WO2014192290A1 - スイッチング電源装置 - Google Patents
スイッチング電源装置 Download PDFInfo
- Publication number
- WO2014192290A1 WO2014192290A1 PCT/JP2014/002790 JP2014002790W WO2014192290A1 WO 2014192290 A1 WO2014192290 A1 WO 2014192290A1 JP 2014002790 W JP2014002790 W JP 2014002790W WO 2014192290 A1 WO2014192290 A1 WO 2014192290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- voltage
- power supply
- supply device
- switching power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/3353—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present disclosure relates to a switching power supply device such as a DCDC converter, and in particular, is configured by connecting a full bridge inverter to a primary winding of a transformer and connecting a rectifier circuit to a secondary winding of the transformer.
- the present invention relates to a switching power supply device such as an isolated DCDC converter.
- Patent Document 1 discloses a conventional example of a phase shift PWM control DCDC converter to which soft switching is applied.
- the purpose of the present disclosure is to solve the above problems and to provide a switching power supply device that can suppress a decrease in efficiency and an increase in noise level even when the output is lightly loaded.
- the switching power supply device is: An orthogonal transform unit that converts a DC voltage into an AC voltage based on a switching operation of the switching element; A transformer for converting the AC voltage into an AC voltage having a predetermined voltage value; A resonant circuit provided between the orthogonal transform unit and the transformer; A switching power supply device comprising an AC / DC conversion circuit that converts AC voltage from the transformer into DC, An output detector for detecting an output voltage or an output current of the switching power supply device; A time ratio control unit that controls a switching time ratio of the switching power supply device so that the detected output voltage or output current becomes a predetermined target value; An energy detector for detecting energy stored in the resonant circuit; A control unit that controls a switching frequency of the switching power supply device so that the detected energy becomes a predetermined threshold, The control unit lowers the switching frequency of the switching element when the current or voltage of the resonance circuit detected by the energy detection unit falls below a predetermined threshold value, and The current or voltage is controlled to reach the threshold value.
- FIG. 1 is a circuit diagram showing a configuration of a switching power supply device according to a first exemplary embodiment
- a phase shift DCDC converter simulation results according to the switching power supply device and the comparative example of FIG. 1 is a signal waveform diagram of a current I R flowing through the resonance coil Lre.
- FIG. 6 is a circuit diagram showing a configuration of a phase shift DCDC converter 5A according to a second embodiment
- FIG. 6 is a block diagram illustrating a configuration of an in-vehicle charging device according to a third embodiment. It is a circuit diagram which shows the structure of the phase shift DCDC converter 5B concerning a comparative example. 6 is a timing chart showing an operation of the phase shift DCDC converter 5 of FIG. 5.
- FIG. 5 shows a configuration of a switching power supply device according to a first exemplary embodiment
- a phase shift DCDC converter simulation results according to the switching power supply device and the comparative example of FIG. 1 is a signal waveform diagram of a current I R flowing through the resonance coil Lre.
- FIG. 6 is a block diagram illustrating a configuration of a vehicle according to a fourth embodiment.
- FIG. 10 is a block diagram illustrating a configuration of an electronic device according to a fifth embodiment. It is a figure which shows an example at the time of implementing operation
- FIG. 5 is a circuit diagram showing a configuration of a phase shift DCDC converter 5B according to a comparative example.
- a phase shift DCDC converter 5B in FIG. 5 includes a high-frequency transformer TF constituting a transformer, a resonance coil Lre disposed on the primary winding TF1 side of the high-frequency transformer TF, a resonance coil Lre, and a DC power source E.
- a full-bridge inverter circuit INV including semiconductor switching elements (hereinafter referred to as switching elements) S1, S2, S3, and S4 disposed between them, and a rectifier circuit disposed on the secondary winding TF2 side of the high-frequency transformer TF
- the smoothing filter circuit 6 including the output reactor L0 and the output capacitor C0 arranged between the RE and the rectifier circuit RE and the load resistor R is provided.
- the DCDC converter 5B controls the output voltage detection unit 11 that detects the output voltage Vout across the load resistor R, and the switching time ratio (duty ratio) of the DCDC converter 5B based on the detected output voltage Vout.
- a time ratio control unit 12, and a control signal generation unit 10 that generates and applies control signals SS1 to SS4 that are control pulse signals for the switching elements S1 to S4 in the full-bridge inverter circuit INV based on the controlled time ratio; Is provided.
- the control signal generation unit 10 is configured by a digital computer such as a microcomputer.
- the winding start of each of the windings TF1 and TF2 of the high-frequency transformer TF is indicated by “ ⁇ ”.
- the switching elements S1 to S4 semiconductor switching elements such as MOSFETs and IGBTs are used, for example.
- a full bridge inverter circuit INV includes switching elements S1 to S4 connected in a full bridge form, and reverse conducting diodes D1, D2, D3 connected in parallel with the switching elements S1, S2, S3, S4, respectively. , D4 and snubber capacitors C1, C2, C3, C4.
- the full bridge inverter circuit INV converts the DC voltage from the DC voltage source E into an AC voltage by a phase shift control method and outputs the AC voltage.
- the switching elements S1 and S2 constitute a reference phase leg
- the switching elements S3 and S4 constitute a control phase leg.
- the full-bridge inverter circuit INV converts the DC voltage from the DC voltage source E into an AC voltage by switching, and the high-frequency transformer via the resonance coil Lre connected in series to the primary winding TF1 of the high-frequency transformer TF. Output to the primary winding TF1 of TF.
- the rectifier circuit RE includes a rectifier diode Dr1, Dr2, and constitutes an AC / DC converter circuit.
- the rectifier circuit RE is connected to the secondary winding TF2 of the high-frequency transformer TF, and full-wave rectifies the AC voltage to the DC voltage, and outputs the output reactor L0. And output to the load resistor R through the smoothing filter circuit 6 including the output capacitor C0.
- the start of winding of the secondary winding TF2 of the high-frequency transformer TF is connected to the anode of the rectifying diode Dr1
- the end of winding of the secondary winding TF2 is connected to the anode of the rectifying diode Dr2.
- the cathodes of the rectifying diodes Dr1 and Dr2 are connected in common and connected to one end of the output reactor L0, and the other end of the output reactor L0 is connected to the positive electrode of the output capacitor C0 and one end of the load resistor R0.
- the negative electrode of the output capacitor C0 and the other end of the load resistor R are connected to the center tap of the high frequency transformer TF.
- an output voltage detection unit 11 that detects an output voltage Vout that is a terminal voltage of the output capacitor C0 is provided in parallel.
- FIG. 6 is a timing chart showing the operation of the phase shift DCDC converter 5 of FIG.
- the operation of the phase shift DCDC converter 5B will be described with reference to FIGS.
- the phase shift DCDC converter 5B according to the comparative example operates in the following four modes M1 to M4 as shown in FIG.
- Mode M1 switching elements S1 and S4 are on and switching elements S2 and S3 are off;
- Mode M2 switching elements S2 and S4 are on and switching elements S1 and S3 are off;
- Mode M3 switching elements S2 and S3 are on and switching elements S1 and S4 are off;
- mode M4 switching elements S1 and S3 are on and switching elements S2 and S4 are on. Is off.
- the on-time of each switching element S1 to S4 is approximately 1 ⁇ 2 of one cycle.
- the switching elements S1 and S2 are alternately turned on / off. That is, when the switching element S1 is on, the switching element S2 is always off, and when the switching element S1 is off, the switching element S2 is always on.
- the switching elements S3 and S4 are alternately turned on / off.
- the output voltage Vout is controlled by changing (shifting the phase) the phase difference ⁇ between the S1 and S2 groups serving as the reference phase legs and the S3 and S4 groups serving as the control phase legs. If the durations of modes M1 to M4 are T1 to T4, respectively, the following equation is established.
- T1 T3 (2)
- T2 T4
- the output voltage Vout is expressed by the following equation.
- Vout Vin (n 2 / n 1 ) 2 ⁇ (5)
- n 2 / n 1 is a winding ratio of the high-frequency transformer TF.
- modes M1 to M4 are considered in more detail. For convenience of explanation, the description starts from the mode M1-4.
- phase shift DCDC converter 5B In the phase shift DCDC converter 5B according to the comparative example configured as described above, ZVS is realized by the action of the resonance coil Lre inserted between the full bridge inverter circuit INV and the high frequency transformer TF. Therefore, the energy stored in the resonance coil Lre must be sufficient to complete the charging / discharging of the capacitors C1 to C4 connected in parallel with the semiconductor switching elements S1 to S4 of the inverter circuit, respectively.
- the energy P Lre accumulated in the resonant coil Lre is expressed by the following equation in proportion to the square of the current I R flowing through the resonance coil Lre.
- phase shift DCDC converter that solves the above-described problems and can prevent a soft switching operation from being realized at a light output load is proposed.
- FIG. 1 is a circuit diagram showing a configuration of the switching power supply device according to the first embodiment.
- the switching power supply device of FIG. 1 is, for example, a phase shift DCDC converter 5.
- Phase shift DCDC converter 5, compared to the phase shift DCDC converter 5B in FIG. 5, further comprising a resonant energy detection unit 13 for detecting the resonance current I R in the resonant coil Lre, control signal generating unit 10 is detected It is characterized by controlling the control signal SS1 ⁇ SS4 for the switching elements S1 ⁇ S4, based on the resonance current I R were.
- the resonance energy detector 13 is provided to detect it, the control signal from the resonance energy detector 13 By feeding back to the switching operation of the full bridge inverter circuit INV via the generation unit 10, the switching frequency is controlled so that the maximum value of the current of the resonance coil Lre is increased.
- FIG. 1 is a phase shift DCDC converter 5 and the prior art simulation result of FIG. 1 is a signal waveform diagram of a current I R flowing through the resonance coil Lre.
- the operation of the phase shift DCDC converter 5 of FIG. 1 configured as described above will be described below with reference to FIGS.
- the duty ratio control unit 12 compares the output voltage Vout fed back from the output voltage detection unit 11 with a predetermined target voltage Vth.
- the duty ratio control unit 12 performs switching. Control is performed so that the phase difference ⁇ (FIG. 6) between the reference leg composed of the elements S1 and S2 and the control leg composed of the switching elements S3 and S4 becomes small. At this time, the current I R flowing outputs stored in the resonant coil Lre is increased compared to the previous corresponding control.
- the duty ratio control unit 12 compares the output voltage Vout with a predetermined target voltage Vth, and when the output voltage Vout is larger than the target voltage Vth, the phase difference ⁇ between the reference leg and the control leg (FIG.
- the duty ratio control unit 12 controls the duty ratio so that the output voltage Vout becomes the predetermined target voltage Vth.
- the control signal generator 10 when the current I R of the resonant coil Lre fed back from the resonance energy detector 13 becomes equal to or less than a predetermined threshold current Ith, the control signal generator 10, the control signal SS1 ⁇ SS4 The switching frequency is made lower than the frequency of the comparative example.
- Maximum Imaxe the current I R of the resonant coil Lre by lowering the switching frequency of the control signals SS1 ⁇ SS4 is increased as compared to the maximum value Imaxc of Comparative Example (light load (Embodiment in Figure 2) ).
- the maximum value Imaxe or Imaxc is the maximum value immediately before switching. That is, the control signal generation unit 10 controls the switching frequency so that the current IR detected by the resonance energy detection unit 13 becomes the predetermined threshold current Ith.
- the duty ratio control unit 12 allows the switching element when the current or voltage of the resonance circuit detected by the resonance energy detection unit 13 is equal to or lower than a predetermined threshold value.
- the switching frequency is reduced and the current or voltage of the resonance circuit is controlled to reach a predetermined threshold value.
- FIG. 9A is a circuit diagram showing an example of a configuration of a switching power supply device according to a modified example, showing an example when the operation of the first embodiment is performed.
- FIG. 9B is a timing chart showing the operation during heavy load operation of the switching power supply device of FIG. 9A.
- FIG. 9C is a timing chart showing an operation during a light load operation of the switching power supply device of FIG. 9A.
- FIG. 9A shows a configuration of a phase shift DCDC converter 5C. Compared with the phase shift DCDC converter 5 of FIG. 1, a full wave rectification type rectifier having diodes Dr1 to Dr4 instead of the half wave rectification type rectifier RE. RE1 is provided.
- the duty ratio control unit 12 changes the phase shift amount in order to maintain a constant voltage because the output voltage changes when the load fluctuates.
- the phase shift amount changes, the current of the primary side winding TF1 of the high-frequency transformer TF changes.
- the duty ratio control unit 12 detects the current of the primary winding TF1 with the resonance energy detection unit 13 which is a current sensor connected in series with the switching device, and if the peak is smaller than a predetermined current, the switching cycle is lengthened. Then, control is performed so that the peak value of the current reaches a predetermined current.
- the configuration of the present embodiment can solve this problem and reduce noise increase and efficiency deterioration.
- the resonance coil Lre may be configured with the leakage inductance of the high-frequency transformer TF. Further, the resonance coil Lre may be connected in series to the secondary winding TF2 of the high-frequency transformer TF. Further, the capacitors C1 to C4 may be constituted by parasitic capacitances of the switching elements S1 to S4, respectively. Further, the reverse conducting diodes D1 to D4 may be constituted by parasitic diodes of the switching elements S1 to S4, respectively.
- the diodes Dr1 and Dr2 constitute the rectifier circuit RE.
- the present disclosure is not limited to this, and the rectifier circuit may be constituted by a full bridge configuration including four diodes.
- the resonance energy detector 13 has detected the current I R of the resonant coil Lre, the present disclosure is not limited to this, the voltage generated by the resonance coil Lre, or current and voltage Based on the detected power or energy, the information may be output to the control signal generator 10.
- the output voltage detection unit 11 detects the output voltage Vout, and the time ratio control unit 12 adjusts the time ratio of the control signals SS1 to SS4 for switching based on the output voltage Vout.
- the present invention is not limited to this, and the current ratio flowing through the load resistor R may be detected, and the time ratio control unit 12 may adjust the time ratio of the control signals SS1 to SS4 for switching based on the detected current.
- control signal generation unit 10 and the duty ratio control unit may be configured by a predetermined hardware circuit, or may be configured by a digital computer such as a microcomputer, for example, to generate a control signal. May be realized by software.
- FIG. 3 is a circuit diagram showing a configuration of the switching power supply apparatus according to the second embodiment.
- the switching power supply device of FIG. 3 is, for example, a phase shift DCDC converter 5A.
- the phase shift DCDC converter 5 ⁇ / b> A further includes a lower limit switching frequency setting unit 14.
- the control signal generator 10 when the current I R of the resonant coil Lre fed back from the resonance energy detector 13 becomes equal to or less than a predetermined threshold current Ith, the control signal generator 10, Although the switching frequency of the control signals SS1 to SS4 is set lower than the frequency of the comparative example, the lower limit switching frequency setting unit 14 sets the lower limit of the switching frequency so that the frequency does not become lower than the threshold frequency that becomes an audible frequency. It is held and set in a memory or the like and output to the control signal generator 10. The control signal generator 10 generates the control signals SS1 to SS4 with the threshold frequency as a lower limit when the switching frequency of the control signals SS1 to SS4 is set lower than the frequency of the comparative example.
- the control signal generator 10 controls the threshold frequency set by the lower limit switching frequency setting unit 14 as the lower limit when the switching frequency of the control signals SS1 to SS4 is made lower than the frequency of the comparative example. Signals SS1 to SS4 are generated. Therefore, according to the present embodiment, it is possible to prevent the generation of unpleasant sounds such as the audible sound.
- FIG. 4 is a block diagram illustrating a configuration of the in-vehicle charging device 7 according to the third embodiment.
- the in-vehicle charging device 7 includes, for example, the switching power supply device according to the first or second embodiment.
- 4 includes an ACDC converter 6 having an input filter 2, a diode bridge 3, and a power factor correction circuit (PFC) 4, and a DCDC converter 5 or 5A.
- PFC power factor correction circuit
- the input filter 2 band-pass-filters only a predetermined commercial power supply frequency component from the AC voltage from the commercial power supply 1 and outputs it to the diode bridge circuit 3.
- the diode bridge circuit 3 includes, for example, four rectifying diodes connected in a bridge form, and rectifies an input AC voltage into a pulsating voltage, and then improves the power factor of the input voltage by a known method. 4 to the DCDC converter 5 or 5A.
- the DCDC converter 5 or 5A converts the input DC voltage into a DC voltage having a predetermined voltage and outputs it to the resistance load R. When charging from a DC power supply, the ACDC converter 6 can be omitted.
- FIG. 7 is a block diagram illustrating a configuration that is a block diagram illustrating a configuration of the vehicle 20 according to the fourth embodiment.
- the vehicle 20 is, for example, an electric vehicle or a plug-in hybrid vehicle.
- the vehicle 20 includes an outlet 24 for connection to an external commercial power source, the in-vehicle charging device 7 according to the third embodiment, and a rechargeable battery 22.
- the power supplied from the outlet 24 is stored in the rechargeable battery 22 via the in-vehicle charging device 7.
- the vehicle 20 of this Embodiment can charge with low noise and high efficiency.
- FIG. 8 is a block diagram of a configuration of the electronic device 30 according to the fifth embodiment.
- the electronic device 30 is a personal computer, a server device, or the like.
- the electronic device 30 includes the phase shift DCDC converter 5 or 5A that is the switching power supply according to the first or second embodiment, and a load 32.
- the power output from the phase shift DCDC converter 5 or 5A is supplied to the load 32.
- the electronic device 30 of the present embodiment can operate with low noise and high efficiency.
- the switching power supply according to the first aspect is An orthogonal transform unit that converts a DC voltage into an AC voltage based on a switching operation of the switching element; A transformer for converting the AC voltage into an AC voltage having a predetermined voltage value; A resonant circuit provided between the orthogonal transform unit and the transformer; A switching power supply device comprising an AC / DC conversion circuit that converts AC voltage from the transformer into DC, An output detector for detecting an output voltage or an output current of the switching power supply device; A time ratio control unit that controls a switching time ratio of the switching power supply device so that the detected output voltage or output current becomes a predetermined target value; An energy detector for detecting energy stored in the resonant circuit; A control unit that controls a switching frequency of the switching power supply device so that the detected energy becomes a predetermined threshold, The control unit lowers the switching frequency of the switching element when the current or voltage of the resonance circuit detected by the energy detection unit falls below a predetermined threshold value, and The current or voltage is controlled to reach the threshold
- the switching power supply according to the second aspect further includes a setting unit that sets a predetermined lower limit value of the switching frequency of the switching power supply in the switching power supply according to the first aspect, The control unit, when controlling the switching frequency of the switching power supply device so that the detected energy becomes a predetermined threshold, when the switching frequency reaches the set lower limit value Stop control.
- the on-vehicle charging device includes the switching power supply according to the first or second aspect.
- the electric vehicle according to the fourth aspect includes the in-vehicle charging device and the rechargeable battery according to the third aspect.
- the electrical device includes the switching power supply according to the first or second aspect.
- the electronic device includes the switching power supply device according to the first or second aspect.
- the switching power supply device can be used for a switching power supply device used in, for example, electrical equipment, electronic equipment, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
スイッチング素子のスイッチング動作に基づいて直流電圧を交流電圧に変換する直交変換部と、
前記交流電圧を所定の電圧値を有する交流電圧に変換する変圧器と、
前記直交変換部と前記変圧器の間に設けられる共振回路と、
前記変圧器からの交流電圧を直流に変換する交直変換回路とを備えるスイッチング電源装置であって、
前記スイッチング電源装置の出力電圧又は出力電流を検出する出力検出部と、
前記検出された出力電圧又は出力電流が所定の目標値となるように前記スイッチング電源装置のスイッチングの時比率を制御する時比率制御部と、
前記共振回路に蓄積されているエネルギーを検出するエネルギー検出部と、
前記検出されたエネルギーが所定のしきい値となるように前記スイッチング電源装置のスイッチングの周波数を制御する制御部とを備え、
前記制御部は、前記エネルギー検出部により検出された前記共振回路の電流又は電圧が、予め決められたしきい値以下になったときに、前記スイッチング素子のスイッチング周波数を低くし、前記共振回路の電流又は電圧が前記しきい値に達するように制御する。
図5は比較例にかかる位相シフトDCDCコンバータ5Bの構成を示す回路図である。図5の位相シフトDCDCコンバータ5Bは、変圧器を構成する高周波トランスTFと、当該高周波トランスTFの1次側巻線TF1側に配置された共振コイルLreと、共振コイルLreと直流電源Eとの間に配置された半導体スイッチング素子(以下、スイッチング素子という。)S1,S2,S3,S4を含むフルブリッジインバータ回路INVと、当該高周波トランスTFの2次側巻線TF2側に配置された整流回路REと、整流回路REと負荷抵抗Rとの間に配置された出力リアクトルL0及び出力コンデンサC0からなる平滑用フィルタ回路6とを備えて構成される。また、DCDCコンバータ5Bは、負荷抵抗Rの両端の出力電圧Voutを検出する出力電圧検出部11と、検出された出力電圧Voutに基づいてDCDCコンバータ5Bのスイッチングの時比率(デューティ比)を制御する時比率制御部12と、制御された時比率に基づいてフルブリッジインバータ回路INV内のスイッチング素子S1~S4に対する制御パルス信号である制御信号SS1~SS4を発生して印加する制御信号生成部10とを備える。ここで、制御信号生成部10は、マイクロコンピュータなどのデジタル計算機で構成される。
(2)モードM2:スイッチング素子S2とS4がオンであって、スイッチング素子S1とS3がオフである;
(3)モードM3:スイッチング素子S2とS3がオンであって、スイッチング素子S1とS4がオフである;及び
(4)モードM4:スイッチング素子S1とS3がオンであって、スイッチング素子S2とS4がオフである。
T2=T4 (3)
T=T1+T2+T3+T4=2×(T1+T2) (4)
スイッチング素子S1とS4がオンしているので、高周波トランスTFの1次側巻線TF1には入力電圧Vinが印加されておりダイオードDr1が導通して、高周波トランスTFの2次側巻線TF2に電力が供給されている。共振コイルLreには大きな共振電流IRが流れておりエネルギーが蓄積されている。スイッチング素子S1がターンオフして次の動作モードに移行する。
スイッチング素子S1がターンオフすると次の径路でコンデンサC1が充電される。
E+→C1→Lre→T1→S4→E-。
スイッチング素子S1のターンオフの瞬間はコンデンサC1の電圧は0Vなのでスイッチング素子S1のターンオフはZVSである。コンデンサC1の充電と並行してコンデンサC2が次の径路で放電する。
C2→Lre→TF1→S4→C2。
コンデンサC1とC2の充放電が完了すると次の動作モードに移行する。
コンデンサC1とC2の充放電が完了しても共振コイルLreのエネルギーがまだ残っているので、共振コイルLreの電流IRは次の径路で流れ続ける。
Lre→TF1→S4→D2→Lre。
この状態でスイッチング素子S2がターンオンして次の動作モードに移行する。このとき逆導通ダイオードD2が導通しているので、スイッチング素子S2の電圧はほぼ0Vである。よって、スイッチング素子S2のターンオンはZVSである。
共振コイルLreのエネルギーで引き続き次の径路で電流IRが循環する。
Lre→TF1→S4→S2→Lre。
共振コイルLreには、スイッチング素子S4とS2の電圧降下が共振コイルLreの電流IRによって発生する電圧とは逆方向(高周波トランスTFからインバータ回路INVへの方向)に印加される。そのため、電流IRは徐々に減少し、電流IRのエネルギーも徐々に減少する。スイッチング素子S4がターンオフして次の動作モードに移行する。
スイッチング素子S4がターンオフすると次の径路でコンデンサC4が充電される。
Lre→TF1→C4→S2→Lre。
スイッチング素子S4のターンオフの瞬間はコンデンサC4の電圧は0Vなので、スイッチング素子S4のターンオフはZVSである。ここで、コンデンサC4の充電と並行してコンデンサC3が次の径路で放電する。
Lre→TF1→C3→E→S2→Lre。
コンデンサC4とC3の充放電が完了すると次の動作モードに移行する。なお、コンデンサC4とC3の充放電は共振コイルLreのエネルギーで行われる。よって、充放電が完了するにはモードM3-1の開始時点において共振コイルLreに充分なエネルギーが残っていなければならない。
コンデンサC4とC3の充放電が完了しても、共振コイルLreのエネルギーがまだ残っているので、共振コイルLreの電流IRは次の径路で流れ続ける。
Lre→TF1→D3→E→S2→Lre。
この状態でスイッチング素子S3がターンオンして次の動作モードに移行する。逆導通ダイオードD3が導通しているので、スイッチング素子S3の電圧はほぼ0Vである。よって、スイッチング素子S3のターンオンはZVSである。
引き続き、共振コイルLreのエネルギーで次の径路で電流IRが流れる。
Lre→TF1→S3→E→S2→Lre。
共振コイルLreには入力電圧Vinが共振コイルLreの電流IRによって発生する電圧とは逆方向(高周波トランスTFからインバータ回路INVへの方向)に印加され、共振コイルLreの電流は急速に減少し、すぐに反転して次の動作モードに移行する。
モードM3-3から共振コイルLreの電流IRの方向が反転し、次の径路で電流IRが流れる。
E+→S3→TF1→Lre→S2→E-。
高周波トランスTFの1次側巻線TF1には入力電圧Vinが負方向に印加されており2次側巻線TF2に電力が供給される。高周波トランスTFの2次側巻線TF2の電圧が負なので、ダイオードDr2が導通する。スイッチング素子S2がターンオフして次の動作モードに移行する。
スイッチング素子S2がターンオフすると次の径路でコンデンサC2が充電される。
E+→S3→TF1→Lre→C2→E-。
ここで、コンデンサC2の充電と並行してコンデンサC1が次の径路で放電する。
C1→S3→TF1→Lre→C1。
コンデンサC2とC1の充放電が完了すると次の動作モードに移行する。
コンデンサC2とC1の充放電が完了しても共振コイルLreのエネルギーがまだ残っているので、共振コイルLreの電流IRは次の径路で流れ続ける。
Lre→TF1→DS1→S3→Lre。
この状態でスイッチング素子S1がターンオンして次の動作モードに移行する。ここで、逆導通ダイオードD1が導通しているので、スイッチング素子S1の電圧はほぼ0Vである。よって、スイッチング素子S1のターンオンはZVSである。
共振コイルLreのエネルギーで引き続き次の径路で電流IRが循環する。
Lre→巻線TF1→S1→S3→Lre。
スイッチング素子S3がターンオフして次の動作モードに移行する。
スイッチング素子S3がターンオフすると次の径路でコンデンサC3が充電される。
Lre→TF1→S1→C3→Lre。
コンデンサC3の充電と同時にコンデンサC4が次の径路で放電する。
Lre→TF1→S1→E→C4→Lre。
ここで、コンデンサC3とC4の充放電が完了すると次の動作モードに移行する。
コンデンサC3とC4の充放電が完了しても共振コイルLreのエネルギーがまだ残っているので、共振コイルLreの電流IRは次の径路で流れ続ける。
Lre→TF1→S1→E→D4→Lre。
この状態でスイッチング素子S4がターンオンして次の動作モードに移行する。逆導通ダイオードD4が導通しているので、スイッチング素子S4の電圧はほぼ0Vである。よって、スイッチング素子S4のターンオンはZVSである。
引き続き共振コイルLreのエネルギーで次の径路で電流IRが流れる。
Lre→TF1→S1→E→S4→Lre。
共振コイルLreには入力電圧Vinが電流IRを妨げる方向に印加され、共振コイルLreの電流IRは急速に減少し、すぐに反転してモード1-4に移行する。
図1は実施の形態1にかかるスイッチング電源装置の構成を示す回路図である。図1のスイッチング電源装置は、例えば、位相シフトDCDCコンバータ5である。位相シフトDCDCコンバータ5は、図5の位相シフトDCDCコンバータ5Bに比較して、共振コイルLreにその共振電流IRを検出する共振エネルギー検出部13をさらに備え、制御信号生成部10は、検出された共振電流IRに基づいてスイッチング素子S1~S4のための制御信号SS1~SS4を制御することを特徴としている。ここで、ソフトスイッチング方式のDCDCコンバータにおいて、出力負荷電流の軽減により共振コイルLreを流れる電流IRが軽減したとき、それを検出する共振エネルギー検出部13を設け、共振エネルギー検出部13から制御信号生成部10を介してフルブリッジインバータ回路INVのスイッチング動作にフィードバックすることにより、共振コイルLreの電流の最大値が大きくなるようにスイッチング周波数を制御する。
図3は実施の形態2にかかるスイッチング電源装置の構成を示す回路図である。図3のスイッチング電源装置は、例えば、位相シフトDCDCコンバータ5Aである。位相シフトDCDCコンバータ5Aは、図1の位相シフトDCDCコンバータ5に比較して、下限スイッチング周波数設定部14をさらに備えたことを特徴としている。図3において、制御信号生成部10は、共振エネルギー検出部13からフィードバックされる共振コイルLreの電流IRが予め決められたしきい値電流Ith以下になったとき、制御信号生成部10は、制御信号SS1~SS4のスイッチング周波数を前記比較例の周波数よりも低くするが、下限スイッチング周波数設定部14は、その周波数が可聴周波数となるしきい値周波数より低くならないようにスイッチング周波数の下限を例えばメモリなどで保持して設定して前記制御信号生成部10に出力する。制御信号生成部10は、制御信号SS1~SS4のスイッチング周波数を前記比較例の周波数よりも低くするときに、前記しきい値周波数を下限として制御信号SS1~SS4を発生する。
図4は、実施の形態3にかかる車載用充電装置7の構成を示すブロック図である。当該車載用充電装置7は、例えば、実施の形態1又は2のスイッチング電源装置を備える。図4の車載用充電装置7は、入力フィルタ2、ダイオードブリッジ3、および力率改善回路(PFC)4を有するACDCコンバータ6と、DCDCコンバータ5又は5Aと、を備えて構成される。
図7は、実施の形態4にかかる車両20の構成を示すブロック図である構成を示すブロック図である。車両20は、例えば、電気自動車又はプラグインハイブリッド自動車である。車両20は、外部の商用電源に接続するためのコンセント24と、実施の形態3の車載用充電装置7と、充電池22とを備える。コンセント24から供給された電力は、車載用充電装置7を介して充電池22に蓄積される。これにより、本実施の形態の車両20は、低ノイズ、高効率で充電を行うことができる。
図8は、実施の形態5にかかる電子機器30の構成を示すブロック図である。電子機器30は、パーソナルコンピュータ、サーバー装置などである。電子機器30は、実施の形態1又は2のスイッチング電源である位相シフトDCDCコンバータ5又は5Aと、負荷32とを有する。位相シフトDCDCコンバータ5又は5Aから出力された電力は、負荷32に供給される。これにより、本実施の形態の電子機器30は、低ノイズ、高効率で動作することができる。
第1の態様にかかるスイッチング電源装置は、
スイッチング素子のスイッチング動作に基づいて直流電圧を交流電圧に変換する直交変換部と、
前記交流電圧を所定の電圧値を有する交流電圧に変換する変圧器と、
前記直交変換部と前記変圧器の間に設けられる共振回路と、
前記変圧器からの交流電圧を直流に変換する交直変換回路とを備えるスイッチング電源装置であって、
前記スイッチング電源装置の出力電圧又は出力電流を検出する出力検出部と、
前記検出された出力電圧又は出力電流が所定の目標値となるように前記スイッチング電源装置のスイッチングの時比率を制御する時比率制御部と、
前記共振回路に蓄積されているエネルギーを検出するエネルギー検出部と、
前記検出されたエネルギーが所定のしきい値となるように前記スイッチング電源装置のスイッチングの周波数を制御する制御部とを備え、
前記制御部は、前記エネルギー検出部により検出された前記共振回路の電流又は電圧が、予め決められたしきい値以下になったときに、前記スイッチング素子のスイッチング周波数を低くし、前記共振回路の電流又は電圧が前記しきい値に達するように制御する。
前記制御部は、前記検出されたエネルギーが所定のしきい値となるように前記スイッチング電源装置のスイッチングの周波数を制御するときに、当該スイッチングの周波数が前記設定された下限値になったとき当該制御を停止する。
2…入力フィルタ、
3…ダイオードブリッジ回路、
4…力率改善回路(PFC)、
5,5A…DCDCコンバータ、
6…平滑用フィルタ回路、
10…信号制御生成部、
11…出力電圧検出部、
12…時比率制御部、
13…共振エネルギー検出部、
14…下限スイッチング周波数設定部、
E…直流電圧源、
INV…フルブリッジインバータ回路、
S1~S4…半導体スイッチング素子、
C1~C4…スナバコンデンサ、
D1~D2…逆導通ダイオード
Lre…共振コイル、
TF…高周波トランス、
Dr1~Dr4…ダイオード、
RE,RE1…整流器、
L0…出力リアクトル、
C0…出力コンデンサ、
R…負荷抵抗。
Claims (6)
- スイッチング素子のスイッチング動作に基づいて直流電圧を交流電圧に変換する直交変換部と、
前記交流電圧を所定の電圧値を有する交流電圧に変換する変圧器と、
前記直交変換部と前記変圧器の間に設けられる共振回路と、
前記変圧器からの交流電圧を直流に変換する交直変換回路とを備えるスイッチング電源装置であって、
前記スイッチング電源装置の出力電圧又は出力電流を検出する出力検出部と、
前記検出された出力電圧又は出力電流が所定の目標値となるように前記スイッチング電源装置のスイッチングの時比率を制御する時比率制御部と、
前記共振回路に蓄積されているエネルギーを検出するエネルギー検出部と、
前記検出されたエネルギーが所定のしきい値となるように前記スイッチング電源装置のスイッチングの周波数を制御する制御部とを備え、
前記制御部は、前記エネルギー検出部により検出された前記共振回路の電流又は電圧が、予め決められたしきい値以下になったときに、前記スイッチング素子のスイッチング周波数を低くし、前記共振回路の電流又は電圧が前記しきい値に達するように制御する、
スイッチング電源装置。 - 前記スイッチング電源装置のスイッチングの周波数の所定の下限値を設定する設定部をさらに備え、
前記制御部は、前記検出されたエネルギーが所定のしきい値となるように前記スイッチング電源装置のスイッチングの周波数を制御するときに、当該スイッチングの周波数が前記設定された下限値になったとき当該制御を停止する請求項1記載のスイッチング電源装置。 - 請求項1又は2記載のスイッチング電源装置を備える車載用充電装置。
- 請求項3記載の車載用充電装置と充電池とを備える車両。
- 請求項1又は2記載のスイッチング電源装置を備える電気機器。
- 請求項1又は2記載のスイッチング電源装置を備える電子機器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015519648A JP6341386B2 (ja) | 2013-05-30 | 2014-05-27 | スイッチング電源装置 |
US14/785,530 US9667153B2 (en) | 2013-05-30 | 2014-05-27 | Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013114221 | 2013-05-30 | ||
JP2013-114221 | 2013-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192290A1 true WO2014192290A1 (ja) | 2014-12-04 |
Family
ID=51988341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002790 WO2014192290A1 (ja) | 2013-05-30 | 2014-05-27 | スイッチング電源装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9667153B2 (ja) |
JP (1) | JP6341386B2 (ja) |
WO (1) | WO2014192290A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106655781A (zh) * | 2016-10-19 | 2017-05-10 | 东南大学 | 一种lcc谐振变换器pwm移相混合控制及效率优化方法 |
CN106849301A (zh) * | 2015-11-02 | 2017-06-13 | 现代自动车株式会社 | Dc‑dc转换器的控制方法及接地组件和无线电力传输方法 |
CN107241027A (zh) * | 2016-03-29 | 2017-10-10 | 高准有限公司 | 本安电源装置和包括本安电源装置的变送器 |
WO2018221031A1 (ja) * | 2017-05-31 | 2018-12-06 | 日立オートモティブシステムズ株式会社 | スイッチング電源装置 |
CN111277145A (zh) * | 2020-03-03 | 2020-06-12 | 合肥阳光电动力科技有限公司 | 一种dc-dc变换电路的控制装置和控制方法 |
JP2021522770A (ja) * | 2018-04-26 | 2021-08-30 | ビーワイディー カンパニー リミテッド | Dcdcコンバータ、車載充電器及び電気自動車 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMO20130267A1 (it) * | 2013-09-26 | 2015-03-27 | Meta System Spa | Caricabatterie per veicoli elettrici |
JP6172088B2 (ja) * | 2014-08-19 | 2017-08-02 | 株式会社デンソー | 共振電流制限装置 |
CN106067738B (zh) * | 2015-04-23 | 2020-04-14 | 松下知识产权经营株式会社 | 电力变换装置 |
US9780690B2 (en) * | 2016-01-28 | 2017-10-03 | Infineon Technologies Austria Ag | Resonant decoupled auxiliary supply for a switched-mode power supply controller |
US10153702B2 (en) | 2017-02-07 | 2018-12-11 | Infineon Technologies Austria Ag | Switched-mode power supply controller using a single pin for both input voltage sensing and control of power supply charging |
US10020752B1 (en) * | 2017-09-26 | 2018-07-10 | Vlt, Inc. | Adaptive control of resonant power converters |
US10574129B2 (en) * | 2018-05-04 | 2020-02-25 | Raytheon Company | System and method for adaptively controlling a reconfigurable power converter |
EP3624319A1 (en) * | 2018-09-14 | 2020-03-18 | Delta Electronics (Thailand) Public Co., Ltd. | Switch protection |
JP2020124050A (ja) * | 2019-01-31 | 2020-08-13 | 株式会社デンソー | 共振インバータ装置 |
US10944323B2 (en) | 2019-04-25 | 2021-03-09 | Samsung Electronics Co., Ltd. | Power converter for detecting oscillation of output voltage |
CN112510974B (zh) * | 2019-09-16 | 2022-07-01 | 联合汽车电子有限公司 | 一种全桥开关电路电压电流相位检测装置及相位控制方法 |
WO2024047475A1 (en) * | 2022-08-31 | 2024-03-07 | Eldor Corporation S.P.A. | Dc-dc converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03251079A (ja) * | 1990-02-26 | 1991-11-08 | Origin Electric Co Ltd | X線電源装置 |
JPH06141541A (ja) * | 1992-10-19 | 1994-05-20 | Origin Electric Co Ltd | 直列共振形コンバータの制御方法及び制御回路 |
JP2002252975A (ja) * | 2001-02-26 | 2002-09-06 | Tdk Corp | スイッチング電源装置 |
JP2008278723A (ja) * | 2007-05-07 | 2008-11-13 | Kawamura Electric Inc | 燃料電池の系統連系インバータ |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3475904B2 (ja) * | 2000-04-17 | 2003-12-10 | 株式会社村田製作所 | スイッチング電源装置 |
JP2002238257A (ja) | 2001-02-06 | 2002-08-23 | Toshiba Corp | 共振型dc−dcコンバータの制御方法 |
JP2004135490A (ja) * | 2002-08-09 | 2004-04-30 | Sony Corp | スイッチング電源回路 |
JP2006042435A (ja) | 2004-07-23 | 2006-02-09 | Sanken Electric Co Ltd | スイッチング電源装置 |
JP2008022658A (ja) | 2006-07-14 | 2008-01-31 | Sony Corp | スイッチング電源回路 |
JP5167929B2 (ja) | 2007-11-28 | 2013-03-21 | 富士電機株式会社 | スイッチング電源装置 |
US7859864B2 (en) | 2007-11-28 | 2010-12-28 | Fuji Electric Systems Co., Ltd. | Switching power supply device |
TWI346440B (en) * | 2008-01-31 | 2011-08-01 | Lite On Technology Corp | Controller for use in resonant direct current/direct current converter |
US20100220500A1 (en) * | 2009-01-29 | 2010-09-02 | Fuji Electric Systems Co., Ltd. | Power converter and method for controlling power converter |
CN102281002B (zh) * | 2010-06-09 | 2014-05-14 | 光宝电子(广州)有限公司 | 谐振式电力转换电路 |
CN103503292B (zh) * | 2011-04-18 | 2016-04-20 | 三菱电机株式会社 | 电力变换装置以及具备该电力变换装置的车载电源装置 |
WO2014155604A1 (ja) * | 2013-03-28 | 2014-10-02 | 三菱電機株式会社 | Dc/dcコンバータ |
JP5868533B1 (ja) * | 2015-02-24 | 2016-02-24 | 三菱電機株式会社 | 電動機制御装置 |
-
2014
- 2014-05-27 WO PCT/JP2014/002790 patent/WO2014192290A1/ja active Application Filing
- 2014-05-27 JP JP2015519648A patent/JP6341386B2/ja active Active
- 2014-05-27 US US14/785,530 patent/US9667153B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03251079A (ja) * | 1990-02-26 | 1991-11-08 | Origin Electric Co Ltd | X線電源装置 |
JPH06141541A (ja) * | 1992-10-19 | 1994-05-20 | Origin Electric Co Ltd | 直列共振形コンバータの制御方法及び制御回路 |
JP2002252975A (ja) * | 2001-02-26 | 2002-09-06 | Tdk Corp | スイッチング電源装置 |
JP2008278723A (ja) * | 2007-05-07 | 2008-11-13 | Kawamura Electric Inc | 燃料電池の系統連系インバータ |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106849301A (zh) * | 2015-11-02 | 2017-06-13 | 现代自动车株式会社 | Dc‑dc转换器的控制方法及接地组件和无线电力传输方法 |
CN106849301B (zh) * | 2015-11-02 | 2021-10-12 | 现代自动车株式会社 | Dc-ac转换器的控制方法及接地组件和无线电力传输方法 |
CN107241027A (zh) * | 2016-03-29 | 2017-10-10 | 高准有限公司 | 本安电源装置和包括本安电源装置的变送器 |
CN106655781A (zh) * | 2016-10-19 | 2017-05-10 | 东南大学 | 一种lcc谐振变换器pwm移相混合控制及效率优化方法 |
CN106655781B (zh) * | 2016-10-19 | 2018-09-07 | 东南大学 | 一种lcc谐振变换器pwm移相混合控制及效率优化方法 |
WO2018221031A1 (ja) * | 2017-05-31 | 2018-12-06 | 日立オートモティブシステムズ株式会社 | スイッチング電源装置 |
JPWO2018221031A1 (ja) * | 2017-05-31 | 2020-03-19 | 日立オートモティブシステムズ株式会社 | スイッチング電源装置 |
US11309794B2 (en) | 2017-05-31 | 2022-04-19 | Hitachi Astemo, Ltd. | Switching power supply device |
JP2021522770A (ja) * | 2018-04-26 | 2021-08-30 | ビーワイディー カンパニー リミテッド | Dcdcコンバータ、車載充電器及び電気自動車 |
US11870357B2 (en) | 2018-04-26 | 2024-01-09 | Byd Company Limited | Dc-dc converter, on-board charger, and electric vehicle |
CN111277145A (zh) * | 2020-03-03 | 2020-06-12 | 合肥阳光电动力科技有限公司 | 一种dc-dc变换电路的控制装置和控制方法 |
CN111277145B (zh) * | 2020-03-03 | 2021-10-29 | 合肥阳光电动力科技有限公司 | 一种dc-dc变换电路的控制装置和控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US9667153B2 (en) | 2017-05-30 |
JP6341386B2 (ja) | 2018-06-13 |
US20160099649A1 (en) | 2016-04-07 |
JPWO2014192290A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6341386B2 (ja) | スイッチング電源装置 | |
JP5148515B2 (ja) | 供給回路及び供給回路を有する装置 | |
US6717827B2 (en) | Switching power supply | |
US8854839B2 (en) | AC-to-DC power converting device | |
JP5958531B2 (ja) | インバータ装置 | |
US9866146B2 (en) | Enhanced flyback converter | |
Jeong et al. | Analysis on half-bridge LLC resonant converter by using variable inductance for high efficiency and power density server power supply | |
Kim et al. | Analysis on synchronous rectifier control to improve regulation capability of high-frequency LLC resonant converter | |
JP2015144554A (ja) | 電力変換装置 | |
JP6132887B2 (ja) | 電力変換装置 | |
JP6519574B2 (ja) | ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送装置並びに整流器 | |
US8467204B2 (en) | High voltage power supply | |
JP2006129548A (ja) | 電力変換装置 | |
JP6012822B1 (ja) | 電力変換装置 | |
JP6913599B2 (ja) | 制御装置 | |
JP2010124567A (ja) | スイッチング電源装置 | |
KR101141374B1 (ko) | 부스트 컨버터 | |
JP6709965B2 (ja) | スナバ回路、及びそれを用いた電力変換システム | |
JP2019187004A (ja) | スイッチング電源装置 | |
JP6458235B2 (ja) | スイッチング電源装置 | |
KR101769335B1 (ko) | 멀티 토플러지를 이용한 dc/dc 컨버터 | |
JP6393962B2 (ja) | スイッチング電源装置 | |
JP2007288855A (ja) | スイッチング電源装置 | |
WO2011161728A1 (ja) | スイッチング電源装置およびこれを用いた電源システム、電子装置 | |
JP7051726B2 (ja) | 直流パルス電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14804916 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015519648 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14785530 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14804916 Country of ref document: EP Kind code of ref document: A1 |