの二軸延伸ポリエステルフィルムであって、下記要件(1)~(4)をすべて満たすことを特徴とするポリエステルフィルム。
(1)フィルム全幅において、長手方向の屈折率Nxと幅方向の屈折率Nyとの差(Nx-Ny)が-0.030以上0.015以下の範囲内であること
(2)フィルム全幅において、150℃で30分間熱処理したときの熱収縮率が長手方向で0.8%以上2.0%以下、幅方向で-0.5%以上1.0%以下の範囲内であること
(3)フィルム幅方向に対して、配向角の変化量が1mあたり0°以上20°以下であること
(4)フィルム幅方向に対して、150℃で30分間熱処理したとき、長手方向に対して、時計回り方向を正方向として+45°方向の熱収縮率と-45°方向の熱収縮率との差の変化量が1mあたり0%以上0.25%以下であること
ここで、要件(1)~(4)における試料の採取位置は、全幅に対して中央位置および中央位置から両端に向かって500mm毎の間隔の位置とし、両端近傍にて500mm間隔を確保できない場合、採取可能な端位置とする。
また、要件(1)及び(2)では、各測定位置データの最大値及び最小値が範囲内にあり、要件(3)及び(4)は隣接する2点の試料採取位置間の各変化量の最大値が範囲内にあることを要件とする。
2. 少なくとも片面にコロナ放電処理が施されてなることを特徴とする上記第1に記載のポリエステルフィルム。
3. マスターロールをスリットして得られたスリットロールのフィルム全幅が1500mm以上であることを特徴とする上記第1または第2に記載のポリエステルフィルム。
4. 少なくとも片面に蒸着層を設けるために用いられることを特徴とする上記第1~第3のいずれかに記載のポリエステルフィルム。
5. 上記第4に記載のポリエステルフィルムの少なくとも片面に蒸着層が設けられてなることを特徴とする蒸着ポリエステルフィルム。
6. 上記第5に記載の蒸着ポリエステルフィルムにおいて、少なくとも蒸着層が設けられた側のポリエステルフィルムの表面にコロナ放電処理が施されていることを特徴とする蒸着ポリエステルフィルム。
7. 蒸着層が金属酸化物からなり、前記金属酸化物が酸化アルミニウム、酸化珪素、またはそれらの混合物からなることを特徴とする上記第5または第6に記載の蒸着ポリエステルフィルム。
8. フィルム全幅が1500mm以上であることを特徴とする上記第5~第7のいずれかに記載の蒸着用ポリエステルフィルムおよび蒸着ポリエステルフィルム。
1. 厚みが5~20μmの二軸延伸ポリエステルフィルムであって、下記要件(1)~(4)をすべて満たすことを特徴とするポリエステルフィルム。
(1)フィルム全幅において、長手方向の屈折率Nxと幅方向の屈折率Nyとの差(Nx-Ny)が-0.030以上0.015以下の範囲内であること
(2)フィルム全幅において、150℃で30分間熱処理したときの熱収縮率が長手方向で0.8%以上2.0%以下、幅方向で-0.5%以上1.0%以下の範囲内であること
(3)フィルム幅方向に対して、配向角の変化量が1mあたり0°以上20°以下であること
(4)フィルム幅方向に対して、150℃で30分間熱処理したとき、長手方向に対して、時計回り方向を正方向として+45°方向の熱収縮率と-45°方向の熱収縮率との差の変化量が1mあたり0%以上0.25%以下であること
ここで、要件(1)~(4)における試料の採取位置は、全幅に対して中央位置および中央位置から両端に向かって500mm毎の間隔の位置とし、両端近傍にて500mm間隔を確保できない場合、採取可能な端位置とする。
また、要件(1)及び(2)では、各測定位置データの最大値及び最小値が範囲内にあり、要件(3)及び(4)は隣接する2点の試料採取位置間の各変化量の最大値が範囲内にあることを要件とする。
2. 少なくとも片面にコロナ放電処理が施されてなることを特徴とする上記第1に記載のポリエステルフィルム。
3. マスターロールをスリットして得られたスリットロールのフィルム全幅が1500mm以上であることを特徴とする上記第1または第2に記載のポリエステルフィルム。
4. 少なくとも片面に蒸着層を設けるために用いられることを特徴とする上記第1~第3のいずれかに記載のポリエステルフィルム。
5. 上記第4に記載のポリエステルフィルムの少なくとも片面に蒸着層が設けられてなることを特徴とする蒸着ポリエステルフィルム。
6. 上記第5に記載の蒸着ポリエステルフィルムにおいて、少なくとも蒸着層が設けられた側のポリエステルフィルムの表面にコロナ放電処理が施されていることを特徴とする蒸着ポリエステルフィルム。
7. 蒸着層が金属酸化物からなり、前記金属酸化物が酸化アルミニウム、酸化珪素、またはそれらの混合物からなることを特徴とする上記第5または第6に記載の蒸着ポリエステルフィルム。
8. フィルム全幅が1500mm以上であることを特徴とする上記第5~第7のいずれかに記載の蒸着用ポリエステルフィルムおよび蒸着ポリエステルフィルム。
本発明によれば、生産性を向上させた広幅のフィルムロールの使用においても、酸素や水蒸気などのガスバリア性に優れた蒸着ポリエステルフィルムを得ることができる。
以下、本発明について詳細に説明する。
本発明はポリエステル樹脂からなる二軸延伸ポリエステルフィルムである。本発明で使用するポリエステル樹脂は、ジカルボン酸またはそのエステル形成性誘導体と、ジオールまたはそのエステル形成性誘導体から合成されるポリマーである。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートが挙げられ、機械的特性および耐熱性、コストなどの観点からポリエチレンテレフタレートが好ましい。
本発明はポリエステル樹脂からなる二軸延伸ポリエステルフィルムである。本発明で使用するポリエステル樹脂は、ジカルボン酸またはそのエステル形成性誘導体と、ジオールまたはそのエステル形成性誘導体から合成されるポリマーである。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートが挙げられ、機械的特性および耐熱性、コストなどの観点からポリエチレンテレフタレートが好ましい。
また、これらのポリエステルには、本発明の目的が損なわれない範囲であれば、他の成分が共重合されていてもよい。具体的には、共重合成分としては、ジカルボン酸成分では、イソフタル酸、ナフタレンジカルボン酸、4、4-ジフェニルジカルボン酸、アジピン酸、セバシン酸およびそのエステル形成性誘導体等が挙げられる。また、ジオール成分としてはジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノールが挙げられる。また、ポリエチレングリコール、ポリプロピレングリコール等のポリオキシアルキレングリコールも挙げられる。共重合量としては、構成する繰り返し単位あたり10モル%以内が好ましく、5モル%以内がより好ましい。
本発明のポリエステルの製造方法としては、まず、前述のジカルボン酸またはそのエステル形成性誘導体と、ジオールまたはそのエステル形成誘導体とを主たる出発原料として、常法に従い、エステル化またはエステル交換反応を行った後、さらに高温・減圧下で重縮合反応を行うことによって製造する方法等が挙げられる。
本発明のポリエステルの極限粘度としては、製膜性や再回収性などの点から0.50~0.9dl/gの範囲が好ましく、より好ましくは0.55~0.8dl/gの範囲である。
尚、本発明のポリエステルフィルムには、製膜時や蒸着加工時の易滑性の点から、粒子を配合することが好ましい。配合する粒子としては特に限定されるものではないが、例えば、シリカ、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、酸化チタン、カオリン、タルクなど無機粒子が挙げられ、また、架橋ポリスチレン樹脂や架橋アクリル樹脂などの有機粒子でも良い。
本発明においてポリエステルフィルムに含有される粒子の粒径としては、粒子の凝集や透明性、粗大突起によるガスバリア性悪化の点から、平均粒径(レーザー回折散乱法より測定)は0.5〜10μmの範囲が好ましく、より好ましくは1〜7μmの範囲であり、更に好ましくは1.2〜5μmの範囲である。
本発明においてポリエステルフィルムに含有される粒子の含有量は、粒子の凝集や透明性、粗大突起によるガスバリア性悪化の点から、0.01〜1質量%の範囲であることが好ましく、より好ましくは0.01〜0.5質量%の範囲である。
また、本発明の目的を損なわない範囲において、これらのポリエステル中には少量の他の重合体や酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、可塑剤、顔料またはその他の添加剤等が含有されていてもよい。
次に本発明のポリエステルフィルムの製造方法について説明するが、特にこれに限定されるものではない。本発明のポリエステルは、上記ポリエステル樹脂を通常の方法で乾燥後、T字の口金からシート状に溶融押出し、静電印加法などにより、キャスティングドラムに密着させ冷却固化し、未延伸ポリエステルシートを得る。次いで、得られた未延伸シートをガラス転移温度(以下Tgと呼ぶ)以上に加熱し、速度差のあるロール間で長手方向に延伸する。その後、テンター内にてフィルムをTg以上で加熱して、幅方向に延伸する。引き続き、熱固定処理、幅方向の熱弛緩処理、冷却工程を経て、クリップで把持されていた耳部をトリミングして、ロール状に巻き取ることで二軸延伸ポリエステルフィルムを得ることができる。その後、指定の蒸着加工ロール幅にスリットし、蒸着用ポリエステルフィルムロールが得られる。
本発明のポリエステルフィルムは、フィルム全幅において、後述の評価方法による長手方向の屈折率Nxと幅方向の屈折率Nyとの差(Nx-Ny)が-0.030以上0.015以下であることが好ましく、より好ましくは-0.025以上0.010以下である。Nx-Nyを-0.030以上0.015以下の範囲内にすることで、良好な配向バランスが得られ、蒸着加工時の張力における変形やシワの発生がなく、安定した蒸着薄膜が形成され、ガスバリア性の優れた蒸着ポリエステルフィルムが得られる。ここで、全幅における試料の採取位置は、幅方向の中央位置および中央位置から両端に向かって500mm毎の間隔の位置とし、両端近傍にて500mm間隔を確保できない場合、採取可能な端位置とする。また、各測定位置データの最大値及び最小値に着目し、その両者が前記範囲を満足していることで範囲内であるものする。
本発明のポリエステルフィルムは、フィルム全幅において、後述の評価方法による150℃で30分間熱処理したときの熱収縮率が長手方向で0.8%以上2.0%以下、幅方向で-0.5%以上1.0%以下であることが好ましく、より好ましくは長手方向で1.0%以上1.8%以下、幅方向で-0.3%以上0.8%以下である。長手方向および幅方向の熱収縮率を上記の範囲内にすることで、蒸着加工時において、熱に対する寸法安定性が得られ、熱による変形やシワの発生がなく、安定した蒸着薄膜が形成され、ガスバリア性の優れた蒸着ポリエステルフィルムが得られる。ここで、全幅における試料の採取位置は、幅方向の中央位置および中央位置から両端に向かって500mm毎の間隔の位置とし、両端近傍にて500mm間隔を確保できない場合、採取可能な端位置とする。また、各測定位置データの最大値及び最小値に着目し、その両者が前記範囲を満足していることで範囲内であるものとする。
本発明のポリエステルフィルムは、フィルム幅方向に対して、後述の評価方法による配向角の変化量が1mあたり0°以上20°以下であることが好ましく、より好ましくは0°以上16°以下、さらに好ましくは0°以上12°以下である。なお、ここでいう配向角とは、幅方向を基準とした場合の分子鎖配向の主軸の傾きである。配向角の変化量が1mあたり20°よりも大きい場合、蒸着加工ロール幅内での主となる分子配向方向が大きく異なるため、広幅のロールを使用した場合、蒸着加工時において、走行性悪化や斜めにシワが発生し易く、部分的に蒸着薄膜のムラや抜けが生じ、ガスバリア性が悪化するため好ましくない。また、配向角の変化量が大きい場合、フィルム全幅におけるNx-Nyのバラツキも大きくなるため好ましくない。ここで、全幅における試料の採取位置は、中央位置および中央位置から両端に向かって500mm毎の間隔の位置とし、両端近傍にて500mm間隔を確保できない場合、採取可能な端位置とする。また、隣接する2点の試料採取位置間から求める各変化量の最大値が範囲内にあることで前記範囲を満足しているものとする。
本発明の二軸延伸ポリエステルフィルムは、フィルム幅方向に対して、後述の評価方法による150℃で30分間熱処理したときの、長手方向に対して、時計回り方向を正方向として+45°方向の熱収縮率と-45°方向の熱収縮率との差(以下、斜め熱収縮率差と呼ぶ)の変化量が1mあたり0%以上0.25%以下であることが好ましく、より好ましくは0%以上0.20%以下、さらに好ましくは0%以上0.15%以下である。上記の斜め熱収縮率差の変化量が1mあたり0.25%よりも大きい場合、蒸着加工ロール幅内での熱による収縮挙動が大きく異なるため、広幅のロールを使用した場合、走行性悪化やシワが発生し易く、部分的に蒸着薄膜のムラや抜けが生じ、ガスバリア性が悪化するため好ましくない。また、斜め熱収縮率差が大きい場合、フィルム全幅における長手方向と幅方向の熱収縮率のバラツキも大きくなるため好ましくない。ここで、全幅における試料の採取位置は、中央位置および中央位置から両端に向かって500mm毎の間隔の位置とし、両端近傍にて500mm間隔を確保できない場合、採取可能な端位置とする。また、隣接する2点の試料採取位置間から求める各変化量の最大値が範囲内にあることで前記範囲を満足しているものとする。
本発明の目的とする特性を有する二軸延伸ポリエステルフィルムを得ること、つまり、蒸着加工に好適な配向バランスおよび熱収縮率を獲得しつつ、広幅フィルムロール幅内の配向角や斜め熱収縮率差の変化量を上記範囲内に制御するためには、以下のような長手方向および幅方向の延伸条件、熱固定条件、熱弛緩条件等の製膜条件を適宜組み合わせることで達成可能となる。以下に詳細に説明する。
(1)長手方向の延伸条件
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、長手方向の延伸方法としては、長手方向の収縮応力を抑えた一軸延伸ポリエステルフィルムを得ることが好ましく、これにより、次工程であるテンター内で発生する長手方向の応力を抑えることができるため、ボーイングの低減を図ることが可能である。例えば、延伸温度としては(Tg+15)~(Tg+55)℃、延伸倍率としては3.3~4.7倍に延伸することが好ましい。延伸温度が(Tg+55)℃よりも高く、または3.3倍より低い場合、ボーイングが低減され、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量は低減されるものの、長手方向よりも幅方向の分子配向が大きくなりすぎるため、配向バランスが崩れ好ましくない。また、得られる二軸延伸ポリエステルフィルムの平面性も悪化するため好ましくない。一方、(Tg+15)℃よりも低く、または4.7倍よりも高い場合、収縮応力が増加し、ボーイングが増加するため、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が増加するため好ましくない。
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、長手方向の延伸方法としては、長手方向の収縮応力を抑えた一軸延伸ポリエステルフィルムを得ることが好ましく、これにより、次工程であるテンター内で発生する長手方向の応力を抑えることができるため、ボーイングの低減を図ることが可能である。例えば、延伸温度としては(Tg+15)~(Tg+55)℃、延伸倍率としては3.3~4.7倍に延伸することが好ましい。延伸温度が(Tg+55)℃よりも高く、または3.3倍より低い場合、ボーイングが低減され、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量は低減されるものの、長手方向よりも幅方向の分子配向が大きくなりすぎるため、配向バランスが崩れ好ましくない。また、得られる二軸延伸ポリエステルフィルムの平面性も悪化するため好ましくない。一方、(Tg+15)℃よりも低く、または4.7倍よりも高い場合、収縮応力が増加し、ボーイングが増加するため、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が増加するため好ましくない。
また、未延伸フィルムの両端部は、T字の口金から出た樹脂がキャスティングドラムに接するまでの間、幅方向へ縮むネックイン現象が生じるため、中央部よりも厚みが厚くなる。そのため、長手方向の延伸時において、両端部の分子配向や収縮応力が中央部よりも高くなってしまい、該一軸延伸フィルムを幅方向に延伸した場合、ボーイングの増加だけでなく、得られる二軸延伸ポリエステルフィルムの中央部と両端部の物性差が大きくなる。そのため、端部の分子配向や収縮応力を低減させて、幅方向に物性差が少ない一軸延伸ポリエステルフィルムを得ることが好ましい。
両端部の分子配向や収縮応力を低減させる方法としては、例えば、フィルム両端部を中央部とは別に加熱する方法、長手方向の延伸時に使用するニップロールとしてテーパー状のロールを使用する方法、複数のロール間で多段延伸する方法などが挙げられる。
フィルム両端部を中央部とは別に加熱する方法では、中央部よりも厚い両端部を赤外線ヒーターなどで別に加熱することにより、両端部の分子配向や収縮応力を低減させた一軸延伸ポリエステルフィルムを得ることができる。温度条件としては、両端部のフィルム温度が中央部より0~20℃高くなるように加熱するのが好ましい範囲であり、より好ましくは2~15℃の範囲である。20℃よりも高くした場合、両端部が加熱白化してしまい、幅方向の延伸時に破断が発生するため好ましくない。フィルム両端部を加熱する割合としては、フィルム全幅に対して端部から5~30%の範囲が好ましく、10~20%の範囲がさらに好ましい。
長手方向の延伸で使用するニップロールとしてテーパー状のロールを使用する方法は、延伸時におけるフィルム幅方向の延伸点を均一にするために有用な手段である。一般的に長手方向のロール間での延伸において、延伸点を固定するために、ロール上部にニップロールを設けるが、ネックイン現象により両端部の厚みが厚いため、フィルム幅方向の延伸点を合わせることが難しく、フィルム幅方向に対して均一に延伸することができない。よって、幅方向に分子配向や収縮応力のバラツキが生じてしまい、特に、両端部の分子配向や収縮応力が高くなってしまう傾向にある。そのため、中央部から両端部にかけてロール径の狭まったテーパー部を設けたニップロールを使用することで、フィルム幅方向に対して均一に延伸することが可能となり、両端部の分子配向や収縮応力を低減させることができる。
また、長手方向の延伸において、一段階での延伸でなく、複数のロール間で多段階に延伸する方法では、延伸速度を制御しながら徐々に長手方向に延伸されるため、フィルム幅方向での物性差を低減させることができる。効果や設備面、コストの点から二段~五段延伸が好ましい。
(2)幅方向の延伸条件
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、幅方向の延伸方法としては、蒸着加工に好適な配向バランスを保持しつつ、ボーイングの低減を図る条件が好ましく、例えば、延伸温度としては(Tg+15)~(Tg+60)℃、延伸倍率としては3.5~4.7倍が好ましい。延伸温度が(Tg+60)℃よりも高く、または3.5倍より低い場合、得られる二軸延伸ポリエステルフィルムの幅方向よりも長手方向の分子配向が大きくなりすぎるため、配向バランスが崩れ好ましくない。また、得られる二軸延伸ポリエステルフィルムの平面性も悪化するため好ましくない。一方、(Tg+15)℃よりも低く、または4.7倍よりも高い場合、ボーイングが低減され、得られる二軸延伸ポリエステルフィルムの配向角の変化量は低減されるものの、長手方向よりも幅方向の分子配向性が大きくなりすぎるため、配向バランスが崩れ好ましくない。また、幅方向の分子配向性が大きすぎる場合、配向角の傾きと熱収縮率の歪みの変化が比例的な関係とはならず、配向角の変化量は低減されるものの、一方で、斜め熱収縮率差の変化量はむしろ増加傾向を示すため好ましくない。
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、幅方向の延伸方法としては、蒸着加工に好適な配向バランスを保持しつつ、ボーイングの低減を図る条件が好ましく、例えば、延伸温度としては(Tg+15)~(Tg+60)℃、延伸倍率としては3.5~4.7倍が好ましい。延伸温度が(Tg+60)℃よりも高く、または3.5倍より低い場合、得られる二軸延伸ポリエステルフィルムの幅方向よりも長手方向の分子配向が大きくなりすぎるため、配向バランスが崩れ好ましくない。また、得られる二軸延伸ポリエステルフィルムの平面性も悪化するため好ましくない。一方、(Tg+15)℃よりも低く、または4.7倍よりも高い場合、ボーイングが低減され、得られる二軸延伸ポリエステルフィルムの配向角の変化量は低減されるものの、長手方向よりも幅方向の分子配向性が大きくなりすぎるため、配向バランスが崩れ好ましくない。また、幅方向の分子配向性が大きすぎる場合、配向角の傾きと熱収縮率の歪みの変化が比例的な関係とはならず、配向角の変化量は低減されるものの、一方で、斜め熱収縮率差の変化量はむしろ増加傾向を示すため好ましくない。
(3)熱固定条件
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、熱固定方法としては、蒸着加工に好適な長手方向および幅方向の熱収縮率を達成しつつ、高温処理による熱収縮のボーイング増加を抑える条件が好ましい。例えば、熱固定温度としては、220~245℃が好ましい。熱固定温度が245℃よりも高い場合、ボーイングが増加し、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が増加するため好ましくない。一方、220℃よりも小さい場合、長手方向および幅方向ともに熱収縮率が高くなり、蒸着加工時の熱寸法安定性が悪くなるため好ましくない。
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、熱固定方法としては、蒸着加工に好適な長手方向および幅方向の熱収縮率を達成しつつ、高温処理による熱収縮のボーイング増加を抑える条件が好ましい。例えば、熱固定温度としては、220~245℃が好ましい。熱固定温度が245℃よりも高い場合、ボーイングが増加し、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が増加するため好ましくない。一方、220℃よりも小さい場合、長手方向および幅方向ともに熱収縮率が高くなり、蒸着加工時の熱寸法安定性が悪くなるため好ましくない。
(4)熱弛緩条件
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、熱弛緩方法としては、蒸着加工に好適な幅方向の熱収縮率を達成しつつ、熱緩和処理にて幅方向の拘束力が減少し、変形し易くなることによるボーイング増加を抑える条件が好ましい。例えば、幅方向の熱弛緩率としては4~8%が好ましい。熱緩和率が4%未満の場合、得られる二軸延伸ポリエステルフィルムの幅方向の熱収縮率が高くなり、蒸着加工時の寸法安定性が悪くなるため好ましくない。一方、熱緩和率が8%より大きい場合、ボーイングが増加し、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が増加するため好ましくない。
本発明の目的に好適な特性を有する二軸延伸ポリエステルフィルムを得るために、熱弛緩方法としては、蒸着加工に好適な幅方向の熱収縮率を達成しつつ、熱緩和処理にて幅方向の拘束力が減少し、変形し易くなることによるボーイング増加を抑える条件が好ましい。例えば、幅方向の熱弛緩率としては4~8%が好ましい。熱緩和率が4%未満の場合、得られる二軸延伸ポリエステルフィルムの幅方向の熱収縮率が高くなり、蒸着加工時の寸法安定性が悪くなるため好ましくない。一方、熱緩和率が8%より大きい場合、ボーイングが増加し、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が増加するため好ましくない。
また、熱弛緩処理工程では、フィルムが熱緩和により収縮されるまでの間、幅方向の拘束力が減少して自重により弛んでしまったり、また、随伴気流によってフィルムが膨らんでしまうことがあるため、フィルムが非常に上下に変動し易い状況下にある。このため、この熱弛緩工程では、フィルムの搬送状態により、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が大きく変動する。軽減させる方法としては、例えば、上下部のノズルから吹き出す風速を適宜調整することで、フィルムが平行になるように保つことが挙げられる。フィルムの好ましい状態としては、クリップで把持されたフィルム両端部を直線で結んだ面に対して、中央部の最大の膨らみが±100mm以下であり、より好ましくは±50mm以下である。尚、上部への膨らみを+、下部への膨らみを-とした。
本発明の二軸延伸ポリエステルフィルムは、包装用途としての機械的強度保持や柔軟性の点から、厚みは5~20μmであることが好ましく、さらに好ましくは、8~16μmである。
本発明の二軸延伸ポリエステルフィルムは、層構成としては単層でもよく、A/Bの二層、A/B/AまたはA/B/Cとした三層、更には三層以上の多層構成でもよく、特に限定しない。また、各層の厚み比率も特に限定しない。多層構造を採用することで、蒸着を施す面の表面粗さをコントロールでき、また、片側に粒子を含有させない層を設けるなど、透明性をコントロールする手段としても利用できる。これらの積層構造は共押出し成形法による積層方法が好適に採用できる。
本発明のポリエステルフィルムは少なくとも片面にコロナ放電処理がなされていることが好ましく、コロナ放電処理された面が蒸着層を積層する面であることが好ましい。コロナ放電処理することで蒸着層との密着性が良くなり、優れたガスバリア性を有するポリエステルフィルムが得られる。
本発明のポリエステルフィルムからなるマスターロール幅は、特に限定されないが、生産性の点から、4000mm以上が好ましく、より好ましくは5000mm以上、さらに好ましくは6000mm以上である。しかしながら、あまりにもマスターロールの幅が広過ぎると取扱いが困難になるので、20000mm以下であることが好ましい。
本発明の二軸延伸ポリエステルフィルムからなるマスターロールをスリットすることで得られる蒸着用ポリエステルフィルムのロール幅は、特に限定されないが、生産性の点から、1500mm以上が好ましく、より好ましくは1750mm以上、さらに好ましくは2000mm以上である。しかしながら、あまりにもスリットロールの幅が広過ぎると取扱いが困難になるので、5000mm以下であることが好ましい。
本発明の二軸延伸法で得られる蒸着ポリエステルフィルムは少なくとも片面に蒸着層を設けてなる。蒸着層を設ける方法としては、真空蒸着法、スパッタリング法、イオンビーム法等が挙げられるが、特に限定しない。
本発明の二軸延伸ポリエステルフィルムに蒸着させる薄膜としては、金属または金属酸化物が挙げられ、酸素及び水蒸気バリア性、生産性、透明性の点から、酸化アルミニウム、酸化珪素またはその混合物が好ましい。
本発明で得られる蒸着ポリエステルフィルムは、包装材として使用した場合の内容物の品質保持性の点から、酸素透過量が、20ml/m2・day・MPa以下が好ましい。
本発明で得られる蒸着ポリエステルフィルムは、包装材として使用した場合の内容物の品質保持性の点から、水蒸気透過量が、2.0g/m2/day以下が好ましい。
以下に実施例を挙げて本発明を具体的に説明する。なお、本発明は以下に述べる実施例に限定されるものではない。なお、実施例および比較例における各評価項目は次の方法で測定した。
(1)極限粘度[η]
フェノール/ テトラクロロエタン= 60 /40(質量比)の混合溶媒に溶解し、オストワルド粘度計を用いて30℃で測定した。なお、測定は3回行い、その平均値を求めた。
フェノール/ テトラクロロエタン= 60 /40(質量比)の混合溶媒に溶解し、オストワルド粘度計を用いて30℃で測定した。なお、測定は3回行い、その平均値を求めた。
(2)ガラス転移温度(Tg)
示差走査型熱量計(エスアイアイ・ナノテクノロジー株式会社製DSC6220型)を用いて、試料を窒素雰囲気下にて280℃まで溶融し、5分間保持した後、液体窒素にて急冷し、室温より昇温度速度20℃/分の条件にて測定を行った。
示差走査型熱量計(エスアイアイ・ナノテクノロジー株式会社製DSC6220型)を用いて、試料を窒素雰囲気下にて280℃まで溶融し、5分間保持した後、液体窒素にて急冷し、室温より昇温度速度20℃/分の条件にて測定を行った。
(3)屈折率
ナトリウムD線(波長589nm)を光源として、アッベ屈折計を用いて長手方向、幅方向の屈折率(Nx、Ny)を測定し、(Nx-Ny)を計算して求めた。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行った。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行った。このようにして求めたNx-Nyに対して、ロール全幅でのNx-Nyの最大値と最小値を求めた。
ナトリウムD線(波長589nm)を光源として、アッベ屈折計を用いて長手方向、幅方向の屈折率(Nx、Ny)を測定し、(Nx-Ny)を計算して求めた。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行った。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行った。このようにして求めたNx-Nyに対して、ロール全幅でのNx-Nyの最大値と最小値を求めた。
(4)長手方向および幅方向の熱収縮率
長手方向および幅方向に対し、試料を幅10mm、長さ250mmに切り取り、200mm間隔で印を付け、5gfの一定張力下で印の間隔(A)を測定する。次いで、フィルムを無荷重下の状態で、150℃で30分間加熱処理した後、5gfの一定張力下で印の間隔(B)を測定し、式(1)より熱収縮率を求めた。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行った。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行った。このようにして求めた熱収縮率に対して、ロール全幅での長手方向および幅方向の熱収縮率の最大値と最小値を求めた。
熱収縮率(%)={(A-B)/A}×100 式(1)
長手方向および幅方向に対し、試料を幅10mm、長さ250mmに切り取り、200mm間隔で印を付け、5gfの一定張力下で印の間隔(A)を測定する。次いで、フィルムを無荷重下の状態で、150℃で30分間加熱処理した後、5gfの一定張力下で印の間隔(B)を測定し、式(1)より熱収縮率を求めた。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行った。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行った。このようにして求めた熱収縮率に対して、ロール全幅での長手方向および幅方向の熱収縮率の最大値と最小値を求めた。
熱収縮率(%)={(A-B)/A}×100 式(1)
(5)斜め熱収縮率差のフィルム幅方向に対する変化量
まず、長手方向の軸を基準として、時計回り方向を正方向として+45°方向および-45°方向に試料を幅10mm、長さ250mmに切り取り、上記の方法と同様に、+45°方向および-45°方向に対する熱収縮率を求め、式(2)より、斜め熱収縮率差を求めた。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行い、隣接する各二点間の斜め熱収縮率差の変化量をそれぞれ求め、式(3)より1mあたりに換算した。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行い、測定したサンプル間隔の距離で割り返し、同様に1mあたりに換算した。
熱収縮率の斜め差(%)=熱収縮率(+45°方向)-熱収縮率(-45°方向)
式(2)
1mあたりの斜め熱収縮率差の変化量(%/m)
=|隣接する二点間の斜め熱収縮率差(%)|÷500(mm)×1000(mm/m) 式(3)
そして、算出される隣接する二点の試料採取位置間の複数の変化量の最大値を、そのフィルムの変化量評価結果とした。
ここで、式(2)により、熱収縮率の斜め差(%)のデータはプラスデータの場合もあれば、マイナスデータの場合もある。そして、式3において、隣接する二点間の斜め熱収縮率差(%)の絶対値を算出すれば、隣接する二点の試料採取位置の熱収縮率の斜め差(%)のどちらからどちらを差し引いても同じ正の値となり、どちらからどちらを差し引いても同じ1mあたりの斜め熱収縮率差の変化量(%/m)を算出できる。
まず、長手方向の軸を基準として、時計回り方向を正方向として+45°方向および-45°方向に試料を幅10mm、長さ250mmに切り取り、上記の方法と同様に、+45°方向および-45°方向に対する熱収縮率を求め、式(2)より、斜め熱収縮率差を求めた。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行い、隣接する各二点間の斜め熱収縮率差の変化量をそれぞれ求め、式(3)より1mあたりに換算した。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行い、測定したサンプル間隔の距離で割り返し、同様に1mあたりに換算した。
熱収縮率の斜め差(%)=熱収縮率(+45°方向)-熱収縮率(-45°方向)
式(2)
1mあたりの斜め熱収縮率差の変化量(%/m)
=|隣接する二点間の斜め熱収縮率差(%)|÷500(mm)×1000(mm/m) 式(3)
そして、算出される隣接する二点の試料採取位置間の複数の変化量の最大値を、そのフィルムの変化量評価結果とした。
ここで、式(2)により、熱収縮率の斜め差(%)のデータはプラスデータの場合もあれば、マイナスデータの場合もある。そして、式3において、隣接する二点間の斜め熱収縮率差(%)の絶対値を算出すれば、隣接する二点の試料採取位置の熱収縮率の斜め差(%)のどちらからどちらを差し引いても同じ正の値となり、どちらからどちらを差し引いても同じ1mあたりの斜め熱収縮率差の変化量(%/m)を算出できる。
(6)フィルム幅方向における配向角の変化量
フィルムを100mm×100mmに切り取り、王子計測株式会社製のMOA-6004型分子配向計を用いて、フィルムの幅方向の軸を基準にして、分子鎖主軸の配向角を求めた。このとき、フィルム幅方向に対して反時計回りの傾きを+、時計回りを-とした。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行い、隣接する各二点間の配向角の変化量をそれぞれ求め、式(4)より1mあたりに換算した。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行い、測定したサンプル間隔の距離で割り返し、同様に1mあたりに換算した。
1mあたりの配向角の変化量(°/m)
=|隣接する二点間の配向角の差(°)|÷500(mm)×1000(mm/m) 式(4)
そして、算出される隣接する二点の試料採取位置間の複数の変化量の最大値を、そのフィルムの変化量評価結果とした。
フィルムを100mm×100mmに切り取り、王子計測株式会社製のMOA-6004型分子配向計を用いて、フィルムの幅方向の軸を基準にして、分子鎖主軸の配向角を求めた。このとき、フィルム幅方向に対して反時計回りの傾きを+、時計回りを-とした。なお、測定は得られた二軸延伸フィルムロール全幅に対して、中央および中央位置より両端に向かって500mm毎の間隔で測定を行い、隣接する各二点間の配向角の変化量をそれぞれ求め、式(4)より1mあたりに換算した。また、両端部近傍にて500mm間隔を確保できない場合は、測定可能な端位置にて測定を行い、測定したサンプル間隔の距離で割り返し、同様に1mあたりに換算した。
1mあたりの配向角の変化量(°/m)
=|隣接する二点間の配向角の差(°)|÷500(mm)×1000(mm/m) 式(4)
そして、算出される隣接する二点の試料採取位置間の複数の変化量の最大値を、そのフィルムの変化量評価結果とした。
(7)酸素透過率
酸素透過量は、酸素透過度測定装置(Modern Controls社製OX-TRAN100)を用いて、温度23℃、湿度65%の条件にて測定を行い、以下のように評価した。
◎:0以上20(ml/m2・day・MPa)未満
○:20以上40(ml/m2・day・MPa)未満
×:40(ml/m2・day・MPa)以上
酸素透過量は、酸素透過度測定装置(Modern Controls社製OX-TRAN100)を用いて、温度23℃、湿度65%の条件にて測定を行い、以下のように評価した。
◎:0以上20(ml/m2・day・MPa)未満
○:20以上40(ml/m2・day・MPa)未満
×:40(ml/m2・day・MPa)以上
(8)水蒸気透過率
水蒸気透過量は、水蒸気透過度測定装置(Modern Controls社製PERMATRAN-W)を用いて、温度40℃、湿度90%の条件にて測定を行い、以下のように評価した。
◎:0以上2(g/m2・day)未満
○:2以上4(g/m2・day)未満
×:4(g/m2・day)以上
水蒸気透過量は、水蒸気透過度測定装置(Modern Controls社製PERMATRAN-W)を用いて、温度40℃、湿度90%の条件にて測定を行い、以下のように評価した。
◎:0以上2(g/m2・day)未満
○:2以上4(g/m2・day)未満
×:4(g/m2・day)以上
(9)加工性および外観評価
蒸着加工時のフィルムの加工性および加工後の外観評価を○、×で評価した。たるみやシワがなく、走行性が良好であれば、○とした。たるみやシワがあったり、走行性が良好と言えなければ、×とした
蒸着加工時のフィルムの加工性および加工後の外観評価を○、×で評価した。たるみやシワがなく、走行性が良好であれば、○とした。たるみやシワがあったり、走行性が良好と言えなければ、×とした
[実施例1]
平均粒径が2.5μmのシリカを0.1質量%含有したポリエチレンテレフタレート(極限粘度=0.62dl/g、Tg=78℃)を、乾燥後、押出機に供給し、285℃で溶融し、T字の口金から吐出させ、キャスティングドラムにて冷却固化させ、未延伸のポリエチレンテレフタレートシートを得た。このシートを115℃に加熱し、一段目を1.4倍、二段目を2.86倍とした二段延伸にて、全延伸倍率4.0倍で長手方向に延伸した。このとき、未延伸シートの全幅に対して両端部から10%の位置にかけて赤外線ヒーターを設置し、中央部よりも端部のフィルム温度を+3℃とした。引き続き、温度115℃、延伸倍率4.3倍にて幅方向に延伸し、235℃で熱固定し、幅方向に5%熱弛緩処理させた。このとき、上下部のノズル風量を調整することで、熱弛緩ゾーンのフィルム中央部の膨らみが+50mmになるようにした。そして、耳部をトリミングし、コロナ放電処理を経てロール状に巻取ることで、厚み12μm、ロール幅6300mmの二軸延伸ポリエチレンテレフタレートフィルムのマスターロールを得た。得られたフィルムの屈折率、熱収縮率および配向角をそれぞれ測定した。また、得られたマスターロールは各2200mm幅にスリットし、蒸着加工用フィルムロールを得た。上記で得られた蒸着加工用フィルムロールのコロナ処理面に、無機薄膜層として、酸化アルミニウムの無機酸化物層を電子ビーム蒸着法で形成した。蒸着源として、3~5mm程度の大きさの粒子状のAl2O3(純度99.9%)を用い、加熱源として、電子銃を使用し、酸素ガスの供給を調整し、真空度10-4Torr以下の条件で蒸着を行った。得られた酸化アルミニウム薄膜層の膜厚は20nmであった。酸素および水蒸気透過率を測定した。結果を表1に示す。
平均粒径が2.5μmのシリカを0.1質量%含有したポリエチレンテレフタレート(極限粘度=0.62dl/g、Tg=78℃)を、乾燥後、押出機に供給し、285℃で溶融し、T字の口金から吐出させ、キャスティングドラムにて冷却固化させ、未延伸のポリエチレンテレフタレートシートを得た。このシートを115℃に加熱し、一段目を1.4倍、二段目を2.86倍とした二段延伸にて、全延伸倍率4.0倍で長手方向に延伸した。このとき、未延伸シートの全幅に対して両端部から10%の位置にかけて赤外線ヒーターを設置し、中央部よりも端部のフィルム温度を+3℃とした。引き続き、温度115℃、延伸倍率4.3倍にて幅方向に延伸し、235℃で熱固定し、幅方向に5%熱弛緩処理させた。このとき、上下部のノズル風量を調整することで、熱弛緩ゾーンのフィルム中央部の膨らみが+50mmになるようにした。そして、耳部をトリミングし、コロナ放電処理を経てロール状に巻取ることで、厚み12μm、ロール幅6300mmの二軸延伸ポリエチレンテレフタレートフィルムのマスターロールを得た。得られたフィルムの屈折率、熱収縮率および配向角をそれぞれ測定した。また、得られたマスターロールは各2200mm幅にスリットし、蒸着加工用フィルムロールを得た。上記で得られた蒸着加工用フィルムロールのコロナ処理面に、無機薄膜層として、酸化アルミニウムの無機酸化物層を電子ビーム蒸着法で形成した。蒸着源として、3~5mm程度の大きさの粒子状のAl2O3(純度99.9%)を用い、加熱源として、電子銃を使用し、酸素ガスの供給を調整し、真空度10-4Torr以下の条件で蒸着を行った。得られた酸化アルミニウム薄膜層の膜厚は20nmであった。酸素および水蒸気透過率を測定した。結果を表1に示す。
[実施例2]
長手方向の延伸条件として、温度を105℃、一段目を1.3倍、二段目を2.77倍、全延伸倍率を3.6倍で行い、端部のフィルム温度を中央部よりも+2℃とし、幅方向の延伸条件として、温度を118℃、延伸倍率を4.5倍、熱固定温度を230℃、熱弛緩ゾーンのフィルム中央部の膨らみを0mmになるように変更した以外は実施例1と同様の方法で、厚み15μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。実施例1と同様に、スリット加工および酸化アルミニウムの蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
長手方向の延伸条件として、温度を105℃、一段目を1.3倍、二段目を2.77倍、全延伸倍率を3.6倍で行い、端部のフィルム温度を中央部よりも+2℃とし、幅方向の延伸条件として、温度を118℃、延伸倍率を4.5倍、熱固定温度を230℃、熱弛緩ゾーンのフィルム中央部の膨らみを0mmになるように変更した以外は実施例1と同様の方法で、厚み15μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。実施例1と同様に、スリット加工および酸化アルミニウムの蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
[実施例3]
平均粒径が2.5μmのシリカを0.14質量%含有したポリエチレンテレフタレート(A)(極限粘度=0.62dl/g、Tg=78℃)と平均粒径が2.5μmのシリカを0.035質量%含有したポリエチレンテレフタレート(B)(極限粘度=0.62dl/g、Tg=78℃)を乾燥後、別々の押出機に供給し、285℃で溶融し、A/B/Aの二種三層の構成になるように合流させた後、T字の口金から吐出させ、キャスティングドラムにて冷却固化させ、未延伸のポリエチレンテレフタレートシートを得た。このとき各層の厚さの比としては、A/B/A=7/86/7になるように吐出量を調整した。
平均粒径が2.5μmのシリカを0.14質量%含有したポリエチレンテレフタレート(A)(極限粘度=0.62dl/g、Tg=78℃)と平均粒径が2.5μmのシリカを0.035質量%含有したポリエチレンテレフタレート(B)(極限粘度=0.62dl/g、Tg=78℃)を乾燥後、別々の押出機に供給し、285℃で溶融し、A/B/Aの二種三層の構成になるように合流させた後、T字の口金から吐出させ、キャスティングドラムにて冷却固化させ、未延伸のポリエチレンテレフタレートシートを得た。このとき各層の厚さの比としては、A/B/A=7/86/7になるように吐出量を調整した。
このシートを用い、長手方向の延伸条件として、温度を116℃、一段目を1.5倍、二段目を2.85倍、全延伸倍率を4.3倍で行い、端部のフィルム温度を中央部よりも+4℃とし、幅方向の延伸条件として、温度を112℃、延伸倍率を4.2倍、熱固定温度を235℃、幅方向に4%熱弛緩処理を行い(フィルム中央部の膨らみが+50mmであった)、それ以外は実施例1と同様の方法で、二軸延伸ポリエチレンテレフタレートフィルムを得た。実施例1と同様に、スリット加工および酸化アルミニウムの蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
[実施例4]
長手方向の延伸条件として、温度を110℃、一段目を1.3倍、二段目を3.0倍、全延伸倍率を3.9倍で行い、端部のフィルム温度を中央部よりも+3℃とし、熱固定温度を225℃、幅方向に6%熱弛緩処理を変更した以外は実施例1と同様の方法で、厚み9μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。実施例1と同様に、スリット加工および酸化アルミニウムの蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
長手方向の延伸条件として、温度を110℃、一段目を1.3倍、二段目を3.0倍、全延伸倍率を3.9倍で行い、端部のフィルム温度を中央部よりも+3℃とし、熱固定温度を225℃、幅方向に6%熱弛緩処理を変更した以外は実施例1と同様の方法で、厚み9μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。実施例1と同様に、スリット加工および酸化アルミニウムの蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
[実施例5]
実施例1の方法で得られた蒸着加工用フィルムロールを用い、コロナ処理面に無機蒸着層として、二酸化珪素の無機酸化物層を電子ビーム蒸着法で形成した。蒸着源として、3~5mm程度の大きさの粒子状のSi(純度99.99%)とSiO2(純度99.9%)を用い、加熱源として、電子銃を使用し、酸素ガスの供給を調整し、真空度10-4Torr以下の条件で蒸着を行った。得られた二酸化珪素薄膜層の膜厚は20nmであった。酸素および水蒸気透過率を測定した。結果は表1に示す。
実施例1の方法で得られた蒸着加工用フィルムロールを用い、コロナ処理面に無機蒸着層として、二酸化珪素の無機酸化物層を電子ビーム蒸着法で形成した。蒸着源として、3~5mm程度の大きさの粒子状のSi(純度99.99%)とSiO2(純度99.9%)を用い、加熱源として、電子銃を使用し、酸素ガスの供給を調整し、真空度10-4Torr以下の条件で蒸着を行った。得られた二酸化珪素薄膜層の膜厚は20nmであった。酸素および水蒸気透過率を測定した。結果は表1に示す。
[実施例6]
実施例1の方法で得られた蒸着加工用フィルムロールを用い、コロナ処理面に無機蒸着層として、二酸化珪素と酸化アルミニウムの複合無機酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO2(純度99.9%)とA12O3(純度99.9%)とを用いた。ここで複合酸化物層の組成は、SiO2/A12O3(質量比)=60/40であった。加熱源として、電子銃を使用し、真空度10-4Torr以下の条件で蒸着を行った。得られた二酸化珪素と酸化アルミニウム薄膜層の膜厚は20nmであった。酸素および水蒸気透過率を測定した。結果は表1に示す。
実施例1の方法で得られた蒸着加工用フィルムロールを用い、コロナ処理面に無機蒸着層として、二酸化珪素と酸化アルミニウムの複合無機酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO2(純度99.9%)とA12O3(純度99.9%)とを用いた。ここで複合酸化物層の組成は、SiO2/A12O3(質量比)=60/40であった。加熱源として、電子銃を使用し、真空度10-4Torr以下の条件で蒸着を行った。得られた二酸化珪素と酸化アルミニウム薄膜層の膜厚は20nmであった。酸素および水蒸気透過率を測定した。結果は表1に示す。
[比較例1]
長手方向の延伸条件として、一段目を1.6倍、二段目を3.1倍、全延伸倍率を4.9倍で行い、端部の加熱は行わず(中央部よりも端部のフィルム温度は-3℃であった)、幅方向に10%熱弛緩処理し、熱弛緩ゾーンの上下部のノズル風量を調整は行わず(フィルム中央部の膨らみが+150mmであった)、それ以外は実施例1と同様の方法で、二軸延伸ポリエチレンテレフタレートフィルムを得た。同様に、スリット、蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
長手方向の延伸条件として、一段目を1.6倍、二段目を3.1倍、全延伸倍率を4.9倍で行い、端部の加熱は行わず(中央部よりも端部のフィルム温度は-3℃であった)、幅方向に10%熱弛緩処理し、熱弛緩ゾーンの上下部のノズル風量を調整は行わず(フィルム中央部の膨らみが+150mmであった)、それ以外は実施例1と同様の方法で、二軸延伸ポリエチレンテレフタレートフィルムを得た。同様に、スリット、蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
[比較例2]
長手方向の延伸条件として、一段目を1.3倍、二段目を2.92倍、全延伸倍率を3.8倍で行い、端部の加熱は行わず(中央部よりも端部のフィルム温度は-3℃であった)、幅方向の延伸条件として、温度を118℃、延伸倍率を4.8倍、熱固定温度を248℃、幅方向に5%熱弛緩処理、熱弛緩ゾーンの上下部のノズル風量を調整は行わず(フィルム中央部の膨らみが+150mmであった)、それ以外は実施例1と同様の方法で、厚み15μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。同様に、スリット、蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
長手方向の延伸条件として、一段目を1.3倍、二段目を2.92倍、全延伸倍率を3.8倍で行い、端部の加熱は行わず(中央部よりも端部のフィルム温度は-3℃であった)、幅方向の延伸条件として、温度を118℃、延伸倍率を4.8倍、熱固定温度を248℃、幅方向に5%熱弛緩処理、熱弛緩ゾーンの上下部のノズル風量を調整は行わず(フィルム中央部の膨らみが+150mmであった)、それ以外は実施例1と同様の方法で、厚み15μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。同様に、スリット、蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
[比較例3]
熱固定温度を190℃、幅方向に2%熱弛緩処理、熱弛緩ゾーンの上下部のノズル風量を調整は行わず(フィルム中央部の膨らみが+120mmであった)、それ以外は実施例1と同様の方法で、厚み9μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。同様に、スリット、蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
熱固定温度を190℃、幅方向に2%熱弛緩処理、熱弛緩ゾーンの上下部のノズル風量を調整は行わず(フィルム中央部の膨らみが+120mmであった)、それ以外は実施例1と同様の方法で、厚み9μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。同様に、スリット、蒸着加工を行い、酸素および水蒸気透過率を測定した。結果は表1に示す。
実施例より得られた二軸延伸ポリエチレンテレフタレートフィルムを基材として用いた蒸着用フィルムは、蒸着加工性に優れ、酸素および水蒸気バリア性に優れたガスバリア性フィルムが得られた。一方、比較例1~3より得られた二軸延伸ポリエチレンテレフタレートフィルムを基材として用いた蒸着用フィルムは、蒸着加工時にシワ発生や走行性が悪く、得られたフィルムとしては酸素および水蒸気のガスバリア性に劣るものであった。
本発明によれば、蒸着加工工程での生産性に優れ、かつ酸素および水蒸気ガスバリア性の優れた蒸着ポリエステルフィルムを提供することができる。
Claims (8)
- 厚みが5~20μmの二軸延伸ポリエステルフィルムであって、下記要件(1)~(4)をすべて満たすことを特徴とするポリエステルフィルム。
(1)フィルム全幅において、長手方向の屈折率Nxと幅方向の屈折率Nyとの差(Nx-Ny)が-0.030以上0.015以下の範囲内であること
(2)フィルム全幅において、150℃で30分間熱処理したときの熱収縮率が長手方向で0.8%以上2.0%以下、幅方向で-0.5%以上1.0%以下の範囲内であること
(3)フィルム幅方向に対して、配向角の変化量が1mあたり0°以上20°以下であること
(4)フィルム幅方向に対して、150℃で30分間熱処理したとき、長手方向に対して、時計回り方向を正方向として+45°方向の熱収縮率と-45°方向の熱収縮率との差の変化量が1mあたり0%以上0.25%以下であること
ここで、要件(1)~(4)における試料の採取位置は、全幅に対して中央位置および中央位置から両端に向かって500mm毎の間隔の位置とし、両端近傍にて500mm間隔を確保できない場合、採取可能な端位置とする。
また、要件(1)及び(2)では、各測定位置データの最大値及び最小値が範囲内にあり、要件(3)及び(4)は隣接する2点の試料採取位置間の各変化量の最大値が範囲内にあることを要件とする。 - 少なくとも片面にコロナ放電処理が施されてなることを特徴とする請求項1に記載のポリエステルフィルム。
- マスターロールをスリットして得られたスリットロールのフィルム全幅が1500mm以上であることを特徴とする請求項1または2に記載のポリエステルフィルム。
- 少なくとも片面に蒸着層を設けるために用いられることを特徴とする請求項1~3のいずれか1項に記載のポリエステルフィルム。
- 請求項4に記載のポリエステルフィルムの少なくとも片面に蒸着層が設けられてなることを特徴とする蒸着ポリエステルフィルム。
- 請求項5に記載の蒸着ポリエステルフィルムにおいて、少なくとも蒸着層が設けられた側のポリエステルフィルムの表面にコロナ放電処理が施されていることを特徴とする蒸着ポリエステルフィルム。
- 蒸着層が金属酸化物からなり、前記金属酸化物が酸化アルミニウム、酸化珪素、またはそれらの混合物からなることを特徴とする請求項5または6に記載の蒸着ポリエステルフィルム。
- フィルム全幅が1500mm以上であることを特徴とする請求項5~7のいずれか1項に記載の蒸着用ポリエステルフィルムおよび蒸着ポリエステルフィルム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015526073A JP6070842B2 (ja) | 2014-05-30 | 2015-05-15 | ポリエステルフィルムおよび蒸着ポリエステルフィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014112636 | 2014-05-30 | ||
JP2014-112636 | 2014-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015182406A1 true WO2015182406A1 (ja) | 2015-12-03 |
Family
ID=54698743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063987 WO2015182406A1 (ja) | 2014-05-30 | 2015-05-15 | ポリエステルフィルムおよび蒸着ポリエステルフィルム |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP6070842B2 (ja) |
TW (1) | TWI668118B (ja) |
WO (1) | WO2015182406A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018144444A1 (en) * | 2017-02-03 | 2018-08-09 | Spartech Llc | Moldable polyester sheet materials and recyclable barrier packages made therefrom |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102397408B1 (ko) * | 2016-06-24 | 2022-05-11 | 코오롱인더스트리 주식회사 | 폴리에스테르 다층필름 및 이의 제조방법 |
JP7163998B1 (ja) | 2021-06-02 | 2022-11-01 | 東洋紡株式会社 | 二軸配向ポリエステルフィルム及びその製造方法 |
WO2024214769A1 (ja) * | 2023-04-14 | 2024-10-17 | 東洋紡株式会社 | 蒸着用ポリエチレンテレフタレートフィルム及び透明ガスバリアフィルム |
WO2024214768A1 (ja) * | 2023-04-14 | 2024-10-17 | 東洋紡株式会社 | 蒸着用ポリエチレンテレフタレートフィルム及び透明ガスバリアフィルム |
WO2024214772A1 (ja) * | 2023-04-14 | 2024-10-17 | 東洋紡株式会社 | 蒸着用ポリエチレンテレフタレートフィルム及び透明ガスバリアフィルム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000238125A (ja) * | 1999-02-25 | 2000-09-05 | Toyobo Co Ltd | 脂肪族ポリエステル系フィルム |
JP2003053832A (ja) * | 2001-08-21 | 2003-02-26 | Toray Ind Inc | 透明蒸着用ポリエステルフィルム及び透明蒸着ポリエステルフィルム |
JP2006341546A (ja) * | 2005-06-10 | 2006-12-21 | Toray Ind Inc | 二軸配向ポリエステルフィルム |
JP2009072939A (ja) * | 2007-09-19 | 2009-04-09 | Toyobo Co Ltd | 偏光板保護用または位相差板保護用離型用ポリエステルフィルム、離型フィルム、及びその製造方法 |
JP2011104981A (ja) * | 2009-11-19 | 2011-06-02 | Toray Advanced Materials Korea Inc | 離型フィルム用2軸延伸ポリエステルフィルム及びこれを用いた離型フィルム |
JP2011148201A (ja) * | 2010-01-22 | 2011-08-04 | Toyobo Co Ltd | 偏光板離型用二軸延伸ポリエチレンテレフタレートフィルム |
JP2011148202A (ja) * | 2010-01-22 | 2011-08-04 | Toyobo Co Ltd | 偏光板離型用二軸延伸ポリエチレンテレフタレートフィルム |
-
2015
- 2015-05-15 JP JP2015526073A patent/JP6070842B2/ja active Active
- 2015-05-15 WO PCT/JP2015/063987 patent/WO2015182406A1/ja active Application Filing
- 2015-05-20 TW TW104116076A patent/TWI668118B/zh active
-
2016
- 2016-12-14 JP JP2016242228A patent/JP6274298B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000238125A (ja) * | 1999-02-25 | 2000-09-05 | Toyobo Co Ltd | 脂肪族ポリエステル系フィルム |
JP2003053832A (ja) * | 2001-08-21 | 2003-02-26 | Toray Ind Inc | 透明蒸着用ポリエステルフィルム及び透明蒸着ポリエステルフィルム |
JP2006341546A (ja) * | 2005-06-10 | 2006-12-21 | Toray Ind Inc | 二軸配向ポリエステルフィルム |
JP2009072939A (ja) * | 2007-09-19 | 2009-04-09 | Toyobo Co Ltd | 偏光板保護用または位相差板保護用離型用ポリエステルフィルム、離型フィルム、及びその製造方法 |
JP2011104981A (ja) * | 2009-11-19 | 2011-06-02 | Toray Advanced Materials Korea Inc | 離型フィルム用2軸延伸ポリエステルフィルム及びこれを用いた離型フィルム |
JP2011148201A (ja) * | 2010-01-22 | 2011-08-04 | Toyobo Co Ltd | 偏光板離型用二軸延伸ポリエチレンテレフタレートフィルム |
JP2011148202A (ja) * | 2010-01-22 | 2011-08-04 | Toyobo Co Ltd | 偏光板離型用二軸延伸ポリエチレンテレフタレートフィルム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018144444A1 (en) * | 2017-02-03 | 2018-08-09 | Spartech Llc | Moldable polyester sheet materials and recyclable barrier packages made therefrom |
EP3576945A4 (en) * | 2017-02-03 | 2020-10-28 | Spartech LLC | MOLDABLE POLYESTER FILM MATERIALS AND RECYCLABLE BARRIER PACKAGING MADE FROM THEM |
US11130323B2 (en) | 2017-02-03 | 2021-09-28 | Spartech, LLC | Moldable polyester sheet materials and recyclable barrier packages made therefrom |
Also Published As
Publication number | Publication date |
---|---|
JP2017065264A (ja) | 2017-04-06 |
JP6070842B2 (ja) | 2017-02-01 |
JP6274298B2 (ja) | 2018-02-07 |
TW201601938A (zh) | 2016-01-16 |
TWI668118B (zh) | 2019-08-11 |
JPWO2015182406A1 (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6274298B2 (ja) | 蒸着ポリエステルフィルム | |
TWI632053B (zh) | Biaxially oriented polyester film | |
JP7533530B2 (ja) | 二軸配向ポリエステルフィルムロール | |
WO2018147249A1 (ja) | 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体 | |
JP2007185898A (ja) | 二軸延伸ポリエステルフィルムおよびその製造方法 | |
CN114207029B (zh) | 双轴取向聚酯薄膜 | |
TW202017966A (zh) | 非晶性膜所用共聚聚酯原料、熱收縮性聚酯系膜、熱收縮性標籤、以及包裝體 | |
JP4644885B2 (ja) | 脂肪族ポリエステル系フィルム | |
JP2018001422A (ja) | 積層フィルム、積層体及び包装体 | |
US20240124705A1 (en) | Biaxially oriented polyester film and production method therefor | |
JP2015145086A (ja) | ポリエステルフィルムロール | |
JP7581050B2 (ja) | 二軸配向ポリエステルフィルムロール | |
JP2005335309A (ja) | 金属蒸着二軸延伸ポリエステルフィルム | |
JP7419722B2 (ja) | 二軸配向ポリエステルフィルム | |
JP6701790B2 (ja) | ポリエステルフィルム | |
JP4623265B2 (ja) | 二軸延伸ポリエステルフィルム | |
JP2022114516A (ja) | 包装用ポリエステルフィルム | |
WO2017022743A1 (ja) | ポリエステルフィルム | |
JP2009035006A (ja) | 二軸延伸ポリエステルフィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015526073 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15800052 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15800052 Country of ref document: EP Kind code of ref document: A1 |