Beschreibung
Überspannungsabieiter Die Erfindung betrifft einen Überspannungsabieiter gemäß dem Oberbegriff des Patentanspruchs 1.
Überspannungsabieiter sind Schutzsysteme beispielsweise für Schaltanlagen, die bei auftretenden Überspannungen durch Blitzeinschlag oder Fehlfunktionen anderer Teilsysteme diese Überspannungen zur Masse hin ableiten und so andere Bauteile der Schaltanlage schützen.
Ein derartiger Überspannungsabieiter umfasst ein oder mehrere zylindrische Ableitelemente, die eine aus einzelnen ebenfalls zylindrischen Varistorelementen aufgebaute Varistorsäule aufweisen. Varistorelemente zeichnen sich durch einen spannungsabhängigen Widerstand aus. Bei niedrigen Spannungen wirken diese als Isolatoren. Ab einer bestimmten Schwellenspannung, die materialabhängig ist, zeigen sie eine gute Leitfähigkeit. Häufig werden Varistorelemente aus Metalloxiden wie Zinkoxid hergestellt. Das Ableitelement wird an beiden Enden von Endarmaturen begrenzt, die den elektrischen Kontakt zur Schaltanlage und zur Masse herstellen. Um einen guten elektrischen Kontakt auch unter mechanischer Belastung zu gewährleisten, muss die Varistorsäule unter Druck zusammengehalten werden. Dies kann erfolgen, indem Zugelemente beispielsweise Seile oder Stäbe vorzugsweise aus glasfaserverstärktem Kunststoff in den Endarmaturen unter Zug eingespannt werden. Die Zugele- mente umgeben dabei die Varistorsäule und bilden so einen Käfig um diese.
Für den Einsatz in gasisolierten Schaltanlagen weisen Über- spannungsableiter ein fluiddichtes Gehäuse auf, das das Ab- leitelement umgibt. Das Gehäuse ist dabei zur Erhöhung der Durchschlagfestigkeit mit einem Fluid, meist Schweielhexa- fluorid, gefüllt. Das Gehäuse besteht meist aus Metall und ist elektrisch geerdet. Eine Endarmatur der Ableitsäule ist
über einen durch das Gehäuse geführten Kontakt geerdet . Die andere Endarmatur ist über eine Durchführung mit einem an der Außenseite des Gehäuses befindlichen Kontakt elektrisch verbunden, der dem Anschluss an die Schaltanlage dient.
Soll die Schaltanlage elektrisch getestet werden, so muss wegen der dann auftretenden hohen Spannungen der Überspannungsabieiter von der Schaltanlage getrennt werden. Andernfalls würde der Überspannungsabieiter die Spannung zur Erde ablei- ten und das Messergebnis würde verfälscht. Deswegen weisen
Überspannungsabieiter manchmal eine Trennvorrichtung auf, womit der Überspannungsabieiter von der Schaltanlage getrennt werden kann. Die Durchführung weist für jedes Ableitelement einen Hochspannungskontakt auf, der eine gasdichte elektrische Verbindung vom Gehäuseinneren zum Gehäuseäußeren herstellt. Bei gasisolierten Überspannungsableitern ist die Durchführung häufig aus Gießharz, in das die Hochspannungskontakte einge- gössen sind. Dis Position der Kontakte wird häufig durch Betreiber oder Hersteller der Schaltanlage vorgegeben. Bislang musste das Gehäuse mit der Anordnung der Ableitelemente sowie gegebenenfalls die Trennvorrichtung darauf hin konstruiert werden .
Aus der WO 2012/168112 AI (201112297) ist ein ÜberSpannungsab- leiter bekannt, dessen Ableitelement konzentrisch zum Hochspannungskontakt angeordnet ist. Eine bewegliche Steuerhaube dient dabei als Trennvorrichtung.
Aus der Anmeldung mit dem Anmeldeaktenzeichen DE 10 2012 217 310.2 (201222978) ist ein Überspannungsabieiter mit drei Ableitsäulen bekannt. Die Ableitsäulen sind radial nach außen versetzt zu den Hochspannungskontakten angeordnet. Ein durch die Endarmatur der Ableitelemente geführtes Kontaktelement ist mittels einer Schubstange in axialer Richtung verschiebbar und stellt die Verbindung zum Hochspannungskontakt her oder trennt diese.
Allen im Stand der Technik bekannten Überspannungsableitern ist gemeinsam, dass die Lage und Anordnung der Ableitsäulen durch die Geometrie der Hochspannungskontakte bestimmt ist. Aufgabe der vorliegenden Erfindung ist es, einen Überspannungsabieiter mit flexibleren Konstruktionsmöglichkeiten anzugeben .
Die Aufgabe wird mit den Mitteln der Erfindung gemäß Patent- anspruch 1 gelöst.
Dazu weist ein Überspannungsabieiter ein fluiddichtes Gehäuse und ein in dem fluiddichten Gehäuse angeordnetes Ableitelement auf. Das Ableitelement umfasst eine Ableitsäule aus Va- ristorelementen, eine Endarmatur an jedem der Enden und in den Endarmaturen eingespannte und um die Ableitsäule angeordnete Zugelemente und ist mit seiner Längsachse parallel zur Gehäuseachse ausgerichtet. Außerdem umfasst der Überspannungsabieiter eine Durchführung mit einem Hochspannungskontakt, der das Innere mit dem Äußeren des Gehäuses (2) elektrisch verbindet, und ein Kontaktelement, das mit dem Ableitelement elektrisch verbunden ist, und über das eine elektrische Verbindung vom Ableitelement zum Hochspannungskontakt herstellbar ist. Erfindungsgemäß ist das Kontaktelement exzentrisch zur Längsachse angeordnet und die Position des Kontaktelementes ist in einer Ebene senkrecht zur Längsachse einstellbar. Somit kann bei gleichbleibender Position des Ableitelementes das Kontaktelement auf unterschiedliche Positionen des Hochspannungskontaktes eingestellt werden und/oder das Ableitele- ment innerhalb der Einstellgrenzen des Kontaktelementes unterschiedlich positioniert werden. Im ersten Fall kann der Überspannungsabieiter auf Durchführungen mit unterschiedlicher Anordnung der Hochspannungskontakte angepasst werden, ohne, dass dies konstruktive Änderungen an anderen Bauteilen zur Folge hat. Im zweiten Fall kann das Ableitelement unabhängig von der Anordnung des Hochspannungskontaktes angeordnet werden, wodurch eine flexiblere Konstruktion ermöglicht wird .
Λ
In einer bevorzugten Ausführung der Erfindung ist das Kontaktelement durch eine Exzenterscheibe mit dem Ableitelement verbunden. Die Exzenterscheibe ist dabei um die Längsachse drehbar. Das Kontaktelement ist auf der Exzenterscheibe exzentrisch, also beabstandet zur Längsachse angeordnet und mit ihr mechanisch und elektrisch verbunden. Die Exzenterscheibe ist dabei aus einem elektrisch leitenden Material hergestellt. Eine Drehung der Exzenterscheibe um die Längsachse bewirkt dabei eine Drehung des Kontaktelementes um diese auf einer Kreisbahn. Der Hochspannungskontakt lässt sich nun beliebig auf dieser Kreisbahn positionieren. Liegt die Position des Hochspannungskontaktes und damit des Kontaktelementes fest, lässt sich das Ableitelement beliebig auf der Kreisbahn um das Kontaktelement anordnen. Bevorzugt ist das Kontaktelement stiftartig ausgeführt und in einer exzentrisch zur
Längsachse angeordneten Führungsbohrung der Exzenterscheibe eingesteckt. Dies eröffnet auf besonders einfache Weise konstruktive Freiheitsgrade.
In einer vorteilhaften Ausführung der Erfindung weist die Exzenterscheibe eine zylindrische Ausnehmung auf, die konzentrisch zur Längsachse ist. In diese Ausnehmung ist eine Endarmatur des Ableitelementes einsteckbar. Sind Endarmatur und Ausnehmung rund, so lässt sich die Exzenterscheibe frei um die Endarmatur drehen. Möglich ist auch eine mehreckige Ausführung von Endarmatur und Ausnehmung. Dann lässt sich die Exzenterscheibe in Schritten entsprechend der Eckenzahl um die Längsachse der Endarmatur drehen. Das Kontaktelement ist in beiden Varianten auf der der Ausnehmung gegenüber liegenden Seite der Exzenterscheibe angeordnet. Auf diese Weise lässt sich besonders einfach durch Zusammenstecken eine drehbare elektrische und mechanische Verbindung zwischen Ableitelement und Exzenterscheibe herstellen.
In einer weiteren bevorzugten Ausführung der Erfindung ist das Kontaktelement mittels einer Verschiebeeinrichtung parallel zur Längsachse verschiebbar. Dadurch ist eine elektrische
Verbindung zwischen Ableitelement und Hochspannungskontakt herstellbar oder trennbar. Die Verschiebeeinrichtung ist dabei bevorzugt an unterschiedliche Positionen des Kontaktelementes einstellbar. Bevorzugt ist dabei das Kontaktelement in der Führungsbohrung der Exzenterscheibe in Längsrichtung, also parallel zur Längsachse, geführt verschiebbar. Somit lässt sich ein Überspannungsabieiter mit einer Trennvorrichtung erheblich einfacher konstruieren, da eine veränderte Anordnung des Hochspannungskontaktes keine konstruktiven Auswirkungen auf die Trennvorrichtung hat. Die Einstellung der Trennvorrichtung an die Position des Kontaktelementes kann leicht bei der Montage erfolgen.
Vorteilhaft ist auch, dass die Verschiebeeinrichtung eine mit dem Kontaktelement verbundene Schubstange und eine vom Inneren des Gehäuses gasdicht nach außen geführte und außerhalb des Gehäuses durch eine Betätigungseinrichtung bewegbare Zentralstange aufweist. Zur Übertragung einer Bewegung der Betätigungseinrichtung auf das Kontaktelement ist ein Koppel - element mit der Zentralstange und mit der Schubstange verbunden, wobei das Koppelelement mittels eines Verbindungselements mit der Schubstange verbunden ist. Eine solche Trennvorrichtung lässt sich vorteilhaft betätigen, ohne das Gehäuse zu öffnen. Bevorzugt ist das Verbindungselement durch ein mit dem Gehäuse verbundenen Führungsstab in einer Richtung parallel zur Längsachse geführt. Dies gewährleistet eine vom Ableitelement unabhängige Führung des Verbindungselementes und damit der Schubstange. Ebenso bevorzugt ist der Führungsstab mit einem ersten Ende fest mit dem Gehäusedeckel verbun- den. Dies erlaubt eine besonders einfache Montage. Weiterhin ist bevorzugt, dass ein zweites Ende des Führungsstabes durch eine Bohrung im Verbindungselement gesteckt und das Verbindungselement entlang des Führungsstabes verschiebbar ist. Auch dies dient der einfacheren Montage.
Vorteilhaft ist ebenfalls, dass das Koppelelement einen Arm aufweist, der mit dem Koppelblock verbunden und in eine Bohrung des Verbindungselements eingesteckt ist. Dabei greift
der Führungsstab derart in eine Nut des Arms ein, dass das Verbindungselement in einer zur Längsachse senkrechten Richtung festgelegt ist. Dies erlaubt ein einfaches Zusammenstecken der Verschiebeeinrichtung ohne Kleben, Schrauben oder andere Fixierungsmittel .
Bevorzugt wird auch, dass in dem Gehäuse ein Zwischenstück angeordnet ist, das eine erste Endarmatur, die konzentrisch zur Längsachse mit dem Hochspannungskontakt verbunden ist und eine zweite Endarmatur, die in eine zweite Exzenterscheibe eingesteckt ist, aufweist. Dabei ist das Kontaktelement in eine zweite Führungsbohrung der zweiten Exzenterscheibe eingesteckt. Mittel des Zwischenstücks lässt ein Gehäuse mit einer bestimmten Länge mit unterschiedlich langen Ableitelemen- ten bestücken. Der Längenausgleich erfolgt dabei durch die gegenüber den Ableitelementen erheblich einfacheren Zwischenstücken. Die beiden Exzenterscheiben sind drehbar um die jeweilige Endarmatur angeordnet, das Kontaktelement verbindet beide. Dadurch lassen sich Ableitelement und Zwischenstück in einem weiten Bereich frei zueinander positionieren.
In einer vorteilhaften Ausführung weist das Zwischenstück ein zweites Ableitelement auf. Die für eine bestimmte Schaltanlage benötigte Anzahl der Varistorelemente wird so auf zwei Ab- leitelemente aufgeteilt. Der kleinere Teil ist dabei im zweiten Ableitelement angeordnet. Das vereinfacht die Lagerhaltung, da nur das kleinere Zwischenstück in verschiedenen Längen vorrätig gehalten werden muss. Weiterhin ist vorteilhaft, dass der Überspannungsabieiter mehrere Ableitelemente und mehrere Hochspannungskontakte aufweist, wobei die Anzahl der Ableitelemente gleich der der Hochspannungskontakte ist. Die Ableitelemente sind dabei bevorzugt rotationssymmetrisch auf einem ersten Teilkreis um die Gehäuseachse angeordnet. Die Hochspannungskontakte sind ebenfalls bevorzugt rotationssymmetrisch auf einen zweiten Teilkreis um die Gehäuseachse angeordnet. Jedes der Ableitelemente weist ein einstellbares Kontaktelement auf. Die Kon-
taktelemente sind derart eingestellt, dass ihre Position auf dem zweiten Teilkreis liegt. Ableitelemente und Hochspannungskontakte können so auf unterschiedlichen Teilkreisen liegen. Bei gleichbleibendem Durchmesser des ersten Teilkrei- ses sind die Kontaktelemente so an unterschiedliche Durchmesser des zweiten Teilkreises einstellbar. Somit ist der Über- spannungsableiter bei gleichbleibender Anordnung der Ableitelemente an Durchführungen mit unterschiedlicher Anordnung der Hochspannungskontakte einstellbar. Dadurch lässt sich ein RumpfÜberspannungsabieiter, also ein Überspannungsabieiter ohne Durchführung, vorfertigen und mit unterschiedlichen Durchführungen zu einem Überspannungsabieiter montieren, indem bei der Montage die Kontaktelemente an die jeweilige Anordnung der Hochspannungskontakte in der Durchführung einge- stellt werden.
Im Folgenden wird die Erfindung anhand der Zeichnungen näher erläutert. Dabei zeigen: Figuren 1 und 2
einen erfindungsgemäßen Überspannungsabieiter, Figur 3 eine weitere Ausführungsform eines erfindungsgemäßen Überspannungsabieiters,
Figur 4 eine Schnittdarstellung im Bereich des Hochspan- nungskontaktes
Figur 5 eine Detaildarstellung einer Verschiebeeinrichtung
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Die Figuren 1 und 2 zeigen einen Überspannungsabieiter 1. In einem fluiddichten Gehäuse 2, bei dem die im Wesentlichen zylindrische Gehäusewand nicht dargestellt ist, sind hier drei Ableitelemente 5 die für den Schutz einer dreiphasigen gas- isolierten Schaltanlage vorgesehen sind, in einem Dreieck rotationssymmetrisch um eine Gehäuseachse 50 auf einem ersten Teilkreis 30 angeordnet. Diese Ableitelemente 5 weisen jeweils eine zylindrische Ableitsäule 12, eine hochspannungs-
n
seitige Endarmatur 7, eine erdseitige Endarmatur 6 und mehrere Zugelemente 11 auf. Die Ableitsäule 12 ist aus einzelnen, ebenfalls zylindrischen Varistorblöcken zusammengesetzt. Die Endarmaturen 6, 7 bestehen meist aus elektrisch leitendem Ma- terial . Die Zugelemente 11 sind in den Endarmaturen 6, 7 unter Zug verpresst und halten so die Ableitsäule 12 zusammen.
Das Gehäuse 2 ist im Wesentlichen zylinderförmig. Entlang der Zylinderachse erstreckt sich die Gehäuseachse 50, die eine axiale Richtung definiert. Das Ableitelement 5 mit seiner Längsachse 40 parallel zu dieser Gehäuseachse 50 ausgerichtet. An den beiden Deckflächen ist das Gehäuse 2 fluiddicht verschlossen .
Auf einer Erdanschlussseite des Ableitelementes 5 ist die Deckfläche des Gehäuses 2 mit einem Gehäusedeckel 22 verschlossen. Ein Erdkontakt 3 ist über eine nicht dargestellte erdseitige Durchführung elektrisch isoliert durch den
Gehäusedeckel 22 vom Inneren zum Äußeren des Gehäuses 2 geführt und dient dem Erdungsanschluss . Im Inneren des Gehäuses 2 ist dieser Erdkontakt 3 elektrisch leitend mit dem Ableitelement 5 verbunden. Sind im Gehäuse 2 mehrere Ableitelemente 5 angeordnet, ist jedes Ableitelement 5 mit einem eigenen Erdkontakt 3 verbunden. Die erdseitige Endarmatur 6 ist mit einer Isolierscheibe 25 vom Gehäusedeckel 22 beabstandet und an der erdseitigen Durchführung befestigt. Der Gehäusedeckel 22 weist in der Regel einen hier nicht dargestellten An- schluss auf, über den ein Fluid, beispielsweise Schwefelhe- xafluorid, in das Gehäuse 2 eingefüllt, beziehungsweise abgelassen werden kann. Das Gehäuse 2 kann außerdem weitere Einrichtungen wie eine Wartungsöffnung oder einen Berstschutz aufweisen .
Auf einer Hochspannungsanschlussseite des Ableitelementes 5 ist die Deckfläche des Gehäuses 2 mit einer Hochspannungs- durchführung 14 versehen, um das elektrische Hochspannungspotential ohne Gefahr eines Überschlags zwischen Hochspannung und geerdetem Gehäuse 2 von außen in das Gehäuse 2 hinein zu
führen. Die Durchführung 14 ist hier als dreipolige Durchführung 14 ausgeführt, die drei gegeneinander und gegen das Gehäuse isolierte Hochspannungskontakte 4 in das Gehäuse 2 hinein führt. Die Hochspannungskontakte 4 sind rotationssymmet- risch um die Gehäuseachse 50 auf einem zweiten Teilkreis 31 angeordnet. Über die Hochspannungskontakte 4 kann der Über- spannungsableiter 1 an eine hier nicht dargestellte dreiphasige gasisolierte Schaltanlage angeschlossen werden. Im Inneren des Gehäuses 2 ragen die Hochspannungskontakte 4 in das Gehäuse 2 hinein. Auf der Innenseite des Gehäuses 2 weisen sie ein Sackloch auf, in das ein Kontaktelement 9 einsteckbar ist. Alternativ ist eine Ausführung möglich, in der das Kontaktelement 9 an der Innenseite des Hochspannungskontaktes 4 anliegt .
Auf die hochspannungsseitige Endarmatur 7 ist eine haubenartige Exzenterscheibe 60 aufgesteckt und gegebenenfalls mit Madenschrauben gesichert. Die Exzenterscheibe 60 weist dazu auf ihrer Unterseite eine zylindrische Ausnehmung 62 auf, die in Form und Größe der hochspannungsseitigen Endarmatur 7 entspricht. Die außenliegenden Ecken und Kanten der Exzenterscheibe 60 sind abgerundet, um Feldspitzen zu vermeiden. Ist die Exzenterscheibe 60 auf die hochspannungsseitige Endarmatur 7 aufgesteckt, lässt sie sich um eine Mittelachse des Ab- leitelementes 5 als Drehachse verdrehen. Das Kontaktelement 9 ist auf der Außenseite der Exzenterscheibe 60 beabstandet von der Drehachse angeordnet. Durch eine Verdrehung der Exzenterscheibe 60 wird das Kontaktelement 9 auf einer Kreisbahn um die Längsachse 40 bewegt und kann dadurch radial zur Gehäu- seachse 50 verstellt werden. In der gewünschten Position des Kontaktelementes 9 wird die Exzenterscheibe 60 beispielsweise mit Madenschrauben an der Endarmatur 7 fixiert. Somit kann der Überspannungsabieiter 1 auf einfache Weise an unterschiedliche Anordnungen der Hochspannungskontakte 4 angepasst werden, ohne dass die Anordnung der Ableitelemente 5 verändert werden müsste.
Die Figuren 1 und 2 zeigen Überspannungsabieiter 1 mit unterschiedlichen Anordnungen der Hochspannungskontakte 4. In der Figur 2 weisen die Hochspannungskontakte gegenüber denen der Figur 1 einen größeren Abstand von der Gehäuseachse 50, dem- entsprechend einen größeren Durchmesser des zweiten Teilkreises 31 auf. Die Anordnung der Ableitelemente 5 und damit der Durchmesser des ersten Teilkreises 30 ist in beiden Figuren gleich. Die Exzenterscheiben 60 sind in der Figur 2 gegenüber denen der Figur 1 entsprechend dem größeren Durchmesser des zweiten Teilkreises 31 nach außen verdreht und damit auf die gegenüber der Figur 1 unterschiedliche Anordnung der Hochspannungskontakte 9 eingestellt. Es lassen sich so Durchführungen 14 mit unterschiedlichen Anordnungen der Hochspannungskontakte 9 in den Überspannungsabieiter 1 einbauen, ohne dass dies Einfluss auf die Anordnung der Ableitelemente 5 hat .
Eine weitere Ausführungsform ist in der Figur 3 gezeigt. Das Ableitelement 5 weist wie in den Figuren 1 und 2 eine Exzen- terscheibe 60 um die Endarmatur 7 auf, an der ein Kontaktelement 9 angeordnet ist. In dem Gehäuse 2 ist ein zweites Ableitelement 70 angeordnet. Das zweite Ableitelement 70 ist mit einer ersten Endarmatur 71 mit dem Hochspannungskontakt 4 verbunden. Ein torusförmiger Schirm 73 um die erste Endarma- tur 71 sorgt für eine gleichförmige Feldverteilung. Eine zweite Endarmatur 72 des zweiten Ableitelementes 70 ist in eine Exzenterscheibe 74 eingesteckt . Diese Exzenterscheibe 74 weist anstelle eines Kontaktelementes 9 eine Bohrung auf. Die Längsachse des zweiten Ableitelementes 70 ist mittig mit dem Hochspannungskontakt 4 angeordnet. Die Längsachse des Ableitelementes 5 ist dazu außermittig angeordnet. Die Exzenterscheiben 60 und 74 lassen sich so gegeneinander verdrehen, dass das Kontaktelement 9 in die Bohrung der Exzenterscheibe 74 einsteckbar ist. Auf diese Weise lässt sich das Ableitele- ment 5 flexibler am Deckel 22 anordnen und muss nicht wie bisher mittig am Deckel 22 angeordnet werden. Hierdurch wird ein größerer Gestaltungsspielraum für die Platzierung weiterer Bauelemente wie beispielsweise der Betätigungseinrichtung
23, Fülleinrichtungen für das Isolierfluid, Überwachungseinrichtungen und Ähnlichen erreicht.
Auf das zweite Ableitelement 70 kann jedoch auch verzichtet und die Exzenterscheibe 74 direkt auf den Hochspannungskontakt 4 aufgesetzt werden. Durch das zweite Ableitelement 70 kann jedoch der Überspannungsabieiter leicht auf unterschiedliche Anforderungen angepasst werden. Die Anzahl der benötigten Varistorelemente ist durch die Spezifikation der Schalt- anläge unter anderem durch das Spannungsniveau festgelegt. Bisher erforderten unterschiedliche Spezifikationen ein Ableitelement 5 unterschiedlicher Länge. Dadurch musste entweder das Gehäuse 2 an die geforderte Länge des Ableitelements 5 angepasst werden, oder das Ableitelement 5 wurde durch in die Ableitsäule 12 eingesetzte leitende Einlegeteile verlängert, um ein Gehäuse 2 einer bestimmten Größe nutzen zu können. Dadurch, dass die Anzahl der benötigten Varistorelemente auf zwei Ableitelemente 5, 70 aufgeteilt wird, reduziert sich der Fertigungs- und Lagerhaltungsaufwand. Es wird ein Ableit- element 5, dessen Länge der kleinsten vorkommenden Länge entspricht, vorgefertigt. Das zweite Ableitelement 70 wird entweder in den am häufigsten benötigten Längen vorgefertigt, oder bei Bedarf angefertigt. Da das zweite Ableitelement 70 weniger Varistorelemente aufweist, wie das Ableitelement 5, muss nur ein relativ kleines Bauteil in einer gewissen Variantenanzahl gefertigt beziehungsweise vorgehalten werden. Alle anderen Bauelemente wie das Ableitelement 5, das Gehäuse 2 oder gegebenenfalls die Betätigungseinrichtung 23 bleiben bei allen oder zumindest mehreren Varianten gleich und können so wirtschaftlicher hergestellt werden. Das zweite Ableitelement 70 kann auch durch ein zylindrisches leitendes Zwischenstück ersetzt werden, zum Beispiel einen Metallzylinder. Somit kann dieselbe Gehäusegröße verwendet werden, auch wenn neben den im Ableitelement 5 verbauten Varistorelementen keine weiteren Varistorelemente benötigt werden.
Die Figuren 1, 2 und 3 zeigen außerdem eine optionale Trennvorrichtung aus einer Trennstelle 10 und einer Verschiebeein-
richtung 8 für das Kontaktelement 9. Die Trennstelle 10 kann mit einem Kontaktelement 9 geschlossen werden.
Wie in Figur 4 gezeigt, ist das Kontaktelement 9 als Stift oder Hülse zylindrisch ausgeführt, und kann in einer Führungsbohrung 26 der Exzenterscheibe 60 in axialer Richtung bewegt werden. Führungsbohrung 26 und das Kontaktelement 9 sind dabei so aufeinander abgestimmt, dass sowohl eine mechanische Führung, als auch eine gute elektrische Verbindung zwischen Kontaktelement 9 und Exzenterscheibe 60 besteht. Alternativ können Schleif- oder Gleitkontakte wie die ringförmig in das Kontaktelement 9 eingesetzten Kontaktlammellen 61 die elektrische Verbindung herstellen. Wird das Kontaktelement 9 zum Hochspannungskontakt 4 bewegt, so wird die Trenn- stelle 10 geschlossen. Es besteht dann eine elektrische Verbindung von der Schaltanlage über den Hochspannungskontakt 4 ins Innere des Gehäuses 2, über das Kontaktelement 9, die Exzenterscheibe 60, die hochspannungsseitige Endarmatur 7, die Ableitsäule 12, die erdseitige Endarmatur 6 schließlich zum geerdeten Erdkontakt 3. Wird das Kontaktelement 9 vom Hochspannungskontakt 4 weg bewegt, so wird die Trennstelle 10 geöffnet und das Ableitelement 5 hat keine elektrische Verbindung mehr zum Hochspannungskontakt 4 und damit zur Schaltanlage. Die Exzenterscheibe 60 liegt haubenartig auf der hoch- spannungsseitigen Endarmatur 7 auf. Die Exzenterscheibe weist dazu eine zylindrische Ausnehmung 62 auf, in die die Endarmatur 7 eingesteckt ist. Die Exzenterscheibe lässt sich so um die Längsachse 40 drehen. Das in die Führungsbohrung 26 eingesteckte Kontaktelement 9 rotiert dann um das Ableitelement 5. Die Endarmatur 7 ist vollständig in die Ausnehmung 62 eingesteckt. Die außenliegenden Kanten der Exzenterscheibe 60 sind abgerundet, um Feldspitzen zu vermeiden. Die Exzenterscheibe 60 sorgt so gleichzeitig für eine Abschirmung der Endarmatur 7. Die Verbindung zwischen Kontaktelement 9 und Hochspannungskontakt 4 ist hier als Steckkontakt ausgeführt. Das Kontaktelement ist in eine Kontaktbohrung 63 des Hochspannungskontaktes 4 eingesteckt. Auch hier sorgen Kontaktla-
mellen 61 für einen guten mechanischen und elektrischen Kontakt zwischen Kontaktelement 9 und Hochspannungskontakt 4.
Die Bewegung des Kontaktelementes 9 geschieht mittels einer Verschiebeeinrichtung 8, die in der Figur 5 gezeigt ist. Diese weist eine Betätigungseinrichtung 23, eine Zentralstange 16, ein Koppelelement 17 und Schubstangen 15 auf. Die außerhalb des Gehäuses 2 liegende Betätigungseinrichtung 23 ist mit der Zentralstange 16 verbunden, die gasdicht in das Ge- häuse 2 geführt ist. Auf der Zentralstange 16 ist im Inneren des Gehäuses 2 das Koppelelement 17 angeordnet. Zentralstange 16 und Koppelelement 17 bilden dabei einen Gewindeantrieb, indem die ZentralStange 16 ein Außengewinde und das Koppel - element 17 ein entsprechendes Innengewinde, beispielsweise ein Trapezgewinde aufweist. An dem Koppelelement 17 ist je
Ableitelement 5 ein radial nach außen zeigender Arm 19 angeordnet, an dessen äußerem Ende ein Verbindungselement 20 zur Aufnahme der Schubstangen 15 angeordnet ist. Die Schubstangen 15 sind mit einem Ende in diesem Verbindungselement 20 fest- gelegt und mit dem anderen Ende mit dem Kontaktelement 9 verbunden, beispielsweise verschraubt oder verklebt. Am Deckel 22 ist ein Führungsstab 28 befestigt, beispielsweise wie hier gezeigt verschraubt. Der Führungsstab 28 ragt parallel zur Gehäuseachse 50 in das Gehäuse 2 hinein. Das andere Ende ist in eine Bohrung des Verbindungselements 20 gesteckt. Das Verbindungselement kann so an dem Führungsstab 28 auf- und abgleiten und ist dadurch in der Längsrichtung geführt. Wird die Betätigungseinrichtung 23 gedreht, so dreht sich die Zentralstange 16 im Inneren des Gehäuses 2 und überträgt die rotierende Bewegung der Betätigungseinrichtung 23 mittels des Koppelelementes 17, der Arme 19 und der Verbindungselemente 20 auf die Schubstangen 15 und damit auf die Kontaktelemente 9. Je nach Bewegungsrichtung wird dabei die Trennstelle 10 geöffnet oder geschlossen.
Die Bohrungen für den Führungsstab 28 und die Schubstange 15 sind in dem Verbindungselement 20 so angeordnet, dass sie vertauscht werden können, indem das Verbindungselement 20 um
180° um den Arm 19 gedreht wird. Bei gleichbleibender Position des Führungsstabes 28 ergibt sich dadurch eine andere Position der Schubstange 15. Somit lässt sich die Exzenterscheibe 60 auf zwei Positionen einstellen, indem lediglich das Verbindungselement 20 verdreht wird. Durch Austausch des Verbindungselementes 20 lassen sich weitere Positionen der Exzenterscheibe 60 einstellen.