[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015016236A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2015016236A1
WO2015016236A1 PCT/JP2014/069998 JP2014069998W WO2015016236A1 WO 2015016236 A1 WO2015016236 A1 WO 2015016236A1 JP 2014069998 W JP2014069998 W JP 2014069998W WO 2015016236 A1 WO2015016236 A1 WO 2015016236A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power
wheel
prime mover
torque
Prior art date
Application number
PCT/JP2014/069998
Other languages
English (en)
French (fr)
Inventor
本多智一
小林章良
吉見慎太郎
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US14/440,419 priority Critical patent/US9725014B2/en
Priority to JP2015529584A priority patent/JP6457939B2/ja
Priority to CN201480043314.8A priority patent/CN105452052B/zh
Priority to CA2919965A priority patent/CA2919965A1/en
Priority to KR1020167005414A priority patent/KR20160040629A/ko
Priority to EP14832005.4A priority patent/EP3028893B1/en
Publication of WO2015016236A1 publication Critical patent/WO2015016236A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/16Axle differentials, e.g. for dividing torque between left and right wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • B62D9/002Steering deflectable wheels not otherwise provided for combined with means for differentially distributing power on the deflectable wheels during cornering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/22Arrangements for suppressing or influencing the differential action, e.g. locking devices using friction clutches or brakes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K2005/003Arrangement or mounting of internal-combustion or jet-propulsion units the internal combustion or jet propulsion unit is arranged between the front and the rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • B60K2023/043Control means for varying left-right torque distribution, e.g. torque vectoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • B60K2023/0816Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential
    • B60K2023/0833Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential for adding torque to the rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/04Arrangement or mounting of internal-combustion or jet-propulsion units with the engine main axis, e.g. crankshaft axis, transversely to the longitudinal centre line of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/14Electronic locking-differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/16Curve braking control, e.g. turn control within ABS control algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/02Side slip angle, attitude angle, floating angle, drift angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/303Stability control with active acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • B60W2050/0056Low-pass filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing

Definitions

  • the present invention relates to a vehicle capable of adjusting the driving force of left and right wheels (drive wheels).
  • US 2005/0217921 A1 the driving force distribution ratio of the front and rear wheels and the right and left driving force distribution ratios of the front wheels or the rear wheels can be accurately controlled.
  • the object is to provide a driving force control method for a wheel drive vehicle ([0009], summary).
  • US 2005/0217921 A1 controls the driving force distribution ratio of the front and rear wheels so that the rear wheel distribution ratio increases in accordance with the increase in the absolute value of the lateral G signal, and the front wheel or rear wheel.
  • the left and right driving force distribution ratios of the wheels are controlled so that the driving force on the turning outer wheel side is increased.
  • the lateral G signal uses a lateral G signal obtained by correcting the lateral G sensor signal with an estimated lateral G signal calculated based on the steering angle and the vehicle speed (summary).
  • JPJ2005-219580 A can suppress vehicle behavior change when a turning vehicle starts to accelerate or decelerate, and can improve vehicle stability.
  • the object is to provide a vehicle behavior control device ([0006], summary).
  • the behavior control apparatus 1 of JP 2005-219580 A includes driving means (electric motors 11FR to 11RL, [0024]) that individually add driving force to each of the plurality of wheels 10FR to 10RL, a vehicle Driving state detection means (lateral acceleration sensor 25, [0035]) for detecting the turning state of V, and when the vehicle V is accelerated when the vehicle V is in the turning state, application of driving force to the turning outer wheel is started.
  • Driving force control means (motor ECU 20, [0032]) for controlling the driving means so as to start application of driving force to the inner turning wheel later (Claim 3, [0052]).
  • Whether the vehicle V is turning is determined based on whether the lateral acceleration detected by the lateral acceleration sensor 25 is equal to or greater than a predetermined value ([0034], [0035]).
  • the absolute value of the change speed of the accelerator pedal opening (change speed
  • ) is equal to or greater than a predetermined value TH1
  • ) of the deviation between the previous read value and the current read value of the accelerator pedal opening is equal to or greater than the predetermined value TH2 (FIG. 3).
  • S106: YES) is provided ([0037]). It is said that only one of the change rate
  • JP 2005-219580 A focuses on the absolute value of the change rate of the accelerator pedal opening (change rate
  • is used only as one of the conditions for performing the control for starting the addition of the driving force to the inner turning wheel after the application of the driving force to the outer turning wheel is started.
  • of the accelerator pedal opening directly reflects the operation of the accelerator pedal, that is, the driver's intention of acceleration / deceleration (or the future acceleration / deceleration state of the vehicle).
  • JP 2005-219580 A does not disclose or suggest changing the wheel torque in accordance with the change speed
  • JP 5-2005-219580 A has room for improvement from the viewpoint of vehicle attitude control or operation performance (responsiveness to accelerator pedal operation, etc.) during acceleration turning.
  • the present invention has been made in consideration of the above-described problems, and an object of the present invention is to provide a vehicle capable of improving the attitude control or operation performance of the vehicle during accelerated turning.
  • a vehicle includes a left drive wheel and a right drive wheel connected to a prime mover, a required drive power amount input device that inputs a required drive power amount, and a required turn amount input device that inputs a required turn amount.
  • the vehicle further comprises a turning control device that adjusts a power difference between the left driving wheel and the right driving wheel based on a time differential value of the required driving power amount.
  • the power difference between the left and right drive wheels is adjusted based on the required turning amount and the time differential value of the required drive power amount. For this reason, even with the same required turning amount, the power difference between the left and right drive wheels varies depending on the time differential value of the required drive power amount. Therefore, for example, when the power difference between the left and right drive wheels is increased as the time differential value of the required drive power amount increases, the vehicle (vehicle body) can be easily turned stably. This is particularly noticeable in a low speed region where the response of the behavior of the vehicle to steering is low. Therefore, the above control makes it possible to make the vehicle posture more stable or to increase the responsiveness to the driver's intention (high-speed turning).
  • the turning control device may increase the power difference as the time differential value of the required drive power amount increases. Or the said turning control apparatus may make the said power difference small, so that the time differential value of the said request
  • the prime mover includes a first prime mover connected to the left drive wheel and a second prime mover connected to the right drive wheel, and the turning control device is based on a time differential value of the required drive power amount.
  • the power difference may be adjusted by controlling the power of the first prime mover and the second prime mover.
  • the power difference between the left and right drive wheels is adjusted by controlling the power of the first prime mover and the second prime mover.
  • the prime mover is connected to each of the left and right drive wheels, so that the outputs of the left and right drive wheels can be controlled independently.
  • the first prime mover and the second prime mover are electric motors capable of generating power in the forward direction and the reverse direction of the vehicle, respectively, and the turning control device includes the vehicle of the first prime mover and the second prime mover.
  • the power difference may be adjusted by generating power in the forward direction on the one corresponding to the outer ring in the turning direction and generating power in the reverse direction on the one corresponding to the inner ring.
  • the turning control device adjusts the power difference between the left and right drive wheels by the first prime mover and the second prime mover connected to the left and right drive wheels.
  • many electric motors can control power with high response and high definition. For this reason, with the above-described configuration, it is possible to generate a power difference between the left and right drive wheels with high response and high definition.
  • the left driving wheel and the right motor Adjust the power difference from the drive wheels. For this reason, it is possible to flexibly set the power difference without being restricted by the fact that the power of both the left and right drive wheels must be in the forward direction (positive value). Therefore, it is possible to further improve the attitude control or operation performance of the vehicle according to the scene.
  • the prime mover and the left drive wheel are connected via a first power transmission mechanism
  • the prime mover and the right drive wheel are connected via a second power transmission mechanism
  • the turning control device is configured to receive the request.
  • the power difference may be adjusted by controlling the first power transmission mechanism and the second power transmission mechanism based on a time differential value of the driving power amount.
  • the power difference between the left and right drive wheels can be adjusted without waiting for a change in the output of the prime mover based on the time differential value of the required drive power amount.
  • the first power transmission mechanism is switchable between a connected state in which power is transmitted between the prime mover and the left drive wheel and a disconnected state in which power is shut off between the prime mover and the left drive wheel.
  • the second power transmission mechanism includes a connection state in which power is transmitted between the prime mover and the right drive wheel, and a cutoff state in which power is shut off between the prime mover and the right drive wheel.
  • the turning control device includes a first intermittent means and a second intermittent means based on a time differential value of the required drive power amount. The power difference may be adjusted by switching.
  • the turning control device adjusts the power difference between the left and right drive wheels by connecting / disconnecting the first intermittent means and the second intermittent means. Thereby, it becomes possible to adjust the power difference between the left and right drive wheels by connecting and disconnecting the first intermittent means and the second intermittent means. For this reason, it becomes possible to generate the power difference between the left and right drive wheels with high responsiveness.
  • the power difference between the left and right drive wheels based on the time differential value of the required drive power amount becomes small at high vehicle speeds. For this reason, it becomes possible to prevent the behavior of the vehicle from becoming unstable due to an excessive power difference between the left and right drive wheels at a high vehicle speed.
  • the turning control device may reduce the power difference when the required turning amount is smaller than when the required turning amount is large when the time differential values of the requested driving power amount are equal.
  • the required turning amount is small, the power difference between the left and right driving wheels based on the time differential value of the required driving power amount becomes small. For this reason, for example, when the steering wheel is removed due to road swell or dredging, or when the driver performs fine steering, the power difference between the left and right drive wheels is excessively generated and the behavior of the vehicle becomes It becomes possible to prevent disturbance.
  • the turning control device is configured to add an addition power added to the power of the outer wheel in the turning direction of the vehicle of the left driving wheel and the right driving wheel and a subtraction power subtracted from the power of the inner wheel of the required driving power amount.
  • the absolute value of the addition power and the absolute value of the subtraction power may be equalized by calculating based on the time differential value.
  • the vehicle includes a power storage device that is electrically connected to the electric motor. May be.
  • the vehicle further includes a differential mechanism that distributes power from the prime mover to the left drive wheel and the right drive wheel, and the first power transmission mechanism is between the left drive wheel and the differential mechanism.
  • the second power transmission mechanism may be disposed between the right drive wheel and the differential mechanism.
  • the vehicle has a differential mechanism that distributes the power from the prime mover to the left drive wheel and the right drive wheel, and a part or all of the power distributed to the left drive wheel by the differential mechanism.
  • a first redistribution mechanism that transmits to the right drive wheel; and a second redistribution mechanism that transmits a part or all of the power distributed to the right drive wheel by the differential mechanism to the left drive wheel.
  • the turning control device may adjust the power difference by controlling the first redistribution mechanism and the second redistribution mechanism based on a time differential value of the required drive power amount.
  • FIG. 1 is a schematic configuration diagram of a vehicle drive system and its surroundings according to an embodiment of the present invention. It is a block diagram which shows various sensors and the functional block of a drive electronic control apparatus. It is a figure which shows an example of the torque for feedforward control about an outer wheel among right-and-left rear wheels. It is a flowchart of accelerator pedal differential feedforward control (AP differential FF control). It is a figure which shows an example of the various data at the time of using the said AP differential FF control of FIG. It is a figure which shows an example of the output when not using the case where the said AP differential FF control is used. It is a schematic block diagram of the drive system of a vehicle and its periphery which concern on the 1st modification of this invention. It is a schematic block diagram of the vehicle drive system and its periphery which concern on the 2nd modification of this invention. It is a schematic block diagram of the drive system of the vehicle which concerns on the 3rd modification of this invention, and its periphery.
  • FIG. 1 is a schematic configuration diagram of a drive system of a vehicle 10 and its surroundings according to an embodiment of the present invention.
  • the vehicle 10 includes an engine 12 and a first traveling motor 14 that are arranged in series on the front side of the vehicle 10, and a second traveling motor 16 and a third traveling motor 18 that are arranged on the rear side of the vehicle 10.
  • a high voltage battery 20 hereinafter also referred to as “battery 20”
  • first to third inverters 22, 24, and 26, and a drive electronic control device 28 hereinafter referred to as “drive ECU 28”).
  • the first traveling motor 14 is also referred to as a “first motor 14” or a “front motor 14”.
  • the second traveling motor 16 is also referred to as a “second motor 16”, a “rear first motor 16”, a “rear motor 16”, or a “left rear motor 16”.
  • the third traveling motor 18 is also referred to as “third motor 18”, “rear second motor 18”, “rear motor 18”, or “right rear motor 18”.
  • the engine 12 and the first motor 14 transmit a driving force (hereinafter referred to as “front wheel driving force Ff”) to the left front wheel 32a and the right front wheel 32b (hereinafter collectively referred to as “front wheel 32”) via the transmission 30.
  • the engine 12 and the first motor 14 constitute a front wheel drive device 34.
  • the vehicle 10 is driven only by the first motor 14 when the load is low, is driven only by the engine 12 when the vehicle 10 is medium load, and is driven by the engine 12 and the first motor 14 when the vehicle 10 is high load.
  • the output shaft of the second motor 16 is connected to the rotation shaft of the left rear wheel 36a, and transmits driving force to the left rear wheel 36a.
  • the output shaft of the third motor 18 is connected to the rotation shaft of the right rear wheel 36b, and transmits the driving force to the right rear wheel 36b.
  • the second motor 16 and the third motor 18 constitute a rear wheel drive device 38.
  • the front wheel drive device 34 and the rear wheel drive device 38 are mechanically disconnected and are provided separately.
  • the left rear wheel 36a and the right rear wheel 36b are collectively referred to as a rear wheel 36.
  • the driving force transmitted from the rear wheel driving device 38 to the rear wheel 36 is referred to as a rear wheel driving force Fr.
  • the high voltage battery 20 supplies power to the first to third motors 14, 16, 18 via the first to third inverters 22, 24, 26 and from the first to third motors 14, 16, 18.
  • the regenerative power Preg is charged.
  • the drive ECU 28 controls the engine 12 and the first to third inverters 22, 24, 26 based on outputs from various sensors and electronic control units (hereinafter referred to as “ECU”). Controls the output of the third motors 14, 16, and 18.
  • the drive ECU 28 includes an input / output unit, a calculation unit, and a storage unit (all not shown).
  • the drive ECU 28 may be a combination of a plurality of ECUs. For example, a plurality of ECUs provided corresponding to the engine 12 and the first to third motors 14, 16, 18 respectively, and an ECU for managing the drive states of the engine 12 and the first to third motors 14, 16, 18
  • the drive ECU 28 may be configured as described above.
  • the engine 12 is, for example, a 6-cylinder engine, but may be other engines such as a 2-cylinder, 4-cylinder, or 8-cylinder type.
  • the engine 12 is not limited to a gasoline engine, but may be an engine such as a diesel engine or an air engine.
  • the first to third motors 14, 16, and 18 are, for example, a three-phase AC brushless type, but may be other motors such as a three-phase AC brush type, a single-phase AC type, and a DC type.
  • the specifications of the first to third motors 14, 16, 18 may be the same or different.
  • Each of the first to third motors 14, 16, and 18 of the present embodiment is capable of forward rotation (rotation for moving the vehicle 10 forward) and reverse rotation (rotation for moving the vehicle 10 backward).
  • the first to third inverters 22, 24, 26 have a three-phase bridge configuration, perform DC / AC conversion, convert DC to three-phase AC, and convert the first to third motors 14, 16,
  • the direct current after the alternating current / direct current conversion accompanying the regenerative operation of the first to third motors 14, 16, 18 is supplied to the high voltage battery 20.
  • the high voltage battery 20 is a power storage device (energy storage) including a plurality of battery cells, and for example, a lithium ion secondary battery, a nickel hydride secondary battery, or a capacitor can be used. In this embodiment, a lithium ion secondary battery is used.
  • a DC / DC converter (not shown) is provided between the first to third inverters 22, 24, 26 and the high voltage battery 20, and the output voltage of the high voltage battery 20 or the output of the first to third motors 14, 16, 18 is provided. The voltage may be boosted or lowered.
  • FIG. 2 is a block diagram showing various sensors and functional blocks of the drive ECU 28.
  • FIG. 3 is a diagram illustrating an example of feedforward control torque for the outer wheel of the left and right rear wheels 36a and 36b.
  • the function of each block shown in FIG. However, as necessary, a part of the drive ECU 28 may be replaced with an analog circuit or a digital circuit.
  • the vehicle 10 includes a vehicle speed sensor 50, a steering angle sensor 52, a lateral acceleration sensor 54 (hereinafter referred to as “lateral G sensor 54”), a wheel speed sensor 56, and an accelerator pedal opening sensor. 58 (hereinafter referred to as “AP opening sensor 58”) and a yaw rate sensor 60.
  • the drive ECU 28 includes a steering angle proportional feedforward control unit 70 (hereinafter referred to as “steering angle proportional FF control unit 70” or “FF control unit 70”) and an accelerator pedal differential feedforward control unit 72 (hereinafter referred to as “AP differential”).
  • first adder 74 second adder 76
  • low pass filter 78 low pass filter 78
  • feedback control unit 80 hereinafter referred to as” FB control unit 80 ").
  • a first subtractor 82, and a second subtractor 84 are examples of the amount of the vehicle.
  • the vehicle speed sensor 50 detects the vehicle speed V [km / h] of the vehicle 10 and outputs it to the FF controllers 70 and 72 and the FB controller 80.
  • the steering angle sensor 52 detects the steering angle ⁇ st [degree] of the handle 62 and outputs it to the FF control units 70 and 72 and the FB control unit 80.
  • the lateral G sensor 54 detects the lateral acceleration Glat [m / s 2 ] applied to the vehicle 10 (vehicle body) and outputs it to the FF control unit 70 and the FB control unit 80.
  • the wheel speed sensor 56 detects the rotational speed of each of the wheels 32a, 32b, 36a, 36b (hereinafter referred to as “wheel speed Vwfl, Vwfr, Vwrl, Vwrr”, and collectively referred to as “wheel speed Vw”) and performs FF control.
  • the AP opening degree sensor 58 detects the opening degree ⁇ ap of the accelerator pedal 64 (hereinafter referred to as “accelerator pedal opening degree ⁇ ap” or “AP opening degree ⁇ ap”) and outputs it to the FF control unit 72.
  • the accelerator pedal 64 is not limited to a vehicle 10 drive request (drive force control), but is a vehicle 10 drive request and brake request (drive force and brake force control). May be.
  • the yaw rate sensor 60 detects the yaw rate Yr applied to the vehicle 10 (vehicle body) and outputs it to the FB control unit 80.
  • Steering angle proportional FF control unit 70 executes steering angle proportional feedforward control (hereinafter referred to as “steering angle proportional FF control”).
  • steering angle proportional FF control the torque (driving force) of the driving wheels (here, the rear wheels 36a and 36b) is controlled in accordance with the steering angle ⁇ st and the accompanying lateral acceleration Glat.
  • the FF control unit 70 calculates the steering angle proportional torque Tff1l for the left rear wheel 36a and outputs it to the first adder 74, and calculates the steering angle proportional torque Tff1r for the right rear wheel 36b. Output to the second adder 76.
  • the steering angle proportional torques Tff1l and Tff1r are collectively referred to as “steering angle proportional torque Tff1” or “torque Tff1”.
  • FIG. 3 shows an example of torque Tff1 for the outer wheel among the left and right rear wheels 36a, 36b.
  • the torque Tff1 is calculated by the same configuration and processing as the feedforward control unit of US 2005/0217921 A1 (84 in Fig. 5 of US 2005/0217921 A1).
  • the FF control unit 70 performs the following based on the torque of the engine 12 (engine torque Teng) and the torques of the first to third motors 14, 16, 18 (first to third motor torques Tmot1, Tmot2, Tmot3). A wheel driving force F for the wheels 36a and 36b is calculated.
  • the FF control unit 70 calculates an estimated value of the lateral acceleration Glat (estimated lateral acceleration Glat_e) based on the vehicle speed V from the vehicle speed sensor 50 and the steering angle ⁇ st from the steering angle sensor 52.
  • the FF control unit 70 calculates a correction value (corrected lateral acceleration Glat_c) of the lateral acceleration Glat obtained by adding the lateral acceleration Glat (actually measured value) from the lateral G sensor 54 and the estimated lateral acceleration Glat_e.
  • the FF control unit 70 determines which of the left and right rear wheels 36a and 36b is the outer wheel based on the corrected lateral acceleration Glat_c. Further, the FF control unit 70 calculates the front / rear distribution ratio and the left / right distribution ratio based on the corrected lateral acceleration Glat_c. The FF control unit 70 calculates the outer wheel / inner wheel torque distribution ratio for the rear wheels 36a and 36b based on the determined outer wheel and the calculated front / rear distribution ratio and right / left distribution ratio.
  • the FF control unit 70 calculates the steering angle proportional torques Tff1l and Tff1r by multiplying the wheel driving force F for the rear wheels 36a and 36b by a ratio based on the outer wheel / inner wheel torque distribution ratio.
  • the AP differential FF control unit 72 executes accelerator pedal differential feedback control (hereinafter referred to as “AP differential FF control”).
  • AP differential FF control accelerator pedal differential feedback control
  • the torque (driving force) of the driving wheels here, the rear wheels 36a and 36b
  • Vap [degree / sec] the change speed Vap [degree / sec] which is the time differential value of the accelerator pedal opening ⁇ ap. .
  • the FF control unit 72 calculates an accelerator pedal differential torque Tff2l (hereinafter referred to as “AP differential torque Tff2l”) for the left rear wheel 36a and outputs it to the first adder 74, and the right rear wheel 36b.
  • Accelerator pedal differential torque Tff2r (hereinafter referred to as “AP differential torque Tff2r”) is calculated and output to the second adder 76.
  • AP differential torques Tff2l and Tff2r are collectively referred to as “AP differential torque Tff2” or “torque Tff2”.
  • FIG. 3 shows an example of the torque Tff2 for the outer wheel among the left and right rear wheels 36a, 36b.
  • the FF control unit 72 calculates the torque Tff2 mainly based on the change speed Vap of the AP opening ⁇ ap.
  • the torque Tff2 is a torque for setting the torque difference ⁇ T [N ⁇ m] between the left and right rear wheels 36a and 36b according to the change speed Vap.
  • the torque difference ⁇ T is a difference in torque (here, target value) between the left and right rear wheels 36a, 36b. Details of the AP differential FF control will be described later with reference to the flowchart of FIG.
  • the first adder 74 calculates the sum of the torque Tff1l from the FF control unit 70 and the torque Tff2l from the FF control unit 72 (hereinafter referred to as “feedforward total torque Tff_total_l” or “FF total torque Tff_total_l”).
  • the second adder 76 calculates the sum of the torque Tff1r from the FF control unit 70 and the torque Tff2r from the FF control unit 72 (hereinafter referred to as “feedforward total torque Tff_total_r” or “FF total torque Tff_total_r”).
  • FIG. 3 shows an example of torque Tff_total for the outer wheel among the left and right rear wheels 36a, 36b.
  • the low-pass filter 78 passes only the low frequency component of the FF total torque Tff_total_l for the left rear wheel 36a and outputs it to the first subtractor 82.
  • the low pass filter 78 passes only the low frequency component of the FF total torque Tff_total_r for the right rear wheel 36b and outputs the low frequency component to the second subtractor 84. This makes it possible to avoid a sudden change in the FF total torque Tff_total. As a result, it is possible to avoid a driver's uncomfortable feeling with respect to a rapid increase in the AP differential torque Tff2.
  • the FB control unit 80 performs feedback control (hereinafter referred to as “FB control”).
  • FB control feedback control
  • the torque (driving force) of the driving wheels is controlled so as to avoid slipping of the driving wheels (here, the rear wheels 36a and 36b) when the vehicle 10 is turning.
  • the FB control unit 80 calculates a feedback torque Tfbl for the left rear wheel 36a (hereinafter referred to as “FB torque Tfbl”) and outputs it to the first subtractor 82 to provide feedback for the right rear wheel 36b.
  • Torque Tfbr (hereinafter referred to as “FB torque Tfbr”) is calculated and output to the second subtractor 84.
  • FB torque Tfbr the FB torques Tfbl and Tfbr are collectively referred to as “FB torque Tfb” or “torque Tfb”.
  • the torque Tfb is calculated by the same configuration and processing as the feedback control unit of US172005 / 0217921 A1 (86 of US 2005/0217921 A1 in FIG. 5).
  • the FB control unit 80 is based on the vehicle speed V detected by the vehicle speed sensor 50, the steering angle ⁇ st detected by the steering angle sensor 52, the lateral acceleration Glat detected by the lateral G sensor 54, and the yaw rate Yr detected by the yaw rate sensor 60. Then, the slip angle of the vehicle 10 is calculated. Further, the FB control unit 80 calculates a slip angle threshold based on the vehicle speed V detected by the vehicle speed sensor 50 and the lateral acceleration Glat detected by the lateral G sensor 54.
  • the FB control unit 80 calculates FB torques Tfbl and Tfbr so as to calculate the reduction amount of the rear wheel torque and the reduction amount of the outer wheel torque based on the difference between the slip angle and the slip angle threshold value. That is, when the slip angle of the vehicle 10 is larger than a predetermined value, it is determined that the vehicle 10 is in an unstable state, and the rear wheel distribution torque is reduced to eliminate the unstable state, and the outer wheel distribution torque is reduced. FB torques Tfbl and Tfbr are calculated.
  • the first subtractor 82 calculates a difference between the FF total torque Tff_total_l from the low-pass filter 78 and the FB torque Tfbl from the FB control unit 80 (hereinafter referred to as “total torque Ttotal_l” or “torque Ttotal_l”).
  • the second subtractor 84 calculates a difference between the FF total torque Tff_total_r from the low-pass filter 78 and the FB torque Tfbr from the FB control unit 80 (hereinafter referred to as “total torque Ttotal_r” or “torque Ttotal_r”).
  • the total torques Ttotal_l and Ttotal_r are collectively referred to as “total torque Ttotal” or “torque Ttotal”.
  • FIG. 3 shows an example of the steering angle proportional torque Tff1, the AP differential torque Tff2, and the FF total torque Tff_total for the outer wheels of the left and right rear wheels 36a, 36b.
  • the steering angle proportional torque Tff1 and the AP differential torque Tff2 increase.
  • the steering angle proportional torque Tff1 rises relatively slowly. Therefore, by adding the AP differential torque Tff2 that rises faster than the steering angle proportional torque Tff1, it is possible to speed up the rise of the FF total torque Tff_total as a whole.
  • FIG. 4 is a flowchart of AP differential FF control.
  • FIG. 5 is a diagram illustrating an example of various data when the AP differential FF control of FIG. 4 is used.
  • the broken line indicates data when the vehicle speed V is the predetermined and the steering angle ⁇ st
  • the solid line indicates data when the vehicle speed V is the same as the broken line and the steering angle ⁇ st is larger than the broken line.
  • FIG. 5 shows data when the accelerator pedal 64 is strongly depressed at the time point t1 in a state where the vehicle is traveling at a constant speed.
  • step S1 of FIG. 4 the AP differential FF control unit 72 sets the AP opening ⁇ ap from the AP opening sensor 58, the steering angle ⁇ st from the steering angle sensor 52, the wheel speed Vw from the wheel speed sensor 56, and the lateral G sensor. Lateral acceleration Glat is acquired from 54.
  • step S2 the FF control unit 72 calculates a change speed Vap that is a time differential value of the AP opening ⁇ ap.
  • step S3 the FF control unit 72 determines whether the AP opening degree ⁇ ap is increasing or has a maximum value. Whether or not the AP opening ⁇ ap is increasing is determined by checking whether or not the change speed Vap is a positive value.
  • the maximum value of the AP opening ⁇ ap means a value in a state where the accelerator pedal 64 cannot be depressed any further.
  • step S4 the FF control unit 72 selects a map based on the combination of the steering angle ⁇ st and the wheel speed Vw.
  • the map is a map that defines the relationship between the change speed Vap and the AP differential torque Tff2.
  • a plurality of maps for each combination of the steering angle ⁇ st and the wheel speed Vw are stored in a storage unit (not shown) of the drive ECU 28.
  • the wheel speed Vw here is for a wheel (here, the rear wheels 36a and 36b) whose left and right driving force distribution ratios can be changed.
  • an average value of the wheel speeds Vwrl and Vwrr is used. Can do.
  • the larger or smaller value of the wheel speeds Vwrl and Vwrr may be used. Also, as will be described later, it is possible to use a method other than the use of a map.
  • the AP differential torque Tff2 when the wheel speed Vw is high is smaller than when the wheel speed Vw of the left and right rear wheels 36a and 36b is low.
  • the relationship between the speed Vap and the AP differential torque Tff2 is defined.
  • the change speed Vap and the AP differential are such that the AP differential torque Tff2 when the steering angle ⁇ st is small is smaller than when the steering angle ⁇ st is large.
  • a relationship with the torque Tff2 is defined.
  • step S5 the FF control unit 72 selects the AP differential torque Tff2 corresponding to the change speed Vap calculated in step S2 in the map selected in step S4.
  • step S6 the FF control unit 72 performs a rate limit process for reducing the AP differential torque Tff2.
  • the FF control unit 72 proceeds to step S6 even if the AP opening ⁇ ap is the maximum value.
  • the FF control unit 72 obtains a value obtained by subtracting a specific positive value ⁇ from the previous value of the AP differential torque Tff2 (hereinafter referred to as “AP differential torque Tff2 (previous)”) as the AP differential torque Tff2.
  • AP differential torque Tff2 (current) This value (hereinafter referred to as “AP differential torque Tff2 (current)”) (Tff2 (current) ⁇ Tff2 (previous) ⁇ ). Since the minimum value of the torque Tff2 is zero, the torque Tff2 does not become a negative value.
  • the value ⁇ of the present embodiment decreases from when the AP opening ⁇ ap is the maximum value, the time until the AP opening ⁇ ap becomes zero at any steering angle ⁇ st and wheel speed Vw. Set to be equal.
  • the time until the AP opening ⁇ ap becomes zero is made equal for any steering angle ⁇ st and wheel speed Vw. Set to. For this reason, the value ⁇ is increased when the steering angle ⁇ st is large.
  • step S7 the FF control unit 72 specifies the turning direction of the vehicle 10 based on the lateral acceleration Glat acquired in step S1.
  • the FF control unit 72 applies the AP differential torque Tff2 to the outer wheel of the left and right rear wheels 36a, 36b, and applies a value ⁇ Tff2 obtained by multiplying the AP differential torque Tff2 by a minus value to the inner wheel. . That is, the FF control unit 72 outputs the AP differential torque Tff2 to the first adder 74 or the second adder 76 for the outer ring, and to the first adder 74 or the second adder 76 for the inner ring. A value ⁇ Tff2 obtained by multiplying the AP differential torque Tff2 by minus is output.
  • the second motor 16 and the third motor 18 can rotate forward and backward.
  • the value ⁇ Tff2 used for the inner wheel among the left and right rear wheels 36a and 36b allows the torque of the inner ring to be a negative value.
  • the control unit 72 causes the inner wheel torque of the left and right rear wheels 36a, 36b to have a negative value.
  • the inner ring assists the turning of the vehicle 10 by outputting a torque in the negative direction during turning.
  • regeneration is performed in the motor corresponding to the inner ring (one of the motors 16 and 18).
  • FIG. 6 is a diagram illustrating an example of output when the AP differential FF control is used and when it is not used.
  • FIG. 6 shows the torque difference ⁇ T of this embodiment (that is, when both the steering angle proportional FF control and the AP differential FF control are performed) and the torque difference ⁇ T of the comparative example.
  • the steering angle proportional FF control is performed, but the AP differential FF control is not performed.
  • the left and right rear sides are based on the steering angle ⁇ st (required turning amount) and the change speed Vap (time differential value of the required drive power amount) of the AP opening ⁇ ap.
  • the torque difference ⁇ T power difference
  • the torque difference ⁇ T between the left and right rear wheels 36a, 36b varies with the change speed Vap even at the same steering angle ⁇ st. Accordingly, when the torque difference ⁇ T between the left and right rear wheels 36a and 36b is increased as the change speed Vap is higher, the vehicle 10 (vehicle body) is more easily turned stably. This is particularly noticeable in a low speed region where the response of the behavior of the vehicle 10 to steering is low. Therefore, the above control makes it possible to make the posture of the vehicle 10 more stable or improve the responsiveness to the driver's intention (high-speed turning).
  • the rear first motor 16 (first prime mover) connected to the left rear wheel 36a (left drive wheel) and the rear second motor 18 connected to the right rear wheel 36b (right drive wheel). (Second prime mover) (FIG. 1). Further, the drive ECU 28 (turning control device) adjusts the torque difference ⁇ T between the left and right rear wheels 36a and 36b by controlling the torque of the motors 16 and 18 based on the change speed Vap of the AP opening ⁇ ap (FIG. 4). S5, S7, S8).
  • the torque difference ⁇ T between the left and right rear wheels 36a and 36b is adjusted by controlling the torque of the motors 16 and 18.
  • motors primary movers
  • the left and right rear wheels 36a and 36b are connected to the left and right rear wheels 36a and 36b, respectively, so that the outputs of the left and right rear wheels 36a and 36b can be controlled independently.
  • the rear first motor 16 (first prime mover) and the rear second motor 18 (second prime mover) are electric motors capable of generating forward and backward torques of the vehicle 10, respectively.
  • the drive ECU 28 (turning control device) generates torque (positive value) in the forward direction in the motors 16 and 18 that correspond to the outer wheels in the turning direction of the vehicle 10 and responds to the inner wheels as necessary.
  • the torque difference ⁇ T is adjusted by generating a reverse torque (negative value) in the device (S5, S7, S8 in FIG. 4).
  • the drive ECU 28 adjusts the torque difference ⁇ T between the left and right rear wheels 36a, 36b by the motors 16, 18 connected to the left and right rear wheels 36a, 36b.
  • many motors electric motors
  • the drive ECU 28 determines that the left rear wheel 36a (left drive wheel) and the right rear wheel 36b when the change speed Vap (time differential value of the required drive power amount) of the AP opening ⁇ ap is equal.
  • the torque difference ⁇ T is reduced when the rotation speed (wheel speed Vw) of the (right drive wheel) is higher than when it is low (S4, S5 in FIG. 4).
  • the drive ECU 28 (turning control device) is smaller than when the steering angle ⁇ st (required turning amount) is large when the change speed Vap (time differential value of the requested driving power amount) of the AP opening ⁇ ap is equal.
  • the torque difference ⁇ T is reduced (S4 and S5 in FIG. 4; see also the AP differential torque Tff2 in FIG. 5).
  • the torque difference ⁇ T between the left and right rear wheels 36a, 36b based on the change speed Vap of the AP opening ⁇ ap is small.
  • the torque difference ⁇ T between the left and right rear wheels 36a, 36b is excessively generated.
  • the drive ECU 28 adds the AP differential torque Tff2 (added to the outer wheel in the turning direction of the vehicle 10 among the left rear wheel 36a (left drive wheel) and the right rear wheel 36b (right drive wheel).
  • (Addition torque) and a value ⁇ Tff2 (subtraction torque) obtained by multiplying the AP differential torque Tff2 subtracted from the inner ring by a minus value are calculated based on the change speed Vap of the AP opening ⁇ ap (S5, S7, S8 in FIG. 4). ),
  • the absolute value of the addition torque Tff2 is equal to the absolute value of the subtraction torque ⁇ Tff2.
  • the torque difference ⁇ T between the left and right rear wheels 36a, 36b is adjusted without changing the total value of torque generated by the rear first motor 16 and the rear second motor 18 (rear wheel driving force Fr). Is possible. For this reason, it is possible to avoid giving the driver a sense of incongruity by changing the torque or the rear wheel driving force Fr with the adjustment of the torque difference ⁇ T.
  • A. Vehicle 10 (application target)
  • the vehicle 10 that is an automobile is described (FIG. 1).
  • the torque difference ⁇ T power difference
  • the left rear wheel 36a left driving wheel
  • the right rear wheel 36b right driving wheel
  • Vap of the AP opening ⁇ ap change speed Vap of the AP opening ⁇ ap.
  • any of an automatic tricycle and an automatic hexacycle may be used.
  • the vehicle 10 has one engine 12 and three travel motors 14, 16, and 18 as drive sources (prime movers) (FIG. 1), but the drive sources are not limited to this combination.
  • the vehicle 10 may have one or more traveling motors for the front wheels 32 and one or more traveling motors for the rear wheels 36 as drive sources.
  • only one traveling motor can be used for the front wheel 32 or the rear wheel 36.
  • the driving force may be distributed to the left and right wheels using a differential device.
  • the structure which allocates an individual driving motor (a so-called in-wheel motor is included) to each of all the wheels is also possible.
  • the front wheels 32 are driven by the front wheel drive device 34 having the engine 12 and the first motor 14, and the rear wheels 36 are driven by the rear wheel drive device 38 having the second and third motors 16 and 18.
  • the torque difference ⁇ T power difference
  • the target for adjusting the torque difference ⁇ T is the left and right rear wheels 36a and 36b.
  • the torque difference ⁇ T between the left and right front wheels 32a and 32b may be adjusted. Is also possible.
  • FIG. 7 is a schematic configuration diagram of a drive system and its surroundings of a vehicle 10A according to a first modification of the present invention.
  • the configurations of the front wheel drive device 34 and the rear wheel drive device 38 of the vehicle 10 according to the embodiment are reversed. That is, the front wheel drive device 34a of the vehicle 10A includes second and third travel motors 16a and 18a disposed on the front side of the vehicle 10A. Further, the rear wheel drive device 38a of the vehicle 10A includes an engine 12a and a first travel motor 14a arranged in series on the rear side of the vehicle 10A.
  • FIG. 8 is a schematic configuration diagram of a drive system of a vehicle 10B and its surroundings according to a second modification of the present invention.
  • driving force Feng the driving force from the engine 12
  • the front wheels 32a and 32b the rear wheels 36a and 36b.
  • the rear wheels 36a and 36b sub driving wheels
  • the motor 14 may be connected to the engine 12 as in the above-described embodiment (FIG. 1).
  • the vehicle 10B includes a transfer clutch 90, a propeller shaft 92, a differential gear 94, differential gear output shafts 96a and 96b (hereinafter also referred to as “output shafts 96a and 96b”), a first clutch 98, and a left output shaft. 100, a second clutch 102, and a right output shaft 104.
  • the transfer clutch 90 adjusts the driving force Feng from the engine 12 distributed to the rear wheels 36a and 36b via the propeller shaft 92.
  • the differential gear 94 equally distributes the driving force Feng transmitted to the rear wheels 36a and 36b via the propeller shaft 92 to the left and right output shafts 96a and 96b.
  • the first clutch 98 adjusts the degree of engagement based on a command from the drive ECU 28 and transmits the driving force from the output shaft 96a to the left output shaft 100 connected and fixed to the left rear wheel 36a.
  • the second clutch 102 adjusts the degree of engagement based on a command from the drive ECU 28 and transmits the driving force from the output shaft 96b to the right output shaft 104 connected and fixed to the right rear wheel 36b.
  • the driving force (torque) of the rear wheels 36a and 36b can be individually adjusted in the vehicle 10B.
  • the vehicle 10B for example, the one described in US 2005/0217921 A1 can be used.
  • the engine 12 (prime mover) and the left rear wheel 36a (left drive wheel) are connected via a first clutch 98 (first power transmission mechanism), and the engine 12 and the right rear wheel are connected.
  • 36b (right drive wheel) is connected via a second clutch 102 (second power transmission mechanism).
  • the first clutch 98 and the second clutch 102 can not only be simply switched between a connected state and a disconnected state, but also can switch the connected state or the disconnected state in a plurality of stages by adjusting the degree of slip.
  • the drive ECU 28 controls the first clutch 98 and the second clutch 102 based on the change speed Vap of the AP opening ⁇ ap, and sets the torque difference ⁇ T between the left rear wheel 36a and the right rear wheel 36b. adjust.
  • the torque difference ⁇ T between the left and right rear wheels 36a, 36b can be adjusted without waiting for the output change of the engine 12 based on the AP opening ⁇ ap.
  • the first clutch 98 can be switched between a connected state in which power is transmitted between the engine 12 and the left rear wheel 36a and a disconnected state in which power is cut off between the engine 12 and the left rear wheel 36a.
  • the second clutch 102 can switch between a connected state in which power is transmitted between the engine 12 and the right rear wheel 36b and a disconnected state in which power is cut off between the engine 12 and the right rear wheel 36b. is there.
  • the drive ECU 28 switches between the connected state and the disconnected state of the first clutch 98 and the second clutch 102 based on the change speed Vap of the AP opening ⁇ ap, and thereby the torque of the left rear wheel 36a and the right rear wheel 36b. Adjust the difference ⁇ T.
  • the drive ECU 28 adjusts the torque difference ⁇ T between the left and right rear wheels 36a, 36b by connecting / disconnecting the first clutch 98 and the second clutch 102.
  • the torque difference ⁇ T between the left and right rear wheels 36a and 36b can be adjusted by connecting and disconnecting the first clutch 98 and the second clutch 102. For this reason, it is possible to generate the torque difference ⁇ T with high responsiveness.
  • FIG. 9 is a schematic configuration diagram of a drive system of a vehicle 10C and its surroundings according to a third modified example of the present invention. Similar to the vehicle 10B according to the second modification, in the vehicle 10C, the driving force (driving force Feng) from the engine 12 is transmitted to the front wheels 32a and 32b and the rear wheels 36a and 36b. Thereby, in addition to the front wheels 32a and 32b (main driving wheels), the rear wheels 36a and 36b (sub driving wheels) are used as driving wheels.
  • the same components as those of the vehicle 10B are denoted by the same reference numerals and description thereof is omitted.
  • the motor 14 may be connected to the engine 12 as in the above-described embodiment (FIG. 1).
  • the vehicle 10C includes a transfer clutch 90, a propeller shaft 92, a differential gear 94, differential gear output shafts 96a and 96b (output shafts 96a and 96b), a left output shaft 100, a right output shaft 104, a first redistribution mechanism 110, A second redistribution mechanism 112 is included.
  • the first redistribution mechanism 110 transmits a part or all of the driving force distributed or branched from the differential gear 94 for the left rear wheel 36a to the right rear wheel 36b when the vehicle 10C makes a left turn.
  • the first redistribution mechanism 110 includes a left turning clutch, a sun gear for the left rear wheel 36a, a triple pinion gear, and a sun gear for the right rear wheel 36b (all not shown).
  • the second redistribution mechanism 112 transmits a part or all of the driving force distributed or branched from the differential gear 94 for the right rear wheel 36b to the left rear wheel 36a when the vehicle 10C makes a right turn.
  • the second redistribution mechanism 112 includes a right turning clutch, a right rear wheel 36b sun gear, a triple pinion gear, and a left rear wheel 36a sun gear (all not shown).
  • the left turning clutch of the first redistribution mechanism 110 and the right turning clutch of the second redistribution mechanism 112 are not only simply switched between the connected state and the disconnected state, but also adjusted in the degree of slipping to be in the connected state or the disconnected state. It is possible to switch to multiple stages.
  • the driving force of the rear wheels 36a and 36b can be individually adjusted in the vehicle 10C.
  • the vehicle 10C for example, the one described in JP2011-131618A can be used.
  • the torque difference ⁇ T between the left and right rear wheels 36a, 36b is adjusted without waiting for the output change of the engine 12 based on the AP opening ⁇ ap. It becomes possible.
  • the torque difference ⁇ T can be adjusted with high responsiveness.
  • first to third traveling motors 14, 16, 18 are three-phase AC brushless type, but the present invention is not limited to this.
  • the first to third traveling motors 14, 16, and 18 may be a three-phase AC brush type, a single-phase AC type, or a DC type.
  • the first to third traveling motors 14, 16, and 18 are supplied with electric power from the high-voltage battery 20, but in addition to this, electric power may be supplied from the fuel cell.
  • the torques of the front wheel drive device 34 and the rear wheel drive device 38 are controlled based on the operation of the accelerator pedal 64 by the driver.
  • the present invention is not limited to this.
  • the present invention can be applied to a configuration in which the torque of the front wheel drive device 34 and the rear wheel drive device 38 in the vehicle 10 is automatically controlled (a configuration in which so-called automatic driving is performed).
  • the automatic driving here is not limited to the torque of the front wheel drive device 34 and the rear wheel drive device 38, and may be automatically performed for steering.
  • the drive ECU 28 performs control with the torques of the front wheel drive device 34 and the rear wheel drive device 38 as calculation targets.
  • the present invention is not limited to this.
  • the drive ECU 28 can perform control with an output or driving force that can be converted into torque as a calculation target.
  • a map based on the steering angle ⁇ st and the wheel speed Vw is used for calculation (selection) of the AP differential torque Tff2 (S4 and S5 in FIG. 4).
  • the present invention is not limited to this.
  • a single map that defines the relationship between the change speed Vap of the AP opening ⁇ ap and the torque Tff2 may be provided, and the torque Tff2 may be selected or calculated using the single map.
  • the torque Tff2 is applied to the outer wheel of the left and right rear wheels 36a, 36b, and the torque Tff2 is subtracted from the inner wheel (in other words, -Tff2 is added).
  • the torque difference ⁇ T power difference
  • the left rear wheel 36a left driving wheel
  • the right rear wheel 36b right driving wheel
  • Vap of the AP opening ⁇ ap change speed Vap of the AP opening ⁇ ap.
  • a configuration in which only the torque Tff2 is applied to the outer ring or a configuration in which only the torque Tff2 is subtracted from the inner ring may be employed.
  • the torque difference ⁇ T between the left and right rear wheels 36a and 36b is changed according to the change speed Vap of the AP opening ⁇ ap (S5 in FIG. 4).
  • the present invention is not limited to this.
  • the FF total torque Tff_total (for example, torque Tff2) can be increased or decreased according to the change speed Vap.
  • the change speed Vap increases, the FF total torque Tff_total can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 加速旋回時における車両の姿勢制御又は操作性能を改善することが可能な車両を提供する。車両(10)は、原動機(16、18)に接続された左駆動輪(36a)及び右駆動輪(36b)と、要求駆動動力量を入力する要求駆動動力量入力装置(64)と、要求旋回量を入力する要求旋回量入力装置(62)とを備える。さらに、車両(10)は、前記要求旋回量に加えて、前記要求駆動動力量の時間微分値に基づいて左駆動輪(36a)及び右駆動輪(36b)の動力差(ΔT)を調整する旋回制御装置(28)を有する。

Description

車両
 本発明は、左右の車輪(駆動輪)の駆動力を調整可能な車両に関する。
 米国特許出願公開第2005/0217921号公報(以下「US 2005/0217921 A1」という。)では、前後輪の駆動力配分比及び前輪又は後輪の左右の駆動力配分比を的確に制御可能な4輪駆動車両の駆動力制御方法を提供することを目的としている([0009]、要約)。当該目的を達成するため、US 2005/0217921 A1では、横G信号の絶対値の増大に応じて、前後輪の駆動力配分比を後輪配分比が大きくなるように制御すると共に、前輪又は後輪の左右の駆動力配分比を旋回外輪側の駆動力が大きくなるように制御する。横G信号は、横Gセンサ信号を舵角及び車速に基づいて算出される推定横G信号で補正した制御横G信号を使用する(要約)。
 特開2005-219580号公報(以下「JP 2005-219580 A」という。)では、旋回中の車両が加速又は減速を開始するときの車両挙動変化を抑制し、車両安定性を向上させることができる車両の挙動制御装置を提供することを目的としている([0006]、要約)。当該目的を達成するため、JP 2005-219580 Aの挙動制御装置1は、複数の車輪10FR~10RLそれぞれに個別に駆動力を付加する駆動手段(電動モータ11FR~11RL、[0024])と、車両Vの旋回状態を検出する走行状態検出手段(横加速度センサ25、[0035])と、車両Vが旋回状態であるときに車両Vを加速させる場合、旋回外輪に駆動力の付加が開始された後に旋回内輪に駆動力の付加が開始されるように前記駆動手段を制御する駆動力制御手段(モータECU20、[0032])とを備える(請求項3、[0052])。
 JP 2005-219580 Aの挙動制御装置1によれば、旋回中の車両Vが加速される場合、旋回外輪から先に駆動力の付加が開始されることにより旋回方向と同方向のヨーモーメントが発生する。このヨーモーメントが車両の加速に伴い発生する旋回方向と逆方向のヨーモーメントを相殺するため加速開始時における車両挙動変化を抑制することができるとされている([0012])。
 車両Vが旋回状態であるかの判定は、横加速度センサ25が検出した横加速度が、所定値以上であるか否かに基づいて行われる([0034]、[0035])。
 また、JP 2005-219580 Aでは、旋回外輪に駆動力の付加を開始した後に旋回内輪に駆動力の付加を開始する制御を行う条件として、アクセルペダル開度の変化速度の絶対値(変化速度|dAcc/dt|)が所定値TH1以上であり、且つ、アクセルペダル開度の前回読み込み値と今回読み込み値との偏差の絶対値(偏差|ΔAcc|)が所定値TH2以上であること(図3のS106:YES)を設けている([0037])。当該条件は、変化速度|dAcc/dt|又は偏差|ΔAcc|の一方のみでもよいとされている([0037])。
 上記のように、JP 2005-219580 Aでは、アクセルペダル開度の変化速度の絶対値(変化速度|dAcc/dt|)に着目されている。しかしながら、変化速度|dAcc/dt|は、旋回外輪に駆動力の付加を開始した後に旋回内輪に駆動力の付加を開始する制御を行う条件の1つとしてしか用いられていない。
 アクセルペダル開度の変化速度|dAcc/dt|は、アクセルペダルの操作、すなわち、運転者の加減速意図(又は将来的な車両の加減速状態)を直接的に反映するものである。しかしながら、JP 2005-219580 Aでは、変化速度|dAcc/dt|自体に応じて車輪トルクを変化させることについては開示も示唆もない。換言すると、アクセルペダルの操作(又は車両の要求駆動動力量)に直接対応させて車両の姿勢を制御するという発想については何ら触れられていない。そのため、JP 2005-219580 Aでは、加速旋回時における車両の姿勢制御又は操作性能(アクセルペダルの操作等に対する応答性)の観点から改善の余地がある。この点に関して、US 2005/0217921 A1にも開示も示唆も存在しない。
 本発明は、上記のような課題を考慮してなされたものであり、加速旋回時における車両の姿勢制御又は操作性能を改善することが可能な車両を提供することを目的とする。
 本発明に係る車両は、原動機に接続された左駆動輪及び右駆動輪と、要求駆動動力量を入力する要求駆動動力量入力装置と、要求旋回量を入力する要求旋回量入力装置とを備えるものであって、前記要求旋回量に加えて、前記要求駆動動力量の時間微分値に基づいて前記左駆動輪及び前記右駆動輪の動力差を調整する旋回制御装置をさらに備えることを特徴とする。
 本発明によれば、要求旋回量と要求駆動動力量の時間微分値とに基づいて左右駆動輪の動力差を調整する。このため、同じ要求旋回量でも、要求駆動動力量の時間微分値によって左右駆動輪の動力差が変わる。従って、例えば、要求駆動動力量の時間微分値が大きいほど左右駆動輪の動力差を大きくする場合、車両(車体)を安定して旋回させ易くなる。このことは、特に、操舵に対する車両の挙動の応答性が低い低速領域で顕著である。従って、上記制御により、車両の姿勢がより安定し又は運転者の意思(高速旋回)に対する応答性を高めることが可能となる。
 前記旋回制御装置は、前記要求駆動動力量の時間微分値が大きいほど、前記動力差を大きくしてもよい。或いは、前記旋回制御装置は、前記要求駆動動力量の時間微分値が大きいほど、前記動力差を小さくしてもよい。
 前記原動機は、前記左駆動輪と接続される第1原動機と、前記右駆動輪と接続される第2原動機とを含み、前記旋回制御装置は、前記要求駆動動力量の時間微分値に基づいて、前記第1原動機及び前記第2原動機の動力を制御して前記動力差を調整してもよい。上記によれば、第1原動機及び第2原動機の動力を制御することで左右駆動輪の動力差を調整する。これにより、左右駆動輪に対してそれぞれ原動機が接続されるので、左右駆動輪の出力を別個独立に制御することが可能となる。
 前記第1原動機及び前記第2原動機は、それぞれ前記車両の前進方向及び後進方向の動力を発生可能な電動機であり、前記旋回制御装置は、前記第1原動機及び前記第2原動機のうち前記車両の旋回方向における外輪に対応するものに前記前進方向の動力を発生させ、内輪に対応するものに前記後進方向の動力を発生させることにより、前記動力差を調整してもよい。
 上記によれば、旋回制御装置は、左右駆動輪に接続される第1原動機及び第2原動機によって左右駆動輪の動力差を調整する。一般に、電動機は、動力の制御を高応答及び高精細に行うことができるものが多い。このため、上記構成により、左右駆動輪の動力差を高応答且つ高精細に発生させることが可能となる。
 また、第1原動機及び第2原動機のうち外輪に対応するものに車両の前進方向の動力を発生させ、内輪に対応するものに車両の後進方向の動力を発生させることにより、左駆動輪と右駆動輪との間の動力差を調整する。このため、左右駆動輪の両方の動力を前進方向(正の値)にしなければならないとの制限を受けずに、柔軟に動力差を設定することが可能となる。従って、場面に応じてさらに車両の姿勢制御又は操作性能を高めることが可能となる。
 或いは、前記原動機と前記左駆動輪とは第1動力伝達機構を介して接続され、前記原動機と前記右駆動輪とは第2動力伝達機構を介して接続され、前記旋回制御装置は、前記要求駆動動力量の時間微分値に基づいて、前記第1動力伝達機構及び前記第2動力伝達機構を制御して前記動力差を調整してもよい。これにより、要求駆動動力量の時間微分値に基づく原動機の出力変化を待たずに、左右駆動輪の動力差を調整することが可能となる。
 前記第1動力伝達機構は、前記原動機と前記左駆動輪との間で動力伝達を行う接続状態と、前記原動機と前記左駆動輪との間で動力遮断を行う遮断状態とを切替可能な第1断続手段を含み、前記第2動力伝達機構は、前記原動機と前記右駆動輪との間で動力伝達を行う接続状態と、前記原動機と前記右駆動輪との間で動力遮断を行う遮断状態とを切替可能な第2断続手段を含み、前記旋回制御装置は、前記要求駆動動力量の時間微分値に基づいて、前記第1断続手段及び前記第2断続手段を接続状態と遮断状態とに切り替えることにより、前記動力差を調整してもよい。
 上記によれば、旋回制御装置は、第1断続手段及び第2断続手段の断接によって左右駆動輪の動力差を調整する。これにより、第1断続手段及び第2断続手段の接続及び遮断によって左右駆動輪の動力差を調整することが可能となる。このため、左右駆動輪の動力差を高い応答性で発生させることが可能となる。
 前記旋回制御装置は、前記要求駆動動力量の時間微分値が等しい場合、前記左駆動輪の回転数が低い時よりも高い時の方が、又は前記右駆動輪の回転数が低い時よりも高い時の方が、前記動力差を小さくしてもよい。
 上記によれば、高車速時には要求駆動動力量の時間微分値に基づく左右駆動輪の動力差が小さくなる。このため、高車速時に左右駆動輪の動力差が過度に発生することによって、車両の挙動が不安定になることを防止可能となる。
 前記旋回制御装置は、前記要求駆動動力量の時間微分値が等しい場合、前記要求旋回量が大きい時よりも小さい時の方が、前記動力差を小さくしてもよい。これにより、要求旋回量が小さい時には要求駆動動力量の時間微分値に基づく左右駆動輪の動力差が小さくなる。このため、例えば、路面のうねり若しくは轍等を理由としてハンドルを取られたとき、又は運転者が細かな操舵を行ったときに、左右駆動輪の動力差が過度に発生して車両の挙動が乱れることを防止することが可能となる。
 前記旋回制御装置は、前記左駆動輪及び前記右駆動輪のうち前記車両の旋回方向における外輪の動力に加算する加算動力と、内輪の動力から減算する減算動力とを、前記要求駆動動力量の時間微分値に基づいて算出し、前記加算動力の絶対値と前記減算動力の絶対値とを等しくしてもよい。これにより、原動機が発生させる動力(合計値)を変化させることなく、左右駆動輪の動力差を調整することが可能となる。このため、動力差の調整に伴い原動機の動力(合計値)が変化することにより、運転者に違和感を与えることを回避することが可能となる。
 前記第1原動機及び前記第2原動機は、それぞれ前記車両の前進方向及び後進方向の動力を発生可能な電動機である場合、前記車両は、それぞれの前記電動機と電気的に接続される蓄電装置を備えてもよい。
 前記車両は、前記原動機からの動力を前記左駆動輪と前記右駆動輪とに配分する差動機構をさらに備え、前記第1動力伝達機構は、前記左駆動輪と前記差動機構との間に配置され、前記第2動力伝達機構は、前記右駆動輪と前記差動機構との間に配置されてもよい。
 或いは、前記車両は、前記原動機からの動力を前記左駆動輪と前記右駆動輪とに配分する差動機構と、前記差動機構によって前記左駆動輪に配分された動力の一部又は全部を前記右駆動輪に伝達する第1再配分機構と、前記差動機構によって前記右駆動輪に配分された動力の一部又は全部を前記左駆動輪に伝達する第2再配分機構とをさらに備え、前記旋回制御装置は、前記要求駆動動力量の時間微分値に基づいて、前記第1再配分機構及び前記第2再配分機構を制御して前記動力差を調整してもよい。
本発明の一実施形態に係る車両の駆動系及びその周辺の概略構成図である。 各種センサと駆動電子制御装置の機能ブロックとを示すブロック図である。 左右後輪のうち外輪についてのフィードフォワード制御用トルクの一例を示す図である。 アクセルペダル微分フィードフォワード制御(AP微分FF制御)のフローチャートである。 図4の前記AP微分FF制御を用いた場合の各種データの一例を示す図である。 前記AP微分FF制御を用いる場合と用いない場合の出力の一例を示す図である。 本発明の第1変形例に係る車両の駆動系及びその周辺の概略構成図である。 本発明の第2変形例に係る車両の駆動系及びその周辺の概略構成図である。 本発明の第3変形例に係る車両の駆動系及びその周辺の概略構成図である。
I.一実施形態
A.構成
A-1.車両10の駆動系
 図1は、本発明の一実施形態に係る車両10の駆動系及びその周辺の概略構成図である。図1に示すように、車両10は、車両10の前側に直列配置されたエンジン12及び第1走行モータ14と、車両10の後ろ側に配置された第2走行モータ16及び第3走行モータ18と、高圧バッテリ20(以下「バッテリ20」ともいう。)と、第1~第3インバータ22、24、26と、駆動電子制御装置28(以下「駆動ECU28」という。)とを有する。
 以下では、第1走行モータ14を「第1モータ14」又は「前側モータ14」ともいう。また、以下では、第2走行モータ16を「第2モータ16」、「後ろ側第1モータ16」又は「後ろ側モータ16」若しくは「左後ろ側モータ16」ともいう。さらに、以下では、第3走行モータ18を「第3モータ18」、「後ろ側第2モータ18」又は「後ろ側モータ18」若しくは「右後ろ側モータ18」ともいう。
 エンジン12及び第1モータ14は、トランスミッション30を介して左前輪32a及び右前輪32b(以下「前輪32」と総称する。)に駆動力(以下「前輪駆動力Ff」という。)を伝達する。エンジン12及び第1モータ14は、前輪駆動装置34を構成する。例えば、車両10が低負荷のときに第1モータ14のみによる駆動を行い、中負荷のときにエンジン12のみによる駆動を行い、高負荷のときにエンジン12及び第1モータ14による駆動を行う。
 第2モータ16は、その出力軸が左後輪36aの回転軸に接続されており、左後輪36aに駆動力を伝達する。第3モータ18は、その出力軸が右後輪36bの回転軸に接続されており、右後輪36bに駆動力を伝達する。第2モータ16及び第3モータ18は、後輪駆動装置38を構成する。前輪駆動装置34と後輪駆動装置38とは、機械的に非接続とされ、別個独立に設けられる。以下では、左後輪36a及び右後輪36bを合わせて後輪36と総称する。また、後輪駆動装置38から後輪36に伝達される駆動力を後輪駆動力Frという。
 高圧バッテリ20は、第1~第3インバータ22、24、26を介して第1~第3モータ14、16、18に電力を供給すると共に、第1~第3モータ14、16、18からの回生電力Pregを充電する。
 駆動ECU28は、各種センサ及び各電子制御装置(以下「ECU」という。)からの出力に基づいてエンジン12及び第1~第3インバータ22、24、26を制御することにより、エンジン12及び第1~第3モータ14、16、18の出力を制御する。駆動ECU28は、入出力部、演算部及び記憶部(いずれも図示せず)を有する。また、駆動ECU28は、複数のECUを組み合わせたものであってもよい。例えば、エンジン12及び第1~第3モータ14、16、18それぞれに対応して設けた複数のECUと、エンジン12及び第1~第3モータ14、16、18の駆動状態を管理するECUとにより駆動ECU28を構成してもよい。
 エンジン12は、例えば、6気筒型エンジンであるが、2気筒、4気筒又は8気筒型等のその他のエンジンであってもよい。また、エンジン12は、ガソリンエンジンに限らず、ディーゼルエンジン、空気エンジン等のエンジンとすることができる。
 第1~第3モータ14、16、18は、例えば、3相交流ブラシレス式であるが、3相交流ブラシ式、単相交流式、直流式等のその他のモータであってもよい。第1~第3モータ14、16、18の仕様は等しくても異なるものであってもよい。本実施形態の第1~第3モータ14、16、18は、いずれも正転(車両10を前進させる回転)及び逆転(車両10を後進させる回転)が可能である。
 第1~第3インバータ22、24、26は、3相ブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換して第1~第3モータ14、16、18に供給する一方、第1~第3モータ14、16、18の回生動作に伴う交流/直流変換後の直流を高圧バッテリ20に供給する。
 高圧バッテリ20は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池又はキャパシタ等を利用することができる。本実施形態ではリチウムイオン2次電池を利用している。なお、第1~第3インバータ22、24、26と高圧バッテリ20との間に図示しないDC/DCコンバータを設け、高圧バッテリ20の出力電圧又は第1~第3モータ14、16、18の出力電圧を昇圧又は降圧してもよい。
 車両10の駆動系の構成としては、例えば、米国特許出願公開第2012/0015772号公報に記載のものを用いることができる。
A-2.駆動ECU28の構成(機能ブロック)
[2-1.概要]
 図2は、各種センサと駆動ECU28の機能ブロックとを示すブロック図である。図3は、左右後輪36a、36bのうち外輪についてのフィードフォワード制御用トルクの一例を示す図である。駆動ECU28では、図2に示す各ブロックの機能をプログラム処理する。但し、必要に応じて、駆動ECU28の一部をアナログ回路又はデジタル回路に置換してもよい。
 図2に示すように、車両10は、車速センサ50と、舵角センサ52と、横加速度センサ54(以下「横Gセンサ54」という。)と、車輪速センサ56と、アクセルペダル開度センサ58(以下「AP開度センサ58」という。)と、ヨーレートセンサ60とを有する。
 また、駆動ECU28は、舵角比例フィードフォワード制御部70(以下「舵角比例FF制御部70」又は「FF制御部70」という。)と、アクセルペダル微分フィードフォワード制御部72(以下「AP微分FF制御部72」又は「FF制御部72」という。)と、第1加算器74と、第2加算器76と、ローパスフィルタ78と、フィードバック制御部80(以下「FB制御部80」という。)と、第1減算器82と、第2減算器84とを有する。
[2-2.各種センサ]
 車速センサ50は、車両10の車速V[km/h]を検出してFF制御部70、72及びFB制御部80に出力する。舵角センサ52は、ハンドル62の舵角θst[度]を検出してFF制御部70、72及びFB制御部80に出力する。横Gセンサ54は、車両10(車体)に掛かる横加速度Glat[m/s2]を検出してFF制御部70及びFB制御部80に出力する。
 車輪速センサ56は、各車輪32a、32b、36a、36bの回転速度(以下「車輪速Vwfl、Vwfr、Vwrl、Vwrr」といい、「車輪速Vw」と総称する。)を検出してFF制御部72に出力する。AP開度センサ58は、アクセルペダル64の開度θap(以下「アクセルペダル開度θap」又は「AP開度θap」という。)を検出してFF制御部72に出力する。なお、アクセルペダル64は、車両10の駆動要求(駆動力の制御)のみを行うものに限らず、車両10の駆動要求及び制動要求(駆動力及び制動力の制御)の両方を行うものであってもよい。ヨーレートセンサ60は、車両10(車体)に掛かるヨーレートYrを検出して、FB制御部80に出力する。
[2-3.駆動ECU28の各機能ブロック]
(2-3-1.舵角比例FF制御部70)
 舵角比例FF制御部70は、舵角比例フィードフォワード制御(以下「舵角比例FF制御」という。)を実行する。舵角比例FF制御では、舵角θst及びこれに伴う横加速度Glatに対応して駆動輪(ここでは、後輪36a、36b)のトルク(駆動力)を制御する。
 具体的には、FF制御部70は、左後輪36a用の舵角比例トルクTff1lを算出して第1加算器74に出力し、右後輪36b用の舵角比例トルクTff1rを算出して第2加算器76に出力する。以下では、舵角比例トルクTff1l、Tff1rを「舵角比例トルクTff1」又は「トルクTff1」と総称する。図3には、左右後輪36a、36bのうち外輪に対するトルクTff1の一例が示されている。
 FF制御部70では、US 2005/0217921 A1のフィードフォワード制御部(US 2005/0217921 A1の図5の84)と同様の構成及び処理によりトルクTff1を算出する。
 すなわち、FF制御部70は、エンジン12のトルク(エンジントルクTeng)と、第1~第3モータ14、16、18のトルク(第1~第3モータトルクTmot1、Tmot2、Tmot3)に基づいて後輪36a、36b用の車輪駆動力Fを算出する。
 また、FF制御部70は、車速センサ50からの車速Vと舵角センサ52からの舵角θstに基づいて横加速度Glatの推定値(推定横加速度Glat_e)を算出する。FF制御部70は、横Gセンサ54からの横加速度Glat(実測値)と推定横加速度Glat_eを加算した横加速度Glatの補正値(補正横加速度Glat_c)を算出する。
 そして、FF制御部70は、補正横加速度Glat_cに基づいて、左右後輪36a、36bのどちらが外輪であるかを判断する。また、FF制御部70は、補正横加速度Glat_cに基づいて前後配分比及び左右配分比を算出する。FF制御部70は、判断した外輪並びに算出された前後配分比及び左右配分比に基づいて後輪36a、36bに関する外輪/内輪トルク配分比を算出する。
 次いで、FF制御部70は、後輪36a、36b用の車輪駆動力Fに対して外輪/内輪トルク配分比に基づく割合を乗算して舵角比例トルクTff1l、Tff1rを算出する。
(2-3-2.AP微分FF制御部72)
 AP微分FF制御部72は、アクセルペダル微分フィードバック制御(以下「AP微分FF制御」という。)を実行する。AP微分FF制御では、アクセルペダル開度θapの時間微分値である変化速度Vap[度/sec]に対応して駆動輪(ここでは、後輪36a、36b)のトルク(駆動力)を制御する。
 具体的には、FF制御部72は、左後輪36a用のアクセルペダル微分トルクTff2l(以下「AP微分トルクTff2l」という。)を算出して第1加算器74に出力し、右後輪36b用のアクセルペダル微分トルクTff2r(以下「AP微分トルクTff2r」という。)を算出して第2加算器76に出力する。以下では、AP微分トルクTff2l、Tff2rを「AP微分トルクTff2」又は「トルクTff2」と総称する。図3には、左右後輪36a、36bのうち外輪に対するトルクTff2の一例が示されている。
 FF制御部72は、主として、AP開度θapの変化速度Vapに基づいてトルクTff2を算出する。トルクTff2は、変化速度Vapに応じた左右後輪36a、36bのトルク差ΔT[N・m]を設定するためのトルクである。トルク差ΔTは、左右後輪36a、36bそれぞれのトルク(ここでは、目標値)の差である。AP微分FF制御の詳細は、図4のフローチャートを参照して後述する。
(2-3-3.第1加算器74及び第2加算器76)
 第1加算器74は、FF制御部70からのトルクTff1lとFF制御部72からのトルクTff2lとの和(以下「フィードフォワード合計トルクTff_total_l」又は「FF合計トルクTff_total_l」という。)を算出する。
 第2加算器76は、FF制御部70からのトルクTff1rとFF制御部72からのトルクTff2rとの和(以下「フィードフォワード合計トルクTff_total_r」又は「FF合計トルクTff_total_r」という。)を算出する。
 以下では、FF合計トルクTff_total_l、Tff_total_rを「FF合計トルクTff_total」又は「トルクTff_total」と総称する。図3には、左右後輪36a、36bのうち外輪に対するトルクTff_totalの一例が示されている。
(2-3-4.ローパスフィルタ78)
 ローパスフィルタ78は、左後輪36a用のFF合計トルクTff_total_lのうち低周波数成分のみを通過させて第1減算器82に出力する。また、ローパスフィルタ78は、右後輪36b用のFF合計トルクTff_total_rのうち低周波数成分のみを通過させて第2減算器84に出力する。これにより、FF合計トルクTff_totalの急激な変化を避けることが可能となる。その結果、AP微分トルクTff2の急激な増加に対する運転者の違和感を避けることが可能となる。
(2-3-5.FB制御部80)
 FB制御部80は、フィードバック制御(以下「FB制御」という。)を実行する。FB制御では、車両10の旋回時における駆動輪(ここでは、後輪36a、36b)のスリップを避けるように駆動輪のトルク(駆動力)を制御する。
 具体的には、FB制御部80は、左後輪36a用のフィードバックトルクTfbl(以下「FBトルクTfbl」という。)を算出して第1減算器82に出力し、右後輪36b用のフィードバックトルクTfbr(以下「FBトルクTfbr」という。)を算出して第2減算器84に出力する。以下では、FBトルクTfbl、Tfbrを「FBトルクTfb」又は「トルクTfb」と総称する。
 FB制御部80では、US 2005/0217921 A1のフィードバック制御部(US 2005/0217921 A1の図5の86)と同様の構成及び処理によりトルクTfbを算出する。
 すなわち、FB制御部80は、車速センサ50で検出した車速V、舵角センサ52で検出した舵角θst、横Gセンサ54で検出した横加速度Glat及びヨーレートセンサ60で検出したヨーレートYrに基づいて、車両10のスリップ角を算出する。また、FB制御部80は、車速センサ50で検出した車速V及び横Gセンサ54で検出した横加速度Glatに基づいてスリップ角閾値を算出する。
 FB制御部80は、前記スリップ角と前記スリップ角閾値との差に基づいて、後輪トルクの低減量及び外輪トルクの低減量を算出するようにFBトルクTfbl、Tfbrを算出する。すなわち、車両10のスリップ角が所定値よりも大きいときには車両10が不安定状態にあると判断し、この不安定状態を解消するために後輪配分トルクを低減し、外輪配分トルクを低減するようにFBトルクTfbl、Tfbrを算出する。
(2-3-6.第1減算器82及び第2減算器84)
 第1減算器82は、ローパスフィルタ78からのFF合計トルクTff_total_lとFB制御部80からのFBトルクTfblとの差(以下「合計トルクTtotal_l」又は「トルクTtotal_l」という。)を算出する。第2減算器84は、ローパスフィルタ78からのFF合計トルクTff_total_rとFB制御部80からのFBトルクTfbrとの差(以下「合計トルクTtotal_r」又は「トルクTtotal_r」という。)を算出する。以下では、合計トルクTtotal_l、Ttotal_rを「合計トルクTtotal」又は「トルクTtotal」と総称する。
[2-4.駆動ECU28の出力(トルクTff1、Tff2、Tff_total)]
 図3には、左右後輪36a、36bのうち外輪についての舵角比例トルクTff1、AP微分トルクTff2及びFF合計トルクTff_totalの一例が示されている。図3からわかるように、アクセルペダル64が踏み込まれると、舵角比例トルクTff1及びAP微分トルクTff2が増加する。この際、舵角比例トルクTff1は、比較的立ち上がりが遅い。このため、舵角比例トルクTff1よりも立ち上がりが速いAP微分トルクTff2を加えることで、FF合計トルクTff_total全体としての立ち上がりを速めることが可能となる。
B.AP微分FF制御
B-1.AP微分FF制御の流れ
 図4は、AP微分FF制御のフローチャートである。図5は、図4のAP微分FF制御を用いた場合の各種データの一例を示す図である。図5において、破線は、所定の車速V及び舵角θstである場合のデータを示し、実線は、破線と同じ車速V且つ破線よりも大きい舵角θstである場合のデータを示す。また、図5は、定速走行をしている状態において、時点t1でアクセルペダル64を強く踏み込んだ場合のデータを示している。
 図4のステップS1において、AP微分FF制御部72は、AP開度センサ58からAP開度θapを、舵角センサ52から舵角θstを、車輪速センサ56から車輪速Vwを、横Gセンサ54から横加速度Glatを取得する。
 ステップS2において、FF制御部72は、AP開度θapの時間微分値である変化速度Vapを算出する。ステップS3において、FF制御部72は、AP開度θapが増加中又は最大値であるかを判定する。AP開度θapが増加中であるか否かは、変化速度Vapが正の値であるか否かを見ることで判定する。また、AP開度θapの最大値とは、アクセルペダル64をそれ以上踏み込むことができない状態での値を意味する。
 AP開度θapが増加中又は最大値である場合(S3:YES)、ステップS4において、FF制御部72は、舵角θstと車輪速Vwの組合せに基づいてマップを選択する。ここでのマップは、変化速度VapとAP微分トルクTff2との関係を規定したマップである。本実施形態では、舵角θstと車輪速Vwの組合せ毎の複数の上記マップを駆動ECU28の記憶部(図示せず)に記憶しておく。なお、ここでの車輪速Vwは、左右の駆動力配分比を変更可能な車輪(ここでは、後輪36a、36b)についてのものであり、例えば、車輪速Vwrl、Vwrrの平均値を用いることができる。或いは、車輪速Vwrl、Vwrrのうち大きい方又は小さい方の値を用いてもよい。また、後述するように、マップの利用以外の方法を用いることも可能である。
 各マップでは、AP開度θapの変化速度Vapが等しいとき、左右後輪36a、36bの車輪速Vwが低い場合よりも、車輪速Vwが高い場合のAP微分トルクTff2が小さくなるように、変化速度VapとAP微分トルクTff2との関係が規定される。また、各マップでは、AP開度θapの変化速度Vapが等しいとき、舵角θstが大きい場合よりも、舵角θstが小さい場合のAP微分トルクTff2が小さくなるように、変化速度VapとAP微分トルクTff2との関係が規定される。
 ステップS5において、FF制御部72は、ステップS4で選択したマップにおいて、ステップS2で算出した変化速度Vapに対応するAP微分トルクTff2を選択する。
 ステップS3に戻り、AP開度θapが増加中でなく且つ最大値でもない場合(S3:NO)、運転者は、定速走行又は減速走行を望んでいるものと考えられる。この場合、ステップS6において、FF制御部72は、AP微分トルクTff2を減少させるためのレートリミット処理を行う。なお、AP開度θapが最大値である状態が所定時間継続した場合、AP開度θapが最大値であっても、FF制御部72は、ステップS6に進む。
 具体的には、FF制御部72は、AP微分トルクTff2の前回値(以下「AP微分トルクTff2(前回)」という。)から特定の正の値αを引いた値を、AP微分トルクTff2の今回値(以下「AP微分トルクTff2(今回)」という。)とする(Tff2(今回)←Tff2(前回)-α)。なお、トルクTff2の最低値はゼロであるため、トルクTff2は負の値にはならない。
 また、本実施形態の値αは、AP開度θapが最大値であるときから減少するとき、いずれの舵角θst及び車輪速Vwの場合も、AP開度θapがゼロになるまでの時間を等しくするように設定する。
 例えば、図5の場合、時点t1及びその周辺では、車輪速Vwが等しく、舵角θstが異なっている。このため、図5では、AP微分トルクTff2の最大値は、舵角θstが大きいときの方が大きくなる。このため、仮に値αが等しい場合、AP微分トルクTff2が最大値からゼロになるまでの時間は、舵角θstが大きいときの方が長くなる。
 しかしながら、本実施形態では、AP開度θapが最大値であるときから減少するとき、いずれの舵角θst及び車輪速Vwの場合も、AP開度θapがゼロになるまでの時間を等しくするように設定する。このため、舵角θstが大きいときの方が値αを大きくする。
 ステップS5又はS6の後、ステップS7において、FF制御部72は、ステップS1で取得した横加速度Glatに基づいて車両10の旋回方向を特定する。
 続くステップS8において、FF制御部72は、左右後輪36a、36bのうち外輪に対してAP微分トルクTff2を適用し、内輪に対してAP微分トルクTff2にマイナスを掛けた値-Tff2を適用する。すなわち、FF制御部72は、外輪については第1加算器74又は第2加算器76に対してAP微分トルクTff2を出力し、内輪については第1加算器74又は第2加算器76に対してAP微分トルクTff2にマイナスを掛けた値-Tff2を出力する。
 なお、上記のように、第2モータ16及び第3モータ18は、正転及び逆転が可能である。この点を考慮し、本実施形態では、左右後輪36a、36bのうち内輪に対して用いる値-Tff2は、内輪のトルクが負の値になることを許容する。例えば、所定の舵角θst及び車輪速VwにおいてAP開度θapの変化速度Vapが閾値を超えた場合、制御部72は、左右後輪36a、36bのうち内輪のトルクが負の値になるように値-Tff2を設定する。これにより、旋回時において内輪は負方向のトルクを出力することで、車両10の旋回を補助する。この際、内輪に対応するモータ(モータ16、18の一方)では回生を行う。
B-2.AP微分FF制御の有無による比較
 図6は、AP微分FF制御を用いる場合と用いない場合の出力の一例を示す図である。図6では、本実施形態(すなわち、舵角比例FF制御及びAP微分FF制御の両方を行う場合)のトルク差ΔTと、比較例のトルク差ΔTを示している。比較例では、舵角比例FF制御を行うが、AP微分FF制御を行わない。
 図6からわかるように、時点t11にてAP開度θapが増加を開始すると、比較例と比較して本実施形態のトルク差ΔTは、直ちに変化が大きくなる。このため、横加速度Glatの変化が小さい時点であっても、AP開度θapの変化速度Vapが大きくなれば、左右後輪36a、36bのトルク差ΔTを直ちに大きくすることができる。従って、旋回時におけるアクセルペダル64の操作に対する応答性を高めることが可能となる。
C.本実施形態の効果
 以上のように、本実施形態によれば、舵角θst(要求旋回量)とAP開度θapの変化速度Vap(要求駆動動力量の時間微分値)とに基づいて左右後輪36a、36b(左右駆動輪)のトルク差ΔT(動力差)を調整する(図2、図4)。このため、同じ舵角θstでも、変化速度Vapによって左右後輪36a、36bのトルク差ΔTが変わる。従って、変化速度Vapが高いほど左右後輪36a、36bのトルク差ΔTを大きくする場合、車両10(車体)を安定して旋回させ易くなる。このことは、特に、操舵に対する車両10の挙動の応答性が低い低速領域で顕著である。従って、上記制御により、車両10の姿勢がより安定し又は運転者の意思(高速旋回)に対する応答性を高めることが可能となる。
 本実施形態では、左後輪36a(左駆動輪)と接続される後ろ側第1モータ16(第1原動機)と、右後輪36b(右駆動輪)と接続される後ろ側第2モータ18(第2原動機)とが含まれる(図1)。また、駆動ECU28(旋回制御装置)は、AP開度θapの変化速度Vapに基づいて、モータ16、18のトルクを制御して左右後輪36a、36bのトルク差ΔTを調整する(図4のS5、S7、S8)。
 上記によれば、モータ16、18のトルクを制御することで左右後輪36a、36b(左右駆動輪)のトルク差ΔTを調整する。これにより、左右後輪36a、36bに対してそれぞれモータ(原動機)が接続されるので、左右後輪36a、36bの出力を別個独立に制御することが可能となる。
 本実施形態において、後ろ側第1モータ16(第1原動機)及び後ろ側第2モータ18(第2原動機)は、それぞれ車両10の前進方向及び後進方向のトルクを発生可能な電動機である。また、駆動ECU28(旋回制御装置)は、必要に応じて、モータ16、18のうち車両10の旋回方向における外輪に対応するものに前進方向のトルク(正の値)を発生させ、内輪に対応するものに後進方向のトルク(負の値)を発生させることにより、トルク差ΔTを調整する(図4のS5、S7、S8)。
 上記によれば、駆動ECU28は、左右後輪36a、36bに接続されるモータ16、18によって左右後輪36a、36bのトルク差ΔTを調整する。一般に、モータ(電動機)は、トルクの制御を高応答及び高精細に行うことができるものが多い。このため、上記構成により、左右後輪36a、36bのトルク差ΔTを高応答且つ高精細に発生させることが可能となる。
 また、モータ16、18のうち外輪に対応するものに車両10の前進方向のトルクを発生させ、内輪に対応するものに車両10の後退方向のトルクを発生させることにより(図4のS8)、左後輪36a(左駆動輪)と右後輪36b(右駆動輪)との間のトルク差ΔTを調整する。このため、左右後輪36a、36bの両方のトルクを前進方向(正の値)にしなければならないとの制限を受けずに、柔軟にトルク差ΔTを設定することが可能となる。従って、場面に応じてさらに車両10の姿勢制御又は操作性能を高めることが可能となる。
 本実施形態において、駆動ECU28(旋回制御装置)は、AP開度θapの変化速度Vap(要求駆動動力量の時間微分値)が等しい場合、左後輪36a(左駆動輪)と右後輪36b(右駆動輪)の回転数(車輪速Vw)が低い時よりも高い時の方が、トルク差ΔTを小さくする(図4のS4、S5)。
 上記によれば、車速Vが高い時にはAP開度θapの変化速度Vapに基づく左右後輪36a、36bのトルク差ΔTが小さくなる。このため、高車速時に左右後輪36a、36bのトルク差ΔTが過度に発生することによって、車両10の挙動が不安定になることを防止可能となる。
 上記実施形態において、駆動ECU28(旋回制御装置)は、AP開度θapの変化速度Vap(要求駆動動力量の時間微分値)が等しい場合、舵角θst(要求旋回量)が大きい時よりも小さい時の方が、トルク差ΔTを小さくする(図4のS4、S5。図5のAP微分トルクTff2も参照)。
 上記によれば、舵角θstが小さい時にはAP開度θapの変化速度Vapに基づく左右後輪36a、36bのトルク差ΔTが小さくなる。このため、例えば、路面のうねり若しくは轍等を理由としてハンドル62を取られたとき、又は運転者が細かな操舵を行ったときに、左右後輪36a、36bのトルク差ΔTが過度に発生して車両10の挙動が乱れることを防止することが可能となる。
 上記実施形態において、駆動ECU28(旋回制御装置)は、左後輪36a(左駆動輪)及び右後輪36b(右駆動輪)のうち車両10の旋回方向における外輪に加算するAP微分トルクTff2(加算トルク)と、内輪から減算するAP微分トルクTff2にマイナスを掛けた値-Tff2(減算トルク)とを、AP開度θapの変化速度Vapに基づいて算出し(図4のS5、S7、S8)、加算トルクTff2の絶対値と減算トルク-Tff2の絶対値は等しい。これにより、後ろ側第1モータ16及び後ろ側第2モータ18が発生させるトルクの合計値(後輪駆動力Fr)を変化させることなく、左右後輪36a、36bのトルク差ΔTを調整することが可能となる。このため、トルク差ΔTの調整に伴いトルク又は後輪駆動力Frが変化することにより、運転者に違和感を与えることを回避することが可能となる。
II.変形例
 なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
A.車両10(適用対象)
 上記実施形態では、自動四輪車である車両10について説明した(図1)。しかしながら、例えば、舵角θstに加えて、AP開度θapの変化速度Vapに基づいて左後輪36a(左駆動輪)及び右後輪36b(右駆動輪)のトルク差ΔT(動力差)を調整する観点からすれば、これに限らない。例えば、自動三輪車及び自動六輪車のいずれであってもよい。
 上記実施形態では、車両10は、1つのエンジン12及び3つの走行モータ14、16、18を駆動源(原動機)として有したが(図1)、駆動源はこの組合せに限らない。例えば、車両10は、前輪32用の1つ又は複数の走行モータと、後輪36用の1つ又は複数の走行モータを駆動源として有してもよい。例えば、前輪32用又は後輪36用に1つの走行モータのみを用いることができる。この場合、差動装置を用いて左右輪に駆動力を分配すればよい。また、全ての車輪それぞれに個別の走行モータ(いわゆるインホイールモータを含む。)を割り当てる構成も可能である。
 上記実施形態では、エンジン12及び第1モータ14を有する前輪駆動装置34により前輪32を駆動し、第2及び第3モータ16、18を有する後輪駆動装置38により後輪36を駆動した。しかしながら、例えば、舵角θstに加えて、AP開度θapの変化速度Vapに基づいて左後輪36a(左駆動輪)及び右後輪36b(右駆動輪)のトルク差ΔT(動力差)を調整する観点からすれば、これに限らない。例えば、上記実施形態では、トルク差ΔT(動力差)を調整する対象が左右後輪36a、36bであったが、車両10の構成によっては、左右前輪32a、32bのトルク差ΔTを調整することも可能である。
A-1.第1変形例
 図7は、本発明の第1変形例に係る車両10Aの駆動系及びその周辺の概略構成図である。車両10Aでは、上記実施形態に係る車両10の前輪駆動装置34及び後輪駆動装置38の構成が反対になっている。すなわち、車両10Aの前輪駆動装置34aは、車両10Aの前側に配置された第2及び第3走行モータ16a、18aを備える。また、車両10Aの後輪駆動装置38aは、車両10Aの後ろ側に直列配置されたエンジン12a及び第1走行モータ14aを備える。
A-2.第2変形例
 図8は、本発明の第2変形例に係る車両10Bの駆動系及びその周辺の概略構成図である。車両10Bでは、エンジン12からの駆動力(以下「駆動力Feng」という。)を前輪32a、32b及び後輪36a、36bに伝達する。これにより、前輪32a、32b(主駆動輪)に加え、後輪36a、36b(副駆動輪)を駆動輪とする。なお、前記実施形態(図1)と同様、エンジン12にモータ14が接続されてもよい。
 車両10Bは、トランスファクラッチ90と、プロペラシャフト92と、デファレンシャルギア94と、デファレンシャルギア出力軸96a、96b(以下「出力軸96a、96b」ともいう。)と、第1クラッチ98と、左出力軸100と、第2クラッチ102と、右出力軸104とを有する。
 トランスファクラッチ90は、プロペラシャフト92を介して後輪36a、36bに配分されるエンジン12からの駆動力Fengを調整する。デファレンシャルギア94は、プロペラシャフト92を介して伝達された後輪36a、36bへの駆動力Fengを左右の出力軸96a、96bに均等配分する。
 第1クラッチ98は、駆動ECU28からの指令に基づいて締結度合いを調整して出力軸96aからの駆動力を、左後輪36aに連結固定された左出力軸100に伝達する。第2クラッチ102は、駆動ECU28からの指令に基づいて締結度合いを調整して出力軸96bからの駆動力を、右後輪36bに連結固定された右出力軸104に伝達する。
 上記のような構成により、車両10Bでは、後輪36a、36bの駆動力(トルク)を個別に調整することができる。車両10Bのより詳細な構成としては、例えば、US 2005/0217921 A1に記載のものを用いることができる。
 第2変形例に係る車両10Bでは、エンジン12(原動機)と左後輪36a(左駆動輪)とは第1クラッチ98(第1動力伝達機構)を介して接続され、エンジン12と右後輪36b(右駆動輪)とは第2クラッチ102(第2動力伝達機構)を介して接続される。第1クラッチ98及び第2クラッチ102は、接続状態と遮断状態の単なる切替えのみならず、滑り度合いを調整して接続状態又は遮断状態を複数段階に切り替えることが可能である。また、駆動ECU28(制御部)は、AP開度θapの変化速度Vapに基づいて、第1クラッチ98及び第2クラッチ102を制御して、左後輪36a及び右後輪36bのトルク差ΔTを調整する。これにより、AP開度θapに基づくエンジン12の出力変化を待たずに、左右後輪36a、36bのトルク差ΔTを調整することが可能となる。
 また、第1クラッチ98は、エンジン12と左後輪36aとの間で動力伝達を行う接続状態と、エンジン12と左後輪36aとの間で動力遮断を行う遮断状態とを切替可能である。同様に、第2クラッチ102は、エンジン12と右後輪36bとの間で動力伝達を行う接続状態と、エンジン12と右後輪36bとの間で動力遮断を行う遮断状態とを切替可能である。さらに、駆動ECU28は、AP開度θapの変化速度Vapに基づいて、第1クラッチ98及び第2クラッチ102の接続状態と遮断状態とを切り替えることにより、左後輪36aと右後輪36bのトルク差ΔTを調整する。
 上記によれば、駆動ECU28は、第1クラッチ98及び第2クラッチ102の断接によって左右後輪36a、36bのトルク差ΔTを調整する。これにより、第1クラッチ98及び第2クラッチ102の接続及び遮断によって左右後輪36a、36bのトルク差ΔTを調整することが可能となる。このため、トルク差ΔTを高い応答性で発生させることが可能となる。
A-3.第3変形例
 図9は、本発明の第3変形例に係る車両10Cの駆動系及びその周辺の概略構成図である。第2変形例に係る車両10Bと同様、車両10Cでは、エンジン12からの駆動力(駆動力Feng)を前輪32a、32b及び後輪36a、36bに伝達する。これにより、前輪32a、32b(主駆動輪)に加え、後輪36a、36b(副駆動輪)を駆動輪とする。車両10Bと同一の構成要素については、同一の参照符号を付して説明を省略する。なお、前記実施形態(図1)と同様、エンジン12にモータ14が接続されてもよい。
 車両10Cは、トランスファクラッチ90、プロペラシャフト92、デファレンシャルギア94、デファレンシャルギア出力軸96a、96b(出力軸96a、96b)、左出力軸100及び右出力軸104に加え、第1再配分機構110及び第2再配分機構112を有する。
 第1再配分機構110は、車両10Cの左折時において、デファレンシャルギア94から左後輪36a用に配分又は分岐された駆動力の一部又は全部を右後輪36bに伝達する。第1再配分機構110は、左旋回クラッチ、左後輪36a用サンギア、3連ピニオンギア及び右後輪36b用サンギア(いずれも図示せず)を備える。
 第2再配分機構112は、車両10Cの右折時において、デファレンシャルギア94から右後輪36b用に配分又は分岐された駆動力の一部又は全部を左後輪36aに伝達する。第2再配分機構112は、右旋回クラッチ、右後輪36b用サンギア、3連ピニオンギア及び左後輪36a用サンギア(いずれも図示せず)を備える。
 なお、第1再配分機構110の左旋回クラッチ及び第2再配分機構112の右旋回クラッチは、接続状態と遮断状態の単なる切替えのみならず、滑り度合いを調整して接続状態又は遮断状態を複数段階に切り替えることが可能である。
 上記のような構成により、車両10Cでは、後輪36a、36bの駆動力を個別に調整することができる。車両10Cのより詳細な構成としては、例えば、特開2011-131618号公報に記載のものを用いることができる。
 第3変形例に係る車両10Cでは、第2変形例に係る車両10Bと同様、AP開度θapに基づくエンジン12の出力変化を待たずに、左右後輪36a、36bのトルク差ΔTを調整することが可能となる。加えて、トルク差ΔTを高い応答性で調整することが可能となる。
B.第1~第3走行モータ14、16、18
 上記実施形態では、第1~第3走行モータ14、16、18を3相交流ブラシレス式としたが、これに限らない。例えば、第1~第3走行モータ14、16、18を3相交流ブラシ式、単相交流式又は直流式としてもよい。
 上記実施形態では、第1~第3走行モータ14、16、18は、高圧バッテリ20から電力が供給されたが、これに加え、燃料電池から電力を供給されてもよい。
C.トルク制御
C-1.全体
 上記実施形態では、舵角比例FF制御、AP微分FF制御及びFB制御のそれぞれを行った(図2参照)。しかしながら、例えば、AP微分FF制御に着目すれば、舵角比例FF制御及びFB制御の一方又は両方を省略することも可能である。
 上記実施形態では、運転者によるアクセルペダル64の操作に基づき前輪駆動装置34及び後輪駆動装置38のトルクを制御した。しかしながら、例えば、前輪駆動装置34及び後輪駆動装置38のトルクを制御する観点からすれば、これに限らない。例えば、車両10において前輪駆動装置34及び後輪駆動装置38のトルクを自動的に制御する構成(いわゆる自動運転を行う構成)にも、本発明を適用可能である。なお、ここにいう自動運転は、前輪駆動装置34及び後輪駆動装置38のトルクに限らず、操舵についても自動で行うものであってもよい。
 上記実施形態において、駆動ECU28は、前輪駆動装置34及び後輪駆動装置38のトルク自体を演算対象とする制御を行った。しかしながら、例えば、前輪駆動装置34及び後輪駆動装置38のトルク(駆動動力量)を制御する観点からすれば、これに限らない。例えば、駆動ECU28は、トルクに代えて、トルクと換算可能な出力又は駆動力を演算対象とする制御を行うことも可能である。
C-2.AP微分FF制御
 上記実施形態では、舵角θst及び車輪速Vwに基づくマップをAP微分トルクTff2の算出(選択)に用いた(図4のS4、S5)。しかしながら、例えば、AP微分トルクTff2の利用に着目すれば、これに限らない。例えば、AP開度θapの変化速度VapとトルクTff2との関係を規定した単一のマップを設けておき、当該単一のマップを用いてトルクTff2を選択又は算出してもよい。
 上記実施形態では、左右後輪36a、36bのうち外輪に対してトルクTff2を加え、内輪からトルクTff2を引いた(換言すると、-Tff2を加えた)。しかしながら、例えば、舵角θstに加えて、AP開度θapの変化速度Vapに基づいて左後輪36a(左駆動輪)及び右後輪36b(右駆動輪)のトルク差ΔT(動力差)を調整する観点からすれば、これに限らない。例えば、外輪に対してトルクTff2を加えるのみの構成又は内輪からトルクTff2を引くのみの構成とすることも可能である。
 上記実施形態では、AP開度θapの変化速度Vapが速い場合、トルク差ΔTを大きくした(図4のS5)。しかしながら、反対に、AP開度θapの変化速度Vapが速い場合、トルク差ΔTを小さくすることも可能である。これにより、例えば、雪道発進の場合に車両10がスリップすることを防止し易くすることが可能となる。
C-3.その他
 上記実施形態では、AP微分FF制御において、AP開度θapの変化速度Vapに応じて左右後輪36a、36bのトルク差ΔTを変化させた(図4のS5)。しかしながら、例えば、AP開度θapの変化速度Vapに応じて左右後輪36a、36bのトルクを変化させる観点からすれば、これに限らない。例えば、トルク差ΔTの調整に加えて又はこれに代えて、変化速度Vapに応じてFF合計トルクTff_total(例えば、トルクTff2)を増加又は減少させることも可能である。例えば、変化速度Vapが増加した場合、FF合計トルクTff_totalを増加させることができる。当該制御によっても、車両10の姿勢がより安定し又は運転者の意思(高速旋回)に対する応答性を高めることが可能となる。

Claims (12)

  1.  原動機(12、12a、14、14a、16、16a、18、18a)に接続された左駆動輪(36a)及び右駆動輪(36b)と、
     要求駆動動力量を入力する要求駆動動力量入力装置(64)と、
     要求旋回量を入力する要求旋回量入力装置(62)と
     を備える車両(10、10A、10B、10C)であって、
     前記要求旋回量に加えて、前記要求駆動動力量の時間微分値に基づいて前記左駆動輪(36a)及び前記右駆動輪(36b)の動力差を調整する旋回制御装置(28)をさらに備える
     ことを特徴とする車両(10、10A、10B、10C)。
  2.  請求項1に記載の車両(10、10A、10B、10C)において、
     前記旋回制御装置(28)は、前記要求駆動動力量の時間微分値が大きいほど、前記動力差を大きくする
     ことを特徴とする車両(10、10A、10B、10C)。
  3.  請求項1又は2に記載の車両(10、10A)において、
     前記原動機は、前記左駆動輪(36a)と接続される第1原動機(16、16a)と、前記右駆動輪(36b)と接続される第2原動機(18、18a)とを含み、
     前記旋回制御装置(28)は、前記要求駆動動力量の時間微分値に基づいて、前記第1原動機(16、16a)及び前記第2原動機(18、18a)の動力を制御して前記動力差を調整する
     ことを特徴とする車両(10、10A)。
  4.  請求項3に記載の車両(10、10A)において、
     前記第1原動機(16、16a)及び前記第2原動機(18、18a)は、それぞれ前記車両(10、10A)の前進方向及び後進方向の動力を発生可能な電動機(16、16a、18、18a)であり、
     前記旋回制御装置(28)は、前記第1原動機(16、16a)及び前記第2原動機(18、18a)のうち前記車両(10、10A)の旋回方向における外輪に対応するものに前記前進方向の動力を発生させ、内輪に対応するものに前記後進方向の動力を発生させることにより、前記動力差を調整する
     ことを特徴とする車両(10、10A)。
  5.  請求項1又は2に記載の車両(10B)において、
     前記原動機(12)と前記左駆動輪(36a)とは第1動力伝達機構(98)を介して接続され、
     前記原動機(12)と前記右駆動輪(36b)とは第2動力伝達機構(102)を介して接続され、
     前記旋回制御装置(28)は、前記要求駆動動力量の時間微分値に基づいて、前記第1動力伝達機構(98)及び前記第2動力伝達機構(102)を制御して前記動力差を調整する
     ことを特徴とする車両(10B)。
  6.  請求項5に記載の車両(10B)において、
     前記第1動力伝達機構(98)は、
      前記原動機(12)と前記左駆動輪(36a)との間で動力伝達を行う接続状態と、
      前記原動機(12)と前記左駆動輪(36a)との間で動力遮断を行う遮断状態と
      を切替可能な第1断続手段(98)を含み、
     前記第2動力伝達機構(102)は、
      前記原動機(12)と前記右駆動輪(36b)との間で動力伝達を行う接続状態と、
      前記原動機(12)と前記右駆動輪(36b)との間で動力遮断を行う遮断状態と
      を切替可能な第2断続手段(102)を含み、
     前記旋回制御装置(28)は、前記要求駆動動力量の時間微分値に基づいて、前記第1断続手段(98)及び前記第2断続手段(102)を接続状態と遮断状態とに切り替えることにより、前記動力差を調整する
     ことを特徴とする車両(10B)。
  7.  請求項1~6のいずれか1項に記載の車両(10、10A、10B、10C)において、
     前記旋回制御装置(28)は、前記要求駆動動力量の時間微分値が等しい場合、前記左駆動輪(36a)の回転数が低い時よりも高い時の方が、又は前記右駆動輪(36b)の回転数が低い時よりも高い時の方が、前記動力差を小さくする
     ことを特徴とする車両(10、10A、10B、10C)。
  8.  請求項1~7のいずれか1項に記載の車両(10、10A、10B、10C)において、
     前記旋回制御装置(28)は、前記要求駆動動力量の時間微分値が等しい場合、前記要求旋回量が大きい時よりも小さい時の方が、前記動力差を小さくする
     ことを特徴とする車両(10、10A、10B、10C)。
  9.  請求項1~8のいずれか1項に記載の車両(10、10A、10B、10C)において、
     前記旋回制御装置(28)は、
      前記左駆動輪(36a)及び前記右駆動輪(36b)のうち前記車両(10、10A、10B、10C)の旋回方向における外輪の動力に加算する加算動力と、内輪の動力から減算する減算動力とを、前記要求駆動動力量の時間微分値に基づいて算出し、
      前記加算動力の絶対値と前記減算動力の絶対値とを等しくする
     ことを特徴とする車両(10、10A、10B、10C)。
  10.  請求項3に記載の車両(10、10A)において、
     前記第1原動機(16、16a)及び前記第2原動機(18、18a)は、それぞれ前記車両(10、10A)の前進方向及び後進方向の動力を発生可能な電動機(16、16a、18、18a)であり、
     前記車両(10、10A)は、それぞれの前記電動機(16、16a、18、18a)と電気的に接続される蓄電装置(20)をさらに備える
     ことを特徴とする車両(10、10A)。
  11.  請求項5に記載の車両(10B)において、
     前記車両(10B)は、前記原動機(12)からの動力を前記左駆動輪(36a)と前記右駆動輪(36b)とに配分する差動機構(94)をさらに備え、
     前記第1動力伝達機構(98)は、前記左駆動輪(36a)と前記差動機構(94)との間に配置され、
     前記第2動力伝達機構(102)は、前記右駆動輪(36b)と前記差動機構(94)との間に配置される
     ことを特徴とする車両(10B)。
  12.  請求項1又は2に記載の車両(10C)において、
     前記車両(10C)は、
      前記原動機(12)からの動力を前記左駆動輪(36a)と前記右駆動輪(36b)とに配分する差動機構(94)と、
      前記差動機構(94)によって前記左駆動輪(36a)に配分された動力の一部又は全部を前記右駆動輪(36b)に伝達する第1再配分機構(110)と、
      前記差動機構(94)によって前記右駆動輪(36b)に配分された動力の一部又は全部を前記左駆動輪(36a)に伝達する第2再配分機構(112)とをさらに備え、
     前記旋回制御装置(28)は、前記要求駆動動力量の時間微分値に基づいて、前記第1再配分機構(110)及び前記第2再配分機構(112)を制御して前記動力差を調整する
     ことを特徴とする車両(10C)。
PCT/JP2014/069998 2013-07-31 2014-07-30 車両 WO2015016236A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/440,419 US9725014B2 (en) 2013-07-31 2014-07-30 Vehicle
JP2015529584A JP6457939B2 (ja) 2013-07-31 2014-07-30 車両
CN201480043314.8A CN105452052B (zh) 2013-07-31 2014-07-30 车辆
CA2919965A CA2919965A1 (en) 2013-07-31 2014-07-30 Vehicle
KR1020167005414A KR20160040629A (ko) 2013-07-31 2014-07-30 차량
EP14832005.4A EP3028893B1 (en) 2013-07-31 2014-07-30 Vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013159612 2013-07-31
JP2013-159612 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015016236A1 true WO2015016236A1 (ja) 2015-02-05

Family

ID=52431766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069998 WO2015016236A1 (ja) 2013-07-31 2014-07-30 車両

Country Status (8)

Country Link
US (1) US9725014B2 (ja)
EP (1) EP3028893B1 (ja)
JP (1) JP6457939B2 (ja)
KR (1) KR20160040629A (ja)
CN (1) CN105452052B (ja)
CA (1) CA2919965A1 (ja)
MY (1) MY180489A (ja)
WO (1) WO2015016236A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051308A1 (en) * 2015-09-24 2017-03-30 Protean Electric Limited A control system for a vehicle
EP3260353A4 (en) * 2015-02-19 2018-08-15 Honda Motor Co., Ltd. Vehicle
JP2020069831A (ja) * 2018-10-29 2020-05-07 株式会社アドヴィックス 車両の制動制御装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190193558A1 (en) * 2017-12-22 2019-06-27 Caterpillar Inc. System for providing torque assist in a vehicle
JP7146168B2 (ja) * 2018-03-20 2022-10-04 マツダ株式会社 車両駆動装置
DE102018212031A1 (de) * 2018-07-19 2020-01-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs, Steuergerät und Kraftfahrzeug
JP7170966B2 (ja) * 2018-10-10 2022-11-15 マツダ株式会社 車両駆動装置
CN109367401B (zh) * 2018-10-23 2022-01-25 展欣(宁波)新能源科技有限公司 一种轮毂电机驱动桥电机差速控制方法
US11590977B2 (en) * 2019-12-31 2023-02-28 Rivian Ip Holdings, Llc Systems and methods for providing a vehicle with a torque vectored K-turn mode
US11661066B2 (en) * 2020-02-19 2023-05-30 Dana Automotive Systems Group, Llc Sand mode system and method for a vehicle
CN114571990A (zh) * 2020-11-30 2022-06-03 比亚迪股份有限公司 轮边驱动总成和车辆
US12097772B2 (en) * 2021-07-15 2024-09-24 Rivian Ip Holdings, Llc Systems and methods for controlling speed differential of wheels of a vehicle
CA3240599A1 (en) * 2021-12-10 2023-06-15 Craig Siebert Intuitive electric steering

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129837A (ja) * 1990-09-19 1992-04-30 Mitsubishi Motors Corp 駆動力制御装置
JP2002029400A (ja) * 2000-07-18 2002-01-29 Mazda Motor Corp 車両の姿勢制御装置
JP2005160262A (ja) * 2003-11-28 2005-06-16 Toyota Motor Corp 車輌の駆動力制御装置
JP2005219580A (ja) 2004-02-04 2005-08-18 Toyota Motor Corp 車両の挙動制御装置
JP2005253175A (ja) * 2004-03-03 2005-09-15 Toyota Motor Corp 車両駆動装置
US20050217921A1 (en) 2004-03-31 2005-10-06 Honda Motor Co., Ltd. Drive force control method for four-wheel drive vehicle
JP2008074328A (ja) * 2006-09-25 2008-04-03 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2008222070A (ja) * 2007-03-13 2008-09-25 Nissan Motor Co Ltd 車両の駆動力配分制御装置
JP2010101333A (ja) * 2008-10-21 2010-05-06 Honda Motor Co Ltd 車両用駆動力配分装置
JP2011131618A (ja) 2009-12-22 2011-07-07 Honda Motor Co Ltd 四輪駆動車両の制御装置
JP2011163518A (ja) * 2010-02-15 2011-08-25 Honda Motor Co Ltd 車両のヨーモーメント制御装置
US20120015772A1 (en) 2009-03-31 2012-01-19 Honda Motor Co., Ltd. Drive device and vehicle with same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937407A (ja) 1995-07-18 1997-02-07 Toyota Motor Corp 回生制動制御装置
JPH0984208A (ja) 1995-09-14 1997-03-28 Denso Corp 電気自動車用制御装置
JP3423125B2 (ja) 1995-09-28 2003-07-07 三菱自動車工業株式会社 車両の旋回挙動制御装置
JP2882474B2 (ja) 1996-07-05 1999-04-12 三菱自動車工業株式会社 車両用左右輪間動力伝達制御装置
JP3564696B2 (ja) 1998-12-25 2004-09-15 トヨタ自動車株式会社 車両の操舵制御装置
JP3539358B2 (ja) * 2000-06-09 2004-07-07 日産自動車株式会社 車両の駆動力制御装置
JP4369198B2 (ja) 2003-10-10 2009-11-18 株式会社ジェイテクト 車両用操舵制御装置
JP2005137063A (ja) 2003-10-28 2005-05-26 Toyota Motor Corp 車両用駆動制御装置
JP2006044293A (ja) 2004-07-30 2006-02-16 Toyota Motor Corp 車輌の運動制御装置
JP4114657B2 (ja) 2004-10-25 2008-07-09 三菱自動車工業株式会社 車両の旋回挙動制御装置
JP4556643B2 (ja) 2004-12-01 2010-10-06 トヨタ自動車株式会社 車両の制駆動力制御装置
JP4379406B2 (ja) * 2005-03-04 2009-12-09 日産自動車株式会社 車両の駆動力配分制御装置
JP2007269095A (ja) * 2006-03-30 2007-10-18 Toyota Motor Corp 車両の制動力制御装置
JP4936851B2 (ja) 2006-10-18 2012-05-23 日立オートモティブシステムズ株式会社 車両および車両制御装置
JP2008222055A (ja) 2007-03-13 2008-09-25 Toyota Motor Corp 運転補助制御装置
JP2010052523A (ja) 2008-08-27 2010-03-11 Honda Motor Co Ltd 駆動力配分制御装置
JP2010052525A (ja) 2008-08-27 2010-03-11 Honda Motor Co Ltd 車両用電動パワーステアリング装置
JP5185743B2 (ja) 2008-09-04 2013-04-17 富士重工業株式会社 操向支援装置
JP2010208366A (ja) 2009-03-06 2010-09-24 Honda Motor Co Ltd 車両運動制御システム
JP5144805B2 (ja) 2009-04-10 2013-02-13 トヨタ自動車株式会社 車両用駆動装置の制御装置
US9199639B2 (en) * 2010-09-28 2015-12-01 Hitachi Automotive Systems, Ltd. Motion control system of vehicle
JP2012166715A (ja) 2011-02-15 2012-09-06 Toyota Motor Corp 車両の走行制御装置
JP5527259B2 (ja) 2011-03-07 2014-06-18 三菱自動車工業株式会社 出力トルク制御装置
DE102011017464A1 (de) 2011-04-07 2012-10-11 Klaus Ebert Verfahren zum Betreiben eines Fahrzeugs
JP5773155B2 (ja) 2011-09-09 2015-09-02 マツダ株式会社 車線逸脱防止装置
JP5591837B2 (ja) 2012-01-25 2014-09-17 本田技研工業株式会社 車両及び操舵装置
JP2014101086A (ja) 2012-11-22 2014-06-05 Showa Corp 電動パワーステアリング装置
JP2014139039A (ja) 2013-01-21 2014-07-31 Jtekt Corp 電動パワーステアリング装置
WO2014115234A1 (ja) 2013-01-24 2014-07-31 日産自動車株式会社 操舵制御装置
CN106458255B (zh) 2014-05-23 2018-10-09 本田技研工业株式会社 行驶辅助装置以及行驶辅助装置的控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129837A (ja) * 1990-09-19 1992-04-30 Mitsubishi Motors Corp 駆動力制御装置
JP2002029400A (ja) * 2000-07-18 2002-01-29 Mazda Motor Corp 車両の姿勢制御装置
JP2005160262A (ja) * 2003-11-28 2005-06-16 Toyota Motor Corp 車輌の駆動力制御装置
JP2005219580A (ja) 2004-02-04 2005-08-18 Toyota Motor Corp 車両の挙動制御装置
JP2005253175A (ja) * 2004-03-03 2005-09-15 Toyota Motor Corp 車両駆動装置
US20050217921A1 (en) 2004-03-31 2005-10-06 Honda Motor Co., Ltd. Drive force control method for four-wheel drive vehicle
JP2008074328A (ja) * 2006-09-25 2008-04-03 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2008222070A (ja) * 2007-03-13 2008-09-25 Nissan Motor Co Ltd 車両の駆動力配分制御装置
JP2010101333A (ja) * 2008-10-21 2010-05-06 Honda Motor Co Ltd 車両用駆動力配分装置
US20120015772A1 (en) 2009-03-31 2012-01-19 Honda Motor Co., Ltd. Drive device and vehicle with same
JP2011131618A (ja) 2009-12-22 2011-07-07 Honda Motor Co Ltd 四輪駆動車両の制御装置
JP2011163518A (ja) * 2010-02-15 2011-08-25 Honda Motor Co Ltd 車両のヨーモーメント制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260353A4 (en) * 2015-02-19 2018-08-15 Honda Motor Co., Ltd. Vehicle
WO2017051308A1 (en) * 2015-09-24 2017-03-30 Protean Electric Limited A control system for a vehicle
US10988033B2 (en) 2015-09-24 2021-04-27 Protean Electric Limited Control system for a vehicle
JP2020069831A (ja) * 2018-10-29 2020-05-07 株式会社アドヴィックス 車両の制動制御装置
JP7139883B2 (ja) 2018-10-29 2022-09-21 株式会社アドヴィックス 車両の制動制御装置

Also Published As

Publication number Publication date
EP3028893B1 (en) 2019-06-19
MY180489A (en) 2020-11-30
CN105452052B (zh) 2018-02-16
CA2919965A1 (en) 2015-02-05
CN105452052A (zh) 2016-03-30
US20150283918A1 (en) 2015-10-08
JP6457939B2 (ja) 2019-01-23
KR20160040629A (ko) 2016-04-14
EP3028893A4 (en) 2017-03-15
US9725014B2 (en) 2017-08-08
JPWO2015016236A1 (ja) 2017-03-02
EP3028893A1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP6457939B2 (ja) 車両
US10793124B2 (en) Vehicle wheel torque control systems and methods
KR102122332B1 (ko) 차량
JP5813906B1 (ja) 車両及び車両の制御方法
WO2016114282A1 (ja) 駆動装置の制御装置及び制御方法ならびに記録媒体
CN108583364B (zh) 车辆和车辆的控制方法
US9440540B2 (en) Electric vehicle and control method
US9573466B2 (en) Vehicle, and vehicle control method
US20170355361A1 (en) System and method for controlling a vehicle powertrain
US10421450B2 (en) Vehicle with first and second power sources
JP7176360B2 (ja) 電動車両
WO2017138587A1 (ja) 車輪独立駆動式車両の駆動制御装置
JP6421533B2 (ja) 車両用制御装置
WO2016125686A1 (ja) 車両の制駆動トルク制御装置
JP6382512B2 (ja) 車両
JP6649478B2 (ja) 電動車両
JP2017136868A (ja) 車両の制動制御装置
EP4253179B1 (en) Method for controlling electric vehicle and system for controlling electric vehicle
JP7563277B2 (ja) 車両の制御装置
WO2023182209A1 (ja) 車両の走行制御装置
JP2006280099A (ja) 自動車およびその制御方法
JP2018011488A (ja) 電動車両
JP2017046380A (ja) 車両の制御方法および車両用制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043314.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440419

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015529584

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2919965

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167005414

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014832005

Country of ref document: EP