[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014097836A1 - チップ部品の実装構造およびモジュール部品 - Google Patents

チップ部品の実装構造およびモジュール部品 Download PDF

Info

Publication number
WO2014097836A1
WO2014097836A1 PCT/JP2013/081853 JP2013081853W WO2014097836A1 WO 2014097836 A1 WO2014097836 A1 WO 2014097836A1 JP 2013081853 W JP2013081853 W JP 2013081853W WO 2014097836 A1 WO2014097836 A1 WO 2014097836A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
terminals
chip component
terminal
external
Prior art date
Application number
PCT/JP2013/081853
Other languages
English (en)
French (fr)
Inventor
村山博美
東端和亮
加藤登
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014529738A priority Critical patent/JP5621951B1/ja
Publication of WO2014097836A1 publication Critical patent/WO2014097836A1/ja
Priority to US14/718,367 priority patent/US9560757B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07754Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna the connection being galvanic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07756Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna the connection being non-galvanic, e.g. capacitive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49855Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers for flat-cards, e.g. credit cards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0257Overvoltage protection
    • H05K1/0259Electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0295Programmable, customizable or modifiable circuits adapted for choosing between different types or different locations of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09427Special relation between the location or dimension of a pad or land and the location or dimension of a terminal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/0979Redundant conductors or connections, i.e. more than one current path between two points
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09954More mounting possibilities, e.g. on same place of PCB, or by using different sets of edge pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10628Leaded surface mounted device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a chip component mounting structure on a substrate and a module component including the chip component.
  • a UHF band RFID tag antenna is generally composed of an RFID IC and a dipole antenna connected to the two external terminals (see Patent Document 1).
  • a dipole antenna connected to the two external terminals (see Patent Document 1).
  • the two external terminals are formed at positions that are 180 ° rotationally symmetric with respect to the mounting surface of the IC, The IC can be mounted in either direction of 180 °, and the same characteristics can be obtained.
  • Recent ICs tend to be square in plan view for reasons such as downsizing, improved handling, and improved reliability. Therefore, the orientation of the IC cannot be determined only by the planar shape of the IC, and it cannot be understood without looking at the pattern on the mounting surface of the IC. Alternatively, it is necessary to attach a direction identification mark on the upper surface of the IC. Moreover, in any case, the mounting machine needs to take a process of imaging the mounting surface or the upper surface of the IC and rotating the vacuum chuck so that the IC is in a predetermined orientation, so that the mounting speed cannot be increased.
  • Patent Document 2 when an IC chip that is an electrical two-terminal component is mounted, the structure can be operated regardless of whether the mounting direction is 0 °, 90 °, 180 °, or 270 °. It is shown.
  • Patent Document 2 has the following problems to be solved.
  • Each terminal on the circuit board is generally covered with a resist in order to prevent a short circuit due to a solder bridge or the like.
  • the circuit board to be mounted is a flexible board such as polyimide or liquid crystal polymer
  • cracks are likely to occur in the resist due to the bending of the board, solder bridges may occur at the cracks, and the terminals may be short-circuited.
  • Patent Document 2 there is no influence on the electrical characteristics even if the terminals in the oblique direction are short-circuited. However, if the terminals are short-circuited somewhere in the vertical and horizontal directions, characteristic deterioration occurs.
  • an object of the present invention is to provide a chip component mounting structure that increases the degree of freedom of the mounting direction of the chip component with respect to the substrate, facilitates the manufacture of the chip component, and increases the mounting efficiency with respect to the substrate.
  • the mounting structure of the chip component of the present invention is as follows.
  • a chip component mounting structure comprising a substrate having mounting terminals (pad lands) formed on a surface and a surface mounting chip component having external terminals formed on a mounting surface.
  • the external terminal of the chip component includes at least a pair of (two) external terminals disposed at positions 180.degree. Rotationally symmetrical with respect to the center of the mounting surface of the chip component
  • the mounting terminals of the board include first and second mounting terminals arranged at first diagonal positions of a square, and third and fourth terminals arranged at second diagonal positions of the square.
  • a mounting terminal, and The first and second mounting terminals are in positions where the external terminals of the chip component can face each other, and the third and fourth mounting terminals are in positions where the external terminals of the chip component can face each other.
  • the first mounting terminal and the fourth mounting terminal are connected, and the second mounting terminal and the third mounting terminal are connected.
  • the two external terminals of the chip component are connected to the first and second mounting terminals on the substrate side, and the two external terminals of the chip component are the third and fourth terminals on the substrate side. Any of the states connected to the mounting terminals can be adopted.
  • the chip component can be mounted in any of four directions that are 90 ° rotationally symmetric and acts in an electrically similar manner.
  • the external terminal includes at least four external terminals arranged at 90 ° rotational symmetry with respect to the center of the mounting surface of the chip component, and the first diagonal of the four external terminals.
  • the two external terminals at the position are preferably signal terminals, and the two external terminals at the second diagonal position are preferably floating terminals.
  • the chip component is mounted on the substrate with at least four external terminals and does not electrically affect the two signal terminals.
  • the external terminals (multiple) further include an external terminal disposed between two adjacent external terminals among the four external terminals, and the first and third mounting terminals, Preferably, mounting terminals are further provided between the second and third mounting terminals, between the first and fourth mounting terminals, and between the second and fourth mounting terminals. According to this structure, it can be applied to a chip component having eight external terminals.
  • the external terminals further include an external terminal disposed at the center, and further includes a mounting terminal in the center of the four mounting terminals.
  • This structure can be applied to a chip component having an external terminal at the center.
  • the chip component includes a base including an impedance matching circuit and an RFIC mounted on the base. According to this structure, it is not necessary to mount an impedance matching circuit with the RFIC on the substrate, so that mounting becomes easier and the area of the mounting portion can be reduced.
  • a module component of the present invention includes the chip component mounting structure described in any one of (1) to (4) above, and includes the substrate and the chip component. Even in such a structure, the mounting efficiency of the chip component is increased.
  • the degree of freedom of the mounting direction of the chip component with respect to the substrate is increased, manufacturing of the chip component is facilitated, and the mounting efficiency with respect to the substrate is increased. Moreover, since it is not necessary to provide wiring for increasing the degree of freedom in the mounting direction inside the chip component, the problem of disconnection due to ESD current does not occur. Furthermore, even if the mounting circuit board is a flexible board, it is difficult to cause a problem of a substantial electrical connection failure and a short circuit between terminals due to a decrease in resist film function.
  • the present invention is particularly useful for a chip component in which the external terminal of the chip component is its input / output terminal in a high-frequency chip component that operates differentially.
  • FIG. 1A, FIG. 1B, and FIG. 1C are diagrams showing a chip component mounting structure according to the first embodiment.
  • 2A, 2B, 2C, and 2D are diagrams showing four mounting states of the chip component 21.
  • FIG. FIG. 3 is a plan view of the RFID tag 101 according to the first embodiment.
  • FIG. 4 is a block diagram showing a circuit configuration of the RFID tag 101.
  • FIG. 5 is a plan view of the RFID tag 102 according to the second embodiment.
  • FIG. 6 is a plan view of the chip component 21 according to the third embodiment viewed from the mounting surface side.
  • FIG. 7 is a block diagram showing a circuit configuration of the RFID tag 104 according to the fourth embodiment.
  • FIG. 8 is a cross-sectional view of the RFID tag 104.
  • FIG. 10 is a plan view seen from the mounting surface side of the chip component according to the fifth embodiment.
  • FIG. 11A, FIG. 11B, and FIG. 11C are diagrams showing a chip component mounting structure according to the sixth embodiment.
  • 12A, 12B, 12C, and 12D are diagrams showing four mounting states of the chip component 21.
  • FIG. FIG. 13A, FIG. 13B, and FIG. 13C are diagrams illustrating a chip component mounting structure according to the seventh embodiment.
  • FIG. 14A, FIG. 14B, and FIG. 14C are diagrams showing another chip component mounting structure according to the seventh embodiment.
  • FIG. 15C are diagrams showing another chip component mounting structure according to the seventh embodiment.
  • FIG. 16 is a view showing still another chip component mounting structure according to the seventh embodiment.
  • FIG. 17A, FIG. 17B, and FIG. 17C are diagrams illustrating a chip component mounting structure according to the eighth embodiment.
  • FIG. 18A, FIG. 18B, and FIG. 18C are diagrams showing another chip component mounting structure according to the eighth embodiment.
  • FIG. 19A and FIG. 19B are diagrams illustrating a chip component mounting structure according to the ninth embodiment.
  • FIG. 20A and FIG. 20B are diagrams showing another chip component mounting structure according to the ninth embodiment.
  • FIG. 1A, FIG. 1B, and FIG. 1C are diagrams showing a chip component mounting structure according to the first embodiment.
  • 1A is a plan view seen from the mounting surface side of a chip component
  • FIG. 1B is a plan view of a mounting terminal forming portion of a substrate
  • FIG. 1C is a chip component mounted on the mounting terminal.
  • FIG. 1A is a plan view seen from the mounting surface side of a chip component
  • FIG. 1B is a plan view of a mounting terminal forming portion of a substrate
  • FIG. 1C is a chip component mounted on the mounting terminal.
  • two external terminals 22A and 22B are formed on the mounting surface of the chip component 21.
  • the two external terminals 22A and 22B are disposed at positions 180.degree. Rotationally symmetrical with respect to the center point CP of the mounting surface of the chip component 21.
  • mounting terminals 12A, 12B, 12C, and 12D are formed on the mounting surface of the substrate 11. These mounting terminals include a first mounting terminal 12A, a second mounting terminal 12B, and a second diagonal position of the square, which are arranged at a first diagonal position of a square indicated by a two-dot chain line.
  • the third mounting terminal 12 ⁇ / b> C and the fourth mounting terminal 12 ⁇ / b> D are arranged at the same position.
  • the first mounting terminal 12A and the second mounting terminal 12B are in positions where the external terminals 22A and 22B of the chip component 21 can face each other, and the third mounting terminal 12C and the fourth mounting terminal 12D are The external terminals 22 ⁇ / b> A and 22 ⁇ / b> B of the chip component 21 are in positions where they can face each other.
  • the external terminals 22A and 22B of the chip component 21 are mounted in a state of facing the first mounting terminal 12A and the second mounting terminal 12B of the substrate.
  • FIG. 2A, FIG. 2B, FIG. 2C, and FIG. 2D are diagrams showing four mounting states of the chip component 21.
  • FIG. FIG. 2A is the same as the state shown in FIG.
  • FIG. 2B is a state where the chip part 21 is rotated 90 degrees and mounted.
  • FIG. 2C shows a state where the chip component 21 is mounted by being rotated 180 degrees.
  • FIG. 2D shows a state where the chip component 21 is mounted by being rotated by 270 degrees.
  • the external terminal 22A of the chip component 21 is connected to the signal line 14A via the board mounting terminal 12A and the terminal connection portion 13A.
  • the external terminal 22B of the chip component 21 is connected to the signal line 14B via the mounting terminal 12B of the substrate.
  • the external terminal 22A of the chip component 21 is connected to the signal line 14B via the board mounting terminal 12C and the terminal connection portion 13A.
  • the external terminal 22B of the chip component 21 is connected to the signal line 14A via the mounting terminal 12B of the substrate.
  • the external terminal 22A of the chip component 21 is connected to the signal line 14B via the board mounting terminal 12B.
  • the external terminal 22B of the chip component 21 is connected to the signal line 14A via the board mounting terminal 12A and the terminal connection portion 13A.
  • the external terminal 22A of the chip component 21 is connected to the signal line 14A via the mounting terminal 12D of the substrate.
  • the external terminal 22B of the chip component 21 is connected to the signal line 14B via the board mounting terminal 12C and the terminal connection portion 13B.
  • the chip component external terminals 22A and 22B are connected to the signal lines 14A and 14B, and the chip component 21 operates correctly. Moreover, the line length is almost constant even if the chip parts are mounted in any of the four directions.
  • circuit board to be mounted is a flexible board such as polyimide or liquid crystal polymer
  • the circuit board to be mounted is a flexible substrate such as polyimide or liquid crystal polymer, even if the resist is prone to crack due to bending of the substrate and a solder bridge is generated at the crack portion, the mounting terminal having the same potential Even if they are solder-bridged, a substantial short circuit does not occur, so there is a high probability that a normal electrical connection state is ensured, and defects are unlikely to occur.
  • FIG. 3 is a plan view of the RFID tag 101 according to the first embodiment.
  • the RFID tag 101 includes a flexible substrate 11 on which a conductor pattern is formed, and a plurality of chip components mounted thereon.
  • An antenna coil 32A is formed on the first surface of the flexible substrate 11, and an antenna coil 32B is formed on the second surface.
  • a plurality of chip components including the chip component 21 are mounted on the first surface.
  • FIG. 4 is a block diagram showing a circuit configuration of the RFID tag 101.
  • the inductor L in FIG. 4 corresponds to the antenna coils 32A and 32B shown in FIG.
  • a capacitor C in FIG. 4 corresponds to the chip capacitor 31 shown in FIG.
  • the resonance frequency is determined by the antenna coil 32 and the capacitor 31, and the antenna coil 32 functions as a loop antenna.
  • the RFIC in FIG. 4 corresponds to the chip component 21 shown in FIG.
  • the matching circuit 30 is composed of other chip components and wiring patterns.
  • the configuration of the mounting position of the chip component (RFIC) 21 is as shown in FIG. 1B.
  • the chip component 21 When the chip component 21 is mounted on the flexible substrate 11, it can be mounted in any of four directions. Electrically equal characteristics can be obtained even in the orientation. This eliminates the need for the mounting machine to take an image of the mounting surface or top surface of the chip component and rotate the vacuum chuck so that the chip component is in a predetermined orientation, thereby improving the mounting speed and increasing the production efficiency. Further, since there is no need to attach a direction identification mark on the upper surface of the chip component, the lead time can be shortened and the cost can be reduced in the manufacturing process of the chip component.
  • FIG. 5 is a plan view of the RFID tag 102 according to the second embodiment.
  • the RFID tag 102 includes a flexible substrate 11 on which a conductor pattern is formed, and a plurality of chip components mounted thereon.
  • Antenna elements 33 ⁇ / b> A and 33 ⁇ / b> B are formed on the first surface of the flexible substrate 11. Further, chip parts 21 and 31 are mounted.
  • the chip component 21 in FIG. 5 is the chip component 21 shown in the first embodiment, and the chip component 31 is a matching chip capacitor.
  • the antenna elements 33A and 33B constitute a dipole antenna, and the chip component 21 supplies balanced power to the antenna elements 33A and 33B.
  • FIG. 6 is a plan view of the chip component 21 according to the third embodiment viewed from the mounting surface side.
  • four external terminals 22A, 22B, 22C, and 22D are arranged at positions that are 90 ° rotationally symmetric with respect to the center point CP of the mounting surface.
  • the two external terminals 22A and 22B are signal terminals and are arranged at the first diagonal position of a square indicated by a two-dot chain line.
  • the remaining two external terminals 22C and 22D are floating terminals (NC terminals) and are arranged at the second diagonal position.
  • the chip component 21 has the four external terminals 22A, 22B, 22C, and 22D mounted on the mounting terminals 12A, 12B, 12C, and 12D on the substrate.
  • the flatness of is also improved.
  • the self-alignment effect by reflow soldering also increases.
  • the external terminals 22C and 22D which are floating terminals, are not electrically affected by mounting in any of the four directions.
  • FIG. 7 is a block diagram showing a circuit configuration of the RFID tag 104 according to the fourth embodiment.
  • FIG. 8 is a cross-sectional view of the RFID tag 104. However, hatching is not shown.
  • the RFID tag 104 is mainly composed of a module substrate 41 and an IC chip 51.
  • the IC chip 51 is an RFIC.
  • the module substrate 41 is a multilayer substrate, and a matching circuit including inductors L1 and L2 and capacitors C1 and C2 is formed therein.
  • Mounting terminals 43A and 43B are formed on the module substrate 41, and external terminals 52A and 52B of the IC chip 51 are connected to the mounting terminals 43A and 43B.
  • the upper part of the module substrate 41 is sealed with, for example, an epoxy-based sealing resin 61.
  • the shapes of the mounting terminals 43A and 43B on the module substrate 41 and the shapes of the external terminals 52A and 52B of the IC chip 51 are the same as those shown in FIGS. That is, the IC chip 51 can be mounted on the module substrate 41 in any of four directions.
  • external terminals 42A and 42B are formed on the lower surface of the module substrate 41.
  • the external terminals 42A and 42B have the same shape as that shown in FIG.
  • a magnetic field radiation type antenna coil or a field radiation type antenna element is formed on the substrate on which the RFID tag 104 is mounted.
  • the mounting position of the RFID tag 104 is the same as that shown in FIG.
  • Mounting terminals 12A, 12B, 12C, and 12D are formed. Therefore, the RFID tag 104 can be mounted in any of four directions with respect to the mounting substrate.
  • impedance conversion is performed by an autotransformer structure using inductors L1 and L2, but the matching circuit configured on the module substrate 41 is not limited to that shown in FIG. A structure as shown in FIG. 9B can also be adopted.
  • inductors L1 and L2 and capacitors C1 and C2 are provided, and impedance conversion is performed by the inductors L1 and L2.
  • 9B includes inductors L1 and L2 and capacitors C1, C2, C3, and C4, and impedance matching is performed by these inductors and capacitors.
  • a plurality of chip components may be mounted on the module substrate 41. Further, another chip component may be embedded in the module substrate 41.
  • the present invention can be similarly applied to a chip coil (chip inductor) in which a coil is formed in a substrate.
  • FIG. 10 is a plan view seen from the mounting surface side of the chip component according to the fifth embodiment.
  • the chip part having a square planar shape is shown, but the outer shape of the chip part is not necessarily square.
  • four external terminals 22 ⁇ / b> A, 22 ⁇ / b> B, 22 ⁇ / b> C, and 22 ⁇ / b> D are disposed on the mounting surface of the chip component 21 at positions that are rotationally symmetrical with respect to each other by 90 ° with respect to the center point CP of the mounting surface. .
  • the outer shape of the chip component does not necessarily have to be a square.
  • FIG. 11A, FIG. 11B, and FIG. 11C are diagrams showing a chip component mounting structure according to the sixth embodiment.
  • 11A is a plan view seen from the mounting surface side of the chip component
  • FIG. 11B is a plan view of a mounting terminal forming portion of the substrate
  • FIG. 11C is a chip component mounted on the mounting terminal.
  • each external terminal 22A, 22B, 22C, and 22D are arranged at positions that are rotationally symmetrical by 90 ° with respect to the center point CP of the mounting surface.
  • the two external terminals 22A and 22B are signal terminals and are arranged at the first diagonal position of a square indicated by a two-dot chain line.
  • the remaining two external terminals 22C and 22D are floating terminals (NC terminals) and are arranged at the second diagonal position.
  • mounting terminals 12A, 12B, 12C, and 12D are formed on the mounting surface of the substrate. These mounting terminals are the first mounting terminal 12A and the second mounting terminal 12B arranged at the first diagonal position of the square indicated by the two-dot chain line, and the second diagonal position of the square. The third mounting terminal 12C and the fourth mounting terminal 12D are arranged.
  • the first mounting terminal 12A and the fourth mounting terminal 12D are connected by a terminal connection portion 13A, and the second mounting terminal 12B and the third mounting terminal 12C are connected by a terminal connection portion 13B. Has been.
  • FIG. 12A, 12B, 12C, and 12D are diagrams showing four mounting states of the chip component 21.
  • FIG. 12B shows a state where the chip part 21 is rotated 90 degrees and mounted.
  • FIG. 12C shows a state where the chip component 21 is mounted by being rotated 180 degrees.
  • FIG. 12D shows a state where the chip component 21 is mounted by being rotated by 270 degrees.
  • the chip component external terminals 22A and 22B are connected to the signal lines 14A and 14B, and the chip component 21 operates correctly.
  • FIG. 13A, FIG. 13B, and FIG. 13C are views showing the chip component mounting structure according to the seventh embodiment.
  • 13A is a plan view seen from the mounting surface side of the chip component
  • FIG. 13B is a plan view of the mounting terminal forming portion of the substrate
  • FIG. 13C is a chip component mounted on the mounting terminal.
  • the structure of the chip component 21 is as shown in FIG.
  • the board-side mounting terminals 12A and 12D are integrated with the terminal connection portion 13A.
  • the mounting terminals 12B and 12C are integrated with the terminal connection portion 13B.
  • FIG. 14A, FIG. 14B, and FIG. 14C are diagrams showing another chip component mounting structure according to the seventh embodiment.
  • the patterns of the terminal connection portions 13A and 13B on the substrate are the same, but the patterns of the opening windows 72A, 72B, 72C, and 72D of the resist film 71 are different.
  • the left side is a partial plan view of the substrate before the chip component 21 is mounted, and the right side is a partial plan view after the chip component 21 is mounted.
  • cream solder is printed and formed on the opening windows 72A, 72B, 72C, 72D of the resist film 71, the chip component 21 is mounted by a mounting machine, and is soldered and mounted by passing through a reflow furnace.
  • the mounting position and orientation of the chip component 21 depend on the position of the opening windows 72A, 72B, 72C, and 72D of the resist film 71. Determined. Further, the mounting position of the chip component 21 is determined by the self-alignment effect during reflow soldering.
  • the self-alignment effect can be obtained by providing the opening window of the resist film 71.
  • FIG. 15A, FIG. 15B, and FIG. 15C are diagrams showing another chip component mounting structure according to the seventh embodiment.
  • 15A is a plan view seen from the mounting surface side of the chip component
  • FIG. 15B is a plan view of a mounting terminal forming portion of the substrate
  • FIG. 15C is a chip component mounted on the mounting terminal.
  • terminal connection portions 13A and 13B may be arranged within the mounting range of the chip component.
  • FIG. 16 is a view showing still another chip component mounting structure according to the seventh embodiment.
  • FIG. 16 is a plan view of the mounting terminal forming portion of the substrate.
  • Mounting terminals 12A, 12B, 12C, and 12D are formed on the mounting surface of the substrate, and terminal connection portions 13A and 13B and signal lines 14A and 14B are formed on the inner layer.
  • the mounting terminals 12A and 12D are connected to the terminal connection portion 13A and the signal line 14A through via conductors.
  • the mounting terminals 12B and 12C are connected to the terminal connection portion 13B and the signal line 14B through via conductors.
  • FIG. 17A, FIG. 17B, and FIG. 17C are diagrams showing a chip component mounting structure according to the eighth embodiment.
  • 17A is a plan view seen from the mounting surface side of the chip component
  • FIG. 17B is a plan view of a mounting terminal forming portion of the substrate
  • FIG. 17C is a chip component mounted on the mounting terminal.
  • external terminals 22A and 22B that are signal terminals and external terminals 22C and 22D that are floating terminals are formed at a first diagonal position, and an external terminal 22E is further formed at the center. ing.
  • the external terminals 22A and 22B of the chip component are connected to the signal lines 14A and 14B, and the external terminal 22E of the chip component is connected to the signal line 14E. Therefore, the chip component 21 operates correctly.
  • the external terminal 22E is a ground terminal and is connected to the ground on the substrate side.
  • FIG. 18 (A), 18 (B), and 18 (C) are views showing another chip component mounting structure according to the eighth embodiment.
  • 18A is a plan view seen from the mounting surface side of the chip component
  • FIG. 18B is a plan view of a mounting terminal forming portion of the substrate
  • FIG. 18C is a chip component mounted on the mounting terminal.
  • FIG. 18A is a plan view seen from the mounting surface side of the chip component
  • FIG. 18B is a plan view of a mounting terminal forming portion of the substrate
  • FIG. 18C is a chip component mounted on the mounting terminal.
  • the mounting surface of the chip component 21 is provided with external terminals 22A and 22B that are signal terminals and external terminals 22C and 22D that are floating terminals at the first diagonal position, and externally in the center of the external terminals 22A and 22C.
  • a terminal 22E is further provided.
  • the board side is provided with four mounting terminals 12A, 12B, 12C, and 12D, and among these four mounting terminals, a mounting terminal 12E is provided at the center of the adjacent mounting terminals.
  • the external terminals 22A and 22B of the chip component are connected to the signal lines 14A and 14B, and the external terminal 22E of the chip component is connected to the signal line 14E. Therefore, the chip component 21 operates correctly.
  • the external terminal 22E is a ground terminal and is connected to the ground on the substrate side.
  • FIG. 19A and FIG. 19B are diagrams showing the mounting structure of the chip component according to the ninth embodiment.
  • 19A is a plan view seen from the mounting surface side of the chip component 21, and
  • FIG. 19B is a plan view of a mounting terminal forming portion of the substrate.
  • the board side is provided with four mounting terminals 12A, 12B, 12C, and 12D, and among these four mounting terminals, a mounting terminal 12E is provided at the center of the adjacent mounting terminals.
  • the external terminals 22A and 22B of the chip component are connected to the signal lines 14A and 14B, and the external terminal 22E of the chip component is connected to the signal line 14E. Therefore, the chip component 21 operates correctly.
  • the external terminal 22E is a ground terminal and is connected to the ground on the substrate side.
  • FIG. 20A and 20B are diagrams illustrating another chip component mounting structure according to the ninth embodiment.
  • FIG. 20A is a plan view seen from the mounting surface side of the chip component 21.
  • an external terminal 22V is further provided in the center of the mounting surface of the chip component 21.
  • the external terminals 22A and 22B are balanced signal terminals, and the external terminals 22C and 22D are floating terminals.
  • the external terminal 22E is a ground terminal and is commonly connected.
  • the external terminal 22V is a power supply terminal.
  • This chip component is an example provided with a functional terminal (here, a power supply terminal) in addition to the two signal terminals.
  • mounting terminals 12A, 12B, 12C, and 12D to which any of the external terminals 22A and 22B are connected are provided.
  • two mounting terminals 12E to which any one of the external terminals 22E is connected are provided.
  • a mounting terminal 12V to which the external terminal 22V is connected is provided at the center.
  • the mounting terminals 12A and 12D are connected to the terminal connection portion and the signal line in the lower layer through via conductors.
  • the mounting terminals 12C and 12B are connected to the terminal connection portion and the signal line in the lower layer through via conductors.
  • the mounting terminals 12E and 12V are also connected to the underlying lines via via conductors.
  • the present invention can be similarly applied to a chip component having three or more external terminals on one side and an external terminal in the center.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 チップ部品(21)の実装面には、チップ部品(21)の実装面の中心点(CP)に対して互いに180°回転対称の位置に外部端子(22A,22B)が配置されている。基板(11)の実装面には、二点鎖線で示す正方形の第1の対角位置に配置された第1の実装用端子(12A)、第2の実装用端子(12B)、および前記正方形の第2の対角位置に配置された第3の実装用端子(12C)、第4の実装用端子(12D)を備えている。第1の実装用端子(12A)と第4の実装用端子(12D)とは端子接続部(13A)で接続されていて、第2の実装用端子(12B)と第3の実装用端子(12C)とは端子接続部(13B)で接続されている。チップ部品(21)は90度ずつ回転させた4とおりのいずれの向きにも実装でき、電気的に同じ特性が得られる。

Description

チップ部品の実装構造およびモジュール部品
 本発明は基板に対するチップ部品の実装構造およびチップ部品を備えたモジュール部品に関する発明である。
 例えば、UHF帯のRFID用タグのアンテナは、RFID用のICと、その2つの外部端子に接続されるダイポールアンテナとで構成されるのが一般的である(特許文献1参照)。このように極性の無い2つの外部端子を備えたICを接続する場合には、その2つの外部端子をICの実装面に対して180°回転対称の関係となる位置に形成しておけば、ICを180°のどちら向きにも実装でき、且つ同じ特性を得ることができる。
特表2011-517840号公報 特開2007-102558号公報
 最近のICは、小型化、ハンドリング性の向上、信頼性の向上等の理由により、平面視で正方形に近づく傾向がある。そのため、ICの平面形状だけではICの向きを判別できず、ICの実装面のパターンを見ないと分からない。またはICの上面に方向識別用のマークを付ける必要がある。しかもいずれの場合でも、実装機はICの実装面または上面を撮像し、ICが所定の向きとなるように真空チャックを回転させる工程が必要になるので、実装速度が高められない。
 一方、特許文献2には、電気的には二端子部品であるICチップを実装する際、その実装の向きが0°、90°、180°、270°いずれであっても動作可能にした構造が示されている。
 しかし、特許文献2に示されている構造では、次のような解決すべき課題がある。
(1)ICチップ内で対角線上にある端子同士を接続しておき、回路基板上の4つの端子のうち2つを電位的に浮いた浮き端子とした構造では、浮き端子に静電気が印加されると、ICチップ内の配線接続部にESD電流が流れることになる。しかし、ICチップ内の配線は一般的に配線抵抗が高く、ESD電流のような大電流が流れると、発熱による断線が起きる問題がある。
(2)実装する回路基板がポリイミドや液晶ポリマーなどのフレキシブル基板である場合、基板のたわみなどによって4端子のうち幾つかが確実に接合されないおそれがある。そのため、電気的接続不良を発生しやすい。
(3)回路基板上の各端子ははんだブリッジなどによるショートを防ぐために各端子の周囲は一般にレジストで覆われる。しかし、実装する回路基板がポリイミドや液晶ポリマーなどのフレキシブル基板である場合、基板のたわみなどによってレジストにクラックが入りやすく、クラック部分ではんだブリッジが生じ、端子間がショートするおそれがある。特許文献2の構造では、斜め方向の端子間がショートしても電気的特性への影響は無いが、縦横方向のどこかで端子間がショートしてしまうと特性劣化が発生する。
 上述の問題はモノリシック半導体ICに限らず、実装面に外部端子が形成された表面実装チップ部品一般に同様に生じる。
 そこで、本発明の目的は、基板に対するチップ部品の実装方向の自由度を高めて、チップ部品の製造を容易にし、また基板に対する実装効率を高めた、チップ部品の実装構造を提供することにある。
 本発明のチップ部品の実装構造は次に示すような構造である。
(1)表面に実装用端子(パッド・ランド)が形成された基板と、実装面に外部端子が形成された表面実装チップ部品とを備えた、チップ部品の実装構造であり、
 前記チップ部品の外部端子は、前記チップ部品の実装面の中心に対して互いに180°回転対称の位置に配置された少なくとも一対の(2つの)外部端子を含み、
 前記基板の実装用端子は、正方形の第1の対角位置に配置された第1・第2の実装用端子と、前記正方形の第2の対角位置に配置された第3・第4の実装用端子と、を含み、
 前記第1・第2の実装用端子は前記チップ部品の外部端子が対向し得る位置にあり、且つ前記第3・第4の実装用端子は前記チップ部品の外部端子が対向し得る位置にあり、
 前記第1の実装用端子と第4の実装用端子とが接続されていて、前記第2の実装用端子と第3の実装用端子とが接続されている。
 上記の構造によれば、チップ部品の2つの外部端子が基板側の第1・第2の実装用端子に接続される状態と、チップ部品の2つの外部端子が基板側の第3・第4の実装用端子に接続される状態のいずれも採り得る。すなわち、チップ部品は90°回転対称の4方向のいずれでも実装でき且つ電気的に同様に作用する。
(2)前記外部端子は、前記チップ部品の実装面の中心に対して互いに90°回転対称の位置に配置された少なくとも4つの外部端子を含み、この4つの外部端子のうち第1の対角位置にある2つの外部端子は信号端子であり、第2の対角位置にある2つの外部端子は浮き端子であることが好ましい。この構造によれば、チップ部品は少なくとも4つの外部端子で基板に実装され、且つ2つの信号端子に電気的に影響を与えることがない。
(3)前記外部端子(複数)は、前記4つの外部端子のうち隣接する2つの外部端子の間に配置された外部端子を更に備え、前記第1・第3の実装用端子の間、前記第2・第3の実装用端子の間、前記第1・第4の実装用端子の間、前記第2・第4の実装用端子の間にそれぞれ実装用端子を更に備えることが好ましい。この構造によれば、8つの外部端子を備えたチップ部品に適用できる。
(4)前記外部端子(複数)は、前記中心に配置された外部端子を更に備え、前記4つの実装用端子の中央に実装用端子を更に備えることが好ましい。この構造によれば、中央に外部端子を備えたチップ部品に適用できる。
(5)例えば、前記チップ部品は、インピーダンス整合回路を備える基体と、この基体に搭載されたRFICを含んで構成されたものである。この構造によれば、RFICとのインピーダンス整合用の回路を基板に実装する必要がなくなるので、実装がより容易になるとともに、実装部の面積を縮小化できる。
(6)本発明のモジュール部品は、上記(1)~(4)のいずれかに記載のチップ部品の実装構造を備え、前記基板と前記チップ部品とで構成されたものである。このような構造の場合でも、チップ部品の実装効率が高まる。
 本発明によれば、基板に対するチップ部品の実装方向の自由度が高まり、チップ部品の製造が容易となり、また基板に対する実装効率が高まる。また、実装方向の自由度を高めるための配線をチップ部品の内部に備える必要がないので、ESD電流による断線の問題が生じない。さらに、実装先回路基板がフレキシブルな基板であっても実質的な電気的接続不良の問題およびレジスト膜機能の低下に起因する端子間ショートによる問題が生じ難い。
 本発明は、差動で動作する高周波用チップ部品において、チップ部品の外部端子がその入出力端子であるようなチップ部品に特に有用である。
図1(A)、図1(B)、図1(C)は第1の実施形態に係る、チップ部品の実装構造を示す図である。 図2(A)、図2(B)、図2(C)、図2(D)は、チップ部品21の4とおりの実装状態を示す図である。 図3は第1の実施形態に係るRFIDタグ101の平面図である。 図4はRFIDタグ101の回路構成を示すブロック図である。 図5は第2の実施形態に係るRFIDタグ102の平面図である。 図6は第3の実施形態に係るチップ部品21の実装面側から視た平面図である。 図7は第4の実施形態に係るRFIDタグ104の回路構成を示すブロック図である。 図8はRFIDタグ104の断面図である。 第4の実施形態に係るRFIDタグの別の整合回路の例を示す図である。 図10は第5の実施形態に係るチップ部品の実装面側から視た平面図である。 図11(A)、図11(B)、図11(C)は第6の実施形態に係る、チップ部品の実装構造を示す図である。 図12(A)、図12(B)、図12(C)、図12(D)は、チップ部品21の4とおりの実装状態を示す図である。 図13(A)、図13(B)、図13(C)は第7の実施形態に係る、チップ部品の実装構造を示す図である。 図14(A)、図14(B)、図14(C)は、第7の実施形態に係る別のチップ部品の実装構造を示す図である。 図15(A)、図15(B)、図15(C)は第7の実施形態に係る、別のチップ部品の実装構造を示す図である。 図16は、第7の実施形態に係る、さらに別のチップ部品の実装構造を示す図である。 図17(A)、図17(B)、図17(C)は第8の実施形態に係る、チップ部品の実装構造を示す図である。 図18(A)、図18(B)、図18(C)は第8の実施形態に係る、別のチップ部品の実装構造を示す図である。 図19(A)、図19(B)は、第9の実施形態に係るチップ部品の実装構造を示す図である。 図20(A)、図20(B)は、第9の実施形態に係る別のチップ部品の実装構造を示す図である。
《第1の実施形態》
 図1(A)、図1(B)、図1(C)は第1の実施形態に係る、チップ部品の実装構造を示す図である。図1(A)はチップ部品の実装面側から視た平面図、図1(B)は基板の実装用端子形成部分の平面図、図1(C)はその実装用端子にチップ部品を実装した状態での平面図である。
 図1(A)に示すように、チップ部品21の実装面には2つの外部端子22A,22Bが形成されている。この2つの外部端子22A,22Bは、チップ部品21の実装面の中心点CPに対して互いに180°回転対称の位置に配置されている。
 図1(B)に示すように、基板11の実装面には4つの実装用端子12A,12B,12C,12Dが形成されている。これらの実装用端子は、二点鎖線で示す正方形の第1の対角位置に配置された第1の実装用端子12A、第2の実装用端子12B、および前記正方形の第2の対角位置に配置された第3の実装用端子12C、第4の実装用端子12Dで構成されている。
 第1の実装用端子12Aと第4の実装用端子12Dとは端子接続部13Aで接続されていて、第2の実装用端子12Bと第3の実装用端子12Cとは端子接続部13Bで接続されている。
 第1の実装用端子12Aおよび第2の実装用端子12Bはチップ部品21の外部端子22A,22Bが対向し得る位置にあり、且つ第3の実装用端子12Cおよび第4の実装用端子12Dはチップ部品21の外部端子22A,22Bが対向し得る位置にある。図1C)に示す例では、チップ部品21の外部端子22A,22Bは基板の第1の実装用端子12Aおよび第2の実装用端子12Bに対向する状態で実装されている。
 図2(A)、図2(B)、図2(C)、図2(D)は、チップ部品21の4とおりの実装状態を示す図である。図2(A)は図1(C)に示した状態と同じである。この図2(A)に示す状態のチップ部品21の向きを0度とし、右方向の回転角を正方向にとると、図2(B)はチップ部品21を90度回転させて実装した状態を表している。図2(C)はチップ部品21を180度回転させて実装した状態を表している。さらに、図2(D)はチップ部品21を270度回転させて実装した状態を表している。
 図2(A)に示す状態では、チップ部品21の外部端子22Aは、基板の実装用端子12A、端子接続部13Aを介して信号ライン14Aに接続される。チップ部品21の外部端子22Bは基板の実装用端子12Bを介して信号ライン14Bに接続される。
 図2(B)に示す状態では、チップ部品21の外部端子22Aは、基板の実装用端子12C、端子接続部13Aを介して信号ライン14Bに接続される。チップ部品21の外部端子22Bは基板の実装用端子12Bを介して信号ライン14Aに接続される。
 図2(C)に示す状態では、チップ部品21の外部端子22Aは基板の実装用端子12Bを介して信号ライン14Bに接続される。チップ部品21の外部端子22Bは、基板の実装用端子12A、端子接続部13Aを介して信号ライン14Aに接続される。
 図2(D)に示す状態では、チップ部品21の外部端子22Aは基板の実装用端子12Dを介して信号ライン14Aに接続される。チップ部品21の外部端子22Bは、基板の実装用端子12C、端子接続部13Bを介して信号ライン14Bに接続される。
 したがって、上記4とおりのいずれの実装状態であっても、信号ライン14A,14Bにチップ部品の外部端子22A,22Bが接続され、チップ部品21が正しく動作することになる。しかもチップ部品を4とおりのいずれの向きに実装しても線路長は殆ど一定である。
 本実施形態によれば、または本発明によれば、次のような効果を奏する。
(1)基板にチップ部品が実装された状態で、実装用端子に静電気が印加されたとしても、ESD電流は配線抵抗の高いチップ内の配線を流れずに、配線抵抗の低い基板上の配線を流れようとするので、チップ部品をESDから保護できる。
(2)実装する回路基板がポリイミドや液晶ポリマーなどのフレキシブル基板である場合、基板のたわみなどによって4端子のうち幾つかが確実に接合されない場合でも、電気的な接続状態が確保される確率が高く、実質的な不良は発生しにくい。
(3)実装する回路基板がポリイミドや液晶ポリマーなどのフレキシブル基板である場合、基板のたわみなどによってレジストにクラックが入りやすく、クラック部分ではんだブリッジが生じるような場合でも、同電位の実装用端子同士がはんだブリッジしても、実質的なショートが生じないので、正常な電気的な接続状態が確保される確率が高く、不良は発生しにくい。
(4)特許文献2に示されるような浮き端子がないので、リフローはんだ工程時の実装用端子の温度上昇具合が均一になりやすい。その結果、端子温度の違いによる接合不良を軽減できる。
 図3は第1の実施形態に係るRFIDタグ101の平面図である。このRFIDタグ101は、導体パターンが形成されたフレキシブル基板11と、そこに実装された複数のチップ部品とで構成されている。フレキシブル基板11の第1面にはアンテナコイル32A、第2面にはアンテナコイル32Bがそれぞれ形成されている。また、第1面にはチップ部品21を含む複数のチップ部品が実装されている。
 図4は上記RFIDタグ101の回路構成を示すブロック図である。図4におけるインダクタLは図3に示したアンテナコイル32A,32Bに相当する。また、図4におけるキャパシタCは図3に示したチップキャパシタ31に相当する。このアンテナコイル32とキャパシタ31とによって共振周波数が定められ、アンテナコイル32はループアンテナとして作用する。図4におけるRFICは図3に示したチップ部品21に相当する。整合回路30はその他のチップ部品および配線パターンによって構成されている。
 上記チップ部品(RFIC)21の実装位置の構成は図1(B)に示したとおりであり、チップ部品21をフレキシブル基板11に実装する際、4とおりのいずれの向きにも実装でき、いずれの向きでも電気的に等しい特性が得られる。そのため、実装機はチップ部品の実装面または上面を撮像し、チップ部品が所定の向きとなるように真空チャックを回転させる工程が不要になるので、実装速度が向上し、生産効率が高まる。また、チップ部品の上面に方向識別用のマークを付ける必要が無いので、チップ部品の製造工程についてもリードタイムが短縮化され、低コスト化が図れる。
《第2の実施形態》
 図5は第2の実施形態に係るRFIDタグ102の平面図である。このRFIDタグ102は、導体パターンが形成されたフレキシブル基板11と、そこに実装された複数のチップ部品とで構成されている。フレキシブル基板11の第1面にはアンテナ素子33A,33Bが形成されている。また、チップ部品21、31が実装されている。
 図5におけるチップ部品21は第1の実施形態で示したチップ部品21であり、チップ部品31は整合用チップキャパシタである。アンテナ素子33A,33Bはダイポールアンテナを構成し、チップ部品21はアンテナ素子33A,33Bに平衡給電する。
 このように電界放射型アンテナにも同様に適用できる。
《第3の実施形態》
 図6は第3の実施形態に係るチップ部品21の実装面側から視た平面図である。チップ部品21の実装面には、実装面の中心点CPを中心として、互いに90°回転対称の位置に4つの外部端子22A,22B,22C,22Dが配置されている。このうち2つの外部端子22A,22Bは信号端子であり、二点鎖線で示す正方形の第1の対角位置に配置されている。残る2つの外部端子22C,22Dは浮き端子(NC端子)であり、第2の対角位置に配置されている。
 上記チップ部品21が実装される基板側の実装用端子の形状は第1の実施形態で図1(B)に示したものと同じである。
 この構造によれば、チップ部品21は4つの外部端子22A,22B,22C,22Dが基板上の実装用端子12A,12B,12C,12Dに実装されるので、接合強度が高まり、基板に対するチップ部品の平面性も高まる。また、リフローはんだによるセルフアライメント効果も高まる。しかも、4とおりのいずれの向きに実装しても、浮き端子である外部端子22C,22Dが電気的に影響を与えることがない。
《第4の実施形態》
 図7は第4の実施形態に係るRFIDタグ104の回路構成を示すブロック図である。図8はRFIDタグ104の断面図である。但し、ハッチングの図示は省略している。このRFIDタグ104は、主にモジュール基板41およびICチップ51で構成されている。ICチップ51はRFICである。モジュール基板41は多層基板であり、内部にインダクタL1,L2、キャパシタC1,C2による整合回路が構成されている。
 モジュール基板41上に実装用端子43A,43Bが形成されていて、この実装用端子43A,43BにICチップ51の外部端子52A,52Bが接続されている。モジュール基板41の上部は例えばエポキシ系の封止樹脂61で封止されている。モジュール基板41上の実装用端子43A,43Bの形状およびICチップ51の外部端子52A,52Bの形状は図1(B)および図6に示したものと同様である。すなわち、ICチップ51はモジュール基板41に対して4とおりのいずれの向きにも実装可能である。
 また、モジュール基板41の下面には外部端子42A,42Bが形成されている。この外部端子42A,42Bの形状についても図6に示したものと同様である。このRFIDタグ104を実装する基板には例えば磁界放射型のアンテナコイルまたは電界放射型のアンテナ素子が形成されていて、RFIDタグ104の実装位置には、図1(B)に示したものと同様の実装用端子12A,12B,12C,12Dが形成されている。したがって、RFIDタグ104は実装先の基板に対して4とおりのいずれの向きにも実装可能である。
 図8に示す構造のRFIDタグ104を回路基板上に実装する場合、モジュール基板41上にIC51を実装した後に、このICチップ51の実装されたモジュール基板41を回路基板に実装する。回路基板とモジュール基板との接続には主にはんだが用いられることが多いため、ICチップ51とモジュール基板41との接続には、銀ナノペーストのような、はんだよりも融点が高いものを使用する。仮に、モジュール基板41に対するICチップ51の実装にはんだを用い、回路基板とモジュール基板との接続にも同じはんだを用いると、はんだスプラッシュによりショートするおそれが生じるが、上記の構成ではんだスプラッシュの問題は回避できる。但し、銀ナノペーストは、融点が高いものの機械的強度が相対的に低いという欠点がある。そこで、ICチップ51の周囲を樹脂封止することによって、機械的強度を確保することができる。また、ICチップ51を封止する樹脂61は電気的絶縁性が高いため、ICチップ51に対するESD保護機能が高まる利点もある。また、リフローはんだ工程での熱はICチップ51に直接加わらず、モジュール基板41を介して伝わるだけであるので、ICチップ51への熱負荷を軽減できる。
 図8に示した例では、インダクタL1,L2によるオートトランス構造でインピーダンス変換されるが、モジュール基板41に構成される整合回路は図8に示したものに限らず、例えば図9(A)、図9(B)に示すような構造を採ることもできる。図9(A)の例では、インダクタL1,L2、キャパシタC1,C2を備え、インダクタL1,L2でインピーダンス変換される。また、図9(B)の例では、インダクタL1,L2、キャパシタC1,C2,C3,C4を備え、これらのインダクタおよびキャパシタでインピーダンス整合される。
 なお、モジュール基板41には複数のチップ部品を実装してもよい。また、モジュール基板41内に別のチップ部品を埋設してもよい。
 また、基板内にコイルが形成されたチップコイル(チップインダクタ)にも本発明は同様に適用できる。
《第5の実施形態》
 図10は第5の実施形態に係るチップ部品の実装面側から視た平面図である。第1~第4の実施形態では、平面形状が正方形のチップ部品を示したが、チップ部品の外形状は必ずしも正方形である必要はない。図10に示す例では、チップ部品21の実装面には、実装面の中心点CPを中心として、互いに90°回転対称の位置に4つの外部端子22A,22B,22C,22Dが配置されている。このうち2つの外部端子22A,22Bは信号端子であり、二点鎖線で示す正方形の第1の対角位置に配置されている。残る2つの外部端子22C,22Dは浮き端子(NC端子)であり、第2の対角位置に配置されている。
 このように、チップ部品の外形状は必ずしも正方形である必要はない。
《第6の実施形態》
 図11(A)、図11(B)、図11(C)は第6の実施形態に係る、チップ部品の実装構造を示す図である。図11(A)はチップ部品の実装面側から視た平面図、図11(B)は基板の実装用端子形成部分の平面図、図11(C)はその実装用端子にチップ部品を実装した状態での平面図である。
 図11(A)に示すように、チップ部品21の実装面には、実装面の中心点CPを中心として、互いに90°回転対称の位置に4つの外部端子22A,22B,22C,22Dが配置されている。このうち2つの外部端子22A,22Bは信号端子であり、二点鎖線で示す正方形の第1の対角位置に配置されている。残る2つの外部端子22C,22Dは浮き端子(NC端子)であり、第2の対角位置に配置されている。
 図11(B)に示すように、基板の実装面には4つの実装用端子12A,12B,12C,12Dが形成されている。これらの実装用端子は、二点鎖線で示す正方形の第1の対角位置に配置された第1の実装用端子12Aおよび第2の実装用端子12B、前記正方形の第2の対角位置に配置された第3の実装用端子12Cおよび第4の実装用端子12Dで構成されている。
 第1の実装用端子12Aと第4の実装用端子12Dとは端子接続部13Aで接続されていて、第2の実装用端子12Bと第3の実装用端子12Cとは端子接続部13Bで接続されている。
 第1の実装用端子12Aおよび第2の実装用端子12Bはチップ部品21の外部端子22A,22Bが対向し得る位置にあり、且つ第3の実装用端子12Cおよび第4の実装用端子12Dはチップ部品21の外部端子22A,22Bが対向し得る位置にある。
 図12(A)、図12(B)、図12(C)、図12(D)はチップ部品21の4とおりの実装状態を示す図である。図12(A)に示す状態のチップ部品21の向きを0度とし、右方向の回転角を正方向にとると、図12(B)はチップ部品21を90度回転させて実装した状態を表している。図12(C)はチップ部品21を180度回転させて実装した状態を表している。さらに、図12(D)はチップ部品21を270度回転させて実装した状態を表している。
 上記4とおりのいずれの実装状態であっても、信号ライン14A,14Bにチップ部品の外部端子22A,22Bが接続され、チップ部品21が正しく動作することになる。
 なお、外部端子12A,12Bのみを備えたもの(2端子タイプ)においても同様に適用できる。
《第7の実施形態》
 第7の実施形態では、基板側の実装用端子の幾つかの異なる構造について示す。
 図13(A)、図13(B)、図13(C)は、第7の実施形態に係るチップ部品の実装構造を示す図である。図13(A)はチップ部品の実装面側から視た平面図、図13(B)は基板の実装用端子形成部分の平面図、図13(C)はその実装用端子にチップ部品を実装した状態での平面図である。
 チップ部品21の構造は図6に示したとおりである。基板側の実装用端子12A,12Dは端子接続部13Aと一体化されている。同様に、実装用端子12B,12Cは端子接続部13Bと一体化されている。
 このように、基板側の実装用端子は個別にパターン化されていなくてもよい。
 図14(A)、図14(B)、図14(C)は、第7の実施形態に係る別のチップ部品の実装構造を示す図である。これらの図において、基板上の端子接続部13A,13Bのパターンは同じであるが、レジスト膜71の開口窓72A,72B,72C,72Dのパターンが異なる。これらの図において、左側はチップ部品21の実装前の基板の部分平面図、右側はチップ部品21の実装後の部分平面図である。いずれも、レジスト膜71の開口窓72A,72B,72C,72Dにクリームはんだが印刷形成され、実装機でチップ部品21が実装され、リフロー炉を通すことで、はんだ付け実装される。
 図14(A)、図14(B)、図14(C)に表れているように、レジスト膜71の開口窓72A,72B,72C,72Dの位置によって、チップ部品21の実装位置および向きが定まる。また、リフローはんだの際のセルフアライメント効果により、チップ部品21の実装位置が定まる。
 このように、端子接続部13A,13Bがチップ部品21の外部端子22A,22B,22C,22Dより大きく広がっていても、レジスト膜71の開口窓を設けることで、セルフアライメント効果が得られる。
 図15(A)、図15(B)、図15(C)は第7の実施形態に係る、別のチップ部品の実装構造を示す図である。図15(A)はチップ部品の実装面側から視た平面図、図15(B)は基板の実装用端子形成部分の平面図、図15(C)はその実装用端子にチップ部品を実装した状態での平面図である。
 チップ部品21の構造は図6に示したとおりである。基板側の実装用端子12A,12Dは端子接続部13Aで接続され、実装用端子12Dはビア導体15Aを介して下層の配線パターンに接続されている。同様に、実装用端子12B,12Cは端子接続部13Bで接続され、実装用端子12Bはビア導体15Bを介して下層の配線パターンに接続されている。
 このように、端子接続部13A,13Bはチップ部品の実装範囲内に配置されてもよい。
 図16は、第7の実施形態に係る、さらに別のチップ部品の実装構造を示す図である。図16は基板の実装用端子形成部分の平面図である。基板の実装面に実装用端子12A,12B,12C,12Dが形成されていて、内層に端子接続部13A,13Bおよび信号ライン14A,14Bが形成されている。そして、実装用端子12A,12Dはビア導体を介して端子接続部13Aおよび信号ライン14Aに接続されている。同様に、実装用端子12B,12Cはビア導体を介して端子接続部13Bおよび信号ライン14Bに接続されている。
《第8の実施形態》
 第8の実施形態では5つの外部端子を備えるチップ部品の実装構造について示す。
 図17(A)、図17(B)、図17(C)は第8の実施形態に係る、チップ部品の実装構造を示す図である。図17(A)はチップ部品の実装面側から視た平面図、図17(B)は基板の実装用端子形成部分の平面図、図17(C)はその実装用端子にチップ部品を実装した状態での平面図である。
 チップ部品21の実装面には、第1の対角位置に信号端子である外部端子22A,22B、浮き端子である外部端子22C,22Dが形成されていて、中央に外部端子22Eが更に形成されている。
 基板側には、4つの実装用端子12A,12B,12C,12Dが形成されていて、これら4つの実装用端子の中央に実装用端子12Eが更に形成されている。
 チップ部品21は、4とおりのいずれの実装状態であっても、信号ライン14A,14Bにチップ部品の外部端子22A,22Bが接続され、且つ信号ライン14Eにチップ部品の外部端子22Eが接続されるので、チップ部品21が正しく動作することになる。例えば外部端子22Eはグランド端子であり、基板側のグランドに接続される。
 図18(A)、図18(B)、図18(C)は第8の実施形態に係る、別のチップ部品の実装構造を示す図である。図18(A)はチップ部品の実装面側から視た平面図、図18(B)は基板の実装用端子形成部分の平面図、図18(C)はその実装用端子にチップ部品を実装した状態での平面図である。
 チップ部品21の実装面には、第1の対角位置に信号端子である外部端子22A,22B、浮き端子である外部端子22C,22Dを備えていて、外部端子22Aと22Cとの中央に外部端子22Eを更に備えている。
 基板側には、4つの実装用端子12A,12B,12C,12Dを備えていて、これら4つの実装用端子のうち、隣接する実装用端子の中央に実装用端子12Eをそれぞれ備えている。
 チップ部品21は、4とおりのいずれの実装状態であっても、信号ライン14A,14Bにチップ部品の外部端子22A,22Bが接続され、且つ信号ライン14Eにチップ部品の外部端子22Eが接続されるので、チップ部品21が正しく動作することになる。例えば外部端子22Eはグランド端子であり、基板側のグランドに接続される。
《第9の実施形態》
 第9の実施形態では8つ以上の外部端子を備えるチップ部品の実装構造について示す。
 図19(A)、図19(B)は、第9の実施形態に係るチップ部品の実装構造を示す図である。図19(A)はチップ部品21の実装面側から視た平面図、図19(B)は基板の実装用端子形成部分の平面図である。
 チップ部品21の実装面には、第1の対角位置に信号端子である外部端子22A,22B、および、浮き端子である外部端子22C,22Dを備えている。またこれら4つの外部端子のうち、隣接する外部端子の中央に外部端子22Eをそれぞれ備えている。
 基板側には、4つの実装用端子12A,12B,12C,12Dを備えていて、これら4つの実装用端子のうち、隣接する実装用端子の中央に実装用端子12Eをそれぞれ備えている。
 チップ部品21は、4とおりのいずれの実装状態であっても、信号ライン14A,14Bにチップ部品の外部端子22A,22Bが接続され、且つ信号ライン14Eにチップ部品の外部端子22Eが接続されるので、チップ部品21が正しく動作することになる。例えば外部端子22Eはグランド端子であり、基板側のグランドに接続される。
 図20(A)、図20(B)は、第9の実施形態に係る別のチップ部品の実装構造を示す図である。図20(A)はチップ部品21の実装面側から視た平面図である。図19(A)に示した例と異なり、チップ部品21の実装面の中央に外部端子22Vを更に備えている。外部端子22A,22Bは平衡信号端子、外部端子22C,22Dは浮き端子である。外部端子22Eはグランド端子であり、共通接続されている。外部端子22Vは電源端子である。このチップ部品は、2つの信号端子以外に機能性端子(ここでは電源端子)を備えた一例である。
 基板側には、上記外部端子22A,22Bのいずれかが接続される4つの実装用端子12A,12B,12C,12Dを備えている。またいずれかの外部端子22Eが接続される2つの実装用端子12Eを備えている。さらに、中央には上記外部端子22Vが接続される実装用端子12Vを備えている。実装用端子12A,12Dはビア導体を介して下層の端子接続部および信号ラインに接続されている。同様に実装用端子12C,12Bはビア導体を介して下層の端子接続部および信号ラインに接続されている。実装用端子12E,12Vもビア導体を介して下層のラインにそれぞれ接続されている。
 このように一辺に3個以上の外部端子を備え、且つ中央に外部端子を備えたチップ部品についても同様に適用できる。
CP…中心点
11…基板
12A…第1の実装用端子
12B…第2の実装用端子
12C…第3の実装用端子
12D…第4の実装用端子
12E,12V…実装用端子
13A,13B…端子接続部
14A,14B,14E…信号ライン
15A,15B…ビア導体
21…チップ部品
22A,22B,22C,22D,22E,22V…外部端子
30…整合回路
31…チップキャパシタ
32,32A,32B…アンテナコイル
33A,33B…アンテナ素子
41…モジュール基板
42A,42B…外部端子
43A,43B…実装用端子
51…ICチップ
52A,52B…外部端子
61…封止樹脂
71…レジスト膜
72A,72B,72C,72D…レジスト開口窓
101,102,104…RFIDタグ

Claims (6)

  1.  表面に実装用端子が形成された基板と、実装面に外部端子が形成された表面実装チップ部品とを備えた、チップ部品の実装構造において、
     前記チップ部品の外部端子は、前記チップ部品の実装面の中心に対して互いに180°回転対称の位置に配置された少なくとも一対の外部端子を含み、
     前記基板の実装用端子は、正方形の第1の対角位置に配置された第1・第2の実装用端子と、前記正方形の第2の対角位置に配置された第3・第4の実装用端子と、を含み、
     前記第1・第2の実装用端子は前記チップ部品の外部端子が対向し得る位置にあり、且つ前記第3・第4の実装用端子は前記チップ部品の外部端子が対向し得る位置にあり、
     前記第1の実装用端子と第4の実装用端子とが接続されていて、前記第2の実装用端子と第3の実装用端子とが接続されている、ことを特徴とするチップ部品の実装構造。
  2.  前記外部端子は、前記チップ部品の実装面の中心に対して互いに90°回転対称の位置に配置された少なくとも4つの外部端子を含み、この4つの外部端子のうち第1の対角位置にある2つの外部端子は信号端子であり、第2の対角位置にある2つの外部端子は浮き端子である、請求項1に記載のチップ部品の実装構造。
  3.  前記外部端子は、前記4つの外部端子のうち隣接する2つの外部端子の間に配置された外部端子を更に備え、前記第1・第3の実装用端子の間、前記第2・第3の実装用端子の間、前記第1・第4の実装用端子の間、前記第2・第4の実装用端子の間にそれぞれ実装用端子を更に備える、請求項2に記載のチップ部品の実装構造。
  4.  前記外部端子は、前記中心に配置された外部端子を更に備え、前記4つの実装用端子の中央に実装用端子を更に備える、請求項2に記載のチップ部品の実装構造。
  5.  前記チップ部品は、インピーダンス整合回路を備える基体と、この基体に搭載されたICを含んで構成された、請求項1~4のいずれかに記載のチップ部品の実装構造。
  6.  請求項1~4のいずれかに記載のチップ部品の実装構造を備え、前記基板と前記チップ部品とで構成されたモジュール部品。
PCT/JP2013/081853 2012-12-19 2013-11-27 チップ部品の実装構造およびモジュール部品 WO2014097836A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014529738A JP5621951B1 (ja) 2012-12-19 2013-11-27 チップ部品の実装構造およびモジュール部品
US14/718,367 US9560757B2 (en) 2012-12-19 2015-05-21 Chip component mounting structure, and module component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-276636 2012-12-19
JP2012276636 2012-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/718,367 Continuation US9560757B2 (en) 2012-12-19 2015-05-21 Chip component mounting structure, and module component

Publications (1)

Publication Number Publication Date
WO2014097836A1 true WO2014097836A1 (ja) 2014-06-26

Family

ID=50978177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081853 WO2014097836A1 (ja) 2012-12-19 2013-11-27 チップ部品の実装構造およびモジュール部品

Country Status (3)

Country Link
US (1) US9560757B2 (ja)
JP (1) JP5621951B1 (ja)
WO (1) WO2014097836A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062971A (ja) * 2014-09-16 2016-04-25 株式会社東芝 半導体装置
EP3030057A1 (en) * 2014-12-02 2016-06-08 Kabushiki Kaisha Tokai Rika Denki Seisakusho Circuit board and electronic key using same
JPWO2015174202A1 (ja) * 2014-05-13 2017-04-20 株式会社村田製作所 樹脂封止型モジュール
WO2018173522A1 (ja) * 2017-03-22 2018-09-27 株式会社村田製作所 薄膜esd保護デバイス
JP2019506805A (ja) * 2016-01-26 2019-03-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated フレキシブルプリント基板(pcb)を使用した信号伝達およびアンテナレイアウト

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193282A1 (en) * 2016-01-12 2017-07-19 Nxp B.V. Proximity integrated circuit card and method
CN208955196U (zh) 2016-09-26 2019-06-07 株式会社村田制作所 天线装置以及电子设备
WO2019017206A1 (ja) * 2017-07-20 2019-01-24 株式会社村田製作所 回路モジュール
JP7279354B2 (ja) * 2018-12-17 2023-05-23 富士電機株式会社 半導体素子及び半導体素子の識別方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086644A (ja) * 2002-08-28 2004-03-18 Renesas Technology Corp 電子タグ用インレットおよびその製造方法
JP2008204346A (ja) * 2007-02-22 2008-09-04 Fujitsu Ltd Rfidタグおよびrfidタグの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683512B2 (en) * 2001-06-21 2004-01-27 Kyocera Corporation High frequency module having a laminate board with a plurality of dielectric layers
JP3616605B2 (ja) * 2002-04-03 2005-02-02 沖電気工業株式会社 半導体装置
JP4418250B2 (ja) * 2004-02-05 2010-02-17 株式会社ルネサステクノロジ 高周波回路モジュール
JP2007102558A (ja) 2005-10-05 2007-04-19 Toshiba Corp 電子部品、および無線通信媒体
US8441341B2 (en) 2006-11-07 2013-05-14 Nxp B.V. System, apparatus, and method for PCB-based automation traceability
WO2009011376A1 (ja) * 2007-07-18 2009-01-22 Murata Manufacturing Co., Ltd. 無線icデバイス
JP5267463B2 (ja) * 2008-03-03 2013-08-21 株式会社村田製作所 無線icデバイス及び無線通信システム
US8278749B2 (en) * 2009-01-30 2012-10-02 Infineon Technologies Ag Integrated antennas in wafer level package
US8451618B2 (en) * 2010-10-28 2013-05-28 Infineon Technologies Ag Integrated antennas in wafer level package
US8912634B2 (en) * 2012-03-29 2014-12-16 International Business Machines Corporation High frequency transition matching in an electronic package for millimeter wave semiconductor dies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086644A (ja) * 2002-08-28 2004-03-18 Renesas Technology Corp 電子タグ用インレットおよびその製造方法
JP2008204346A (ja) * 2007-02-22 2008-09-04 Fujitsu Ltd Rfidタグおよびrfidタグの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015174202A1 (ja) * 2014-05-13 2017-04-20 株式会社村田製作所 樹脂封止型モジュール
JP2016062971A (ja) * 2014-09-16 2016-04-25 株式会社東芝 半導体装置
CN105990283A (zh) * 2014-09-16 2016-10-05 株式会社东芝 半导体装置
EP3030057A1 (en) * 2014-12-02 2016-06-08 Kabushiki Kaisha Tokai Rika Denki Seisakusho Circuit board and electronic key using same
JP2019506805A (ja) * 2016-01-26 2019-03-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated フレキシブルプリント基板(pcb)を使用した信号伝達およびアンテナレイアウト
WO2018173522A1 (ja) * 2017-03-22 2018-09-27 株式会社村田製作所 薄膜esd保護デバイス
JP6424994B1 (ja) * 2017-03-22 2018-11-21 株式会社村田製作所 薄膜esd保護デバイス
US11469593B2 (en) 2017-03-22 2022-10-11 Murata Manufacturing Co., Ltd. Thin-film ESD protection device with compact size

Also Published As

Publication number Publication date
US20150257266A1 (en) 2015-09-10
US9560757B2 (en) 2017-01-31
JP5621951B1 (ja) 2014-11-12
JPWO2014097836A1 (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5621951B1 (ja) チップ部品の実装構造およびモジュール部品
TWI378747B (en) Flexible electronic assembly
US8120164B2 (en) Semiconductor chip package, printed circuit board assembly including the same and manufacturing methods thereof
JP2007305881A (ja) テープキャリアおよび半導体装置並びに半導体モジュール装置
US20060215377A1 (en) Flexible circuit substrate and method of manufacturing the same
US8110929B2 (en) Semiconductor module
JP2005033201A (ja) 半導体パッケージ
JP2007294724A (ja) 多層回路配線基板及び半導体装置
CN103037619A (zh) 印刷电路板组件
KR101477818B1 (ko) 배선 회로 기판 및 그 제조 방법
JP2015141959A (ja) 高周波モジュール
KR100923542B1 (ko) 이형재를 이용한 임베디드 반도체 패키지 장치 및 그 제조 방법
JP6323622B2 (ja) 部品実装基板
US8390115B2 (en) Wiring board and semiconductor device using the wiring board
JP6089557B2 (ja) 電子部品モジュール
JP2007184415A (ja) 半導体素子実装用基板および高周波半導体装置ならびにこれを用いた電子機器
JP2007213463A (ja) 非接触データキャリア、非接触データキャリア用配線基板
JP2021125469A (ja) 電子部品の実装方法、並びに、これに用いる基板及び電子部品
JP2002231761A (ja) 電子部品実装体および電子部品
TWI764760B (zh) 電子裝置
JP2005116881A (ja) 半導体装置及びその製造方法、回路基板並びに電子機器
US20220414415A1 (en) Circuit module and rfid tag
US7122909B2 (en) Wiring board, stacked wiring board and method of manufacturing the same, semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
JP2009194058A (ja) 電気接続装置
JP2008147427A (ja) 電子部品装置及び電子部品の実装方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014529738

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865821

Country of ref document: EP

Kind code of ref document: A1