[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014038005A1 - 多孔質炭素及びその製造方法 - Google Patents

多孔質炭素及びその製造方法 Download PDF

Info

Publication number
WO2014038005A1
WO2014038005A1 PCT/JP2012/072548 JP2012072548W WO2014038005A1 WO 2014038005 A1 WO2014038005 A1 WO 2014038005A1 JP 2012072548 W JP2012072548 W JP 2012072548W WO 2014038005 A1 WO2014038005 A1 WO 2014038005A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
porous carbon
boron
boric acid
present
Prior art date
Application number
PCT/JP2012/072548
Other languages
English (en)
French (fr)
Inventor
森下 隆広
広典 折笠
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to US14/425,981 priority Critical patent/US20150344316A1/en
Priority to KR20157005132A priority patent/KR20150046068A/ko
Priority to EP12884339.8A priority patent/EP2894128A4/en
Priority to CN201280075161.6A priority patent/CN104520233A/zh
Priority to PCT/JP2012/072548 priority patent/WO2014038005A1/ja
Publication of WO2014038005A1 publication Critical patent/WO2014038005A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to porous carbon and a method for producing the same, and in particular, relates to a porous carbon containing boron exhibiting inexpensive, safe and specific properties and a method for producing the same.
  • a paper made of a cellulose-based material mixed with boric acid is finally made into a graphitization treatment by firing at 2000 degrees or more.
  • porous carbon containing 50 to 2000 ppm of boric acid can be obtained (see Patent Document 1 below).
  • the carbon material produced in this way has a pore diameter of several tens of ⁇ m and almost no micropores as described in the document.
  • it is estimated that the specific surface area of the carbon material manufactured as a result is very small.
  • an object of the present invention is to provide a porous carbon that can dramatically improve performance by increasing the BET specific surface area even when boron is contained, and a method for producing the same.
  • the present invention is characterized in that at least the surface has a C—B—O bond structure, and a BET specific surface area determined from a nitrogen adsorption isotherm at 77 K is 300 m 2 / g or more. .
  • the carbon black shown in the prior art has significantly fewer micropores and mesopores. For this reason, porous carbon with a large BET specific surface area could not be obtained.
  • the porous carbon having the above-described structure there are mesopores and micropores generated around the mesopores, so that a porous carbon having a BET specific surface area of 300 m 2 / g or more is obtained. Can do.
  • the presence of the bond on the surface of the porous carbon improves the hydrophilicity and the affinity with the electrolytic solution.
  • boron is chemically bonded to carbon and stably held on the carbon surface (ie, simply supported on carbon). is not). Therefore, since it is possible to suppress the separation of boron from the porous carbon, the effect of improving hydrophilicity and affinity with the electrolyte is maintained for a long period of time (durability is increased).
  • the porous carbon of the present invention when used as an electrode material, the electrolyte solution in the battery or capacitor and the electrolyte dissolved in the electrolyte solution are smoothly moved into the pores.
  • the charge / discharge characteristics of the battery and capacitor can be improved.
  • the porous carbon of the present invention when used as an adsorbent, the adsorption performance is dramatically improved.
  • the C—B—O bond structure is present on the surface of the porous carbon, and it does not matter whether boron is present inside the porous carbon.
  • the upper limit of the BET specific surface area is not limited, but if it is too large, the shape of the carbon wall cannot be maintained and the particles may collapse, so the BET specific surface area is preferably 1500 m 2 / g or less. .
  • those having a pore diameter of less than 2 nm are referred to as micropores
  • those having a pore diameter of 2 to 50 nm are referred to as mesopores
  • those having a pore diameter of 50 nm or more are referred to as macropores.
  • the micropore volume determined by the DR method from the nitrogen adsorption isotherm at 77K is desirably 0.3 ml / g or more, and the total pore volume determined from the nitrogen adsorption isotherm at 77K and the nitrogen adsorption isotherm at 77K
  • the difference from the micropore volume determined by the DR method from the line is preferably 1 ml / g or more.
  • the boron content is preferably 100 to 10,000 ppm (weight ratio). Thus, if the boron concentration is high, the performance when porous carbon is used as an electromagnetic wave absorber is dramatically improved.
  • the transmittance when using a light beam having a wavelength of 550 nm is 80% or less. It is desirable. Thus, if hydrophilicity is favorable, said effect will be exhibited further.
  • the present invention comprises a step of preparing a mixture by mixing boric acid and magnesium citrate, and heating and baking the mixture in a vacuum atmosphere, a non-oxidizing atmosphere, or a reducing atmosphere. And producing a fired product, and removing the mold in the fired product.
  • a mixture of boric acid and magnesium citrate is heated and calcined in a predetermined atmosphere as in the above production method, first, magnesium citrate is decomposed to produce magnesium oxide and citric acid, and it is generated from boric acid. Boron oxide melts.
  • a reaction product of magnesium oxide and boron oxide is formed on the outer periphery of the magnesium oxide, and a template is formed by the reaction product and magnesium oxide. Is placed. Thereafter, the above-mentioned porous carbon can be obtained by removing the template.
  • the mechanism of introduction of boron element into carbon is (1) when it is introduced into the carbon surface through the reaction of magnesium oxide and boron oxide, or (2) when molten boron oxide and carbon or carbon precursor are introduced.
  • transduces by reacting directly is considered.
  • the effect of being able to selectively introduce boron into the surface of the mesopores and uniformly introduce boron is exhibited.
  • the mechanism (1) is the main, selective boron is sufficiently introduced into the mesopore surface, and when the mechanism (2) is the main, the uniform introduction of boron is sufficiently performed. Conceivable.
  • boric acid is used as the boron source and no boron metal is used is as follows. That is, boric acid is cheaper and easier to obtain than metallic boron, and can be easily removed because it is soluble in water and acid.
  • boric acid is solid (powder) at room temperature, but when it reaches a predetermined temperature or higher, it becomes molten boron oxide, so that fluidity is improved and reaches every corner in the raw material. Therefore, since the uniform reaction is performed in the introduction of the boron element shown in the above (1) and (2), the boron element is easily introduced uniformly into the porous carbon.
  • boron metal has a high melting point (2076 ° C.) and exists in a solid state, that is, as coarse particles.
  • the boron source is not limited to boric acid, and may be other boron compounds such as boron oxide.
  • the ratio of boric acid to magnesium citrate is regulated to more than 0% by weight and 100% by weight or less. As long as boric acid is contained even slightly, the effects of the present invention can be exhibited, so the above ratio should be over 0% by weight. On the other hand, if the boron content is excessively increased, the micropore volume is decreased. Therefore, the above ratio is desirably regulated to 100% by weight or less. In addition, in order to fully exhibit the effect of this invention and to suppress the reduction
  • the temperature at the time of heating and baking is 500 ° C. or higher and 1500 ° C. or lower.
  • the temperature is less than 500 ° C., carbonization may be insufficient and the development of pores may not be sufficient.
  • oxides magnesium oxide, etc.
  • the temperature exceeds 1500 ° C., oxides (magnesium oxide, etc.) that are pore templates are sintered and coarse. Therefore, the pore size increases and the specific surface area decreases.
  • the temperature exceeds 1500 ° C. the surface functional group having a C—B—O bond is decomposed. Further, because the boron carbide (B 4 C) is to be deposited.
  • the BET specific surface area can be increased, and thereby, the excellent effect that the performance of the porous carbon can be remarkably improved is achieved.
  • the carbonized product of the present invention includes an organic acid (for example, magnesium citrate, magnesium oxalate, calcium citrate, or calcium oxalate) having both a template source and a carbon source, and a boron source.
  • the boric acid is wet or dry mixed in a solution or powder state, and the mixture is 500 ° C. to 1500 ° C. in a non-oxidizing atmosphere or under reduced pressure (133 Pa (1 torr) or less) or in a reducing atmosphere.
  • Carbonization is performed at the following temperature, and the resulting carbide is washed to remove the mold. It can be manufactured through such steps. With such a manufacturing method, boron elements can be simultaneously introduced into at least the surface of the porous carbon while forming mesopores directly with the mold.
  • the porous carbon has a C—B—O bond structure, and the BET specific surface area obtained from a nitrogen adsorption isotherm at 77 K is 300 m 2 / g or more.
  • the porous carbon has low chemical reactivity with acids and alkalis and has extremely good conductivity.
  • Boron is introduced at least on the surface of the porous carbon (at least the surface of the mesopores), but is not limited to this region, and is not limited to the surface of the micropores or macropores or in the carbon skeleton of the porous carbon. May also be introduced.
  • the ratio between the template and the carbon the ratio between the organic acid having both the template source and the carbon source and the resin or the like shown in the second embodiment below may be adjusted.
  • the cleaning liquid for removing oxides a general inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, acetic acid, formic acid is used, and it is preferably used as a dilute acid of 2 mol / l or less. Furthermore, it is also possible to use hot water of 80 ° C. or higher.
  • the carbonized product of the present invention is a polyimide containing at least one nitrogen or fluorine atom in a unit structure or a resin having a carbon yield of 40% by weight or more, such as a phenol resin (polyvinyl alcohol) or the like.
  • a thermoplastic resin such as pitch, a mold, and boric acid as a boron source are wet or dry mixed in a solution or powder state in the same manner as described above, and the mixture is subjected to non-oxidizing atmosphere, reduced pressure, or It can also be obtained by carbonizing at a temperature of 500 ° C. or higher and 1500 ° C. or lower in a reducing atmosphere and washing the resulting carbide.
  • At least the surface has a C—B—O bond structure, and the BET specific surface area determined from the nitrogen adsorption isotherm at 77 K is 300 m 2 / g.
  • the above porous carbon can be produced.
  • the polyimide containing at least one nitrogen or fluorine atom in the unit structure can be obtained by polycondensation of an acid component and a diamine component.
  • the acid component and the diamine component contain one or more nitrogen atoms or fluorine atoms.
  • a polyamic acid film which is a polyimide precursor is formed, and the solvent is removed by heating to obtain a polyamic acid film.
  • a polyimide can be manufactured by thermally imidating the obtained polyamic acid film at 200 ° C. or higher.
  • diamine component examples include 2,2-bis (4-aminophenyl) hexafluoropropane [2,2-Bis (4-aminophenyl) hexafluoropropane], 2,2-bis (trifluoromethyl) -benzidine [2,2 '-Bis (trifluoromethyl) -benzidine], 4,4'-diaminooctafluorobiphenyl, 3,3'-difluoro-4,4'-diaminodiphenylmethane, 3,3'-difluoro-4,4'-diaminodiphenyl ether 3,3′-di (trifluoromethyl) -4,4′-diaminodiphenyl ether, 3,3′-difluoro-4,4′-diaminodiphenylpropane, 3,3′-difluoro-4,4′-diamino Diphenylhexafluoropropane, 3, '-
  • the acid component includes 4,4-hexafluoroisopropylidenediphthalic anhydride (6FDA) containing a fluorine atom and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride containing no fluorine atom.
  • 6FDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • BPDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • PMDA pyromellitic dianhydride
  • the organic solvent used as a solvent for the polyimide precursor include N-methyl-2-pyrrolidone and dimethylformamide.
  • the imidization method is shown in a known method (for example, see “New Polymer Experimental Science” edited by the Society of Polymer Science, Kyoritsu Shuppan, March 28, 1996, Volume 3, Synthesis and Reaction of Polymers (2), page 158). Thus, either heating or chemical imidization may be followed, and the present invention is not affected by this imidization method. Furthermore, as resins other than polyimide, those having a carbon yield of 40% by weight or more such as petroleum tar pitch and acrylic resin can be used.
  • the carbon yield of the carbon source needs to be 40% by weight or more, and particularly preferably 40% by weight or more and 85% by weight or less for the following reason. If the carbon yield is too small or large (specifically, if the carbon yield of the flowable material is less than 40% by weight or exceeds 85% by weight), the carbon powder that does not retain the three-dimensional network structure. However, if a carbon source having a carbon yield of 40% by weight or more and 85% by weight or less is used, after removing the template, the porous material having a three-dimensional network structure in which the location where the template exists becomes continuous pores. This is because carbon can be obtained reliably. Moreover, if the carbon yield of the fluid material is in the above range, the micropores are very developed, and the specific surface area is increased.
  • alkaline earth metal compounds such as magnesium oxide and calcium oxide
  • the alkaline earth metal compound can be removed with a weak acid or hot water (ie, the template can be removed without using a strong acid)
  • the property of the porous carbon itself changes in the step of removing the template. This is because it can be suppressed.
  • they are reduced even in a high temperature region such as a carbonization step, and are not easily converted to metals.
  • the ratio of the mold to the carbon source is preferably regulated to 10 to 90% by weight.
  • the pore diameter, the pore distribution of the porous carbon, and the thickness of the carbonaceous wall can be adjusted by changing the diameter of the mold and the kind of the organic resin. Therefore, it is possible to produce porous carbon having a more uniform pore diameter and a larger pore volume by appropriately selecting the template diameter and the organic resin type.
  • magnesium citrate (monohydrate) having both a template source and a carbon source and boric acid (H 3 BO 3 , which is a powdered solid at room temperature) are prepared, and the above-mentioned magnesium citrate Both were mixed in a mortar so that the proportion of boric acid was 4% by weight, and a mixture of magnesium citrate 1 and boric acid 2 was obtained as shown in FIG. Next, this mixture was heated up to 900 ° C. at a heating rate of 10 ° C./min, and further maintained at 900 ° C. for 1 hour.
  • the boric acid 2 is decomposed into boron oxide 3 as shown in FIG.
  • the temperature is further raised and the mixture reaches 480 ° C., as shown in FIG. 1 (c)
  • magnesium citrate 1 is decomposed to produce magnesium oxide 4 and magnesium citrate 6 being decomposed
  • Boron oxide 3 melts.
  • a reaction product of magnesium oxide and boron oxide is formed on the outer periphery of magnesium oxide, and a template 7 is formed by the reaction product and magnesium oxide as shown in FIG.
  • carbon 8 generated by carbonization of the citric acid component is arranged around the template 7.
  • porous carbon 8 having a C—B—O bond structure at least on the surface can be obtained. It can.
  • the porous carbon thus produced is hereinafter referred to as the present invention carbon A1.
  • Example 2 Porous carbon was produced in the same manner as in Example 1 except that the ratio of boric acid to magnesium citrate was 20% by weight.
  • the porous carbon thus produced is hereinafter referred to as the present invention carbon A2.
  • Example 3 Porous carbon was produced in the same manner as in Example 1 except that the ratio of boric acid to magnesium citrate was 50% by weight.
  • the porous carbon produced in this manner is hereinafter referred to as the present invention carbon A3.
  • Comparative Example 1 Porous carbon was prepared in the same manner as in Example 1 except that boric acid was not added. The porous carbon thus produced is hereinafter referred to as comparative carbon Z1.
  • Comparative Example 2 Porous carbon was prepared in the same manner as in Example 1 except that boron metal was used in place of boric acid and the ratio of boron metal to magnesium citrate was 5% by weight.
  • the porous carbon thus produced is hereinafter referred to as comparative carbon Z2.
  • Example 2 Since the X-ray diffraction of the carbon material (specifically, the carbon material before being washed with the sulfuric acid solution) at the stage of producing the inventive carbons A1 and A3 and the comparative carbon Z1 was performed, the results are shown in FIG. As is clear from FIG. 2, only the magnesium oxide peak is observed in the carbon material in the production stage of the comparative carbon Z1, whereas in the carbon material in the production stage of the carbon A1 of the present invention, in addition to the magnesium oxide peak, The Mg 3 (BO 3 ) 2 peak is observed.
  • magnesium oxide which is originally a template, reacts with boric acid.
  • the reaction shown in the following (1) and (2) occurs.
  • the reaction (1) occurs.
  • the amount of boric acid added is large, the reaction (2) occurs in addition to the reaction (1).
  • the reaction (2) occurs in addition to the reaction (1).
  • Example 3 The X-ray diffraction measurements of the inventive carbons A1 to A3 and the comparative carbon Z1 were performed, and the results are shown in FIG. As can be seen from FIG. 3, there is no significant change in the carbons A1 to A3 of the present invention and the comparative carbon Z1, and even when boron is added, there is no noticeable change in crystallinity.
  • FIGS. 5 to 7 Since the carbons A1 and A3 of the present invention and the comparative carbon Z1 were observed using a TEM (transmission electron microscope), the results are shown in FIGS. 5 to 7 (FIG. 5 is a photograph of the carbon A1 of the present invention, and FIG. A photograph of carbon A3, FIG. 7 is a photograph of comparative carbon Z1). Moreover, since this invention carbon A3 was observed using SEM (scanning electron microscope), the result is shown in FIG.
  • the carbon nanostructure obtained is changed by changing the amount of boric acid added. That is, it is considered that the carbon nanostructure can be controlled by the amount of boric acid added.
  • the mesopores are formed by removing the template after coating with carbon, and the reaction product of magnesium oxide and boric acid is used as the template.
  • the reaction product of magnesium oxide and boric acid is used as the template.
  • the melted boron oxide was compatible with magnesium citrate, so that magnesium oxide formed directly from magnesium citrate was formed around the magnesium oxide.
  • a reaction product (a reaction product generated from magnesium oxide and boric acid) serves as a template.
  • the carbon A1 and A3 templates of the present invention are larger than the template of the comparative carbon Z1.
  • the inventive carbons A1 and A3 had larger mesopores than the comparative carbon Z1 (FIGS. 5 and 6).
  • FIGS. 5 and 6 it was confirmed that the primary particles of the carbons A1 and A3 of the present invention had a particle size of about 10 nm.
  • FIG. 8 it is recognized that mesopores are remarkably present in the carbon A3 of the present invention.
  • the state of boron on the surface of the carbon A3 of the present invention is not simply attached, supported, or adsorbed, and is not present in the state of boron oxide or boron carbide. It can be seen that it exists in a bonded state of —B—O. On the other hand, as is clear from FIG. 10, no peak due to boron was observed in the comparative carbon Z1.
  • Example 7 The inventive carbons A1 to A3 and the comparative carbon Z1 were subjected to nitrogen adsorption measurement at 77K to obtain nitrogen adsorption isotherms. The results are shown in FIG. Moreover, since the nitrogen adsorption isotherm of the comparative carbon Z2 was obtained by the same method, the result is shown in FIG. In FIG. 12, the nitrogen adsorption isotherm of the comparative carbon Z1 is also shown. As is apparent from FIG.
  • the carbons of the present invention A1 to A3 are observed to move downward in the adsorption isotherm compared to the comparative carbon Z1, but in the high pressure region, the present invention carbons A1 to A3 It can be seen that the adsorption isotherms of the carbons A1 to A3 are moving upward. This result is due to the fact that the inventive carbons A1 to A3 have fewer micropores and more relatively large mesopores or macropores than the comparative carbon Z1.
  • the adsorption isotherm of the comparative carbon Z2 moves downward in all regions compared to the comparative carbon Z1. This is considered to be due to the following reasons. Since the contact area between carbon and metal boron powder is very small, the reaction between metal boron and carbon is negligible. Further, metal boron has extremely low solubility in acid, and unreacted ones could not be removed sufficiently. Therefore, there is no significant change in the pore structure between the comparative carbon Z2 and the comparative carbon Z1. As a result, it is considered that the adsorption isotherm of the comparative carbon Z2 moves downward as much as the weight of boron compared to the comparative carbon Z1.
  • Example 8 The boron contents (weight ratio) of the inventive carbons A1 to A3 and the comparative carbon Z1 were measured using a fluorescent X-ray apparatus. Further, the BET specific surface area and the total pore volume were determined from the nitrogen adsorption isotherm at 77K described above, and the micropore volume was determined by the DR method from the nitrogen adsorption isotherm at 77K. Furthermore, the mesopore volume was determined by subtracting the micropore volume from the total pore volume. These results are shown in Table 2.
  • the micropore volume decreases as the boron content increases. This is the same tendency as the BET specific surface area. Even the carbon A3 of the present invention having the highest boron content has a micropore volume of 0.34 ml / g, and has a micropore volume that can be said to be sufficiently porous.
  • the mesopore volume is 1.22 ml / g even with the smallest carbon A1 of the present invention, which is maintained at a high level as compared with conventional porous carbons including activated carbon.
  • FIG. 13 shows the pore size distribution of mesopores in the carbons of the present invention A1 to A3 and comparative carbon Z1.
  • the proportion of large mesopores increases as the amount of boric acid added increases.
  • the volume of the template is increased and the mesopore capacity is increased due to the reaction between magnesium oxide and boric acid as a template for the mesopores.
  • the transmittance of the comparative carbon Z1 to which no boric acid was added was as high as 87%, whereas the transmittance of the inventive carbons A1 to A3 was 19 to 74%.
  • the transmittance is lower than that of the comparative carbon Z1. This is considered to be due to the fact that in the carbons A1 to A3 of the present invention, the carbon was dispersed in the pure without being settled and the suspension wave state was kept. From this, it can be seen that according to the present invention, the wettability to water is improved and the dispersibility is enhanced.
  • the present invention can be used as an electromagnetic wave absorbing material, an electrode material of a capacitor, an electrode material of a fuel cell or a secondary battery, a gas storage material, a filter, a heat insulating material, a catalyst carrier and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 ホウ素を含む場合であっても、BET比表面積を飛躍的に増大させることにより、顕著な性能向上を図ることができる多孔質炭素及びその製造方法を提供することを目的としている。 少なくとも表面にはC-B-O結合構造が存在し、77Kにおける窒素吸着等温線から求められるBET比表面積が300m/g以上であることを特徴とする多孔質炭素であり、ホウ酸とクエン酸マグネシウムとを混合して混合物を作製するステップと、上記混合物を、真空雰囲気、非酸化性雰囲気、又は還元性雰囲気で加熱焼成して焼成物を作製するステップと、上記焼成物中の上記鋳型を除去するステップとを有する製造方法によって作製することができる。

Description

多孔質炭素及びその製造方法
 本発明は、多孔質炭素及びその製造方法に関し、特に、安価且つ安全で特異的な性質を示すホウ素入り多孔質炭素及びその製造方法に関するものである。
 近年、電子回路の高集積化や電気信号の高周波数化が進展したことに伴って、電子機器からの電磁波の発生やその漏洩が問題となっている。この電磁波を抑制するため、樹脂、ゴム等にホウ素を含む炭素材料を混合した電磁波吸収材で電子機器を覆う手法が採用されている。また、非水電解液二次電池やコンデンサの電極材料として、炭素材料が用いられているが、この場合、炭素材料にホウ素を含有させることによって、電解液に対する濡れ性を向上させうることが知られている。このようなホウ素を含有する炭素材料としては、以下に示すものが提案されている。
 ホウ酸を混合したセルロース系材料を抄紙して、最終的に2000度以上で焼成することにより、黒鉛化処理を施している。これにより、ホウ酸を50~2000ppm含有する多孔質炭素を得ることができる旨記載されている(下記特許文献1参照)。
 しかしながら、このようにして作製された炭素材料では、当該文献に記載の如く、気孔径は数十μmであり、ミクロ細孔はほとんど無いと考えられる。また、ホウ素含有量及び比表面積について記載されていないが、結果として製造される炭素材の比表面積は極めて小さいと推測される。
 また、ホウ素固溶量が0.7~1.8重量%であるカーボンブラックが提案されており(下記特許文献2参照)、更に、固溶ホウ素量が0.5重量%以上、可溶ホウ素量が0.05重量%以下のカーボンブラックが提案されている(下記特許文献3参照)。
 これらの提案において、BET比表面積について明確に示されていないが、カーボンブラックの一般的なBET比表面積は、最大でも300m/gに満たない。したがって、上記提案によって得られる多孔質炭素のBET比表面積も300m/g未満と考えられる。以上のことから、上記方法で作製したカーボンブラックであっても、高性能の多孔質炭素とはならない。
特開平10-237683号公報 特開2006-111791号公報 特開2006-265374号公報
 そこで本発明は、ホウ素を含む場合であっても、BET比表面積を増大させることにより、飛躍的な性能向上を図ることができる多孔質炭素及びその製造方法を提供することを目的としている。
 上記目的を達成するために本発明は、少なくとも表面にC-B-O結合構造が存在し、77Kにおける窒素吸着等温線から求められるBET比表面積が300m/g以上であることを特徴とする。
 従来技術で示したカーボンブラックでは、ミクロ孔やメソ孔が著しく少ない。このため、BET比表面積が大きな多孔質炭素を得ることができなかった。これに対して、上記構成の多孔質炭素では、メソ孔と、このメソ孔周辺に生じるミクロ孔とが存在するので、BET比表面積が300m/g以上となるような多孔質炭素を得ることができる。
 また、上記構成の如く、多孔質炭素の表面に結合が存在していることで、親水性や電解液との親和性が向上する。加えて、本発明の多孔質炭素では、結合の存在から明らかなように、ホウ素は炭素と化学結合して炭素表面に安定に保持されている(即ち、単に、炭素中に担持されているだけではない)。したがって、多孔質炭素からホウ素が離脱するのを抑制することができるので、親水性や電解液との親和性の向上効果が長期間持続される(耐久性が高くなる)。
 以上のことから、例えば、本発明の多孔質炭素を電極材料として用いた場合には、電池やキャパシタにおける電解液や、電解液に溶解した電解質の細孔内への移動が円滑に行われるので、電池やキャパシタの充放電特性を向上させることができる。また、本発明の多孔質炭素を吸着剤として用いた場合には、吸着性能が飛躍的に向上する。
 ここで、本発明の多孔質炭素では、多孔質炭素の表面にC-B-O結合構造が存在していれば足り、多孔質炭素の内部にホウ素が存在するか否かは問わない。
 また、BET比表面積の上限は限定するものではないが、余りに大きくなると、炭素壁の形状が保てなくなり粒子が崩壊するおそれがあるので、BET比表面積は1500m/g以下であることが望ましい。
 尚、本明細書では、細孔径が2nm未満のものをミクロ孔、細孔径が2~50nmのものをメソ孔、50nm以上のものをマクロ孔と称する。
 77Kにおける窒素吸着等温線からDR法で求めたミクロ孔容積が0.3ml/g以上であることが望ましく、また、77Kにおける窒素吸着等温線から求めた全細孔容積と、77Kにおける窒素吸着等温線からDR法で求めたミクロ孔容積との差(この値はメソ孔の容量とする)が1ml/g以上であることが望ましい。
 このように、ミクロ孔の容積やメソ孔の容積が大きければ、上記の作用効果が一層発揮される。
 ホウ素の含有量が100~10000ppm(重量割合)であることが望ましい。
 このように、ホウ素濃度が高ければ、多孔質炭素を電磁波吸収剤として用いた場合の性能が飛躍的に向上する。
 イオン交換水100gに多孔質炭素を0.03重量%加え、40kHzの超音波を3分印加し、更に16時間放置した後に、波長550nmの光線を用いた場合の透過率が80%以下であることが望ましい。
 このように、親水性が良好であれば、上記の作用効果が一層発揮される。
 また、上記目的を達成するために本発明は、ホウ酸とクエン酸マグネシウムとを混合して混合物を作製するステップと、上記混合物を、真空雰囲気、非酸化性雰囲気、又は還元性雰囲気で加熱焼成して焼成物を作製するステップと、上記焼成物中の上記鋳型を除去するステップと、を有することを特徴とする。
 上記製造方法の如く、ホウ酸とクエン酸マグネシウムとの混合物を、所定の雰囲気で加熱焼成すると、先ず、クエン酸マグネシウムが分解して、酸化マグネシウムとクエン酸とが生成すると共に、ホウ酸から生じた酸化ホウ素が溶融する。次に、更に昇温すると、酸化マグネシウムと酸化ホウ素との反応生成物が酸化マグネシウムの外周に形成され、当該反応生成物と酸化マグネシウムとにより鋳型が形成されると共に、この鋳型の周囲に、炭素が配置される。その後、鋳型を除去することにより、上述の多孔質炭素を得ることができる。
 ここで、ホウ素元素の炭素への導入メカニズムは、(1)酸化マグネシウムと酸化ホウ素との反応を経て炭素表面に導入される場合や、(2)溶融した酸化ホウ素と炭素や炭素前駆体とが直接反応することによって導入される場合が考えられる。このようなメカニズムであれば、メソ孔表面に選択的にホウ素を導入でき、且つホウ素を均一に導入できるという作用効果が発揮される。特に、(1)のメカニズムが主の場合、メソ孔表面への選択的なホウ素を導入が十分に行われ、(2)のメカニズムが主の場合、ホウ素の均一な導入が十分に行われると考えられる。
 尚、ホウ素源としてはホウ酸を用い、ホウ素金属を用いないのは、以下に示す理由による。即ち、ホウ酸は金属ホウ素と比べて安価で入手容易であり、水や酸に対して可溶であるため容易に除去できる。また、ホウ酸は、常温で固体(粉末)である一方、所定温度以上になると、溶融状態の酸化ホウ素になるため、流動性が向上して原料内の隅々にまで行き渡る。したがって、上記(1)(2)に示したホウ素元素の導入において、均一な反応が行われるので、ホウ素元素が多孔質炭素内に均一に導入され易くなる。これに対して、ホウ素金属は、融点が高く(2076℃)固体の状態、すなわち粗大な粒子として存在する。したがって、金属ホウ素粒子と炭素(あるいは炭素前駆体)の界面でのみで反応するので、ホウ素は、たとえ反応したとしても不均一に導入されるに過ぎないと考えられるからである。
 但し、ホウ素源としてはホウ酸に限定するものではなく、酸化ホウ素等、他のホウ素化合物であっても良い。
 クエン酸マグネシウムに対するホウ酸の割合が、0重量%を超え100重量%以下に規制されることが望ましい。
 若干でもホウ酸を含んでいれば、本発明の作用効果は発揮されるので、上記割合は0重量%を超えていれば足る。一方、ホウ素含有量が余り多くなると、ミクロ孔容積が減少するので、上記割合は100重量%以下に規制するのが望ましい。尚、本発明の作用効果を十分に発揮し、且つ、ミクロ孔容積の減少を十分に抑制するためには、上記割合は1重量%以上50重量%以下であることが一層望ましい。
 上記加熱焼成時の温度が500℃以上1500℃以下であることが望ましい。
 当該温度が500℃未満では炭素化が不十分で細孔の発達が十分ではない場合がある一方、1500℃を超えると、細孔の鋳型である酸化物(酸化マグネシウムなど)が焼結し粗大化するため、細孔サイズが大きくなって比表面積が小さくなる。加えて、1500℃を超えると、C-B-O結合を有する表面官能基は分解してしまう。また、炭化ホウ素(BC)が析出することになるからである。
 本発明によれば、ホウ素を含む場合であっても、BET比表面積を増大させることができ、これによって、多孔質炭素の性能を飛躍的に向上することができるといった優れた効果を奏する。
本発明炭素の製造工程を示す説明図である。 本発明炭素A1、A3及び比較炭素Z1を製造する段階における炭素材料(具体的には、硫酸溶液で洗浄する前の炭素材料)のX線回折結果を示すグラフである。 本発明炭素A1~A3及び比較炭素Z1のX線回折結果を示すグラフである。 比較炭素Z2のX線回折結果を示すグラフである。 本発明炭素A1のTEM(透過電子顕微鏡)写真である。 本発明炭素A3のTEM写真である。 比較炭素Z1のTEM写真である。 本発明炭素A3のSEM(走査電子顕微鏡)写真である。 本発明炭素A3のXPS(X線光電子分光)測定結果である。 比較炭素Z1のXPS測定結果である。 本発明炭素A1~A3及び比較炭素Z1の窒素吸着等温線を示すグラフである。 比較炭素Z1、Z2の窒素吸着等温線を示すグラフである。 本発明炭素A1~A3及び比較炭素Z1におけるメソ孔の細孔径分布を示すグラフである。
 以下、本発明の実施形態を以下に説明する。
(1)第1の形態
 本発明の炭素化物は、鋳型源と炭素源とを兼ね備える有機酸(例えば、クエン酸マグネシウム、シュウ酸マグネシウム、クエン酸カルシウム、或いはシュウ酸カルシウム等)と、ホウ素源としてのホウ酸とを、溶液又は粉末状態において湿式もしくは乾式混合し、混合物を非酸化性雰囲気下、又は、減圧下〔133Pa(1torr)以下〕、或いは、還元性雰囲気下で、500℃以上1500℃以下の温度で炭化し、得られた炭化物を洗浄処理することによって、鋳型を除去する。このような工程を経て作製することができる。このような製造方法であれば、鋳型によってメソ孔をダイレクトに形成しつつ、多孔質炭素の少なくとも表面に、ホウ素元素を同時導入することができる。
 具体的には、上記多孔質炭素では、少なくとも表面にはC-B-O結合構造が存在し、77Kにおける窒素吸着等温線から求められるBET比表面積が300m/g以上となる。また当該多孔質炭素は、酸やアルカリに対する化学反応性が低く、且つ、導電性が極めて良好なものとなる。
 尚、ホウ素は、少なくとも多孔質炭素の表面(少なくともメソ孔の表面)に導入されているが、当該部位に限定するものではなく、ミクロ孔やマクロ孔の表面や多孔質炭素の炭素骨格内にも導入されていても良い。
 また、鋳型と炭素との割合を調整するには、鋳型源と炭素源とを兼ね備える有機酸と、下記第2の形態に示す樹脂等との割合を調整すれば良い。
 上記鋳型を除去する際には、除去後の鋳型の残留率が0.5%以下となるように規制することが望ましい。除去後の鋳型の残留率が0.5%を超えると、メソ孔内に残る鋳型が多くなって、細孔としての役割を発揮できない部位が広く生じるからである。また、酸化物を取り除く洗浄液としては、塩酸、硫酸、硝酸、クエン酸、酢酸、ギ酸など一般的な無機酸を使用し、2mol/l以下の希酸として用いるのが好ましい。更に、80℃以上の熱水を使用することも可能である。
(2)第2の形態
 本発明の炭素化物は、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドもしくは炭素収率が40重量%以上の樹脂、例えばフェノール樹脂(ポリビニルアルコール)やピッチ等の熱可塑性樹脂等と、鋳型と、ホウ素源としてのホウ酸とを、上記と同様に、溶液又は粉末状態において湿式もしくは乾式混合し、混合物を非酸化性雰囲気下、減圧下、或いは、還元性雰囲気下で、500℃以上1500℃以下の温度で炭化し、得られた炭化物を洗浄処理することでも得ることができる。このような製造方法であれば、上記第1の形態と同様に、少なくとも表面にはC-B-O結合構造が存在し、77Kにおける窒素吸着等温線から求められるBET比表面積が300m/g以上の多孔質炭素を作製できる。
 ここで、上記単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドは、酸成分とジアミン成分との重縮合により得ることができる。但し、この場合、酸成分及びジアミン成分のいずれか一方又は両方に、一つ以上の窒素原子もしくはフッ素原子を含む必要がある。
 具体的には、ポリイミドの前駆体であるポリアミド酸を成膜し、溶媒を加熱除去することによりポリアミド酸膜を得る。次に、得られたポリアミド酸膜を200℃以上で熱イミド化することによりポリイミドを製造することができる。
 前記ジアミン成分としては、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン〔2,2-Bis(4-aminophenyl)hexafluoropropane〕、2,2-ビス(トリフルオロメチル)-ベンジジン〔2,2’-Bis(trifluoromethyl)-benzidine〕、4,4’-ジアミノオクタフルオロビフェニルや、3,3’-ジフルオロ-4,4’-ジアミノジフェニルメタン,3,3’-ジフルオロ-4,4’-ジアミノジフェニルエーテル、3,3’-ジ(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、3,3’-ジフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’-ジフルオロ-4,4’-ジアミノジフェニルヘキサフルオロプロパン、3,3’-ジフルオロ-4,4’-ジアミノベンゾフェノン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラフルオロ-4,4-ジアミノジフェニルヘキサフルオロプロパン、1,3-ジアミノ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフロオロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロノネニルオキシ)ヘンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-ブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロノネニルオキシ)ペンセン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-プロモ-5-(パーフルオロヘキセニルオキシ)ベンゼンやフッ素原子を含まないp-フェニレンジアミン(PPD)、ジオキシジアニリンなどの芳香族ジアミンが例示できる。また、上記ジアミン成分は上記各芳香族ジアミンを2種以上組み合わせて使用してもよい。
 一方、酸成分としては、フッ素原子を含む4,4-ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、及びフッ素原子を含まない3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)等が挙げられる。
 また、ポリイミド前駆体の溶媒として用いる有機溶媒は、N-メチル-2-ピロリドン、ジメチルホルムアミド等が挙げられる。
 イミド化の手法としては公知の方法〔例えば高分子学会編「新高分子実験学」共立出版、1996年3月28日、第3巻高分子の合成・反応(2)158頁参照〕に示されるように、加熱あるいは化学イミド化のどちらの方法に従ってもよく、本発明はこのイミド化の方法には左右されない。
 更に、ポリイミド以外の樹脂としては、石油系タールピッチ、アクリル樹脂など40重量%以上の炭素収率を持つものが使用できる。
 ここで、上記炭素源の炭素収率は40重量%以上であることが必要であり、特に、40重量%以上85重量%以下であることが好ましいのは、以下に示す理由による。炭素収率が余り小さかったり大きかったりすると(具体的には、流動性材料の炭素収率が40重量%未満であったり、85重量%を超えていると)三次元網目構造が保持されない炭素粉末となることがあるが、炭素収率が40重量%以上85重量%以下の炭素源を用いれば、鋳型を除去した後には、鋳型が存在した場所が連続孔となる三次元網目構造を有する多孔質炭素を確実に得ることができるからである。また、流動性材料の炭素収率が上記範囲であれば、ミクロ孔が非常に発達するので、比表面積が大きくなるからである。
 上記鋳型としては、酸化マグネシウム、酸化カルシウム等のアルカリ土類金属化合物を用いることが望ましい。アルカリ土類金属化合物は弱酸或いはお湯により除去することができる(即ち、強酸を用いることなく鋳型を取り除くことができる)ので、鋳型を除去するステップにおいて、多孔質炭素自体の性状が変化するのを抑制することができるからである。また、それらは炭素化工程のような高温域においても還元されて金属になりにくいためである。炭素源に対する上記鋳型の割合は、10~90重量%に規制するのが好ましい。
 上記鋳型の径や有機質樹脂の種類を変えることによって、細孔の径、多孔質炭素の細孔分布、及び、炭素質壁の厚みを調整することができる。したがって、鋳型の径と有機質樹脂の種類とを適宜選択することによって、より均一な細孔径を有し、より大きな細孔容積を有する多孔質炭素を作製することも可能となる。
(実施例1)
 先ず、鋳型源と炭素源とを兼ね備えるクエン酸マグネシウム(一水和物)とホウ酸(HBO、常温では粉末状の固体となっている)とを用意し、上記クエン酸マグネシウムに対する上記ホウ酸の割合が4重量%となるように両者を乳鉢で混合して、図1(a)に示すように、クエン酸マグネシウム1とホウ酸2との混合物を得た。次に、この混合物を、10℃/分の昇温速度で900℃まで昇温し、更に、900℃で1時間保持した。この後、得られた炭素を1mol/lの割合で添加された希硫酸溶液で洗浄して、酸化マグネシウム(MgO)や、酸化マグネシウムと酸化ホウ素との反応生成物を硫酸中に略完全に溶出させた。最後に、水洗することにより、少なくとも表面にはC-B-O結合構造が存在する多孔質炭素を得た。
 ここで、上記熱処理工程では、混合物を169℃まで昇温したときには、図1(b)に示すように、上記ホウ酸2は分解して酸化ホウ素3となる。更に昇温して、混合物が480℃に達すると、図1(c)に示すように、クエン酸マグネシウム1が分解して、酸化マグネシウム4と分解途中のクエン酸マグネシウム6とが生成すると共に、酸化ホウ素3が溶融する。その後、更に昇温すると、酸化マグネシウムと酸化ホウ素との反応生成物が酸化マグネシウムの外周に形成され、図1(d)に示すように、反応生成物と酸化マグネシウムとにより鋳型7が形成されると共に、この鋳型7の周囲に、クエン酸成分が炭化することによって生じた炭素8が配置される。最後に、希硫酸溶液で洗浄して、鋳型7を取り除くことにより、図1(e)に示すように、少なくとも表面にはC-B-O結合構造が存在する多孔質炭素8を得ることができる。
 このようにして作製した多孔質炭素を、以下、本発明炭素A1と称する。
(実施例2)
 クエン酸マグネシウムに対するホウ酸の割合を20重量%となるようにした他は、上記実施例1と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下、本発明炭素A2と称する。
(実施例3)
 クエン酸マグネシウムに対するホウ酸の割合を50重量%となるようにした他は、上記実施例1と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下、本発明炭素A3と称する。
(比較例1)
 ホウ酸を添加しない他は、上記実施例1と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下、比較炭素Z1と称する。
(比較例2)
 ホウ酸の代わりにホウ素金属を用い、且つ、クエン酸マグネシウムに対するホウ素金属の割合が5重量%となるようにした他は、上記実施例1と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下、比較炭素Z2と称する。
(実験1)
 本発明炭素A1、A3及び比較炭素Z1における酸化マグネシウムの収率と、炭素の収率とを調べた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、ホウ酸の添加割合が高いほど、酸化マグネシウムや炭素の収率が低くなる。これはホウ酸の添加量が多くなると、その分だけ、クエン酸マグネシウム(酸化マグネシウム源や炭素源となる)の量が少なくなるからである。
(実験2)
 本発明炭素A1、A3及び比較炭素Z1を製造する段階における炭素材料(具体的には、硫酸溶液で洗浄する前の炭素材料)のX線回折を行ったので、その結果を図2に示す。
 図2から明らかなように、比較炭素Z1の製造段階における炭素材料では、酸化マグネシウムのピークしか認められないのに対して、本発明炭素A1の製造段階における炭素材料では、酸化マグネシウムのピークの他にMg(BOのピークが認められる。更に、本発明炭素A3の製造段階における炭素材料では、酸化マグネシウムのピークのピークは殆どみとめられず、Mg(BOのピークとMgのピークとが認められる。このように、もともと鋳型である酸化マグネシウムとホウ酸とが反応していることが分かる。
 具体的には、下記(1)(2)に示すような反応が生じることによるものと考えられる。尚、ホウ酸の添加量が少ない場合には(1)の反応が生じ、ホウ酸の添加量が多い場合には(1)の反応の他に(2)の反応が生じる。本発明炭素A1の製造段階における炭素材料の場合には、ホウ酸の添加量が少ないので、(1)の反応のみが生じ、本発明炭素A3の製造段階における炭素材料の場合には、ホウ酸の添加量が多いので、(1)の反応の他に(2)の反応が生じているものと考えられる。
 3MgO+2HBO→Mg(BO+3HO・・・(1)
 2Mg(BO+2HBO→3Mg+3HO・・・(2)
(実験3)
 本発明炭素A1~A3及び比較炭素Z1のX線回折の測定を行ったので、その結果を図3に示す。
 図3から明らかなように、本発明炭素A1~A3及び比較炭素Z1で大きな変化は無く、ホウ素を添加しても結晶性などに目立った変化はないことがわかる。
(実験4)
 比較炭素Z2のX線回折の測定を行ったので、その結果を図4に示す。
 図4から明らかなように、硫酸溶液で洗浄してしても金属ホウ素を除去できず、金属ホウ素が多量に残存していることが認められる(図4のA参照)。
(実験5)
 本発明炭素A1、A3及び比較炭素Z1を、TEM(透過型電子顕微鏡)を用いて観察したので、その結果を図5~図7(図5は本発明炭素A1の写真、図6は本発明炭素A3の写真、図7は比較炭素Z1の写真である)に示す。また、本発明炭素A3を、SEM(走査電子顕微鏡)を用いて観察したので、その結果を図8に示す。
 図5~図7から、ホウ酸の添加量を変化させることで、得られる炭素のナノ組織が変化することが分かる。つまり、ホウ酸の添加量によって炭素のナノ組織を制御することができると考えられる。図1で示したように、本発明では炭素で被覆してから鋳型を除去することでメソ孔を形成させており、鋳型としては酸化マグネシウムとホウ酸との反応生成物を利用している。上述したように、本発明炭素A1、A3では、溶融した酸化ホウ素がクエン酸マグネシウムと相溶することにより、クエン酸マグネシウムから直接的に生じた酸化マグネシウムと、この酸化マグネシウムの周囲に形成された反応生成物(酸化マグネシウムとホウ酸とから生じた反応生成物)とが鋳型となる。一方、ホウ酸を添加していない(即ち、クエン酸マグネシウムのみから成る)比較炭素Z1では、クエン酸マグネシウムから直接的に生じた酸化マグネシウムのみが鋳型となる。したがって、本発明炭素A1、A3の鋳型は比較炭素Z1の鋳型とくらべて大きくなる。この結果、その後に、当該鋳型を除去してメソ孔を形成した際、本発明炭素A1、A3は比較炭素Z1と比べて、メソ孔が大きくなることが認められた(図5及び図6と図7との対比から明らかである)。また、図5及び図6から明らかなように、本発明炭素A1、A3の1次粒子の粒径は約10nmであることが認められた。更に、図8から明らかなように、本発明炭素A3にはメソ孔が顕著に存在していることが認められる。
(実験6)
 上記本発明炭素A3のXPS(X線光電子分光)分析を行ったので、その結果を図9に示す。また、比較炭素Z1のXPS分析を行ったので、その結果を図10に示す。
 図9から明らかなように、表面状態の分析において、B-O結合〔酸化ホウ素(BO)に起因する結合〕、B-C結合〔炭化ホウ素(BC)に起因する結合〕がほとんど認められない一方、C-B-O結合に起因するピークが顕著に認められる。したがって、本発明炭素A3の表面においけるホウ素の状態は、単に付着、担持、吸着しているのではなく、更には、酸化ホウ素や炭化ホウ素の状態で存在するものでもなく、炭素表面にC-B-Oという結合状態で存在していることがわかる。
 一方、図10から明らかなように、比較炭素Z1では、ホウ素に起因するピークは認められなかった。
(実験7)
 本発明炭素A1~A3及び比較炭素Z1を、77Kで窒素吸着測定を行い、窒素吸着等温線を求めたので、その結果を図11に示す。また、同様の方法で、比較炭素Z2の窒素吸着等温線を求めたので、その結果を図12に示す。尚、図12においては、比較炭素Z1の窒素吸着等温線についても記載している。
 図11から明らかなように、低圧力領域では、本発明炭素A1~A3は比較炭素Z1に比べて、吸着等温線が下方に移動していることが認められるが、高圧力領域では、本発明炭素A1~A3は吸着等温線が上方に移動していることが認められる。これのような結果となったのは、本発明炭素A1~A3は比較炭素Z1に比べて、ミクロ孔が減少し、比較的大きなメソ孔、あるいはマクロ孔が増えたためである。
 また、図12から明らかなように、比較炭素Z2は比較炭素Z1に比べて、全ての領域で吸着等温線が下方に移動していることが認められる。これは、以下に示す理由によるものと考えられる。炭素と金属ホウ素粉との接触面積がわずかであるため、金属ホウ素と炭素との反応は無視できる程度となっている。また、金属ホウ素は酸への溶解性が著しく低く、未反応のものを十分に除去できなかった。したがって、比較炭素Z2と比較炭素Z1とは細孔構造に顕著な変化はない。この結果、比較炭素Z2は比較炭素Z1に比べて、ホウ素の重量分だけ吸着等温線が下方に移動しているものと考えられる。
(実験8)
 本発明炭素A1~A3及び比較炭素Z1のホウ素含有量(重量割合)を、蛍光X線装置を用いて測定した。また、上述の77Kにおける窒素吸着等温線からBET比表面積と全細孔容積とを求めると共に、77Kにおける窒素吸着等温線からDR法でミクロ孔容積を求めた。更に、上記全細孔容積から上記ミクロ孔容積を減算することにより、メソ孔容積を求めた。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、クエン酸マグネシウムに対するホウ酸の割合が高くなるに連れてホウ素含有量が多くなり、そして、ホウ素含有量が多くなるにしたがってBET比表面積が小さくなることが認められる。但し、ホウ素含有量が最も高い本発明炭素A3であってもBET比表面積は890m/gであり、カーボンブラックに比べると非常に大きな値となっていることがわかる。
 また、表2から明らかなように、ホウ素含有量が多くなるに連れてミクロ孔容積は減少する。これはBET比表面積と同様の傾向である。ホウ素含有量が最も高い本発明炭素A3であってもミクロ孔容積は0.34ml/gであり、十分に多孔質と言える程度のミクロ孔容積を有している。
 更に、表2から明らかなように、メソ孔容積は、最も小さな本発明炭素A1でも1.22ml/gであり、活性炭等を含む従来の多孔質炭素類と比較しても、高いレベルで維持されていることがわかる。
(実験9)
 本発明炭素A1~A3及び比較炭素Z1におけるメソ孔の細孔径分布を図13に示す。
 図13から明らかなように、ホウ酸の添加量が高くなるに連れて、大きなメソ孔の割合が高くなっていることが認められる。メソ孔の鋳型となる酸化マグネシウムとホウ酸が反応することにより、鋳型の体積が大きくなり、メソ孔容量が増大した可能性がある。
(実験10)
 本発明炭素A1~A3及び比較炭素Z1において、水に対する分散性を確認すべく、以下に示す実験を行ったので、その結果を表3に示す。実験は、イオン交換水100gに各多孔質炭素を0.03重量%加え、40kHzの超音波を3分印加した後16時間放置し、その後、波長550nmにおける透過率を測定した。測定は、紫外可視吸光光度計にて光路長1cmのセルを用いて行った。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、ホウ酸を添加していない比較炭素Z1では透過率が87%と高くなっているのに対して、本発明炭素A1~A3では透過率が19~74%であって、比較炭素Z1に比べて透過率が低くなっていることが認められる。これは、本発明炭素A1~A3では、炭素が沈降することなく純粋中に分散し、懸濁波の状態を保持し続けたことによるものと考えられる。このことから、本発明によれば、水に対する濡れ性が向上し、分散性が高められる効果があることがわかる。
 本発明は、電磁波吸収材、キャパシタの電極材、燃料電池や二次電池の電極材、ガス吸蔵材、フィルター、断熱材、触媒担体等として用いることができる。
 1:クエン酸マグネシウム
 2:ホウ酸
 3:酸化ホウ素
 4:酸化マグネシウム
 6:分解途中のクエン酸マグネシウム
 7:鋳型
 8:多孔質炭素

Claims (8)

  1. 少なくとも表面にC-B-O結合構造が存在し、77Kにおける窒素吸着等温線から求められるBET比表面積が300m/g以上であることを特徴とする多孔質炭素。
  2. 77Kにおける窒素吸着等温線からDR法で求めたミクロ孔容積が0.3ml/g以上である、請求項1に記載の多孔質炭素。
  3. 77Kにおける窒素吸着等温線から求めた全細孔容積と、77Kにおける窒素吸着等温線からDR法で求めたミクロ孔容積との差が1ml/g以上である、請求項1又は2に記載の多孔質炭素。
  4. ホウ素の含有量が、100~10000ppmである、請求項1~3の何れか1項に記載の多孔質炭素。
  5. イオン交換水100gに多孔質炭素を0.03重量%加え、40kHzの超音波を3分印加し、更に16時間放置した後に、波長550nmの光線を用いた場合の透過率が80%以下である、請求項1~4の何れか1項に記載の多孔質炭素。
  6. ホウ酸とクエン酸マグネシウムとを混合して混合物を作製するステップと、
     上記混合物を、真空雰囲気、非酸化性雰囲気、又は還元性雰囲気で加熱焼成して焼成物を作製するステップと、
     上記焼成物中の上記鋳型を除去するステップと、
     を有することを特徴とする多孔質炭素の製造方法。
  7. クエン酸マグネシウムに対するホウ酸の割合が、0重量%を超え100重量%以下に規制される、請求項6に記載の多孔質炭素の製造方法。
  8. 上記加熱焼成時の温度が500℃以上1500℃以下である、請求項6又は7に記載の多孔質炭素の製造方法。
PCT/JP2012/072548 2012-09-05 2012-09-05 多孔質炭素及びその製造方法 WO2014038005A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/425,981 US20150344316A1 (en) 2012-09-05 2012-09-05 Porous carbon and method of manufacturing same
KR20157005132A KR20150046068A (ko) 2012-09-05 2012-09-05 다공질 탄소 및 그 제조 방법
EP12884339.8A EP2894128A4 (en) 2012-09-05 2012-09-05 POROUS CARBON AND PRODUCTION METHOD THEREOF
CN201280075161.6A CN104520233A (zh) 2012-09-05 2012-09-05 多孔质碳及其制造方法
PCT/JP2012/072548 WO2014038005A1 (ja) 2012-09-05 2012-09-05 多孔質炭素及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072548 WO2014038005A1 (ja) 2012-09-05 2012-09-05 多孔質炭素及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014038005A1 true WO2014038005A1 (ja) 2014-03-13

Family

ID=50236658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072548 WO2014038005A1 (ja) 2012-09-05 2012-09-05 多孔質炭素及びその製造方法

Country Status (5)

Country Link
US (1) US20150344316A1 (ja)
EP (1) EP2894128A4 (ja)
KR (1) KR20150046068A (ja)
CN (1) CN104520233A (ja)
WO (1) WO2014038005A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110817835A (zh) * 2018-08-14 2020-02-21 中国科学院上海硅酸盐研究所 一种多孔碳材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237683A (ja) 1997-02-21 1998-09-08 Showa Denko Kk 水処理用多孔質炭素電極
JP2001040548A (ja) * 1999-07-22 2001-02-13 Showa Denko Kk 活性炭素繊維、活性炭素繊維布及びその製造方法
JP2006024826A (ja) * 2004-07-09 2006-01-26 Mitsubishi Gas Chem Co Inc 電気二重層キャパシタ電極用炭素材料およびその製造方法
JP2006111791A (ja) 2004-10-18 2006-04-27 Denki Kagaku Kogyo Kk カーボンブラックの製造方法
JP2006265374A (ja) 2005-03-24 2006-10-05 Denki Kagaku Kogyo Kk カーボンブラックの製造方法
JP2010513215A (ja) * 2006-12-21 2010-04-30 コーニング インコーポレイテッド 規則性メソ多孔性炭素およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408045B1 (ko) * 2008-03-20 2014-06-18 성균관대학교 산학협력단 메조포러스 탄소, 그 제조방법 및 이를 이용한 연료전지
CN101388291B (zh) * 2008-10-31 2012-10-31 中国科学院上海硅酸盐研究所 含硼多孔碳电极材料及其制备方法
JP5678372B2 (ja) * 2009-11-30 2015-03-04 独立行政法人産業技術総合研究所 窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237683A (ja) 1997-02-21 1998-09-08 Showa Denko Kk 水処理用多孔質炭素電極
JP2001040548A (ja) * 1999-07-22 2001-02-13 Showa Denko Kk 活性炭素繊維、活性炭素繊維布及びその製造方法
JP2006024826A (ja) * 2004-07-09 2006-01-26 Mitsubishi Gas Chem Co Inc 電気二重層キャパシタ電極用炭素材料およびその製造方法
JP2006111791A (ja) 2004-10-18 2006-04-27 Denki Kagaku Kogyo Kk カーボンブラックの製造方法
JP2006265374A (ja) 2005-03-24 2006-10-05 Denki Kagaku Kogyo Kk カーボンブラックの製造方法
JP2010513215A (ja) * 2006-12-21 2010-04-30 コーニング インコーポレイテッド 規則性メソ多孔性炭素およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Shin Kobunshi Jikkengaku, Vol. 3, Kobunshi no Gosei-Hanno (2", vol. 3, 28 March 1996, JAPAN, KYORITSU SHUPPAN, pages: 158
See also references of EP2894128A4

Also Published As

Publication number Publication date
EP2894128A4 (en) 2016-04-20
EP2894128A1 (en) 2015-07-15
KR20150046068A (ko) 2015-04-29
CN104520233A (zh) 2015-04-15
US20150344316A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
KR101714096B1 (ko) 다공질 탄소 및 그 제조 방법
KR101916979B1 (ko) 다공질 탄소 및 그 제조 방법
JP5860600B2 (ja) 多孔質炭素
Liang et al. Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors
WO2010104102A1 (ja) 多孔質炭素及びその製造方法
TWI638771B (zh) Porous carbon, humidity-control adsorption material, adsorption heat pump and fuel cell
WO2014024921A1 (ja) キャパシタ
JP2011046584A (ja) 活性炭の製造方法および該製造方法により得られた活性炭を用いた電気二重層キャパシタ
JP5688321B2 (ja) 多孔質炭素及びその製造方法
JP5860602B2 (ja) 多孔質炭素
KR101425374B1 (ko) 다공성 탄소 박막재료 및 이의 제조방법
JP2017165823A (ja) 多孔質炭素材料用フェノール樹脂組成物、多孔質炭素材料、及びその製造方法
JP5860601B2 (ja) 多孔質炭素
WO2014038005A1 (ja) 多孔質炭素及びその製造方法
KR20140110427A (ko) 다공성 그래핀/카본 복합체 및 그 제조방법
JP4615868B2 (ja) 電気二重層キャパシタ用多孔質炭素の製造方法、該製造方法により得られた電気二重層キャパシタ用多孔質炭素、及び、該電気二重層キャパシタ用多孔質炭素を用いた電気二重層キャパシタ
JP6426582B2 (ja) 多孔質炭素
JP2017165603A (ja) 多孔質炭素材料、およびその製造方法
JP6216359B2 (ja) 多孔質炭素
TWI534080B (zh) Porous carbon and a method for producing the same
US20170021330A1 (en) Porous carbon, method for manufacturing porous carbon, and adsorption/desorption apparatus using porous carbon
Tanaka et al. Cobalt-Catalyzed Carbonization from Polyacrylonitrile for Preparing Nitrogen-Containing Ordered Mesoporous Carbon Cmk-1 Electrode with High Electric Double-Layer Capacitance
JP2010208940A (ja) 電気二重層キャパシタ用多孔質炭素の製造方法、該製造方法により得られた電気二重層キャパシタ用多孔質炭素、及び、該電気二重層キャパシタ用多孔質炭素を用いた電気二重層キャパシタ
Mitome et al. Vapor Infiltration Synthesis of Nitrogen-Containing Ordered Mesoporous Carbon Films and the Electrochemical Properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005132

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14425981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012884339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012884339

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP