WO2014129654A1 - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- WO2014129654A1 WO2014129654A1 PCT/JP2014/054532 JP2014054532W WO2014129654A1 WO 2014129654 A1 WO2014129654 A1 WO 2014129654A1 JP 2014054532 W JP2014054532 W JP 2014054532W WO 2014129654 A1 WO2014129654 A1 WO 2014129654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- width
- groove
- region
- pneumatic
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0304—Asymmetric patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0327—Tread patterns characterised by special properties of the tread pattern
- B60C11/033—Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/04—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1236—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C3/00—Tyres characterised by the transverse section
- B60C3/04—Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C5/00—Inflatable pneumatic tyres or inner tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0348—Narrow grooves, i.e. having a width of less than 4 mm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0372—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0386—Continuous ribs
- B60C2011/0388—Continuous ribs provided at the equatorial plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a pneumatic tire with improved fuel efficiency.
- the total width (SW) of the pneumatic tire is reduced to reduce the front projected area (referred to as the projected area when viewed from the rolling direction of the pneumatic tire).
- the projected area when viewed from the rolling direction of the pneumatic tire.
- the grounding width is also narrowed as the total width of the pneumatic tire is narrowed, so that the cornering force (CF) is lowered and, as a result, the steering stability may be deteriorated.
- the groove area ratio of the tire outer region located on the opposite side of the vehicle from the tire equator line is set to the vehicle side from the tire equator line. It is made larger than the groove area ratio of the tire inner region located at (see, for example, Patent Document 2).
- an object of the present invention is to provide a pneumatic tire that achieves both improvement in steering stability and maintenance of drainage during turning while reducing rolling resistance.
- a pneumatic tire in which an asymmetric pattern formed by grooves in the tread portion is formed The ratio between the total width SW of the pneumatic tire and the outer diameter OD is: SW / OD ⁇ 0.3 Satisfy the relationship, and The contact width in the contact area in the tread portion is CW and the groove area ratio is GR.
- a range located on the vehicle side from the tire equator line in the contact area is a tire inner area Ai
- the contact groove area ratio in the region Ai is GRi
- a range located on the opposite side of the vehicle from the tire equator line in the contact region is a tire outer region Ao
- the contact groove area ratio in the tire outer region Ao is Is the ground
- the ground area is 0.75 ⁇ CW / SW ⁇ 0.9 10 [%] ⁇ GR ⁇ 25 [%] GRi ⁇ GRo It is formed to satisfy the relationship of A pneumatic tire is provided.
- the pneumatic tire of the present invention it is possible to achieve both improvement in steering stability and maintenance of drainage during turning while reducing rolling resistance.
- the meridional sectional view of the pneumatic tire according to the embodiment of the present invention The plane development view showing a part of the tread part of the pneumatic tire concerning the embodiment of the present invention.
- the plane expanded view which shows a part of tread part of the pneumatic tire of a prior art example.
- FIG. 1 is a meridional sectional view of a pneumatic tire 1 according to an embodiment of the present invention.
- the pneumatic tire 1 of this embodiment has the same meridional cross-sectional shape as the conventional pneumatic tire.
- the meridional cross-sectional shape of the pneumatic tire refers to a cross-sectional shape of the pneumatic tire that appears on a plane perpendicular to the tire equatorial plane CL.
- the tire radial direction refers to a direction orthogonal to the rotation axis AX of the pneumatic tire 1.
- the tire circumferential direction refers to a direction rotating around the rotation axis AX (see FIG. 2).
- the tire width direction refers to a direction parallel to the rotation axis AX.
- the tire equatorial plane CL is a plane that is orthogonal to the rotation axis AX of the pneumatic tire 1 and passes through the center of the tire width of the pneumatic tire 1.
- the tire equator line is a line along the tire circumferential direction of the pneumatic tire 1 on the tire equator plane CL. In the present specification and drawings, the same sign “CL” as that of the tire equator plane is attached to the tire equator line.
- the pneumatic tire 1 of the present embodiment includes a pair of bead portions 2, sidewall portions 3 connected to the bead portions, and a tread portion 10 that connects the sidewall portions 3 to each other in a tire meridian cross-sectional view.
- the pneumatic tire 1 of the present embodiment has a ratio between the total width SW and the outer diameter OD, SW / OD ⁇ 0.3 ⁇ ⁇ ⁇ ⁇ 1> It is formed to satisfy the relationship.
- the total width SW is the value when the rim of the pneumatic tire 1 is assembled and the internal pressure is filled at 230 [kPa] (an arbitrarily set internal pressure) in order to define the dimensions of the pneumatic tire 1.
- the distance between the sidewalls including the design on the sidewalls in a loaded state, and the outer diameter OD is the outer diameter of the tire at this time.
- the internal pressure of 230 [kPa] is selected in order to define the dimensions of the pneumatic tire. Therefore, the pneumatic tire 1 according to the present invention exhibits the effect of the present invention as long as it is filled with an internal pressure in a range normally used, and is filled with an internal pressure of 230 [kPa]. It should be noted that this is not essential for practicing the present invention.
- the rim used in the present invention has a rim diameter suitable for the inner diameter of the pneumatic tire 1 and is assembled with the nominal section Sn of the tire cross-sectional width in accordance with ISO4000-1: 2001.
- FIG. 2 is a plan development view showing a part of the tread portion 10 of the pneumatic tire 1 according to the embodiment of the present invention.
- the left side of the tire equator line CL is the vehicle side when the vehicle is mounted
- the right side of the tire equator line CL is the side opposite to the vehicle side when the vehicle is mounted. That is, in this specification and drawings, the pneumatic tire 1 is described as being mounted on the right side of the vehicle.
- the tread portion 10 of the pneumatic tire 1 of the present embodiment includes four circumferential grooves 12A, 12B, 12C, and 12D that extend in the tire circumferential direction and land that is partitioned by the circumferential grooves 12A, 12B, 12C, and 12D. Portions 14A, 14B, 14C, 14D, and 14E are formed. In the land portions 14A, 14B, 14D, and 14E, a plurality of widthwise grooves 16A that extend in a direction crossing the tire circumferential direction, which are grooves arranged in the tread portion 10 other than the circumferential grooves 12A, 12B, 12C, and 12D. 16B and sipe 18 are formed.
- the circumferential groove 12 and the width direction groove 16 are collectively referred to as grooves 12 and 16, and in the present invention, the circumferential groove 12 and the width direction groove 16 have a groove width of 1.5 mm or more. Assume that the sipe 18 has a groove width of less than 1.5 mm. As shown in FIG. 2, an asymmetric pattern is formed in the tread portion 10 by the configuration of the grooves 12, 16, the land portion 14 and the sipe 18.
- the ratio between the total width SW and the contact width CW is 0.75 ⁇ CW / SW ⁇ 0.9 (2) It is formed to satisfy the relationship.
- the contact width CW means that the pneumatic tire 1 is assembled on the rim described above, filled with an internal pressure at 230 [kPa], and applied to a plane with a load corresponding to 80% of the load capacity. It is the maximum width in the tire width direction of the contact area G, which is the area of the contact surface at the time.
- the contact length L is the maximum length of the contact region G in the tire circumferential direction.
- the load capacity is determined based on ISO 4000-1: 1994.
- the size for which the load capacity index is not set in the ISO standard is determined individually and calculated in consideration of the consistency with the standards of other countries. It is calculated based on the standard. Therefore, in the present invention, each of the following calculation formulas (c) described in “Calculation of load capacity” in JIS D4202-1994 explanation using the load capacity calculation formula adopted in the JIS standard is actually used. The load capacity of the tire size is calculated.
- the pneumatic tire 1 has a shape of the internal structure as shown in FIG. 1, a contour shape of the surface of the tread portion 10 in the meridional section, and pneumatic so as to satisfy the relationship of the above formula ⁇ 2>.
- the material of each member of the tire 1 can be determined by a conventional method, for example, by a trial test or a simulation.
- the pneumatic tire 1 when the vehicle is mounted, has a groove area ratio GR in the ground contact area G, a ground groove area ratio GRi in the tire inner area Ai, and a tire outer side in the ground contact area G of the tread portion 10.
- the ground groove area ratio in the region Ao is formed so that GRo satisfies the following relationship. 10 [%] ⁇ GR ⁇ 25 [%] ... ⁇ 3> GRi ⁇ GRo ... ⁇ 4>
- the tire inner area Ai is a range that is located on the vehicle side from the tire equator line CL in the ground contact area G and has a width that is half of the ground contact width W when the vehicle is mounted.
- the region Ao is a range that is located on the opposite side of the vehicle from the tire equator line CL in the ground contact region and is half the ground contact width W when the vehicle is mounted.
- the contact groove area ratio GRi in the tire inner region Ai is a ratio of the groove area to the sum of the land area and the groove area in the tire inner region Ai
- the contact groove area ratio in the tire outer region Ao is GRo is the ratio of the groove area to the sum of the land area and the groove area in the tire outer region Ao.
- the pneumatic tire 1 according to the present embodiment can provide the following operational effects.
- the pneumatic tire 1 according to the present embodiment is formed so that the ratio between the total width SW and the outer diameter OD satisfies the relationship of the above-described formula ⁇ 1>.
- the total width SW becomes narrower than the outer diameter OD.
- the front projected area of the pneumatic tire 1 is small, the air resistance around the tire is reduced, and consequently the rolling resistance of the pneumatic tire 1 can be reduced.
- the load capacity of the pneumatic tire 1 is reduced.
- the outer diameter OD is relatively large with respect to the total width SW by satisfying the formula ⁇ 1>, the load capacity The decrease can be suppressed.
- the pneumatic tire 1 according to the present embodiment is formed so that the ratio of the total width SW to the ground contact width CW satisfies the above-described formula ⁇ 2>. Therefore, as described in (1), the driving stability is improved by increasing the ground contact width CW with respect to the relatively narrow total width SW, and by increasing the shape of the ground contact region G in the tire width direction. Can do.
- the pneumatic tire 1 according to the present embodiment is formed such that the groove area ratio GR with respect to the ground contact area takes a value in the range indicated by the above formula ⁇ 3>.
- the range of the groove area ratio GR is set lower than that of a general pneumatic tire. Thereby, the rigidity of the tread portion 10 is increased by increasing the area where the land portion 14 is grounded, and the steering stability can be improved. If the groove area ratio GR is higher than 25%, the rigidity of the tread portion 10 is lowered, and a cornering force cannot be sufficiently obtained, and it becomes difficult to improve the steering stability. As described above, when the total width SW is narrow, drainage performance is improved. However, when the groove area ratio GR is lower than 10%, the grooves 12 and 16 provided in the tread portion 10 are reduced, and the grounding region G is sufficiently provided. It cannot be drained, and it becomes difficult to maintain drainage comprehensively.
- the contact groove area ratio GRo in the tire outer region Ao and the contact groove area ratio GRi in the tire inner region Ai satisfy the relationship of the above-described formula ⁇ 4>.
- the drainage property at the time of turning can be improved.
- the pneumatic tire 1 according to the present embodiment has a relatively large outer diameter OD and a narrow total width SW as compared with a pneumatic tire of a general size. Therefore, it is possible to expect a space saving of the automobile and an improvement in design.
- the groove area ratio GR is 15 [%] ⁇ GR ⁇ 22 [%] It is more preferable that the above relationship is satisfied. This is because the rigidity of the tread portion 10 in the tire outer region Ao is enhanced while suppressing deterioration of drainage to a high degree, and as a result, steering stability can be improved.
- the groove area ratios GR, GRi, GRo are 0.1 ⁇ (GRo ⁇ GRi) /GR ⁇ 0.6 (5) It is preferable to satisfy this relationship. This is because the rigidity of the tread portion 10 in the tire outer region Ao is increased while suppressing the deterioration of drainage, and as a result, steering stability can be improved. On the other hand, if “(GRi ⁇ GRo) / GR” is smaller than 0.1, the deterioration of drainage cannot be sufficiently suppressed. On the other hand, if “(GRi ⁇ GRo) / GR” is larger than 0.6, the block rigidity of the tread portion 10 in the tire inner region Ai is excessively decreased, which may cause a decrease in steering stability.
- the groove area ratios GR, GRi, GRo are 0.2 ⁇ (GRo ⁇ GRi) /GR ⁇ 0.4 It is more preferable that the above relationship is satisfied. This is because it is possible to achieve a higher degree of compatibility between the suppression of deterioration of drainage and the improvement of steering stability by increasing the block rigidity and the contact area.
- a tire outer inner region Aoi and a tire inner outer region Aio are defined.
- the tire outside inner region Aoi is a range having a width of 25% of the ground contact width CW located on the tire equator line CL side in the tire outer region Ao.
- the tire inner / outer region Aio is a range having a width of 25% of the ground contact width CW located on the tire equator line CL side in the tire inner region Ai.
- the contact length L of the pneumatic tire 1 according to the present embodiment becomes relatively long by satisfying the above-described formula ⁇ 1>, the influence of the groove area ratio in the center portion in the tire width direction of the tread portion 10 on drainage performance. Is big. Accordingly, the groove area ratio GRoi in the tire inner / outer region Aoi and the groove area ratio GRio in the tire inner / outer region Aio are: GRoi> GRio ... ⁇ 6> It is preferable to satisfy this relationship. This is because more grooves 12 and 16 are arranged in the tire outer region Ao having a greater influence on drainage than the tire inner region Ai in the center portion in the tire width direction of the tread portion 10 having a greater influence on drainage. is there.
- an outer area Aoo outside the tire is defined.
- the outer area Aoo outside the tire is a range having a width of 25% of the ground contact half width CW other than the inner area Aoi outside the tire, located on the side of the contact edge GEo in the tire width direction in the tire outer area Ao.
- the groove area ratio GRoi in the tire outside inner region Aoi and the groove area ratio GRoo in the tire outside outer region Aoo are: GRoi> GRoo ... ⁇ 7> It is preferable to satisfy this relationship.
- more grooves 12 and 16 are provided in the tire outer inner region Aoi located on the tire width direction central portion side of the tread portion 10 that has a greater influence on drainage than the tire outer outer region Aoo. This is because the steering stability can be further improved while suppressing the deterioration of drainage.
- the groove area ratio in the center portion in the tire width direction of the tread portion 10 has a great influence on drainage. Therefore, the circumferential groove 12 extending in the tire circumferential direction is formed in the center region Ac of the tread portion 10 in the tire width direction center, specifically, the center region Ac that is a range having a width of 40% of the ground contact width CW with the tire equator line as the center. Preferably it is provided.
- circumferential grooves 12B and 12C are provided in the center region Ac. Thereby, deterioration of drainage can be suppressed more.
- the circumferential groove 12 is provided on the tire outer side area Ao side of the tire equator line CL in the center area Ac.
- the circumferential width groove 12 is provided in the center region Ac, so that the land width direction of the land portion 14 located closer to the ground contact end in the tire width direction than the circumferential grooves 12B and 12C.
- steering stability can also be improved.
- the circumferential groove 12 may not be provided in the center region Ac as in the pneumatic tire 1 according to the present embodiment.
- the tread portion 10 of the pneumatic tire 1 is provided with width direction grooves 16A and 16B extending in a direction crossing the tire equator line, and these width direction grooves 16A and 16B are formed of tires. It is inclined with respect to the width direction. Thereby, when the pneumatic tire 1 rolls on the wet road surface, water that enters the ground contact area G is drained from the ground contact front end side (stepping side) to the ground rear end side (kick-out side). If the width direction grooves 16 ⁇ / b> A and 16 ⁇ / b> B have an angle close to parallel to the circumferential direction groove 12, the water that has entered the grounding region G can be drained more smoothly.
- the inclination angle ⁇ o of the width direction groove 16B provided in the tire outer region Ao with respect to the tire width direction is the width direction groove provided in the tire inner region Ai. It is preferable that the inclination angle is larger than the inclination angle ⁇ i with respect to the tire width direction of 16A.
- the tire outer area Ao has a greater contribution to the drainage performance at the turn than the tire inner area Ai, and efficiently improves the drainage performance at the turn. Because you can.
- the inclination angle ⁇ o with respect to the tire width direction of the width direction groove 16B provided in the tire outer region Ao is in the tire width direction of the width direction groove 16A provided in the tire inner region Ai. It may be the same as or smaller than the inclination angle ⁇ i.
- the circumferential groove 16 is not inclined with respect to the tire width direction, may extend in parallel to the tire width direction, and is not provided in the tread portion 10. May be.
- a shoulder region As is defined here.
- the shoulder region As is a range having a width of 15% of the ground contact width CW from the ground contact ends GEo, GEi in the tire width direction toward the tire equator line in the tire inner region Ai and the tire outer region Ao.
- channel 12A, 12D is provided in the shoulder area
- the groove widths of the circumferential grooves 12A and 12D are narrower than the circumferential grooves 12B and 12C arranged in the center region Ac.
- circumferential grooves having a groove width of 1.5 mm or more and 3.0 mm or less are referred to as circumferential narrow grooves 12A and 12D.
- the circumferential narrow grooves 12A and 12D are provided in the shoulder region As of the tread portion 10 as in the pneumatic tire 1 according to the present embodiment, more specifically, at least one of the shoulder regions As is circumferentially narrow. It is preferable that a groove is provided.
- the internal stress that tends to concentrate on the shoulder region As of the tread portion 10 is dispersed by providing the circumferential narrow grooves 12A and 12D, thereby reducing the hysteresis loss due to rolling of the pneumatic tire 1. As a result, rolling resistance can be reduced.
- the circumferential grooves 12A and 12D are provided in the shoulder region As, there is an effect of suppressing deterioration in drainage during turning, which is preferable.
- the circumferential narrow groove may not be provided in the shoulder region As.
- a sipe 18 extending in a direction crossing the tire equator line is provided in the tire inner region Ai as in the pneumatic tire 1 according to the present embodiment.
- both the circumferential groove 12 and the width groove 16 are provided in the tread portion 10 of the pneumatic tire 1 of the present embodiment.
- grooves 12 and 16 are provided in the tread portion 10 of the pneumatic tire 1, and at least the expressions ⁇ 2> to ⁇ 4> are satisfied in the ground contact region G of the pneumatic tire 1. Just do it.
- the tread portion 10 of the pneumatic tire 1 of the present invention is provided with either the circumferential groove 12 or the width direction groove 16 so as to satisfy at least the formulas ⁇ 2> to ⁇ 4>. Good.
- the test tire was mounted on a front-wheel drive vehicle with a displacement of 1800 cc, the test course with a total length of 2 km was run 50 laps at a speed of 100 km / h, and the fuel consumption improvement rate when the fuel consumption rate of the conventional example was set to 100 was measured.
- the test tires were assembled on a standard rim and mounted on a passenger car (displacement of 1800cc), and the feeling of driving 3 laps while changing the lane of the 2km test course was evaluated by three specialized drivers.
- the average value of the evaluation points of each test tire when the average value of the feeling evaluation points of the conventional example is set to 100 is indicated by an index. The larger the index value, the better the steering stability.
- a test tire is mounted on a small front-wheel drive vehicle with a displacement of 1800 cc, and the lateral acceleration generated when the speed is increased while turning at a constant radius (100 m) on a road surface with a constant water depth (average 10 mm) is measured and generated.
- the speed at which the lateral acceleration becomes maximum is the hydroplaning speed, and the result is indicated by an index with the conventional tire being 100. It means that it is excellent in drainage at the time of turning, so that this index value is large.
- the pneumatic tire according to the conventional example has a tire size of 205 / 55R16 and a value of “SW / OD” of 0.32, that is, does not satisfy the formula ⁇ 1>.
- a tread pattern shown in FIG. 3 is provided in a tread portion of a pneumatic tire according to a conventional example.
- Examples 1 to 14 The pneumatic tires according to Examples 1 to 14 have different tire sizes, and “SW / OD” takes a value in the range of 0.30 to 0.21, that is, satisfies the formula ⁇ 1>.
- the tread portion 10 of the pneumatic tire according to each of Examples 1 to 14 is provided with a tread pattern that is modified to fit each tire size based on the tread pattern shown in FIG.
- the test tires according to Examples 1 to 14 satisfying the formula ⁇ 1> are superior in fuel consumption index to the conventional example. From the performance test results, it was confirmed that, among the tire sizes tested, the tire size 165 / 55R20 (Example 11) sufficiently improved the fuel consumption with respect to the tire size 205 / 55R16. Therefore, this tire size is used for subsequent tests on the tread pattern.
- Example 15 to 17, Comparative Examples 1 to 3 The pneumatic tires according to Examples 15 to 17 and Comparative Examples 1 to 3 have a tire size of 165 / 55R20.
- the pneumatic tire according to Comparative Example 1 is a test tire in which only the tire size is changed from the conventional example.
- “CW / SW” is 0.82
- “(GRo-GRi) / GR” is 0.32
- This is a test tire assigned with a groove area ratio GR in the range of 5 to 27 [%].
- the pneumatic tires according to Examples 15 to 17 satisfy all the relationships of the formulas ⁇ 1> to ⁇ 4>, but the pneumatic tires according to Comparative Examples 1 to 3 satisfy the relationship of the formula ⁇ 3>. Do not meet.
- the tread pattern of the conventional example that is, the groove area ratio GR set in each test tire based on the tread pattern of FIG.
- a tread pattern is provided that is modified to fit the dimensional parameters.
- the tread portion shown in FIG. 2 is provided in the tread portion of the pneumatic tire according to the seventeenth embodiment.
- the groove area of the circumferential groove 12 and the width direction groove 16 By changing the position of the circumferential groove 12 in the tire width direction, etc., it is adapted to each dimensional parameter of each test tire.
- Example 18 to 20 Comparative Examples 4 and 5
- the pneumatic tires according to Examples 18 to 20 and Comparative Examples 4 and 5 have a tire size of 165 / 55R20. Further, in these pneumatic tires, “GR” is 18%, “(GRo-GRi) / GR” is 0.32, and “CW / SW” is 0.73 to 0.00.
- the test tires are distributed in the range of 91.
- the tread portion of the pneumatic tire according to Examples 18 to 20 and Comparative Examples 4 and 5 is provided with a tread pattern that is modified based on FIG.
- the pneumatic tires according to Examples 18 to 20 satisfy all the relationships of the formulas ⁇ 1> to ⁇ 4>, but the pneumatic tires according to Comparative Examples 4 and 5 satisfy the relationship of the formula ⁇ 2>. Do not meet.
- Performance tests on fuel efficiency index, steering stability, and drainage performance during turning were performed on the pneumatic tires according to the conventional example, Examples 15 to 20 and Comparative Examples 1 to 5.
- Table 4 shows numerical values relating to the dimensions of each test tire and performance test results.
- the pneumatic tires according to Examples 21 to 24 are test tires having a tire size of 165 / 55R20, in which “(GRo-GRi) / GR” is assigned in the range of 0.05 to 0.8. Tire. As described above, the tread portion of the pneumatic tire according to these embodiments is provided with a tread pattern that is modified based on the tread pattern of the conventional example.
- the pneumatic tires according to Examples 21 to 24 satisfy the relationships of the formulas ⁇ 1> to ⁇ 4>, and the pneumatic tires according to Examples 22 and 23 satisfy the formula ⁇ 5>.
- the pneumatic tires according to Examples 21 and 24 do not satisfy the formula ⁇ 5>.
- the pneumatic tires according to Examples 22 and 23 that satisfy the relationship of the formula ⁇ 5> are more than the pneumatic tires according to Examples 21 and 24 that do not satisfy the relationship of the formula ⁇ 5>.
- steering stability and drainage performance during turning are more highly balanced.
- Example 25 to 28 The pneumatic tires according to Examples 25 to 28 have a tire size of 165 / 55R20. As described above, the tread portion of the pneumatic tire according to these Examples is changed on the basis of the tread pattern of the conventional example. A tread pattern is provided.
- the pneumatic tires according to Examples 25 to 28 satisfy all the relationships of the formulas ⁇ 1> to ⁇ 5>. Furthermore, the pneumatic tire according to Example 26 satisfies the relationship of formula ⁇ 6>, the pneumatic tire according to example 27 satisfies the relationship of formula ⁇ 7>, and the pneumatic tire according to example 28 Satisfies both the relations of the formulas ⁇ 6> and ⁇ 7>. On the other hand, the pneumatic tire according to Example 25 does not satisfy both the relations of the formulas ⁇ 6> and ⁇ 7>.
- Table 6 shows numerical values and conditions related to the dimensions of each test tire, and performance test results. Note that the item “GRoi vs. GRio” in Table 6 indicates the magnitude relationship between “GRoi” and “GRio”, and whether or not the formula ⁇ 6> is satisfied. In addition, the item “GRoi vs. GRoo” indicates the magnitude relationship between “GRoi” and “GRoo”, and whether or not the formula ⁇ 7> is satisfied.
- the pneumatic tires according to Example 26 and Example 28 satisfying the formula ⁇ 6> exceed the pneumatic tires according to Examples 25 and 27 that do not satisfy the formula ⁇ 6> in terms of drainage during turning, respectively. Furthermore, the pneumatic tires according to Example 27 and Example 28 satisfying the formula ⁇ 7> exceed the pneumatic tires according to Examples 25 and 26 that do not satisfy the formula ⁇ 7> in steering stability, respectively.
- the present invention is defined as follows.
- a pneumatic tire in which an asymmetric pattern formed by grooves is formed in a tread portion The ratio between the total width SW of the pneumatic tire and the outer diameter OD is: SW / OD ⁇ 0.3 Satisfy the relationship, and The contact width in the contact area in the tread portion is CW and the groove area ratio is GR.
- a range located on the vehicle side from the tire equator line in the contact area is a tire inner area Ai
- the contact groove area ratio in the region Ai is GRi
- a range located on the opposite side of the vehicle from the tire equator line in the contact region is a tire outer region Ao
- the contact groove area ratio in the tire outer region Ao is Is the ground
- the ground area is 0.75 ⁇ CW / SW ⁇ 0.9 10 [%] ⁇ GR ⁇ 25 [%] GRi ⁇ GRo It is formed to satisfy the relationship of Pneumatic tire.
- the GR, the GRi, and the GRo are 0.1 ⁇ (GRo ⁇ GRi) /GR ⁇ 0.6 Satisfying the relationship of The pneumatic tire according to (1).
- a range having a width corresponding to 25% of the contact width CW located on the tire equator line side is defined as an inner / outer region Aio, and a groove area ratio in the inner / outer region Aio is defined as GRio.
- a range having a width corresponding to 25% of the contact width CW located on the tire equator line side in the tire outer region Ao is defined as an outer inner region Aoi, and a groove area ratio in the outer inner region Aoi is GRoi.
- a range having a width corresponding to 25% of the contact width CW located on the tire equator line side is defined as a tire outer inner region Aoi
- a groove area ratio in the tire outer inner region Aoi is defined as
- a range having a width corresponding to 25% of the ground contact width CW located on the tire width direction ground end side in the tire outer region Ao is defined as a tire outer outer region Aoo
- the tire outer region Aoo in the tire outer region Aoo When the groove area ratio is GRoo, GRoi> GRoo Satisfying the relationship of The pneumatic tire according to any one of (1) to (3).
- the center region Ac having a width of 40% of the ground contact width CW centered on the tire equator line is provided with a circumferential groove extending in the tire circumferential direction.
- the pneumatic tire according to any one of (1) to (4).
- the tread portion is provided with a width direction groove extending in a direction crossing the tire equator line, The width direction groove is inclined with respect to the tire width direction,
- the pneumatic tire according to any one of (1) to (5).
- At least one of the shoulder regions As having a width of 15% of the contact width CW from the contact end in the tire width direction toward the tire equator line Characterized by being provided with a circumferential narrow groove extending to The pneumatic tire according to any one of (1) to (7).
- the tire inner region Ai is provided with a sipe extending in a direction crossing the tire equator line,
- the pneumatic tire according to any one of (1) to (8).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
トレッド部に溝によって形成された非対称パターンが形成されている空気入りタイヤであって、
前記空気入りタイヤの総幅SWと外径ODとの比が、
SW/OD≦0.3
の関係を満たし、かつ、
前記トレッド部における接地領域での接地幅をCWとすると共に溝面積比率をGRとし、車両装着時において、接地領域におけるタイヤ赤道線から車両側に位置する範囲をタイヤ内側領域Aiとし、前記タイヤ内側領域Aiにおける接地溝面積比率をGRiとし、車両装着時において、接地領域におけるタイヤ赤道線から車両側とは反対側に位置する範囲をタイヤ外側領域Aoとし、前記タイヤ外側領域Aoにおける接地溝面積比率をGRoとしたときに、前記接地領域は、
0.75 ≦ CW/SW ≦ 0.9
10[%] ≦ GR ≦ 25[%]
GRi < GRo
の関係を満たすように形成されていることを特徴とする、
空気入りタイヤが提供される。
これより、本発明の実施形態に係る空気入りタイヤ1について図面を参照しつつ説明する。図1は、本発明の実施形態の空気入りタイヤ1の子午断面図である。なお、本実施形態の空気入りタイヤ1は、従来の空気入りタイヤと同様の子午断面形状を有する。ここで、空気入りタイヤの子午断面形状とは、タイヤ赤道面CLと垂直な平面上に現れる空気入りタイヤの断面形状をいう。
SW/OD ≦ 0.3 ・・・<1>
の関係を満たすように形成されている。
0.75 ≦ CW/SW ≦ 0.9 ・・・<2>
の関係を満たすように形成されている。
X=K×2.735×10-5×P0.585×Sd1.39×(DR-12.7+Sd)
但し、X=負荷能力[kg]
K=1.36
P=230(=空気圧[kPa])
Sd=0.93×S1-0.637d
S1=S×((180°-Sin-1((Rm/S))/131.4°)
S=設計断面幅[mm]
Rm=設計断面幅に対応したリム幅[mm]
d=(0.9-偏平比[-])×S.75-6.35
DR=リム径の基準値[mm]
10[%] ≦ GR ≦ 25[%] ・・・<3>
GRi < GRo ・・・<4>
15[%] ≦ GR ≦ 22[%]
の関係を満たすとさらに好ましい。さらに高度に、排水性の悪化を抑制しつつ、タイヤ外側領域Aoにおけるトレッド部10の剛性が高くなり、ひいては操縦安定性を向上させることができるからである。
0.1 ≦ (GRo-GRi)/GR ≦ 0.6 ・・・<5>
の関係を満たすと好ましい。排水性の悪化を抑制しつつ、タイヤ外側領域Aoにおけるトレッド部10の剛性が高くなり、ひいては操縦安定性を向上させることができるからである。なお、一方では、「(GRi-GRo)/GR」が0.1よりも小さいと、排水性の悪化を充分に抑制することができない。他方では、「(GRi-GRo)/GR」が0.6よりも大きいと、タイヤ内側領域Aiにおいてトレッド部10のブロック剛性が低下しすぎてしまい、操縦安定性の低下を引き起こす場合がある。
0.2 ≦ (GRo-GRi)/GR ≦ 0.4
の関係を満たすとさらに好ましい。排水性の悪化抑制と、ブロック剛性及び接地面積の増加による操縦安定性の向上とを、より高度に両立させることができるからである。
GRoi>GRio ・・・<6>
の関係を満たすと好ましい。排水性の影響の大きいトレッド部10のタイヤ幅方向中央部においてさらに、タイヤ内側領域Aiよりも排水性に影響の大きいタイヤ外側領域Aoにより多くの溝12、16が配置されることになるからである。
GRoi>GRoo ・・・<7>
の関係を満たすと好ましい。タイヤ外側領域Aoにおいて、タイヤ外外側領域Aooよりも排水性への影響が大きい、トレッド部10のタイヤ幅方向中央部側に位置するタイヤ外内側領域Aoiに、より多くの溝12、16が設けられることによって、排水性の悪化を抑制しつつ、操縦安定性をより改善することができるからである。
テストタイヤを排気量1800ccの前輪駆動車に装着し、全長2kmのテストコースを時速100km/hにて50周走行し、従来例の燃料消費率を100としたときの燃費改善率を測定した。指数が大きいほど燃費が良いことを表している。
テストタイヤを標準リムにリム組みして乗用車(排気量1800cc)に装着し、1周2kmのテストコースをレーンチェンジしながら3周走行したときのフィーリングを3人の専門ドライバーにより評価した。評価結果は、従来例のフィーリング評価点の平均値を100としたときの、各テストタイヤの評価点の平均値を指数で表示した。この指数値が大きいほど操縦安定性が優れていることを示す。
テストタイヤを排気量1800ccの小型前輪駆動車に装着し、一定の水深(平均10mm)の路面を一定の半径(100m)で旋回しながら速度を上げていくときの発生横加速度を計測し、発生横加速度が最大となるときの速度をハイドロプレーニング速度とし、その結果を、従来タイヤを100とする指数で示す。この指数値が大きいほど、旋回時排水性に優れることを意味する。
(従来例)
従来例に係る空気入りタイヤは、タイヤサイズが205/55R16であり、その「SW/OD」の値が0.32であり、すなわち式<1>を満たさない。従来例に係る空気入りタイヤのトレッド部には、図3に示されているトレッドパターンが設けられている。
実施例1~14に係る空気入りタイヤは、タイヤサイズがそれぞれ異なり、「SW/OD」が0.30~0.21の範囲の値を取り、すなわち式<1>を満たす。実施例1~14に係る空気入りタイヤのトレッド部10には、図3に示されているトレッドパターンを基礎として各タイヤサイズに適合するように変更されたトレッドパターンが設けられている。
実施例15~17及び比較例1~3に係る空気入りタイヤは、タイヤサイズが165/55R20である。比較例1に係る空気入りタイヤは、タイヤサイズのみが従来例から変更されたテストタイヤである。そして、実施例15~17及び比較例2~3に係る空気入りタイヤは、「CW/SW」が0.82であり、「(GRo-GRi)/GR」が0.32であり、かつ、溝面積比率GRが5~27[%]の範囲で振り分けられたテストタイヤである。ここで、実施例15~17に係る空気入りタイヤは式<1>~<4>の関係のすべてを満たしているが、比較例1~3に係る空気入りタイヤは式<3>の関係を満たさない。
実施例18~20及び比較例4、5に係る空気入りタイヤは、タイヤサイズが165/55R20である。さらに、これらの空気入りタイヤは、「GR」が18[%]であり、「(GRo-GRi)/GR」が0.32であり、かつ、「CW/SW」が0.73~0.91の範囲で振り分けられたテストタイヤである。上述のように、実施例18~20及び比較例4、5に係る空気入りタイヤのトレッド部には、図3を基礎として変更されたトレッドパターンが設けられている。ここで、実施例18~20に係る空気入りタイヤは式<1>~<4>の全ての関係を満たしているが、比較例4、5に係る空気入りタイヤは式<2>の関係を満たさない。
実施例21~24に係る空気入りタイヤは、タイヤサイズが165/55R20であるテストタイヤであって、「(GRo-GRi)/GR」が0.05~0.8の範囲で振り分けられたテストタイヤである。上述のように、これら実施例に係る空気入りタイヤのトレッド部には、従来例のトレッドパターンを基礎として変更されたトレッドパターンが設けられている。ここで、実施例21~24に係る空気入りタイヤは、式<1>~<4>の関係を満たしており、さらに実施例22、23に係る空気入りタイヤは式<5>を満たす一方で、実施例21、24に係る空気入りタイヤは式<5>を満たさない。
実施例25~28に係る空気入りタイヤは、タイヤサイズが165/55R20であり、上述のように、これら実施例に係る空気入りタイヤのトレッド部には、従来例のトレッドパターンを基礎として変更されたトレッドパターンが設けられている。実施例25~28に係る空気入りタイヤは、式<1>~<5>の全ての関係を満たしている。さらに、実施例26に係る空気入りタイヤは式<6>の関係を満たしており、実施例27に係る空気入りタイヤは式<7>の関係を満たしており、実施例28に係る空気入りタイヤは式<6>及び式<7>の両方の関係を満たしている。その一方で、実施例25に係る空気入りタイヤは式<6>及び式<7>の両方の関係を満たしていない。
前記空気入りタイヤの総幅SWと外径ODとの比が、
SW/OD≦0.3
の関係を満たし、かつ、
前記トレッド部における接地領域での接地幅をCWとすると共に溝面積比率をGRとし、車両装着時において、接地領域におけるタイヤ赤道線から車両側に位置する範囲をタイヤ内側領域Aiとし、前記タイヤ内側領域Aiにおける接地溝面積比率をGRiとし、車両装着時において、接地領域におけるタイヤ赤道線から車両側とは反対側に位置する範囲をタイヤ外側領域Aoとし、前記タイヤ外側領域Aoにおける接地溝面積比率をGRoとしたときに、前記接地領域は、
0.75 ≦ CW/SW ≦ 0.9
10[%] ≦ GR ≦ 25[%]
GRi < GRo
の関係を満たすように形成されていることを特徴とする、
空気入りタイヤ。
0.1 ≦ (GRo-GRi)/GR ≦ 0.6
の関係を満たすことを特徴とする、
(1)に記載の空気入りタイヤ。
GRoi>GRio
を満たすことを特徴とする、
(1)又は(2)に記載の空気入りタイヤ。
GRoi>GRoo
の関係を満たすことを特徴とする、
(1)~(3)のいずれか1つに記載の空気入りタイヤ。
(1)~(4)のいずれか1つに記載の空気入りタイヤ。
前記幅方向溝は、タイヤ幅方向に対して傾斜していることを特徴とする、
(1)~(5)のいずれか1項に記載の空気入りタイヤ。
(6)に記載の空気入りタイヤ。
(1)~(7)のいずれか1つに記載の空気入りタイヤ。
(1)~(8)のいずれか1つに記載の空気入りタイヤ。
10 トレッド部
12 周方向溝(溝)
16 幅方向溝(溝)
Ai タイヤ内側領域
Ao タイヤ外側領域
CW 接地幅
G 接地領域
GR 溝面積比率
GRi タイヤ内側領域における溝面積比率
GRo タイヤ外側領域における溝面積比率
OD 外径
SW 総幅
Claims (9)
- トレッド部に溝によって形成された非対称パターンが形成されている空気入りタイヤであって、
前記空気入りタイヤの総幅SWと外径ODとの比が、
SW/OD≦0.3
の関係を満たし、かつ、
前記トレッド部における接地領域での接地幅をCWとすると共に溝面積比率をGRとし、車両装着時において、接地領域におけるタイヤ赤道線から車両側に位置する範囲をタイヤ内側領域Aiとし、前記タイヤ内側領域Aiにおける接地溝面積比率をGRiとし、車両装着時において、接地領域におけるタイヤ赤道線から車両側とは反対側に位置する範囲をタイヤ外側領域Aoとし、前記タイヤ外側領域Aoにおける接地溝面積比率をGRoとしたときに、前記接地領域は、
0.75 ≦ CW/SW ≦ 0.9
10[%] ≦ GR ≦ 25[%]
GRi < GRo
の関係を満たすように形成されていることを特徴とする、
空気入りタイヤ。 - 前記GR、前記GRi及び前記GRoが、
0.1 ≦ (GRo-GRi)/GR ≦ 0.6
の関係を満たすことを特徴とする、
請求項1に記載の空気入りタイヤ。 - 前記タイヤ内側領域Aiのうち、タイヤ赤道線側に位置する接地幅CWの25%に相当する幅を有する範囲を内外側領域Aioとし、前記内外側領域Aioにおける溝面積比をGRioとし、さらに、前記タイヤ外側領域Aoのうち、タイヤ赤道線側に位置する接地幅CWの25%に相当する幅を有する範囲を外内側領域Aoiとし、前記外内側領域Aoiにおける溝面積比をGRoiとしたときに、
GRoi>GRio
を満たすことを特徴とする、
請求項1又は2に記載の空気入りタイヤ。 - 前記タイヤ外側領域Aoのうち、タイヤ赤道線側に位置する接地幅CWの25%に相当する幅を有する範囲をタイヤ外内側領域Aoiとし、前記タイヤ外内側領域Aoiにおける溝面積比をGRoiとし、さらに、前記タイヤ外側領域Aoのうち、タイヤ幅方向接地端側に位置する接地幅CWの25%に相当する幅を有する範囲をタイヤ外外側領域Aooとし、前記タイヤ外外側領域Aooにおける溝面積比をGRooとしたときに、
GRoi>GRoo
の関係を満たすことを特徴とする、
請求項1~3のいずれか1項に記載の空気入りタイヤ。 - タイヤ赤道線を中心として接地幅CWの40%の幅を有するセンター領域Acに、タイヤ周方向に延びる周方向溝が設けられていることを特徴とする、
請求項1~4のいずれか1項に記載の空気入りタイヤ。 - 前記トレッド部には、タイヤ赤道線を横断する方向に延びる幅方向溝が設けられており、
前記幅方向溝は、タイヤ幅方向に対して傾斜していることを特徴とする、
請求項1~5のいずれか1項に記載の空気入りタイヤ。 - 前記幅方向溝のうちの前記タイヤ外側領域Aoに設けられた幅方向溝のタイヤ幅方向に対する傾斜角度は、前記幅方向溝のうちのタイヤ内側領域Aiに設けられた幅方向溝のタイヤ幅方向に対する傾斜角度よりも大きいことを特徴とする、
請求項6に記載の空気入りタイヤ。 - 前記タイヤ内側領域Ai及び前記タイヤ外側領域Aoにおいて、タイヤ幅方向の接地端からタイヤ赤道線に向かって接地幅CWの15%の幅を有するショルダー領域Asの少なくとも一方に、タイヤ周方向に延びる周方向細溝が設けられることを特徴とする、
請求項1~7のいずれか1項に記載の空気入りタイヤ。 - 前記タイヤ内側領域Aiに、タイヤ赤道線を横断する方向に延びるサイプが設けられることを特徴とする、
請求項1~8のいずれか1項に記載の空気入りタイヤ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/770,422 US10981419B2 (en) | 2013-02-25 | 2014-02-25 | Pneumatic tire |
CN201480009469.XA CN105008146B (zh) | 2013-02-25 | 2014-02-25 | 充气轮胎 |
DE112014000974.1T DE112014000974T5 (de) | 2013-02-25 | 2014-02-25 | Luftreifen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013034624A JP5896941B2 (ja) | 2013-02-25 | 2013-02-25 | 空気入りタイヤ |
JP2013-034624 | 2013-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014129654A1 true WO2014129654A1 (ja) | 2014-08-28 |
Family
ID=51391430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/054532 WO2014129654A1 (ja) | 2013-02-25 | 2014-02-25 | 空気入りタイヤ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10981419B2 (ja) |
JP (1) | JP5896941B2 (ja) |
CN (1) | CN105008146B (ja) |
DE (1) | DE112014000974T5 (ja) |
WO (1) | WO2014129654A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6634709B2 (ja) * | 2015-06-08 | 2020-01-22 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2018138434A (ja) * | 2017-02-24 | 2018-09-06 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2019111860A (ja) * | 2017-12-21 | 2019-07-11 | Toyo Tire株式会社 | 空気入りタイヤ |
JP7097179B2 (ja) * | 2017-12-26 | 2022-07-07 | Toyo Tire株式会社 | 空気入りタイヤ |
DE112022003524T5 (de) * | 2021-09-17 | 2024-05-23 | The Yokohama Rubber Co., Ltd. | Reifen |
JPWO2023042764A1 (ja) * | 2021-09-17 | 2023-03-23 | ||
JP2023086601A (ja) * | 2021-12-10 | 2023-06-22 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
JP2023086602A (ja) * | 2021-12-10 | 2023-06-22 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
JP2023086598A (ja) * | 2021-12-10 | 2023-06-22 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
JP2023086597A (ja) * | 2021-12-10 | 2023-06-22 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
JP2023086603A (ja) * | 2021-12-10 | 2023-06-22 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009040156A (ja) * | 2007-08-07 | 2009-02-26 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2009149124A (ja) * | 2007-12-18 | 2009-07-09 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2012056479A (ja) * | 2010-09-09 | 2012-03-22 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013028289A (ja) * | 2011-07-28 | 2013-02-07 | Bridgestone Corp | 乗用車用空気入りラジアルタイヤ及びその使用方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01168506A (ja) * | 1987-12-24 | 1989-07-04 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP2829861B2 (ja) * | 1989-03-08 | 1998-12-02 | 横浜ゴム株式会社 | 空気入りタイヤ |
JPH06239110A (ja) * | 1993-02-19 | 1994-08-30 | Ohtsu Tire & Rubber Co Ltd :The | 自動車用空気入りタイヤ |
JP3380605B2 (ja) | 1993-05-20 | 2003-02-24 | 株式会社ブリヂストン | 空気入りタイヤ |
JP2000326707A (ja) * | 1999-05-20 | 2000-11-28 | Bridgestone Corp | 冬用空気入りタイヤ |
JP3678727B2 (ja) * | 2003-01-07 | 2005-08-03 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2006192929A (ja) | 2005-01-11 | 2006-07-27 | Bridgestone Corp | 空気入りタイヤ |
JP4011586B2 (ja) * | 2005-02-25 | 2007-11-21 | 横浜ゴム株式会社 | 空気入りタイヤおよびタイヤ成形金型 |
JP2006240591A (ja) * | 2005-03-07 | 2006-09-14 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ・リムホイール組立体及び空気入りタイヤ |
JP5258502B2 (ja) * | 2008-10-21 | 2013-08-07 | 株式会社ブリヂストン | タイヤ |
JP4394161B1 (ja) * | 2009-04-17 | 2010-01-06 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP4825288B2 (ja) * | 2009-08-24 | 2011-11-30 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2011135774A1 (ja) | 2010-04-30 | 2011-11-03 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
JP5625516B2 (ja) * | 2010-06-11 | 2014-11-19 | 横浜ゴム株式会社 | 空気入りタイヤ |
WO2012066725A1 (ja) * | 2010-11-15 | 2012-05-24 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
JP5781610B2 (ja) * | 2011-07-28 | 2015-09-24 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ及びその使用方法 |
JP5469692B2 (ja) * | 2012-02-17 | 2014-04-16 | 住友ゴム工業株式会社 | 空気入りタイヤ |
-
2013
- 2013-02-25 JP JP2013034624A patent/JP5896941B2/ja active Active
-
2014
- 2014-02-25 DE DE112014000974.1T patent/DE112014000974T5/de active Pending
- 2014-02-25 US US14/770,422 patent/US10981419B2/en active Active
- 2014-02-25 CN CN201480009469.XA patent/CN105008146B/zh active Active
- 2014-02-25 WO PCT/JP2014/054532 patent/WO2014129654A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009040156A (ja) * | 2007-08-07 | 2009-02-26 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2009149124A (ja) * | 2007-12-18 | 2009-07-09 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2012056479A (ja) * | 2010-09-09 | 2012-03-22 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013028289A (ja) * | 2011-07-28 | 2013-02-07 | Bridgestone Corp | 乗用車用空気入りラジアルタイヤ及びその使用方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112014000974T5 (de) | 2015-11-26 |
US10981419B2 (en) | 2021-04-20 |
CN105008146A (zh) | 2015-10-28 |
JP5896941B2 (ja) | 2016-03-30 |
JP2014162340A (ja) | 2014-09-08 |
US20160001603A1 (en) | 2016-01-07 |
CN105008146B (zh) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896941B2 (ja) | 空気入りタイヤ | |
US9994077B2 (en) | Pneumatic tire | |
US9375981B2 (en) | Pneumatic tire | |
JP5238050B2 (ja) | 空気入りタイヤ | |
EP3040216B1 (en) | Pneumatic tire | |
JP5435175B1 (ja) | 空気入りタイヤ | |
JP5360333B1 (ja) | 空気入りタイヤ | |
US10780743B2 (en) | Tire | |
CN107639975B (zh) | 轮胎 | |
WO2018225304A1 (ja) | タイヤ | |
US20170001479A1 (en) | Pneumatic Tire | |
US10836216B2 (en) | Tire | |
US9056530B2 (en) | Pneumatic tire | |
WO2014162607A1 (ja) | 空気入りタイヤ | |
JP6032343B2 (ja) | 空気入りタイヤ | |
CN110091676B (zh) | 轮胎 | |
US10195906B2 (en) | Tire | |
JP2011225148A (ja) | 空気入りタイヤ | |
US11766896B2 (en) | Pneumatic tyre | |
US10486470B2 (en) | Pneumatic tire | |
WO2020153011A1 (ja) | 空気入りタイヤ | |
US12030344B2 (en) | Tire | |
JP6187573B2 (ja) | 空気入りタイヤ | |
JP6249930B2 (ja) | 空気入りタイヤ | |
JP7553807B2 (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14754731 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14770422 Country of ref document: US Ref document number: 112014000974 Country of ref document: DE Ref document number: 1120140009741 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14754731 Country of ref document: EP Kind code of ref document: A1 |