[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015060217A1 - 摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法 - Google Patents

摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法 Download PDF

Info

Publication number
WO2015060217A1
WO2015060217A1 PCT/JP2014/077706 JP2014077706W WO2015060217A1 WO 2015060217 A1 WO2015060217 A1 WO 2015060217A1 JP 2014077706 W JP2014077706 W JP 2014077706W WO 2015060217 A1 WO2015060217 A1 WO 2015060217A1
Authority
WO
WIPO (PCT)
Prior art keywords
frictional resistance
distributor
hole
blowout
ship
Prior art date
Application number
PCT/JP2014/077706
Other languages
English (en)
French (fr)
Inventor
真一 ▲高▼野
千春 川北
慎輔 佐藤
小段 洋一郎
川野 三浩
宗二 溝上
日笠 靖司郎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP14825082.2A priority Critical patent/EP2886437B1/en
Priority to KR1020167002925A priority patent/KR101647273B1/ko
Priority to US14/911,182 priority patent/US9738350B2/en
Publication of WO2015060217A1 publication Critical patent/WO2015060217A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • B63B2001/387Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a frictional resistance reduction device that blows gas into water outside the ship to reduce the frictional resistance of the hull, a ship equipped with the same, and a method for reducing the frictional resistance of a ship.
  • the frictional resistance reduction device includes a chamber in which a plurality of blowout holes for blowing air into the water outside the ship are formed.
  • the air pressure in the chamber is constant at any position, but the water pressure increases as the water depth increases in the water outside the chamber. For this reason, when the diameter of the blowout hole is constant, the air flow rate blown from the blowout hole at a deep water depth is smaller than the air flow rate blown from the blowout hole at a shallow water depth. Therefore, in this friction reducing device, the opening area of the blow hole at a deep water depth is made larger than the opening area of the blow hole at a shallow water depth, so that the flow rate of air blown from each blow hole is equalized. ing.
  • an object of the present invention is to provide a technique capable of further reducing the frictional resistance of the hull.
  • the ship frictional resistance reducing device is: A chamber provided in a flooded portion of the hull and formed with a plurality of blowout holes for blowing gas into the water outside the ship from different positions in the height direction of the hull, and supplying the gas to the internal space of the chamber And at least a plurality of the blowout holes except for the blowout hole at the lowest position in the height direction among the plurality of blowout holes, and supplied from the supply pipe into the chamber
  • a distributor for guiding a part of the gas to the outlet holes, and the plurality of distributors are configured such that the flow rate of the gas blown out from the plurality of outlet holes is equalized between the plurality of outlet holes.
  • a flow rate adjusting unit for adjusting a flow rate of the gas guided to the blowout hole corresponding to the distributor.
  • the flow rate of the air blown from the plurality of blow holes is equalized, and the diffusivity along the ship outer wall of the air blown from the plurality of blow holes is also equalized. It is possible to equalize the air distribution along the ship outer wall. For this reason, in the frictional resistance reduction device, the frictional resistance of the hull can be further reduced.
  • the ship frictional resistance reducing apparatus according to the second aspect of the present invention is the ship frictional resistance reducing apparatus according to (1), wherein all of the plurality of outlet holes formed in the chamber are provided.
  • the distributor is provided.
  • the ship frictional resistance reduction device is the ship frictional resistance reduction device according to (1) or (2), wherein the flow rate adjusting units of the plurality of distributors are The flow rate of the gas guided to the corresponding blowout hole is reduced as the corresponding blowout hole is at a higher position.
  • the flow rate adjusting unit of the distributor decreases the flow rate of the gas guided to the corresponding blowout hole as the blowout hole corresponding to the distributor is located at a higher position. For this reason, in the said frictional resistance reduction apparatus, the flow volume of the air which blows off from the several blowing hole from which height differs mutually is equalized.
  • the ship frictional resistance reduction device is the ship frictional resistance reduction device according to (3), wherein a plurality of the distributors are arranged in the interior space of the chamber.
  • a partition member that partitions the supply pipe side space facing the opening of the supply pipe connected to the chamber and a partial space including the space of the corresponding blow-out hole, and the flow rate adjusting unit includes the partition member Is provided.
  • the ship frictional resistance reduction device is the ship frictional resistance reduction device including the partition member according to (4), wherein the flow rate adjusting unit of the distributor is And one or more through holes formed in the partition member and penetrating from the supply pipe side space to the partial space side, and the number of the through holes for each of the plurality of distributors is different among the distributors. .
  • the ship frictional resistance reducing device is the ship frictional resistance reducing device having the partition member according to (4), wherein the flow rate adjusting unit of the distributor is A through hole formed in the partition member and penetrating from the supply pipe side space to the partial space side, and an opening area of the through hole for each of the plurality of distributors is different among the distributors.
  • the ship's frictional resistance reducing device is the ship's frictional resistance reducing device in which the through hole is formed in the partition member according to (5) or (6).
  • the through hole is formed on the extension of the blow hole in the through direction of the blow hole in the outer wall plate member in which the blow hole corresponding to the distributor is formed among the plate members forming the chamber. It has not been.
  • the ship frictional resistance reduction device is the ship frictional resistance reduction device in which the through hole is formed in the partition member according to (5) or (6).
  • a diverting member that changes the direction of the gas from the through hole is provided in the partial space.
  • the ship frictional resistance reducing device is the ship frictional resistance reducing device having the partition member according to (4), wherein the flow rate adjusting unit of the distributor is A mesh provided in the partition member and formed with a plurality of openings through which the gas passes from the supply pipe side space to the partial space side, and an opening area of the mesh for each of the plurality of distributors Are different between the distributors.
  • a ship frictional resistance reduction device is the ship frictional resistance reduction device including the partition member according to (4), wherein the flow rate adjusting unit of the distributor is The pipe is provided in the partition member and allows the gas to pass from the supply pipe side space to the partial space side, and an opening area of the pipe for each of the plurality of distributors is different among the distributors.
  • the ship frictional resistance reducing device is the ship frictional resistance reducing device having the partition member according to (4), wherein the flow rate adjusting unit of the distributor is provided. Is a pipe that is provided in the partition member and allows the gas to pass from the supply pipe side space to the partial space side, and the length of the pipe for each of the plurality of distributors differs among the distributors. .
  • a ship frictional resistance reduction device is the ship frictional resistance reduction device including the partition member according to (4), wherein the flow rate adjusting unit of the distributor is used. Is a valve that is provided in the partition member and allows the gas to pass from the supply pipe side space to the partial space side, and the opening degree of the valve for each of the plurality of distributors is different among the distributors. .
  • a ship frictional resistance reduction device is the ship frictional resistance reduction device including the partition member according to any one of (4) to (12),
  • the partition member of the distributor includes a cylinder that is connected at one side to the outer wall plate material in which the corresponding blowout hole is formed among the plate materials forming the chamber, and forms the partial space in the chamber; And a cover member that covers the opening on the other side.
  • a ship frictional resistance reduction device is the ship frictional resistance reduction device including the partition member according to any one of (4) to (12), An internal space partition plate that bisects the internal space of the chamber into the supply pipe side space and the blowout side space that is another space; and the blowout side space is divided into the blowout holes to divide the blowout side space into a plurality of the blowout space.
  • the partition member of the plurality of distributors is configured to have a blow-out side space partition plate divided into partial spaces, and the flow rate adjusting unit is provided in the internal space partition plate.
  • the ship frictional resistance reducing device is the ship friction having the partition member according to any one of (4) to (6) and (9) to (12).
  • the resistance reducing device, wherein the partition member of the distributor is a counter plate member that is in contact with the outer wall plate member so as to face a portion around the blow hole corresponding to the distributor and the blow hole in the outer wall plate member.
  • the flow rate adjusting portion is provided on the counter plate member.
  • the ship frictional resistance reduction device is the ship frictional resistance reduction device including the partitioning member according to (4), wherein the partitioning member of the distributor is A counter plate member that faces the blow hole corresponding to the distributor and a portion around the blow hole in the outer wall plate member with a space therebetween, and a gap holding member that holds a gap between the counter plate member and the outer wall plate member,
  • the flow rate adjusting part of the distributor is an opening between the edge of the counter plate member and the outer wall plate member, and the areas of the openings for the plurality of distributors are different from each other.
  • the ship's frictional resistance reducing device according to the seventeenth aspect of the present invention is the ship's frictional resistance reducing device according to any one of (1) to (16), wherein a plurality of the blowout holes are provided. The shape and area of the opening are the same.
  • the ship frictional resistance reduction device is the ship frictional resistance reduction device according to any one of (1) to (17), wherein the chamber includes the The outlet holes having the same height position are formed, and the distributor is provided for each of the outlet holes having the same height direction position.
  • a ship according to a nineteenth aspect of the present invention includes the hull and the ship frictional resistance reduction device according to any one of (1) to (18) provided in the hull. Yes.
  • a method for reducing frictional resistance of a ship A gas supply step for supplying gas to an internal space of a chamber provided in a flooded portion of the hull and formed with a plurality of blowout holes for blowing gas into the water outside the ship from mutually different positions in the height direction of the hull; And a gas distribution step of guiding a part of the gas supplied into the chamber to the blowout holes for each of the plurality of blowout holes.
  • the gas is blown from the plurality of blowout holes.
  • the flow rate of the gas guided to the blowout holes is adjusted so that the flow rate of the gas is equalized among the plurality of blowout holes.
  • the flow rate of the air blown from the plurality of blow holes is equalized, and the diffusivity along the ship outer wall of the air blown from the plurality of blow holes is also equalized. It is possible to equalize the air distribution along the ship outer wall. For this reason, in the frictional resistance reduction method, the frictional resistance of the hull can be further reduced.
  • the ship frictional resistance reduction method according to the twenty-first aspect of the present invention is the ship frictional resistance reduction method according to (20), wherein, in the gas distribution step, the outlet hole is located at a high position. The more the flow rate of the gas guided to the blowout hole is reduced.
  • the ship frictional resistance reducing method according to the twenty-second aspect of the present invention is the ship frictional resistance reducing method according to (20) or (21), wherein, in the gas distribution step, the outlet hole The higher the position is, the higher the pressure loss of the gas in the process of introducing the gas supplied into the chamber into the blowout hole.
  • the flow rate of the air blown out from the plurality of blowout holes is equalized, and the ship of air blown out from the plurality of blowout holes. Uniformity of diffusibility along the outer wall can be achieved. Therefore, the frictional resistance of the hull can be further reduced.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is an important section exploded sectional view of a frictional resistance reduction device in a first embodiment concerning the present invention. It is sectional drawing of the divider
  • FIG. 15 is a sectional view taken along line XV-XV in FIG. 14. It is a top view of the internal space partition plate in the 2nd modification of 2nd embodiment which concerns on this invention. It is a top view of the internal space partition plate in the 3rd modification of 2nd embodiment which concerns on this invention. It is principal part sectional drawing of the frictional resistance reduction apparatus in the 4th modification of 2nd embodiment which concerns on this invention. It is principal part sectional drawing of the frictional resistance reduction apparatus in the 5th modification of 2nd embodiment which concerns on this invention.
  • FIG. 20 is a sectional view taken along line XX-XX in FIG. It is a principal part perspective view of the frictional resistance reduction apparatus in 3rd embodiment which concerns on this invention.
  • FIG. 22 is a sectional view taken along line XXII-XXII in FIG. 21. It is principal part disassembled sectional drawing of the frictional resistance reduction apparatus in 3rd embodiment which concerns on this invention. It is a top view of the some divider
  • FIG. 26 is a sectional view taken along line XXVI-XXVI in FIG. 25. It is a principal part perspective view of the frictional resistance reduction apparatus in 5th embodiment which concerns on this invention. It is a principal part perspective view of the frictional resistance reduction apparatus in the 5th modification of 1st embodiment which concerns on this invention.
  • the ship according to the present embodiment includes a hull B and a frictional resistance reduction device A that blows gas into the water outside the ship to reduce the frictional resistance of the hull B.
  • the frictional resistance reduction device A includes an air supply device 11, a chamber 20 that blows air out of the ship, and a supply pipe 12 that guides air from the air supply device 11 to the chamber 20.
  • the air supply machine 11 has a blower or a compressor that sucks air and discharges pressurized air. Pressurized air generated by the air supply machine 11 is supplied to the internal space Si of the chamber 20 through the supply pipe 12.
  • the chamber 20 is a flooded part Bd of the hull B, and is provided in a portion where the width of the hull B changes when the position of the hull B in the height direction Dh changes due to a change in the width of the hull B. Therefore, this chamber 20 is provided in the flooded part Bd of the hull B, and the part where the ship outer wall is inclined in the horizontal plane. As shown in FIG. 3, the chamber 20 is disposed on the inner side of the hull with respect to the outer wall plate member 21 and the outer wall plate member 21 which is inclined with respect to the horizontal plane at a part of the ship outer wall, and is spaced from the outer wall plate member 21.
  • the supply pipe connecting plate member 23 and the peripheral wall plate member 24 extending from the outer peripheral edge of the supply pipe connecting plate member 23 to the outer wall plate member 21 are provided.
  • the chamber 20 forms an internal space Si surrounded by the outer wall plate member 21, the supply pipe connecting plate member 23, and the peripheral wall plate member 24.
  • a plurality of blowout holes 22 penetrating from the internal space Si to the outside of the ship are formed in the outer wall plate material 21 of the chamber 20.
  • the plurality of blowing holes 22 are formed at different positions in the height direction Dh of the hull B.
  • the shapes and areas of the openings of the plurality of blowout holes 22 are the same.
  • the supply pipe 12 is connected to the supply pipe connection plate member 23 of the chamber 20.
  • a bolt insertion hole 23 a that penetrates toward the outer wall plate 21 and a seal groove 23 b into which the seal member 27 is fitted are formed on the outer peripheral side of the supply pipe connecting plate 23.
  • the peripheral wall plate member 24 of the chamber 20 extends outward along the supply pipe connection plate member 23 from the peripheral wall portion 25 extending from the supply pipe connection plate member 23 toward the outer wall plate member 21 and the end portion of the peripheral wall portion 25 on the supply pipe connection plate member 23 side.
  • the protruding flange portion 26 and the flange portion 26 are formed with a seal groove 26 b at a position facing the seal groove 23 b of the supply pipe connection plate member 23, and at a position facing the bolt insertion hole 23 a of the supply pipe connection plate material 23.
  • Bolt insertion holes 26a are formed. As shown in FIG.
  • the supply pipe connecting plate member 23 includes a peripheral wall plate member by a bolt insertion hole 23 a and a bolt 28 a inserted through the bolt insertion hole 26 a of the peripheral wall plate member 24, and a nut 28 b into which the bolt 28 a is screwed. 24.
  • An end of the peripheral wall portion 25 of the peripheral wall plate material 24 on the outer wall plate material 21 side is joined to the outer wall plate material 21 by welding or the like.
  • the frictional resistance reduction device A of the present embodiment is provided for each of the plurality of blowing holes 22, and distributes a part of the air supplied from the supply pipe 12 into the chamber 20 to the blowing holes 22.
  • a container 30 is further provided.
  • the distributor 30 includes a tube 34 and a lid member 31.
  • One side of the tube 34 is a portion of the outer wall plate 21 and is joined to a portion around one outlet hole 22.
  • the other side of the tube 34 is connected to the lid member 31, and the opening on the other side of the tube 34 is closed by the lid member 31.
  • a space surrounded by the outer wall plate member 21, the cylinder 34 of the distributor 30, and the lid member 31 forms a partial space Sp.
  • the cylinder 34 and the lid member 31 of the distributor 30 divide the internal space Si of the chamber 20 into a supply pipe side space Ss facing the opening of the supply pipe 12 and a partial space Sp for each of the plurality of blowout holes 22.
  • a partition member is formed.
  • the lid member 31 of the distributor 30 is formed with one or more through holes 32 penetrating from the supply pipe side space Ss to the partial space Sp side.
  • the number of through holes 32 for each of the plurality of distributors 30 is different from each other as shown in FIG. Specifically, the number of through holes 32 of the distributor 30 corresponding to the blowout holes 22 at the high position is smaller than the number of through holes 32 of the distributor 30 corresponding to the blowout holes 22 at the low position.
  • the opening areas of the through holes 32 are the same among the plurality of through holes 32. Therefore, the flow rate of air flowing from the supply pipe side space Ss into the partial space Sp in the distributor 30 via the through hole 32 is higher in the distributor 30 corresponding to the outlet hole 22 in the higher position. Less than the distributor 30 corresponding to the hole 22.
  • the plurality of distributors 30 reduce the flow rate of air guided to the corresponding outlet holes 22 as the outlet holes 22 corresponding to the distributor 30 are located at higher positions.
  • the through hole 32 for each of the plurality of distributors 30 functions as a flow rate adjusting unit that adjusts the flow rate of the air guided to the blowout holes 22 corresponding to the distributors 30.
  • Air from the air supply unit 11 is supplied to the supply pipe side space Ss in the chamber 20 via the supply pipe 12 (gas supply process).
  • the air supplied to the supply pipe side space Ss is guided by the plurality of distributors 30 to the blowout holes 22 corresponding to the distributors 30 and blown out from the blowout holes 22 into the water outside the ship (gas distribution step).
  • the higher the blowing hole 22 is the smaller the flow rate of the air guided to the blowing hole 22 is.
  • the lower the blow hole 22 the higher the water pressure is applied to the blow hole 22 from the outside of the ship, and the resistance of water to the air blown out from the blow hole 22 into the water increases.
  • the flow volume of the air which blows off from the several blowing hole 22 from which height differs mutually is equalized.
  • the shape and area of the opening of the several blowing hole 22 are the same, the diffusibility along the ship outer wall of the air blown from the several blowing hole 22 is equalized.
  • the flow rate of the air blown from the plurality of blow holes 22 is equalized, and the diffusibility along the ship outer wall of the air blown from the plurality of blow holes 22 is also equalized. It is possible to equalize the air distribution along the ship outer wall. For this reason, in this embodiment, the frictional resistance of the hull B can be reduced as compared with the prior art.
  • the peripheral wall plate 24 of the chamber 20 and the supply pipe connection plate 23 are connected by bolts. For this reason, the chamber 20 is released by removing the supply pipe connecting plate 23 from the peripheral wall plate 24 after removing the bolt 28a. Therefore, in this embodiment, inspection, repair, etc. in the chamber 20 can be easily performed.
  • the peripheral wall plate member 24 and the supply pipe connecting plate member 23 may be connected by welding. Further, the junction between the lid member and the cylinder of the distributor may be bolted in the same manner as the connection between the peripheral wall plate member 24 and the supply pipe connecting plate member 23 of the chamber 20.
  • one through hole of the plurality of through holes exists on the extension of the blow hole in the through direction of the blow hole of the outer wall plate material.
  • the flow rate of the air blown out from the blowout hole depends solely on the flow rate of the air flowing into the partial space Sp from one through hole, and may not reach the target flow rate.
  • the distributor 30a in the first modification of the first embodiment has a through hole 32a formed in a tube 34a of the distributor 30a. For this reason, the penetration direction of the through-hole 32a formed in the cylinder 34a and the penetration direction Dp of the blow-out hole 22 formed in the outer wall plate material 21 are different, and the air that has entered the partial space Sp from the through-hole 32a. Goes straight and does not flow into the blowout hole 22.
  • the distributor 30b in the second modification of the first embodiment is formed with a plurality of through holes 32b in the lid member 31b of the distributor 30b as in the distributor 30 of the first embodiment described above.
  • the through hole 32b does not exist on the extension of the blow hole 22 in the through direction Dp of the blow hole 22.
  • the air that has entered the partial space Sp from the through hole 32 b goes straight and does not flow into the blowout hole 22.
  • the distributor 30c in the third modified example of the first embodiment has a through-hole 32c formed in the lid member 31c of the distributor 30c as in the distributor 30 of the first embodiment described above. Yes.
  • a baffle plate (direction changing member) 35 that changes the direction of the air flowing into the partial space Sp from the through hole 32 is provided between the through hole 32 c and the blowout hole 22. For this reason, even in this modification, the air that has entered the partial space Sp from the through hole 32 c does not flow straight into the blowout hole 22.
  • the distributor 30d in the fourth modified example of the first embodiment has a through-hole 32d formed in the lid member 31d of the distributor 30d as in the distributor 30 of the first embodiment described above. Yes.
  • a bending pipe (direction changing member) 36 is connected to the partial space Sp side of the through hole 32d.
  • the air that has entered the partial space Sp from the through hole 32d goes straight and does not flow into the blowout hole 22.
  • the lid member and the cylinder of the distributor may be connected by a bolt 37 so that the lid member and the cylinder can be easily separated.
  • the plurality of distributors 30 e of this embodiment are configured so that the internal space Si of the chamber 20 is divided into a blow-out side space Sb on the outer wall plate 21 side and a supply pipe side space Ss on the supply pipe connecting plate 23 side. And a plurality of outlet side space partition plates 39 that partition the outlet side space Sb for each outlet hole 22 and divide the outlet side space Sb into a plurality of partial spaces Sp. ing.
  • the internal space partition plate 38 and the plurality of outlet side space partition plates 39 constituting the plurality of distributors 30e include the supply pipe side space Ss facing the internal space Si of the chamber 20 toward the opening of the supply pipe 12, and A partition member for partitioning into a partial space Sp for each of the plurality of blowout holes 22 is formed.
  • An internal space Si is defined by a part of the peripheral wall plate member 24 of the chamber 20, a part of the internal space partition plate 38, and a single outlet side space partition plate 39. Further, among the plurality of distributors 30e, distributor 30e 3 except distributor 30 1, 30e 2 at both ends, a part of the peripheral wall plate 24 of the chamber 20, and a part of the internal space partition 38, next to one another The internal space Si is demarcated by the two blow-out side space partition plates 39 that match.
  • the internal space partition plate 38 is formed with one or more through holes 32e penetrating from the supply pipe side space Ss to the partial space Sp side for each of the plurality of partial spaces Sp.
  • the number of through holes 32e for each of the plurality of distributors 30e is different from each other as shown in FIGS. 10 and 12 as in the first embodiment. Specifically, the number of through holes 32e of the distributor 30e corresponding to the blowout holes 22 at the high position is smaller than the number of through holes 32e of the distributor 30e corresponding to the blowout holes 22 at the low position.
  • the opening area of the through hole 32e is the same among the plurality of through holes 32e.
  • the plurality of distributors 30e reduce the flow rate of the air guided to the corresponding outlet holes 22 as the outlet holes 22 corresponding to the distributor 30e are located at higher positions.
  • the through hole 32e for each of the plurality of distributors 30e functions as a flow rate adjusting unit that adjusts the flow rate of the air guided to the blowout holes 22 corresponding to the distributors 30e.
  • the present embodiment is different from the first embodiment in the configuration of the partition member that partitions the internal space Si of the chamber 20 into the supply pipe side space Ss and the plurality of partial spaces Sp, but for each of the plurality of distributors 30e.
  • the flow rate adjusting unit is the same as in the first embodiment.
  • the flow rate of the air blown out from the plurality of blowing holes 22 having different heights can be equalized as in the first embodiment. Also in this embodiment, since the shapes and areas of the openings of the plurality of blowing holes 22 are the same, the diffusibility along the ship outer wall of the air blown from the plurality of blowing holes 22 is also equalized. Therefore, also in the present embodiment, as in the first embodiment, the air distribution along the ship outer wall can be equalized, and the frictional resistance of the hull B can be further reduced.
  • the number of through holes 32e for each of the plurality of distributors 30e is different among the distributors 30e.
  • the number of through holes 32f for each of the plurality of distributors 30f is the same among the distributors 30f, but the opening areas of the through holes 32f for each of the plurality of distributors 30f are different between the distributors 30f. .
  • the opening area of the through hole 32f of the distributor 30f corresponding to the blowing hole 22 at the high position is smaller than the opening area of the distributor 30f corresponding to the blowing hole 22 at the low position.
  • the plurality of distributors 30f reduce the flow rate of the air led to the corresponding outlet holes 22 as the outlet holes 22 corresponding to the distributor 30f are located at higher positions.
  • the through-hole 32f for each of the plurality of distributors 30f functions as a flow rate adjusting unit that adjusts the flow rate of the air guided to the blowout holes 22 corresponding to the distributor 30f.
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • an opening is formed for each of the plurality of partial spaces Sp.
  • a net 32 g is provided at each opening of the internal space partition plate 38. That is, for each of the plurality of distributors 30g, a net 32g for introducing the air in the supply pipe side space Ss into its partial space Sp is provided.
  • the opening area of the mesh 32g for each of the plurality of distributors 30g differs among the distributors 30g. Specifically, the opening area of the mesh 32g of the distributor 30g corresponding to the blowout hole 22 at the high position is larger than the opening area of the mesh 32g of the distributor 30g corresponding to the blowout hole 22 at the low position. small.
  • the plurality of distributors 30g reduce the flow rate of the air guided to the corresponding outlet holes 22 as the outlet holes 22 corresponding to the distributor 30g are located at higher positions.
  • network 32g for every some distributor 30g functions as a flow volume adjustment part which adjusts the flow volume of the air guide
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • a porous plate 32h is provided instead of the net 32g in the second modification of the second embodiment. That is, in this modification, the perforated plate 32h for introducing the air in the supply pipe side space into the partial space Sp is provided for each of the plurality of distributors 30h.
  • the opening area of one through hole 32e in the perforated plate 32h for each of the plurality of distributors 30h differs among the distributors 30h. Specifically, the opening area of one through hole 32e of the distributor 30h corresponding to the blowout hole at the high position is larger than the opening area of one through hole 32e of the distributor 30h corresponding to the blowout hole at the low position. small.
  • the plurality of distributors 30h reduce the flow rate of air guided to the corresponding outlet holes as the outlet holes corresponding to the distributor 30h are located at higher positions.
  • the perforated plate 32h for each of the plurality of distributors 30h functions as a flow rate adjusting unit that adjusts the flow rate of air guided to the blowout holes corresponding to the distributors 30h.
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • the internal space partition plate 38 of this modification is provided with a pipe 32i for each of the plurality of partial spaces Sp. That is, in this modification, the piping 32i which introduces the air of the supply pipe side space Ss into the partial space Sp is provided for each of the plurality of distributors 30i. Each distributor 30i is provided with a single pipe 32i.
  • the inner diameter (or opening area) of the pipe 32i for each of the plurality of distributors 30i differs among the distributors 30i. Specifically, the inner diameter (or opening area) of the pipe 32i of the distributor 30i corresponding to the outlet hole 22 at the high position is the inner diameter (or opening) of the pipe 32i of the distributor 30i corresponding to the outlet hole 22 at the lower position. Smaller than area).
  • the plurality of distributors 30i reduce the flow rate of the air guided to the corresponding outlet holes 22 as the outlet holes 22 corresponding to the distributor 30i are located at higher positions.
  • the piping 32i for each of the plurality of distributors 30i functions as a flow rate adjusting unit that adjusts the flow rate of the air guided to the blowout holes 22 corresponding to the distributors 30i.
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • the internal space partition plate 38 of the present modification is provided with a pipe 33j and a valve 32j for each of the plurality of partial spaces Sp. That is, in the present modification, for each of the plurality of distributors 30j, a pipe 33j and a valve 32j for introducing the air in the supply pipe side space Ss into its own partial space Sp are provided. Each distributor 30j is provided with one pipe 33j. One pipe 32j is provided with one valve 32j. The opening degree of the valve 32j for each of the plurality of distributors 30j differs among the distributors 30j.
  • the opening degree of the valve 32j of the distributor 30j corresponding to the outlet hole 22 at the high position is smaller than the opening degree of the valve 32j of the distributor 30j corresponding to the outlet hole 22 at the lower position. Therefore, the plurality of distributors 30j reduce the flow rate of the air guided to the corresponding outlet holes 22 as the outlet holes 22 corresponding to the distributor 30j are located at higher positions. For this reason, in this modification, the valve 32j for each of the plurality of distributors 30j functions as a flow rate adjusting unit that adjusts the flow rate of the air guided to the blowout holes 22 corresponding to the distributors 30j.
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • the plurality of distributors 30k include a blowout hole 22 corresponding to the distributor 30k and a counter plate 31k that opposes the peripheral portion of the blowout hole 22 in the outer wall plate 21. And a bolt 37k for fixing the opposing plate member 31k to the outer wall plate member 21 in contact with the outer wall plate member 21.
  • the bolt 37k is inserted into the bolt hole 33k of the opposing plate material 31k and is screwed into the screw hole 21a formed in the outer wall plate material 21.
  • the counter plate material 31k forms a partition member that partitions the partial space Sp including the space of the blowout holes 22 and the supply pipe side space Ss.
  • a through hole 32k that penetrates from the supply pipe side space Ss side to the partial space Sp is formed in the counter plate material 31k.
  • the openings of the through holes 32k for each of the plurality of distributors 30k are the same among the distributors 30k, the openings of the through holes 32k for each of the plurality of distributors 30k.
  • the area differs between the distributors 30k.
  • the opening area of the through hole 32k of the distributor 30k corresponding to the blowout hole 22 at the high position is smaller than the opening area of the distributor 30k corresponding to the blowout hole 22 at the low position.
  • the through hole 32k for each of the plurality of distributors 30k functions as a flow rate adjusting unit that adjusts the flow rate of the air guided to the blowout holes 22 corresponding to the distributor 30k.
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • the distributor 30k is constituted by the counter plate 31k and the bolt 37k, and the structure of the distributor 30k is simple, so that the manufacturing cost of the distributor 30k can be suppressed.
  • the distributor 30k is not provided for the blowout hole 22 at the lowest position, but the distributor 30k may be provided for the blowout hole 22.
  • a baffle plate as illustrated in FIG. 8 may be disposed in the partial space Sp that is the space of the blowout hole 22.
  • the plurality of distributors 30m of the present embodiment include a blower hole 22 corresponding to the distributor 30m and a counter plate material 31m facing the peripheral portion of the blowout hole 22 in the outer wall plate member 21 with a gap D therebetween, and the counter plate member 31m and the outer wall.
  • An interval holding member 37m that holds an interval D with the plate member 21.
  • the spacing member 37m penetrates the counter plate material 31m and is inserted into the shaft portion of the bolt 38m that is screwed into the outer wall plate material 21, and is a spacer 39m that maintains the distance D between the counter plate material 31m and the outer wall plate material 21. And having.
  • a space formed by combining the space between the opposing plate material 31m and the outer wall plate material 21 and the space of the blowout holes 22 forms a partial space Sp. Further, in this distributor 30m, an opening 32m between the outer peripheral edge of the opposing plate member 31m and the outer wall plate member 21 forms an opening through which air flows from the supply pipe side space Ss side to the partial space Sp.
  • the interval D between the counter plate material 31m and the outer wall plate material 21 is different for each of the plurality of distributors 30m.
  • the distance D between the counter plate material 31m of the distributor 30m corresponding to the blowout hole 22 at the high position and the outer wall plate material 21 is the same as the counter plate material 31m of the distributor 30m corresponding to the blowout hole 22 at the low position.
  • the distance D from the outer wall plate material 21 is smaller than the dimension D.
  • the opening 32m for each of the plurality of distributors 30m functions as a flow rate adjusting unit that adjusts the flow rate of the air guided to the blowout holes 22 corresponding to the distributors 30m.
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • the distributor 30m is composed of the counter plate material 31m and the spacing member 37m. Since the structure of the distributor 30m is simple, the manufacturing cost of the distributor 30m is reduced as in the third embodiment. Can be suppressed.
  • the distributor 30m is not provided for the blowout hole 22 at the lowest position, but a distributor 30m may be provided for the blowout hole 22.
  • the distributor 30n of the present embodiment is a modification of the distributor 30 of the first embodiment.
  • the partition member in the distributor 30n according to the present embodiment includes the cylinder 34 and the lid member 31 as in the first embodiment.
  • One side of the tube 34 is a portion of the outer wall plate 21 and is joined to a portion around one outlet hole 22.
  • the other side of the tube 34 is connected to the lid member 31, and the opening on the other side of the tube 34 is closed by the lid member 31.
  • a space surrounded by the outer wall plate 21, the cylinder 34 of the distributor 30n, and the lid 31 forms a partial space Sp.
  • a pipe 32n that guides the air in the supply pipe side space Ss to the partial space Sp is connected to the lid member 31.
  • the length of the pipe 32n is different among the distributors 30n. Specifically, the length of the pipe 32n of the distributor 30n corresponding to the blowout hole 22 at the high position is smaller than the length of the pipe 32n of the distributor 30n corresponding to the blowout hole 22 at the low position.
  • the length of the pipe 32n is increased, the resistance of air passing through the pipe 32n is increased, and the flow rate of air passing through the pipe 32n is reduced.
  • the piping 32n for each of the plurality of distributors 30n functions as a flow rate adjusting unit that adjusts the flow rate of air guided to the blowout holes 22 corresponding to the distributors 30n.
  • the length of the pipe of the distributor 30na corresponding to the blowout hole 22 at the lowest position is “0” here. That is, no pipe is connected to the distributor 30na corresponding to the blowout hole 22 at the lowest position.
  • a through hole 32na having the same inner diameter as the inner diameter of the pipe 32n connected to the other distributor 30n is formed in the lid member 31 of the distributor 30na.
  • the air distribution along the ship outer wall can be equalized and the frictional resistance of the hull B can be further reduced, as in the above embodiments and modifications.
  • the distributor 30na corresponding to the blowout hole 22 at the lowest position is not provided with the pipe 32n.
  • the distributor 30na may also be provided with the pipe 32n.
  • the pipe 32n is bent, but the pipe 32n may not be bent.
  • the length of the pipe 32n can be easily secured in the chamber 20 by bending the pipe 32n. In this way, when the pipe 32n is bent, this bending becomes the resistance of air. Therefore, it is preferable to consider the number of bends of the pipe 32n when setting the air flow rate through the pipe 32n.
  • FIGS. 6 to 9 are modifications to the first embodiment.
  • the modifications shown in FIGS. 7 to 9 are the second embodiment and the first embodiment of the second embodiment. You may apply to a modification, the 4th modification of 2nd embodiment, the 5th modification of 2nd embodiment, and 5th embodiment. Further, the modification shown in FIG. 8 may be applied to the first modification and the fourth modification of the second embodiment.
  • each modification of the first embodiment, the second embodiment, each modification of the second embodiment, and the fifth embodiment a distributor is provided for every outlet hole 22.
  • the air flow is applied to the blowout hole 22 that is at the lowest position and has the highest water pressure from the outside of the ship. It is not necessary to provide a distributor which adds resistance and loses the pressure of air. That is, it is sufficient that the distributor is provided at least in the plurality of blowout holes 22 except the blowout hole 22 at the lowest position. Thus, the manufacturing cost can be suppressed by omitting the distributor for the blowout hole 22 at the lowest position.
  • the flow rate of air blown from all the blowout holes 22 formed in the outer wall plate 21 of the chamber 20 is equal among the blowout holes 22. It adjusts by the flow volume adjustment part of the divider
  • a distributor is provided in the lowest blowout hole 22 among the plurality of blowout holes 22 formed in the outer wall plate 21 of the chamber 20. It does not have to be provided.
  • the distributor hole is not provided in the lowest outlet hole 22 among the plurality of outlet holes 22 formed in the outer wall plate 21 of the chamber 20. May be.
  • the flow rate adjusting portion of the first embodiment is a through hole 32 having a different quantity for each distributor 30.
  • any one of the flow rate adjusting units shown in FIGS. 13 to 20 may be employed instead of the flow rate adjusting unit.
  • the flow volume control part of 3rd embodiment is the through-hole 32e from which an opening area differs for every distributor 30k.
  • the third embodiment instead of the flow rate adjusting unit, either the flow rate adjusting unit of the first embodiment or the second embodiment, or the flow rate adjusting unit shown in FIGS. 14 to 20 may be adopted.
  • the fifth embodiment is a modification of the first embodiment, but the flow rate adjustment unit shown in the fifth embodiment is applied to the second embodiment, the first modification of the second embodiment, and the third embodiment. May be.
  • the flow rate adjusting unit of the distributor may be in any form as long as it adjusts the pressure loss when air flows from the supply pipe side space Ss into the partial space Sp. Therefore, the flow rate adjusting unit of the distributor may be any of the following forms, for example.
  • the flow rate adjusting portion is a through hole having a different quantity for each distributor as in the first embodiment and the second embodiment.
  • the flow rate adjusting unit is a through hole having a different opening area for each distributor as in the first modification of the second embodiment.
  • the flow rate adjusting unit is a net as in the second modification of the second embodiment.
  • the flow rate adjusting unit is a perforated plate as in the third modification of the second embodiment.
  • the flow rate adjusting unit is a pipe having a different inner diameter (opening area) for each distributor as in the fourth modification of the second embodiment.
  • the flow rate adjusting unit is a valve as in the fifth modification of the second embodiment.
  • the flow rate adjusting unit is a pipe having a different length for each distributor as in the fifth embodiment.
  • the flow rate adjusting unit is an opening between the edge of the plate material and a member that is opposed to the plate material with a space therebetween.
  • the plate material facing the outer wall plate material 21 with a gap is used as the supply pipe connection plate material 23, and the supply pipe 12 is connected to the supply pipe connection plate material 23.
  • the peripheral wall plate material 24 joined to the outer wall plate material 21 may be used as the supply pipe connection plate material, and the supply pipe 12 may be connected to the supply pipe connection plate material.
  • one outlet hole 22 corresponds to one distributor.
  • a plurality of blowout holes 22 and 22 may correspond to one distributor 30e.
  • a plurality of blowout holes 22 and 22 having a common position in the height direction Dh are associated with one distributor 30e.
  • the position in the height direction Dh is common, not only when the positions in the height direction Dh of the plurality of blowing holes 22 and 22 are completely matched, but also in the height direction Dh. This also includes the case of having overlapping DL.
  • FIG. 30 is a modification of the second embodiment, but the first embodiment and each modification thereof, each modification of the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment.
  • a plurality of outlet holes 22 and 22 having the same position in the height direction Dh may be associated with one distributor.
  • the opening shape of the blowout hole 22 is circular, but it is rectangular, square, rhombus, triangular, rounded polygon with rounded corners, oval, elliptical. Other shapes may be used.
  • the chamber 20 is provided in a portion where the width of the hull B changes when the position in the height direction Dh of the hull B changes.
  • a chamber 20x is provided at a portion of the flooded portion Bd where the position of the hull B in the height direction Dh changes in the front-rear direction Da of the hull B. It may be.
  • the flow rate of the air blown from the plurality of blowout holes is equalized, and the air blown from the plurality of blowout holes is reduced. It is possible to equalize the diffusibility along the outer wall of the ship. Therefore, the frictional resistance of the hull can be further reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

摩擦抵抗低減装置は、船体の吃水部に設けられ、船体の高さ方向で相互に異なる位置から船外の水中に空気を吹出す吹出し孔(22)が複数形成されているチャンバ(20)と、チャンバ(20)の内部空間(Si)に空気を供給する供給管(12)と、吹出し孔(22)毎に設けられ、供給管(12)からチャンバ(20)内に供給された空気の一部を吹出し孔(22)に導く分配器(30)と、を備える。複数の分配器(30)は、複数の吹出し孔(32)から吹出される空気の流量が複数の吹出し孔(32)相互で均等化されるよう、分配器(30)に対応する吹出し孔(32)へ導く空気の流量を調節する流量調節部(32)を有する。

Description

摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法
 本発明は、船外の水中に気体を吹出して船体の摩擦抵抗を低減する摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法に関する。
 本願は、2013年10月23日に日本に出願された特願2013-220491号について優先権を主張し、その内容をここに援用する。
 船外の水中に気体を吹出して船体の摩擦抵抗を低減する摩擦抵抗低減装置としては、例えば、以下の特許文献1に記載されている装置がある。この摩擦抵抗低減装置は、船外の水中に空気を吹出す複数の吹出し孔が形成されているチャンバを備えている。チャンバ内の空気圧はいずれの位置でも一定であるが、チャンバ外の水中では水深が深いほど水圧が高くる。このため、吹出し孔径が一定の場合、水深の深い位置の吹出し孔から吹出される空気流量は、水深の浅い位置の吹出し孔から吹出される空気流量よりも少なくなる。そこで、この摩擦低減装置では、水深の深い位置の吹出し孔の開口面積を水深の浅い位置の吹出し孔の開口面積よりも大きくして、各吹出し孔から吹出される空気の流量の均等化を図っている。
特開2011‐110978号公報
 上記特許文献1に記載の技術では、各吹出し孔から吹出される空気の流量を均等化することができ、船体の摩擦抵抗を低減することができる。
 しなしながら、船舶業界では、さらなる船体の摩擦抵抗低減が望まれている。
 そこで、本発明は、船体の摩擦抵抗をより低減することができる技術を提供することを目的とする。
 (1)本発明の第一の態様における船舶の摩擦抵抗低減装置は、
 船体の吃水部に設けられ、前記船体の高さ方向で相互に異なる位置から船外の水中に気体を吹出す吹出し孔が複数形成されているチャンバと、前記チャンバの内部空間に前記気体を供給する供給管と、複数の前記吹出し孔のうち、前記高さ方向で最も低い位置の前記吹出し孔を除く複数の前記吹出し孔毎に少なくとも設けられ、前記供給管から前記チャンバ内に供給された前記気体の一部を前記吹出し孔に導く分配器と、を備え、複数の前記分配器は、複数の前記吹出し孔から吹出される前記気体の流量が複数の前記吹出し孔相互で均等化されるよう、前記分配器に対応する前記吹出し孔へ導く前記気体の流量を調節する流量調節部を有する。
 吹出し孔が低い位置にあるほど、この吹出し孔には、船外から高い水圧がかかり、この吹出し孔から水中への吹出す気体に対する水の抵抗が大きくなる。そこで、当該摩擦抵抗低減装置では、互いに高さの異なる複数の吹出し孔から吹出される気体の流量を均等化する。また、当該摩擦抵抗低減装置では、複数の吹出し孔の開口の形状及び面積が同じにできるため、複数の吹出し孔から吹出される空気の船外壁に沿った拡散性も均等化することができる。
 よって、当該摩擦抵抗低減装置では、複数の吹出し孔から吹出される空気の流量が均等化されと共に、複数の吹出し孔から吹出される空気の船外壁に沿った拡散性も均等化されるので、船外壁に沿った空気の分布の均等化を図ることができる。このため、当該摩擦抵抗低減装置では、船体の摩擦抵抗をより低減することができる。
 (2)本発明の第二の態様における船舶の摩擦抵抗低減装置は、(1)に記載の船舶の摩擦抵抗低減装置であって、前記チャンバに形成されている複数の前記吹出し孔の全てに前記分配器が設けられている。
 (3)本発明の第三の態様における船舶の摩擦抵抗低減装置は、(1)又は(2)に記載の船舶の摩擦抵抗低減装置であって、複数の前記分配器の前記流量調節部は、前記対応する吹出し孔が高い位置にあるほど、前記対応する吹出し孔に導く前記気体の流量を少なくする。
 当該摩擦抵抗低減装置では、分配器の流量調節部が、当該分配器に対応する吹出し孔が高い位置にあるほど、対応する吹出し孔へ導く前記気体の流量を少なくする。このため、当該摩擦抵抗低減装置では、互いに高さの異なる複数の吹出し孔から吹出される空気の流量が均等化される。
 (4)本発明の第四の態様における船舶の摩擦抵抗低減装置は、(3)に記載の船舶の摩擦抵抗低減装置であって、複数の前記分配器は、前記チャンバの前記内部空間を、前記チャンバに接続されている供給管の開口に臨んでいる供給管側空間と、前記対応する吹出し孔の空間を含む部分空間とに仕切る仕切部材を有し、前記流量調節部は、前記仕切部材に設けられている。
 (5)本発明の第五の態様における船舶の摩擦抵抗低減装置は、(4)に記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記流量調節部は、前記仕切部材に形成され、前記供給管側空間から前記部分空間側に貫通する1以上の貫通孔であり、複数の前記分配器毎の前記貫通孔の数量が前記分配器相互で異なっている。
 (6)本発明の第六の態様における船舶の摩擦抵抗低減装置は、(4)に記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記流量調節部は、前記仕切部材に形成され、前記供給管側空間から前記部分空間側に貫通する貫通孔であり、複数の前記分配器毎の前記貫通孔の開口面積が前記分配器相互で異なっている。
 (7)本発明の第七の態様における船舶の摩擦抵抗低減装置は、(5)又は(6)に記載の前記仕切部材に前記貫通孔が形成されている前記船舶の摩擦抵抗低減装置であって、前記チャンバを形成する板材のうち、前記分配器に対応する前記吹出し孔が形成されている外壁板材における前記吹出し孔の貫通方向への前記吹出し孔の延長上には、前記貫通孔が形成されていない。
 (8)本発明の第八の態様における船舶の摩擦抵抗低減装置は、(5)又は(6)に記載の前記仕切部材に前記貫通孔が形成されている前記船舶の摩擦抵抗低減装置であって、前記部分空間内には、前記貫通孔からの前記気体の向きを変える変向部材が設けられている。
 (9)本発明の第九の態様における船舶の摩擦抵抗低減装置は、(4)に記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる複数の開口が形成されている網であり、複数の前記分配器毎の前記網の目の開口面積が前記分配器相互で異なっている。
 (10)本発明の第十の態様における船舶の摩擦抵抗低減装置は、(4)に記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる管であり、複数の前記分配器毎の前記管の開口面積が前記分配器相互で異なっている。
 (11)本発明の第十一の態様における船舶の摩擦抵抗低減装置は、(4)に記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる管であり、複数の前記分配器毎の前記管の長さが前記分配器相互で異なっている。
 (12)本発明の第十二の態様における船舶の摩擦抵抗低減装置は、(4)に記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる弁であり、複数の前記分配器毎の前記弁の開度が前記分配器相互で異なっている。
 (13)本発明の第十三の態様における船舶の摩擦抵抗低減装置は、(4)から(12)のいずれかに記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記仕切部材は、前記チャンバを形成する板材のうち、前記対応する吹出し孔が形成されている外壁板材に一方側が接続され、前記チャンバ内に前記部分空間を形成する筒と、前記筒の他方側の開口を覆う蓋材と、を有する。
 (14)本発明の第十四の態様における船舶の摩擦抵抗低減装置は、(4)から(12)のいずれかに記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記チャンバの前記内部空間を前記供給管側空間と他の空間である吹出し側空間とに二分する内部空間仕切板と、前記吹出し側空間を前記吹出し孔毎に仕切って前記吹出し側空間を複数の前記部分空間に分ける吹出し側空間仕切板と、を有して複数の前記分配器の前記仕切部材が構成され、前記流量調節部は、前記内部空間仕切板に設けられている。
 (15)本発明の第十五の態様における船舶の摩擦抵抗低減装置は、(4)から(6)、(9)から(12)のいずれかに記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記仕切部材は、前記分配器に対応する前記吹出し孔及び前記外壁板材における該吹出し孔の周り部分に対向して、前記外壁板材に接している対向板材を有し、前記対向板材に、前記流量調節部が設けられている。
 (16)本発明の第十六の態様における船舶の摩擦抵抗低減装置は、(4)に記載の前記仕切部材を有する前記船舶の摩擦抵抗低減装置であって、前記分配器の前記仕切部材は、前記分配器に対応する前記吹出し孔及び前記外壁板材における該吹出し孔の周り部分に間隔をあけて対向する対向板材と、前記対向板材と前記外壁板材との間隔を保持する間隔保持部材と、を有し、前記分配器の前記流量調節部は、前記対向板材の縁と前記外壁板材との間の開口であり、複数の前記分配器毎の前記開口の面積が相互に異なっている。
 (17)本発明の第十七の態様における船舶の摩擦抵抗低減装置は、(1)から(16)のいずれかに記載の前記船舶の摩擦抵抗低減装置であって、複数の前記吹出し孔の開口の形状及び開口面積は、相互に同じである。
 (18)本発明の第十八の態様における船舶の摩擦抵抗低減装置は、(1)から(17)のいずれかに記載の前記船舶の摩擦抵抗低減装置であって、前記チャンバには、前記高さ方向の位置が互いに共通する前記吹出し孔が形成され、前記分配器は、前記高さ方向の位置が互いに共通する前記吹出し孔毎に設けられている。
 (19)本発明の第十九の態様における船舶は、前記船体と、前記船体に設けられている(1)から(18)のいずれかに記載の船舶の摩擦抵抗低減装置と、を備えている。
 (20)本発明の第二十の態様における船舶の摩擦抵抗低減方法は、
 船体の吃水部に設けられ、前記船体の高さ方向で相互に異なる位置から船外の水中に気体を吹出す吹出し孔が複数形成されているチャンバの内部空間に気体を供給する気体供給工程と、複数の前記吹出し孔毎に、前記チャンバ内に供給された前記気体の一部を前記吹出し孔に導く気体分配工程と、を実行し、前記気体分配工程では、複数の前記吹出し孔から吹出される前記気体の流量が複数の前記吹出し孔相互で均等化されるよう、前記吹出し孔へ導く前記気体の流量を調節する。
 吹出し孔が低い位置にあるほど、この吹出し孔には、船外から高い水圧がかかり、この吹出し孔から水中への吹出す気体に対する水の抵抗が大きくなる。そこで、当該摩擦抵抗低減方法では、互いに高さの異なる複数の吹出し孔から吹出される気体の流量を均等化する。また、当該摩擦抵抗低減方法では、複数の吹出し孔の開口の形状及び面積が同じにできるため、複数の吹出し孔から吹出される空気の船外壁に沿った拡散性も均等化することができる。
 よって、当該摩擦抵抗低減方法では、複数の吹出し孔から吹出される空気の流量が均等化されと共に、複数の吹出し孔から吹出される空気の船外壁に沿った拡散性も均等化されるので、船外壁に沿った空気の分布の均等化を図ることができる。このため、当該摩擦抵抗低減方法では、船体の摩擦抵抗をより低減することができる。
 (21)本発明の第二十一の態様における船舶の摩擦抵抗低減方法は、(20)に記載の船舶の摩擦抵抗低減方法であって、前記気体分配工程では、前記吹出し孔が高い位置にあるほど、前記吹出し孔へ導く前記気体の流量を少なくする。
 当該摩擦抵抗低減方法では、気体分配工程で、当該分配器に対応する吹出し孔が高い位置にあるほど、対応する吹出し孔へ導く前記気体の流量を少なくする。このため、当該摩擦抵抗低減方法では、互いに高さの異なる複数の吹出し孔から吹出される空気の流量が均等化される。
 (22)本発明の第二十二の態様における船舶の摩擦抵抗低減方法は、(20)又は(21)に記載の船舶の摩擦抵抗低減方法であって、前記気体分配工程では、前記吹出し孔が高い位置にあるほど、前記チャンバ内に供給された前記気体を前記吹出し孔に導く過程での前記気体の圧力損失を高める。
 上記の船舶の摩擦抵抗低減装置、船舶、及び船舶の摩擦抵抗低減方法によれば、複数の吹出し孔から吹出される空気の流量の均等化、及び、複数の吹出し孔から吹出される空気の船外壁に沿った拡散性の均等化を図ることができる。よって、船体の摩擦抵抗をより低減することができる。
本発明に係る第一実施形態における船舶の構成を示す説明図である。 本発明に係る第一実施形態における船舶の断面図である。 本発明に係る第一実施形態における摩擦抵抗低減装置の要部斜視図である。 図3におけるIV-IV線断面図である。 本発明に係る第一実施形態における摩擦抵抗低減装置の要部分解断面図である。 本発明に係る第一実施形態の第一変形例における分配器の断面図である。 本発明に係る第一実施形態の第二変形例における分配器の断面図である。 本発明に係る第一実施形態の第三変形例における分配器の断面図である。 本発明に係る第一実施形態の第四変形例における分配器の断面図である。 本発明に係る第二実施形態における摩擦抵抗低減装置の要部斜視図である。 図10におけるXI-XI線断面図である。 本発明に係る第二実施形態における内部空間仕切板の平面図である。 本発明に係る第二実施形態の第一変形例における内部空間仕切板の平面図である。 本発明に係る第二実施形態の第二変形例における摩擦抵抗低減装置の要部斜視図である。 図14におけるXV-XV線断面図である。 本発明に係る第二実施形態の第二変形例における内部空間仕切板の平面図である。 本発明に係る第二実施形態の第三変形例における内部空間仕切板の平面図である。 本発明に係る第二実施形態の第四変形例における摩擦抵抗低減装置の要部断面図である。 本発明に係る第二実施形態の第五変形例における摩擦抵抗低減装置の要部断面図である。 図19におけるXX-XX線断面図である。 本発明に係る第三実施形態における摩擦抵抗低減装置の要部斜視図である。 図21におけるXXII-XXII線断面図である。 本発明に係る第三実施形態における摩擦抵抗低減装置の要部分解断面図である。 本発明に係る第三実施形態における複数の分配器の平面図である。 本発明に係る第四実施形態における摩擦抵抗低減装置の要部斜視図である。 図25におけるXXVI-XXVI線断面図である。 本発明に係る第五実施形態における摩擦抵抗低減装置の要部斜視図である。 本発明に係る第一実施形態の第五変形例における摩擦抵抗低減装置の要部斜視図である。 本発明に係る第二実施形態の第六変形例における摩擦抵抗低減装置の要部斜視図である。 本発明に係る実施形態の変形例における摩擦抵抗低減装置の要部斜視図である。 本発明に係る実施形態の変形例における船舶の構成を示す説明図である。
 以下、本発明に係る各種実施形態について、図面を用いて説明する。
 「第一実施形態」
 本発明に係る第一実施形態としての船舶について、図1~図5を用いて説明する。
 本実施形態の船舶は、図1及び図2に示すように、船体Bと、船外の水中に気体を吹出して船体Bの摩擦抵抗を低減する摩擦抵抗低減装置Aと、を備えている。
 摩擦抵抗低減装置Aは、空気供給機11と、船外に空気を吹出すチャンバ20と、空気供給機11からの空気をチャンバ20に導く供給管12と、を備えている。
 空気供給機11は、空気を吸い込んで加圧空気を吐き出すブロア又はコンプレッサを有する。空気供給機11で生成された加圧空気は、供給管12を介してチャンバ20の内部空間Siに供給される。
 チャンバ20は、船体Bの吃水部Bdであって、船体Bの幅の変化により、船体Bの高さ方向Dhの位置が変わると船体Bの幅が変わる部分に設けられている。よって、このチャンバ20は、船体Bの吃水部Bdであって、船外壁が水平面に傾斜している部分に設けられている。このチャンバ20は、図3に示すように、船外壁の一部で水平面に対して傾斜している外壁板材21と、外壁板材21に対して船体内側に配置されて外壁板材21と間隔をあけて対向している供給管接続板材23と、供給管接続板材23の外周縁から外壁板材21まで延びている周壁板材24と、を有している。チャンバ20は、外壁板材21と供給管接続板材23と周壁板材24とにより、これらで囲まれた内部空間Siを形成している。
 チャンバ20の外壁板材21には、内部空間Siから船外に貫通した複数の吹出し孔22が形成されている。複数の吹出し孔22は、船体Bの高さ方向Dhで相互に異なる位置に形成されている。複数の吹出し孔22の開口の形状及び面積は、相互に同じである。チャンバ20の供給管接続板材23には、供給管12が接続されている。図5に示すように、この供給管接続板材23の外周側には、外壁板材21側に向かって貫通するボルト挿通孔23aと、シール部材27が嵌り込むシール溝23bとが形成されている。チャンバ20の周壁板材24は、供給管接続板材23から外壁板材21に向かって延びる周壁部25と、周壁部25の供給管接続板材23側の端部から供給管接続板材23に沿って外側に張り出しているフランジ部26と、フランジ部26には、供給管接続板材23のシール溝23bと対向する位置にシール溝26bが形成され、供給管接続板材23のボルト挿通孔23aと対向する位置にボルト挿通孔26aが形成されている。供給管接続板材23は、図4に示すように、そのボルト挿通孔23a及び周壁板材24のボルト挿通孔26aに挿通されるボルト28aと、このボルト28aが捻じ込まれるナット28bとにより、周壁板材24に接続されている。周壁板材24の周壁部25における外壁板材21側の端部は、溶接等により、外壁板材21に接合されている。
 本実施形態の摩擦抵抗低減装置Aは、図3に示すように、複数の吹出し孔22毎に設けられ、供給管12からチャンバ20内に供給された空気の一部を吹出し孔22に導く分配器30をさらに備えている。分配器30は、図4及び図5に示すように、筒34と蓋材31とを有する。筒34の一方側は、外壁板材21の部分であって、一つの吹出し孔22の周りの部分に接合されている。筒34の他方側は、蓋材31に接続され、この筒34の他方側の開口はこの蓋材31で塞がれている。外壁板材21と分配器30の筒34及び蓋材31とで囲まれた空間が部分空間Spを成す。よって、分配器30の筒34及び蓋材31は、チャンバ20の内部空間Siを、供給管12の開口に臨んでいる供給管側空間Ssと、複数の吹出し孔22毎の部分空間Spとに仕切る仕切部材を成す。分配器30の蓋材31には、供給管側空間Ssから部分空間Sp側に貫通する1以上の貫通孔32が形成されている。
 複数の分配器30毎の貫通孔32の数量は、図3に示すように、相互に異なっている。
具体的に、高い位置にある吹出し孔22に対応する分配器30の貫通孔32の数量は、低い位置にある吹出し孔22に対応する分配器30の貫通孔32の数量よりも少ない。貫通孔32の開口面積は、ここでは、複数の貫通孔32相互で同じである。よって、供給管側空間Ssから分配器30内の部分空間Spに貫通孔32を介して流入する空気流量は、高い位置にある吹出し孔22に対応する分配器30の方が低い位置にある吹出し孔22に対応する分配器30よりも少なくなる。言い換えると、複数の分配器30は、当該分配器30に対応する吹出し孔22が高い位置にあるほど、対応する吹出し孔22へ導く空気の流量を少なくする。このため、複数の分配器30毎の貫通孔32は、分配器30に対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 空気供給機11からの空気は、供給管12を介して、チャンバ20内の供給管側空間Ssに供給される(気体供給工程)。供給管側空間Ssに供給された空気は、複数の分配器30により、各分配器30に対応する吹出し孔22に導かれ、吹出し孔22から船外の水中に吹出される(気体分配工程)。前述したように、吹出し孔22が高い位置にあるほど、この吹出し孔22に導かれる空気の流量が少なくなる。一方、吹出し孔22が低い位置にあるほど、この吹出し孔22には、船外から高い水圧がかかり、この吹出し孔22から水中への吹出す空気に対する水の抵抗が大きくなる。このため、本実施形態では、互いに高さの異なる複数の吹出し孔22から吹出される空気の流量が均等化される。また、本実施形態では、複数の吹出し孔22の開口の形状及び面積が同じであるため、複数の吹出し孔22から吹出される空気の船外壁に沿った拡散性も均等化される。
 よって、本実施形態では、複数の吹出し孔22から吹出される空気の流量が均等化されと共に、複数の吹出し孔22から吹出される空気の船外壁に沿った拡散性も均等化されるので、船外壁に沿った空気の分布の均等化を図ることができる。このため、本実施形態では、船体Bの摩擦抵抗を従来技術よりも低減することができる。
 また、本実施形態では、チャンバ20の周壁板材24と供給管接続板材23とをボルト接続している。このため、ボルト28aを外してから、周壁板材24から供給管接続板材23を取り外すことで、チャンバ20が解放される。よって、本実施形態では、チャンバ20内の点検や補修等を容易に行うことができる。なお、チャンバ20内の点検や補修等が不要、又は点検や補修等を長期間にわたって実施しない場合には、チャンバ20の周壁板材24と供給管接続板材23とを溶接接続してもよい。また、分配器の蓋材と筒との接合を、チャンバ20の周壁板材24と供給管接続板材23との接続と同様に、ボルト接続してもよい。
 「第一実施形態の変形例」
 第一実施形態の変形例について、図6~図9を用いて説明する。
 ここで、分配器の蓋材に複数の貫通孔が形成されている場合、外壁板材の吹出し孔の貫通方向への吹出し孔の延長上に、複数の貫通孔のうちの一の貫通孔が存在している場合について考察する。この場合、この一の貫通孔から部分空間Sp内に入ってきた空気が直進してほとんどそのまま吹出し孔から船外に吹出されると考えられる。このため、この場合、吹出し孔から吹出される空気の流量は、一の貫通孔から部分空間Sp内に流入する空気の流量にもっぱら依存することになり、目的の流量にならない可能性がある。
 そこで、以下の変形例では、複数の貫通孔から部分空間Sp内に流入した空気がほぼ均等に吹出し孔から吹出されるように工夫している。
 第一実施形態の第一変形例における分配器30aは、図6に示すように、分配器30aの筒34aに貫通孔32aが形成されている。このため、筒34aに形成された貫通孔32aの貫通方向と外壁板材21に形成された吹出し孔22の貫通方向Dpとが異なることになり、貫通孔32aから部分空間Sp内に入ってきた空気が直進して吹出し孔22に流入しなくなる。
 第一実施形態の第二変形例における分配器30bは、図7に示すように、以上の第一実施形態の分配器30と同様、分配器30bの蓋材31bに複数の貫通孔32bが形成されている。但し、本変形例では、吹出し孔22の貫通方向Dpへの吹出し孔22の延長上に、貫通孔32bは存在しない。このため、本変形例でも、貫通孔32bから部分空間Sp内に入ってきた空気が直進して吹出し孔22に流入しなくなる。
 第一実施形態の第三変形例における分配器30cは、図8に示すように、以上の第一実施形態の分配器30と同様、分配器30cの蓋材31cに貫通孔32cが形成されている。但し、本変形例では、貫通孔32cと吹出し孔22との間に、貫通孔32から部分空間Sp内に流入した空気の向きを変える邪魔板(変向部材)35が設けられている。このため、本変形例でも、貫通孔32cから部分空間Sp内に入ってきた空気が直進して吹出し孔22に流入しなくなる。
 第一実施形態の第四変形例における分配器30dは、図9に示すように、以上の第一実施形態の分配器30と同様、分配器30dの蓋材31dに貫通孔32dが形成されている。但し、本変形例では、貫通孔32dの部分空間Sp側に曲り管(変向部材)36が接続されている。このため、本変形例でも、貫通孔32dから部分空間Sp内に入ってきた空気が直進して吹出し孔22に流入しなくなる。
 なお、第三変形例及び第四変形例のように、部分空間Sp内に部材を配置する場合には、この部材の設置、補修、点検等の観点から、図8及び図9に示すように、分配器の蓋材と筒とをボルト37で接続し、蓋材と筒とを容易に分離できるようにするとよい。
 「第二実施形態」
 本実施形態の船舶は、第一実施形態の船舶における分配器30のみが異なっており、その他の構成については、第一の実施形態と同様である。また、以下で説明する実施形態及び変形例においても、第一実施形態の船舶における分配器のみが異なっており、その他の構成については、第一の実施形態と同様である。よって、本実施形態を含む以下の説明では、主として、分配器について説明する。
 本実施形態の複数の分配器30eは、図10及び図11に示すように、チャンバ20の内部空間Siを外壁板材21側の吹出し側空間Sbと供給管接続板材23側の供給管側空間Ssとに仕切る内部空間仕切板38と、吹出し側空間Sbを吹出し孔22毎に仕切って吹出し側空間Sbを複数の部分空間Spに分ける複数の吹出し側空間仕切板39と、を有して構成されている。よって、複数の分配器30eを構成する内部空間仕切板38と複数の吹出し側空間仕切板39は、チャンバ20の内部空間Siを、供給管12の開口に臨んでいる供給管側空間Ssと、複数の吹出し孔22毎の部分空間Spとに仕切る仕切部材を成す。
 複数の分配器30eのうち、両端の分配器30e,30e、つまり最も高い位置の吹出し孔22に対応する分配器30e及び最も低い位置の吹出し孔22に対応する分配器30eは、チャンバ20の周壁板材24の一部と、内部空間仕切板38の一部と、1枚の吹出し側空間仕切板39により内部空間Siが画定されている。また、複数の分配器30eのうち、両端の分配器30,30eを除く分配器30eは、チャンバ20の周壁板材24の一部と、内部空間仕切板38の一部と、互いに隣り合っている2枚の吹出し側空間仕切板39により内部空間Siが画定されている。
 内部空間仕切板38には、複数の部分空間Sp毎に、供給管側空間Ssから部分空間Sp側に貫通する1以上の貫通孔32eが形成されている。複数の分配器30e毎の貫通孔32eの数量は、第一実施形態と同様、図10及び図12に示すように、相互に異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30eの貫通孔32eの数量は、低い位置にある吹出し孔22に対応する分配器30eの貫通孔32eの数量よりも少ない。貫通孔32eの開口面積は、ここでは、複数の貫通孔32e相互で同じである。よって、本実施形態でも、複数の分配器30eは、当該分配器30eに対応する吹出し孔22が高い位置にあるほど、対応する吹出し孔22へ導く空気の流量を少なくする。このため、複数の分配器30e毎の貫通孔32eは、分配器30eに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 以上、本実施形態は、チャンバ20の内部空間Siを、供給管側空間Ssと複数の部分空間Spとに仕切る仕切部材の構成が第一実施形態と異なっているものの、複数の分配器30e毎の流量調節部は第一実施形態と同様である。
 以上、本実施形態でも、第一実施形態と同様、互いに高さの異なる複数の吹出し孔22から吹出される空気の流量を均等化することができる。また、本実施形態でも、複数の吹出し孔22の開口の形状及び面積が同じであるため、複数の吹出し孔22から吹出される空気の船外壁に沿った拡散性も均等化される。よって、本実施形態でも、第一実施形態と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 「第二実施形態の第一変形例」
 図13を用いて、第二実施形態の第一変形例について説明する。なお、以下で説明する第二実施形態の各変形例は、いずれも、第二実施形態の分配器30eにおける流量調節部が異なるものである。
 第二実施形態では、複数の分配器30e毎の貫通孔32eの数量が分配器30e相互で異なっている。本変形例では、複数の分配器30f毎の貫通孔32fの数量が分配器30f相互で同じであるものの、複数の分配器30f毎の貫通孔32fの開口面積が分配器30f相互で異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30fの貫通孔32fの開口面積は、低い位置にある吹出し孔22に対応する分配器30fの開口面積よりも小さい。よって、複数の分配器30fは、当該分配器30fに対応する吹出し孔22が高い位置にあるほど、対応する吹出し孔22へ導く空気の流量を少なくする。このため、本変形例でも、複数の分配器30f毎の貫通孔32fは、分配器30fに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 従って、本変形例でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 「第二実施形態の第二変形例」
 図14~図16を用いて、第二実施形態の第二変形例について説明する。
 本変形例の内部空間仕切板38には、複数の部分空間Sp毎に開口が形成されている。
本変形例では、内部空間仕切板38の各開口に網32gが設けられている。すなわち、複数の分配器30g毎に、供給管側空間Ssの空気を自らの部分空間Sp内に導入する網32gが設けられている。複数の分配器30g毎の網32gの目の開口面積が分配器30g相互で異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30gの網32gの目の開口面積は、低い位置にある吹出し孔22に対応する分配器30gの網32gの目の開口面積よりも小さい。よって、複数の分配器30gは、当該分配器30gに対応する吹出し孔22が高い位置にあるほど、対応する吹出し孔22へ導く空気の流量を少なくする。このため、本変形例では、複数の分配器30g毎の網32gは、分配器30gに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 従って、本変形例でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 「第二実施形態の第三変形例」
 図17を用いて、第二実施形態の第三変形例について説明する。
 本変形例では、第二実施形態の第二変形例における網32gの替りに多孔板32hが設けられている。すなわち、本変形例では、複数の分配器30h毎に、供給管側空間の空気を自らの部分空間Sp内に導入する多孔板32hが設けられている。複数の分配器30h毎の多孔板32hにおける一つの貫通孔32eの開口面積は、分配器30h相互で異なっている。具体的に、高い位置にある吹出し孔に対応する分配器30hの一つの貫通孔32eの開口面積は、低い位置にある吹出し孔に対応する分配器30hの一つの貫通孔32eの開口面積よりも小さい。よって、複数の分配器30hは、当該分配器30hに対応する吹出し孔が高い位置にあるほど、対応する吹出し孔へ導く空気の流量を少なくする。このため、本変形例では、複数の分配器30h毎の多孔板32hは、分配器30hに対応する吹出し孔へ導く空気の流量を調節する流量調節部として機能する。
 従って、本変形例でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 「第二実施形態の第四変形例」
 図18を用いて、第二実施形態の第四変形例について説明する。
 本変形例の内部空間仕切板38には、複数の部分空間Sp毎に配管32iが設けられている。すなわち、本変形例では、複数の分配器30i毎に、供給管側空間Ssの空気を自らの部分空間Sp内に導入する配管32iが設けられている。各分配器30iには、一本の配管32iが設けられている。複数の分配器30i毎の配管32iの内径(又は開口面積)は、分配器30i相互で異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30iの配管32iの内径(又は開口面積)は、低い位置にある吹出し孔22に対応する分配器30iの配管32iの内径(又は開口面積)よりも小さい。よって、複数の分配器30iは、当該分配器30iに対応する吹出し孔22が高い位置にあるほど、対応する吹出し孔22へ導く空気の流量を少なくする。このため、本変形例では、複数の分配器30i毎の配管32iは、分配器30iに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 従って、本変形例でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 チャンバ20の供給管側空間Ssには、水が溜まることが考えられる。仮に、供給管側空間Ssに水が溜まり、その下方の一部の部分空間Spにも水が溜まって、これらの水が吹出し孔22から排水できない場合、吹出し孔22から空気を吹出すことができなくなる。本変形例では、供給管側空間Ssに水が溜まっても、各分配器30i毎の配管32iの入口が水中に没していなければ、供給管側空間Ssの空気を各部分空間Spに導くことができる。
 「第二実施形態の第五変形例」
 図19及び図20を用いて、第二実施形態の第五変形例について説明する。
 本変形例の内部空間仕切板38には、複数の部分空間Sp毎に配管33j及び弁32jが設けられている。すなわち、本変形例では、複数の分配器30j毎に、供給管側空間Ssの空気を自らの部分空間Sp内に導入する配管33j及び弁32jが設けられている。
各分配器30jには、一本の配管33jが設けられている。一本の配管33jには一つの弁32jが設けられている。複数の分配器30j毎の弁32jの開度は、分配器30j相互で異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30jの弁32jの開度は、低い位置にある吹出し孔22に対応する分配器30jの弁32jの開度よりも小さい。よって、複数の分配器30jは、当該分配器30jに対応する吹出し孔22が高い位置にあるほど、対応する吹出し孔22へ導く空気の流量を少なくする。このため、本変形例では、複数の分配器30j毎の弁32jは、分配器30jに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 従って、本変形例でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 また、本変形例でも、供給管側空間Ssに配管33j及び弁32jが設けられているので、供給管側空間Ssに水が溜まっても、各分配器30j毎の配管33j又は弁32jの入口が水中に没していなければ、供給管側空間Ssの空気を各部分空間Spに導くことができる。
 「第三実施形態」
 図21~図24を用いて、第三実施形態の分配器について説明する。
 本実施形態の複数の分配器30kは、図21~図23に示すように、分配器30kに対応する吹出し孔22及び外壁板材21における吹出し孔22の周り部分に対向する対向板材31kと、この対向板材31kを外壁板材21に接触させて外壁板材21に固定するボルト37kと、を有する。ボルト37kは、対向板材31kのボルト孔33kに挿通され、外壁板材21に形成されているネジ孔21aに捩じ込まれる。対向板材31kは、吹出し孔22の空間を含む部分空間Spと、供給管側空間Ssとを仕切る仕切部材を成す。この対向板材31kには、供給管側空間Ss側から部分空間Spへ貫通する貫通孔32kが形成されている。
 本実施形態では、図21及び図24に示すように、複数の分配器30k毎の貫通孔32kの数量が分配器30k相互で同じであるものの、複数の分配器30k毎の貫通孔32kの開口面積が分配器30k相互で異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30kの貫通孔32kの開口面積は、低い位置にある吹出し孔22に対応する分配器30kの開口面積よりも小さい。このため、本実施形態でも、複数の分配器30k毎の貫通孔32kは、分配器30kに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 従って、本実施形態でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 また、本実施形態では、分配器30kを対向板材31kとボルト37kで構成しており、分配器30kの構造が簡単であるため、分配器30kの製造コストを抑えることができる。
 なお、本実施形態では、最も低い位置になる吹出し孔22に対して、分配器30kは設けられていないが、この吹出し孔22に対して分配器30kを設けてもよい。また、本実施形態において、吹出し孔22の空間である部分空間Sp内に、例えば、図8で例示したような邪魔板を配置してもよい。
 「第四実施形態」
 図25及び図26を用いて、第四実施形態の分配器について説明する。
 本実施形態の複数の分配器30mは、分配器30mに対応する吹出し孔22及び外壁板材21における吹出し孔22の周り部分に間隔Dをあけて対向する対向板材31mと、この対向板材31mと外壁板材21との間隔Dを保持する間隔保持部材37mと、を有する。間隔保持部材37mは、対向板材31mを貫通して、外壁板材21に捩じ込まれるボルト38mと、ボルト38mの軸部に挿通されて対向板材31mと外壁板材21との間隔Dを保つスペーサ39mと、を有する。この分配器30mにおいて、対向板材31mと外壁板材21とで挟まれた空間及び吹出し孔22の空間を合わせた空間が部分空間Spを成す。また、この分配器30mにおいて、対向板材31mの外周縁と外壁板材21との間の開口32mが、供給管側空間Ss側から部分空間Spへ空気が流入する開口を成す。
 本実施形態では、複数の分配器30m毎に対向板材31mと外壁板材21との間隔Dが異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30mの対向板材31mと外壁板材21との間隔D寸法は、低い位置にある吹出し孔22に対応する分配器30mの対向板材31mと外壁板材21との間隔D寸法よりも小さい。分配器30mの対向板材31mと外壁板材21との間隔D寸法が小さくなると、これに比例して、対向板材31mの外周縁と外壁板材21との間の開口32mの面積が小さくなる。このため、本実施形態では、複数の分配器30m毎の開口32mは、分配器30mに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。
 従って、本実施形態でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 また、本実施形態では、分配器30mを対向板材31mと間隔保持部材37mで構成しており、分配器30mの構造が簡単であるため、第三実施形態と同様、分配器30mの製造コストを抑えることができる。
 なお、本実施形態では、最も低い位置になる吹出し孔22に対して、分配器30mは設けられていないが、この吹出し孔22に対して分配器30mを設けてもよい。
 「第五実施形態」
 図27を用いて、第五実施形態の分配器30eについて説明する。
 本実施形態の分配器30nは、第一実施形態の分配器30の変形例である。本実施形態の分配器30nにおける仕切部材は、第一実施形態と同様、筒34と蓋材31とを有する。筒34の一方側は、外壁板材21の部分であって、一つの吹出し孔22の周りの部分に接合されている。筒34の他方側は、蓋材31に接続され、この筒34の他方側の開口はこの蓋材31で塞がれている。外壁板材21と分配器30nの筒34及び蓋材31とで囲まれた空間が部分空間Spを成す。蓋材31には、供給管側空間Ssの空気を部分空間Spに導く配管32nが接続されている。
 本実施形態では、複数の分配器30n毎の配管32nの内径は同じであるものの、配管32nの長さが分配器30n相互で異なっている。具体的に、高い位置にある吹出し孔22に対応する分配器30nの配管32nの長さは、低い位置にある吹出し孔22に対応する分配器30nの配管32nの長さよりも小さい。配管32nの長さが長くなると、ここを通る空気の抵抗が大きくなり、この配管32nを通る空気の流量が少なくなる。このため、本実施形態では、複数の分配器30n毎の配管32nは、分配器30nに対応する吹出し孔22へ導く空気の流量を調節する流量調節部として機能する。なお、最も低い位置にある吹出し孔22に対応する分配器30naの配管の長さは、ここでは「0」である。
つまり、最も低い位置にある吹出し孔22に対応する分配器30naには配管が接続されていない。この分配器30naの蓋材31には、他の分配器30nに接続されている配管32nの内径と同じ内径の貫通孔32naが形成されている。
 従って、本実施形態でも、以上の各実施形態及び各変形例と同様、船外壁に沿った空気の分布の均等化を図ることができ、船体Bの摩擦抵抗をよりも低減することができる。
 なお、本実施形態では、最も低い位置になる吹出し孔22に対応する分配器30naは、配管32nが設けられていないが、この分配器30naにも配管32nを設けてもよい。また、本実施形態では、配管32nを曲げているが、配管32nを曲げなくてもよい。
但し、配管32nを曲げた方がチャンバ20内で配管32n長さを容易に確保することができる。このように、配管32nを曲げた場合に、この曲りが空気の抵抗となるため、配管32nを通る空気流量を設定する際には配管32nの曲げ数を考慮することが好ましい。
 「各種変形例」
 図6~図9に示す変形例は、第一実施形態に対する変形例であるが、これら変形例のうち、図7~図9に示す変形例を第二実施形態、第二実施形態の第一変形例、第二実施形態の第四変形例、第二実施形態の第五変形例、第五実施形態に適用してもよい。また、図8に示す変形例を第二実施形態の第一変形例及び第四変形例に適用してもよい。
 第一実施形態、第一実施形態の各変形例、第二実施形態、第二実施形態の各変形例、第五実施形態では、全ての吹出し孔22毎に分配器を設けている。しかしながら、これらの実施形態及び変形例においても、第三実施形態及び第四実施形態のように、最も低い位置で、船外から最も高い水圧がかかる吹出し孔22に対しては、空気の流れに抵抗を加えて、空気の圧力を損失させる分配器を設けなくてもよい。すなわち、分配器は、最も低い位置の吹出し孔22を除く複数の吹出し孔22に少なくても設けられていればよい。このように、最も低い位置の吹出し孔22に対する分配器を省くことで、製造コストを抑えることができる。なお、最も低い位置の吹出し孔22に対する分配器を省いた場合でも、チャンバ20の外壁板材21に形成されている全ての吹出し孔22から吹出される空気の流量は、各吹出し孔22相互で均等化するよう、最も低い位置の吹出し孔22を除く吹出し孔22に対する分配器の流量調節部により調節される。
 具体的に、第一実施形態に関しては、図28に示すように、チャンバ20の外壁板材21に形成されている複数の吹出し孔22のうち、最も低い位置の吹出し孔22には、分配器を設けなくてもよい。また、第二実施形態に関しても、図29に示すように、チャンバ20の外壁板材21に形成されている複数の吹出し孔22のうち、最も低い位置の吹出し孔22には、分配器を設けなくてもよい。
 第一実施形態の流量調節部は、分配器30毎に数量が異なる貫通孔32である。しかしながら、第一実施形態において、この流量調節部の替りに、図13~図20に示す流量調節部のいずれかを採用してもよい。また、第三実施形態の流量調節部は、分配器30k毎に開口面積が異なる貫通孔32eである。しかしながら、第三実施形態において、この流量調節部の替りに、第一実施形態又は第二実施形態の流量調節部、図14~図20に示す流量調節部のいずれかを採用してもよい。第五実施形態は、第一実施形態に対する変形例であるが、第五実施形態が示す流量調節部を、第二実施形態、第二実施形態の第一変形例、第三実施形態に適用してもよい。
 すなわち、分配器の流量調節部は、供給管側空間Ssから部分空間Sp内に空気が流入する際の圧力損失を調節するものであれば、如何なる形態であってもよい。よって、分配器の流量調節部は、例えば、以下の形態のいずれであってもよい。
(1)流量調節部が、第一実施形態や第二実施形態ように、分配器毎に数量が異なる貫通孔である。
(2)流量調節部が、第二実施形態の第一変形例のように、分配器毎に開口面積が異なる貫通孔である。
(3)流量調節部が、第二実施形態の第二変形例のように、網である。
(4)流量調節部が、第二実施形態の第三変形例のように、多孔板である。
(5)流量調節部が、第二実施形態の第四変形例のように、分配器毎に内径(開口面積)が異なる配管である。
(6)流量調節部が、第二実施形態の第五変形例のように、弁である。
(7)流量調節部が、第五実施形態のように、分配器毎に長さが異なる配管である。
(8)場合によっては、流量調節部が、第四実施形態のように、板材の縁と、この板材に間隔をあけて対向配置されている部材との間の開口である。
 以上の実施形態では、チャンバ20を形成する板材のうち、外壁板材21と間隔をあけて対向する板材を供給管接続板材23として、この供給管接続板材23に供給管12を接続している。しかしながら、チャンバ20を形成する板材のうち、外壁板材21に接合される周壁板材24を供給管接続板材として、この供給管接続板材に供給管12を接続してもよい。
 以上の各実施形態及び各変形例は、一つの分配器に対して一つの吹出し孔22が対応している。しかしながら、例えば、図30に示すように、一つの分配器30eに複数の吹出し孔22,22が対応していてもよい。この場合、一つの分配器30eに対して、高さ方向Dhの位置が共通する複数の吹出し孔22,22を対応付ける。ここで、高さ方向Dhの位置が共通するとは、複数の吹出し孔22,22の高さ方向Dhの位置が完全に一致する場合のみならず、複数の吹出し孔22,22が高さ方向Dhで重複する部分DLを有する場合も含む。なお、図30は、第二実施形態の変形例であるが、第一実施形態及びその各変形例、第二実施形態の各変形例、第三実施形態、第四実施形態、第五実施形態においても、以上と同様に、一つの分配器に対して、高さ方向Dhの位置が共通する複数の吹出し孔22,22を対応付けてもよい。また、以上の各実施形態及び各変形例は、吹出し孔22の開口形状がいずれも円形であるが、長方形、正方形、菱形、三角形、これらの角が丸い角丸多角形、長円形、楕円形等、その他の形状であってもよい。
 以上の各実施形態及び各変形例では、いずれも、吃水部Bdであって、船体Bの高さ方向Dhの位置が変わると船体Bの幅が変わる部分にチャンバ20が設けられている。しかしながら、図31に示すように、吃水部Bdであって、船体Bの高さ方向Dhの位置が変わると、船体Bの前後方向Daにおける船外壁上の位置が変わる部分にチャンバ20xが設けられていてもよい。
 本発明の船舶の摩擦抵抗低減装置、船舶、及び船舶の摩擦抵抗低減方法によれば、複数の吹出し孔から吹出される空気の流量の均等化、及び、複数の吹出し孔から吹出される空気の船外壁に沿った拡散性の均等化を図ることができる。よって、船体の摩擦抵抗をより低減することができる。
 A:摩擦抵抗低減装置、
 B:船体、
 11:空気供給機、
 12:供給管、
 20,20x:チャンバ、
 21:外壁板材、
 22:吹出し孔、
 23:供給管接続板材、
 24:周壁板材、
 30,30a,30b,30c,30d,30e,30f,30g,30h,30i,30j,30k,30m,30n:分配器、
 31,31b,31c,31d:蓋材、
 31k,31m:対向板材、
 32,32a,32b,32c,32d,32e,32f,32k:貫通孔(流量調節部)、
 32g:網(流量調節部)、
 32h:多孔板(流量調節部)、
32i,32n:配管(流量調節部)、
 32j:弁(流量調節部)、
 34,34a:筒、
 35:邪魔板(変向部材)、
 36:曲り管(変向部材)、
 37m:間隔保持部材、
 38:内部空間仕切板、
 39:吹出し側空間仕切板、
 Sb:吹出し側空間、
 Si:内部空間、
 Ss:供給管側空間、
 Sp:部分空間

Claims (22)

  1.  船体の吃水部に設けられ、前記船体の高さ方向で相互に異なる位置から船外の水中に気体を吹出す吹出し孔が複数形成されているチャンバと、
     前記チャンバの内部空間に前記気体を供給する供給管と、
     複数の前記吹出し孔のうち、前記高さ方向で最も低い位置の前記吹出し孔を除く複数の前記吹出し孔毎に少なくとも設けられ、前記供給管から前記チャンバ内に供給された前記気体の一部を前記吹出し孔に導く分配器と、
     を備え、
     複数の前記分配器は、複数の前記吹出し孔から吹出される前記気体の流量が複数の前記吹出し孔相互で均等化されるよう、前記分配器に対応する前記吹出し孔へ導く前記気体の流量を調節する流量調節部を有する、
     船舶の摩擦抵抗低減装置。
  2.  前記チャンバに形成されている複数の前記吹出し孔の全てに前記分配器が設けられている、
     請求項1に記載の船舶の摩擦抵抗低減装置。
  3.  複数の前記分配器の前記流量調節部は、前記対応する吹出し孔が高い位置にあるほど、前記対応する吹出し孔に導く前記気体の流量を少なくする、
     請求項1又は2に記載の船舶の摩擦抵抗低減装置。
  4.  複数の前記分配器は、前記チャンバの前記内部空間を、前記チャンバに接続されている前記供給管の開口に臨んでいる供給管側空間と、前記対応する吹出し孔の空間を含む部分空間とに仕切る仕切部材を有し、
     前記流量調節部は、前記仕切部材に設けられている、
     請求項3に記載の船舶の摩擦抵抗低減装置。
  5.  前記分配器の前記流量調節部は、前記仕切部材に形成され、前記供給管側空間から前記部分空間側に貫通する1以上の貫通孔であり、
     複数の前記分配器毎の前記貫通孔の数量が前記分配器相互で異なっている、
     請求項4に記載の船舶の摩擦抵抗低減装置。
  6.  前記分配器の前記流量調節部は、前記仕切部材に形成され、前記供給管側空間から前記部分空間側に貫通する貫通孔であり、
     複数の前記分配器毎の前記貫通孔の開口面積が前記分配器相互で異なっている、
     請求項4に記載の船舶の摩擦抵抗低減装置。
  7.  前記チャンバを形成する板材のうち、前記分配器に対応する前記吹出し孔が形成されている外壁板材における前記吹出し孔の貫通方向への前記吹出し孔の延長上には、前記貫通孔が形成されていない、
     請求項5又は6に記載の船舶の摩擦抵抗低減装置。
  8.  前記部分空間内には、前記貫通孔からの前記気体の向きを変える変向部材が設けられている、
     請求項5又は6に記載の船舶の摩擦抵抗低減装置。
  9.  前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる複数の開口が形成されている網であり、
     複数の前記分配器毎の前記網の目の開口面積が前記分配器相互で異なっている、
     請求項4に記載の船舶の摩擦抵抗低減装置。
  10.  前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる管であり、
     複数の前記分配器毎の前記管の開口面積が前記分配器相互で異なっている、
     請求項4に記載の船舶の摩擦抵抗低減装置。
  11.  前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる管であり、
     複数の前記分配器毎の前記管の長さが前記分配器相互で異なっている、
     請求項4に記載の船舶の摩擦抵抗低減装置。
  12.  前記分配器の前記流量調節部は、前記仕切部材に設けられ、前記供給管側空間から前記部分空間側へ前記気体を通過させる弁であり、
     複数の前記分配器毎の前記弁の開度が前記分配器相互で異なっている、
     請求項4に記載の船舶の摩擦抵抗低減装置。
  13.  前記分配器の前記仕切部材は、前記チャンバを形成する板材のうち、前記対応する吹出し孔が形成されている外壁板材に一方側が接続され、前記チャンバ内に前記部分空間を形成する筒と、前記筒の他方側の開口を覆う蓋材と、を有する
     請求項4から12のいずれか一項に記載の船舶の摩擦抵抗低減装置。
  14.  前記チャンバの前記内部空間を前記供給管側空間と他の空間である吹出し側空間とに二分する内部空間仕切板と、前記吹出し側空間を前記吹出し孔毎に仕切って前記吹出し側空間を複数の前記部分空間に分ける吹出し側空間仕切板と、を有して複数の前記分配器の前記仕切部材が構成され、
     前記流量調節部は、前記内部空間仕切板に設けられている、
     請求項4から12のいずれか一項に記載の船舶の摩擦抵抗低減装置。
  15.  前記分配器の前記仕切部材は、前記対応する前記吹出し孔、及び前記チャンバを形成する板材のうち前記吹出し孔が形成されている外壁板材における該対応する吹出し孔の周り部分に対向して、前記外壁板材に接している対向板材を有し、
     前記対向板材に、前記流量調節部が設けられている、
     請求項4から6、9から12のいずれか一項に記載の船舶の摩擦抵抗低減装置。
  16.  前記分配器の前記仕切部材は、前記対応する前記吹出し孔、及び前記チャンバを形成する板材のうち前記吹出し孔が形成されている外壁板材における該対応する吹出し孔の周り部分に間隔をあけて対向する対向板材と、前記対向板材と前記外壁板材との間隔を保持する間隔保持部材と、を有し、
     前記分配器の前記流量調節部は、前記対向板材の縁と前記外壁板材との間の開口であり、
     複数の前記分配器毎の前記開口の面積が相互に異なっている、
     請求項4に記載の船舶の摩擦抵抗低減装置。
  17.  複数の前記吹出し孔の開口の形状及び開口面積は、相互に同じである、
     請求項1から16のいずれか一項に記載の船舶の摩擦抵抗低減装置。
  18.  前記チャンバには、前記高さ方向の位置が互いに共通する前記吹出し孔が形成され、
     前記分配器は、前記高さ方向の位置が互いに共通する前記吹出し孔毎に設けられている、
     請求項1から17のいずれか一項に記載の船舶の摩擦抵抗低減装置。
  19.  前記船体と、
     前記船体に設けられている請求項1から18のいずれか一項に記載の船舶の摩擦抵抗低減装置と、
     を備えている船舶。
  20.  船体の吃水部に設けられ、前記船体の高さ方向で相互に異なる位置から船外の水中に気体を吹出す吹出し孔が複数形成されているチャンバの内部空間に気体を供給する気体供給工程と、
     複数の前記吹出し孔毎に、前記チャンバ内に供給された前記気体の一部を前記吹出し孔に導く気体分配工程と、
     を実行し、
     前記気体分配工程では、複数の前記吹出し孔から吹出される前記気体の流量が複数の前記吹出し孔相互で均等化されるよう、前記吹出し孔へ導く前記気体の流量を調節する、
     船舶の摩擦抵抗低減方法。
  21.  前記気体分配工程では、前記吹出し孔が高い位置にあるほど、前記吹出し孔へ導く前記気体の流量を少なくする、
     請求項20に記載の船舶の摩擦抵抗低減方法。
  22.  前記気体分配工程では、前記吹出し孔が高い位置にあるほど、前記チャンバ内に供給された前記気体を前記吹出し孔に導く過程での前記気体の圧力損失を高める、
     請求項20又は21に記載の船舶の摩擦抵抗低減方法。
PCT/JP2014/077706 2013-10-23 2014-10-17 摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法 WO2015060217A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14825082.2A EP2886437B1 (en) 2013-10-23 2014-10-17 Frictional resistance reducing device, ship with same, and method for reducing frictional resistance of ship
KR1020167002925A KR101647273B1 (ko) 2013-10-23 2014-10-17 마찰 저항 저감 장치, 이것을 구비하고 있는 선박, 선박의 마찰 저항 저감 방법
US14/911,182 US9738350B2 (en) 2013-10-23 2014-10-17 Device for reducing frictional resistance, ship comprising the device, and method of reducing frictional resistance of ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-220491 2013-10-23
JP2013220491A JP6037999B2 (ja) 2013-10-23 2013-10-23 摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法

Publications (1)

Publication Number Publication Date
WO2015060217A1 true WO2015060217A1 (ja) 2015-04-30

Family

ID=52992814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077706 WO2015060217A1 (ja) 2013-10-23 2014-10-17 摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法

Country Status (5)

Country Link
US (1) US9738350B2 (ja)
EP (1) EP2886437B1 (ja)
JP (1) JP6037999B2 (ja)
KR (1) KR101647273B1 (ja)
WO (1) WO2015060217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142805A1 (ja) * 2017-01-31 2018-08-09 三菱重工業株式会社 船舶の摩擦低減装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003058A1 (ko) * 2015-06-29 2017-01-05 삼성중공업 주식회사 마찰저항 저감 장치 및 이를 포함하는 선박
KR101595701B1 (ko) * 2015-07-02 2016-02-19 현대중공업 주식회사 내장형 공기챔버를 구비하는 공기윤활시스템과 그 설치방법
JP6655563B2 (ja) 2017-01-31 2020-02-26 三菱重工業株式会社 船舶の摩擦低減装置
CN108177724A (zh) * 2018-01-12 2018-06-19 中船重工船舶设计研究中心有限公司 一种用于气层减阻技术的稳压腔结构及安装方法
KR101980738B1 (ko) * 2019-04-05 2019-05-22 조윤규 선박의 마찰저항 감소를 위한 워터제트식 공기윤활장치
US12049285B2 (en) 2021-07-21 2024-07-30 Parker Maritime Technologies, LLC Transverse hydro-laminar flow system
CN113788102A (zh) * 2021-10-19 2021-12-14 中船重工(上海)节能技术发展有限公司 一种稳压腔结构、气层减阻系统及船舶
CN113978604B (zh) * 2021-11-17 2023-06-02 浙江海洋大学 一种智能船舶气幕减阻节能装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065036A (en) * 1979-12-12 1981-06-24 Henwood M R Improvements in or relating to exhaust systems and/or boat hulls
US4840589A (en) * 1986-09-12 1989-06-20 Breaux Vance V Underwater exhaust system for boats of stepped-hull construction and including exhaust cooling
JPH08310480A (ja) * 1995-05-19 1996-11-26 Mitsubishi Heavy Ind Ltd 船体摩擦抵抗低減用エアーバブル発生装置
JPH09207873A (ja) * 1996-01-31 1997-08-12 Yoji Kato マイクロバブル発生装置
JP2011110978A (ja) 2009-11-24 2011-06-09 Mitsubishi Heavy Ind Ltd 摩擦抵抗低減型船舶及び船体摩擦抵抗低減方法
WO2012133625A1 (ja) * 2011-03-31 2012-10-04 三菱重工業株式会社 摩擦抵抗低減型船舶、及び、船舶の摩擦抵抗低減装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135469A (en) * 1973-01-19 1979-01-23 Oy Wartsila Ab Method for reducing propeller noise
JPH10109685A (ja) * 1996-10-07 1998-04-28 Ishikawajima Harima Heavy Ind Co Ltd マイクロバブル発生装置
JPH11227675A (ja) * 1998-02-13 1999-08-24 Ishikawajima Harima Heavy Ind Co Ltd 摩擦抵抗低減船の空気吹き出し器
JP4183048B1 (ja) 2008-04-17 2008-11-19 有限会社ランドエンジニアリング 摩擦抵抗低減船およびその運転方法
JP4212640B1 (ja) 2008-07-23 2009-01-21 有限会社ランドエンジニアリング 摩擦抵抗低減船およびその運転方法
JP5022345B2 (ja) * 2008-11-21 2012-09-12 三菱重工業株式会社 船体摩擦抵抗低減装置
JP5797418B2 (ja) 2011-02-15 2015-10-21 国立研究開発法人海上技術安全研究所 船舶の摩擦抵抗低減用気泡吹出装置
JP5863617B2 (ja) * 2012-10-05 2016-02-16 三菱重工業株式会社 船舶の摩擦抵抗低減装置、摩擦抵抗低減型船舶、及び船舶の摩擦抵抗低減方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065036A (en) * 1979-12-12 1981-06-24 Henwood M R Improvements in or relating to exhaust systems and/or boat hulls
US4840589A (en) * 1986-09-12 1989-06-20 Breaux Vance V Underwater exhaust system for boats of stepped-hull construction and including exhaust cooling
JPH08310480A (ja) * 1995-05-19 1996-11-26 Mitsubishi Heavy Ind Ltd 船体摩擦抵抗低減用エアーバブル発生装置
JPH09207873A (ja) * 1996-01-31 1997-08-12 Yoji Kato マイクロバブル発生装置
JP2011110978A (ja) 2009-11-24 2011-06-09 Mitsubishi Heavy Ind Ltd 摩擦抵抗低減型船舶及び船体摩擦抵抗低減方法
WO2012133625A1 (ja) * 2011-03-31 2012-10-04 三菱重工業株式会社 摩擦抵抗低減型船舶、及び、船舶の摩擦抵抗低減装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2886437A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142805A1 (ja) * 2017-01-31 2018-08-09 三菱重工業株式会社 船舶の摩擦低減装置

Also Published As

Publication number Publication date
KR101647273B1 (ko) 2016-08-09
EP2886437B1 (en) 2016-12-07
JP2015081043A (ja) 2015-04-27
KR20160027178A (ko) 2016-03-09
US20160185423A1 (en) 2016-06-30
EP2886437A4 (en) 2015-10-28
US9738350B2 (en) 2017-08-22
EP2886437A1 (en) 2015-06-24
JP6037999B2 (ja) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2015060217A1 (ja) 摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法
JP4959667B2 (ja) 船体摩擦抵抗低減装置
US9011217B2 (en) Air guide element and air guide element arrangement for an aircraft air conditioning system
US8430131B2 (en) Noise control via outlet jet frequency dispersal
JP2013129323A (ja) 気体潤滑船の製造方法及び気体吹出チャンバーの製造方法
JP5863617B2 (ja) 船舶の摩擦抵抗低減装置、摩擦抵抗低減型船舶、及び船舶の摩擦抵抗低減方法
JP6573684B2 (ja) 摩擦抵抗低減装置およびこれを含む船舶
JP6280775B2 (ja) オープンラック型気化装置の散水機構
US8887765B2 (en) Spiral fluid flow system
RU2558589C2 (ru) Экранирование в разделительной колонне
KR102190553B1 (ko) 선박의 마찰 저감 장치
KR20190009347A (ko) 선박의 마찰 저감 장치
KR102096435B1 (ko) 충돌형 온도균일화 장치
JPS6134044B2 (ja)
KR101801814B1 (ko) 마찰저항저감장치
EP3922938A1 (en) Vaporization device
KR20170002111A (ko) 마찰저항저감장치
KR100936165B1 (ko) 공기 압력식 제습기용 중간층 조립체
JP5829664B2 (ja) 船舶の抵抗低減装置
AU2012200007B8 (en) Distribution system and heat exchanger apparatus
WO2011088888A2 (en) Low energy head box
WO2014015906A1 (en) Inlet device for separator
TH67446B (th) อุปกรณ์สัมผัสและกระจายแบบหลายเฟสสำหรับกระบวนการไฮโดรโพรเซสซิง
TH133390A (th) อุปกรณ์สัมผัสและกระจายแบบหลายเฟสสำหรับกระบวนการไฮโดรโพรเซสซิง
JP2017096081A (ja) 災害時水道用貯水槽

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014825082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014825082

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167002925

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911182

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE