WO2015045759A1 - 電動車両の制御装置 - Google Patents
電動車両の制御装置 Download PDFInfo
- Publication number
- WO2015045759A1 WO2015045759A1 PCT/JP2014/073123 JP2014073123W WO2015045759A1 WO 2015045759 A1 WO2015045759 A1 WO 2015045759A1 JP 2014073123 W JP2014073123 W JP 2014073123W WO 2015045759 A1 WO2015045759 A1 WO 2015045759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slip
- braking force
- drive wheel
- slip ratio
- electric vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/106—Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
- B60L3/108—Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/106—Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/52—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/66—Arrangements of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/12—Dynamic electric regenerative braking for vehicles propelled by dc motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/18—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/24—Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
- B60L7/26—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/175—Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/461—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/465—Slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/44—Control modes by parameter estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2201/00—Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
- B60T2201/14—Electronic locking-differential
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to an electric vehicle control device.
- An object of the present invention is to provide an electric vehicle control apparatus capable of stabilizing vehicle behavior when performing slip control of drive wheels.
- a motor connected to a drive wheel of the vehicle via a differential gear and a drive shaft and generating braking / driving torque on the drive wheel, and a drive wheel
- a control device for an electric vehicle configured to be used in an electric vehicle including a mechanical braking device capable of independently generating a braking force, wherein a slip ratio of a drive wheel is a predetermined slip ratio or more.
- FIG. 1 is a system diagram illustrating a configuration of an electric vehicle according to a first embodiment.
- FIG. 3 is a control block diagram illustrating the content of information transmitted and received by each controller according to the first embodiment. It is a control block diagram showing the structure of the motor ABS control and brake ABS control of Example 1.
- FIG. 6 is a characteristic diagram illustrating a relationship between a ⁇ -s characteristic and a target slip ratio in Example 1. 3 is a time chart showing an ABS control operation of the first embodiment. 6 is a time chart showing an ABS control operation at the time of ⁇ jump according to the first embodiment.
- FIG. 1 is a system diagram showing the configuration of an electric vehicle according to Embodiment 1.
- the electric vehicle is a front wheel drive vehicle, and has front wheels FR and FL which are drive wheels, and rear wheels RR and RL which are driven wheels.
- Each wheel has wheel cylinders W / C (FR), W / C (FL), W / C (RR), W / that generate friction braking force by pressing the brake pads against the brake rotor that rotates integrally with the tire.
- C (RL) also simply referred to as W / C
- wheel speed sensors 9 (FR), 9 (FL), 9 (RR), 9 (RL) (simply both 9) To be described).
- a hydraulic unit 5 is connected to the wheel cylinder W / C through a hydraulic pipe 5a.
- the hydraulic unit 5 includes a plurality of solenoid valves, a reservoir, a pump motor, and a brake controller 50, and controls driving states of various solenoid valves and pump motors based on commands from the brake controller 50.
- the wheel cylinder hydraulic pressure of each wheel is controlled.
- the hydraulic unit 5 may be a well-known brake-by-wire unit or a brake unit including a hydraulic circuit that can execute vehicle stability control, and is not particularly limited.
- the electric motor 1 that is a drive source is provided with a resolver 2 that detects a motor rotation angle.
- a differential gear 3 is connected to the electric motor 1 via a speed reduction mechanism 3a, and a front wheel FR.FL is connected to a drive shaft 4 connected to the differential gear 3.
- a high-voltage battery 6 that supplies electric power to the electric motor 1 or collects regenerative power and a battery controller 60 that monitors and controls the battery state of the high-voltage battery 6 are mounted on the rear side of the vehicle. Yes.
- the inverter 10 interposed between the high voltage battery 6 and the electric motor 1 is controlled by the motor controller 100.
- an auxiliary battery 8 is connected to the high voltage battery 6 via a DC-DC converter 7 and functions as a driving power source for the hydraulic unit 5.
- the electric vehicle of the first embodiment is provided with a CAN communication line that is an in-vehicle communication line to which a plurality of controllers mounted on the vehicle are connected, and the brake controller 50, the vehicle controller 110, the battery controller 60, and the like communicate with each other. Connected as possible.
- FIG. 2 is a control block diagram showing the contents of information transmitted and received by each controller of the first embodiment.
- the vehicle controller 110 inputs the accelerator pedal position information and the shift position information, calculates the first torque command value based on the basic driver request torque and the result of the regenerative torque command value from the brake controller 50, and the motor controller The first torque command value is output to 100.
- the brake controller 50 inputs information indicating the driver's braking intention such as the brake switch ON / OFF state indicating the brake pedal operation state, the brake pedal stroke amount or the brake pedal depression force, and the wheel speed signal of each wheel.
- the brake fluid pressure supplied to / C and the regenerative torque generated by the electric motor 1 are calculated, and the regenerative torque command value is output to the vehicle controller 110.
- the actual regenerative torque information is received from the vehicle controller 110, thereby performing regenerative torque feedback control.
- the motor controller 100 controls the operating state of the electric motor 1 based on the torque command value, and outputs actual torque information generated by the electric motor 1 to the vehicle controller 110 based on the detected current value and the like.
- FIG. 3 is a control block diagram showing a control configuration for outputting a braking force request provided in the brake controller of the first embodiment.
- the driver-requested braking force calculation unit 111 calculates a driver-requested braking force (hereinafter also referred to as driver-requested braking torque) based on the brake pedal operation state.
- the vehicle body speed estimation unit 512 estimates the vehicle body speed based on the detected wheel speed signal. Specifically, the average wheel speed of all the wheels may be adopted, the average wheel speed on the rear wheel (driven wheel) side may be adopted, or the highest wheel speed value may be adopted. Good. Further, the correction may be performed based on the vehicle body deceleration or the like, and is not particularly limited.
- the first regenerative torque command value generated by the electric motor 1 and the first brake hydraulic pressure command generated by the wheel cylinder W / C based on the driver required braking force and the estimated vehicle body speed. are calculated and output to the motor ABS control unit 300 and the brake ABS control unit 400.
- the distribution of the regenerative torque and the hydraulic braking torque basically any regenerative torque can be used as long as it is a driver-requested braking force that can be handled only by the regenerative torque.
- the driver-requested braking force exceeds the upper limit value of the regenerative torque, the difference between the driver-requested braking force and the regenerative torque upper limit value is supplemented by the hydraulic braking torque.
- the motor ABS control unit 300 calculates a wheel slip ratio s (that is, a ratio of the wheel speed to the vehicle speed) from the estimated vehicle speed and the average driving wheel speed, and this slip ratio s is a preset target motor slip ratio.
- a second regenerative torque command value obtained by adding or subtracting torque from the first regenerative torque command value so as to be Sm is output.
- the regenerative torque controlled by the motor ABS control unit 300 is a torque generated by the electric motor 1 and acts on both the left and right front wheels FL and FR that are drive wheels at the same time, so the slip ratio based on the average wheel speed of the drive wheels. Is controlling.
- the brake ABS control unit 400 calculates the slip ratio from the estimated vehicle body speed and the wheel speed of each wheel, and calculates the slip ratio from the first brake hydraulic pressure command value so that the slip ratio becomes a preset target brake slip ratio Sb. Outputs the second brake fluid pressure command value with pressure added or subtracted.
- FIG. 4 shows the ⁇ -s characteristic between the tire and the road surface of the electric vehicle of Example 1 (the friction between the tire and the road surface with respect to the slip ratio s representing the degree of slipping of the rotating tire during braking and driving).
- FIG. 6 is a characteristic diagram illustrating a relationship between a coefficient ⁇ change characteristic) and each target slip ratio.
- the target motor slip ratio Sm is set above the linear region on the low slip ratio side from the peak value ⁇ p.
- the specific value is set to a value that provides a sufficient braking force in an actual adaptation experiment.
- the target brake slip ratio Sb is a value obtained by turning back the difference between the target motor slip ratio Sm and the slip ratio Sp corresponding to the peak value ⁇ p to the low slip ratio side.
- FIG. 5 is a time chart showing the ABS control operation of the first embodiment.
- motor ABS control is performed to reduce the absolute value of the regenerative torque.
- the left and right driving wheel speeds also decrease, but the left and right friction coefficients may differ depending on the road surface condition, disturbance, or the like. In the case of FIG.
- Each ABS control unit is provided with a road surface friction coefficient estimating unit for estimating a road surface friction coefficient.
- a road surface having a predetermined friction coefficient ⁇ 0 or more is determined as a high ⁇ road, and a road surface less than ⁇ 0 is determined as a low ⁇ road. .
- a slip condition is detected when the braking force required by the driver cannot be achieved without using the brake fluid pressure from the wheel cylinder W / C in addition to the regenerative torque of the electric motor 1
- the regenerative torque by the electric motor 1 is set to 0, and the brake ABS control is executed while achieving the driver-requested braking force only by the brake fluid pressure. This avoids complicated control.
- the target brake slip ratio Sb is brought close to the target motor slip ratio Sm.
- the regenerative torque is increased to the maximum value of the regenerative torque, the driver's required braking torque cannot be achieved with only the regenerative torque, so if the regenerative torque matches the driver's required braking torque (regenerative torque maximum value) Since this is an ABS control request on the road, the regenerative torque is set to 0, and the brake ABS control is executed while achieving the driver's required braking force only by the brake fluid pressure.
- the target motor slip rate Sm is set to 0, but Sm may be set to a predetermined low slip rate or may be set to the original value.
- FIG. 6 is a time chart showing the ABS control operation at the time of ⁇ jump according to the first embodiment. Since the operation from the time t1 to the time t2 is the same as the description of FIG. At time t3, when a ⁇ jump occurs and the road surface friction coefficient changes from ⁇ 1 which is low ⁇ to ⁇ 2 which exceeds a predetermined friction coefficient ⁇ 0 and is high ⁇ , the absolute value of the regenerative torque is increased and the driver requested braking torque is increased. Move closer to At this time, the target brake slip ratio Sb is set close to the target motor slip ratio Sm.
- [effect] (1) Connected to the drive wheels of a vehicle via a differential gear 3 and a drive shaft 4, and an electric motor 1 that generates braking / driving torque on the drive wheels, and can generate braking force independently on the drive wheels
- Wheel speed detection unit a vehicle body speed estimation unit 512 (estimated vehicle speed vehicle body speed calculation unit) that calculates the vehicle body speed of the vehicle, and the calculated vehicle body speed and the detected wheel speed of the drive wheel.
- a motor ABS control unit 300 and a brake ABS control unit 400 that suppress the slip state so that the slip rate of the drive wheel becomes a target motor slip rate when the slip rate of the drive wheel is calculated and a slip rate greater than or equal to a predetermined value is detected.
- the slip suppression control unit decreases the absolute torque value of the electric motor 1 so that the slip ratio of the drive wheel becomes the target motor slip ratio Sm.
- a motor slip suppression control unit) and a brake ABS control unit 400 driving wheel braking force control unit that applies higher braking force to a driving wheel having a higher wheel speed than the lower driving wheel among the left and right driving wheels by the wheel cylinder W / C. And having.
- the drive wheel braking force control unit does not apply a braking force to the drive wheel having a low wheel speed, so the difference in rotational speed between the left and right Therefore, vehicle stability during braking is further improved.
- the slip suppression control unit has a calculated road surface friction coefficient higher than the first road surface friction coefficient from the first road surface friction coefficient
- the target brake slip ratio approaches the target motor slip ratio, so a ⁇ jump to a high ⁇ road occurs.
- the absolute value of the regenerative torque is increased, and the braking force by the brake control can be secured by bringing the target brake slip ratio Sb closer to the target motor slip ratio Sm.
- a driving wheel slip control unit that controls the speed of the driving wheel so that the driving wheel slip control unit converts the generated regenerative torque of the motor to a predetermined target regenerative torque.
- the mechanical braking device applies a larger braking force to the driving wheel having the higher wheel speed than the driving wheel having the lower wheel speed among the left and right driving wheels, and the slip ratio of the driving wheel becomes the target slip ratio.
- the absolute torque value of the electric motor 1 is reduced, and the wheel cylinder W / C gives a large braking force to the driving wheel having a high wheel speed, thereby increasing the slip ratio of the driving wheel having a high wheel speed.
- the driving wheel slip control unit does not apply the braking force by the mechanical braking device to the driving wheel having a low wheel speed. Since the difference between the left and right rotational speeds can be reduced, vehicle stability during braking is further improved.
- the drive wheel slip control unit reduces the motor torque to near zero when the calculated road friction coefficient is equal to or greater than a predetermined road friction coefficient and the calculated deceleration is equal to or greater than a predetermined deceleration. Therefore, when high deceleration on a high ⁇ road that cannot satisfy the required braking force with only the regenerative torque of the electric motor 1 is controlled only by the hydraulic brake, it depends on the braking force by the electric motor 1 and the brake hydraulic pressure. Since it is not necessary to mutually control the braking force, the control stability can be ensured.
- a required braking force calculation unit that calculates a driver's required braking force, and an actual braking force calculation that calculates an actual braking force generated in the vehicle.
- a road surface friction coefficient calculation unit that calculates a road surface friction coefficient during traveling, and the drive wheel slip control unit has a slip ratio of the drive wheel smaller than the target slip ratio by the mechanical braking device.
- a control unit that suppresses a slip state so as to achieve a target brake slip ratio, wherein the drive wheel slip control unit has a calculated road surface friction coefficient higher than the first road surface friction coefficient from the first road surface friction coefficient.
- the drive wheel slip control unit sets the target slip ratio to zero after the actual braking force and the required braking force are matched. Therefore, stable control can be realized by shifting from motor ABS control to brake ABS control.
- the target slip ratio is in a linear region on a lower slip ratio side than the slip ratio at the apex of the ⁇ -s characteristic curve between the drive wheel and the road surface.
- the target brake slip ratio is reduced by subtracting a difference between the peak slip ratio and the target slip ratio from the target slip ratio. Therefore, the reduction of the total braking force in the drive wheels can be suppressed.
- the absolute torque value of the electric motor 1 is reduced by applying a braking force only to the driving wheel having a low slip rate among the left and right driving wheels, and the wheel cylinder W / C is used to reduce the wheel speed.
- a large braking force is applied to high driving wheels. Therefore, the slip ratio of the driving wheel with high wheel speed is increased to ensure the braking / driving force, and the slip speed is reduced by increasing the wheel speed of the driving wheel with low wheel speed by the action of the differential gear 3.
- the braking / driving force of the left and right drive wheels can be secured. Therefore, since the difference between the left and right braking / driving force can be reduced, the vehicle behavior can be stabilized without generating an unintended yaw moment.
- a required braking force calculation unit that calculates a driver's required braking force, and an actual braking force calculation that calculates an actual braking force generated in the vehicle.
- the drive wheel slip control unit suppresses the slip state so that the slip rate of the drive wheel becomes a target brake slip rate smaller than the target motor slip rate by the mechanical braking device.
- the driving wheel slip control unit is configured so that the actual braking force is Since the target brake slip ratio is made closer to the target slip ratio as the required braking force is approached, the absolute value of the regenerative torque is increased when a ⁇ jump to a high ⁇ road occurs.
- the target brake slip ratio Sb can be made closer to the target motor slip ratio Sm. Therefore, the braking force by brake control can be ensured.
- the drive wheel slip control unit sets the target slip ratio to zero after the actual braking force and the required braking force coincide with each other.
- the target slip ratio is set in a linear region on a lower slip side than the slip ratio at the apex of the ⁇ -s characteristic curve between the drive wheel and the road surface. Therefore, sufficient braking force can be secured.
- the target brake slip ratio is reduced by subtracting a difference between the peak slip ratio and the target slip ratio from the target slip ratio. Therefore, the reduction of the total braking force in the drive wheels can be suppressed.
- a motor that is connected to a drive wheel of a vehicle via a differential gear and a drive shaft, and generates braking / driving torque on the drive wheel;
- a mechanical braking device capable of generating a braking force independently for the drive wheel;
- An electric vehicle control device configured to be used for an electric vehicle including: A wheel speed detector for detecting the rotational speed of the drive wheels of the vehicle; A vehicle body speed calculation unit for calculating a vehicle body speed of the vehicle;
- the slip ratio of the drive wheel is calculated from the calculated vehicle body speed and the detected wheel speed of the drive wheel, and when a slip ratio greater than or equal to a predetermined value is detected, the slip ratio of the drive wheel becomes the target motor slip ratio.
- a slip suppression control unit that suppresses the slip state
- the slip suppression control unit includes a motor slip suppression control unit that decreases the absolute torque value of the motor so that the slip rate of the drive wheel becomes the target motor slip rate, and the mechanical brake device controls the left and right drive wheels.
- a driving wheel braking force control unit that applies a braking force to a driving wheel having a higher wheel speed than a driving wheel having a lower wheel speed.
- a road surface friction coefficient calculating unit for calculating a road surface friction coefficient during traveling;
- a deceleration calculation unit for calculating the deceleration of the vehicle,
- the slip suppression control unit reduces the motor torque to near zero when the calculated road friction coefficient is equal to or greater than a predetermined friction coefficient and the calculated deceleration is equal to or greater than a predetermined deceleration.
- a required braking force calculation unit for calculating the required braking force of the driver An actual braking force calculation unit for calculating an actual braking force generated in the vehicle;
- the driving wheel braking force control unit is a control unit that suppresses a slip state so that a slip rate of the driving wheel becomes a target brake slip rate smaller than the target motor slip rate by the mechanical braking device, When the calculated road surface friction coefficient changes from the first road surface friction coefficient to a second road surface friction coefficient higher than the first road surface friction coefficient, the slip suppression control unit determines that the actual braking force is the required control force.
- the control apparatus for an electric vehicle wherein the target brake slip ratio is made closer to the target motor slip ratio as the power approaches.
- the motor slip suppression control unit sets the target motor slip ratio to zero after the actual braking force coincides with the required braking force.
- a motor that is connected to a drive wheel of the vehicle via a differential gear and a drive shaft, and generates regenerative torque on the drive wheel;
- a mechanical braking device capable of generating a braking force independently for the drive wheel;
- a wheel speed detector for detecting the rotational speed of the drive wheels of the vehicle;
- a vehicle body speed calculation unit for calculating a vehicle body speed of the vehicle; The slip ratio of the drive wheel is calculated from the calculated vehicle body speed and the detected wheel speed of the drive wheel at the time of the regenerative braking.
- a road surface friction coefficient calculating unit for calculating a road surface friction coefficient during traveling;
- a deceleration calculation unit for calculating the deceleration of the vehicle,
- the drive wheel slip control unit reduces the motor torque to near zero when the calculated road friction coefficient is equal to or greater than a predetermined road friction coefficient and the calculated deceleration is equal to or greater than a predetermined deceleration.
- a required braking force calculation unit for calculating the required braking force of the driver An actual braking force calculation unit for calculating an actual braking force generated in the vehicle;
- a road surface friction coefficient calculating unit for calculating a road surface friction coefficient during traveling
- the drive wheel slip control unit is a control unit that suppresses a slip state so that a slip rate of the drive wheel becomes a target brake slip rate smaller than the target slip rate by the mechanical braking device, When the calculated road friction coefficient changes from the first road surface friction coefficient to a second road surface friction coefficient higher than the first road surface friction coefficient, the driving wheel slip control unit determines that the actual braking force is the required braking force.
- the control apparatus for an electric vehicle wherein the target brake slip ratio is made closer to the target slip ratio as the braking force is approached.
- the drive wheel slip control unit sets the target slip ratio to zero after the actual braking force and the required braking force coincide with each other.
- the control device for an electric vehicle according to (7) The control apparatus for an electric vehicle, wherein the target slip ratio is set in a linear region on a lower slip ratio side than a slip ratio at the apex of a ⁇ -s characteristic curve between a driving wheel and a road surface.
- the drive wheel slip control unit sets the target slip ratio to zero after the actual braking force and the required braking force coincide with each other.
- the control apparatus for an electric vehicle wherein the target slip ratio is set in a linear region on a lower slip side than a slip ratio at the apex of a ⁇ -s characteristic curve between a drive wheel and a road surface.
- the target brake slip ratio is set in a linear region on the low slip ratio side obtained by subtracting a difference between the peak slip ratio and the target slip ratio from the target slip ratio. apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
Sp-Sm=Sm-Sb、
すなわち
Sb=2Sm-Sp
に設定する。これにより、前輪左右輪のうち、片輪がブレーキABS制御によって目標ブレーキスリップ率Sbの付近に収束するように制御されると、もう一方の輪はディファレンシャルギヤ3の作用によってピーク値であるSpに収束するため、前輪左右輪の合計制動力が低下することを回避できる。尚、ブレーキABS制御における目標ブレーキスリップ率Sbは、基本的に
Sb=2Sm-Sp
の関係を満たすように設定するが、実回生トルクが運転者要求制動力に近づくほど、目標ブレーキスリップ率Sbを目標モータスリップ率Smに近づける。詳細については後述する。
(1)車両の駆動輪にディファレンシャルギヤ3及びドライブシャフト4を介して接続し、前記駆動輪に制駆動トルクを発生する電動モータ1と、前記駆動輪に対して独立して制動力を発生可能なホイルシリンダW/C(機械式制動装置)と、を備えた電動車両に用いられるよう構成された電動車両の制御装置であって、前記車両の駆動輪の回転速度を検出する車輪速センサ9(車輪速度検出部)と、前記車両の車体速を算出する車体速度推定部512(推定車体速車体速算出部)と、前記算出された車体速と前記検出された前記駆動輪の車輪速から前記駆動輪のスリップ率を算出し、所定以上のスリップ率を検出すると、前記駆動輪のスリップ率が目標モータスリップ率となるようにスリップ状態を抑制するモータABS制御部300及びブレーキABS制御部400(スリップ抑制制御部)と、を備え、前記スリップ抑制制御部は、前記駆動輪のスリップ率が前記目標モータスリップ率Smとなるように電動モータ1のトルク絶対値を減少させるモータABS制御部300(モータスリップ抑制制御部)と、ホイルシリンダW/Cによって前記左右駆動輪のうち車輪速の高い駆動輪に低い駆動輪よりも大きな制動力を与えるブレーキABS制御部400(駆動輪制動力制御部)と、を有する。すなわち、電動モータ1のトルク絶対値を減少させると共に、ホイルシリンダW/Cによって車輪速の高い駆動輪に大きな制動力を与えることで、車輪速の高い駆動輪のスリップ率を大きくして制駆動力を確保すると共に、ディファレンシャルギヤ3の作用により車輪速の低い駆動輪の車輪速が上昇することでスリップ率が小さくなり、これにより左右駆動輪の制駆動力を確保できる。よって、左右の制駆動力差を小さくできるため、意図しないヨーモーメントを発生させることなく、車両挙動を安定させることができる。
(1)車両の駆動輪にディファレンシャルギヤ及びドライブシャフトを介して接続し、前記駆動輪に制駆動トルクを発生するモータと、
前記駆動輪に対して独立して制動力を発生可能な機械式制動装置と、
を備えた電動車両に用いられるよう構成された電動車両の制御装置であって、
前記車両の駆動輪の回転速度を検出する車輪速度検出部と、
前記車両の車体速を算出する車体速算出部と、
前記算出された車体速と前記検出された前記駆動輪の車輪速から前記駆動輪のスリップ率を算出し、所定以上のスリップ率を検出すると、前記駆動輪のスリップ率が目標モータスリップ率となるようにスリップ状態を抑制するスリップ抑制制御部と、を備え、
前記スリップ抑制制御部は、前記駆動輪のスリップ率が前記目標モータスリップ率となるように前記モータのトルク絶対値を減少させるモータスリップ抑制制御部と、前記機械式制動装置によって前記左右駆動輪のうち車輪速の高い駆動輪に低い駆動輪よりも大きな制動力を与える駆動輪制動力制御部と、を有することを特徴とする電動車両の制御装置。
(2)(1)に記載の電動車両の制御装置において、
前記スリップ抑制制御部は、制動時に実施されることを特徴とする電動車両の制御装置。
(3)(2)に記載の電動車両の制御装置において、
前記駆動輪制動力制御部は、前記車輪速の低い駆動輪には制動力を与えないことを特徴とする電動車両の制御装置。
(4)(1)に記載の電動車両の制御装置において、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、
前記車両の減速度を算出する減速度算出部と、を備え、
前記スリップ抑制制御部は、算出された路面摩擦係数が所定摩擦係数以上であって、前記算出された減速度が所定減速度以上のときに、前記モータトルクをゼロ付近となるよう低減することを特徴とする電動車両の制御装置。
(5)(1)に記載の電動車両の制御装置において、
運転者の要求制動力を算出する要求制動力算出部と、
前記車両に発生している実制動力を算出する実制動力算出部と、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、
を備え、
前記駆動輪制動力制御部は、前記機械式制動装置によって前記駆動輪のスリップ率が前記目標モータスリップ率よりも小さな目標ブレーキスリップ率となるようにスリップ状態を抑制する制御部であり、
前記スリップ抑制制御部は、算出された路面摩擦係数が第1の路面摩擦係数から該第1の路面摩擦係数より高い第2の路面摩擦係数へ変化したときは、前記実制動力が前記要求制動力に近づくほど、前記目標ブレーキスリップ率を前記目標モータスリップ率に近づけることを特徴とする電動車両の制御装置。
(6)(5)に記載の電動車両の制御装置において、
前記モータスリップ抑制制御部は、前記実制動力が前記要求制動力と一致した後に、前記目標モータスリップ率をゼロとすることを特徴とする電動車両の制御装置。
(7)車両の駆動輪にディファレンシャルギヤ及びドライブシャフトを介して接続し、前記駆動輪に回生トルクを発生するモータと、
前記駆動輪に対して独立して制動力を発生可能な機械式制動装置と、
備えた電動車両に用いられる電動車両の制御装置において、
前記車両の駆動輪の回転速度を検出する車輪速検出部と、
前記車両の車体速を算出する車体速算出部と、
前記回生制動のときに前記算出された車体速と前記検出された前記駆動輪の車輪速から前記駆動輪のスリップ率を算出し、所定以上のスリップ率を検出すると前記駆動輪のスリップ率が目標スリップ率になるよう前記駆動輪の速度を制御する駆動輪スリップ制御部と、を備え、
前記駆動輪スリップ制御部は、発生している前記モータの回生トルクを所定の目標回生トルクに減少させると共に、前記機械式制動装置により前記左右駆動輪のうち車輪速の高い駆動輪に車輪速が低い駆動輪よりも大きな制動力を与え、前記駆動輪のスリップ率が前記目標スリップ率になるよう制御することを特徴とする電動車両の制御装置。
(8)(7)に記載の電動車両の制御装置において、
前記駆動輪スリップ制御部は、前記車輪速の低い駆動輪に対して前記機械式制動装置による制動力を与えないことを特徴とする電動車両の制御装置。
(9)(8)に記載の電動車両の制御装置において、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、
前記車両の減速度を算出する減速度算出部と、を備え、
前記駆動輪スリップ制御部は、算出された路面摩擦係数が所定の路面摩擦係数以上であって、前記算出された減速度が所定の減速度以上のときは前記モータトルクをゼロ付近になるよう低減することを特徴とする電動車両の制御装置。
(10)(9)に記載の電動車両の制御装置において、
運転者の要求制動力を算出する要求制動力算出部と、
前記車両に発生している実制動力を算出する実制動力算出部と、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、を備え、
前記駆動輪スリップ制御部は、前記機械式制動装置によって前記駆動輪のスリップ率が前記目標スリップ率よりも小さな目標ブレーキスリップ率となるようにスリップ状態を抑制する制御部であり、
前記駆動輪スリップ制御部は、算出された路面摩擦係数が第1の路面摩擦係数から該第1の路面摩擦係数より高い第2の路面摩擦係数へ変化したときは、前記実制動力が前記要求制動力に近づくほど、前記目標ブレーキスリップ率を前記目標スリップ率に近づけることを特徴とする電動車両の制御装置。
(11)(10)に記載の電動車両の制御装置において、
前記駆動輪スリップ制御部は、前記実制動力と前記要求制動力とが一致した後に、前記目標スリップ率をゼロとすることを特徴とする電動車両の制御装置。
(12)(7)に記載の電動車両の制御装置において、
前記目標スリップ率は、駆動輪と路面との間のμ―s特性曲線の頂点のスリップ率より低スリップ率側の線形領域に設定されていることを特徴とする電動車両の制御装置。
(13)(12)に記載の電動車両の制御装置において、
前記目標ブレーキスリップ率は、前記目標スリップ率から、前記頂点のスリップ率と前記目標スリップ率との差分を減じた低スリップ率側の線形領域に設定されていることを特徴とする電動車両の制御装置。
(14)車両の駆動輪にディファレンシャルギヤ及びドライブシャフトを介して接続し、前記駆動輪に回生トルクを発生するモータと、
前記駆動輪に対して独立して制動力を発生可能な機械式制動装置と、
を備えた電動車両の制御装置であって、
前記車両の駆動輪の回転速度を検出する車輪速検出部と、
前記車両の車体速を算出する車体速算出部と、
前記回生制動のときに前記算出された車体速と前記検出された前記駆動輪の車輪速から前記駆動輪のスリップ率を算出し、所定以上のスリップ率を検出すると前記駆動輪のスリップ率が目標スリップ率になるよう前記駆動輪の速度を制御する駆動輪スリップ制御部と、を備え、
前記駆動輪スリップ制御部は、発生している前記モータの回生トルクを所定の目標回生トルクに減少させると共に、前記機械式制動装置を用いて前記左右駆動輪のうちスリップ率が低い駆動輪に対してのみ制動力を与えることを特徴とする電動車両の制御装置。
(15)(14)に記載の電動車両の制御装置において、
前記車両の減速度を算出する減速度算出部を備え、
前記駆動輪スリップ制御部は、前記算出された減速度が所定の減速度以上のときには前記モータトルクをゼロ付近になるように低減することを特徴とする電動車両の制御装置。
(16)(15)に記載の電動車両の制御装置において、
走行中の路面摩擦係数を算出する路面摩擦係数算出部を備え、
前記駆動輪スリップ制御部は、前記算出された路面摩擦係数が所定の路面摩擦係数以上のときには前記モータトルクをゼロ付近になるように低減することを特徴とする電動車両の制御装置。
(17)(16)に記載の電動車両の制御装置において、
運転者の要求制動力を算出する要求制動力算出部と、
前記車両に発生している実制動力を算出する実制動力算出部と、を備え、
前記駆動輪スリップ制御部は、前記機械式制動装置によって前記駆動輪のスリップ率が前記目標モータスリップ率よりも小さな目標ブレーキスリップ率となるようにスリップ状態を抑制する制御部であり、
前記駆動輪スリップ制御部は、算出された路面摩擦係数が第1の路面摩擦係数から該第1の路面摩擦係数より高い第2の路面摩擦係数へ変化すると、前記実制動力が前記要求制動力に近づくほど、前記目標ブレーキスリップ率を前記目標スリップ率へ近づけることを特徴とする電動車両の制御装置。
(18)(17)に記載の電動車両の制御装置において、
前記駆動輪スリップ制御部は、前記実制動力と前記要求制動力とが一致した後に、前記目標スリップ率をゼロとすることを特徴とする電動車両の制御装置。
(19)(14)に記載の電動車両の制御装置において、
前記目標スリップ率は、駆動輪と路面との間のμ―s特性曲線の頂点のスリップ率より低スリップ側の線形領域に設定されていることを特徴とする電動車両の制御装置。
(20)(19)に記載の電動車両の制御装置において、
前記目標ブレーキスリップ率は、前記目標スリップ率から、前記頂点のスリップ率と前記目標スリップ率との差分を減じた低スリップ率側の線形領域に設定されていることを特徴とする電動車両の制御装置。
3 ディファレンシャルギヤ
3a 減速機構
4 駆動軸
5 液圧ユニット
5a 液圧配管
9 車輪速センサ
10 インバータ
50 ブレーキコントローラ
60 バッテリコントローラ
100 モータコントローラ
110 車両コントローラ
W/C ホイルシリンダ
Claims (20)
- 車両の駆動輪にディファレンシャルギヤ及びドライブシャフトを介して接続し、前記駆動輪に制駆動トルクを発生するモータと、
前記駆動輪に対して独立して制動力を発生可能な機械式制動装置と、
を備えた電動車両に用いられるよう構成された電動車両の制御装置であって、
前記車両の駆動輪の回転速度を検出する車輪速度検出部と、
前記車両の車体速を算出する車体速算出部と、
前記算出された車体速と前記検出された前記駆動輪の車輪速から前記駆動輪のスリップ率を算出し、所定以上のスリップ率を検出すると、前記駆動輪のスリップ率が目標モータスリップ率となるようにスリップ状態を抑制するスリップ抑制制御部と、を備え、
前記スリップ抑制制御部は、前記駆動輪のスリップ率が前記目標モータスリップ率となるように前記モータのトルク絶対値を減少させるモータスリップ抑制制御部と、前記機械式制動装置によって前記左右駆動輪のうち車輪速の高い駆動輪に低い駆動輪よりも大きな制動力を与える駆動輪制動力制御部と、を有することを特徴とする電動車両の制御装置。 - 請求項1に記載の電動車両の制御装置において、
前記スリップ抑制制御部は、制動時に実施されることを特徴とする電動車両の制御装置。 - 請求項2に記載の電動車両の制御装置において、
前記駆動輪制動力制御部は、前記車輪速の低い駆動輪には制動力を与えないことを特徴とする電動車両の制御装置。 - 請求項1に記載の電動車両の制御装置において、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、
前記車両の減速度を算出する減速度算出部と、を備え、
前記スリップ抑制制御部は、算出された路面摩擦係数が所定摩擦係数以上であって、前記算出された減速度が所定減速度以上のときに、前記モータトルクをゼロ付近となるよう低減することを特徴とする電動車両の制御装置。 - 請求項1に記載の電動車両の制御装置において、
運転者の要求制動力を算出する要求制動力算出部と、
前記車両に発生している実制動力を算出する実制動力算出部と、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、を備え、
前記駆動輪制動力制御部は、前記機械式制動装置によって前記駆動輪のスリップ率が前記目標モータスリップ率よりも小さな目標ブレーキスリップ率となるようにスリップ状態を抑制する制御部であり、
前記スリップ抑制制御部は、算出された路面摩擦係数が第1の路面摩擦係数から該第1の路面摩擦係数より高い第2の路面摩擦係数へ変化したときは、前記実制動力が前記要求制動力に近づくほど、前記目標ブレーキスリップ率を前記目標モータスリップ率に近づけることを特徴とする電動車両の制御装置。 - 請求項5に記載の電動車両の制御装置において、
前記モータスリップ抑制制御部は、前記実制動力が前記要求制動力と一致した後に、前記目標モータスリップ率をゼロとすることを特徴とする電動車両の制御装置。 - 車両の駆動輪にディファレンシャルギヤ及びドライブシャフトを介して接続し、前記駆動輪に回生トルクを発生するモータと、
前記駆動輪に対して独立して制動力を発生可能な機械式制動装置と、
備えた電動車両に用いられる電動車両の制御装置において、
前記車両の駆動輪の回転速度を検出する車輪速検出部と、
前記車両の車体速を算出する車体速算出部と、
前記回生制動のときに前記算出された車体速と前記検出された前記駆動輪の車輪速から前記駆動輪のスリップ率を算出し、所定以上のスリップ率を検出すると前記駆動輪のスリップ率が目標スリップ率になるよう前記駆動輪の速度を制御する駆動輪スリップ制御部と、を備え、
前記駆動輪スリップ制御部は、発生している前記モータの回生トルクを所定の目標回生トルクに減少させると共に、前記機械式制動装置により前記左右駆動輪のうち車輪速の高い駆動輪に車輪速が低い駆動輪よりも大きな制動力を与え、前記駆動輪のスリップ率が前記目標スリップ率になるよう制御することを特徴とする電動車両の制御装置。 - 請求項7に記載の電動車両の制御装置において、
前記駆動輪スリップ制御部は、前記車輪速の低い駆動輪に対して前記機械式制動装置による制動力を与えないことを特徴とする電動車両の制御装置。 - 請求項8に記載の電動車両の制御装置において、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、
前記車両の減速度を算出する減速度算出部と、を備え、
前記駆動輪スリップ制御部は、算出された路面摩擦係数が所定の路面摩擦係数以上であって、前記算出された減速度が所定の減速度以上のときは前記モータトルクをゼロ付近になるよう低減することを特徴とする電動車両の制御装置。 - 請求項9に記載の電動車両の制御装置において、
運転者の要求制動力を算出する要求制動力算出部と、
前記車両に発生している実制動力を算出する実制動力算出部と、
走行中の路面摩擦係数を算出する路面摩擦係数算出部と、を備え、
前記駆動輪スリップ制御部は、前記機械式制動装置によって前記駆動輪のスリップ率が前記目標スリップ率よりも小さな目標ブレーキスリップ率となるようにスリップ状態を抑制する制御部であり、
前記駆動輪スリップ制御部は、算出された路面摩擦係数が第1の路面摩擦係数から該第1の路面摩擦係数より高い第2の路面摩擦係数へ変化したときは、前記実制動力が前記要求制動力に近づくほど、前記目標ブレーキスリップ率を前記目標スリップ率に近づけることを特徴とする電動車両の制御装置。 - 請求項10に記載の電動車両の制御装置において、
前記駆動輪スリップ制御部は、前記実制動力と前記要求制動力とが一致した後に、前記目標スリップ率をゼロとすることを特徴とする電動車両の制御装置。 - 請求項7に記載の電動車両の制御装置において、
前記目標スリップ率は、駆動輪と路面との間のμ―s特性曲線の頂点のスリップ率より低スリップ率側の線形領域に設定されていることを特徴とする電動車両の制御装置。 - 請求項12に記載の電動車両の制御装置において、
前記目標ブレーキスリップ率は、前記目標スリップ率から、前記頂点のスリップ率と前記目標スリップ率との差分を減じた低スリップ率側の線形領域に設定されていることを特徴とする電動車両の制御装置。 - 車両の駆動輪にディファレンシャルギヤ及びドライブシャフトを介して接続し、前記駆動輪に回生トルクを発生するモータと、
前記駆動輪に対して独立して制動力を発生可能な機械式制動装置と、
を備えた電動車両の制御装置であって、
前記車両の駆動輪の回転速度を検出する車輪速検出部と、
前記車両の車体速を算出する車体速算出部と、
前記回生制動のときに前記算出された車体速と前記検出された前記駆動輪の車輪速から前記駆動輪のスリップ率を算出し、所定以上のスリップ率を検出すると前記駆動輪のスリップ率が目標スリップ率になるよう前記駆動輪の速度を制御する駆動輪スリップ制御部と、を備え、
前記駆動輪スリップ制御部は、発生している前記モータの回生トルクを所定の目標回生トルクに減少させると共に、前記機械式制動装置を用いて前記左右駆動輪のうちスリップ率が低い駆動輪に対してのみ制動力を与えることを特徴とする電動車両の制御装置。 - 請求項14に記載の電動車両の制御装置において、
前記車両の減速度を算出する減速度算出部を備え、
前記駆動輪スリップ制御部は、前記算出された減速度が所定の減速度以上のときには前記モータトルクをゼロ付近になるように低減することを特徴とする電動車両の制御装置。 - 請求項15に記載の電動車両の制御装置において、
走行中の路面摩擦係数を算出する路面摩擦係数算出部を備え、
前記駆動輪スリップ制御部は、前記算出された路面摩擦係数が所定の路面摩擦係数以上のときには前記モータトルクをゼロ付近になるように低減することを特徴とする電動車両の制御装置。 - 請求項16に記載の電動車両の制御装置において、
運転者の要求制動力を算出する要求制動力算出部と、
前記車両に発生している実制動力を算出する実制動力算出部と、を備え、
前記駆動輪スリップ制御部は、前記機械式制動装置によって前記駆動輪のスリップ率が前記目標モータスリップ率よりも小さな目標ブレーキスリップ率となるようにスリップ状態を抑制する制御部であり、
前記駆動輪スリップ制御部は、算出された路面摩擦係数が第1の路面摩擦係数から該第1の路面摩擦係数より高い第2の路面摩擦係数へ変化すると、前記実制動力が前記要求制動力に近づくほど、前記目標ブレーキスリップ率を前記目標スリップ率へ近づけることを特徴とする電動車両の制御装置。 - 請求項17に記載の電動車両の制御装置において、
前記駆動輪スリップ制御部は、前記実制動力と前記要求制動力とが一致した後に、前記目標スリップ率をゼロとすることを特徴とする電動車両の制御装置。 - 請求項14に記載の電動車両の制御装置において、
前記目標スリップ率は、駆動輪と路面との間のμ―s特性曲線の頂点のスリップ率より低スリップ側の線形領域に設定されていることを特徴とする電動車両の制御装置。 - 請求項19に記載の電動車両の制御装置において、
前記目標ブレーキスリップ率は、前記目標スリップ率から、前記頂点のスリップ率と前記目標スリップ率との差分を減じた低スリップ率側の線形領域に設定されていることを特徴とする電動車両の制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14848816.6A EP3050765B1 (en) | 2013-09-26 | 2014-09-03 | Control device for electric vehicle |
CN201480046389.1A CN105492266B (zh) | 2013-09-26 | 2014-09-03 | 电动车辆的控制装置 |
US14/915,806 US10137784B2 (en) | 2013-09-26 | 2014-09-03 | Control device for electric vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013200436A JP6236672B2 (ja) | 2013-09-26 | 2013-09-26 | 電動車両の制御装置 |
JP2013-200436 | 2013-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045759A1 true WO2015045759A1 (ja) | 2015-04-02 |
Family
ID=52742906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/073123 WO2015045759A1 (ja) | 2013-09-26 | 2014-09-03 | 電動車両の制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10137784B2 (ja) |
EP (1) | EP3050765B1 (ja) |
JP (1) | JP6236672B2 (ja) |
CN (1) | CN105492266B (ja) |
WO (1) | WO2015045759A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104943053A (zh) * | 2015-06-01 | 2015-09-30 | 陈友寿 | 利用废旧轮胎橡胶注射生产汽车轮胎垫带的方法及其产品 |
CN108394313A (zh) * | 2018-01-22 | 2018-08-14 | 武汉理工大学 | 一种基于滑移率的四驱电动汽车转矩控制分配方法 |
US20220063420A1 (en) * | 2020-08-25 | 2022-03-03 | Hyundai Mobis Co., Ltd. | Method and apparatus for controlling driving force for dual-motor-equipped vehicle |
CN114954028A (zh) * | 2021-08-25 | 2022-08-30 | 长城汽车股份有限公司 | 四驱汽车的制动控制方法、装置、车辆及存储介质 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6201209B2 (ja) * | 2013-09-12 | 2017-09-27 | 日立オートモティブシステムズ株式会社 | 駆動力制御装置及び駆動力制御方法 |
DE102014210559A1 (de) * | 2014-06-04 | 2015-12-17 | Robert Bosch Gmbh | Steuervorrichtung für ein rekuperatives Bremssystem und Verfahren zum Betreiben eines rekuperativen Bremssystems |
GB2545217A (en) | 2015-12-09 | 2017-06-14 | Jaguar Land Rover Ltd | Control system for a motor vehicle and method |
FR3044992B1 (fr) * | 2015-12-15 | 2019-05-31 | Foundation Brakes France | Procede de commande d'un systeme de freinage apte a realiser la fonction frein de parking |
JP6298037B2 (ja) * | 2015-12-24 | 2018-03-20 | トヨタ自動車株式会社 | 駆動装置の制御システム |
JP6414044B2 (ja) * | 2015-12-25 | 2018-10-31 | トヨタ自動車株式会社 | 車両の駆動力制御装置 |
JP6644635B2 (ja) * | 2016-05-23 | 2020-02-12 | Ntn株式会社 | 車両の旋回制御装置 |
JP6631453B2 (ja) * | 2016-09-26 | 2020-01-15 | 株式会社アドヴィックス | 車両の制動制御装置 |
WO2018216796A1 (ja) * | 2017-05-25 | 2018-11-29 | カルソニックカンセイ株式会社 | 車両の駆動力制御装置及び駆動力制御方法 |
US10814846B2 (en) * | 2017-08-11 | 2020-10-27 | Ford Global Technologies, Llc | Traction control based on friction coefficient estimation |
KR102518238B1 (ko) * | 2017-12-22 | 2023-04-07 | 현대자동차주식회사 | 차량의 코스트 리젠 토크 적용 방법 |
JP6990622B2 (ja) * | 2018-04-26 | 2022-01-12 | 日立Astemo株式会社 | 制駆動力制御装置、車両制御方法および車両制御システム |
KR102542523B1 (ko) * | 2018-05-30 | 2023-06-12 | 에이치엘만도 주식회사 | 브레이크 시스템 및 그 제어 방법 |
JP7139883B2 (ja) * | 2018-10-29 | 2022-09-21 | 株式会社アドヴィックス | 車両の制動制御装置 |
JP6973664B2 (ja) * | 2018-12-18 | 2021-12-01 | 日産自動車株式会社 | 4輪駆動車の車体速推定方法および車体速推定装置 |
JP7132862B2 (ja) * | 2019-01-29 | 2022-09-07 | 日立Astemo株式会社 | 電動車両の制御装置、制御方法および制御システム |
JP7211330B2 (ja) | 2019-10-23 | 2023-01-24 | トヨタ自動車株式会社 | 制動制御装置 |
JP7172950B2 (ja) * | 2019-10-31 | 2022-11-16 | トヨタ自動車株式会社 | 車両用ブレーキシステム |
JP2021087235A (ja) * | 2019-11-25 | 2021-06-03 | トヨタ自動車株式会社 | 電動車両の制動装置 |
JP2023510539A (ja) | 2020-01-15 | 2023-03-14 | ボルボトラックコーポレーション | 大型車両用差動電気駆動装置 |
US11654875B2 (en) * | 2020-01-21 | 2023-05-23 | Ford Global Technologies, Llc | Regenerative braking and anti-lock braking control system |
JP7041704B2 (ja) * | 2020-03-12 | 2022-03-24 | 本田技研工業株式会社 | 挙動制御装置及び挙動制御方法 |
CN111994056B (zh) * | 2020-08-10 | 2022-01-07 | 中车唐山机车车辆有限公司 | 一种城轨列车的制动力分配方法,装置及系统 |
CN112406825B (zh) * | 2020-11-10 | 2021-12-17 | 东风越野车有限公司 | 一种制动能量回收控制方法 |
EP4001030A1 (en) * | 2020-11-16 | 2022-05-25 | Volvo Truck Corporation | A method for controlling wheel slip of a vehicle |
EP4005883A1 (en) | 2020-11-25 | 2022-06-01 | Volvo Truck Corporation | A system and a method for controlling wheel slip of a vehicle |
JP2022184143A (ja) * | 2021-05-31 | 2022-12-13 | 住友ゴム工業株式会社 | 路面の状態の判定方法 |
EP4108529B1 (en) * | 2021-06-24 | 2024-10-30 | Volvo Truck Corporation | A method for controlling propulsion of a heavy-duty vehicle |
CN113386584A (zh) * | 2021-08-16 | 2021-09-14 | 达芬骑动力科技(北京)有限公司 | 车辆的防抱死控制方法、系统及电动车 |
CN116278814B (zh) * | 2023-05-19 | 2023-07-21 | 成都赛力斯科技有限公司 | 基于滑移率的汽车稳定性控制方法、装置及新能源汽车 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02151538A (ja) * | 1988-12-01 | 1990-06-11 | Mitsubishi Motors Corp | 車両の加速スリップ防止装置 |
JPH10297462A (ja) * | 1997-04-28 | 1998-11-10 | Toyota Motor Corp | 制動力制御装置 |
JP3438242B2 (ja) | 1992-12-10 | 2003-08-18 | トヨタ自動車株式会社 | 電気自動車のアンチロック制御装置 |
JP2003320929A (ja) * | 2002-04-30 | 2003-11-11 | Nissan Motor Co Ltd | 制動制御装置 |
JP2008265427A (ja) * | 2007-04-17 | 2008-11-06 | Toyota Motor Corp | 制駆動力制御装置 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4671577A (en) * | 1985-11-21 | 1987-06-09 | Urban Transportation Development Corporation Ltd. | Combined regenerative and friction braking system for a vehicle |
US5472265A (en) | 1992-12-10 | 1995-12-05 | Toyota Jidosha Kabushiki Kaisha | Antilock braking control apparatus for electric vehicle |
US5450324A (en) * | 1993-01-07 | 1995-09-12 | Ford Motor Company | Electric vehicle regenerative antiskid braking and traction control system |
JP3263844B2 (ja) * | 1995-09-20 | 2002-03-11 | 三菱自動車工業株式会社 | 電気式車両の回生制動制御装置 |
US6076898A (en) * | 1997-04-18 | 2000-06-20 | Aisin Seiki Kabushiki Kaisha | Braking control system for a four-wheel drive vehicle |
JP3541621B2 (ja) * | 1997-06-10 | 2004-07-14 | トヨタ自動車株式会社 | 車両用制動装置 |
JP3811372B2 (ja) * | 2001-05-30 | 2006-08-16 | トヨタ自動車株式会社 | 車輌の制動力制御装置 |
EP1502805B1 (en) * | 2002-05-07 | 2018-09-19 | Kabushiki Kaisha Bridgestone | Method and device for controlling vehicle |
KR100534709B1 (ko) * | 2003-12-30 | 2005-12-07 | 현대자동차주식회사 | 전기자동차의 회생제동 제어 방법 및 장치 |
JP4526342B2 (ja) | 2004-09-27 | 2010-08-18 | 株式会社アドヴィックス | 4輪駆動車両の運動制御装置 |
JP2006311791A (ja) * | 2005-03-31 | 2006-11-09 | Advics:Kk | 車両用ブレーキ制御装置 |
JP4002279B2 (ja) * | 2005-06-27 | 2007-10-31 | 本田技研工業株式会社 | 車両のトラクション制御装置 |
JP4188348B2 (ja) * | 2005-08-10 | 2008-11-26 | 株式会社日立製作所 | 電動車両の走行制御装置および電動走行制御システム |
US8308248B2 (en) * | 2007-04-05 | 2012-11-13 | Continental Teves Ag & Co. Ohg | Method for operating a vehicle brake system and vehicle brake system |
JP2009067358A (ja) * | 2007-09-18 | 2009-04-02 | Advics:Kk | 車両自動走行制御装置 |
US8612076B2 (en) * | 2008-10-31 | 2013-12-17 | Mahindra Reva Electric Vehicles Pvt. Ltd. | Antilock braking for vehicles |
JP2010115059A (ja) * | 2008-11-07 | 2010-05-20 | Toyota Motor Corp | 車両およびその制御方法 |
DE102010003076A1 (de) * | 2009-08-05 | 2011-08-18 | Continental Automotive GmbH, 30165 | Verfahren zur Regelung eines Radbremsschlupfes und Radbremsschlupfregelsystem für ein Fahrzeug mit einem Elektroantrieb |
CN102029915B (zh) * | 2009-09-25 | 2013-06-26 | 株式会社万都 | 再生制动系统 |
US8788144B2 (en) * | 2009-11-30 | 2014-07-22 | GM Global Technology Operations LLC | Braking torque adjustments based on wheel slip |
JP4913205B2 (ja) * | 2009-12-18 | 2012-04-11 | 日立オートモティブシステムズ株式会社 | 電動車両の制動制御装置 |
JP5354086B2 (ja) * | 2010-03-01 | 2013-11-27 | トヨタ自動車株式会社 | 電動車両およびその制御方法 |
BR112012021958A2 (pt) * | 2010-03-02 | 2016-06-07 | Int Truck Intellectual Prop Co | característica de reajuste do sistema de freio regenerativo e calibragem adaptativa para veículos elétricos e híbridos |
WO2011114557A1 (ja) * | 2010-03-16 | 2011-09-22 | 株式会社ユニバンス | 電気自動車、制動プログラム、並びに電気自動車の制御装置および制御方法 |
US9527484B2 (en) * | 2010-04-08 | 2016-12-27 | GM Global Technology Operations LLC | Regenerative braking control using a dynamic maximum regenerative braking torque calculation |
US8612074B2 (en) * | 2010-05-07 | 2013-12-17 | GM Global Technology Operations LLC | Regenerative braking control in vehicles |
JP5494328B2 (ja) * | 2010-07-23 | 2014-05-14 | 日産自動車株式会社 | 電動車両の回生制動時差動制限制御装置 |
CN102791544B (zh) * | 2010-08-30 | 2015-07-01 | 丰田自动车株式会社 | 车辆的制动力控制装置 |
US20120133202A1 (en) * | 2010-11-29 | 2012-05-31 | Gm Global Technology Operations, Inc. | Dynamic regenerative braking torque control |
JP5730636B2 (ja) * | 2011-03-25 | 2015-06-10 | 本田技研工業株式会社 | トラクション制御装置 |
JP5699041B2 (ja) * | 2011-06-15 | 2015-04-08 | 日立オートモティブシステムズ株式会社 | ブレーキ制御装置 |
JP5879143B2 (ja) | 2012-02-09 | 2016-03-08 | 日立オートモティブシステムズ株式会社 | 車両運動制御装置及び車両運動制御方法 |
US8712616B2 (en) * | 2012-04-26 | 2014-04-29 | Ford Global Technologies, Llc | Regenerative braking control to mitigate powertrain oscillation |
DE102013205314B4 (de) * | 2013-03-26 | 2016-09-29 | Continental Automotive Gmbh | Verfahren zum Betreiben einer Rekuperationsbremseinrichtung eines Kraftfahrzeugs und Rekuperationsbremseinrichtung für ein Kraftfahrzeug |
US9586488B2 (en) * | 2013-05-21 | 2017-03-07 | Toyota Jidosha Kabushiki Kaisha | Brake apparatus |
JP6201209B2 (ja) * | 2013-09-12 | 2017-09-27 | 日立オートモティブシステムズ株式会社 | 駆動力制御装置及び駆動力制御方法 |
JP6167363B2 (ja) * | 2013-09-12 | 2017-07-26 | 日立オートモティブシステムズ株式会社 | 電動車両の制御装置及び電動車両の制御方法 |
JP6219186B2 (ja) * | 2014-01-31 | 2017-10-25 | 日立オートモティブシステムズ株式会社 | ブレーキ制御装置 |
KR101566751B1 (ko) * | 2014-05-12 | 2015-11-06 | 현대자동차 주식회사 | 하이브리드 차량의 회생 제동 제어 장치 및 방법 |
-
2013
- 2013-09-26 JP JP2013200436A patent/JP6236672B2/ja active Active
-
2014
- 2014-09-03 EP EP14848816.6A patent/EP3050765B1/en active Active
- 2014-09-03 US US14/915,806 patent/US10137784B2/en active Active
- 2014-09-03 WO PCT/JP2014/073123 patent/WO2015045759A1/ja active Application Filing
- 2014-09-03 CN CN201480046389.1A patent/CN105492266B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02151538A (ja) * | 1988-12-01 | 1990-06-11 | Mitsubishi Motors Corp | 車両の加速スリップ防止装置 |
JP3438242B2 (ja) | 1992-12-10 | 2003-08-18 | トヨタ自動車株式会社 | 電気自動車のアンチロック制御装置 |
JPH10297462A (ja) * | 1997-04-28 | 1998-11-10 | Toyota Motor Corp | 制動力制御装置 |
JP2003320929A (ja) * | 2002-04-30 | 2003-11-11 | Nissan Motor Co Ltd | 制動制御装置 |
JP2008265427A (ja) * | 2007-04-17 | 2008-11-06 | Toyota Motor Corp | 制駆動力制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104943053A (zh) * | 2015-06-01 | 2015-09-30 | 陈友寿 | 利用废旧轮胎橡胶注射生产汽车轮胎垫带的方法及其产品 |
CN108394313A (zh) * | 2018-01-22 | 2018-08-14 | 武汉理工大学 | 一种基于滑移率的四驱电动汽车转矩控制分配方法 |
US20220063420A1 (en) * | 2020-08-25 | 2022-03-03 | Hyundai Mobis Co., Ltd. | Method and apparatus for controlling driving force for dual-motor-equipped vehicle |
CN114954028A (zh) * | 2021-08-25 | 2022-08-30 | 长城汽车股份有限公司 | 四驱汽车的制动控制方法、装置、车辆及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3050765A4 (en) | 2017-06-14 |
CN105492266B (zh) | 2018-10-02 |
US20160214486A1 (en) | 2016-07-28 |
US10137784B2 (en) | 2018-11-27 |
JP6236672B2 (ja) | 2017-11-29 |
CN105492266A (zh) | 2016-04-13 |
JP2015066996A (ja) | 2015-04-13 |
EP3050765B1 (en) | 2020-11-11 |
EP3050765A1 (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6236672B2 (ja) | 電動車両の制御装置 | |
US10336195B2 (en) | Vehicle control apparatus and vehicle control method | |
JP6167363B2 (ja) | 電動車両の制御装置及び電動車両の制御方法 | |
US9975537B2 (en) | Running control device for vehicles | |
JP5302749B2 (ja) | 電気自動車の制御装置 | |
JP6201209B2 (ja) | 駆動力制御装置及び駆動力制御方法 | |
JP3811372B2 (ja) | 車輌の制動力制御装置 | |
US9931962B2 (en) | Control device for electric vehicle and control method for electric vehicle | |
US9283936B2 (en) | Braking force control apparatus for vehicle | |
JP5252118B2 (ja) | 車両制御装置 | |
US8818671B2 (en) | Vehicle brake control device | |
JP6056340B2 (ja) | 制動制御装置 | |
WO2015016326A1 (ja) | 車両制御装置 | |
WO2015016325A1 (ja) | 車両制御装置 | |
JP5506632B2 (ja) | 車両用ブレーキ装置 | |
JP2009214566A (ja) | 4輪駆動車の駆動力制御装置 | |
JP6154332B2 (ja) | 車両の制動制御装置 | |
JP2016190607A (ja) | 車両の制御装置 | |
JP2011051535A (ja) | 電気ブレーキ装置 | |
WO2019176795A1 (ja) | 反力付加装置 | |
WO2014157513A1 (ja) | 車両用ブレーキ制御装置 | |
KR101519224B1 (ko) | 회생제동을 이용한 esc제어 시스템 및 그 제어방법 | |
JP2016043718A (ja) | 車両用制動装置 | |
JP2020111245A (ja) | 車両の制動力制御装置 | |
JP2006352954A (ja) | 回生制動システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480046389.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14848816 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14915806 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014848816 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014848816 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |