[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014017651A1 - 蓄電デバイス用セパレータ、積層体、及び多孔膜 - Google Patents

蓄電デバイス用セパレータ、積層体、及び多孔膜 Download PDF

Info

Publication number
WO2014017651A1
WO2014017651A1 PCT/JP2013/070374 JP2013070374W WO2014017651A1 WO 2014017651 A1 WO2014017651 A1 WO 2014017651A1 JP 2013070374 W JP2013070374 W JP 2013070374W WO 2014017651 A1 WO2014017651 A1 WO 2014017651A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polymer
separator
polyolefin microporous
microporous membrane
storage device
Prior art date
Application number
PCT/JP2013/070374
Other languages
English (en)
French (fr)
Inventor
博 宮澤
圭太郎 飴山
喬 首藤
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020177033816A priority Critical patent/KR20170132349A/ko
Priority to PL13823038T priority patent/PL2879206T3/pl
Priority to KR1020157000312A priority patent/KR101979063B1/ko
Priority to JP2014527037A priority patent/JP5876577B2/ja
Priority to US14/416,735 priority patent/US10153473B2/en
Priority to CN201380037265.2A priority patent/CN104428920B/zh
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to EP13823038.8A priority patent/EP2879206B1/en
Priority to PL16157660T priority patent/PL3054502T3/pl
Priority to KR1020167019037A priority patent/KR101802892B1/ko
Priority to EP16157660.8A priority patent/EP3054502B1/en
Publication of WO2014017651A1 publication Critical patent/WO2014017651A1/ja
Priority to US16/178,839 priority patent/US10811659B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to an electricity storage device separator, a laminate, and a porous film.
  • a microporous membrane (separator) is provided between positive and negative electrodes.
  • Such a separator has a function of preventing direct contact between the positive and negative electrodes and allowing ions to permeate through the electrolytic solution held in the micropores.
  • Patent Document 1 proposes an adhesive-carrying porous film by applying a reactive polymer on a porous film and drying it for the purpose of providing a secondary battery having excellent discharge characteristics and safety. ing.
  • the separator has a characteristic that the battery reaction is quickly stopped if it is abnormally heated (fuse characteristic), or a dangerous situation in which the positive electrode material and the negative electrode material react directly while maintaining the shape even at high temperatures.
  • failure characteristic a characteristic that the battery reaction is quickly stopped if it is abnormally heated (fuse characteristic), or a dangerous situation in which the positive electrode material and the negative electrode material react directly while maintaining the shape even at high temperatures.
  • improvement in adhesion to electrodes is required from the viewpoint of uniform charge / discharge current and suppression of lithium dendrite.
  • the separator of Patent Document 1 has a problem that the adhesion between the reactive polymer and the porous membrane is not sufficient, and therefore, the adhesion with the electrode is not sufficient. Also, when the glass transition temperature (Tg) of the reactive polymer is lowered to increase the adhesion between the reactive polymer and the porous membrane, the outermost surface of the separator becomes sticky, resulting in a decrease in handling properties. There are problems.
  • any of the microporous membranes described in Patent Documents 1 and 2 still has room for improvement from the viewpoint of handling property, adhesiveness and lithium ion permeability when winding the battery.
  • the first embodiment of the present invention has been made in view of the above-mentioned problems, and aims to provide a separator for an electrical storage device that is excellent in adhesion to an electrode, and that is also excellent in handling properties. To do.
  • the second embodiment of the present invention was made in view of the above problems, and is a porous film excellent in handling characteristics during winding and rate characteristics of the electricity storage device when used as an electricity storage device separator
  • An object of the present invention is to provide an electricity storage device separator comprising the same, and an electricity storage device using the separator. Furthermore, it aims at providing the porous film which is excellent also in the adhesiveness and permeability
  • the present inventors have arranged the above-mentioned problem by arranging a thermoplastic polymer having specific thermal characteristics on at least a part of at least one surface of the polyolefin microporous membrane. I found that it can be solved.
  • thermoplastic polymer coating layer is a layer in which a portion containing the thermoplastic polymer and a portion not containing the thermoplastic polymer are present in a sea-island shape on the polyolefin microporous membrane,
  • the thermoplastic polymer contained in the thermoplastic polymer coating layer has at least two glass transition temperatures; At least one of the glass transition temperatures is present in a region below 20 ° C .; At least one of the glass transition temperatures exists in a region of 20 ° C. or higher. Electric storage device separator.
  • thermoplastic polymer coating layer There is a thermoplastic resin having a glass transition temperature of 20 ° C. or higher on the outermost surface side of the electricity storage device separator, and The electrical storage device separator according to [1] or [2] above, wherein a thermoplastic resin having a glass transition temperature of less than 20 ° C. is present on the interface side between the polyolefin microporous membrane and the thermoplastic polymer coating layer. .
  • the peel strength after pressurizing aluminum foil for 3 minutes at a temperature of 25 ° C. and a pressure of 5 MPa is 8 gf / cm or less against the outermost surface of the electricity storage device separator where the thermoplastic polymer coating layer is present.
  • the peel strength after pressurizing aluminum foil for 3 minutes at a temperature of 80 ° C. and a pressure of 10 MPa is 30 gf / cm or more against the outermost surface of the electricity storage device separator where the thermoplastic polymer coating layer is present.
  • thermoplastic polymer coating layer according to any one of [1] to [5], wherein at least a part of the thermoplastic polymer present on the outermost surface of the electricity storage device separator is a granular thermoplastic polymer.
  • Electric storage device separator [7] The separator for an electricity storage device according to the above item [6], wherein the granular thermoplastic polymer has an average particle diameter of 0.01 ⁇ m to 0.4 ⁇ m.
  • an area ratio of the polyolefin microporous membrane covered with the thermoplastic polymer coating layer is 95% or less with respect to 100% of the total area of the polyolefin microporous membrane.
  • the separator for an electricity storage device according to one item.
  • thermoplastic polymer coating layer covering at least a portion of at least one surface of the polyolefin microporous membrane, A porous membrane, wherein the thermoplastic polymer contained in the thermoplastic polymer coating layer has a glass transition temperature of ⁇ 10 ° C. or higher and 40 ° C. or lower and a degree of swelling with respect to an electrolytic solution of 5 times or less.
  • thermoplastic polymer coating layer has an average thickness of 1.5 ⁇ m or less.
  • the area ratio of the polyolefin microporous film covered with the thermoplastic polymer coating layer is 70% or less with respect to 100% of the total area of the polyolefin microporous film, according to [11] or [12] above Porous membrane.
  • the thermoplastic polymer coating layer is a layer in which a portion containing the thermoplastic polymer and a portion not containing the thermoplastic polymer are present in a sea-island shape on the polyolefin microporous membrane,
  • the porous membrane according to any one of [11] to [14] above, wherein the portion containing the thermoplastic polymer is formed in a dot shape.
  • the separator having excellent adhesion to an electrode, and further a separator for an electricity storage device having excellent handling properties.
  • An electricity storage device can be provided. Furthermore, it is possible to provide a porous film excellent in adhesion and permeability between a thermoplastic polymer and a polyolefin microporous film, a separator for an electricity storage device comprising the same, and an electricity storage device using the same.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • thermoplastic polymer coating layer is a layer in which a portion containing the thermoplastic polymer and a portion not containing the thermoplastic polymer are present in a sea-island shape on the polyolefin microporous film,
  • the thermoplastic polymer contained in the thermoplastic polymer coating layer has at least two glass transition temperatures; At least one of the glass transition temperatures is present in a region below 20 ° C .; At least one of the glass transition temperatures exists in a region of 20 ° C. or higher.
  • the separator for an electricity storage device has a thermoplastic polymer coating layer that covers at least a part of at least one surface of the polyolefin microporous membrane.
  • the thermoplastic polymer coating layer includes a thermoplastic polymer having at least two glass transition temperatures.
  • the glass transition temperature of the thermoplastic polymer is at least one in the region below 20 ° C and at least one in the region above 20 ° C.
  • thermoplastic polymer used in the present embodiment is not particularly limited.
  • polyolefin resins such as polyethylene, polypropylene, and ⁇ -polyolefin
  • fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, and copolymers containing these
  • a diene polymer containing a conjugated diene such as butadiene or isoprene as a monomer unit or a copolymer thereof and a hydride thereof
  • rubbers such as ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate
  • celluloses such as ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose Conductor
  • thermoplastic polymer a monomer having a hydroxyl group, a sulfonic acid group, a carboxyl group, an amide group, or a cyano group can be used.
  • thermoplastic polymers a diene polymer, an acrylic polymer, or a fluorine polymer is preferable because of its excellent binding property to an electrode active material, strength, and flexibility.
  • a diene polymer is not specifically limited, For example, it is a polymer containing the monomer unit formed by superposing
  • the conjugated diene monomer is not particularly limited.
  • 1,3-butadiene isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2 -Methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene and the like.
  • These may be polymerized alone or copolymerized.
  • the ratio of the monomer unit obtained by polymerizing the conjugated diene in the diene polymer is not particularly limited, but is, for example, 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more in the total diene polymer. is there.
  • the diene polymer is not particularly limited, and examples thereof include homopolymers of conjugated dienes such as polybutadiene and polyisoprene and copolymers with monomers copolymerizable with conjugated dienes.
  • the copolymerizable monomer is not particularly limited, and examples thereof include (meth) acrylate monomers described below and the following monomers (hereinafter also referred to as “other monomers”).
  • the “other monomer” examples include, but are not limited to, ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; styrene Styrene monomers such as chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinylbenzene; ethylene, propylene, etc.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid
  • styrene Styrene monomers such as chlorostyrene, vinyl toluene, t-butyl styren
  • Olefins Halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate; methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether Vinyl ethers; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone; heterocycle-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, vinyl imidazole; Acrylic acid ester and / or methacrylic acid ester compounds such as methyl methacrylate; hydroxyalkyl group-containing compounds such as ⁇ -hydroxyethyl acrylate and ⁇ -hydroxyethyl methacrylate; acrylamide, N-methylolacrylamide, acrylamide-2-methylpropanesulfonic acid, etc.
  • the acrylic polymer is not particularly limited, but is preferably a polymer containing a monomer unit obtained by polymerizing a (meth) acrylate monomer.
  • (meth) acrylic acid means “acrylic acid or methacrylic acid”
  • (meth) acrylate means “acrylate or methacrylate”.
  • the (meth) acrylate monomer is not particularly limited.
  • the ratio of the monomer unit obtained by polymerizing the (meth) acrylate monomer is not particularly limited, but is, for example, 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more of the total acrylic polymer.
  • the acrylic polymer include homopolymers of (meth) acrylate monomers and copolymers with monomers copolymerizable therewith.
  • copolymerizable monomer examples include “other monomers” listed in the item of the diene polymer, and these may be used alone or in combination of two or more.
  • Fluoropolymer Although it does not specifically limit as a fluorine-type polymer, for example, the homopolymer of vinylidene fluoride and the copolymer with the monomer copolymerizable with this are mentioned. Fluoropolymers are preferred from the viewpoint of electrochemical stability.
  • the ratio of the monomer unit obtained by polymerizing vinylidene fluoride is not particularly limited, but is, for example, 40% by mass or more, preferably 50% by mass or more, and more preferably 60% by mass or more.
  • the monomer copolymerizable with vinylidene fluoride is not particularly limited.
  • fluorine-based polymers a homopolymer of vinylidene fluoride, a vinylidene fluoride / tetrafluoroethylene copolymer, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, and the like are preferable.
  • a particularly preferred fluorine-based polymer is a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, and the monomer composition thereof is usually 30 to 90% by mass of vinylidene fluoride, 50 to 9% by mass of tetrafluoroethylene, and hexafluoropropylene. 20 to 1% by mass.
  • These fluororesin particles may be used alone or in admixture of two or more.
  • thermoplastic polymer a monomer having a hydroxyl group, a carboxyl group, an amino group, a sulfonic acid group, an amide group, or a cyano group can be used.
  • the monomer having a hydroxy group is not particularly limited, and examples thereof include vinyl monomers such as penteneol.
  • the monomer having a carboxyl group is not particularly limited, and examples thereof include vinyl monomers such as unsaturated carboxylic acid having an ethylenic double bond such as (meth) acrylic acid and itaconic acid, and pentenoic acid.
  • the monomer having an amino group is not particularly limited, and examples thereof include 2-aminoethyl methacrylate.
  • the monomer having a sulfonic acid group is not particularly limited, and examples thereof include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) alis sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamide. -2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, etc.
  • the monomer having an amide group is not particularly limited, and examples thereof include acrylamide, methacrylamide, N-methylolacrylamide, and N-methylolmethacrylamide.
  • the monomer having a cyano group is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -cyanoethyl acrylate and the like.
  • thermoplastic polymer used in the present embodiment may be a single polymer or a mixture of two or more polymers, but preferably contains two or more polymers.
  • the thermoplastic polymer used in the present embodiment has at least two glass transition temperatures from the viewpoint of adhesion between the separator and the electrode, and at least one of the glass transition temperatures exists in a region below 20 ° C., At least one of the glass transition temperatures has a thermal characteristic that it exists in a region of 20 ° C. or higher.
  • the glass transition temperature is determined from a DSC curve obtained by differential scanning calorimetry (DSC). In this specification, the glass transition temperature may be expressed as Tg.
  • glass transition refers to a change in calorific value associated with a change in the state of a polymer, which is a test piece, in DSC, on the endothermic side. Such a change in heat quantity is observed in the DSC curve as a step-like change shape or a shape in which the step-like change and the peak are combined.
  • Step-like change refers to the portion of the DSC curve until the curve moves away from the previous baseline and transitions to a new baseline.
  • shape which combined the peak and the step-like change is also included.
  • “Inflection point” refers to the point where the gradient of the DSC curve of the step-like change part becomes maximum. Moreover, it can also be expressed as a point where an upward convex curve changes to a downward convex curve in the step-like change portion.
  • Peak refers to the portion of the DSC curve from when the curve leaves the baseline until it returns to the baseline again.
  • Baseline refers to a DSC curve in a temperature region where no transition or reaction occurs in the test piece.
  • At least one of the glass transition temperatures of the thermoplastic polymer to be used is present in a region below 20 ° C., so that the adhesion with the microporous film is excellent, and as a result, the adhesion between the separator and the electrode is improved. The effect is excellent.
  • At least one of the glass transition temperatures of the thermoplastic polymer used is preferably in the region of 15 ° C. or lower, more preferably in the region of ⁇ 30 ° C. or higher and 15 ° C. or lower.
  • the glass transition temperature existing in the region below 20 ° C. exists only in the region from ⁇ 30 ° C. to 15 ° C. from the viewpoint of maintaining good handling properties while improving the adhesion between the thermoplastic polymer and the microporous film. It is preferable.
  • the glass transition temperatures of the thermoplastic polymer to be used since at least one of the glass transition temperatures of the thermoplastic polymer to be used is present in a region of 20 ° C. or higher, the effect of excellent adhesion and handling between the separator and the electrode is obtained. It is preferable that at least one of the glass transition temperatures of the thermoplastic polymer to be used exists in the region of 20 ° C. or higher and 120 ° C. or lower, more preferably 50 ° C. or higher and 120 ° C. or lower. When the glass transition temperature is within the above range, good handling properties can be imparted. Furthermore, the adhesiveness between the electrode and the separator that is expressed by pressurization during battery production can be enhanced.
  • the glass transition temperature existing in the region of 20 ° C. or higher should be present only in the region of 20 ° C. or higher and 120 ° C. or lower from the viewpoint of maintaining good handling properties while improving the adhesion between the thermoplastic polymer and the microporous film. It is more preferable that it exists only in the region of 50 ° C. or higher and 120 ° C. or lower.
  • thermoplastic polymer has two glass transition temperatures
  • the fact that the thermoplastic polymer has two glass transition temperatures can be achieved by, for example, a method of blending two or more kinds of thermoplastic polymers or a method of using a thermoplastic polymer having a core-shell structure, but is limited to these methods.
  • the core-shell structure is a polymer having a dual structure in which the polymer belonging to the central portion and the polymer belonging to the outer shell portion are composed of different compositions.
  • the polymer blend and the core-shell structure can control the glass transition temperature of the entire thermoplastic polymer by combining a polymer having a high glass transition temperature and a polymer having a low glass transition temperature.
  • a plurality of functions can be imparted to the entire thermoplastic polymer.
  • blends in particular, by blending two or more types of polymers having a glass transition temperature in the region of 20 ° C. or more and polymers having a glass transition temperature in the region of less than 20 ° C., the stickiness resistance and the polyolefin microporous It is possible to achieve both coatability to the film.
  • the adhesion and compatibility with other materials such as a polyolefin microporous membrane can be adjusted by changing the outer shell polymer, and by adjusting the polymer belonging to the central part, for example, the electrode to the electrode after hot pressing It can be adjusted to a polymer with improved adhesion. Further, viscoelasticity can be controlled by combining a highly viscous polymer and a highly elastic polymer.
  • the glass transition temperature of the thermoplastic polymer shell having the core-shell structure is not particularly limited, but is preferably less than 20 ° C., more preferably 15 ° C. or less, and further preferably ⁇ 30 ° C. or more and 15 ° C. or less.
  • the glass transition temperature of the core of the thermoplastic polymer having a core-shell structure is not particularly limited, but is preferably 20 ° C or higher, more preferably 20 ° C or higher and 120 ° C or lower, and further preferably 50 ° C or higher and 120 ° C or lower.
  • the glass transition temperature of the thermoplastic polymer can be appropriately adjusted by changing, for example, the monomer components used for producing the thermoplastic polymer and the input ratio of each monomer. That is, it is roughly estimated from the homopolymer Tg generally indicated for each monomer used in the production of the thermoplastic polymer (for example, described in “polymer handbook” (A WILEY-INTERSCIENCE PUBLICATION)) and the blending ratio of the monomers. Can do. For example, a copolymer with a high proportion of monomers such as styrene, methyl methacrylate, and acrylonitrile that gives a polymer with a Tg of about 100 ° C.
  • Tg for example, a polymer with a Tg of about ⁇ 80 ° C.
  • Copolymers blended in high proportions of monomers such as butadiene to give and n-butyl acrylate and 2-ethylhexyl acrylate to give a polymer with a Tg of about -50 ° C give low Tg.
  • the Tg of the polymer can be estimated from the FOX formula (the following formula (1)). In addition, what was measured by the method using said DSC is employ
  • 1 / Tg W1 / Tg1 + W2 / Tg2 +... + Wi / Tgi +... Wn / Tgn (1)
  • Tg (K) represents the Tg of the copolymer
  • Tgi (K) represents the Tg of the homopolymer of each monomer i
  • Wi represents the mass fraction of each monomer.
  • thermoplastic polymer coating layer In the thermoplastic polymer coating layer, a thermoplastic resin having a glass transition temperature of 20 ° C. or higher exists on the outermost surface side of the electricity storage device separator, and on the interface side between the polyolefin microporous film and the thermoplastic polymer coating layer, Preferably there is a thermoplastic resin having a glass transition temperature of less than 20 ° C.
  • the “outermost surface” refers to a surface in contact with the electrode in the sea-island-shaped thermoplastic polymer coating layer when the power storage device separator and the electrode are laminated.
  • the “interface” refers to the surface of the sea-island thermoplastic polymer coating layer that is in contact with the polyolefin microporous membrane.
  • thermoplastic polymer coating layer the presence of a thermoplastic resin having a glass transition temperature of 20 ° C. or higher on the outermost surface side of the separator for an electricity storage device is superior in adhesion to the microporous film, and as a result, the separator and the electrode It tends to be excellent in adhesion.
  • thermoplastic resin having a glass transition temperature of less than 20 ° C. on the interface side between the polyolefin microporous membrane and the thermoplastic polymer coating layer tends to be superior in the adhesion and handling properties between the separator and the electrode.
  • thermoplastic polymer is a particulate thermoplastic polymer, and a binder polymer that adheres the particulate thermoplastic polymer to the polyolefin microporous membrane with the particulate thermoplastic polymer exposed on the surface;
  • the thermoplastic resin having a glass transition temperature of less than 20 ° C. is present on the interface side between the polyolefin microporous membrane and the thermoplastic polymer coating layer.
  • thermoplastic polymer has a laminated structure, and when it is used as a separator, the outermost layer of the thermoplastic polymer has a glass transition temperature in the region of 20 ° C. or higher, and the polyolefin microporous membrane and the heat Due to the presence of a thermoplastic resin having a glass transition temperature of less than 20 ° C. on the interface side of the plastic polymer coating layer. It can be achieved.
  • the thermoplastic polymer may have a laminated structure for each polymer having a different Tg.
  • the thermoplastic polymer coating layer is a layer in which a portion containing a thermoplastic polymer and a portion not containing a thermoplastic polymer are present in a sea-island shape on a polyolefin microporous film.
  • a sea island shape For example, a linear shape, a dot shape, a grid
  • the dot shape is more preferable from the viewpoint of ensuring transparency and ensuring uniform adhesion with the electrode.
  • the dot form (dot) indicates that a part containing a thermoplastic polymer and a part not containing a thermoplastic polymer are present in a sea-island shape on the polyolefin microporous film.
  • the portion containing the thermoplastic polymer may be independent in an island shape, or conversely, a continuous surface may be formed.
  • the island shape is not particularly limited, but the interval between island dots is preferably 5 ⁇ m to 500 ⁇ m from the viewpoint of compatibility between the adhesion to the electrode and cycle characteristics.
  • the size of the dot is not particularly limited, but from the viewpoint of ensuring adhesion with the electrode, the average major axis is preferably 10 ⁇ m or more and 1000 ⁇ m or less, more preferably 20 ⁇ m or more and 800 ⁇ m or less, and further preferably 50 ⁇ m or more. 500 ⁇ m or less.
  • the average major axis of the thermoplastic polymer dots can be adjusted by changing the polymer concentration of the coating liquid, the coating amount of the polymer solution, the coating method, and the coating conditions.
  • thermoplastic polymer The structure of the thermoplastic polymer in the present embodiment is not particularly limited, and examples thereof include a single layer structure, a structure composed of a granular thermoplastic polymer and a polymer surrounding at least a part of the granular thermoplastic polymer, and a laminated structure. is there.
  • thermoplastic polymer coating layer it is preferable that at least a part of the thermoplastic polymer present on the outermost surface of the electricity storage device separator is a granular thermoplastic polymer.
  • granular means a state in which each thermoplastic polymer has an outline as measured by a scanning electron microscope (SEM), and is in an elongated shape, a spherical shape, or a polygonal shape. Etc.
  • the area ratio of the granular thermoplastic polymer to the thermoplastic polymer present on the outermost surface of the separator is not particularly limited, but is preferably 95% or less, more preferably 50% or more and 95% or less. is there.
  • the area of the granular thermoplastic polymer is the surface of the outermost surface of the separator as described in Examples below. It is measured by observation with SEM (magnification 30000 times).
  • the average particle size of the granular thermoplastic polymer is preferably 0.01 ⁇ m to 1 ⁇ m, more preferably 0.05 ⁇ m to 0.5 ⁇ m, and still more preferably 0.01 ⁇ m to 0.4 ⁇ m.
  • thermoplastic polymer in the present embodiment preferably has swelling properties with respect to the electrolytic solution from the viewpoint of battery characteristics such as cycle characteristics.
  • the dried thermoplastic polymer (or thermoplastic polymer dispersion) is allowed to infiltrate the electrolyte solution for 3 hours, and after washing, the weight of the thermoplastic polymer (A) is set to Wa and A is left in an oven at 150 ° C. for 1 hour. Then, when the weight is Wb, the electrolytic solution can be calculated by the following formula.
  • the degree of swelling of the thermoplastic polymer in the present embodiment with respect to the electrolytic solution can be adjusted, for example, by changing the monomer component to be polymerized and the charging ratio of each monomer.
  • the gel fraction of the thermoplastic polymer is not particularly limited, but is preferably 80% or more, more preferably from the viewpoint of suppressing dissolution in the electrolytic solution and maintaining the strength of the thermoplastic polymer inside the battery. Is 85% or more, more preferably 90% or more.
  • a gel fraction is calculated
  • the content of the thermoplastic polymer in the present embodiment is not particularly limited, but the cycle characteristics (permeability) by clogging the pores of the polyolefin microporous membrane while improving the adhesive force in the polyolefin microporous membrane. reducing the suppression of the 0.05 g / m 2 or more 1.0 g / m 2 or less is preferred. More preferably 0.07 g / m 2 or more 0.8 g / m 2 or less, more preferably 0.1 g / m 2 or more 0.7 g / m 2 or less.
  • the content of the thermoplastic polymer can be adjusted by changing the polymer concentration of the liquid to be applied and the coating amount of the polymer solution.
  • the average thickness of the thermoplastic polymer coating layer in the present embodiment is preferably 1.5 ⁇ m or less on one side, more preferably 1.0 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • the average thickness of the thermoplastic polymer is 1.5 ⁇ m or less, it is preferable from the viewpoint of effectively suppressing a decrease in permeability due to the thermoplastic polymer and sticking between the thermoplastic polymers or between the thermoplastic polymer and the polyolefin microporous film.
  • the average thickness of the thermoplastic polymer can be adjusted by changing the polymer concentration of the liquid to be applied, the coating amount of the polymer solution, the coating method, and the coating conditions.
  • the thickness of the thermoplastic polymer coating layer can be measured by the method described in Examples.
  • the separator of the present embodiment has a thermoplastic polymer on at least a part of at least one surface of the polyolefin microporous membrane.
  • the area ratio (%) of the polyolefin microporous membrane coated with the thermoplastic polymer coating layer is preferably 95% or less, preferably 70% or less, more preferably 50%, relative to 100% of the total area of the polyolefin microporous membrane. % Or less, more preferably 45% or less, and still more preferably 40% or less.
  • the area ratio (%) is preferably 5% or more.
  • the area ratio is 95% or less, the pores of the polyolefin microporous membrane due to the thermoplastic polymer are further suppressed and the permeability tends to be further improved. Moreover, it exists in the tendency for adhesiveness to improve more because an area ratio is 5% or more.
  • the area ratio is calculated by the method described in the examples described later.
  • the area ratio can be adjusted by changing the polymer concentration of the liquid to be applied, the coating amount of the polymer solution, the coating method, and the coating conditions.
  • the polyolefin microporous membrane in the present embodiment is not particularly limited, and examples thereof include a porous membrane composed of a polyolefin resin composition containing polyolefin, and may be a porous membrane mainly composed of polyolefin resin. preferable.
  • the content of the polyolefin resin is not particularly limited, but from the viewpoint of shutdown performance when used as a separator for an electricity storage device, the mass fraction of all components constituting the porous membrane
  • a porous film made of a polyolefin resin composition in which a polyolefin resin accounts for 50% or more and 100% or less is preferable.
  • the proportion of the polyolefin resin is more preferably 60% or more and 100% or less, and still more preferably 70% or more and 100% or less.
  • the polyolefin resin is not particularly limited, but refers to a polyolefin resin used for ordinary extrusion, injection, inflation, blow molding and the like, and includes ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and Homopolymers and copolymers such as 1-octene, multistage polymers and the like can be used.
  • polyolefins selected from the group consisting of these homopolymers and copolymers and multistage polymers can be used alone or in combination.
  • polystyrene resin examples include polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polys
  • the separator of this embodiment is used as a battery separator, it is preferable to use a resin mainly composed of high-density polyethylene because of its low melting point and high strength.
  • porous film made of a resin composition containing a polypropylene film and a polyolefin resin other than polypropylene.
  • polypropylene is not limited, and any of isotactic polypropylene, syndiotactic polypropylene and atactic polypropylene may be used.
  • the ratio of polypropylene to the total polyolefin in the polyolefin resin composition is not particularly limited, but is preferably 1 to 35% by mass, more preferably 3 to 20% by mass from the viewpoint of achieving both heat resistance and good shutdown function. %, More preferably 4 to 10% by mass.
  • the polyolefin resin other than polypropylene is not limited, and examples thereof include homopolymers or copolymers of olefin hydrocarbons such as ethylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene. Specific examples include polyethylene, polybutene, and ethylene-propylene random copolymer.
  • polyethylene such as low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene as the polyolefin resin other than polypropylene.
  • polyethylene having a density measured according to JIS K 7112 of 0.93 g / cm 3 or more.
  • the viscosity average molecular weight of the polyolefin resin constituting the polyolefin microporous membrane is not particularly limited, but is preferably 30,000 or more and 12 million or less, more preferably 50,000 or more and less than 2 million, and still more preferably 100,000 or more and 1,000,000. Is less than.
  • a viscosity average molecular weight of 30,000 or more is preferable because the melt tension during melt molding increases, moldability is improved, and the strength tends to increase due to entanglement between polymers.
  • a viscosity average molecular weight of 12 million or less is preferable because uniform melt kneading is facilitated and the formability of the sheet, particularly thickness stability, tends to be excellent.
  • the viscosity average molecular weight is less than 1,000,000, since it tends to close the pores when the temperature rises and a good shutdown function tends to be obtained.
  • a polyolefin having a viscosity average molecular weight of less than 1 million instead of using a polyolefin having a viscosity average molecular weight of less than 1 million alone, a mixture of a polyolefin having a viscosity average molecular weight of 2 million and a polyolefin having a viscosity average molecular weight of 270,000, the viscosity average molecular weight being less than 1 million Mixtures may be used.
  • the polyolefin microporous membrane in the present embodiment can contain any additive.
  • additives are not particularly limited, and include, for example, polymers other than polyolefins; inorganic particles; antioxidants such as phenols, phosphoruss, and sulfurs; metal soaps such as calcium stearate and zinc stearate; Agents; light stabilizers; antistatic agents; antifogging agents; colored pigments and the like.
  • the total content of these additives is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less with respect to 100 parts by mass of the polyolefin resin composition.
  • the puncture strength of the polyolefin microporous membrane in the present embodiment is not particularly limited, but is preferably 200 g / 20 ⁇ m or more, more preferably 300 g / 20 ⁇ m or more, preferably 2000 g / 20 ⁇ m or less, more preferably 1000 g / 20 ⁇ m or less. is there. It is preferable that the puncture strength is 200 g / 20 ⁇ m or more from the viewpoint of suppressing membrane breakage due to the dropped active material or the like during battery winding. Moreover, it is preferable also from a viewpoint of suppressing the concern which short-circuits by the expansion / contraction of the electrode accompanying charging / discharging.
  • the puncture strength is measured by the method described in Examples below.
  • the puncture strength can be adjusted by adjusting the draw ratio and the draw temperature.
  • the porosity of the polyolefin microporous membrane in the present embodiment is not particularly limited, but is preferably 20% or more, more preferably 35% or more, preferably 90% or less, preferably 80% or less. Setting the porosity to 20% or more is preferable from the viewpoint of securing the permeability of the separator. On the other hand, it is preferable to set it as 90% or less from a viewpoint of ensuring piercing strength.
  • the porosity is measured by the method described in Examples below. The porosity can be adjusted by changing the draw ratio.
  • the thickness of the polyolefin microporous membrane in the present embodiment is not particularly limited, but is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less. .
  • a film thickness of 2 ⁇ m or more is preferable from the viewpoint of improving mechanical strength.
  • a thickness of 100 ⁇ m or less is preferable because the occupied volume of the separator is reduced, which tends to be advantageous in terms of increasing the capacity of the battery.
  • the air permeability of the polyolefin microporous membrane in the present embodiment is not particularly limited, but is preferably 10 sec / 100 cc or more, more preferably 50 sec / 100 cc or more, preferably 1000 sec / 100 cc or less, more preferably 500 sec / 100 cc or less. It is.
  • the air permeability is preferably 10 sec / 100 cc or more from the viewpoint of suppressing self-discharge of the electricity storage device. On the other hand, setting it to 1000 sec / 100 cc or less is preferable from the viewpoint of obtaining good charge / discharge characteristics.
  • the air permeability is measured by the method described in Examples below. The air permeability can be adjusted by changing the stretching temperature and the stretching ratio.
  • the average pore size of the polyolefin microporous membrane in the present embodiment is preferably 0.15 ⁇ m or less, more preferably 0.1 ⁇ m or less, and the lower limit is preferably 0.01 ⁇ m or more.
  • An average pore size of 0.15 ⁇ m or less is preferable from the viewpoint of suppressing self-discharge of the power storage device and suppressing a decrease in capacity when the separator for power storage device is used.
  • the average pore diameter can be adjusted by changing the draw ratio when producing a polyolefin microporous membrane.
  • the short temperature which is an index of heat resistance of the polyolefin microporous membrane in the present embodiment, is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 160 ° C. or higher.
  • the short-circuit temperature is set to 140 ° C. or higher, it is preferable from the viewpoint of safety of the electricity storage device when the electricity storage device separator is used.
  • the method for producing the polyolefin microporous membrane in the present embodiment is not particularly limited, and a known production method can be employed. For example, a method in which a polyolefin resin composition and a plasticizer are melt-kneaded and formed into a sheet shape, optionally stretched and then made porous by extracting the plasticizer, and a polyolefin resin composition is melt-kneaded to obtain a high draw rate.
  • the polyolefin crystal interface is peeled off by heat treatment and stretching, the polyolefin resin composition and the inorganic filler are melt-kneaded and molded on a sheet, and then the polyolefin and inorganic filler are stretched And a method of making the structure porous by removing the solvent at the same time as solidifying the polyolefin by dissolving it in a poor solvent for the polyolefin after dissolving the polyolefin resin composition.
  • a polyolefin resin composition and a plasticizer are melt-kneaded.
  • a melt-kneading method for example, polyolefin resin and other additives as required may be added to a resin kneading apparatus such as an extruder, kneader, lab plast mill, kneading roll, Banbury mixer, etc.
  • a method of introducing a plasticizer at a ratio of kneading and kneading may be introduced to a resin kneading apparatus.
  • the polyolefin resin, other additives, and the plasticizer are pre-kneaded in advance at a predetermined ratio using a Henschel mixer or the like before being added to the resin kneading apparatus. More preferably, only a part of the plasticizer is added in the pre-kneading, and the remaining plasticizer is kneaded while side-feeding the resin kneading apparatus. By doing so, the dispersibility of the plasticizer is increased, and when stretching a sheet-like molded product of the melt-kneaded mixture of the resin composition and the plasticizer in the subsequent step, the film is stretched at a high magnification without breaking. can do.
  • a non-volatile solvent capable of forming a uniform solution above the melting point of the polyolefin
  • a non-volatile solvent include hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol.
  • liquid paraffin has high compatibility with polyethylene and polypropylene, and even when the melt-kneaded product is stretched, the interface peeling between the resin and the plasticizer does not easily occur. Therefore, uniform stretching tends to be easily performed. Therefore, it is preferable.
  • the ratio of the polyolefin resin composition and the plasticizer is not particularly limited as long as they can be uniformly melt-kneaded and formed into a sheet shape.
  • the mass fraction of the plasticizer in the composition comprising the polyolefin resin composition and the plasticizer is preferably 30 to 80 mass%, more preferably 40 to 70 mass%.
  • the mass fraction of the plasticizer is 80% by mass or less, the melt tension at the time of melt molding is hardly insufficient and the moldability tends to be improved.
  • the mass fraction is 30% by mass or more, even if the mixture of the polyolefin resin composition and the plasticizer is stretched at a high magnification, the polyolefin chain is not broken, and a uniform and fine pore structure is formed and the strength is also improved. Easy to increase.
  • melt-kneaded product is formed into a sheet.
  • a melt-kneaded product is extruded into a sheet shape via a T-die or the like, and brought into contact with a heat conductor to cool to a temperature sufficiently lower than the crystallization temperature of the resin component. And then solidify.
  • a heat conductor used for cooling and solidification metal, water, air, plasticizer itself, or the like can be used. However, a metal roll is preferable because of high heat conduction efficiency.
  • the die lip interval when extruding into a sheet form from a T die is preferably 400 ⁇ m or more and 3000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2500 ⁇ m or less.
  • the die lip interval is 400 ⁇ m or more, the mess and the like are reduced, and there is little influence on the film quality such as streaks and defects, and there is a tendency that film breakage and the like can be prevented in the subsequent stretching step.
  • the die lip interval is 3000 ⁇ m or less, the cooling rate is high and uneven cooling can be prevented and the thickness stability of the sheet tends to be maintained.
  • the sheet-like molded body it is preferable to stretch the sheet-like molded body thus obtained.
  • the stretching treatment either uniaxial stretching or biaxial stretching can be suitably used, but biaxial stretching is preferred from the viewpoint of the strength of the porous film to be obtained.
  • the sheet-like molded body is stretched at a high magnification in the biaxial direction, the molecules are oriented in the plane direction, and the finally obtained porous film is not easily torn and has a high puncture strength.
  • the stretching method include simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, multiple stretching, and the like, and simultaneous biaxial from the viewpoint of improvement of puncture strength, uniformity of stretching, and shutdown property Stretching is preferred.
  • simultaneous biaxial stretching means stretching in which stretching in the MD direction (machine direction of the microporous membrane) and stretching in the TD direction (direction crossing the MD of the microporous membrane at an angle of 90 °) are performed simultaneously. It refers to a method, and the draw ratio in each direction may be different.
  • Sequential biaxial stretching refers to a stretching method in which stretching in the MD direction or TD direction is independently performed. When stretching is performed in the MD direction or TD direction, the other direction is unconstrained or constant length. It is assumed that it is fixed to
  • the draw ratio is preferably in the range of 20 times to 100 times in terms of surface magnification, and more preferably in the range of 25 times to 50 times.
  • the stretching ratio in each axial direction is preferably in the range of 4 to 10 times in the MD direction, preferably in the range of 4 to 10 times in the TD direction, 5 to 8 times in the MD direction, and 5 times in the TD direction. More preferably, it is in the range of 8 times or less.
  • the sheet-like molded body may be rolled.
  • Rolling can be performed, for example, by a pressing method using a double belt press or the like.
  • Rolling can particularly increase the orientation of the surface layer portion.
  • the rolling surface magnification is preferably greater than 1 and 3 or less, more preferably greater than 1 and 2 or less.
  • the rolling ratio is larger than 1, the plane orientation increases and the film strength of the finally obtained porous film tends to increase.
  • a rolling ratio of 3 or less is preferable because the orientation difference between the surface layer portion and the center is small and a uniform porous structure tends to be formed in the thickness direction of the film.
  • the plasticizer is removed from the sheet-like molded body to form a porous film.
  • a method for removing the plasticizer for example, a method of extracting the plasticizer by immersing the sheet-like molded body in an extraction solvent and sufficiently drying it can be mentioned.
  • the method for extracting the plasticizer may be either a batch type or a continuous type.
  • the residual amount of plasticizer in the porous film is preferably less than 1% by mass.
  • extraction solvent it is preferable to use a solvent that is a poor solvent for the polyolefin resin and a good solvent for the plasticizer and has a boiling point lower than the melting point of the polyolefin resin.
  • extraction solvents include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorine such as hydrofluoroether and hydrofluorocarbon Halogenated solvents; alcohols such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; ketones such as acetone and methyl ethyl ketone.
  • These extraction solvents may be recovered and reused by an operation such as distillation.
  • heat treatment such as heat fixation or heat relaxation can be performed after the stretching process or after the porous film is formed.
  • the porous film may be subjected to a post-treatment such as a hydrophilic treatment with a surfactant or the like, or a crosslinking treatment with ionizing radiation or the like.
  • the power storage device separator may include a porous layer including an inorganic filler and a resin binder.
  • the position of the porous layer includes at least a part of the surface of the polyolefin microporous film, at least a part of the surface of the thermoplastic polymer coating layer, and / or between the polyolefin microporous film and the thermoplastic polymer coating layer.
  • the porous layer may be provided on one side or both sides of a polyolefin microporous membrane.
  • the inorganic filler used in the porous layer is not particularly limited, but is preferably one having a melting point of 200 ° C. or higher, high electrical insulation, and electrochemically stable in the use range of the lithium ion secondary battery. .
  • the inorganic filler is not particularly limited.
  • oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide
  • nitrides such as silicon nitride, titanium nitride and boron nitride Ceramics: silicon carbide, calcium carbonate, magnesium sulfate, aluminum sulfate, aluminum hydroxide, aluminum hydroxide oxide, potassium titanate, talc, kaolinite, dickite, nacrite, halloysite, pyrophyllite, montmorillonite, sericite, mica, Americite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, silica sand and other ceramics, glass fibers, etc., may be used alone or in combination It may be.
  • aluminum oxide compounds such as alumina and aluminum hydroxide oxide, and ions such as kaolinite, dickite, nacrite, halloysite, and pyrophyllite
  • Aluminum silicate compounds having no exchange ability are preferred.
  • aluminum oxide compound aluminum hydroxide oxide is particularly preferable.
  • aluminum silicate compound having no ion exchange ability kaolin mainly composed of kaolin mineral is more preferable because it is inexpensive and easily available.
  • Kaolin includes wet kaolin and calcined kaolin, which is calcined. However, calcined kaolin releases crystal water during the calcining process and removes impurities. Particularly preferred.
  • the average particle size of the inorganic filler is preferably more than 0.1 ⁇ m and not more than 4.0 ⁇ m, more preferably more than 0.2 ⁇ m and not more than 3.5 ⁇ m, and more than 0.4 ⁇ m and 3. More preferably, it is 0 ⁇ m or less. Adjusting the average particle size of the inorganic filler to the above range is preferable from the viewpoint of suppressing thermal shrinkage at high temperatures even when the porous layer is thin (for example, 7 ⁇ m or less).
  • the proportion of particles having a particle size of more than 0.2 ⁇ m and 1.4 ⁇ m or less in the entire inorganic filler is preferably 2% by volume or more, more preferably 3% by volume or more, and still more preferably 5%.
  • the upper limit is preferably 90% by volume or less, and more preferably 80% by volume or less.
  • the proportion of particles having a particle size of more than 0.2 ⁇ m and 1.0 ⁇ m or less in the entire inorganic filler is preferably 1% by volume or more, more preferably 2% by volume or more, and the upper limit. Is preferably 80% by volume or less, more preferably 70% by volume or less.
  • the proportion of particles having a particle size of more than 0.5 ⁇ m and not more than 2.0 ⁇ m in the entire inorganic filler is preferably 8% by volume or more, more preferably 10% or more, and the upper limit. Is preferably 60% by volume or less, more preferably 50% by volume or less.
  • the proportion of particles having a particle size of more than 0.6 ⁇ m and 1.4 ⁇ m or less in the entire inorganic filler is preferably 1% by volume or more, more preferably 3% by volume or more, As an upper limit, Preferably it is 40 volume% or less, More preferably, it is 30 volume% or less.
  • the particle size distribution of the inorganic filler it is preferable to adjust the particle size distribution of the inorganic filler to the above range from the viewpoint of suppressing thermal shrinkage at a high temperature even when the porous layer is thin (for example, 7 ⁇ m or less).
  • the method for adjusting the ratio of the particle size of the inorganic filler include a method of pulverizing the inorganic filler using a ball mill, bead mill, jet mill or the like to reduce the particle size.
  • Examples of the shape of the inorganic filler include a plate shape, a scale shape, a needle shape, a columnar shape, a spherical shape, a polyhedral shape, and a lump shape, and a plurality of inorganic fillers having the above shapes may be used in combination.
  • the shape of the inorganic filler is not particularly limited as long as the 150 ° C. thermal shrinkage described below can be suppressed to 10% or less when a multilayer porous membrane is formed, but it consists of a plurality of surfaces from the viewpoint of improving permeability. Polyhedral, columnar and spindle shapes are preferred.
  • the proportion of the inorganic filler in the porous layer can be appropriately determined from the viewpoint of the binding properties of the inorganic filler, the permeability of the multilayer porous membrane, the heat resistance, and the like. It is preferable that it is less than 70 mass%, More preferably, it is 70 to 99.99 mass%, More preferably, it is 80 to 99.9 mass%, Most preferably, it is 90 to 99 mass%.
  • the type of resin binder is not particularly limited, but when the multilayer porous membrane in the present embodiment is used as a separator for a lithium ion secondary battery, it is insoluble in the electrolyte solution of the lithium ion secondary battery, In addition, it is preferable to use one that is electrochemically stable within the range of use of the lithium ion secondary battery.
  • the resin binder include, for example, polyolefins such as polyethylene and polypropylene; fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene; vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, ethylene-tetra Fluorine-containing rubber such as fluoroethylene copolymer; styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylate ester Rubbers such as acrylic ester copolymer, styrene-acrylic ester copolymer, acrylonitrile-acrylic ester copolymer, ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate; Cellulose derivatives such as cellulose,
  • the saponification degree is preferably 85% or more and 100% or less.
  • the saponification degree is more preferably 90% or more and 100% or less, further preferably 95% or more and 100% or less, and particularly preferably 99% or more and 100% or less.
  • the polymerization degree of polyvinyl alcohol is 200 or more and 5000 or less, More preferably, it is 300 or more and 4000 or less, More preferably, it is 500 or more and 3500 or less.
  • an inorganic filler such as calcined kaolin can be firmly bound to the porous membrane with a small amount of polyvinyl alcohol, and the air permeability of the multilayer porous membrane by forming the porous layer while maintaining the mechanical strength of the porous layer It is preferable because it tends to be able to suppress an increase in degree. Moreover, since it exists in the tendency which can prevent the gelatinization at the time of preparing a coating liquid as a polymerization degree is 5000 or less, it is preferable.
  • a resin latex binder is preferable.
  • a resin latex binder when a resin latex binder was used, when a porous layer containing an inorganic filler and a binder was laminated on at least one surface of the polyolefin porous film, it was obtained after dissolving a part or all of the resin binder in a solvent.
  • the ion permeability is less likely to decrease and the output is high. It tends to be easy to obtain characteristics.
  • a latex binder made of resin from the viewpoint of improving electrochemical stability and binding properties, aliphatic conjugated diene monomers and unsaturated carboxylic acid monomers, and other monomers copolymerizable therewith Those obtained by emulsion polymerization of the body are preferred.
  • a method of emulsion polymerization A conventionally well-known method can be used.
  • the addition method of the monomer and other components is not particularly limited, and any of a batch addition method, a division addition method, and a continuous addition method can be adopted. Any of step polymerization and the like can be employed.
  • the aliphatic conjugated diene monomer is not particularly limited, and examples thereof include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3 butadiene, and 2-chloro-1. , 3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. These may be used alone or in combination of two or more. Among these, 1,3-butadiene is particularly preferable.
  • the unsaturated carboxylic acid monomer is not particularly limited, and examples thereof include mono- or dicarboxylic acids (anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. May be used alone or in combination of two or more. Among the above, acrylic acid and methacrylic acid are particularly preferable.
  • Other monomers copolymerizable with these are not particularly limited, and examples thereof include aromatic vinyl monomers, vinyl cyanide monomers, unsaturated carboxylic acid alkyl ester monomers, and hydroxyalkyl groups. May be used alone or in combination of two or more thereof. Among the above, an unsaturated carboxylic acid alkyl ester monomer is particularly preferable.
  • unsaturated carboxylic acid alkyl ester monomers include, but are not limited to, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl Examples thereof include maleate, dimethyl itaconate, monomethyl fumarate, monoethyl fumarate, 2-ethylhexyl acrylate, and the like. These may be used alone or in combination of two or more. Among the above, methyl methacrylate is particularly preferable.
  • monomer components in addition to these monomers, in order to improve various qualities and physical properties, monomer components other than those described above can be further used.
  • the average particle size of the resin binder is preferably 50 to 500 nm, more preferably 60 to 460 nm, and still more preferably 80 to 250 nm.
  • the resin binder has an average particle size of 50 nm or more, when a porous layer containing an inorganic filler and a binder is laminated on at least one surface of the polyolefin porous film, the ion permeability is unlikely to decrease and high output characteristics are easily obtained. In addition, even when the temperature rises rapidly during abnormal heat generation, smooth shutdown characteristics are exhibited, and high safety is easily obtained.
  • the average particle size of the resin binder is 500 nm or less, good binding properties are exhibited, and when the multilayer porous membrane is formed, heat shrinkage tends to be good and safety tends to be excellent.
  • the average particle size of the resin binder can be controlled by adjusting the polymerization time, polymerization temperature, raw material composition ratio, raw material charging sequence, pH, and the like.
  • the layer thickness of the porous layer is preferably 1 ⁇ m or more from the viewpoint of improving heat resistance and insulation, and is preferably 50 ⁇ m or less from the viewpoint of increasing the capacity and permeability of the battery.
  • the layer thickness of the porous layer is more preferably 1.5 ⁇ m to 20 ⁇ m, further preferably 2 ⁇ m to 10 ⁇ m, still more preferably 3 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 7 ⁇ m.
  • the layer density of the porous layer is preferably 0.5 to 2.0 g / cm 3 , and more preferably 0.7 to 1.5 cm 3 .
  • the layer density of the porous layer is 0.5 g / cm 3 or more, the thermal contraction rate at high temperature tends to be good, and when it is 2.0 g / cm 3 or less, the air permeability tends to decrease. is there.
  • Examples of the method for forming the porous layer include a method in which a porous layer is formed by applying a coating solution containing an inorganic filler and a resin binder on at least one surface of a porous film mainly composed of a polyolefin resin.
  • a coating solution containing an inorganic filler and a resin binder on at least one surface of a porous film mainly composed of a polyolefin resin.
  • the solvent for the coating solution those capable of uniformly and stably dispersing the inorganic filler and the resin binder are preferable.
  • N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water examples include ethanol, toluene, hot xylene, methylene chloride, hexane and the like.
  • additives such as surfactants, thickeners, wetting agents, antifoaming agents, pH adjusters containing acids and alkalis are used in the coating solution to stabilize dispersion and improve coating properties. May be added.
  • These additives are preferably those that can be removed when the solvent is removed, but are porous if they are electrochemically stable in the range of use of the lithium ion secondary battery, do not inhibit the battery reaction, and are stable up to about 200 ° C. It may remain in the layer.
  • the method of dispersing the inorganic filler and the resin binder in the solvent of the coating solution is not particularly limited as long as it is a method capable of realizing the dispersion characteristics of the coating solution necessary for the coating process.
  • examples thereof include a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, a high-speed impact mill, ultrasonic dispersion, and mechanical stirring using a stirring blade.
  • the method for applying the coating liquid to the porous film is not particularly limited as long as the required layer thickness and coating area can be realized.
  • a gravure coater method a small-diameter gravure coater method, a reverse roll coater method, a transfer roll
  • Examples include coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method, cast coater method, die coater method, screen printing method, spray coating method, etc. .
  • a surface treatment to the surface of the porous film prior to the application of the coating liquid because the coating liquid can be easily applied and the adhesion between the inorganic filler-containing porous layer after coating and the surface of the porous film is improved.
  • the surface treatment method is not particularly limited as long as it does not significantly impair the porous structure of the porous film.
  • corona discharge treatment method mechanical surface roughening method, solvent treatment method, acid treatment method, ultraviolet oxidation method Etc.
  • the method for removing the solvent from the coating film after coating is not particularly limited as long as it does not adversely affect the porous film, for example, a method of drying at a temperature below the melting point while fixing the porous film, at a low temperature. Examples include a method of drying under reduced pressure. From the viewpoint of controlling the shrinkage stress in the MD direction of the porous film and the multilayer porous film, it is preferable to appropriately adjust the drying temperature, the winding tension, and the like.
  • the separator of the present embodiment has a thermoplastic polymer on at least a part of at least one surface of the polyolefin microporous membrane.
  • Peel strength peel strength after pressurizing aluminum foil (positive electrode current collector, etc.) for 3 minutes at a temperature of 25 ° C. and a pressure of 5 MPa with respect to the outermost surface of the electricity storage device separator in which a thermoplastic polymer coating layer is present , Also referred to as “room temperature peel strength”) is preferably 8 gf / cm or less, more preferably 7 gf / cm or less, and even more preferably 6 gf / cm or less. When it is 8 gf / cm or less, the stickiness is further suppressed, and the slit property and winding property of the separator tend to be excellent.
  • the present inventors have found that when the peel strength is within the above range, the adhesion when the separator of this embodiment is hot-pressed on an electrode is improved.
  • the stickiness is suppressed due to the presence of many thermoplastic resins having a high glass transition temperature on the outermost surface side of the separator of the present embodiment, and the thermoplastic resin having a high glass transition temperature is excellent in adhesion to the electrode. Therefore, as a result, it is considered that a separator having low stickiness and excellent adhesion to the electrode was obtained.
  • thermoplastic resins having a low glass transition temperature results in improved adhesion between the polyolefin microporous membrane that is the substrate and the thermoplastic resin, It is considered that separation at the interface between the polyolefin microporous membrane and the thermoplastic resin was suppressed, and as a result, a separator having excellent adhesion to the electrode was obtained.
  • Heat peeling strength is preferably 10 gf / cm or more, more preferably 15 gf / cm or more, and further preferably 20 gf / cm or more.
  • the heat peel strength can be measured by the method described in the examples.
  • a separator having a heat peel strength in the above range is preferable in terms of excellent adhesion between the electrode and the separator when a power storage device described later is applied.
  • the separator and the negative electrode are laminated in the presence of the electrolyte and pressed at 80 ° C. and a pressure of 10 MPa for 2 minutes, when the separator and the negative electrode are peeled off, the active material adheres to the separator in an area of 10% or more. It is preferable.
  • the 90 ° peel strength between the polyolefin microporous membrane and the thermoplastic polymer coating layer is preferably 6 gf / mm or more, more preferably 7 gf / mm or more, and even more preferably 8 gf / mm or more.
  • the adhesion between the thermoplastic polymer and the polyolefin microporous membrane tends to be superior, and as a result, the thermoplastic polymer layer Is likely to be suppressed, and the adhesion between the separator and the electrode tends to be excellent.
  • the film thickness of the electricity storage device separator is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, and the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the film thickness of 2 ⁇ m or more is preferable from the viewpoint of securing the strength of the electricity storage device separator. On the other hand, it is preferable to set it as 100 micrometers or less from a viewpoint of obtaining favorable charging / discharging characteristics.
  • the air permeability of the electricity storage device separator in the present embodiment is preferably 10 sec / 100 cc or more, more preferably 50 sec / 100 cc or more, and the upper limit is preferably 10,000 sec / 100 cc or less, more preferably 1000 sec / 100 cc or less.
  • the air permeability of 10 sec / 100 cc or more is preferable from the viewpoint of further suppressing self-discharge of the electricity storage device when the electricity storage device separator is used.
  • the air permeability of the electricity storage device separator can be adjusted by changing the stretching temperature, the stretching ratio, the area ratio of the thermoplastic polymer, the form of existence, etc. when the polyolefin microporous membrane is produced.
  • the short-circuit temperature, which is an index of heat resistance, of the electricity storage device separator is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 160 ° C. or higher.
  • the short-circuit temperature is set to 160 ° C. or higher, it is preferable from the viewpoint of the safety of the electricity storage device when the electricity storage device separator is used.
  • the method for forming the thermoplastic polymer on the polyolefin microporous film is not particularly limited, and examples thereof include a method of applying a coating liquid containing a thermoplastic polymer to the polyolefin microporous film.
  • the method for applying a coating solution containing a thermoplastic polymer to the porous film is not particularly limited as long as it can realize a required layer thickness and application area.
  • gravure coater method small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method, cast
  • a coater method a die coater method, a screen printing method, a spray coating method, a spray coater coating method, and an ink jet coating.
  • the gravure coater method or the spray coating method is preferable in that the degree of freedom of the coating shape of the thermoplastic polymer is high and a preferable area ratio can be easily obtained.
  • thermoplastic polymer When a thermoplastic polymer is applied to a polyolefin microporous film, if the coating solution enters the inside of the microporous film, the adhesive resin fills the surface and the inside of the pores, resulting in a decrease in permeability. Therefore, a poor solvent for thermoplastic polymer is preferable as the medium for the coating solution.
  • a poor solvent for the thermoplastic polymer is used as the coating liquid medium, the coating liquid does not enter the inside of the microporous membrane, and the adhesive polymer exists mainly on the surface of the microporous membrane. It is preferable from the viewpoint of suppressing the decrease in the thickness.
  • a medium is preferably water.
  • the medium that can be used in combination with water is not particularly limited, and examples thereof include ethanol and methanol.
  • the surface treatment method is not particularly limited as long as it does not significantly impair the porous structure of the porous film.
  • corona discharge treatment method plasma treatment method, mechanical surface roughening method, solvent treatment method, acid treatment method And an ultraviolet oxidation method.
  • the method for removing the solvent from the coating film after coating is not particularly limited as long as it does not adversely affect the porous film.
  • a method of drying at a temperature below the melting point while fixing the porous film a method of drying under reduced pressure at a low temperature, a method of immersing in a poor solvent for the adhesive polymer to coagulate the adhesive polymer and extracting the solvent at the same time, etc. Is mentioned.
  • the electricity storage device separator has excellent handling properties during winding and rate characteristics of the electricity storage device, and also excellent adhesion and permeability between the thermoplastic polymer and the microporous polyolefin membrane. Therefore, the use of the separator for an electricity storage device is not particularly limited, but for example, it can be suitably used for a separator for an electricity storage device such as a battery such as a non-aqueous electrolyte secondary battery, a capacitor, a capacitor, a substance, or the like.
  • the laminate according to this embodiment is a laminate of the separator and the electrode.
  • the separator of this embodiment can be used as a laminate by bonding to an electrode.
  • adheresion means that the heat peel strength between the separator and the electrode is preferably 10 gf / cm or more, more preferably 15 gf / cm or more, and further preferably 20 gf / cm or more.
  • the laminate is excellent in handling properties at the time of winding and rate characteristics of the electricity storage device, and further excellent in adhesion and permeability between the thermoplastic polymer and the polyolefin microporous film. Therefore, the use of the laminate is not particularly limited, but can be suitably used for, for example, batteries such as non-aqueous electrolyte secondary batteries, power storage devices such as capacitors and capacitors, and the like.
  • the electrode used for the laminate of the present embodiment those described in the item of the electricity storage device described later can be used.
  • the method of manufacturing the laminate using the separator of the present embodiment is not particularly limited.
  • the separator and the electrode of the present embodiment are stacked and heated and / or pressed as necessary. Can do.
  • the heating and / or pressing can be performed when the electrode and the separator are stacked.
  • it can also manufacture by heating and / or pressing with respect to the wound body obtained by winding an electrode and a separator in a circular shape or a flat spiral shape.
  • the laminate can also be produced by laminating a positive electrode-separator-negative electrode-separator or negative electrode-separator-positive electrode-separator in the order of a plate, and heating and / or pressing as necessary.
  • the separator of the present embodiment is prepared as a vertically long separator having a width of 10 to 500 mm (preferably 80 to 500 mm) and a length of 200 to 4000 m (preferably 1000 to 4000 m).
  • the positive electrode-separator-negative electrode-separator or negative electrode-separator-positive electrode-separator can be stacked in this order, and heated and / or pressed as necessary.
  • the heating temperature is preferably 40 to 120 ° C.
  • the heating time is preferably 5 seconds to 30 minutes.
  • the pressure during the pressing is preferably 1 to 30 MPa.
  • the pressing time is preferably 5 seconds to 30 minutes.
  • the order of heating and pressing may be performed after heating, or may be performed after pressing, or may be performed simultaneously. Among these, it is preferable to perform pressing and heating simultaneously.
  • the separator of this embodiment can be used for separation of separators and substances in batteries, capacitors, capacitors, and the like.
  • a separator for a non-aqueous electrolyte battery it is possible to impart adhesion to electrodes and excellent battery performance.
  • the electricity storage device is a non-aqueous electrolyte secondary battery
  • a positive electrode a negative electrode
  • a non-aqueous electrolyte A well-known thing can be used.
  • the positive electrode material is not particularly limited, and examples thereof include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , spinel type LiMnO 4 , and olivine type LiFePO 4 .
  • the negative electrode material is not particularly limited, and examples thereof include carbon materials such as graphite, non-graphitizable carbonaceous, graphitizable carbonaceous, and composite carbon bodies; silicon, tin, metallic lithium, various alloy materials, and the like.
  • the nonaqueous electrolytic solution is not particularly limited, but an electrolytic solution in which an electrolyte is dissolved in an organic solvent can be used.
  • the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • the electrolyte include lithium salts such as LiClO 4 , LiBF 4 , and LiPF 6 .
  • a method for manufacturing an electricity storage device using the separator of the present embodiment is not particularly limited, but when the electricity storage device is a secondary battery, for example, the separator of the embodiment is 10 to 500 mm in width (preferably 80 to 500 mm). ), Prepared as a vertically long separator having a length of 200 to 4000 m (preferably 1000 to 4000 m), and the separator is stacked in the order of positive electrode-separator-negative electrode-separator or negative electrode-separator-positive electrode-separator, It can be manufactured by winding in a flat spiral shape to obtain a wound body, storing the wound body in a battery can, and further injecting an electrolytic solution.
  • the above-described laminate may be formed by heating and / or pressing the wound body. Moreover, it can also manufacture using what wound the above-mentioned laminated body in the shape of a circle or a flat spiral as said wound body.
  • the electricity storage device is a positive electrode-separator-negative electrode-separator or negative electrode-separator-positive electrode-separator laminated in the order of a flat plate, or the above laminate is laminated with a bag-like film, and an electrolytic solution is injected. It can also be manufactured through a process and optionally a heating and / or pressing process. The step of performing the heating and / or pressing can be performed before and / or after the step of injecting the electrolytic solution.
  • the porous membrane according to this embodiment is A polyolefin microporous membrane, and a thermoplastic polymer coating layer covering at least a portion of at least one surface of the polyolefin microporous membrane,
  • the glass transition temperature of the thermoplastic polymer contained in the thermoplastic polymer coating layer is ⁇ 10 ° C. or more and 40 ° C. or less, and the degree of swelling with respect to the electrolytic solution is 5 times or less.
  • the glass transition temperature of the thermoplastic polymer in the present embodiment is preferably ⁇ 10 ° C. or higher and 40 ° C. or lower, more preferably 0 ° C. or higher and 35 ° C. or lower, and further preferably 15 ° C. or higher and 30 ° C. or lower.
  • the glass transition temperature of the thermoplastic polymer is ⁇ 10 ° C. or higher and 40 ° C. or lower, sticking between the thermoplastic polymers or between the thermoplastic polymer and the polyolefin microporous film is effectively suppressed.
  • the adhesion between the thermoplastic polymer and the polyolefin microporous film tends to be further improved.
  • the thermoplastic polymer may have a plurality of glass transition temperatures. In this case, it is sufficient that at least one glass transition temperature exists in the above temperature range. Preferably, all glass transition temperatures are in the above temperature range.
  • the average thickness of the thermoplastic polymer coating layer in the present embodiment is not particularly limited, but is preferably 1.5 ⁇ m or less on one side, more preferably 1.0 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
  • the average thickness of the thermoplastic polymer is 1.5 ⁇ m or less, it is preferable from the viewpoint of effectively suppressing a decrease in permeability due to the thermoplastic polymer and sticking between the thermoplastic polymers or between the thermoplastic polymer and the polyolefin microporous film.
  • the average thickness of the thermoplastic polymer can be adjusted by changing the polymer concentration of the liquid to be applied, the coating amount of the polymer solution, the coating method, and the coating conditions.
  • the thickness of the thermoplastic polymer coating layer can be measured by the method described in Examples.
  • the separator of the present embodiment has a thermoplastic polymer on at least a part of at least one surface of the polyolefin microporous membrane.
  • the area ratio (%) of the polyolefin microporous membrane covered with the thermoplastic polymer coating layer is preferably 70% or less, more preferably 50% or less, and more preferably 45% or less, based on 100% of the total area of the polyolefin microporous membrane. Is more preferable, and 40% or less is even more preferable.
  • the area ratio (%) is preferably 5% or more.
  • the area ratio is 70% or less, blockage of pores of the polyolefin microporous film by the thermoplastic polymer is further suppressed, and the permeability tends to be further improved.
  • the area ratio is calculated by the method described in the examples described later.
  • the area ratio can be adjusted by changing the polymer concentration of the liquid to be applied, the coating amount of the polymer solution, the coating method, and the coating conditions.
  • the gel fraction of the thermoplastic polymer is not particularly limited, but is preferably 90% or more, and more preferably 95% or more.
  • the gel fraction of the thermoplastic polymer is 90% or more, the dissolution in the electrolytic solution and the strength of the thermoplastic polymer inside the battery tend to be further improved.
  • a gel fraction is calculated
  • the gel fraction can be adjusted by changing the monomer component to be polymerized, the charging ratio of each monomer, and the polymerization conditions.
  • the thermoplastic polymer coating layer is a layer in which the portion containing the thermoplastic polymer and the portion not containing the thermoplastic polymer are present in a sea-island shape on the polyolefin microporous film, and the portion containing the thermoplastic polymer is in the form of dots. Preferably it is formed. Although it does not specifically limit as a sea island shape, For example, a linear shape, a dot shape, a grid
  • the dot shape indicates that a portion containing a thermoplastic polymer and a portion not containing a thermoplastic polymer are present in a sea-island shape on the polyolefin microporous film.
  • the distance between the dots is preferably 5 ⁇ m to 500 ⁇ m from the viewpoints of both adhesion to the electrode and cycle characteristics.
  • the average major axis of the dots is preferably 20 ⁇ m or more and 1000 ⁇ m or less, more preferably 20 ⁇ m or more and 800 ⁇ m or less, and further preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the porous film in the present embodiment preferably has an adhesiveness with an electrode active material measured by a method described later of 30% or more.
  • porous membrane Use of porous membrane, etc.
  • the use of the porous membrane according to the present embodiment is not particularly limited, but is excellent in handling characteristics during winding and rate characteristics of the electricity storage device when used as an electricity storage device separator, and further, a thermoplastic polymer and a polyolefin microporous membrane Therefore, it can be suitably used for, for example, batteries such as non-aqueous electrolyte secondary batteries and capacitors, separators for power storage devices such as capacitors, and separation of substances.
  • Air permeability (sec / 100cc) Based on JIS P-8117, the air resistance measured by a Gurley type air permeability meter G-B2 (trademark) manufactured by Toyo Seiki Co., Ltd. was defined as the air permeability.
  • Puncture strength of polyolefin microporous membrane (g) Using a handy compression tester KES-G5 (trademark) manufactured by Kato Tech, a polyolefin microporous membrane was fixed with a sample holder having a diameter of 11.3 mm at the opening. Next, the puncture strength (maximum puncture load) is applied to the central portion of the fixed polyolefin microporous membrane at a needle radius of curvature of 0.5 mm and a puncture speed of 2 mm / sec. g) was obtained.
  • R gas is obtained from the air permeability (sec) using the following equation.
  • R gas 0.0001 / (air permeability ⁇ (6.424 ⁇ 10 ⁇ 4 ) ⁇ (0.01276 ⁇ 101325))
  • R liq water permeability / 100
  • water permeability is calculated
  • a microporous membrane previously immersed in ethanol is set in a stainless steel liquid-permeable cell having a diameter of 41 mm, and after the ethanol in the membrane is washed with water, water is allowed to permeate at a differential pressure of about 50000 Pa for 120 seconds.
  • the water permeability per unit time, unit pressure, and unit area was calculated from the water permeability (cm 3 ) at the time, and this was taken as the water permeability.
  • Thickness ( ⁇ m) (7) -1 Film thickness of microporous polyolefin membrane and separator for electricity storage device ( ⁇ m) Samples of 10 cm x 10 cm were cut out from the polyolefin microporous membrane and the electricity storage device separator, respectively, and nine locations (3 points x 3 points) were selected in a lattice shape to measure the film thickness with a microthickness meter (Toyo Seiki Seisakusho Co., Ltd.) ) Measured at room temperature 23 ⁇ 2 ° C. using type KBM). The average value of the measured values at 9 locations was taken as the film thickness ( ⁇ m) of the polyolefin microporous film and the storage device separator, respectively.
  • thermoplastic polymer coating layer The thickness of the thermoplastic polymer coating layer was measured by observing the cross section of the separator using a scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI”. A sample separator was cut to about 1.5 mm ⁇ 2.0 mm and stained with ruthenium. A stained sample and ethanol were placed in a gelatin capsule, frozen with liquid nitrogen, and then cleaved with a hammer. The sample was vapor-deposited with osmium and observed at an acceleration voltage of 1.0 kV and 30000 times, and the thickness of the thermoplastic polymer layer was calculated. In addition, the outermost surface area where the porous structure of the cross section of the polyolefin microporous film was not visible in the SEM image was defined as the area of the thermoplastic polymer coating layer.
  • Tg glass transition temperature
  • thermoplastic polymer toluene insoluble content
  • a dropper diameter 5 mm or less
  • a dropper diameter 5 mm or less
  • a 130 ° C. hot air dryer Dry for 30 minutes.
  • about 0.5 g of the dried film was precisely weighed (a), taken into a 50 mL polyethylene container, and 30 mL of toluene was poured into it and shaken at room temperature for 3 hours. Thereafter, the content was filtered with 325 mesh, and the toluene insoluble matter remaining on the mesh was dried together with the mesh for 1 hour with a 130 ° C. hot air dryer.
  • 325 mesh used here measured the dry weight beforehand.
  • the dry weight (b) of toluene-insoluble matter was obtained by subtracting the previously measured 325 mesh weight from the dry weight of toluene-insoluble matter and the weight of 325 mesh.
  • thermoplastic polymer coating layer (coating shape)
  • the existence form (coating shape) of the thermoplastic polymer coating layer was determined by using an osmium-deposited power storage device separator using a scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI” with an acceleration voltage of 1.0 kV. , By observing at 50 times.
  • SEM scanning electron microscope
  • the state in which most of the polyolefin microporous membrane was covered with a thermoplastic polymer (including those in which a portion of the thermoplastic polymer agglomerates and does not completely cover the polyolefin) was defined as “non-dot shape”. .
  • the area of the granular thermoplastic polymer was measured using a scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI”. It measured by carrying out the osmium vapor deposition of the separator for electrical storage devices, and observing it with an acceleration voltage of 1.0 kV and 30000 times.
  • SEM scanning electron microscope
  • thermoplastic polymer When the thermoplastic polymer was present in the form of a line, a lattice, a stripe, or a shell pattern, the width of the thickest line was taken as the major axis, and the average value of 20 was taken as the average major axis.
  • a slurry was prepared by dispersing 96.9% by mass of artificial graphite as the negative electrode active material, 1.4% by mass of ammonium salt of carboxymethylcellulose and 1.7% by mass of styrene-butadiene copolymer latex as the binder. This slurry was applied to one side of a 12 ⁇ m thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was set to 106 g / m 2 , and the active material bulk density was set to 1.35 g / cm 3 .
  • the peel strength of each of the obtained test samples was measured using an autograph AG-IS type (trademark) manufactured by Shimadzu Corporation at a tensile speed of 200 mm / min according to JIS K6854-2. Based on the obtained results, the peel strength of the separator was evaluated according to the following evaluation criteria.
  • Evaluation criteria for stickiness (separator handling properties): Evaluation criteria for peel strength after pressing in Condition 1) A: Peel strength is 4 gf / cm or less ⁇ : Peel strength is more than 4 gf / cm and less than 6 gf / cm ⁇ : Peel strength is over 6 gf / cm and up to 8 gf / cm x: Peel strength is over 8 gf / cm
  • Evaluation criteria for stickiness (separator handling properties): Evaluation criteria for peel strength after pressing in condition 2) A: Peel strength is 4 gf / cm or less ⁇ : Peel strength is more than 4 gf / cm and less than 6 gf / cm ⁇ : Peel strength is over 6 gf / cm and up to 8 gf / cm x: Peel strength is over 8 gf / cm
  • Evaluation criteria for heat peel strength Evaluation criteria for heat peel strength: Evaluation criteria for peel strength after pressing under condition 3) ⁇ : Peel strength is 10 gf / cm or more ⁇ : Peel strength is less than 10 gf / cm
  • thermoplastic polymer solution (solid content concentration 3%) was applied on a microporous polyolefin film of A4 size by a gravure method using a bar coater, and 5 minutes in an oven at 60 ° C. The moisture was removed by drying. After drying, the separator was cut into a 10 cm square and immersed in ethanol in a petri dish. The product was washed as it was with an ultrasonic cleaner (model US-102, manufactured by SND Corporation, oscillation frequency 38 kHz) for 1 minute, the separator was taken out, and ethanol was dried at room temperature.
  • A film in which the thermoplastic polymer is present on the surface of the polyolefin microporous film.
  • X A film in which the thermoplastic polymer is not present on the surface of the polyolefin microporous film.
  • thermoplastic polymer solution (solid content concentration 3%) was applied onto the A4 size polyolefin microporous film by a gravure method using a bar coater, Water was removed by drying in an oven at 60 ° C. for 5 minutes to obtain a porous film. After drying, the obtained porous film was cut into a 10 cm square and immersed in ethanol in a petri dish. It was washed as it was for 5 minutes with an ultrasonic cleaner (Model US-102, oscillation frequency 38 kHz, manufactured by SND Co., Ltd.), the porous film was taken out, ethanol was dried at room temperature, and the obtained porous film was observed with the naked eye.
  • an ultrasonic cleaner Model US-102, oscillation frequency 38 kHz, manufactured by SND Co., Ltd.
  • thermoplastic polymer A film in which the thermoplastic polymer is present on the surface of the polyolefin microporous film
  • A film in which the thermoplastic polymer is not present on the surface of the polyolefin microporous film or a thermoplastic polymer is present on the surface of the polyolefin microporous film Even so, when the thermoplastic polymer portion is rubbed with a finger, the thermoplastic polymer slides down.
  • the negative electrode, the separator, the positive electrode, and the separator obtained in (20-1) are stacked in this order, and the electrode is laminated by winding a plurality of times in a spiral shape with a winding tension of 250 gf and a winding speed of 45 mm / second.
  • the body was made.
  • This electrode laminate is housed in a stainless steel container having an outer diameter of 18 mm and a height of 65 mm, and an aluminum tab derived from the positive electrode current collector is provided with a nickel tab derived from the negative electrode current collector on the container lid terminal portion. Welded to the container wall. Then, it dried for 12 hours at 80 degreeC under vacuum. In the argon box, the non-aqueous electrolyte was poured into the assembled battery container and sealed.
  • ⁇ Pretreatment> The assembled battery is charged at a constant current of 1/3 C to a voltage of 4.2 V, then charged at a constant voltage of 4.2 V for 8 hours, and then discharged at a current of 1/3 C to a final voltage of 3.0 V. went.
  • 4.2 V constant voltage charging was performed for 3 hours, and then discharging was performed to a final voltage of 3.0 V with a current of 1 C.
  • 4.2 V constant voltage charging was performed for 3 hours as a pretreatment.
  • 1C represents a current value for discharging the reference capacity of the battery in one hour.
  • melt-kneaded product is extruded through a T-die onto a cooling roll controlled at a surface temperature of 80 ° C.
  • a sheet-like molded product was obtained by bringing into contact with a cooling roll and molding by cooling.
  • the sheet was stretched by a simultaneous biaxial stretching machine at a magnification of 7 ⁇ 6.4 and a temperature of 112 ° C., then immersed in methylene chloride, extracted by removing liquid paraffin and dried, and then a temperature of 130 by a tenter stretching machine.
  • the film was stretched 2 times in the transverse direction at ° C. Thereafter, the stretched sheet was relaxed by about 10% in the width direction and heat-treated to obtain a polyolefin microporous membrane 1A shown in Table 1.
  • the physical properties of the obtained polyolefin microporous membrane 1A were measured by the above method. Further, the obtained polyolefin microporous film was used as a separator as it was and evaluated by the above method. The obtained results are shown in Table 1.
  • [Production Example 1-3A] (Production of polyolefin microporous membrane 3A) 47.5 parts by mass of homopolymer high-density polyethylene having a viscosity average molecular weight of 700,000, 47.5 parts by mass of homopolymer high-density polyethylene having a viscosity average molecular weight of 250,000, and 5 parts by mass of homopolymer polypropylene having a viscosity average molecular weight of 400,000 was dry blended using a tumbler blender.
  • the melt-kneaded product was extruded and cast on a cooling roll through a T-die to obtain a sheet-like molded product. Thereafter, a polyolefin microporous membrane 3A was obtained in the same manner as in Production Example 1-1A, except that the stretching temperature and the relaxation rate were adjusted. The obtained polyolefin microporous membrane 3A was evaluated by the above method in the same manner as in Production Example 1-1A. The obtained results are shown in Table 1.
  • [Production Example 1-4A] (Production of polyolefin microporous membrane 4A) 25 parts by mass of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 2 million, 15 parts by mass of high-density polyethylene having a viscosity average molecular weight of 700,000 and 30 parts by mass of high-density polyethylene having a viscosity average molecular weight of 250,000 and a viscosity average molecular weight of 120,000 Then, 30 parts by mass of copolymerized polyethylene having a propylene unit content of 1 mol% was dry blended using a tumbler blender.
  • the melt-kneaded product was extruded and cast on a cooling roll through a T-die to obtain a sheet-like molded product. Thereafter, a polyolefin microporous membrane 4A was obtained in the same manner as in Production Example 1-1A, except that the stretching temperature and the relaxation rate were adjusted. The obtained polyolefin microporous membrane 4 was evaluated by the above method in the same manner as in Production Example 1-1A. The obtained results are shown in Table 1.
  • [Production Example 1-6A] (Production of polyolefin microporous membrane 6A) 19.2 parts by weight of ultra high molecular weight polyethylene with a viscosity average molecular weight of 1 million, 12.8 parts by weight of high density polyethylene with a viscosity average molecular weight of 250,000, 48 parts by weight of dioctyl phthalate (DOP), and 20 parts by weight of fine silica After granulation, the mixture was melt-kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with rolls heated from both sides, and formed into a sheet having a thickness of 110 ⁇ m.
  • DOP dioctyl phthalate
  • DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane.
  • Two of the microporous membranes were stacked and stretched 5 times in the MD direction at 120 ° C., 2 times in TD at 120 ° C., and finally heat treated at 137 ° C.
  • the obtained polyolefin microporous membrane 6A was evaluated by the above method in the same manner as in Production Example 1-1A. The obtained results are shown in Table 1.
  • [Production Example 1-7A] (Production of polyolefin microporous membrane 7A) 96.0 parts by mass of aluminum hydroxide oxide (average particle size 1.0 ⁇ m) and acrylic latex (solid content concentration 40%, average particle size 145 nm, minimum film forming temperature 0 ° C. or less) 4.0 parts by mass, polycarboxylic acid A coating solution was prepared by uniformly dispersing 1.0 part by mass of an aqueous ammonium solution (SN Dispersant 5468, manufactured by San Nopco) in 100 parts by mass of water, and applied to the surface of the polyolefin resin porous film 1A using a microgravure coater. .
  • SN Dispersant 5468 aqueous ammonium solution
  • [Production Example 1-11A] (Production of polyolefin microporous membrane 11A) 95.0 parts by mass of calcined kaolin (wet kaolin mainly composed of kaolinite (Al 2 Si 2 O 5 (OH) 4 ) and calcined at high temperature, average particle size 1.8 ⁇ m) and acrylic latex (solid content A uniform 40% concentration, an average particle size of 220 nm, a minimum film formation temperature of 0 ° C.
  • calcined kaolin wet kaolin mainly composed of kaolinite (Al 2 Si 2 O 5 (OH) 4 ) and calcined at high temperature, average particle size 1.8 ⁇ m
  • acrylic latex solid content A uniform 40% concentration, an average particle size of 220 nm, a minimum film formation temperature of 0 ° C.
  • the reaction container was maintained at 80 ° C. for 90 minutes and then cooled to room temperature.
  • aqueous ammonium hydroxide solution (25% aqueous solution)
  • the following raw material polymers 9A to 18A were also evaluated by the above method. The obtained results are shown in Table 2.
  • the Tg of the starting polymers 9A to 18A are all approximate values according to the FOX equation.
  • Raw material polymer 9A Styrene butadiene polymer, particle size 300 nm, Tg 0 ° C., toluene insoluble content 95%, electrolyte solvent swelling degree 1.7 times
  • Raw material polymer 10A Styrene butadiene polymer, particle size 377 nm, Tg 30 ° C., toluene insoluble content 96%, Electrolyte solvent swelling degree 1.7 times
  • Raw material polymer 11A Styrene butadiene polymer, particle size 380 nm, Tg 90 ° C., toluene insoluble content 95%, electrolyte solvent swelling degree 1.6 times
  • Raw material polymer 12 A Acrylic polymer, particle size 380 nm, Tg 90 ° C.
  • Tg of the raw polymers 1A to 8A shown in Table 2 are all approximate values according to the FOX equation.
  • Raw material names in Table 2 MMA: Methyl methacrylate BA: n-butyl acrylate EHA: 2-ethylhexyl acrylate MAA: methacrylic acid AA: acrylic acid HEMA: 2-hydroxyethyl methacrylate AM: acrylamide GMA: methacryl Acid glycidyl NaSS: p-sodium styrenesulfonate A-TMPT: trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) KH1025: Aqualon KH1025 (registered trademark, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) SR1025: Adekaria soap SR1025 (registered trademark, manufactured by ADEKA Corporation) APS: ammonium persulfate
  • Example 1A The raw material polymer 8A shown in Table 2 is 2.4 parts by mass in solid content, and the raw material polymer 1A is 0.6 parts by mass in solid content, and is uniformly dispersed in 92.5 parts by mass of water to obtain a thermoplastic polymer.
  • a coating solution containing was prepared. Subsequently, the coating liquid was apply
  • Examples 2A to 40A, Comparative Examples 1A to 4A In the same manner as in Example 1A, the coating liquid containing the thermoplastic polymer in the combinations shown in Tables 3 to 6 was applied to both surfaces of the polyolefin microporous membrane by various methods (spray, gravure). A device separator was produced. Tables 3 to 6 show the physical properties and evaluation results of the separators obtained. In Tables 3 to 6, Tg of the thermoplastic polymer is a value measured by the method described in (8) above.
  • the resin constituting the thermoplastic polymer coating layer has a glass transition point in the region of 20 ° C. or higher and lower than 20 ° C.
  • Thermoplastic resin having a glass transition temperature of 20 ° C. or more on the outermost surface side of the separator for an electricity storage device in the thermoplastic polymer coating layer since it has a property that the peel strength is increased under a press condition of 80 ° C. It is estimated that many thermoplastic resins having a glass transition temperature of less than 20 ° C. are present on the interface side between the polyolefin microporous film and the thermoplastic polymer coating layer.
  • Example B [Production Example 1-1B] 14.25 parts by mass of high density polyethylene 1 having a viscosity average molecular weight of 250,000 and a melting point of 137 ° C., 14.25 parts by mass of high density polyethylene 2 having a viscosity average molecular weight of 700,000 and a melting point of 137 ° C., a viscosity average molecular weight of 400,000, a melting point of 163
  • the raw material was blended with 1.5 parts by weight of polypropylene at 0 ° C. and 0.2 parts by weight of tetrakis- [methylene- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane as an antioxidant. Prepared.
  • the sheet was stretched by a simultaneous biaxial stretching machine at a magnification of 7 ⁇ 6.4 times and a temperature of 112 ° C., then immersed in methylene chloride, extracted by removing liquid paraffin, and dried in a transverse direction by a tenter stretching machine. Stretched. Thereafter, this stretched sheet was relaxed in the width direction and heat-treated to obtain a polyolefin microporous membrane 1B. Table 7 shows the physical properties of the obtained microporous membrane.
  • thermoplastic polymers listed in Table 8 are approximate values based on the FOX equation.
  • Raw material names in Table 8 MMA: methyl methacrylate BA: n-butyl acrylate EHA: 2-ethylhexyl acrylate MAA: methacrylic acid AA: acrylic acid HEMA: 2-hydroxyethyl methacrylate AM: acrylamide GMA: methacryl Acid glycidyl NaSS: p-sodium styrenesulfonate A-TMPT: trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) KH1025: Aqualon KH1025 (registered trademark, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) SR1025: Adekaria soap SR1025 (registered trademark, manufactured by ADEKA Corporation) APS: ammonium persulfate
  • Example 1B 7.5 parts by mass of the thermoplastic polymer-containing coating liquid 1B was uniformly dispersed in 92.5 parts by mass of water to prepare a coating liquid, which was applied to the surface of the polyolefin microporous film 1B using a gravure coater. Water was removed by drying at 60 ° C. Further, the other side was similarly coated with the coating solution and dried to obtain a porous film (electric storage device separator). Table 9 shows the physical properties and evaluation results of the obtained porous film.
  • Examples 2B-8B A porous film (electric storage device separator) was prepared in the same manner as in Example 1A, except that the thermoplastic polymer-containing coating liquids 2B to 5B were used.
  • Table 9 shows the physical properties and evaluation results of the used thermoplastic polymer-containing coating solution and polyolefin microporous membrane and the obtained porous membrane (electric storage device separator).
  • Example 9B A thermoplastic polymer-containing coating solution 5B was applied to the polyolefin microporous membrane 1B by spraying, and dried at 60 ° C. to remove water. Furthermore, the other side was coated in the same manner with the coating solution 5B containing the thermoplastic polymer and dried to obtain a porous film (separator for power storage device). Table 9 shows the physical properties and evaluation results of the obtained porous film (electric storage device separator).
  • Example 10B A thermoplastic polymer-containing coating solution 5B was applied to the polyolefin microporous film 1B by inkjet so that the resolution was 180 dpi, and dried at 60 ° C. to remove water. Further, the other surface was coated in the same manner with the thermoplastic polymer-containing coating 5B and dried to obtain a porous storage film (electric storage device separator). Table 9 shows the physical properties and evaluation results of the obtained porous film (electric storage device separator).
  • Example 11B to 13B The polyolefin microporous film 1B was coated with a thermoplastic polymer-containing coating liquid 5B using a gravure coater in which dots were processed, and dried at 60 ° C. to remove water. Furthermore, the other side was coated in the same manner with the coating solution 5B containing the thermoplastic polymer and dried to obtain a porous film (separator for power storage device). Table 9 shows the physical properties and evaluation results of the obtained porous film (electric storage device separator).
  • Examples 14B to 27B A porous membrane (a separator for an electricity storage device) was produced in the same manner as in Example 9B, except that the polyolefin microporous membrane described in Tables 9 and 10 and a coating solution containing a thermoplastic polymer were used. Tables 9 and 10 show the physical properties and evaluation results of the obtained porous film (electric storage device separator).
  • Example 1B A porous membrane (a separator for an electricity storage device) was produced in the same manner as in Example 1B, except that the polyolefin microporous membrane shown in Table 11 and the thermoplastic polymer-containing coating solution were used. Table 11 shows the physical properties and evaluation results of the obtained porous film (electric storage device separator).
  • Negative Electrode 96.9% by mass of artificial graphite as a negative electrode active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose and 1.7% by mass of styrene-butadiene copolymer latex as a binder were dispersed in purified water to prepare a slurry. This slurry was applied to one side of a 12 ⁇ m thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode was set to 106 g / m 2 , and the active material bulk density was set to 1.35 g / cm 3 .
  • Example 1B Battery assembly
  • the porous film of Example 1B was used, and the negative electrode, the porous film, and the positive electrode were stacked in this order from the bottom so that the active material surfaces of the positive electrode and the negative electrode faced each other.
  • the laminate was stored in a stainless steel container with a lid in which the container main body and the lid were insulated so that the copper foil of the negative electrode and the aluminum foil of the positive electrode were in contact with the container main body and the lid, respectively.
  • a nonaqueous electrolyte solution was injected into the container and sealed to obtain a nonaqueous electrolyte secondary battery (Example 1B).
  • the assembled simple battery is charged to a battery voltage of 4.2 V at a current value of 3 mA (about 0.5 C) at 25 ° C., and further, the current value starts to be reduced from 3 mA so as to hold 4.2 V.
  • the battery was first charged for about 6 hours in total, and then discharged to a battery voltage of 3.0 V at a current value of 3 mA.
  • the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and the current value starts to be reduced from 6 mA so as to hold 4.2 V.
  • the battery was charged for a period of time and then discharged at a current value of 6 mA to a battery voltage of 3.0 V, and the discharge capacity at that time was set to 1 C discharge capacity (mAh).
  • the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and the current value starts to be reduced from 6 mA so as to hold 4.2 V.
  • the battery was charged for a period of time and then discharged at a current value of 12 mA (about 2.0 C) to a battery voltage of 3.0 V, and the discharge capacity at that time was set to 2 C discharge capacity (mAh).
  • Rate characteristic (%) (2C discharge capacity / 1C discharge capacity) ⁇ 100
  • Examples 2B to 27B and Comparative Examples 1B to 3B Batteries were prepared in the same manner as in Example 1B, except that the separators used were porous films of Examples 2B to 27B and Comparative Examples 1B to 3B instead of the porous film of Example 1B (Examples 2B to 27B). And Comparative Examples 1B-3B). The rate characteristics of the obtained battery were evaluated. The evaluation results are shown in Tables 9-11.
  • the present invention it is possible to provide a separator having excellent adhesion to the electrode, and further a separator having excellent handling properties. Therefore, the present invention is useful as a separator for an electricity storage device such as a battery such as a non-aqueous electrolyte secondary battery, a capacitor, and a capacitor.
  • a battery such as a non-aqueous electrolyte secondary battery, a capacitor, and a capacitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電極との密着性に優れるセパレータ、さらにはハンドリング性にも優れる蓄電デバイス用セパレータを提供することを目的とする。ポリオレフィン微多孔膜と、該ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層と、を有し、前記熱可塑性ポリマー被覆層は、前記ポリオレフィン微多孔膜上に前記熱可塑性ポリマーを含む部分と前記熱可塑性ポリマーを含まない部分とが海島状に存在する層であり、前記熱可塑性ポリマー被覆層に含まれる熱可塑性ポリマーがガラス転移温度を少なくとも2つ有しており、前記ガラス転移温度のうち少なくとも一つは20℃未満の領域に存在し、前記ガラス転移温度のうち少なくとも一つは20℃以上の領域に存在する、蓄電デバイス用セパレータ。

Description

蓄電デバイス用セパレータ、積層体、及び多孔膜
 本発明は蓄電デバイス用セパレータ、積層体、及び多孔膜に関する。
 近年、リチウムイオン電池を中心とした非水電解液電池の開発が活発に行われている。通常、非水電解液電池には、微多孔膜(セパレータ)が正負極間に設けられている。このようなセパレータは、正負極間の直接的な接触を防ぎ、微多孔中に保持した電解液を通じイオンを透過させる機能を有する。
 非水電解液電池のサイクル特性や安全性を向上するために、セパレータの改良が検討されている。例えば、特許文献1では、放電特性、安全性に優れた二次電池を提供することを目的として、多孔質膜上に反応性ポリマーを塗布、乾燥することにより接着剤担持多孔質フィルムが提案されている。
 また、近年、ポータブル機器の小型化、薄型化により、リチウムイオン二次電池などの蓄電デバイスにも小型化,薄型化が求められている。一方で、長時間携帯することを可能にするために体積エネルギー密度を向上させることによる高容量化も図られている。
 ここで、セパレータには、異常加熱した場合には速やかに電池反応が停止される特性(ヒューズ特性)や高温になっても形状を維持して正極物質と負極物質が直接反応する危険な事態を防止する性能(ショート特性)等、従来から求められている安全性に関する性能に加え、充放電電流の均一化、リチウムデンドライト抑制の観点から、電極との密着性の向上が求められている。
 セパレータと電池電極との密接性を良くすることにより、充放電電流の不均一化が起こりにくくなり、また、リチウムデンドライトが析出しにくくなるため、結果として充放電サイクル寿命を長くすることが可能となる。
 このような事情のもと、セパレータに接着性を持たせる試みとして、ポリオレフィン微多孔膜に、接着性のポリマーを塗工する試みが行われている(例えば、特許文献1,2参照)。
特開2007-59271号公報 特開2011-54502号公報
 しかしながら、特許文献1のセパレータは、反応性ポリマーと多孔質膜との密着性が十分ではなく、そのため、電極との接着が十分ではないという問題点がある。また、反応性ポリマーと多孔質膜との密着性を高めようと反応性ポリマーのガラス転移温度(Tg)を低くする場合には、セパレータの最表面がべたつき、その結果、ハンドリング性が低下する等の問題点がある。
 また、特許文献1,2に記載された微多孔膜はいずれも、電池を捲回する際のハンドリング性や接着性、リチウムイオン透過性の観点からは、なお改善の余地を有するものである。
 本発明の第1の実施態様は、上記問題点に鑑みてなされたものであって、電極との密着性に優れるセパレータ、さらにはハンドリング性にも優れる蓄電デバイス用セパレータを提供することを目的とする。
 また、本発明の第2の実施態様は、上記問題点に鑑みてなされたものであって、捲回時のハンドリング性及び蓄電デバイス用セパレータとしたときの蓄電デバイスのレート特性が優れる多孔膜、それからなる蓄電デバイス用セパレータ、それを用いた蓄電デバイスを提供することを目的とする。さらには、熱可塑性ポリマーとポリオレフィン微多孔膜との接着性及び透過性にも優れる多孔膜、それからなる蓄電デバイス用セパレータ、それを用いた蓄電デバイスを提供することを目的とする。
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、ポリオレフィン微多孔膜の少なくとも片面の少なくとも一部に、特定の熱特性を有する熱可塑性ポリマーを配することで、前記課題を解決できることを見出した。
 すなわち、本発明は以下の通りである。
〔1〕
 ポリオレフィン微多孔膜と、該ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層と、を有し、
 前記熱可塑性ポリマー被覆層は、前記ポリオレフィン微多孔膜上に前記熱可塑性ポリマーを含む部分と前記熱可塑性ポリマーを含まない部分とが海島状に存在する層であり、
 前記熱可塑性ポリマー被覆層に含まれる熱可塑性ポリマーがガラス転移温度を少なくとも2つ有しており、
 前記ガラス転移温度のうち少なくとも一つは20℃未満の領域に存在し、
 前記ガラス転移温度のうち少なくとも一つは20℃以上の領域に存在する、
蓄電デバイス用セパレータ。
〔2〕
 前記熱可塑性ポリマー被覆層において、
 前記蓄電デバイス用セパレータの最表面側に、20℃以上のガラス転移温度を有する熱可塑性樹脂が存在し、かつ、
 前記ポリオレフィン微多孔膜と前記熱可塑性ポリマー被覆層の界面側に、20℃未満のガラス転移温度を有する熱可塑性樹脂が存在している、前項〔1〕又は〔2〕に記載の蓄電デバイス用セパレータ。
〔3〕
 前記熱可塑性ポリマー被覆層が存在する、前記蓄電デバイス用セパレータの最表面に対して、アルミ箔を、温度25℃、圧力5MPaで3分間加圧した後の剥離強度が、8gf/cm以下である、前項〔1〕又は〔2〕に記載の蓄電デバイス用セパレータ。
〔4〕
 前記熱可塑性ポリマー被覆層が存在する、前記蓄電デバイス用セパレータの最表面に対して、アルミ箔を、温度80℃、圧力10MPaで3分間加圧した後の剥離強度が、30gf/cm以上である、前項〔1〕~〔3〕のいずれか1項に記載の蓄電デバイス用セパレータ。
〔5〕
 前記ポリオレフィン微多孔膜と前記熱可塑性ポリマー被覆層との90°剥離強度が6gf/mm以上である、前項〔1〕~「4」のいずれか1項に記載の蓄電デバイス用セパレータ。
〔6〕
 前記熱可塑性ポリマー被覆層において、前記蓄電デバイス用セパレータの最表面に存在する熱可塑性ポリマーの少なくとも一部が粒状熱可塑性ポリマーである、前項〔1〕~〔5〕のいずれか1項に記載の蓄電デバイス用セパレータ。
〔7〕
 前記粒状熱可塑性ポリマーの平均粒子径が、0.01μm~0.4μmである、前項〔6〕に記載の蓄電デバイス用セパレータ。
〔8〕
 前記熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合が、前記ポリオレフィン微多孔膜の全面積100%に対して、95%以下である、前項〔1〕~〔7〕のいずれか一項に記載の蓄電デバイス用セパレータ。
〔9〕
 前記熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合が、前記ポリオレフィン微多孔膜の全面積100%に対して、50%以下である、前項〔1〕~〔8〕のいずれか一項に記載の蓄電デバイス用セパレータ。
〔10〕
 前項〔1〕~〔9〕に記載の蓄電デバイス用セパレータと電極とが積層した、積層体。
〔11〕
 ポリオレフィン微多孔膜と、該ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層と、を有し、
 前記熱可塑性ポリマー被覆層に含まれる熱可塑性ポリマーのガラス転移温度が、-10℃以上40℃以下であり、かつ
 電解液に対する膨潤度が5倍以下である、多孔膜。
〔12〕
 前記熱可塑性ポリマー被覆層の平均厚みが、1.5μm以下である、前項〔11〕に記載の多孔膜。
〔13〕
 前記熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合が、前記ポリオレフィン微多孔膜の全面積100%に対して、70%以下である、前項〔11〕又は〔12〕に記載の多孔膜。
〔14〕
 前記熱可塑性ポリマーのゲル分率が、90%以上である、前項〔11〕~〔13〕いずれか一項に記載の多孔膜。
〔15〕
 前記熱可塑性ポリマー被覆層は、前記ポリオレフィン微多孔膜上に前記熱可塑性ポリマーを含む部分と前記熱可塑性ポリマーを含まない部分とが海島状に存在する層であり、
 前記熱可塑性ポリマーを含む部分がドット状に形成されている、前項〔11〕~〔14〕いずれか一項に記載の多孔膜。
〔16〕
 前記ドットの平均長径が20~1000μmである、前項〔15〕に記載の多孔膜。
 本発明の第1の実施態様によれば、電極との密着性に優れるセパレータ、さらにはハンドリング性にも優れる蓄電デバイス用セパレータを提供することができる。
 また、本発明の第2の実施態様によれば、捲回時のハンドリング性及び蓄電デバイス用セパレータとしたときの蓄電デバイスのレート特性が優れる多孔膜、それからなる蓄電デバイス用セパレータ、それを用いた蓄電デバイスを提供することができる。さらには、熱可塑性ポリマーとポリオレフィン微多孔膜との接着性及び透過性にも優れる多孔膜、それからなる蓄電デバイス用セパレータ、それを用いた蓄電デバイスを提供することができる。
 以下、本発明を実施するための形態(以下、「本実施の形態」と言う。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[第1の実施態様]
[蓄電デバイス用セパレータ]
 本実施の形態に係る蓄電デバイス用セパレータ(以下、単に「セパレータ」ともいう。)は、
 ポリオレフィン微多孔膜(以下、単に「微多孔膜」ともいう。)と、該ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層と、を有し、
 熱可塑性ポリマー被覆層は、前記ポリオレフィン微多孔膜上に前記熱可塑性ポリマーを含む部分と前記熱可塑性ポリマーを含まない部分とが海島状に存在する層であり、
 前記熱可塑性ポリマー被覆層に含まれる熱可塑性ポリマーがガラス転移温度を少なくとも2つ有しており、
 前記ガラス転移温度のうち少なくとも一つは20℃未満の領域に存在し、
 前記ガラス転移温度のうち少なくとも一つは20℃以上の領域に存在する。
[熱可塑性ポリマー被覆層]
 本実施の形態に係る蓄電デバイス用セパレータは、ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層を有する。
 熱可塑性ポリマー被覆層は、ガラス転移温度を少なくとも2つ有する熱可塑性ポリマーを含む。熱可塑性ポリマーのガラス転移温度は、少なくとも一つは20℃未満の領域に存在し、少なくとも一つは20℃以上の領域に存在する。
〔熱可塑性ポリマー〕
 本実施の形態で使用される熱可塑性ポリマーは、特に限定されないが、例えば、ポリエチレンやポリプロピレン、α-ポリオレフィン等のポリオレフィン樹脂;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂とこれらを含むコポリマー;ブタジエン、イソプレンなどの共役ジエンをモノマー単位として含むジエン系ポリマー又はこれらを含むコポリマー及びその水素化物;アクリル酸エステル、メタアクリル酸エステルなどをモノマー単位として含むアクリル系ポリマー又はこれらを含むコポリマー及びその水素化物;エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル等の融点及び/又はガラス転移温度が180℃以上の樹脂及びこれらの混合物等が挙げられる。また、熱可塑性ポリマーを合成する際に使用するモノマーとして、ヒドロキシル基やスルホン酸基、カルボキシル基、アミド基、シアノ基を有するモノマーを用いることもできる。
 これら熱可塑性ポリマーのうち、電極活物質との結着性及び強度や柔軟性に優れることから、ジエン系ポリマー、アクリル系ポリマー又はフッ素系ポリマーが好ましい。
(ジエン系ポリマー)
 ジエン系ポリマーは、特に限定されないが、例えば、ブタジエン、イソプレンなどの共役の二重結合を2つ有する共役ジエンを重合してなるモノマー単位を含むポリマーである。共役ジエンモノマーとしては、特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエンなどが挙げられる。これらは単独で重合しても共重合してもよい。
 ジエン系ポリマー中の共役ジエンを重合してなるモノマー単位の割合は、特に限定されないが、例えば、全ジエン系ポリマー中40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。
 上記ジエン系ポリマーとしては、特に限定されないが、例えば、ポリブタジエンやポリイソプレンなどの共役ジエンのホモポリマー及び共役ジエンと共重合可能なモノマーとのコポリマーが挙げられる。共重合可能なモノマーは、特に限定されないが、例えば、後述の(メタ)アクリレートモノマーや下記のモノマー(以下、「その他のモノマー」ともいう。)を挙げることができる。
 「その他のモノマー」としては、特に限定されないが、例えば、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系モノマー;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;メチルアクリレート、メチルメタクリレート等のアクリル酸エステル及び/又はメタクリル酸エステル化合物;β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート等のヒドロキシアルキル基含有化合物;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系モノマーなどが挙げられ、これらを1種あるいは2種以上を組み合わせて使用してもよい。
(アクリル系ポリマー)
 アクリル系ポリマーは、特に限定されないが、好ましくは(メタ)アクリレートモノマーを重合してなるモノマー単位を含むポリマーである。
 なお、本明細書において「(メタ)アクリル酸」とは「アクリル酸又はメタクリル酸」を示し、「(メタ)アクリレート」とは「アクリレート又はメタクリレート」を示す。
 (メタ)アクリレートモノマーとしては、特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリレート;アミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレートが挙げられる。
 (メタ)アクリレートモノマーを重合してなるモノマー単位の割合は、特に限定されないが、全アクリル系ポリマーの例えば40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。アクリル系ポリマーとしては、(メタ)アクリレートモノマーのホモポリマー、これと共重合可能なモノマーとのコポリマーが挙げられる。
 共重合可能なモノマーとしては、上記ジエン系ポリマーの項目で列挙した「その他のモノマー」が挙げられ、これらを1種あるいは2種以上を組み合わせて使用してもよい。
(フッ素系ポリマー)
 フッ素系ポリマーとしては、特に限定されないが、例えば、フッ化ビニリデンのホモポリマー、これと共重合可能なモノマーとのコポリマーが挙げられる。フッ素系ポリマーは、電気化学的安定性の観点から好ましい。
 フッ化ビニリデンを重合してなるモノマー単位の割合は、特に限定されないが、例えば、40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。
 フッ化ビニリデンと共重合可能なモノマーとしては、特に限定されないが、例えば、フッ化ビニル、テトラフルオロエチレン、トリフルオロクロロエチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブチレン、パーフルオロアクリル酸、パーフルオロメタクリル酸、アクリル酸又はメタクリル酸のフルオロアルキルエステル等のフッ素含有エチレン性不飽和化合物;シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル等のフッ素非含有エチレン性不飽和化合物;ブタジエン、イソプレン、クロロプレン等のフッ素非含有ジエン化合物等を挙げることができる。
 フッ素系ポリマーのうち、フッ化ビニリデンのホモポリマー、フッ化ビニリデン/テトラフルオロエチレンコポリマー、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレンコポリマー等が好ましい。特に好ましいフッ素系ポリマーは、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレンコポリマーであり、そのモノマー組成は、通常、フッ化ビニリデン30~90質量%、テトラフルオロエチレン50~9質量%及びヘキサフルオロプロピレン20~1質量%である。これらのフッ素樹脂粒子は、単独で又は2種以上を混合して使用しても良い。
 また、上記熱可塑性ポリマーを合成する際に使用するモノマーとして、ヒドロキシル基、カルボキシル基、アミノ基、スルホン酸基、アミド基、又はシアノ基を有するモノマーを用いることもできる。
 ヒドロキシ基を有するモノマーは、特に限定されないが、例えば、ペンテンオール等のビニル系モノマーを挙げることができる。
 カルボキシル基を有するモノマーは、特に限定されないが、例えば、(メタ)アクリル酸、イタコン酸等のエチレン性二重結合を有する不飽和カルボン酸、ペンテン酸等のビニル系モノマーを挙げることができる。
 アミノ基を有するモノマーは、特に限定されないが、例えば、メタクリル酸2-アミノエチル等を挙げることができる。
 スルホン酸基を有するモノマーは、特に限定されないが、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリススルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などがあげられる
 アミド基を有するモノマーは、特に限定されないが、例えば、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミドなどが挙げられる。
 シアノ基を有するモノマーは、特に限定されないが、例えば、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリレート等を挙げることができる。
 本実施の形態で用いる熱可塑性ポリマーは、ポリマーを単独で又は2種類以上混合して使用してもよいが、ポリマーを2種類以上含むことが好ましい。
(熱可塑性ポリマーのガラス転移点)
 本実施の形態で用いる熱可塑性ポリマーは、セパレータと電極との密着性の点から、ガラス転移温度を少なくとも2つ有し、ガラス転移温度のうち少なくとも一つは20℃未満の領域に存在し、ガラス転移温度のうち少なくとも一つは20℃以上の領域に存在するという熱特性を有する。ここで、ガラス転移温度は、示差走査熱量測定(DSC)で得られるDSC曲線から決定される。なお、本明細書では、ガラス転移温度をTgと表現する場合もある。
 具体的には、DSC曲線における低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の変曲点における接線との交点により決定される。より詳細には、実施例に記載の方法を参照することができる。
 ここで、「ガラス転移」はDSCにおいて試験片であるポリマーの状態変化に伴う熱量変化が吸熱側に生じたものを指す。このような熱量変化はDSC曲線において階段状変化形状又は階段状変化とピークとが組み合わさった形状として観測される。
 「階段状変化」とは、DSC曲線において、曲線がそれまでのベースラインから離れ新たなベースラインに移行するまでの部分を示す。なお、ピーク及び階段状変化の組み合わさった形状も含む。
 「変曲点」とは、階段状変化部分のDSC曲線のこう配が最大になるような点を示す。また、階段状変化部分において上に凸の曲線が下に凸の曲線に変わる点と表現することもできる。
 「ピーク」とは、DSC曲線において、曲線がベースラインから離れてから再度ベースラインに戻るまでの部分を示す。
 「ベースライン」とは、試験片に転移及び反応を生じない温度領域のDSC曲線のことを示す。
 本実施の形態では、用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも一つが20℃未満の領域に存在することにより、微多孔膜との密着性に優れ、その結果セパレータと電極との密着性に優れるという効果を奏する。用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも一つが15℃以下の領域に存在することが好ましく、より好ましくは-30℃以上15℃以下の領域に存在する。
 20℃未満の領域に存在するガラス転移温度は、熱可塑性ポリマーと微多孔膜との密着性を高めつつ、ハンドリング性を良好に保つ点から、-30℃以上15℃以下の領域にのみ存在することが好ましい。
 本実施の形態では、用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも一つが20℃以上の領域に存在することにより、セパレータと電極との接着性及びハンドリング性に優れるという効果を奏する。用いる熱可塑性ポリマーのガラス転移温度のうち少なくとも一つが20℃以上120℃以下の領域に存在することが好ましく、より好ましくは50℃以上120℃以下である。上記範囲にガラス転移温度が存在することで、良好なハンドリング性を付与できる。さらに、電池作製時の加圧により発現する電極とセパレータ間の密着性を高めることができる。
 20℃以上の領域に存在するガラス転移温度は、熱可塑性ポリマーと微多孔膜との密着性を高めつつ、ハンドリング性を良好に保つ点から、20℃以上120℃以下の領域にのみ存在することが好ましく、50℃以上120℃以下の領域にのみ存在することがより好ましくい。
 熱可塑性ポリマーが2つのガラス転移温度を有することは、例えば、2種類以上の熱可塑性ポリマーをブレンドする方法や、コアシェル構造を備える熱可塑性ポリマーを使用する方法によって達成できるが、これらの方法に限定されない。コアシェル構造とは、中心部分に属するポリマーと、外殻部分に属するポリマーが異なる組成から成る、二重構造の形態をしたポリマーである。
 特に、ポリマーブレンドやコアシェル構造は、ガラス転移温度の高いポリマーと低いポリマーを組み合せることにより、熱可塑性ポリマー全体のガラス転移温度を制御できる。また、熱可塑性ポリマー全体に複数の機能を付与できる。例えば、ブレンドの場合は、特にガラス転移温度を20℃以上の領域に持つポリマーと、ガラス転移温度を20℃未満の領域に持つポリマーを2種類以上ブレンドすることで、耐ベタツキ性とポリオレフィン微多孔膜への塗れ性を両立することができる。ブレンドする場合の混合比としてはガラス転移温度を20℃以上の領域に持つポリマーと、ガラス転移温度を20℃未満の領域に持つポリマーとの比が0.1:99.9~99.9:0.1の範囲であることが好ましく、より好ましくは、5:95~95:5であり、さらに好ましくは50:50~95:5であり、よりさらに好ましくは60:40~90:10である。コアシェル構造の場合は、外殻ポリマーを変えることによりポリオレフィン微多孔膜など他材料に対する接着性や相溶性の調整ができ、中心部分に属するポリマーを調整することで、例えば熱プレス後の電極への接着性を高めたポリマーに調整することができる。また、粘性の高いポリマーと弾性の高いポリマーとを組み合わせて粘弾性の制御をすることもできる。
 なお、コアシェル構造を備える熱可塑性ポリマーのシェルのガラス転移温度は、特に限定されないが、20℃未満が好ましく、15℃以下がより好ましく、-30℃以上15℃以下がさらに好ましい。また、コアシェル構造を備える熱可塑性ポリマーのコアのガラス転移温度は、特に限定されないが、20℃以上が好ましく、20℃以上120℃以下がより好ましく、50℃以上120℃以下がさらに好ましい。
 本実施の形態において、熱可塑性ポリマーのガラス転移温度、すなわちTgは、例えば、熱可塑性ポリマーを製造するのに用いるモノマー成分及び各モノマーの投入比を変更することにより適宜調整できる。すなわち、熱可塑性ポリマーの製造に用いられる各モノマーについて一般に示されているそのホモポリマーのTg(例えば、「ポリマーハンドブック」(A WILEY-INTERSCIENCE PUBLICATION)に記載)とモノマーの配合割合から概略推定することができる。例えば約100℃のTgのポリマーを与えるスチレン、メチルメタクリレ-ト、及びアクリルニトリルなどのモノマーを高比率で配合したコポリマーは高いTgのものが得られ、例えば約-80℃のTgのポリマーを与えるブタジエンや約-50℃のTgのポリマーを与えるn-ブチルアクリレ-ト及び2-エチルヘキシルアクリレ-トなどのモノマーを高い比率で配合したコポリマーは低いTgのものが得られる。
 また、ポリマーのTgはFOXの式(下記式(1))より概算することができる。なお、本願の熱可塑性ポリマーのガラス転移点としては、上記DSCを用いた方法により測定したものを採用する。
1/Tg=W1/Tg1+W2/Tg2+‥‥+Wi/Tgi+‥‥Wn/Tgn (1)
(式(1)中において、Tg(K)は、コポリマーのTg、Tgi(K)は、各モノマーiのホモポリマーのTg、Wiは、各モノマーの質量分率を各々示す。)
(熱可塑性ポリマー被覆層の構造)
 熱可塑性ポリマー被覆層において、蓄電デバイス用セパレータの最表面側に、20℃以上のガラス転移温度を有する熱可塑性樹脂が存在し、かつ、ポリオレフィン微多孔膜と熱可塑性ポリマー被覆層の界面側に、20℃未満のガラス転移温度を有する熱可塑性樹脂が存在することが好ましい。なお、海島状の熱可塑性ポリマー被覆層において、「最表面」とは、蓄電デバイス用セパレータと電極とを積層したときに、海島状の熱可塑性ポリマー被覆層のうち電極と接する面をいう。また、「界面」とは、海島状の熱可塑性ポリマー被覆層のうちポリオレフィン微多孔膜と接している面をいう。
 熱可塑性ポリマー被覆層において、蓄電デバイス用セパレータの最表面側に、20℃以上のガラス転移温度を有する熱可塑性樹脂が存在することにより、微多孔膜との密着性により優れ、その結果セパレータと電極との密着性に優れる傾向にある。また、ポリオレフィン微多孔膜と熱可塑性ポリマー被覆層の界面側に、20℃未満のガラス転移温度を有する熱可塑性樹脂が存在することにより、セパレータと電極との接着性及びハンドリング性により優れる傾向にある。
 このような熱可塑性ポリマー被覆層を有することにより、セパレータと電極との接着性及びハンドリング性がより向上する傾向にある。上記のような構造は、(a)熱可塑性ポリマーが、粒状(particle)熱可塑性ポリマーと、粒状熱可塑性ポリマーが表面に露出した状態で粒状熱可塑性ポリマーをポリオレフィン微多孔膜に接着するバインダポリマーと、からなり、粒状熱可塑性ポリマーのガラス転移温度が20℃以上の領域に存在し、ポリオレフィン微多孔膜と熱可塑性ポリマー被覆層の界面側には20℃未満のガラス転移温度を有する熱可塑性樹脂が存在すること、(b)熱可塑性ポリマーが積層構造であり、セパレータとしたときに最表層となる部分の熱可塑性ポリマーのガラス転移温度が20℃以上の領域に存在し、ポリオレフィン微多孔膜と熱可塑性ポリマー被覆層の界面側には20℃未満のガラス転移温度を有する熱可塑性樹脂が存在すること等によって、達成できる。なお、(b)熱可塑性ポリマーが、Tgが異なるポリマー毎の積層構造になっていてもよい。
(海島状)
 熱可塑性ポリマー被覆層は、ポリオレフィン微多孔膜上に熱可塑性ポリマーを含む部分と熱可塑性ポリマーを含まない部分とが海島状に存在する層である。海島状としては、特に限定されないが、例えば、線状、ドット状、格子目状、縞状、亀甲模様状等が挙げられる。このなかでも、透過性確保及び電極との均一な接着性の確保の観点から、ドット状がより好ましい。ドット状(dot)とは、ポリオレフィン微多孔膜上に熱可塑性ポリマーを含む部分と熱可塑性ポリマーを含まない部分とが海島状に存在することを示す。なお、熱可塑性ポリマー被覆層は、熱可塑性ポリマーを含む部分が島状に独立しても、逆に連続的な面を形成していても構わない。島状に独立する場合、島形状は特に限定されないが、島状ドットの間隔は5μm~500μmであることが、電極への密着性と、サイクル特性の両立の点から好ましい。また、ドットの大きさは、特に限定されないが、電極との密着性を確保する観点から、平均長径は10μm以上1000μm以下が好ましく、より好ましくは20μm以上800μm以下であり、さらに好ましくは、50μm以上500μm以下である。
 熱可塑性ポリマーのドットの平均長径は、塗工する液のポリマー濃度やポリマー溶液の塗布量及び塗工方法、塗工条件を変更することにより調整することができる。
(粒状熱可塑性ポリマー)
 本実施の形態における熱可塑性ポリマーの構造は、特に限定されないが、例えば、単層構造、粒状熱可塑性ポリマーと粒状熱可塑性ポリマーの少なくとも一部を囲むポリマーとから構成される構造、積層構造などがある。熱可塑性ポリマー被覆層において、蓄電デバイス用セパレータの最表面に存在する熱可塑性ポリマーの少なくとも一部が粒状熱可塑性ポリマーであることが好ましい。このような構造を有することにより、セパレータと電極との接着性及びセパレータのハンドリング性により優れる傾向にある。
 ここで、粒状とは、走査型電子顕微鏡(SEM)の測定にて、個々の熱可塑性ポリマーが輪郭を持った状態のことを指し、細長形状であっても、球状であっても、多角形状等であってもよい。
 本実施の形態において、セパレータの最表面に存在する熱可塑性ポリマーに対する粒状熱可塑性ポリマーの面積割合は、特に限定されないが、95%以下であることが好ましく、より好ましくは50%以上95%以下である。セパレータの最表面に存在する熱可塑性ポリマーに対する粒状熱可塑性ポリマーの面積割合Sは、以下の式から算出される。
 S(%)=粒状熱可塑性ポリマーの面積÷セパレータの最表面に存在する熱可塑性ポリマーの全面積
 ここで、粒状熱可塑性ポリマーの面積は、後記の実施例に記載のとおり、セパレータの最表面のSEMによる観察(倍率30000倍)によって測定される。
(熱可塑性ポリマーの平均粒子径)
 粒状熱可塑性ポリマーの平均粒子径は、0.01μm~1μmが好ましく、0.05μm~0.5μmがより好ましく、0.01μm~0.4μmがさらに好ましい。上記の範囲にすることで、溶液中での分散性が良好となり、塗工時における溶液の濃度・粘度等の調整が容易になり、均一な充填層の形成が容易となることで電極に対する密着性及びサイクル特性が一層向上し、塗工厚みの制御も容易となる。
(熱可塑性ポリマーの電解液に対する膨潤度)
 本実施の形態における熱可塑性ポリマーは、サイクル特性等の電池特性の点から、電解液に対する膨潤性を有することが好ましい。乾燥させた熱可塑性ポリマー(あるいは熱可塑性ポリマー分散液)に電解液を3時間浸透させ、洗浄した後の熱可塑性ポリマー(A)の重量をWa、Aを150℃のオーブン中に1時間静置したあと重量をWbとするとき、以下の式により電解液を算出することができる。膨潤度は、5倍以下が好ましく、4.5倍以下がより好ましく、4倍以下がさらに好ましい。また、膨潤度は、1倍以上が好ましく、2倍以上がより好ましい。
 熱可塑性ポリマーの電解液に対する膨潤度(倍)=(Wa-Wb)÷Wb
 本実施形態における熱可塑性ポリマーの電解液に対する膨潤度は、例えば、重合するモノマー成分及び各モノマーの投入比を変更することにより調整することができる。
(熱可塑性ポリマーのゲル分率)
 本実施の形態において、熱可塑性ポリマーのゲル分率は、特に限定されないが、電解液中への溶解の抑制や電池内部での熱可塑性ポリマーの強度維持の観点から80%以上が好ましく、より好ましくは85%以上、さらに好ましくは90%以上である。ここで、ゲル分率は、後記の実施例に記載のとおり、トルエン不溶分の測定により求められる。
 ゲル分率は、重合するモノマー成分及び各モノマーの投入比、重合条件を変更することにより調整することができる。
(熱可塑性ポリマーの含有量)
 本実施の形態における熱可塑性ポリマーの含有量は、特に限定されないが、ポリオレフィン微多孔膜での接着力を向上させる一方で、ポリオレフィン微多孔膜の孔を目詰まらせることによるサイクル特性(透過性)の低下を抑制する観点から0.05g/m以上1.0g/m以下が好ましい。より好ましくは0.07g/m以上0.8g/m以下、さらに好ましくは0.1g/m以上0.7g/m以下である。
 熱可塑性ポリマーの含有量は、塗工する液のポリマー濃度やポリマー溶液の塗布量を変更することにより調整することができる。
(熱可塑性ポリマー被覆層の厚み)
 本実施の形態における熱可塑性ポリマー被覆層の平均厚みは、片面で1.5μm以下であることが好ましく、より好ましくは1.0μm以下、更に好ましくは0.5μm以下である。熱可塑性ポリマーの平均厚みが1.5μm以下であることにより、熱可塑性ポリマーによる透過性低下及び熱可塑性ポリマー同士又は熱可塑性ポリマーとポリオレフィン微多孔膜の貼り付きを効果的に抑制する観点から好ましい。
 熱可塑性ポリマーの平均厚みは、塗工する液のポリマー濃度やポリマー溶液の塗布量及び塗工方法、塗工条件を変更することにより調整することができる。
 熱可塑性ポリマー被覆層の厚みは実施例に記載の方法により測定することができる。
(熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合)
 本実施の形態のセパレータは、ポリオレフィン微多孔膜の少なくとも片面の少なくとも一部に、熱可塑性ポリマーを有する。熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合(%)は、ポリオレフィン微多孔膜の全面積100%に対して、95%以下が好ましく、好ましくは70%以下、より好ましくは50%以下、さらに好ましくは45%以下、よりさらに好ましくは40%以下である。また、面積割合(%)は、5%以上が好ましい。面積割合が95%以下であることにより、熱可塑性ポリマーによるポリオレフィン微多孔膜の孔の閉塞をより抑制し、透過性を一層向上できる傾向にある。また、面積割合が5%以上であることにより、接着性がより向上する傾向にある。ここで、面積割合は、後記の実施例記載の方法により算出される。
 面積割合は、塗工する液のポリマー濃度やポリマー溶液の塗布量及び塗工方法、塗工条件を変更することにより調整することができる。
[ポリオレフィン微多孔膜]
 本実施の形態におけるポリオレフィン微多孔膜としては、特に限定されないが、例えば、ポリオレフィンを含有するポリオレフィン樹脂組成物から構成される多孔膜が挙げられ、ポリオレフィン樹脂を主成分とする多孔膜であることが好ましい。本実施の形態におけるポリオレフィン微多孔膜は、ポリオレフィン樹脂の含有量は特に限定されないが、蓄電デバイス用セパレータとして用いた場合のシャットダウン性能などの点から、多孔膜を構成する全成分の質量分率の50%以上100%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物からなる多孔膜であることが好ましい。ポリオレフィン樹脂が占める割合は60%以上100%以下がより好ましく、70%以上100%以下であることが更に好ましい。
 ポリオレフィン樹脂は、特に限定されないが、通常の押出、射出、インフレーション、及びブロー成形等に使用するポリオレフィン樹脂をいい、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテン等のホモポリマー及びコポリマー、多段ポリマー等を使用することができる。また、これらのホモポリマー及びコポリマー、多段ポリマーからなる群から選ばれるポリオレフィンを単独、もしくは混合して使用することもできる。
 ポリオレフィン樹脂の代表例としては、特に限定されないが、例えば、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、エチレン-プロピレンランダムコポリマー、ポリブテン、エチレンプロピレンラバー等が挙げられる。
 本実施の形態のセパレータを電池セパレータとして使用する場合には、低融点であり、かつ高強度であることから、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。
 また、多孔膜の耐熱性向上、ポリプロピレンと、ポリプロピレン以外のポリオレフィン樹脂を含む樹脂組成物からなる多孔膜を用いることがより好ましい。
 ここで、ポリプロピレンの立体構造に限定はなく、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン及びアタクティックポリプロピレンのいずれでもよい。
 ポリオレフィン樹脂組成物中の総ポリオレフィンに対するポリプロピレンの割合は、特に限定されないが、耐熱性と良好なシャットダウン機能の両立の観点から、1~35質量%であることが好ましく、より好ましくは3~20質量%、さらに好ましくは4~10質量%である。
 この場合、ポリプロピレン以外のポリオレフィン樹脂に限定はなく、例えば、エチレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等のオレフィン炭化水素のホモポリマー又はコポリマーが挙げられる。具体的には、ポリエチレン、ポリブテン、エチレン-プロピレンランダムコポリマー等が挙げられる。
 孔が熱溶融により閉塞するシャットダウン特性の点から、ポリプロピレン以外のポリオレフィン樹脂として、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等のポリエチレンを用いることが好ましい。これらの中でも、強度の観点から、JIS K 7112に従って測定した密度が0.93g/cm以上であるポリエチレンを使用することがより好ましい。
 ポリオレフィン微多孔膜を構成するポリオレフィン樹脂の粘度平均分子量は、特に限定されないが、3万以上1200万以下であることが好ましく、より好ましくは5万以上200万未満、さらに好ましくは10万以上100万未満である。粘度平均分子量が3万以上であると、溶融成形の際のメルトテンションが大きくなり成形性が良好になると共に、ポリマー同士の絡み合いにより高強度となる傾向にあるため好ましい。一方、粘度平均分子量が1200万以下であると、均一に溶融混練をすることが容易となり、シートの成形性、特に厚み安定性に優れる傾向にあるため好ましい。さらに、粘度平均分子量が100万未満であると、温度上昇時に孔を閉塞しやすく良好なシャットダウン機能が得られる傾向にあるため好ましい。なお、例えば、粘度平均分子量100万未満のポリオレフィンを単独で使用する代わりに、粘度平均分子量200万のポリオレフィンと粘度平均分子量27万のポリオレフィンの混合物であって、その粘度平均分子量が100万未満の混合物を用いてもよい。
 本実施の形態におけるポリオレフィン微多孔膜は、任意の添加剤を含有することができる。このような添加剤は、特に限定されず、例えば、ポリオレフィン以外のポリマー;無機粒子;フェノール系、リン系、イオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;着色顔料等が挙げられる。
 これらの添加剤の合計含有量は、ポリオレフィン樹脂組成物100質量部に対して、20質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下である。
(ポリオレフィン微多孔膜の物性)
 本実施形態におけるポリオレフィン微多孔膜の突刺強度は、特に限定されないが、好ましくは200g/20μm以上、より好ましくは300g/20μm以上であり、好ましくは2000g/20μm以下、より好ましくは1000g/20μm以下である。突刺強度が200g/20μm以上であることは、電池捲回時における脱落した活物質等による破膜を抑制する観点から好ましい。また、充放電に伴う電極の膨張収縮によって短絡する懸念を抑制する観点からも好ましい。一方、2000g/20μm以下とすることは、加熱時の配向緩和による幅収縮を低減できる観点から好ましい。ここで、突刺強度は、後記の実施例の記載の方法により測定される。
 なお、上記突刺強度は、延伸倍率、延伸温度を調整する等により調節可能である。
 本実施形態におけるポリオレフィン微多孔膜の気孔率は、特に限定されないが、好ましくは20%以上、より好ましくは35%以上であり、好ましくは90%以下、好ましくは80%以下である。気孔率を20%以上とすることは、セパレータの透過性を確保する観点から好ましい。一方、90%以下とすることは、突刺強さを確保する観点から好ましい。ここで、気孔率は後記の実施例の記載の方法により測定される。
 なお、気孔率は、延伸倍率の変更等により調節可能である。
 本実施形態におけるポリオレフィン微多孔膜の膜厚さは、特に限定されないが、好ましくは2μm以上、より好ましくは5μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、更に好ましくは50μm以下である。膜厚さを2μm以上とすることは、機械強度を向上させる観点から好ましい。一方、100μm以下とすることは、セパレータの占有体積が減るため、電池の高容量化の点において有利となる傾向があるので好ましい。
 本実施形態におけるポリオレフィン微多孔膜の透気度は、特に限定されないが、好ましくは10sec/100cc以上、より好ましくは50sec/100cc以上であり、好ましくは1000sec/100cc以下、より好ましくは500sec/100cc以下である。透気度を10sec/100cc以上とすることは、蓄電デバイスの自己放電を抑制する観点から好ましい。一方、1000sec/100cc以下とすることは、良好な充放電特性を得る観点から好ましい。ここで、透気度は後記の実施例の記載の方法により測定される。
 なお、上記透気度は、延伸温度、延伸倍率の変更等により調節可能である。
 本実施形態におけるポリオレフィン微多孔膜の平均孔径は、好ましくは0.15μm以下、より好ましくは0.1μm以下であり、下限として好ましくは0.01μm以上である。平均孔径を0.15μm以下とすることは、蓄電デバイス用セパレータとする場合に、蓄電デバイスの自己放電を抑制し、容量低下を抑制する観点から好適である。平均孔径は、ポリオレフィン微多孔膜を製造する際の延伸倍率の変更等により調節可能である。
 本実施形態におけるポリオレフィン微多孔膜の耐熱性の指標であるショート温度は、好ましくは140℃以上であり、より好ましくは150℃以上であり、さらに好ましくは160℃以上である。ショート温度を140℃以上とすることは、蓄電デバイス用セパレータとする場合に、蓄電デバイスの安全性の観点から好ましい。
(ポリオレフィン微多孔膜の製造方法)
 本実施の形態におけるポリオレフィン微多孔膜を製造する方法は、特に限定されず、公知の製造方法を採用することができる。例えば、ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、場合により延伸した後、可塑剤を抽出することにより多孔化させる方法、ポリオレフィン樹脂組成物を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物と無機充填材とを溶融混練してシート上に成形後、延伸によってポリオレフィンと無機充填材との界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物を溶解後、ポリオレフィンに対する貧溶媒に浸漬させポリオレフィンを凝固させると同時に溶剤を除去することにより多孔化させる方法等が挙げられる。
 以下、多孔膜を製造する方法の一例として、ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、可塑剤を抽出する方法について説明する。
 まず、ポリオレフィン樹脂組成物と可塑剤を溶融混練する。溶融混練方法としては、例えば、ポリオレフィン樹脂及び必要によりその他の添加剤を、押出機、ニーダー、ラボプラストミル、混練ロール、バンバリーミキサー等の樹脂混練装置に投入し、樹脂成分を加熱溶融させながら任意の比率で可塑剤を導入して混練する方法が挙げられる。この際、ポリオレフィン樹脂、その他の添加剤及び可塑剤を樹脂混練装置に投入する前に、予めヘンシェルミキサー等を用い所定の割合で事前混練しておくことが好ましい。より好ましくは、事前混練において可塑剤の一部のみを投入し、残りの可塑剤を樹脂混練装置サイドフィードしながら混練することである。このようにすることにより、可塑剤の分散性を高め、後の工程で樹脂組成物と可塑剤の溶融混練合物のシート状成形体を延伸する際に、破膜することなく高倍率で延伸することができる。
 可塑剤としては、ポリオレフィンの融点以上において均一溶液を形成しうる不揮発性溶媒を用いることができる。このような不揮発性溶媒の具体例として、例えば、流動パラフィン、パラフィンワックス等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。これらの中で、流動パラフィンは、ポリエチレンやポリプロピレンとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤の界面剥離が起こりにくいので、均一な延伸が実施しやすくなる傾向にあるため好ましい。
 ポリオレフィン樹脂組成物と可塑剤の比率は、これらを均一に溶融混練して、シート状に成形できる範囲であれば特に限定はない。例えば、ポリオレフィン樹脂組成物と可塑剤とからなる組成物中に占める可塑剤の質量分率は、好ましくは30~80質量%、より好ましくは40~70質量%である。可塑剤の質量分率が80質量%以下であると、溶融成形時のメルトテンションが不足しにくく成形性が向上する傾向にある。一方、質量分率が30質量%以上であると、ポリオレフィン樹脂組成物と可塑剤の混合物を高倍率で延伸してもポリオレフィン鎖の切断が起こらず、均一かつ微細な孔構造を形成し強度も増加しやすい。
 次に、溶融混練物をシート状に成形する。シート状成形体を製造する方法としては、例えば、溶融混練物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より充分に低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身等が使用できるが、金属製のロールが熱伝導の効率が高いため好ましい。この際、金属製のロールに接触させる際に、ロール間で挟み込むと、熱伝導の効率がさらに高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上するためより好ましい。Tダイよりシート状に押出す際のダイリップ間隔は400μm以上3000μm以下であることが好ましく、500μm以上2500μm以下であることがさらに好ましい。ダイリップ間隔が400μm以上であると、メヤニ等が低減され、スジや欠点など膜品位への影響が少なく、その後の延伸工程において膜破断などを防ぐことができる傾向にある。一方、ダイリップ間隔が3000μm以下であると、冷却速度が速く冷却ムラを防げると共に、シートの厚み安定性を維持できる傾向にある。
 このようにして得たシート状成形体を延伸することが好ましい。延伸処理としては、一軸延伸又は二軸延伸のいずれも好適に用いることができるが、得られる多孔膜の強度等の観点から二軸延伸が好ましい。シート状成形体を二軸方向に高倍率延伸すると、分子が面方向に配向し、最終的に得られる多孔膜が裂けにくくなり高い突刺強度を有するものとなる。延伸方法としては、例えば、同時二軸延伸、逐次二軸延、多段延伸、多数回延伸等の方法を挙げることができ、突刺強度の向上、延伸の均一性、シャットダウン性の観点から同時二軸延伸が好ましい。
 なお、ここで、同時二軸延伸とは、MD方向(微多孔膜の機械方向)の延伸とTD方向(微多孔膜のMDを90°の角度で横切る方向)の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、MD方向、又はTD方向の延伸が独立して施される延伸方法をいい、MD方向又はTD方向に延伸がなされている際は、他方向は非拘束状態又は定長に固定されている状態とする。
 延伸倍率は、面倍率で20倍以上100倍以下の範囲であることが好ましく、25倍以上50倍以下の範囲であることがさらに好ましい。各軸方向の延伸倍率は、MD方向に4倍以上10倍以下、TD方向に4倍以上10倍以下の範囲であることが好ましく、MD方向に5倍以上8倍以下、TD方向に5倍以上8倍以下の範囲であることがさらに好ましい。総面積倍率が20倍以上であると、得られる多孔膜に十分な強度を付与できる傾向にあり、一方、総面積倍率が100倍以下であると延伸工程における膜破断を防ぎ、高い生産性が得られる傾向にある。
 また、シート状成形体を圧延してもよい。圧延は、例えば、ダブルベルトプレス機等を使用したプレス法にて実施することができる。圧延は特に表層部分の配向を増すことができる。圧延面倍率は1倍より大きく3倍以下であることが好ましく、1倍より大きく2倍以下であることがより好ましい。圧延倍率が1倍より大きいと、面配向が増加し最終的に得られる多孔膜の膜強度が増加する傾向にある。一方、圧延倍率が3倍以下であると、表層部分と中心内部の配向差が小さく、膜の厚さ方向に均一な多孔構造を形成することができる傾向にあるため好ましい。
 次いで、シート状成形体から可塑剤を除去して多孔膜とする。可塑剤を除去する方法としては、例えば、抽出溶剤にシート状成形体を浸漬して可塑剤を抽出し、充分に乾燥させる方法が挙げられる。可塑剤を抽出する方法はバッチ式、連続式のいずれであってもよい。多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、多孔膜中の可塑剤残存量は1質量%未満にすることが好ましい。
 抽出溶剤としては、ポリオレフィン樹脂に対して貧溶媒で、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン樹脂の融点より低いものを用いることが好ましい。このような抽出溶剤としては、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。
 多孔膜の収縮を抑制するために、延伸工程後、又は、多孔膜形成後に熱固定や熱緩和等の熱処理を行うこともできる。また、多孔膜に、界面活性剤等による親水化処理、電離性放射線等による架橋処理等の後処理を行ってもよい。
〔多孔層〕
 また、本実施形態に係る蓄電デバイス用セパレータは、無機フィラーと樹脂製バインダを含む多孔層を備えていてもよい。多孔層の位置は、ポリオレフィン微多孔膜表面の少なくとも一部、熱可塑性ポリマー被覆層表面の少なくとも一部、及び/又はポリオレフィン微多孔膜と熱可塑性ポリマー被覆層との間が挙げられる。前記多孔層はポリオレフィン微多孔膜の片面であっても両面に備えていてもよい。
(無機フィラー)
 前記多孔層に使用する無機フィラーとしては、特に限定されないが、200℃以上の融点をもち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。
 無機フィラーとしては、特に限定されないが、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化酸化アルミニウム、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維などが挙げられ、これらは単独で用いてもよいし、複数を併用してもよい。
 上記の中でも、電気化学的安定性及び多層多孔膜の耐熱特性を向上させる観点から、アルミナ、水酸化酸化アルミニウムなどの酸化アルミニウム化合物や、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライトなどのイオン交換能を持たないケイ酸アルミニウム化合物が好ましい。前記酸化アルミニウム化合物としては、水酸化酸化アルミニウムが特に好ましい。イオン交換能を持たないケイ酸アルミニウム化合物としては、安価で入手も容易なため、カオリン鉱物で主に構成されているカオリンがより好ましい。カオリンには湿式カオリン及びこれを焼成処理した焼成カオリンがあるが、焼成カオリンは焼成処理の際に結晶水が放出されるのに加え、不純物が除去されるので、電気化学的安定性の点で特に好ましい。
 前記無機フィラーの平均粒径は、0.1μmを超えて4.0μm以下であることが好ましく、0.2μmを超えて3.5μm以下であることがより好ましく、0.4μmを超えて3.0μm以下であることが更に好ましい。無機フィラーの平均粒径を上記範囲に調整することは、多孔層の厚さが薄い場合(例えば、7μm以下)であっても、高温での熱収縮を抑制する観点から好ましい。
 前記無機フィラーにおいて、0.2μmを超えて1.4μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは2体積%以上、より好ましくは3体積%以上、更に好ましくは5体積%以上であり、上限としては、好ましくは90体積%以下、より好ましくは80体積%以下である。
 前記無機フィラーにおいて、0.2μmを超えて1.0μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは1体積%以上、より好ましくは2体積%以上であり、上限としては、好ましくは80体積%以下、より好ましくは70体積%以下である。
 また、前記無機フィラーにおいて、0.5μmを超えて2.0μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは8体積%以上、より好ましくは10体積以上であり、上限としては、好ましくは60体積%以下、より好ましくは50体積%以下である。
 更に、前記無機フィラーにおいて、0.6μmを超えて1.4μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは1体積%以上、より好ましくは3体積%以上であり、上限としては、好ましくは40体積%以下、より好ましくは30体積%以下である。
 無機フィラーの粒度分布を上記範囲に調整することは、多孔層の厚さが薄い場合(例えば、7μm以下)であっても、高温での熱収縮を抑制する観点から好ましい。なお、無機フィラーの粒径の割合を調整する方法としては、例えば、ボールミル・ビーズミル・ジェットミル等を用いて無機フィラーを粉砕し、粒径を小さくする方法等を挙げることができる。
 無機フィラーの形状としては、板状、鱗片状、針状、柱状、球状、多面体状、塊状等が挙げられ、上記形状を有する無機フィラーを複数種組み合わせて用いてもよい。多層多孔膜とした際に、後述の150℃熱収縮を10%以下に抑制することが可能であれば、無機フィラーの形状は特に限定されないが、透過性向上の観点からは複数の面からなる多面体状、柱状、紡錘状が好ましい。
 前記無機フィラーが、前記多孔層中に占める割合としては、無機フィラーの結着性、多層多孔膜の透過性及び耐熱性等の観点から適宜決定することができるが、50質量%以上100質量%未満であることが好ましく、より好ましくは70質量%以上99.99質量%以下、さらに好ましくは80質量%以上99.9質量%以下、特に好ましくは90質量%以上99質量%以下である。
(樹脂製バインダ)
 樹脂製バインダの種類としては、特に限定されないが、本実施形態における多層多孔膜をリチウムイオン二次電池用セパレータとして使用する場合には、リチウムイオン二次電池の電解液に対して不溶であり、かつリチウムイオン二次電池の使用範囲で電気化学的に安定なものを用いることが好ましい。
 樹脂製バインダの具体例としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム;スチレン-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体及びその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル等の融点及び/又はガラス転移温度が180℃以上の樹脂等が挙げられる。
 樹脂製バインダとしてポリビニルアルコールを使用する場合、そのケン化度は85%以上100%以下であることが好ましい。ケン化度が85%以上であると、多層多孔膜を電池用セパレータとして使用した際に、短絡する温度(ショート温度)が向上し、より良好な安全性能が得られる傾向にあるため好ましい。ケン化度は、より好ましくは90%以上100%以下、さらに好ましくは95%以上100%以下、特に好ましくは99%以上100%以下である。また、ポリビニルアルコールの重合度は、200以上5000以下であることが好ましく、より好ましくは300以上4000以下、さらに好ましくは500以上3500以下である。重合度が200以上であると、少量のポリビニルアルコールで焼成カオリン等の無機フィラーを多孔膜に強固に結着でき、多孔層の力学的強度を維持しながら多孔層形成による多層多孔膜の透気度増加を抑えることができる傾向にあるため好ましい。また、重合度が5000以下であると、塗布液を調製する際のゲル化等を防止できる傾向にあるため好ましい。
 樹脂製バインダとしては、樹脂製ラテックスバインダが好ましい。樹脂製ラテックスバインダを用いた場合、無機フィラーとバインダとを含む多孔層をポリオレフィン多孔膜の少なくとも片面に積層した場合は、樹脂製バインダの一部又は全てを溶媒に溶解させた後に、得られた溶液をポリオレフィン多孔膜の少なくとも片面に積層し、貧溶媒への浸漬や乾燥による溶媒除去等により樹脂製バインダを多孔膜に結着させた場合と比較して、イオン透過性が低下しにくく高出力特性が得られやすい傾向にある。加えて異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られやすい傾向にある。
 樹脂製ラテックスバインダとしては、電気化学的安定性と結着性を向上させる観点から、脂肪族共役ジエン系単量体や不飽和カルボン酸単量体、及びこれらと共重合可能な他の単量体を乳化重合して得られるものが好ましい。乳化重合の方法としては、特に制限はなく、従来公知の方法を用いることができる。単量体及びその他の成分の添加方法については特に制限されるものではなく、一括添加方法、分割添加方法、連続添加方法の何れも採用することができ、また、一段重合、二段重合又は多段階重合等の何れも採用することができる。
 脂肪族共役ジエン系単量体としては、特に限定されず、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換及び側鎖共役ヘキサジエン類などが挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特に1,3-ブタジエンが好ましい。
 不飽和カルボン酸単量体としては、特に限定されず、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマール酸、イタコン酸などのモノ又はジカルボン酸(無水物)等が挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特にアクリル酸、メタクリル酸が好ましい。
 これらと共重合可能な他の単量体としては、特に限定されず、例えば、芳香族ビニル系単量体、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体等が挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特に不飽和カルボン酸アルキルエステル単量体が好ましい。不飽和カルボン酸アルキルエステル単量体としては、特に限定されないが、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2-エチルヘキシルアクリレート等が挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特にメチルメタクリレートが好ましい。
 なお、これらの単量体に加えて様々な品質及び物性を改良するために、上記以外の単量体成分をさらに使用することもできる。
 樹脂製バインダの平均粒径は、50~500nmであることが好ましく、より好ましくは60~460nm、更に好ましくは80~250nmである。樹脂製バインダの平均粒径が50nm以上である場合、無機フィラーとバインダとを含む多孔層をポリオレフィン多孔膜の少なくとも片面に積層した際、イオン透過性が低下しにくく高出力特性が得られやすい。加えて異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られやすい。樹脂製バインダの平均粒径が500nm以下である場合、良好な結着性を発現し、多層多孔膜とした場合に熱収縮が良好となり安全性に優れる傾向にある。
 樹脂製バインダの平均粒径は、重合時間、重合温度、原料組成比、原料投入順序、pHなどを調整することで制御することが可能である。
 多孔層の層厚は、耐熱性、絶縁性を向上させる観点から1μm以上であることが好ましく、電池の高容量化と透過性を向上させる観点から50μm以下であることが好ましい。多孔層の層厚は、より好ましくは1.5μm以上20μm以下、さらに好ましくは2μm以上10μm以下、さらにより好ましくは3μm以上10μm以下、特に好ましくは3μm以上7μm以下である。
 多孔層の層密度は、0.5~2.0g/cmであることが好ましく、0.7~1.5cmであることがより好ましい。多孔層の層密度が0.5g/cm以上であると、高温での熱収縮率が良好となる傾向にあり、2.0g/cm以下であると、透気度が低下する傾向にある。
 多孔層の形成方法としては、例えば、ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に、無機フィラーと樹脂製バインダとを含む塗布液を塗布して多孔層を形成する方法を挙げることができる。
 塗布液の溶媒としては、前記無機フィラー、及び前記樹脂製バインダを均一かつ安定に分散できるものが好ましく、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、塩化メチレン、ヘキサン等が挙げられる。
 塗布液には、分散安定化や塗工性の向上のために、界面活性剤等の分散剤;増粘剤;湿潤剤;消泡剤;酸、アルカリを含むpH調製剤等の各種添加剤を加えてもよい。これらの添加剤は、溶媒除去の際に除去できるものが好ましいが、リチウムイオン二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば多孔層内に残存してもよい。
 前記無機フィラーと前記樹脂製バインダとを、塗布液の溶媒に分散させる方法については、塗布工程に必要な塗布液の分散特性を実現できる方法であれば特に限定はない。例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌等が挙げられる。
 塗布液を多孔膜に塗布する方法については、必要とする層厚や塗布面積を実現できる方法であれば特に限定はなく、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法等が挙げられる。
 さらに、塗布液の塗布に先立ち、多孔膜表面に表面処理を施すと、塗布液を塗布し易くなると共に、塗布後の無機フィラー含有多孔層と多孔膜表面との接着性が向上するため好ましい。表面処理の方法は、多孔膜の多孔質構造を著しく損なわない方法であれば特に限定はなく、例えば、コロナ放電処理法、機械的粗面化法、溶剤処理法、酸処理法、紫外線酸化法等が挙げられる。
 塗布後に塗布膜から溶媒を除去する方法については、多孔膜に悪影響を及ぼさない方法であれば特に限定はなく、例えば、多孔膜を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法等が挙げられる。多孔膜及び多層多孔膜のMD方向の収縮応力を制御する観点から、乾燥温度、巻取り張力等は適宜調整することが好ましい。
[セパレータ]
 本実施の形態のセパレータは、ポリオレフィン微多孔膜の少なくとも片面の少なくとも一部に熱可塑性ポリマーを有する。
(剥離強度)
 熱可塑性ポリマー被覆層が存在する、前記蓄電デバイス用セパレータの最表面に対して、アルミ箔(正極集電体など)を、温度25℃、圧力5MPaで3分間加圧した後の剥離強度(以下、「常温剥離強度」ともいう。)は、8gf/cm以下が好ましく、より好ましくは7gf/cm以下、さらに好ましくは6gf/cm以下である。8gf/cm以下であると、ベタツキ性が一層抑制され、セパレータのスリット性や捲回性に優れる傾向にある。
 さらに驚くべきことに、本発明者らは剥離強度が上記範囲内であることで、本実施形態のセパレータを電極に加熱プレスした際の密着性が向上することを見出した。
 このような効果が得られる理由は定かでないが、常温剥離強度が上記範囲内にあることは、本実施形態のセパレータにおいて、セパレータの最表面側にガラス転移温度の高い熱可塑性樹脂が多く存在し、かつ、本実施形態のセパレータのポリオレフィン微多孔膜側にガラス転移温度の低い熱可塑性樹脂が多く存在していることを示していると考えられる。
 すなわち、本実施形態のセパレータの最表面側にガラス転移温度の高い熱可塑性樹脂が多く存在することでベタツキ性が抑制され、さらに、ガラス転移温度の高い熱可塑性樹脂は電極との密着性に優れるため、結果としてベタツキ性が低く、かつ電極への密着性に優れたセパレータが得られたものと考えられる。
 また、本実施形態のセパレータのポリオレフィン微多孔膜側にガラス転移温度の低い熱可塑性樹脂が多く存在することで、基材であるポリオレフィン微多孔膜と熱可塑性樹脂との接着性が向上する結果、ポリオレフィン微多孔膜と熱可塑性樹脂との界面における剥離が抑制され、結果として電極への密着性に優れたセパレータが得られたものと考えられる。
 熱可塑性ポリマー覆層が存在する、前記蓄電デバイス用セパレータの最表面に対して、アルミ箔(正極集電体など)を、温度80℃、圧力10MPaで3分間加圧した後の剥離強度(以下、「加熱剥離強度」ともいう。)は、10gf/cm以上が好ましく、15gf/cm以上がより好ましく、20gf/cm以上がさらに好ましい。なお、加熱剥離強度は実施例に記載の方法により測定することができる。
 加熱剥離強度が上記範囲であるセパレータは、後述の蓄電デバイスを適用する際に、電極とセパレータとの密着性に優れる点で好ましい。
 また、電解液存在下でセパレータと負極を積層し、80℃、10MPaの圧力で2分間加圧した後、セパレータと負極を剥離した場合にセパレータ上に活物質が面積にして10%以上付着することが好ましい。
 ポリオレフィン微多孔膜と熱可塑性ポリマー被覆層との90°剥離強度は、6gf/mm以上が好ましく、7gf/mm以上がより好ましく、8gf/mm以上がさらに好ましい。ポリオレフィン微多孔膜と熱可塑性ポリマー被覆層との90°剥離強度が6gf/mm以上であることにより、熱可塑性ポリマーとポリオレフィン微多孔膜の接着性がより優れる傾向にあり、結果として熱可塑性ポリマー層の脱落が抑制されたり、セパレータと電極との密着性が優れる傾向にある。
 蓄電デバイス用セパレータの膜厚さは、好ましくは2μm以上、より好ましくは5μm以上であり、上限として好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは30μm以下である。膜厚さを2μm以上とすることは、蓄電デバイス用セパレータの強度確保の観点から好適である。一方、100μm以下とすることは、良好な充放電特性を得る観点から好ましい。
 本実施形態における蓄電デバイス用セパレータの透気度は、好ましくは10sec/100cc以上、より好ましくは50sec/100cc以上であり、上限として好ましくは10000sec/100cc以下、さらに好ましくは1000sec/100cc以下である。透気度を10sec/100cc以上とすることは、蓄電デバイス用セパレータとする場合に、蓄電デバイスの自己放電を一層抑制する観点から好適である。一方、10000sec/100cc以下とすることは、良好な充放電特性を得る観点から好ましい。蓄電デバイス用セパレータの透気度は、ポリオレフィン微多孔膜を製造する際の延伸温度、延伸倍率の変更、熱可塑性ポリマーの面積割合、存在形態等により調節可能である。
 蓄電デバイス用セパレータは、耐熱性の指標であるショート温度が、好ましくは140℃以上であり、より好ましくは150℃以上であり、さらに好ましくは160℃以上である。ショート温度を160℃以上とすることは、蓄電デバイス用セパレータとする場合に、蓄電デバイスの安全性の観点から好ましい。
(蓄電デバイス用セパレータの製造方法)
 ポリオレフィン微多孔膜上に熱可塑性ポリマーを形成する方法は、特に限定されず、例えば熱可塑性ポリマーを含有する塗布液をポリオレフィン微多孔膜に塗布する方法が挙げられる。
 熱可塑性ポリマーを含有する塗布液を多孔膜に塗布する方法については、必要とする層厚や塗布面積を実現できる方法であれば特に限定はない。例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、スプレーコーター塗布法、インクジェット塗布等が挙げられる。これらのうち、熱可塑性ポリマーの塗工形状の自由度が高く、好ましい面積割合を容易に得られる点でグラビアコーター法又はスプレー塗布法が好ましい。
 ポリオレフィン微多孔膜に熱可塑性ポリマーを塗工する場合、塗布液が微多孔膜の内部にまで入り込んでしまうと、接着性樹脂が孔の表面及び内部を埋めてしまい透過性が低下してしまう。そのため、塗布液の媒体としては、熱可塑性ポリマーの貧溶媒が好ましい。塗布液の媒体として熱可塑性ポリマーの貧溶媒を用いた場合には、微多孔膜の内部に塗工液は入り込まず、接着性ポリマーは主に微多孔膜の表面上に存在するため、透過性の低下を抑制する観点から好ましい。このような媒体としては水が好ましい。また、水と併用可能な媒体は、特に限定されないが、エタノール、メタノール等を挙げることができる。
 さらに、塗布に先立ち、多孔膜表面に表面処理をすると、塗布液を塗布し易くなると共に、多孔層と接着性ポリマーとの接着性が向上するため好ましい。表面処理の方法は、多孔膜の多孔質構造を著しく損なわない方法であれば特に限定はなく、例えば、コロナ放電処理法、プラズマ処理法、機械的粗面化法、溶剤処理法、酸処理法、紫外線酸化法等が挙げられる。
 塗布後に塗布膜から溶媒を除去する方法については、多孔膜に悪影響を及ぼさない方法であれば特に限定はない。例えば、多孔膜を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、接着性ポリマーに対する貧溶媒に浸漬して接着性ポリマーを凝固させると同時に溶媒を抽出する方法等が挙げられる。
 蓄電デバイス用セパレータは、捲回時のハンドリング性及び蓄電デバイスのレート特性が優れ、さらには、熱可塑性ポリマーとポリオレフィン微多孔膜との接着性及び透過性にも優れる。そのため、蓄電デバイス用セパレータの用途としては、特に限定されないが、例えば、非水電解液二次電池等の電池やコンデンサー、キャパシタ等の蓄電デバイス用セパレータ、物質の分離等に好適に使用できる。
[積層体]
 本実施形態に係る積層体は、上記セパレータと電極とが積層したものである。本実施の形態のセパレータは、電極と接着することにより積層体として用いることができる。ここで、「接着」とは、セパレータと電極との上記加熱剥離強度が、好ましくは10gf/cm以上、より好ましくは15gf/cm以上、さらに好ましくは20gf/cm以上であることをいう。
 積層体は、捲回時のハンドリング性及び蓄電デバイスのレート特性が優れ、さらには、熱可塑性ポリマーとポリオレフィン微多孔膜との接着性及び透過性にも優れる。そのため、積層体の用途としては、特に限定されないが、例えば、非水電解液二次電池等の電池やコンデンサー、キャパシタ等の蓄電デバイス等に好適に使用できる。
 本実施の形態の積層体に用いられる電極としては、後述の蓄電デバイスの項目に記載のものを用いることができる。
 本実施の形態のセパレータを用いて積層体を製造する方法は、特に限定されないが、例えば、本実施の形態のセパレータと電極とを重ね、必要に応じて加熱および/またはプレスして製造することができる。上記加熱および/またはプレスは電極とセパレータとを重ねる際に行うことができる。また、電極とセパレータとを重ねた後に円または扁平な渦巻き状に巻回して得られる巻回体に対して加熱および/またはプレスを行うことで製造することもできる。
 また、積層体は、正極-セパレータ-負極-セパレータ、又は負極-セパレータ-正極-セパレータの順に平板状に積層し、必要に応じて加熱および/またはプレスして製造することもできる。
 より具体的には、本実施の形態のセパレータを幅10~500mm(好ましくは80~500mm)、長さ200~4000m(好ましくは1000~4000m)の縦長形状のセパレータとして調製し、当該セパレータを、正極-セパレータ-負極-セパレータ、又は負極-セパレータ-正極-セパレータの順で重ね、必要に応じて加熱および/またはプレスして製造することができる。
 上記加熱温度としては、40~120℃が好ましい。加熱時間は5秒~30分が好ましい。上記プレス時の圧力としては、1~30MPaが好ましい。プレス時間は5秒~30分が好ましい。また、加熱とプレスの順序は、加熱をしてからプレスをしても、プレスをしてから加熱をしても、プレスと加熱を同時に行ってもよい。このなかでも、プレスと加熱を同時に行うことが好ましい。
[蓄電デバイス]
 本実施の形態のセパレータは、電池やコンデンサー、キャパシタ等におけるセパレータや物質の分離に用いることができる。特に、非水電解液電池用セパレータとして用いた場合に、電極への密着性と優れた電池性能を付与することが可能である。
 以下、蓄電デバイスが非水電解液二次電池である場合についての好適な態様について説明する。
 本実施の形態のセパレータを用いて非水電解液二次電池を製造する場合、正極、負極、非水電解液に限定はなく、公知のものを用いることができる。
 正極材料は、特に限定されないが、例えば、LiCoO、LiNiO、スピネル型LiMnO、オリビン型LiFePO等のリチウム含有複合酸化物等が挙げられる。
 負極材料は、特に限定されないが、例えば、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体等の炭素材料;シリコン、スズ、金属リチウム、各種合金材料等が挙げられる。
 非水電解液は、特に限定されないが、電解質を有機溶媒に溶解した電解液を用いることができ、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が、電解質としては、例えば、LiClO、LiBF、LiPF等のリチウム塩が挙げられる。
 本実施の形態のセパレータを用いて蓄電デバイスを製造する方法は、特に限定されないが、蓄電デバイスが二次電池の場合、例えば、本実施の形態のセパレータを幅10~500mm(好ましくは80~500mm)、長さ200~4000m(好ましくは1000~4000m)の縦長形状のセパレータとして調製し、当該セパレータを、正極-セパレータ-負極-セパレータ、又は負極-セパレータ-正極-セパレータの順で重ね、円または扁平な渦巻状に巻回して巻回体を得、当該巻回体を電池缶内に収納し、更に電解液を注入することで製造することができる。この際、当該巻回体に対して加熱および/またはプレスを行うことで上述の積層体を形成してもよい。また、上記巻回体として上述の積層体を円または扁平な渦巻き状に巻回したものを用いて製造することもできる。また、蓄電デバイスは、正極-セパレータ-負極-セパレータ、又は負極-セパレータ-正極-セパレータの順に平板状に積層したもの、または上述の積層体を袋状のフィルムでラミネートし、電解液を注入する工程と、場合によって加熱および/またはプレスを行う工程を経て製造することもできる。上記の加熱および/またはプレスを行う工程は、前記電解液を注入する工程の前および/または後に行うことができる。
 なお、上述した各種パラメータの測定値については、特に断りの無い限り,後述する実施例における測定法に準じて測定される値である。
[第2の実施態様]
 本実施形態に係る多孔膜は、
 ポリオレフィン微多孔膜と、該ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層と、を有し、
 前記熱可塑性ポリマー被覆層に含まれる熱可塑性ポリマーのガラス転移温度が、-10℃以上40℃以下であり、かつ
 電解液に対する膨潤度が5倍以下である。
 第2の実施態様においては、後述する態様を除き、その他の態様については第1の実施態様に記載のものと同様とする。
(ガラス転移温度)
 本実施形態における熱可塑性ポリマーのガラス転移温度は、好ましくは-10℃以上40℃以下であり、より好ましくは0℃以上35℃以下、さらに好ましくは15℃以上30℃以下である。本実施形態では、熱可塑性ポリマーのガラス転移温度が-10℃以上40℃以下であることにより、熱可塑性ポリマー同士又は熱可塑性ポリマーとポリオレフィン微多孔膜との貼り付きが効果的に抑制される一方で、熱可塑性ポリマーとポリオレフィン微多孔膜との接着性が一層向上する傾向にある。
 なお、熱可塑性ポリマーは複数のガラス転移温度を有していてもよい。この場合、上記温度範囲に少なくとも1つのガラス転移温度が存在すればよい。好ましくは上記温度範囲に全てのガラス転移温度が存在する。
 本実施の形態における熱可塑性ポリマー被覆層の平均厚みは、特に限定されないが、片面で1.5μm以下であることが好ましく、より好ましくは1.0μm以下、さらに好ましくは0.5μm以下である。熱可塑性ポリマーの平均厚みが1.5μm以下であることにより、熱可塑性ポリマーによる透過性低下及び熱可塑性ポリマー同士又は熱可塑性ポリマーとポリオレフィン微多孔膜の貼り付きを効果的に抑制する観点から好ましい。
 熱可塑性ポリマーの平均厚みは、塗工する液のポリマー濃度やポリマー溶液の塗布量及び塗工方法、塗工条件を変更することにより調整することができる。
 熱可塑性ポリマー被覆層の厚みは実施例に記載の方法により測定することができる。
 本実施の形態のセパレータは、ポリオレフィン微多孔膜の少なくとも片面の少なくとも一部に、熱可塑性ポリマーを有する。熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合(%)は、ポリオレフィン微多孔膜の全面積100%に対して、70%以下が好ましく、50%以下がより好ましく、45%以下がさらに好ましく、40%以下がよりさらに好ましい。また、面積割合(%)は、5%以上が好ましい。面積割合が70%以下であることにより、熱可塑性ポリマーによるポリオレフィン微多孔膜の孔の閉塞をより抑制し、透過性を一層向上できる傾向にある。また、面積割合が5%以上であることにより、接着性がより向上する傾向にある。ここで、面積割合は、後記の実施例記載の方法により算出される。
 面積割合は、塗工する液のポリマー濃度やポリマー溶液の塗布量及び塗工方法、塗工条件を変更することにより調整することができる。
 本実施の形態において、熱可塑性ポリマーのゲル分率は、特に限定されないが、90%以上が好ましく、95%以上がより好ましい。熱可塑性ポリマーのゲル分率が90%以上であることにより、電解液中への溶解の抑制や電池内部での熱可塑性ポリマーの強度がより向上する傾向にある。ここで、ゲル分率は、後記の実施例に記載のとおり、トルエン不溶分の測定により求められる。
 ゲル分率は、重合するモノマー成分及び各モノマーの投入比、重合条件を変更することにより調整することができる。
 熱可塑性ポリマー被覆層は、ポリオレフィン微多孔膜上に前記熱可塑性ポリマーを含む部分と前記熱可塑性ポリマーを含まない部分とが海島状に存在する層であり、熱可塑性ポリマーを含む部分がドット状に形成されていることが好ましい。海島状としては、特に限定されないが、例えば、線状、ドット状、格子目状、縞状、亀甲模様状等が挙げられる。このなかでも、透過性確保及び電極との均一な接着性の確保の観点から、ドット状がより好ましい。ドット状とは、ポリオレフィン微多孔膜上に熱可塑性ポリマーを含む部分と熱可塑性ポリマーを含まない部分とが海島状に存在することを示す。ドットの間隔は5μm~500μmであることが、電極への密着性と、サイクル特性の両立の点から好ましい。ドットの平均長径は、20μm以上1000μm以下が好ましく、20μm以上800μm以下がより好ましく、50μm以上500μm以下がさらに好ましい。
 本実施形態における多孔膜は、後述の方法で測定される電極活物質との接着性が30%以上であることが好ましい。
(多孔膜の用途等)
 本実施形態に係る多孔膜の用途は、特に限定されないが、捲回時のハンドリング性及び蓄電デバイス用セパレータとしたときの蓄電デバイスのレート特性が優れ、さらには、熱可塑性ポリマーとポリオレフィン微多孔膜との接着性及び透過性にも優れるため、例えば、非水電解液二次電池等の電池やコンデンサー、キャパシタ等の蓄電デバイス用セパレータ、物質の分離等に好適に使用できる。
 以下、本発明を実施例、比較例に基づいて詳細に説明をするが、本発明は実施例に限定されるものではない。以下の製造例、実施例、比較例において使用された各種物性の測定方法や評価方法は、以下のとおりである。なお、特に記載のない限り各種測定および評価は室温23℃、1気圧、相対湿度50%の条件で行った。
[測定方法]
(1)粘度平均分子量(以下、「Mv」ともいう。)
 ASRM-D4020に基づき、デカリン溶剤における135℃での極限粘度[η]を求め、ポリエチレンのMvは次式により算出した。
  [η]=0.00068×Mv0.67
 また、ポリプロピレンのMvは次式より算出した。
  [η]=1.10×Mv0.80
(2)ポリオレフィン微多孔膜の目付
 10cm×10cm角の試料をポリオレフィン微多孔膜から切り取り、(株)島津製作所製の電子天秤AEL-200を用いて重量を測定した。得られた重量を100倍することで1m当りの膜の目付け(g/m)を算出した。
(3)ポリオレフィン微多孔膜の気孔率(%)
 10cm×10cm角の試料をポリオレフィン微多孔膜から切り取り、その体積(cm)と質量(g)を求め、膜密度を0.95(g/cm)として次式を用いて計算した。
   気孔率=(体積-質量/膜密度)/体積×100
(4)透気度(sec/100cc)
 JIS P-8117に準拠し、東洋精器(株)製のガーレー式透気度計G-B2(商標)により測定した透気抵抗度を透気度とした。
(5)ポリオレフィン微多孔膜の突刺強度(g)
 カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーでポリオレフィン微多孔膜を固定した。次に固定されたポリオレフィン微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重として突刺強度(g)を得た。
(6)平均孔径(μm)
 キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径より大きいときはクヌーセンの流れに、小さい時はポアズイユの流れに従うことが知られている。そこで、微多孔膜の透気度測定における空気の流れがクヌーセンの流れに、また微多孔膜の透水度測定における水の流れがポアズイユの流れに従うと仮定する。
 平均孔径d(μm)は、空気の透過速度定数Rgas(m/(m・sec・Pa))、水の透過速度定数Rliq(m/(m・sec・Pa))、空気の分子速度ν(m/sec)、水の粘度η(Pa・sec)、標準圧力P(=101325Pa)、気孔率ε(%)、膜厚L(μm)から、次式を用いて求めた。
   d=2ν×(Rliq/Rgas)×(16η/3Ps)×10
 ここで、Rgasは透気度(sec)から次式を用いて求められる。
gas=0.0001/(透気度×(6.424×10-4)×(0.01276×101325))
 また、Rliqは透水度(cm/(cm・sec・Pa))から次式を用いて求められる。
    Rliq=透水度/100
 なお、透水度は次のように求められる。直径41mmのステンレス製の透液セルに、あらかじめエタノールに浸しておいた微多孔膜をセットし、該膜のエタノールを水で洗浄した後、約50000Paの差圧で水を透過させ、120sec間経過した際の透水量(cm3 )より、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。
 また、νは気体定数R(=8.314)、絶対温度T(K)、円周率π、空気の平均分子量M(=2.896×10-2kg/mol)から次式を用いて求められる。
    ν=((8R×T)/(π×M))1/2
(7)厚み(μm)
(7)-1 ポリオレフィン微多孔膜及び蓄電デバイス用セパレータの膜厚(μm)
 ポリオレフィン微多孔膜及び蓄電デバイス用セパレータから、各々、10cm×10cmのサンプルを切り出し、格子状に9箇所(3点×3点)を選んで、膜厚を微小測厚器(東洋精機製作所(株) タイプKBM)を用いて室温23±2℃で測定した。各々、9箇所の測定値の平均値を、ポリオレフィン微多孔膜、蓄電デバイス用セパレータの膜厚(μm)とした。
(7)-2 熱可塑性ポリマー被覆層の厚み(μm)
 熱可塑性ポリマー被覆層の厚みは、走査型電子顕微鏡(SEM)「型式S-4800、HITACHI社製」を用い、セパレータの断面観察により測定した。サンプルのセパレータを1.5mm×2.0mm程度に切り取り、ルテニウム染色した。ゼラチンカプセル内に染色サンプルとエタノールを入れ、液体窒素により凍結させた後、ハンマーでサンプルを割断した。サンプルをオスミウム蒸着し、加速電圧1.0kV、30000倍にて観察し、熱可塑性ポリマー層の厚みを算出した。なお、SEM画像にてポリオレフィン微多孔膜断面の多孔構造が見えない最表面領域を熱可塑性ポリマー被覆層の領域とした。
(8)熱可塑性ポリマーのガラス転移温度
 熱可塑性ポリマーの塗工液(不揮発分=38~42%、pH=9.0)を、アルミ皿に適量とり、130℃の熱風乾燥機で30分間乾燥した。乾燥後の乾燥皮膜約17mgを測定用アルミ容器に詰め、DSC測定装置(島津製作所社製、DSC6220)にて窒素雰囲気下におけるDSC曲線及びDDSC曲線を得た。なお測定条件は下記の通りとした。
(1段目昇温プログラム)
 70℃スタート、毎分15℃の割合で昇温。110℃に到達後5分間維持。
(2段目降温プログラム)
 110℃から毎分40℃の割合で降温。-50℃に到達後5分間維持。
(3段目昇温プログラム)
 -50℃から毎分15℃の割合で130℃まで昇温。この3段目の昇温時にDSC及びDDSCのデータを取得。
 ベースライン(得られたDSC曲線におけるベースラインを高温側に延長した直線)と、変曲点(上に凸の曲線が下に凸の曲線に変わる点)における接線との交点をガラス転移温度(Tg)とした。
(9)熱可塑性ポリマーのゲル分率(トルエン不溶分)
 テフロン(登録商標)板上に、熱可塑性ポリマーの塗工液(不揮発分=38~42%、pH=9.0の)をスポイトで滴下し(直径5mm以下)、130℃の熱風乾燥機で30分間乾燥した。乾燥後、乾燥皮膜を約0.5g精秤(a)し、それを50mLポリエチレン容器に取り、そこに30mLのトルエンを注ぎ入れ3時間室温で振とうした。その後、内容物を325メッシュでろ過し、メッシュ上に残ったトルエン不溶分をメッシュごと、130℃の熱風乾燥機で1時間乾燥させた。なお、ここで使用する325メッシュはあらかじめその乾燥重量を量っておいた。
 トルエンを揮発させた後、トルエン不溶分の乾燥体と325メッシュの重量から、あらかじめ量っておいた325メッシュ重量を差し引くことでトルエン不溶分の乾燥重量(b)を得た。ゲル分率(トルエン不溶分)は、以下の計算式で算出した。
 熱可塑性ポリマーのゲル分率(トルエン不溶分)=(b)/(a)×100 [%]
(10)熱可塑性ポリマーの電解液に対する膨潤度(倍)
 熱可塑性ポリマー又は熱可塑性ポリマーを分散させた溶液を130℃のオーブン中に1時間静置した後、乾燥させた熱可塑性ポリマーを0.5gになるように切り取り、エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒10gと一緒に50mLのバイアル瓶に入れ、3時間浸透させた後、サンプルを取り出し、上記混合溶媒にて洗浄し、重量(Wa)を測定した。その後、150℃のオーブン中に1時間静置したあと重量(Wb)を測定し、以下の式より熱可塑性ポリマーの電解液に対する膨潤度を測定した。
 熱可塑性ポリマーの電解液に対する膨潤度(倍)=(Wa-Wb)÷(Wb)
(11)熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合
 熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合は、走査型電子顕微鏡(SEM)「型式S-4800、HITACHI社製」を用いて測定した。蓄電デバイス用セパレータをオスミウム蒸着し、加速電圧1.0kV、50倍にて観察して得られた面積を用いて、以下の式から面積割合を算出した。なお、SEM画像にてポリオレフィン微多孔膜表面が見えない領域を熱可塑性ポリマー領域とした。上記測定を3回行い、その平均値を各サンプルの面積割合とした。
熱可塑性ポリマーの面積割合(%)=熱可塑性ポリマーの面積÷画像全体の面積×100
(12)熱可塑性ポリマー被覆層の存在形態(塗工形状)
 熱可塑性ポリマー被覆層の存在形態(塗工形状)は、オスミウム蒸着した蓄電デバイス用セパレータを、走査型電子顕微鏡(SEM)「型式S-4800、HITACHI社製」を用いて、加速電圧1.0kV、50倍にて観察することにより決定した。なお、ポリオレフィン微多孔膜の大部分が熱可塑性ポリマーで覆われた状態(熱可塑性ポリマーの一部が凝集等を起こしてポリオレフィンを完全に覆っていないものも含む)を「非ドット形状」とした。
(13-1)粒状熱可塑性ポリマーの面積割合
 蓄電デバイス用セパレータの最表面に存在する熱可塑性ポリマーに対する粒状熱可塑性ポリマーの面積割合(S)は、以下の式より算出した。
 S(%)=粒状熱可塑性ポリマーの面積÷セパレータの最表面に存在する熱可塑性ポリマーの全面積×100
 粒状熱可塑性ポリマーの面積は、走査型電子顕微鏡(SEM)「型式S-4800、HITACHI社製」を用いて測定した。蓄電デバイス用セパレータをオスミウム蒸着し、加速電圧1.0kV、30000倍にて観察することにより測定した。
(13-2)粒状熱可塑性ポリマーの平均粒径(μm)
 粒状熱可塑性ポリマーの平均粒径は、オスミウム蒸着した蓄電デバイス用セパレータを、走査型電子顕微鏡(SEM)「型式S-4800、HITACHI社製」を用いて、加速電圧1.0kV、30000倍にて観察することにより測定した。粒状熱可塑性ポリマーの一番径が大きい部分を粒径とし、20個の平均値を平均粒径とした。
(14)ドット状熱可塑性ポリマーの平均長径(μm)
 ドット状熱可塑性ポリマーの平均長径は、オスミウム蒸着した蓄電デバイス用セパレータを、走査型電子顕微鏡(SEM)「型式S-4800、HITACHI社製」を用いて、加速電圧1.0kV、50倍にて観察することにより測定した。熱可塑性ポリマーが存在する部分において、熱可塑性ポリマーの存在形態がドット状の場合、一番径が大きい部分を長径とし、20個の平均値をドットの平均長径とした。熱可塑性ポリマーの存在形態が線状、格子目状、縞状、甲羅模様状の場合、一番太い線の幅を長径とし、20個の平均値を平均長径とした。
(15)熱可塑性ポリマーの平均粒径
 熱可塑性ポリマーの平均粒径は、粒子径測定装置(日機装株式会社製、Microtrac UPA150)を使用し、測定した。測定条件としては、ローディングインデックス=0.15~0.3、測定時間300秒とし、得られたデータにおいて50%粒子径の数値を粒子径として記載した。
[評価方法]
(16)セパレータと電極の密着性
 セパレータと電極との密着性は、以下の手順で評価した。
(正極の作製)
 正極活物質としてリチウムコバルト複合酸化物(LiCoO)を92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダとしてポリフッ化ビニリデン(PVDF)3.2質量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗布量は250g/m、活物質嵩密度は3.00g/cmになるようにした。
(負極の作製)
 負極活物質として人造グラファイト96.9質量%、バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン-ブタジエンコポリマーラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗布量は106g/m、活物質嵩密度は1.35g/cmになるようにした。
(密着性試験)
 上記方法により得られた負極を幅20mm、長さ40mmにカットした。この電極上にエチレンカーボネートとジエチルカーボネートを2:3の比率(体積比)にて混合した電解液(富山薬品工業製)を負極が浸る程度にたらし、この上にセパレータを重ねた。この積層体をアルミジップに入れ、80℃、10MPaの条件で、2分間プレスを行ったあと、積層体を取り出し、セパレータを電極から剥がした。
(評価基準)
 ○:セパレータの30%以上に負極活物質が付着した場合。
 △:セパレータの10%以上30%未満の面積に負極活物質が付着した場合。
 ×:セパレータの10%未満の面積に負極活物質が付着した場合。
(17-1)加熱剥離強度及ベタツキ性(セパレータの剥離強度)
 セパレータと被着体として正極集電体(冨士加工紙(株)アルミ箔20μm)を30mm×150mmに切り取り、重ね合わせた後、その積層体をテフロン(登録商標)シート(ニチアス(株)ナフロンPTFEシート TOMBO‐No.9000)で挟んだ。各積層体について下記各条件にてプレスを行うことによって試験用サンプルを得た。
 条件1)温度25℃、圧力5MPaで3分間加圧
 条件2)温度40℃、圧力5MPaで3分間加圧
 条件3)温度80℃、圧力10MPaで3分間加圧
 得られた各試験用サンプルの剥離強度を、島津製作所製のオートグラフAG-IS型(商標)を用いて、JIS K6854-2に準じて引張速度200mm/分で測定した。得られた結果に基づいて、下記評価基準でセパレータの剥離強度を評価した。
 ベタツキ性(セパレータのハンドリング性)の評価基準:条件1)のプレス後の剥離強度の評価基準
  ◎:剥離強度が、4gf/cm以下
  ○:剥離強度が、4gf/cm超6gf/cm以下
  △:剥離強度が、6gf/cm超8gf/cm以下
  ×:剥離強度が、8gf/cm超
 ベタツキ性(セパレータのハンドリング性)の評価基準:条件2)のプレス後の剥離強度の評価基準
  ◎:剥離強度が、4gf/cm以下
  ○:剥離強度が、4gf/cm超6gf/cm以下
  △:剥離強度が、6gf/cm超8gf/cm以下
  ×:剥離強度が、8gf/cm超
 加熱剥離強度の評価基準:条件3)のプレス後の剥離強度の評価基準
  ○:剥離強度が、10gf/cm以上
  ×:剥離強度が、10gf/cm未満
(17-2)ハンドリング性
 多孔膜を幅2cm×長さ15cmに2枚切りとり、熱可塑性ポリマーの塗工面が向い合せになるようにして、25℃、5MPaにて3分間プレスした。サンプルの端を持って180°に折り返し、25mm剥がして、JIS Z 7127に準じて引張試験機(島津製作所製 AG-100A)のチャックにそれぞれ多孔膜の端を固定し、5.0mm/sの速度で、サンプルの180°引き剥がし接着力を測定した。測定開始後、25mmから75mmまでの平均荷重を多孔膜間の剥離強度とした。得られた結果に基づいて、下記評価基準でハンドリング性を評価した。
  ○:剥離強度が4gf未満
  △:4gf以上8gf未満
  ×:8gf以上
(18)熱可塑性ポリマーの塗れ性
 バーコーターを用いたグラビア法により、A4サイズのポリオレフィン微多孔膜上に熱可塑性ポリマー溶液(固形分濃度3%)を塗布し、60℃のオーブン内で5分間、水分の乾燥除去を行った。乾燥後、セパレータを10cm角に切り取り、シャーレ内でエタノールに浸した。そのまま超音波洗浄器(株式会社エスエヌディ製 型式US-102 発振周波数38kHz)で1分間洗浄し、セパレータを取り出してエタノールを常温乾燥させた。
(評価基準)
 ○:熱可塑性ポリマーがポリオレフィン微多孔膜表面に存在している膜。
 ×:熱可塑性ポリマーがポリオレフィン微多孔膜表面に存在していていない膜。
(19-1)熱可塑性ポリマー被覆層とポリオレフィン微多孔膜との接着力
 セパレータの熱可塑性ポリマー被覆層に対し、幅12mm×長さ100mmのテープ(3M社製)を貼りつけた。テープをサンプルから50mm/分の速度で剥がすときの力を、90°剥離強度測定器(IMADA社製、製品名IP-5N)を用いて測定した。得られた測定結果に基づいて、下記評価基準で接着力を評価した。
 ○:6gf/mm以上
 ×:6gf/mm未満
(19-2)熱可塑性ポリマーとポリオレフィン微多孔膜との接着性
 バーコーターを用いたグラビア法により、A4サイズのポリオレフィン微多孔膜上に熱可塑性ポリマー溶液(固形分濃度3%)を塗布し、60℃のオーブン内で5分間、水分の乾燥除去を行い、多孔膜を得た。乾燥後、得られた多孔膜を10cm角に切り取り、シャーレ内でエタノールに浸した。そのまま超音波洗浄器(株式会社エスエヌディ製 型式US-102 発振周波数38kHz)で5分間洗浄し、多孔膜を取り出してエタノールを常温乾燥させ、得られた多孔膜を肉眼にて観察した。得られた測定結果に基づいて、下記評価基準で熱可塑性ポリマーとポリオレフィン微多孔膜との接着性を評価した。
  ○:熱可塑性ポリマーがポリオレフィン微多孔膜の表面に存在している膜
  ×:熱可塑性ポリマーがポリオレフィン微多孔膜の表面に存在していていない膜または熱可塑性ポリマーがポリオレフィン微多孔膜の表面に存在していても、熱可塑性ポリマー部分を指で擦った場合に熱可塑性ポリマーが滑落する膜。
(20)捲回性及び電池のサイクル特性
(20-1)評価用サンプルの作製
<電極>
 正極及び負極を(18)セパレータと電極の密着性と同様に作製した。正極を幅約57mmに負極を幅約58mmに切断してそれぞれ帯状にすることで評価用電極を作製した。
<非水電解液の調整>
 非水電解液は、エチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/Lとなるように溶解させることにより調製した。
<セパレータ>
 実施例及び比較例で得られたセパレータを60mmにスリットして帯状にすることにより評価用セパレータを作製した。
(20-2)捲回性の評価
 (20-1)で得られた、負極、セパレータ、正極、セパレータを、この順に重ね、250gfの巻取張力で渦巻状に複数回捲回することで電極積層体を作製した。10個作製した電極積層体のうちセパレータの撚れやシワの有無を目視で観察し、下記評価基準にて評価をした。
(評価基準)
 ○:撚れやシワ等の外観不良が全く生じなかったもの。
 △:撚れやシワ等の外観不良が1個生じたもの。
 ×:撚れやシワ等の外観不良が2個以上発生したもの。
(20-3)電池のサイクル特性の評価
<電池組立て>
 (20-1)で得られた、負極、セパレータ、正極、セパレータを、この順に重ね、巻取張力を250gf、捲回速度を45mm/秒として、渦巻状に複数回捲回することで電極積層体を作製した。この電極積層体を外径が18mmで高さが65mmのステンレス製容器に収納し、正極集電体から導出したアルミニウム製タブを容器蓋端子部に、負極集電体から導出したニッケル製タブを容器壁に溶接した。その後、真空下、80℃で12時間の乾燥を行った。アルゴンボックス内にて、組立てた電池容器内に上記非水電解液を注入し、封口した。
<前処理>
 組立てた電池を1/3Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電圧充電を8時間行い、その後1/3Cの電流で3.0Vの終止電圧まで放電を行った。次に、1Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電圧充電を3時間行い、その後1Cの電流で3.0Vの終止電圧まで放電を行った。最後に1Cの電流値で4.2Vまで定電流充電をした後、4.2Vの定電圧充電を3時間行い前処理とした。なお、1Cとは電池の基準容量を1時間で放電する電流値を表す。
<サイクル試験>
 上記前処理を行った電池を温度25℃の条件下で、放電電流1Aで放電終止電圧3Vまで放電を行った後、充電電流1Aで充電終止電圧4.2Vまで充電を行った。これを1サイクルとして充放電を繰り返し、初期容量に対する200サイクル後の容量保持率を用いて、以下の基準でサイクル特性を評価した。
(評価基準)
 ◎:容量保持率95%以上100%以下
 ○:容量保持率90%以上95%未満
 ×:容量保持率90%未満
[実施例A]
[製造例1-1A](ポリオレフィン微多孔膜1Aの製造)
 Mvが70万であり、ホモポリマーの高密度ポリエチレンを45質量部と、Mvが30万であり、ホモポリマーの高密度ポリエチレンを45質量部と、Mvが40万であるホモポリマーのポリプロピレンとMvが15万であるホモポリマーのポリプロピレンとの混合物(質量比=4:3)10質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリオレフィン混合物99質量部に酸化防止剤としてテトラキス-[メチレン-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンを1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、窒素雰囲気下で二軸押出機へフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5m/s)を押出機シリンダーにプランジャーポンプにより注入した。押し出される全混合物中に占める流動パラフィンの割合が65質量部となるように、すなわち、ポリマー濃度が35質量部となるように、フィーダー及びポンプの運転条件を調整した。
 次いで、それらを二軸押出機内で230℃に加熱しながら溶融混練し、得られた溶融混練物を、T-ダイを経て表面温度80℃に制御された冷却ロール上に押し出し、その押出物を冷却ロールに接触させ成形(cast)して冷却固化することにより、シート状成形物を得た。このシートを同時二軸延伸機にて倍率7×6.4倍、温度112℃下で延伸した後、塩化メチレンに浸漬して、流動パラフィンを抽出除去後乾燥し、テンター延伸機にて温度130℃、横方向に2倍延伸した。その後、この延伸シートを幅方向に約10%緩和して熱処理を行い、表1に示すポリオレフィン微多孔膜1Aを得た。
 得られたポリオレフィン微多孔膜1Aについて、上記方法により物性を測定した。また得られたポリオレフィン微多孔膜をそのままセパレータとして、上記方法により評価した。得られた結果を表1に示す。
[製造例1-2A](ポリオレフィン微多孔膜2Aの製造)
 延伸温度と緩和率の調整をしたこと以外は、製造例1-1Aと同様の操作により、ポリオレフィン微多孔膜2Aを得た。得られたポリオレフィン微多孔膜2Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-3A](ポリオレフィン微多孔膜3Aの製造)
 粘度平均分子量70万のホモポリマーの高密度ポリエチレン47.5質量部と粘度平均分子量25万のホモポリマーの高密度ポリエチレン47.5質量部と粘度平均分子量40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィンを押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が67質量%(樹脂組成物濃度が33質量%)となるように、フィーダー及びポンプを調整した。溶融混練物を、T-ダイを経て冷却ロール上に押出しキャストすることにより、シート状成形物を得た。その後、延伸温度と緩和率の調整をしたこと以外は、製造例1-1Aと同様の操作により、ポリオレフィン微多孔膜3Aを得た。得られたポリオレフィン微多孔膜3Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-4A](ポリオレフィン微多孔膜4Aの製造)
 粘度平均分子量200万の超高分子量ポリエチレン25質量部と粘度平均分子量70万のホモポリマーの高密度ポリエチレン15質量部と粘度平均分子量が25万の高密度ポリエチレンを30質量部と粘度平均分子量12万でプロピレン単位含有量1mol%の共重合ポリエチレン30質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.3質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィンを押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%(樹脂組成物濃度が35質量%)となるように、フィーダー及びポンプを調整した。溶融混練物を、T-ダイを経て冷却ロール上に押出しキャストすることにより、シート状成形物を得た。その後、延伸温度と緩和率の調整をしたこと以外は、製造例1-1Aと同様の操作により、ポリオレフィン微多孔膜4Aを得た。得られたポリオレフィン微多孔膜4を製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-5A](ポリオレフィン微多孔膜5Aの製造)
 延伸温度と緩和率の調整をしたこと以外は、製造例1-3Aと同様の操作により、ポリオレフィン微多孔膜5を得た。得られたポリオレフィン微多孔膜5を製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-6A](ポリオレフィン微多孔膜6Aの製造)
 粘度平均分子量が100万の超高分子量ポリエチレン19.2質量部、粘度平均分子量が25万の高密度ポリエチレン12.8質量部、フタル酸ジオクチル(DOP)48質量部、微粉シリカ20質量部を混合造粒した後、先端にTダイを装着した二軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ110μmのシート状に成形した。該成型物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃でMD方向に5倍、120℃でTDに2倍延伸し、最後に137℃で熱処理した。得られたポリオレフィン微多孔膜6Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-7A](ポリオレフィン微多孔膜7Aの製造)
 水酸化酸化アルミニウム(平均粒径1.0μm)を96.0質量部とアクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)4.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)1.0質量部を100質量部の水に均一に分散させて塗布液を調製し、ポリオレフィン樹脂多孔膜1Aの表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、多孔層を2μmの厚さで形成して、ポリオレフィン微多孔膜7Aを得た。得られたポリオレフィン微多孔膜7Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-8A](ポリオレフィン微多孔膜8Aの製造)
 ポリオレフィン微多孔膜1Aの一方の表面に製造例1-7Aと同様の方法で多孔層を4μmの厚さで形成して、ポリオレフィン微多孔膜8Aを得た。得られたポリオレフィン微多孔膜8Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-9A](ポリオレフィン微多孔膜9Aの製造)
 ポリオレフィン微多孔膜2Aの一方の表面に製造例1-7Aと同様の方法で多孔層を3μmの厚さで形成して、ポリオレフィン微多孔膜9Aを得た。得られたポリオレフィン微多孔膜9を製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-10A](ポリオレフィン微多孔膜10Aの製造)
 ポリオレフィン微多孔膜5Aの一方の表面に製造例1-7Aと同様の方法で多孔層を7μmの厚さで形成して、ポリオレフィン微多孔膜10Aを得た。得られたポリオレフィン微多孔膜10Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-11A](ポリオレフィン微多孔膜11Aの製造)
 焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径220nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、ポリオレフィン微多孔膜3Aの表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、多孔層を6μmの厚さで形成して、ポリオレフィン微多孔膜11Aを得た。得られたポリオレフィン微多孔膜11Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
[製造例1-12A](ポリオレフィン微多孔膜12Aの製造)
 延伸温度と緩和率の調整をしたこと以外は、製造例1-1Aと同様の操作により、目付け:4.6g/m、膜厚:7μm、気孔率:38%、透気度:150秒、突刺強度:270g、平均孔径:0.070μmのポリオレフィン微多孔膜を得た。前記ポリオレフィン微多孔膜の一方の表面に製造例1-7Aと同様の方法で多孔層を3μmの厚さで形成して、ポリオレフィン微多孔膜12Aを得た。得られたポリオレフィン微多孔膜12Aを製造例1-1Aと同様に上記方法により評価した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[製造例2-1A](原料ポリマー1の製造)
 撹拌機、還流冷却器、滴下槽及び温度計を取りつけた反応容器に、イオン交換水70.4質量部と、「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)0.5質量部と、を投入し、反応容器内部温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウム(2%水溶液)を7.5質量部添加した。
 過硫酸アンモニウム水溶液を添加した5分後に、メタクリル酸メチル38.5質量部、アクリル酸n-ブチル19.6質量部、アクリル酸2-エチルヘキシル31.9質量部、メタクリル酸0.1質量部、アクリル酸0.1質量部、メタクリル酸2-ヒドロキシエチル2質量部、アクリルアミド5質量部、メタクリル酸グリシジル2.8質量部、トリメチロールプロパントリアクリレート(A-TMPT、新中村化学工業株式会社製)0.7質量部、「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)3質量部、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)3質量部、p-スチレンスルホン酸ナトリウム0.05質量部、過硫酸アンモニウム(2%水溶液)7.5質量部、γ-メタクリロキシプロピルトリメトキシシラン0.3質量部、及びイオン交換水52質量部の混合物を、ホモミキサーにより5分間混合させて、乳化液を作製した。得られた乳化液を、滴下槽から反応容器に150分かけて滴下した。
 乳化液の滴下終了後、反応容器内部温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、水酸化アンモニウム水溶液(25%水溶液)でpH=9.0に調整し、濃度40%のアクリル系コポリマーラテックスを得た(原料ポリマー1A)。得られた原料ポリマー1Aについて、上記方法により評価した。得られた結果を表2に示す。
[製造例2-2A~2-8A](原料ポリマー2A~8A)
 モノマー及びその他使用原料の組成を、表2に記載のとおりに変更する以外は、ポリマー1Aと同様にして、アクリル系コポリマーラテックスを得た(原料ポリマー2A~8A)。得られた原料ポリマー2A~8Aについて、上記方法により評価した。得られた結果を表2に示す。
 また、下記原料ポリマー9A~18Aについても上記方法により評価した。得られた結果を表2に示す。なお、原料ポリマー9A~18AのTgは全てFOXの式による概算値である。
 原料ポリマー9A:スチレンブタジエンポリマー、粒子径300nm、Tg0℃、トルエン不溶分95%、電解質溶媒膨潤度1.7倍
 原料ポリマー10A:スチレンブタジエンポリマー、粒子径377nm、Tg30℃、トルエン不溶分96%、電解質溶媒膨潤度1.7倍
 原料ポリマー11A:スチレンブタジエンポリマー、粒子径380nm、Tg90℃、トルエン不溶分95%、電解質溶媒膨潤度1.6倍
 原料ポリマー12A:アクリルポリマー、粒子径380nm、Tg90℃、トルエン不溶分98%、電解質溶媒膨潤度2.8倍、原料ポリマー1~8と同様のモノマーや原料を用いて得た
 原料ポリマー13A:アクリルポリマー、粒子径50nm、Tg90℃、トルエン不溶分97%、電解質溶媒膨潤度2.9倍、原料ポリマー1~8と同様のモノマーや原料を用いて得た
 原料ポリマー14A:アクリルポリマー、粒子径50nm、Tg30℃、トルエン不溶分99%、電解質溶媒膨潤度3.0倍、原料ポリマー1~8と同様のモノマーや原料を用いて得た
 原料ポリマー15A:アクリルポリマー、粒子径500nm、Tg30℃、トルエン不溶分98%、電解質溶媒膨潤度2.7倍、原料ポリマー1~8と同様のモノマーや原料を用いて得た
 原料ポリマー16A:アクリルポリマー、粒子径500nm、Tg90℃、トルエン不溶分96%、電解質溶媒膨潤度3.2倍、原料ポリマー1~8と同様のモノマーや原料を用いて得た
 原料ポリマー17A:アクリルポリマー、粒子径1000nm、Tg90℃、トルエン不溶分96%、電解質溶媒膨潤度3.0倍、原料ポリマー1~8と同様のモノマーや原料を用いて得た
 原料ポリマー18A:アクリル(コアシェル)、粒子径350nm、コアTg-20℃、シェルTg:50℃、トルエン不溶分96%、電解質溶媒膨潤度3.2倍、原料ポリマー1~8と同様のモノマーや原料を用いて得た
Figure JPOXMLDOC01-appb-T000002
※なお、表2に記載の原料ポリマー1A~8AのTgは全てFOXの式による概算値である。
(注) 表2中の原材料名
MMA   :メタクリル酸メチル
BA    :アクリル酸n-ブチル
EHA   :アクリル酸2-エチルヘキシル
MAA   :メタクリル酸
AA    :アクリル酸
HEMA  :メタクリル酸2-ヒドロキシエチル
AM    :アクリルアミド
GMA   :メタクリル酸グリシジル
NaSS  :p-スチレンスルホン酸ナトリウム
A-TMPT:トリメチロールプロパントリアクリレート(新中村化学工業株式会社製)
KH1025:アクアロンKH1025(登録商標、第一工業製薬株式会社製)
SR1025:アデカリアソープSR1025(登録商標、株式会社ADEKA製)
APS   :過硫酸アンモニウム
[実施例1A]
 表2に記載の原料ポリマー8Aを固形分で2.4質量部、原料ポリマー1Aを固形分で0.6質量部計りとり、92.5質量部の水に均一に分散させて、熱可塑性ポリマーを含む塗工液を調製した。次いで、表1に記載のポリオレフィン微多孔膜1の片面表面にスプレーを用いて塗工液を塗布した。60℃にて乾燥して塗工液の水を除去した。さらに、もう片面も同様に塗工液を塗布し、再度乾燥させることにより、ポリオレフィン微多孔膜の両面に熱可塑性ポリマーを有する蓄電デバイス用セパレータを得た。得られたセパレータについて、上記方法により、評価した。得られた結果を表3に示す。
[実施例2A~40A、比較例1A~4A]
 表3~6に記載した組み合わせで、熱可塑性ポリマーを含有する塗工液を、ポリオレフィン微多孔膜の両面に各種方法(スプレー、グラビア)により塗布したこと以外は実施例1Aと同様にして、蓄電デバイス用セパレータを作製した。得られたセパレータの物性及び評価結果を表3~6に示す。なお、表3~6中における熱可塑性ポリマーのTgは上記(8)に記載の方法で測定した値である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 なお、実施例Aに記載の蓄電デバイス用セパレータにおいては、熱可塑性ポリマー被覆層を構成する樹脂が20℃以上および20℃未満の領域にガラス転移点を有し、25℃のプレス条件では剥離強度が小さく、80℃のプレス条件では剥離強度が大きくなるという性質を有することから、熱可塑性ポリマー被覆層において、蓄電デバイス用セパレータの最表面側に、20℃以上のガラス転移温度を有する熱可塑性樹脂が多く存在し、ポリオレフィン微多孔膜と熱可塑性ポリマー被覆層の界面側に、20℃未満のガラス転移温度を有する熱可塑性樹脂が多く存在することが推定される。
[実施例B]
[製造例1-1B]
 粘度平均分子量25万、融点137℃の高密度ポリエチレン1を14.25質量部、粘度平均分子量70万、融点137℃の高密度ポリエチレン2を14.25質量部、粘度平均分子量40万、融点163℃のポリプロピレン1.5質量部、酸化防止剤としてテトラキス-[メチレン-(3’、5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンを0.2質量部配合し原料を調製した。
 各配合物は口径25mmL/D=48の二軸押出機フィーダーを介して投入した。さらに、流動パラフィン68質量部をサイドフィードでそれぞれの押出機に注入し、押出量が1時間当たり16kgとなるように調整し、200℃、200rpmの条件で混練した後、Tダイから200℃の条件で押出した。ただちに、40℃に調温したキャストロールで冷却固化させ、所望の厚みのシートを成形した。このシートを同時二軸延伸機にて倍率7×6.4倍、温度112℃下で延伸した後、塩化メチレンに浸漬して、流動パラフィンを抽出除去後乾燥し、テンター延伸機により横方向に延伸した。その後、この延伸シートを幅方向に緩和して熱処理を行い、ポリオレフィン微多孔膜1Bを得た。得られた微多孔膜の物性を表7に示す。
[製造例1-2B~1-8B]
 製造例1-1Bと同様にして、延伸シートの幅方向の緩和率を変更したポリオレフィン微多孔膜2B~8Bを得た。得られた微多孔膜の物性を表7に示す。
[製造例2-9B~2-13B]
 製造例1-7A~1-11Aと同様の方法により製造して、ポリオレフィン微多孔膜9B~13Bを得た。得られた微多孔膜の物性を表7に示す。
Figure JPOXMLDOC01-appb-T000007
[製造例2-1B(アクリルエマルジョンの塗工液の製造)]
 撹拌機、還流冷却器、滴下槽及び温度計を取りつけた反応容器に、イオン交換水70.4部と「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)0.5部と「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)0.5部を投入し、反応容器内部温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウム(2%水溶液)を7.5部添加した。
 過硫酸アンモニウム水溶液(APS)を添加した5分後に、メタクリル酸メチル(MMA)38.9部、アクリル酸n-ブチル(BA)26.5部、アクリル酸2-エチルヘキシル(EHA)27部、メタクリル酸(MAA)0.1部、アクリル酸(AA)0.1部、メタクリル酸2-ヒドロキシエチル(HEMA)2部、アクリルアミド(AM)5部、メタクリル酸グリシジル(GMA)0.4部、トリメチロールプロパントリアクリレート(A-TMPT、新中村化学工業株式会社製)2部、「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)3部、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)3部、p-スチレンスルホン酸ナトリウム(NaSS)0.05部、過硫酸アンモニウム(2%水溶液)7.5部、γ-メタクリロキシプロピルトリメトキシシラン0.3部、イオン交換水52部の混合物をホモミキサーにより5分間混合させて作製した乳化液を、滴下槽から反応容器に150分かけて滴下した。
 乳化液の滴下終了後、反応容器内部温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、水酸化アンモニウム水溶液(25%水溶液)でpH=9.0に調整し、熱可塑性ポリマー含有塗布液1Bを得た。
[製造例2-2B~2-10B]
 単量体及びその他使用原料の組成を、表8に記載のとおりに変更する以外は、製造例1-1Bと同様にして、熱可塑性ポリマー含有塗布液2B~10Bを得た。
Figure JPOXMLDOC01-appb-T000008
※なお、表8に記載の熱可塑性ポリマーのTgは全てFOXの式による概算値である。
(注) 表8中の原材料名
MMA   :メタクリル酸メチル
BA    :アクリル酸n-ブチル
EHA   :アクリル酸2-エチルヘキシル
MAA   :メタクリル酸
AA    :アクリル酸
HEMA  :メタクリル酸2-ヒドロキシエチル
AM    :アクリルアミド
GMA   :メタクリル酸グリシジル
NaSS  :p-スチレンスルホン酸ナトリウム
A-TMPT:トリメチロールプロパントリアクリレート(新中村化学工業株式会社製)
KH1025:アクアロンKH1025(登録商標、第一工業製薬株式会社製)
SR1025:アデカリアソープSR1025(登録商標、株式会社ADEKA製)
APS   :過硫酸アンモニウム
[実施例1B]
 熱可塑性ポリマー含有塗布液1B7.5質量部を92.5質量部の水に均一に分散させて塗布液を調製し、ポリオレフィン微多孔膜1Bの表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去した。さらに、もう片面も同様にして塗布液を塗工し、乾燥させることにより多孔膜(蓄電デバイス用セパレータ)を得た。得られた多孔膜の物性及び評価結果を表9に示す。
[実施例2B~8B]
 熱可塑性ポリマー含有塗布液2B~5Bを用いた以外は実施例1Aと同様にして、多孔膜(蓄電デバイス用セパレータ)を作製した。使用した熱可塑性ポリマー含有塗布液及びポリオレフィン微多孔膜と得られた多孔膜(蓄電デバイス用セパレータ)の物性及び評価結果を表9に示す。
[実施例9B]
 ポリオレフィン微多孔膜1Bに、熱可塑性ポリマー含有塗布液5Bをスプレーにて塗布し、60℃にて乾燥して水を除去した。さらに、もう片面も同様にして熱可塑性ポリマー含有塗布液5Bを塗工し、乾燥させることにより多孔膜(蓄電デバイス用セパレータ)を得た。得られた多孔膜(蓄電デバイス用セパレータ)の物性及び評価結果を表9に示す。
[実施例10B]
 ポリオレフィン微多孔膜1Bに、熱可塑性ポリマー含有塗布液5Bをインクジェットにて解像度が180Dpiとなるように塗布し、60℃にて乾燥して水を除去した。さらに、もう片面も同様にして熱可塑性ポリマー含有塗布5Bを塗工し、乾燥させることにより蓄多孔膜(蓄電デバイス用セパレータ)を得た。得られた多孔膜(蓄電デバイス用セパレータ)の物性及び評価結果を表9に示す。
[実施例11B~13B]
 ポリオレフィン微多孔膜1Bに、熱可塑性ポリマー含有塗布液5Bをドット加工したグラビアコーターを用いて塗布し、60℃にて乾燥して水を除去した。さらに、もう片面も同様にして熱可塑性ポリマー含有塗布液5Bを塗工し、乾燥させることにより多孔膜(蓄電デバイス用セパレータ)を得た。得られた多孔膜(蓄電デバイス用セパレータ)の物性及び評価結果を表9に示す。
[実施例14B~27B]
 表9及び10に記載のポリオレフィン微多孔膜と熱可塑性ポリマー含有塗布液を用いたこと以外は、実施例9Bと同様にして、多孔膜(蓄電デバイス用セパレータ)を作製した。得られた多孔膜(蓄電デバイス用セパレータ)の物性及び評価結果を表9及び10に示す。
[比較例1B~3B]
 表11に記載のポリオレフィン微多孔膜と熱可塑性ポリマー含有塗布液を用いたこと以外は、実施例1Bと同様にして、多孔膜(蓄電デバイス用セパレータ)を作製した。得られた多孔膜(蓄電デバイス用セパレータ)の物性及び評価結果を表11に示す。
〔レート特性〕
(電極の作製)
a.正極の作製
 正極活物質としてリチウムコバルト複合酸化物(LiCoO)を92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダとしてポリフッ化ビニリデン(PVDF)3.2質量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。この時、正極の活物質塗布量は250g/m、活物質嵩密度は3.00g/cmになるようにした。
b.負極の作製
 負極活物質として人造グラファイト96.9質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン-ブタジエンコポリマーラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。この時、負極の活物質塗布量は106g/m、活物質嵩密度は1.35g/cmになるようにした。
(電池の作製)
a.正極の作製
 前記(電極の作製)のaと同様にして作製した正極を面積2.00cmの円形に打ち抜いた。
b.負極の作製
 前記(電極の作製)のbと同様にして作製した負極を面積2.05cmの円形に打ち抜いた。
c.非水電解液
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0ml/Lとなるように溶解させて調製した。
d.電池組立
 セパレータとして、実施例1Bの多孔膜を用い、正極と負極の活物質面が対向するように、下から負極、多孔膜、正極の順に重ねた。この積層体を、容器本体と蓋が絶縁されている蓋付きステンレス金属製容器に、負極の銅箔、正極のアルミ箔が、それぞれ、容器本体、蓋と接するように収納した。この容器内に、非水電解液を注入して密閉し、非水電解液二次電池を得た(実施例1B)。
 組み立てた簡易電池を、25℃において、電流値3mA(約0.5C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計約6時間、電池作成後の最初の充電を行い、その後電流値3mAで電池電圧3.0Vまで放電した。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値6mAで電池電圧3.0Vまで放電して、その時の放電容量を1C放電容量(mAh)とした。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値12mA(約2.0C)で電池電圧3.0Vまで放電して、その時の放電容量を2C放電容量(mAh)とした。
 1C放電容量に対する2C放電容量の割合を算出し、この値をレート特性とした。評価結果を表9に示す。
レート特性(%)=(2C放電容量/1C放電容量)×100
[実施例2B~27B及び比較例1B~3B(電池)]
 セパレータとして、実施例1Bの多孔膜に代えて、実施例2B~27B及び比較例1B~3Bの多孔膜を使用するほかは、実施例1Bと同様に、電池を作製した(実施例2B~27B及び比較例1B~3B)。得られた電池のレート特性を評価した。評価結果を表9~11に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 本出願は、2012年7月26日に日本国特許庁へ出願された日本特許出願(特願2012-166179)、及び、2012年10月24日に日本国特許庁へ出願された日本特許出願(特願2012-234852)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、電極との密着性に優れるセパレータ、さらにはハンドリング性にも優れるセパレータを提供できる。したがって、本発明は、非水系電解液二次電池等の電池やコンデンサー、キャパシタ等の蓄電デバイス用セパレータとして有用である。

Claims (16)

  1.  ポリオレフィン微多孔膜と、該ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層と、を有し、
     前記熱可塑性ポリマー被覆層は、前記ポリオレフィン微多孔膜上に前記熱可塑性ポリマーを含む部分と前記熱可塑性ポリマーを含まない部分とが海島状に存在する層であり、
     前記熱可塑性ポリマー被覆層に含まれる熱可塑性ポリマーがガラス転移温度を少なくとも2つ有しており、
     前記ガラス転移温度のうち少なくとも一つは20℃未満の領域に存在し、
     前記ガラス転移温度のうち少なくとも一つは20℃以上の領域に存在する、
    蓄電デバイス用セパレータ。
  2.  前記熱可塑性ポリマー被覆層において、
     前記蓄電デバイス用セパレータの最表面側に、20℃以上のガラス転移温度を有する熱可塑性樹脂が存在し、かつ、
     前記ポリオレフィン微多孔膜と前記熱可塑性ポリマー被覆層の界面側に、20℃未満のガラス転移温度を有する熱可塑性樹脂が存在している、請求項1に記載の蓄電デバイス用セパレータ。
  3.  前記熱可塑性ポリマー被覆層が存在する、前記蓄電デバイス用セパレータの最表面に対して、アルミ箔を、温度25℃、圧力5MPaで3分間加圧した後の剥離強度が、8gf/cm以下である、請求項1又は2に記載の蓄電デバイス用セパレータ。
  4.  前記熱可塑性ポリマー被覆層が存在する、前記蓄電デバイス用セパレータの最表面に対して、アルミ箔を、温度80℃、圧力10MPaで3分間加圧した後の剥離強度が、10gf/cm以上である、請求項1~3のいずれか1項に記載の蓄電デバイス用セパレータ。
  5.  前記ポリオレフィン微多孔膜と前記熱可塑性ポリマー被覆層との90°剥離強度が6gf/mm以上である、請求項1~4のいずれか1項に記載の蓄電デバイス用セパレータ。
  6.  前記熱可塑性ポリマー被覆層において、前記蓄電デバイス用セパレータの最表面に存在する熱可塑性ポリマーの少なくとも一部が粒状熱可塑性ポリマーである、請求項1~5のいずれか1項に記載の蓄電デバイス用セパレータ。
  7.  前記粒状熱可塑性ポリマーの平均粒子径が、0.01μm~0.4μmである、請求項6に記載の蓄電デバイス用セパレータ。
  8.  前記熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合が、前記ポリオレフィン微多孔膜の全面積100%に対して、95%以下である、請求項1~7のいずれか一項に記載の蓄電デバイス用セパレータ。
  9.  前記熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合が、前記ポリオレフィン微多孔膜の全面積100%に対して、50%以下である、請求項1~8のいずれか一項に記載の蓄電デバイス用セパレータ。
  10.  請求項1~9に記載の蓄電デバイス用セパレータと電極とが積層した、積層体。
  11.  ポリオレフィン微多孔膜と、該ポリオレフィン微多孔膜の少なくとも一方の表面の少なくとも一部を被覆する熱可塑性ポリマー被覆層と、を有し、
     前記熱可塑性ポリマー被覆層に含まれる熱可塑性ポリマーのガラス転移温度が、-10℃以上40℃以下であり、かつ
     電解液に対する膨潤度が5倍以下である、多孔膜。
  12.  前記熱可塑性ポリマー被覆層の平均厚みが、1.5μm以下である、請求項11に記載の多孔膜。
  13.  前記熱可塑性ポリマー被覆層によって被覆されるポリオレフィン微多孔膜の面積割合が、前記ポリオレフィン微多孔膜の全面積100%に対して、70%以下である、請求項11又は12に記載の多孔膜。
  14.  前記熱可塑性ポリマーのゲル分率が、90%以上である、請求項11~13いずれか一項に記載の多孔膜。
  15.  前記熱可塑性ポリマー被覆層は、前記ポリオレフィン微多孔膜上に前記熱可塑性ポリマーを含む部分と前記熱可塑性ポリマーを含まない部分とが海島状に存在する層であり、
     前記熱可塑性ポリマーを含む部分がドット状に形成されている、請求項11~14いずれか一項に記載の多孔膜。
  16.  前記ドットの平均長径が20~1000μmである、請求項15に記載の多孔膜。
PCT/JP2013/070374 2012-07-26 2013-07-26 蓄電デバイス用セパレータ、積層体、及び多孔膜 WO2014017651A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PL13823038T PL2879206T3 (pl) 2012-07-26 2013-07-26 Separator dla urządzenia do magazynowania energii elektrycznej oraz urządzenie do magazynowania energii elektrycznej
KR1020157000312A KR101979063B1 (ko) 2012-07-26 2013-07-26 축전 디바이스용 세퍼레이터, 적층체 및 다공막
JP2014527037A JP5876577B2 (ja) 2012-07-26 2013-07-26 蓄電デバイス用セパレータ、積層体、及び多孔膜
US14/416,735 US10153473B2 (en) 2012-07-26 2013-07-26 Separator for electricity storage device, laminate and porous film
CN201380037265.2A CN104428920B (zh) 2012-07-26 2013-07-26 蓄电设备用分隔件、层叠体及多孔膜
KR1020177033816A KR20170132349A (ko) 2012-07-26 2013-07-26 축전 디바이스용 세퍼레이터, 적층체 및 다공막
EP13823038.8A EP2879206B1 (en) 2012-07-26 2013-07-26 Separator for energy storage device, laminated body, and energy storage device
PL16157660T PL3054502T3 (pl) 2012-07-26 2013-07-26 Separator dla urządzenia do magazynowania energii elektrycznej oraz urządzenie do magazynowania energii elektrycznej
KR1020167019037A KR101802892B1 (ko) 2012-07-26 2013-07-26 축전 디바이스용 세퍼레이터, 적층체 및 다공막
EP16157660.8A EP3054502B1 (en) 2012-07-26 2013-07-26 Separator for electricity storage device and electricity storage device
US16/178,839 US10811659B2 (en) 2012-07-26 2018-11-02 Separator for electricity storage device, laminate and porous film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-166179 2012-07-26
JP2012166179 2012-07-26
JP2012234852 2012-10-24
JP2012-234852 2012-10-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/416,735 A-371-Of-International US10153473B2 (en) 2012-07-26 2013-07-26 Separator for electricity storage device, laminate and porous film
US16/178,839 Division US10811659B2 (en) 2012-07-26 2018-11-02 Separator for electricity storage device, laminate and porous film

Publications (1)

Publication Number Publication Date
WO2014017651A1 true WO2014017651A1 (ja) 2014-01-30

Family

ID=49997455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070374 WO2014017651A1 (ja) 2012-07-26 2013-07-26 蓄電デバイス用セパレータ、積層体、及び多孔膜

Country Status (10)

Country Link
US (2) US10153473B2 (ja)
EP (2) EP3054502B1 (ja)
JP (2) JP5876577B2 (ja)
KR (3) KR101802892B1 (ja)
CN (1) CN104428920B (ja)
HU (2) HUE042909T2 (ja)
MY (2) MY168563A (ja)
PL (2) PL2879206T3 (ja)
TW (1) TWI587561B (ja)
WO (1) WO2014017651A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081035A1 (ja) * 2012-11-26 2014-05-30 日本ゼオン株式会社 電極/セパレータ積層体の製造方法およびリチウムイオン二次電池
JP2015053118A (ja) * 2013-09-05 2015-03-19 日立マクセル株式会社 リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池およびその製造方法
WO2016017066A1 (ja) * 2014-07-30 2016-02-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
WO2016031163A1 (ja) * 2014-08-28 2016-03-03 日本ゼオン株式会社 非水系二次電池用積層体および非水系二次電池部材の製造方法
JP2016042454A (ja) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用セパレータ、それを採用したリチウム二次電池及びその製造方法
JP2016072197A (ja) * 2014-10-02 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ、及び電気化学素子
JP2016071963A (ja) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2016072155A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータの製造方法
JP2016072117A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2016072247A (ja) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2016076337A (ja) * 2014-10-03 2016-05-12 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ及び非水電解液電池
JP2016100149A (ja) * 2014-11-20 2016-05-30 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
JP2016107642A (ja) * 2014-12-09 2016-06-20 旭化成イーマテリアルズ株式会社 多層多孔膜及び蓄電デバイス用セパレータ
WO2016110894A1 (ja) * 2015-01-09 2016-07-14 日本ゼオン株式会社 非水系二次電池用セパレータおよびその製造方法、並びに、非水系二次電池
KR20160129033A (ko) 2014-09-26 2016-11-08 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터
JP2016197505A (ja) * 2015-04-02 2016-11-24 旭化成株式会社 捲回体
JP2017027945A (ja) * 2015-07-24 2017-02-02 旭化成株式会社 蓄電デバイス用セパレータ
WO2017073022A1 (ja) * 2015-10-28 2017-05-04 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池用接着層付きセパレータ、非水系二次電池用接着層付き電極、並びに、非水系二次電池およびその製造方法
JP2017091744A (ja) * 2015-11-06 2017-05-25 旭化成株式会社 蓄電デバイス用セパレータ捲回体
JP2017098204A (ja) * 2015-11-27 2017-06-01 日本ゼオン株式会社 非水系二次電池
US20180040867A1 (en) * 2015-03-05 2018-02-08 Nec Corporation Separator for secondary battery, and secondary battery equipped therewith
JP2018041726A (ja) * 2016-08-31 2018-03-15 旭化成株式会社 蓄電デバイス用セパレータ
WO2019003476A1 (ja) * 2017-06-29 2019-01-03 日立化成株式会社 活物質保持用チューブ及びその製造方法、電極並びに鉛蓄電池
JP2019009117A (ja) * 2017-06-20 2019-01-17 旭化成株式会社 蓄電デバイス用セパレータの捲回体、及びその製造方法
JP2019008883A (ja) * 2017-06-20 2019-01-17 旭化成株式会社 セパレータの捲回体
KR20190015105A (ko) * 2017-08-03 2019-02-13 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터, 및 비수계 이차전지
JP2019026796A (ja) * 2017-08-02 2019-02-21 積水化学工業株式会社 合成樹脂フィルム、蓄電デバイス用セパレータ及び蓄電デバイス
JP2019046633A (ja) * 2017-08-31 2019-03-22 旭化成株式会社 蓄電デバイス用セパレータ
WO2020022343A1 (ja) * 2018-07-24 2020-01-30 日本ゼオン株式会社 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池
CN114024090A (zh) * 2021-10-27 2022-02-08 长园泽晖新能源材料研究院(珠海)有限公司 一种复合锂离子电池隔膜及其制备方法
KR20220153626A (ko) 2020-05-11 2022-11-18 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터의 제조 방법
WO2023038069A1 (ja) 2021-09-07 2023-03-16 旭化成株式会社 蓄電デバイス用セパレータ

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018299B1 (ko) * 2015-04-22 2019-11-14 주식회사 엘지화학 리튬 이차전지용 분리막 및 그의 제조방법
KR102051544B1 (ko) * 2015-11-05 2019-12-03 주식회사 엘지화학 완충형 바인더층을 가진 분리막 및 이를 포함하는 전극조립체
JP6736375B2 (ja) 2016-06-21 2020-08-05 住友化学株式会社 積層体
JP6755726B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP7074419B2 (ja) 2016-06-21 2022-05-24 住友化学株式会社 積層体
JP6754628B2 (ja) 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP6647973B2 (ja) 2016-06-21 2020-02-14 住友化学株式会社 積層体
JP6758943B2 (ja) 2016-06-21 2020-09-23 住友化学株式会社 積層体
US10608226B2 (en) 2016-08-17 2020-03-31 Hong Kong Applied Sciene and Technology Research Institute Co. Ltd. Separator for a rechargeable battery
US10109843B2 (en) 2016-08-17 2018-10-23 Hong Kong Applied Science and Technology Research Institute Company Limited Separator for a rechargeable battery
WO2018066430A1 (ja) * 2016-10-07 2018-04-12 ダイキン工業株式会社 二次電池用結着剤及び二次電池用電極合剤
US11011794B2 (en) 2016-11-24 2021-05-18 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
DE102016226289A1 (de) 2016-12-29 2018-07-05 Robert Bosch Gmbh Schutzschicht mit verbesserter Kontaktierung für Lithium-Zellen und/oder Lithium-Batterien
DE102016226291A1 (de) 2016-12-29 2018-07-05 Robert Bosch Gmbh Schutzschicht mit verbesserter Kontaktierung für Lithium-Zellen und/oder Lithium-Batterien
KR102350567B1 (ko) * 2017-04-14 2022-01-18 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 절연성 다공질층
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP7002229B2 (ja) * 2017-06-20 2022-01-20 旭化成株式会社 パターン塗工用スラリー
JP7103760B2 (ja) * 2017-06-20 2022-07-20 旭化成株式会社 パターン塗工用スラリー
WO2019045077A1 (ja) * 2017-08-31 2019-03-07 旭化成株式会社 ポリオレフィン微多孔膜
GB2566991A (en) * 2017-09-29 2019-04-03 Sumitomo Chemical Co Separator
KR102142351B1 (ko) * 2017-11-10 2020-08-07 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터, 및 축전 디바이스
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
KR20200102994A (ko) 2017-12-27 2020-09-01 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 전지 부재, 비수계 이차 전지용 적층체의 제조 방법, 및 비수계 이차 전지
CN111492506B (zh) * 2017-12-27 2022-12-27 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池、电池构件、以及层叠体的制造方法
KR102263460B1 (ko) * 2018-01-05 2021-06-11 주식회사 엘지에너지솔루션 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
CN111712951B (zh) * 2018-03-26 2023-09-12 日本瑞翁株式会社 非水系二次电池用层叠体的制造方法和非水系二次电池的制造方法
CN112088446B (zh) * 2018-05-17 2023-06-20 日本瑞翁株式会社 非水系二次电池用浆料、非水系二次电池用间隔件、非水系二次电池用电极、非水系二次电池用层叠体以及非水系二次电池
CN108711605A (zh) * 2018-07-10 2018-10-26 深圳中兴新材技术股份有限公司 一种复合电池隔膜、制备方法和电池
US20210074983A1 (en) * 2018-09-25 2021-03-11 Asahi Kasei Kabushiki Kaisha High-Strength Separator
US20220013819A1 (en) * 2018-11-26 2022-01-13 W. L. Gore & Associates G.K. Catalyst device for lead-acid battery, and lead-acid battery
CN109713200A (zh) * 2018-12-28 2019-05-03 河北金力新能源科技股份有限公司 化学修饰的锂电池隔膜及其制备方法
US20220094019A1 (en) * 2019-01-04 2022-03-24 Ceigard, LLC Coated microporous membranes, and battery separators, batteries, vehicles, and devices comprising the same
US11171328B2 (en) 2019-03-01 2021-11-09 Imprint Energy, Inc. Solvent-free electrochemical cells with conductive pressure sensitive adhesives attaching current collectors
JP2022538182A (ja) 2019-07-01 2022-08-31 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. コーティングされた電池セパレータの製造方法
KR20220027877A (ko) 2019-07-01 2022-03-08 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 배터리 세퍼레이터 코팅재
JP7296042B2 (ja) * 2019-10-18 2023-06-22 トヨタ自動車株式会社 非水電解液二次電池
WO2021126119A1 (en) * 2019-12-17 2021-06-24 Ankara Üniversitesi Rektörlüğü A novel separator for supercapacitors
WO2021153516A1 (ja) 2020-01-31 2021-08-05 日本ゼオン株式会社 二次電池用積層体及び二次電池
CN111628131B (zh) * 2020-06-09 2022-02-01 江苏厚生新能源科技有限公司 具备低温关断性能的涂覆隔膜及制备方法、锂电池、汽车
EP4071919A4 (en) 2020-11-30 2024-04-24 Contemporary Amperex Technology Co., Limited INSULATION MEMBRANE, SECONDARY BATTERY AND CORRESPONDING BATTERY MODULE, BATTERY PACK AND DEVICE
TWI795101B (zh) * 2020-11-30 2023-03-01 日商旭化成股份有限公司 蓄電裝置用分隔件及包含其之蓄電裝置
WO2022110223A1 (zh) 2020-11-30 2022-06-02 宁德时代新能源科技股份有限公司 一种隔离膜、含有它的二次电池及其相关的电池模块、电池包和装置
JP2024501496A (ja) * 2021-07-09 2024-01-12 エルジー エナジー ソリューション リミテッド 電極組立体
US20230016078A1 (en) * 2021-07-09 2023-01-19 Lg Energy Solution, Ltd. Electrode Assembly
KR20240078071A (ko) * 2022-11-25 2024-06-03 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251944A (ja) * 1998-09-17 2000-09-14 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法
JP2004506542A (ja) * 2000-08-12 2004-03-04 エルジー・ケミカル・カンパニー・リミテッド 多成分系複合フィルム及びその製造方法
JP2004281208A (ja) * 2003-03-14 2004-10-07 Tomoegawa Paper Co Ltd 電子部品用セパレータ
JP2005038854A (ja) * 2003-07-15 2005-02-10 Celgard Inc リチウムイオン電池用の高溶融完全性電池セパレータ
JP2006155914A (ja) * 2004-11-25 2006-06-15 Toyobo Co Ltd 複合多孔質膜、これの製造法及びこれを用いた二次電池
JP2007059271A (ja) 2005-08-25 2007-03-08 Nitto Denko Corp 電池用セパレータのための接着剤担持多孔質フイルムとそれを用いる電池の製造方法
JP2011054502A (ja) 2009-09-04 2011-03-17 Hitachi Maxell Ltd リチウム二次電池およびその製造方法
JP2011216376A (ja) * 2010-03-31 2011-10-27 Ube Industries Ltd 複合多孔質フィルム及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091272A (en) * 1990-05-29 1992-02-25 Duracell Inc. Separator for electrochemical cells
US6465125B1 (en) 1998-09-17 2002-10-15 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
KR20030010406A (ko) 2001-07-27 2003-02-05 주식회사 뉴턴에너지 다공성 격리막 및 이의 제조방법
US7475611B2 (en) * 2002-03-29 2009-01-13 Tai-Her Yang Device for externally rotary drive of offset motor
JP4381054B2 (ja) * 2002-11-13 2009-12-09 日東電工株式会社 電池用セパレータのための部分架橋接着剤担持多孔質フィルムとその利用
JP2004323827A (ja) 2003-04-09 2004-11-18 Nitto Denko Corp 電池用セパレータのための接着剤担持多孔質フィルムとその利用
KR101110264B1 (ko) 2003-11-19 2012-03-13 도레이 도넨 기노마쿠 고도가이샤 복합 미다공막 및 그 제조 방법과 용도
JP3953026B2 (ja) 2003-12-12 2007-08-01 松下電器産業株式会社 リチウムイオン二次電池用極板およびリチウムイオン二次電池並びにその製造方法
KR100647966B1 (ko) 2004-02-24 2006-11-23 가부시키가이샤 도모에가와 세이시쇼 전자부품용 세퍼레이터 및 그 제조방법
US20090142657A1 (en) * 2005-07-12 2009-06-04 William Winchin Yen Battery Separator
JP4989053B2 (ja) * 2005-07-29 2012-08-01 日東電工株式会社 電池用セパレータとこれを用いる電池の製造方法
KR100727248B1 (ko) * 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
EP2261275B1 (en) * 2008-03-31 2013-10-02 Asahi Kasei E-materials Corporation Microporous film and method for producing the same
KR101579639B1 (ko) * 2009-05-18 2015-12-22 제온 코포레이션 다공막 및 2 차 전지
US20120128631A1 (en) 2009-05-19 2012-05-24 San Diego State University (SDSU) Foundation, dba San Diego State University (SDSU) Research Compositions and methods for kinase-mediated cytoprotection and enhanced cellular engraftment and persistence
JP5328034B2 (ja) * 2009-09-04 2013-10-30 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子およびその製造方法
US8852788B2 (en) * 2009-09-30 2014-10-07 Zeon Corporation Porous membrane for a secondary battery and a secondary battery
KR20120091028A (ko) * 2009-09-30 2012-08-17 제온 코포레이션 2 차 전지용 다공막 및 2 차 전지
KR101852656B1 (ko) 2011-09-26 2018-04-26 스미또모 가가꾸 가부시끼가이샤 이차 전지용 접착 수지 조성물
KR20130048843A (ko) 2011-11-03 2013-05-13 에스케이이노베이션 주식회사 내열성 및 안정성이 우수한 폴리올레핀계 복합 미세다공막 및 이를 제조하는 방법
EP2835844B1 (en) 2012-04-05 2018-11-14 Zeon Corporation Separator for secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251944A (ja) * 1998-09-17 2000-09-14 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法
JP2004506542A (ja) * 2000-08-12 2004-03-04 エルジー・ケミカル・カンパニー・リミテッド 多成分系複合フィルム及びその製造方法
JP2004281208A (ja) * 2003-03-14 2004-10-07 Tomoegawa Paper Co Ltd 電子部品用セパレータ
JP2005038854A (ja) * 2003-07-15 2005-02-10 Celgard Inc リチウムイオン電池用の高溶融完全性電池セパレータ
JP2006155914A (ja) * 2004-11-25 2006-06-15 Toyobo Co Ltd 複合多孔質膜、これの製造法及びこれを用いた二次電池
JP2007059271A (ja) 2005-08-25 2007-03-08 Nitto Denko Corp 電池用セパレータのための接着剤担持多孔質フイルムとそれを用いる電池の製造方法
JP2011054502A (ja) 2009-09-04 2011-03-17 Hitachi Maxell Ltd リチウム二次電池およびその製造方法
JP2011216376A (ja) * 2010-03-31 2011-10-27 Ube Industries Ltd 複合多孔質フィルム及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"polymer handbook", A WILEY-INTERSCIENCE PUBLICATION

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014081035A1 (ja) * 2012-11-26 2017-01-05 日本ゼオン株式会社 電極/セパレータ積層体の製造方法およびリチウムイオン二次電池
US9748547B2 (en) 2012-11-26 2017-08-29 Zeon Corporation Method for producing electrode/separator laminate, and lithium-ion rechargeable battery
WO2014081035A1 (ja) * 2012-11-26 2014-05-30 日本ゼオン株式会社 電極/セパレータ積層体の製造方法およびリチウムイオン二次電池
JP2018056142A (ja) * 2012-11-26 2018-04-05 日本ゼオン株式会社 電極/セパレータ積層体の製造方法およびリチウムイオン二次電池
JP2015053118A (ja) * 2013-09-05 2015-03-19 日立マクセル株式会社 リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池およびその製造方法
WO2016017066A1 (ja) * 2014-07-30 2016-02-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
JPWO2016017066A1 (ja) * 2014-07-30 2017-04-27 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
JP2016042454A (ja) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用セパレータ、それを採用したリチウム二次電池及びその製造方法
US10217985B2 (en) 2014-08-13 2019-02-26 Samsung Sdi Co., Ltd. Separator for lithium secondary battery, lithium secondary battery using the separator, and method of manufacturing the lithium secondary battery
WO2016031163A1 (ja) * 2014-08-28 2016-03-03 日本ゼオン株式会社 非水系二次電池用積層体および非水系二次電池部材の製造方法
JPWO2016031163A1 (ja) * 2014-08-28 2017-06-08 日本ゼオン株式会社 非水系二次電池用積層体および非水系二次電池部材の製造方法
KR20160129033A (ko) 2014-09-26 2016-11-08 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터
CN106104850B (zh) * 2014-09-26 2018-12-25 旭化成株式会社 蓄电装置用分隔件
JP2016071963A (ja) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
EP3200259A4 (en) * 2014-09-26 2017-12-13 Asahi Kasei Kabushiki Kaisha Separator for electricity storage device
CN106104850A (zh) * 2014-09-26 2016-11-09 旭化成株式会社 蓄电装置用分隔件
US10361415B2 (en) 2014-09-26 2019-07-23 Asahi Kasei Kabushiki Kaisha Separator for electricity storage device
JP2016072247A (ja) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2016072117A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
JP2016072155A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータの製造方法
JP2016072197A (ja) * 2014-10-02 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ、及び電気化学素子
JP2016076337A (ja) * 2014-10-03 2016-05-12 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ及び非水電解液電池
JP2016100149A (ja) * 2014-11-20 2016-05-30 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
JP2016107642A (ja) * 2014-12-09 2016-06-20 旭化成イーマテリアルズ株式会社 多層多孔膜及び蓄電デバイス用セパレータ
WO2016110894A1 (ja) * 2015-01-09 2016-07-14 日本ゼオン株式会社 非水系二次電池用セパレータおよびその製造方法、並びに、非水系二次電池
CN107112480A (zh) * 2015-01-09 2017-08-29 日本瑞翁株式会社 非水系二次电池用间隔件及其制造方法以及非水系二次电池
KR20170102876A (ko) 2015-01-09 2017-09-12 니폰 제온 가부시키가이샤 비수계 이차 전지용 세퍼레이터 및 그 제조 방법, 그리고, 비수계 이차 전지
JPWO2016110894A1 (ja) * 2015-01-09 2017-10-19 日本ゼオン株式会社 非水系二次電池用セパレータおよびその製造方法、並びに、非水系二次電池
US20180040867A1 (en) * 2015-03-05 2018-02-08 Nec Corporation Separator for secondary battery, and secondary battery equipped therewith
US10777795B2 (en) * 2015-03-05 2020-09-15 Nec Corporation Separator including resin member formed inside porous substrate, and secondary battery equipped therewith
JP2016197505A (ja) * 2015-04-02 2016-11-24 旭化成株式会社 捲回体
JP2017027945A (ja) * 2015-07-24 2017-02-02 旭化成株式会社 蓄電デバイス用セパレータ
JPWO2017073022A1 (ja) * 2015-10-28 2018-08-16 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池用接着層付きセパレータ、非水系二次電池用接着層付き電極、並びに、非水系二次電池およびその製造方法
WO2017073022A1 (ja) * 2015-10-28 2017-05-04 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池用接着層付きセパレータ、非水系二次電池用接着層付き電極、並びに、非水系二次電池およびその製造方法
US10707532B2 (en) 2015-10-28 2020-07-07 Zeon Corporation Composition for adhesive layer of non-aqueous secondary battery, adhesive layer for non-aqueous secondary battery, adhesive layer-equipped separator for non-aqueous secondary battery, adhesive layer-equipped electrode for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing same
JP2017091744A (ja) * 2015-11-06 2017-05-25 旭化成株式会社 蓄電デバイス用セパレータ捲回体
JP2017098204A (ja) * 2015-11-27 2017-06-01 日本ゼオン株式会社 非水系二次電池
JP7017344B2 (ja) 2016-08-31 2022-02-08 旭化成株式会社 蓄電デバイス用セパレータ
JP2018041726A (ja) * 2016-08-31 2018-03-15 旭化成株式会社 蓄電デバイス用セパレータ
JP7057722B2 (ja) 2017-06-20 2022-04-20 旭化成株式会社 蓄電デバイス用セパレータの捲回体、及びその製造方法
JP2019009117A (ja) * 2017-06-20 2019-01-17 旭化成株式会社 蓄電デバイス用セパレータの捲回体、及びその製造方法
JP2019008883A (ja) * 2017-06-20 2019-01-17 旭化成株式会社 セパレータの捲回体
JP7017869B2 (ja) 2017-06-20 2022-02-09 旭化成株式会社 セパレータの捲回体
JPWO2019004301A1 (ja) * 2017-06-29 2020-04-30 日立化成株式会社 活物質保持用チューブ、電極及び鉛蓄電池
WO2019004301A1 (ja) * 2017-06-29 2019-01-03 日立化成株式会社 活物質保持用チューブ、電極及び鉛蓄電池
WO2019003476A1 (ja) * 2017-06-29 2019-01-03 日立化成株式会社 活物質保持用チューブ及びその製造方法、電極並びに鉛蓄電池
JP2019026796A (ja) * 2017-08-02 2019-02-21 積水化学工業株式会社 合成樹脂フィルム、蓄電デバイス用セパレータ及び蓄電デバイス
JP7010621B2 (ja) 2017-08-02 2022-01-26 住友化学株式会社 合成樹脂フィルム、蓄電デバイス用セパレータ及び蓄電デバイス
KR20190015105A (ko) * 2017-08-03 2019-02-13 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터, 및 비수계 이차전지
KR102612838B1 (ko) * 2017-08-03 2023-12-13 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터, 및 비수계 이차전지
JP2019046633A (ja) * 2017-08-31 2019-03-22 旭化成株式会社 蓄電デバイス用セパレータ
JP7017345B2 (ja) 2017-08-31 2022-02-08 旭化成株式会社 蓄電デバイス用セパレータ
WO2020022343A1 (ja) * 2018-07-24 2020-01-30 日本ゼオン株式会社 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池
US11569489B2 (en) 2018-07-24 2023-01-31 Zeon Corporation Slurry for non-aqueous secondary battery and method of producing same, battery member for non-aqueous secondary battery and method of producing same, and non-aqueous secondary battery
JPWO2020022343A1 (ja) * 2018-07-24 2021-08-02 日本ゼオン株式会社 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池
JP7444062B2 (ja) 2018-07-24 2024-03-06 日本ゼオン株式会社 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池
KR20220153626A (ko) 2020-05-11 2022-11-18 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터의 제조 방법
WO2023038069A1 (ja) 2021-09-07 2023-03-16 旭化成株式会社 蓄電デバイス用セパレータ
KR20230155534A (ko) 2021-09-07 2023-11-10 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터
CN114024090A (zh) * 2021-10-27 2022-02-08 长园泽晖新能源材料研究院(珠海)有限公司 一种复合锂离子电池隔膜及其制备方法

Also Published As

Publication number Publication date
EP2879206B1 (en) 2019-09-11
CN104428920B (zh) 2017-06-30
EP3054502B1 (en) 2019-03-27
MY190156A (en) 2022-03-31
KR101979063B1 (ko) 2019-05-15
JP2016122648A (ja) 2016-07-07
US20190140242A1 (en) 2019-05-09
HUE042909T2 (hu) 2019-07-29
KR20150020667A (ko) 2015-02-26
JP6031179B2 (ja) 2016-11-24
TW201414053A (zh) 2014-04-01
TWI587561B (zh) 2017-06-11
EP3054502A1 (en) 2016-08-10
HUE045820T2 (hu) 2020-01-28
PL2879206T3 (pl) 2020-01-31
MY168563A (en) 2018-11-13
US20150188108A1 (en) 2015-07-02
EP2879206A4 (en) 2015-09-30
KR20170132349A (ko) 2017-12-01
JP5876577B2 (ja) 2016-03-02
JPWO2014017651A1 (ja) 2016-07-11
KR101802892B1 (ko) 2017-11-30
US10153473B2 (en) 2018-12-11
US10811659B2 (en) 2020-10-20
PL3054502T3 (pl) 2019-07-31
CN104428920A (zh) 2015-03-18
KR20160088438A (ko) 2016-07-25
EP2879206A1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP6031179B2 (ja) 蓄電デバイス用セパレータ、積層体、及び多孔膜
WO2016047165A1 (ja) 蓄電デバイス用セパレータ
JP6698326B2 (ja) 多層多孔膜及び蓄電デバイス用セパレータ
JP6382051B2 (ja) 蓄電デバイス用セパレータ
JP6412760B2 (ja) 蓄電デバイス用セパレータ
JP6718218B2 (ja) 蓄電デバイス用セパレータ
JP6378998B2 (ja) 蓄電デバイス用セパレータの製造方法
JP6438725B2 (ja) 蓄電デバイス用セパレータ、及び電気化学素子
JP2016197505A (ja) 捲回体
JP6357395B2 (ja) 電池用セパレータ
JP2016071963A (ja) 蓄電デバイス用セパレータ
JP2020170590A (ja) 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス
JP7002229B2 (ja) パターン塗工用スラリー
JP6718669B2 (ja) 蓄電デバイス用セパレータ捲回体
JP7057722B2 (ja) 蓄電デバイス用セパレータの捲回体、及びその製造方法
WO2024034648A1 (ja) 蓄電デバイス用セパレータ、その製造方法及び蓄電デバイス
JP7017345B2 (ja) 蓄電デバイス用セパレータ
JP2023112590A (ja) 蓄電池用セパレータ捲回体
KR20240104030A (ko) 축전 디바이스용 세퍼레이터
JP2024094254A (ja) 蓄電デバイス用セパレータ
JP2018041726A (ja) 蓄電デバイス用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527037

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157000312

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013823038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14416735

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE