[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014080637A1 - コンテナ用冷凍装置 - Google Patents

コンテナ用冷凍装置 Download PDF

Info

Publication number
WO2014080637A1
WO2014080637A1 PCT/JP2013/006892 JP2013006892W WO2014080637A1 WO 2014080637 A1 WO2014080637 A1 WO 2014080637A1 JP 2013006892 W JP2013006892 W JP 2013006892W WO 2014080637 A1 WO2014080637 A1 WO 2014080637A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
suction
evaporator
container
target
Prior art date
Application number
PCT/JP2013/006892
Other languages
English (en)
French (fr)
Inventor
喜一郎 佐藤
明敏 上野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201380061070.1A priority Critical patent/CN104813124B/zh
Priority to US14/646,653 priority patent/US20150338135A1/en
Priority to EP13856262.4A priority patent/EP2924376B1/en
Publication of WO2014080637A1 publication Critical patent/WO2014080637A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/744Large containers having means for heating, cooling, aerating or other conditioning of contents heating or cooling through the walls or internal parts of the container, e.g. circulation of fluid inside the walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0411Treating air flowing to refrigeration compartments by purification by dehumidification
    • F25D2317/04111Control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the present invention relates to a container refrigeration apparatus, and particularly relates to measures for preventing a low temperature failure.
  • a container refrigeration apparatus is used to cool the inside of a container used for marine transportation.
  • the container refrigeration apparatus disclosed in Patent Document 1 includes a refrigerant circuit in which a compressor, a condenser, a receiver, an electronic expansion valve, and an evaporator are sequentially connected.
  • the container refrigeration apparatus is provided with a heating heat exchanger (heating apparatus) located on the leeward side of the evaporator of the refrigerant circuit. This heat exchanger for heating is configured so that the discharge gas refrigerant of the compressor flows.
  • the cooling operation in which the air sucked from the container is cooled in the evaporator, and the air sucked from the container and cooled in the evaporator is dehumidified.
  • the dehumidifying operation for heating in the exchanger is switched.
  • the air sucked from the inside of the container passes through the evaporator and the heating device (for example, the heat exchanger for heating), and then extends in the width direction of the container. It passes through the outlet and is blown out into the container.
  • the blowing temperature sensor which detects the temperature of the air (namely, blowing air) which blows off from a blower outlet is provided in one location of a blower outlet. In each of the cooling operation and the dehumidifying operation, temperature control is performed so that the temperature of the blown air detected by the blowout temperature sensor (hereinafter referred to as blowout detection temperature) becomes a predetermined internal set temperature.
  • the air that passes through the heating apparatus may not be heated uniformly in the width direction of the container.
  • the air passing through the heating heat exchanger is not heated uniformly in the interior width direction, as shown in FIG. .
  • Temperature unevenness occurs in the air blown out from the heating heat exchanger.
  • the cooling operation is switched to the dehumidifying operation, it becomes difficult to accurately detect the minimum temperature of the blown air in the interior width direction by the blowout temperature sensor.
  • the blowing detection temperature may be higher than the actual minimum temperature of the blowing air in the interior width direction. Therefore, even if the temperature control is performed so that the blowout detection temperature becomes the set internal temperature in the dehumidifying operation, the minimum temperature of the blown air in the internal width direction is lower than the set internal temperature. May cause low-temperature damage to the cargo.
  • an object of the present invention is to provide a container refrigeration apparatus capable of preventing a low-temperature failure of a container load.
  • the first invention includes a refrigerant circuit (16) in which a compressor (21), a condenser (23), an expansion mechanism (76), and an evaporator (25) are connected in order to circulate refrigerant, and a container (C) And a heating device (17) provided on the downstream side of the evaporator (25) in the flow direction of the suction air sucked from the inside of the refrigerator, the suction air being the evaporator (25) and the heating device A cooling section (18) that sequentially passes through (17) and is blown into the container (C); the heating device (17) is stopped and the suction air is cooled in the evaporator (25).
  • a refrigeration apparatus for a container that performs a cooling operation for cooling and dehumidifying the intake air by cooling in the evaporator (25) and heating in the heating device (17), wherein the evaporator (25) and the evaporator Of the blown air that passes through the heating device (17) and blows into the container (C).
  • the blowout temperature sensor (34) for detecting the temperature, and the blowout detection temperature (Tss) that is the temperature of the blown air detected by the blowout temperature sensor (34) in the cooling operation and the dehumidifying operation is a predetermined target.
  • a temperature control unit (101) for controlling the cooling unit (18) so as to be a temperature (Tx), and the target temperature (Tx) in the cooling operation is predetermined with respect to the internal temperature of the container (C).
  • a container refrigeration apparatus comprising: a target control unit (201) configured to set a second set temperature obtained by adding a predetermined target added temperature to the first set temperature.
  • the cooling operation and the dehumidifying operation are performed.
  • the refrigerant discharged from the compressor (21) is condensed by the condenser (23) and expanded by the expansion mechanism (76), and then the evaporator (25 ) To evaporate the refrigeration cycle.
  • the suction air sucked from the inside of the container (C) is cooled by exchanging heat with the refrigerant flowing through the evaporator (25) when passing through the evaporator (25).
  • the target control unit (201) sets the target temperature (Tx) to the first set temperature that is the same as the internal set temperature (Tsp) in the cooling operation. Therefore, in the cooling operation, the temperature control unit (101) controls the cooling unit (18) so that the blown-out detection temperature (Tss) becomes the same first set temperature as the internal set temperature (Tsp).
  • the intake air sucked from the inside of the container (C) passes through the evaporator (25) and then passes through the evaporator (25). Heat is exchanged with the refrigerant flowing through the chilled refrigerant to condense (that is, dehumidify by cooling) and is heated by the heating device (17) when passing through the heating device (17).
  • the target control unit (201) sets the target temperature (Tx) to the second set temperature obtained by adding the target correction temperature to the internal set temperature (Tsp). Therefore, when the cooling operation is switched to the dehumidifying operation, the temperature control unit (101) causes the blowout detection temperature (Tss) to become the second set temperature obtained by adding the target correction temperature to the internal set temperature (Tsp). Control the cooling section (18).
  • air passing through the heating device (17) may not be heated uniformly in the width direction of the container (C).
  • temperature unevenness occurs in the blown air that passes through the evaporator (25) and the heating device (17) and is blown into the container (C).
  • the blowout detection temperature (Tss) is There is a possibility of becoming higher than the minimum temperature of the blown air in the internal width direction of (C).
  • the target temperature (Tx) is a second set temperature (that is, the set temperature (Tsp)) that is higher than the set temperature (Tsp). Therefore, the temperature of the air blown into the container (C) can be increased as a whole. As a result, the inside of the container (C) The temperature of the blown air in the width direction can also be increased. As a result, even if the air passing through the heating device (17) is not heated uniformly in the width direction of the container (C), the minimum temperature of the blown air in the width direction of the container (C) It can suppress becoming lower than internal setting temperature (Tsp).
  • a second invention further includes a suction temperature sensor (33) for detecting a temperature of the suction air in the first invention, and the target control unit (201) is switched from the cooling operation to the dehumidifying operation.
  • the suction detection temperature (Trs) which is the temperature of the suction air detected by the suction temperature sensor (33)
  • the target temperature (Tx) is lowered.
  • the container refrigeration apparatus is characterized in that the target temperature (Tx) is increased when the suction detection temperature (Trs) is lower than the suction reference temperature.
  • the air blown from the evaporator (25) and the heating device (17) into the container (C) is circulated in the container (C) and again the evaporator (25). Will be sucked into. Therefore, the change in the suction detection temperature (Trs) depends on the change in the internal temperature of the container (C). Specifically, when the internal temperature of the container (C) increases, the temperature of the intake air increases and the suction detection temperature (Trs) increases. On the other hand, when the internal temperature of the container (C) becomes low, the temperature of the intake air becomes low and the suction detection temperature (Trs) becomes low.
  • the target control unit (201) corrects the target temperature (Tx) in accordance with the change in the suction detection temperature (Trs) after switching from the cooling operation to the dehumidifying operation. That is, after the switching from the cooling operation to the dehumidifying operation, when the internal temperature of the container (C) rises and the suction detection temperature (Trs) becomes higher than the suction reference temperature, the target control unit (201) Tx) is lowered. Thereby, the temperature of blowing air can be reduced and, as a result, the internal temperature of a container (C) can be reduced.
  • the target control unit (201) Increase Tx).
  • the temperature of blowing air can be raised and, as a result, the internal temperature of a container (C) can be raised.
  • the change in the suction detection temperature (Trs) after switching from the cooling operation to the dehumidification operation (specifically, the result of comparison between the suction detection temperature (Trs) and the suction reference temperature)
  • the temperature By controlling the temperature, it is possible to suppress a change in the internal temperature of the container (C) accompanying switching from the cooling operation to the dehumidifying operation.
  • the suction reference temperature is the suction air temperature detected by the suction temperature sensor (33) when the cooling operation is in a stable state.
  • the container refrigeration apparatus is set to a suction set temperature obtained by adding a predetermined suction addition temperature to the temperature (Trs ′) or the above-mentioned set temperature (Tsp) in the cabinet.
  • the suction detection temperature (Trs) is higher than the suction stable temperature (Trs') (or the suction set temperature). Then, while lowering the target temperature (Tx), the target temperature (Tx) is increased when the suction detection temperature (Trs) is lower than the suction stable temperature (Trs ′) (or the suction set temperature).
  • the suction detection temperature (Trs) is caused by the change in the internal temperature of the container (C) after switching from the cooling operation to the dehumidifying operation with the suction stable temperature (Trs') or the suction set temperature as a reference. It can be determined whether or not it has changed.
  • the target controller (201) increases the target temperature (dehumidification capability) in the evaporator (25) in the dehumidifying operation.
  • the container refrigeration apparatus corrects the target temperature (Tx) according to the dehumidifying capacity of the evaporator (25) so that Tx) becomes high.
  • the air is dehumidified by being cooled and condensed in the evaporator (25). That is, in the dehumidifying operation, the temperature of the blown air tends to decrease as the dehumidifying capacity (cooling capacity) in the evaporator (25) increases. Therefore, dehumidifying operation is performed by correcting the target temperature (Tx) according to the dehumidifying capacity in the evaporator (25) so that the target temperature (Tx) becomes higher as the dehumidifying capacity in the evaporator (25) becomes higher in the dehumidifying operation.
  • the temperature of the blown air can be increased when the temperature of the blown air is likely to be lowered.
  • the target control unit (201) is configured so that the target temperature (Tx) is equal to or higher than the set temperature (Tsp) in the cabinet.
  • the fifth aspect of the invention by setting the lower limit of the target temperature (Tx) to the internal set temperature (Tsp), it is possible to prevent an excessive temperature drop of the blown air. Thereby, it can prevent that the internal temperature of a container (C) falls excessively.
  • the heating device (17) causes the reheat heat in which a part of refrigerant discharged from the compressor (21) flows in the dehumidifying operation.
  • a container refrigeration apparatus comprising a exchanger (32).
  • a part of the refrigerant discharged from the compressor (21) flows into the reheat heat exchanger (32), and the remaining refrigerant circulates in the refrigerant circuit (16). And flows into the evaporator (25).
  • the air passing through the evaporator (25) is heat-exchanged with the refrigerant flowing through the evaporator (25), cooled, and condensed (that is, dehumidified by cooling).
  • the air passing through the reheat heat exchanger (32) is heated by exchanging heat with the refrigerant flowing through the reheat heat exchanger (32).
  • a first dehumidifying control for causing a part of refrigerant discharged from the compressor (21) to flow into the reheat heat exchanger (32), and the reheating
  • the discharge pressure of the compressor (21) is higher than the discharge pressure in the first dehumidification control when a part of the discharge refrigerant of the compressor (21) is caused to flow into the heat exchanger (32).
  • the container refrigeration apparatus further includes an operation control unit (105) that performs second dehumidification control for controlling the cooling unit (18).
  • the first dehumidification control and the second dehumidification control are performed.
  • the first dehumidification control a part of the refrigerant discharged from the compressor (21) flows into the reheat heat exchanger (32), and the remaining refrigerant circulates through the refrigerant circuit (16) to the evaporator ( 25).
  • the suction air sucked from the inside of the container (C) can be cooled and dehumidified in the evaporator (25) and heated in the reheat heat exchanger (32).
  • the reheat heat exchange is performed by controlling the cooling unit (18) so that the discharge pressure of the compressor (21) is higher than the discharge pressure of the compressor (21) in the first dehumidification control.
  • the heating capacity in the vessel (32) can be increased.
  • the temperature control unit (101) controls the cooling unit (18) to increase the cooling capacity in the evaporator (25) in order to reduce the blowout detection temperature (Tss).
  • the temperature control unit (101) increases the cooling capacity in the evaporator (25) by increasing the refrigerant circulation amount in the refrigerant circuit (16) of the cooling unit (18).
  • the temperature of the blown air can be lowered, and as a result, the blown detection temperature (Tss) can be lowered to approach the target temperature (Tx).
  • the dehumidification capability in an evaporator (25) can be raised by raising the cooling capability in an evaporator (25).
  • An eighth invention is a container refrigeration apparatus according to any one of the first to fifth inventions, wherein the heating device (17) is constituted by an electric heater (78). .
  • the air passing through the evaporator (25) is cooled by heat exchange with the refrigerant flowing through the evaporator (25) and condensed (that is, dehumidified by cooling).
  • the air passing through the electric heater (78) is heated by the electric heater (78).
  • the first dehumidifying control for driving the electric heater (78) and the electric heater (78) in a state where the electric heater (78) is driven.
  • the container refrigeration apparatus is further provided with an operation control unit (105) that performs the second dehumidification control that makes the heating capacity of (2) higher than the heating capacity in the first dehumidification control.
  • the first dehumidification control and the second dehumidification control are performed.
  • the intake air sucked from the inside of the container (C) can be cooled and dehumidified in the evaporator (25) and heated in the electric heater (78).
  • the heating capacity of the electric heater (78) can be increased by making the heating capacity of the electric heater (78) larger than the heating capacity of the first dehumidifying control.
  • the heating capability in the electric heater (78) increases, the temperature of the blown air becomes high, and the blown detection temperature (Tss) becomes higher than the target temperature (Tx).
  • the temperature control unit (101) controls the cooling unit (18) to increase the cooling capacity in the evaporator (25) in order to reduce the blowout detection temperature (Tss).
  • the temperature of the blown air can be lowered, and as a result, the blown detection temperature (Tss) can be lowered to approach the target temperature (Tx).
  • the dehumidification capability in an evaporator (25) can be raised by raising the cooling capability in an evaporator (25).
  • the target temperature (Tx) is changed to the second set temperature (that is, the temperature obtained by adding the target correction temperature to the internal set temperature (Tsp)).
  • the target temperature (Tx) is corrected in accordance with the change in the suction detection temperature (Trs) after switching from the cooling operation to the dehumidifying operation, whereby the cooling operation is switched to the dehumidifying operation. Because the change in the container (C) chamber temperature due to switching can be suppressed, the container (C) chamber temperature rise can be prevented while preventing the low temperature failure of the container (C) cargo during the dehumidifying operation. be able to.
  • the fourth invention by correcting the target temperature (Tx) in accordance with the dehumidifying capacity of the evaporator (25) in the dehumidifying operation, the temperature of the blowing air is reduced when the temperature of the blowing air is likely to decrease in the dehumidifying operation. Since the temperature can be increased, it is possible to suppress a decrease in the internal temperature of the container (C) accompanying an increase in the dehumidifying capacity in the evaporator (25).
  • the fifth aspect by setting the lower limit of the target temperature (Tx) to the internal set temperature (Tsp), it is possible to prevent the internal temperature of the container (C) from excessively decreasing. In addition, it is possible to reliably prevent a low temperature failure of the container (C) load during the dehumidifying operation.
  • the intake air sucked from the inside of the container (C) can be cooled and dehumidified in the evaporator (25) and heated in the reheat heat exchanger (32). Therefore, the inside air of the container (C) can be dehumidified while suppressing a decrease in the inside temperature of the container (C).
  • the cooling in the evaporator (25) is increased along with the increase in the heating capacity in the reheat heat exchanger (32) so that the blowing detection temperature (Tss) becomes the target temperature (Tx). Since the capacity can be increased and the dehumidification capacity in the evaporator (25) can be increased, the dehumidification capacity in the evaporator (25) can be increased while suppressing the change in the internal temperature of the container (C). .
  • the suction air sucked from the inside of the container (C) can be cooled and dehumidified in the evaporator (25) and heated in the electric heater (78).
  • the inside air of the container (C) can be dehumidified while suppressing a decrease in the inside temperature of the container (C).
  • the cooling capacity in the evaporator (25) is increased with the increase in the heating capacity in the electric heater (78) so that the blowout detection temperature (Tss) becomes the target temperature (Tx). Since the dehumidification capability in the evaporator (25) can be increased by increasing the temperature, the dehumidification capability in the evaporator (25) can be increased while suppressing a change in the internal temperature of the container (C).
  • FIG. 3 is a piping system diagram illustrating a configuration of a cooling unit of the container refrigeration apparatus according to the first embodiment. It is a state transition diagram for demonstrating the cooling operation and dehumidification operation of Embodiment 1.
  • FIG. 6 is a diagram for explaining first to third dehumidification controls in the dehumidifying operation of the first embodiment.
  • the container refrigeration apparatus (10) performs refrigeration or freezing in a container (C) used for maritime transportation or the like.
  • the container (C) is formed in a box shape (or a bottomed cylindrical shape) whose one side surface is open.
  • the container refrigeration apparatus (10) is disposed so as to close the open end of the container (C).
  • a load (not shown) to be cooled is stacked in the container (C).
  • Examples of cargo include fresh food and precision electronic parts.
  • the container refrigeration apparatus (10) includes a controller (100), a cooling unit (18) having a refrigerant circuit (16) and a heating device (17), a suction temperature sensor (33), A blowing temperature sensor (34) and a humidity sensor (53) are provided.
  • the refrigerant circuit (16) is a closed circuit filled with refrigerant, and is configured by sequentially connecting a compressor (21), a condenser (23), an expansion valve (76), and an evaporator (25). .
  • the heating device (17) is connected to the evaporator (16) in the refrigerant circuit (16) in the flow direction of the air (intake air) sucked from the inside of the container (C). It is provided downstream of 25). That is, in the cooling unit (18), the intake air sequentially passes through the evaporator (25) and the heating device (17) and is blown out into the container (C).
  • the heating device (17) is constituted by a reheat heat exchanger (32).
  • the container refrigeration apparatus (10) is configured to cool the air in the container (C) using the refrigeration cycle of the refrigerant circuit (16) of the cooling unit (18). Specifically, in this container refrigeration apparatus (10), the heating apparatus (17) is stopped and the cooling operation in which the intake air is cooled in the evaporator (25), and the intake air is cooled and dehumidified in the evaporator (25). Then, the dehumidifying operation of heating in the heating device (17) is performed.
  • the container refrigeration apparatus (10) includes a casing (11) whose peripheral portion is attached to the container (C) so as to close the opening end of the container (C).
  • the cooling unit (18) of the container refrigeration apparatus (10) includes a refrigerant circuit (16) and a heating device (17) (in this example, a reheat heat exchanger (32)), It has an external fan (24), an external motor (45), and a blower unit (30).
  • the casing (11) includes an outer casing (12) located on the outer side and an inner casing (13) located on the inner side.
  • the outer casing (12) and the inner casing (13) are made of a metal aluminum alloy.
  • a heat insulating material (14) is provided in a space between the outside casing (12) and the inside casing (13).
  • the outer casing (12) is attached to the open end of the container (C) so as to close the open end of the container (C). Further, the outer casing (12) is formed such that a lower portion thereof bulges toward the inner side.
  • the internal casing (13) is formed along the external casing (12), and its lower part bulges inward of the internal compartment corresponding to the lower part of the external casing (12).
  • the lower part of the casing (11) is formed so as to bulge out toward the inner side of the container (C), so that a recess (11a) is formed outside the lower part of the casing (11). Is formed. That is, an outside storage space (S1) is formed on the outer side of the lower part of the casing (11), and an inner storage space (S2) is formed on the inner side of the upper part of the casing (11).
  • a partition plate (48) is provided inside the casing (11).
  • the partition plate (48) is configured by a substantially rectangular plate member, and is erected in a posture so as to face the casing (11) with a gap therebetween.
  • the storage space (S2) in the storage is partitioned from the storage of the container (C) by the partition plate (48).
  • a gap is formed between the upper end of the partition plate (48) and the ceiling surface of the container (C), and this gap draws the air inside the container (C) into the storage space (S2). It constitutes the mouth (51).
  • a gap is formed between the lower end of the partition plate (48) and the bottom surface of the container (C), and this gap is the air treated by the container refrigeration apparatus (10) (that is, the evaporator (25) And the air outlet (52) which blows off the air which passed the heating apparatus (17) in order into the store
  • the container refrigeration apparatus (10) that is, the evaporator (25)
  • the air outlet (52) which blows off the air which passed the heating apparatus (17) in order into the store
  • ⁇ Outside storage space> In the outside storage space (S1), a compressor (21), a condenser (23), an outside fan (24), and an outside motor (45) are provided.
  • the compressor (21) and the condenser (23) are connected to the refrigerant circuit (16).
  • the outside fan (24) is rotationally driven by the outside motor (45), attracts outside air into the outside storage space (S1), and conveys it to the condenser (23).
  • the external motor (45) can be switched between driving and stopping (starting / stopping) in response to control by the controller (100). That is, the start / stop of the external fan (24) is controlled by the controller (100).
  • the condenser (23) heat exchange is performed between the air sucked from outside the container (C) and the refrigerant.
  • the reheat heat exchanger (32), the evaporator (25), the blower unit (30), the suction temperature sensor (33), and the humidity sensor are installed on the upper part inside the casing (11).
  • 53) is provided, and a blowout temperature sensor (34) is provided in the lower part of the casing (11) on the inner side.
  • the suction temperature sensor (33) and the humidity sensor (53) are arranged in the upper part closest to the suction port (51) (that is, in the vicinity of the suction port (51)).
  • the blower unit (30) is disposed directly below the suction temperature sensor (33), the evaporator (25) is disposed directly below the blower unit (30), and the reheat heat exchanger ( 32) is arranged, and the blowout temperature sensor (34) is arranged in the lower part closest to the blowout port (52) (that is, in the vicinity of the blowout port (52)).
  • the blower unit (30) conveys the air inside the container (C) to the internal storage space (S2) (specifically, the evaporator (25) and the reheat heat exchanger (32)).
  • the blower unit (30) is provided in the upper part of the storage space (S2), and two units are arranged side by side in the width direction of the casing (11).
  • Each blower unit (30) includes a fan housing (31), an internal fan (26), and an internal motor (46).
  • the internal fan (26) is rotationally driven by the internal motor (46) and draws the internal air of the container (C) from the suction port (51) on the upper side of the partition plate (48) to store the internal storage space ( S2) (Specifically, it is transferred to the evaporator (25) and the reheat heat exchanger (32)).
  • the internal motor (46) can be switched between driving and stopping (start / stop) in response to control by the controller (100). That is, the start / stop of the internal fan (26) is controlled by the controller (100).
  • the air (suction air) sucked from the inside of the container (C) by the inside fan (26) sequentially passes through the evaporator (25) and the reheat heat exchanger (32), and then the partition plate ( 48) Blow out from the lower outlet (52) into the container (C). That is, the reheat heat exchanger (32) is provided on the downstream side of the evaporator (25) in the flow direction of the intake air sucked from the inside of the container (C).
  • the suction temperature sensor (33) detects the temperature of the suction air sucked from the inside of the container (C) (that is, the air sent from the inside of the container (C) to the storage space (S2)).
  • the suction temperature sensor (33) is provided at a height that is substantially horizontal to the upper part of the blower unit (30) between the two blower units (30, 30).
  • the temperature of the suction air detected by the suction temperature sensor (33) (hereinafter referred to as suction detection temperature (Trs)) is sent to the controller (100).
  • the blowing temperature sensor (34) detects the temperature of the air (blowing air) blown out from the storage space (S2) in the storage into the container (C). That is, the blowing temperature sensor (34) detects the temperature of the blowing air that passes through the evaporator (25) and the reheat heat exchanger (32) in order and is blown into the container (C).
  • the blowout temperature sensor (34) is arranged in the width direction between the lower part of the storage space (S2) (that is, the bulged portion of the storage casing (13)) and the partition plate (48). Is provided at a substantially central position.
  • the temperature of the blown air detected by the blowout temperature sensor (34) (hereinafter referred to as blowout detection temperature (Tss)) is sent to the controller (100).
  • the humidity sensor (53) detects the humidity of the intake air sucked from the inside of the container (C).
  • the humidity of the suction air detected by the humidity sensor (53) (hereinafter referred to as suction detection humidity) is sent to the controller (100).
  • the casing (11) has two opening holes (27) that are open at positions closer to the upper side thereof, arranged side by side in the width direction.
  • An opening / closing door (28) that can be opened and closed at the time of maintenance is attached to the opening hole (27).
  • An electrical component box (29) is disposed in a position adjacent to the external fan (24) in the external storage space (S1) of the casing (11).
  • an evaporator holding frame (15) that extends in the width direction of the casing (11) and holds the evaporator (25) is provided inside the upper chamber of the casing (11). Yes.
  • a side stay (40) and a frame support member (43) are provided inside the casing (11).
  • the side stays (40) are erected on both end sides in the width direction of the casing (11), and are connected to the lower part of the casing (11) that bulges to the inside of the warehouse.
  • the frame support member (43) is a columnar member having a substantially U-shaped cross section, and extends in the vertical direction at the central portion in the width direction of the casing (11) inside the lower part of the casing (11). Is provided.
  • the evaporator holding frame (15) is supported at both ends in the width direction by side stays (40) and at the center in the width direction by a frame support member (43). Specifically, the central portion in the width direction of the evaporator holding frame (15) is fixed to the central portion in the width direction inside the casing (11) and connected to the upper end portion of the frame support member (43). Yes.
  • ⁇ Configuration of refrigerant circuit> As shown in FIG. 4, in the refrigerant circuit (16), the compressor (21), the condenser (23), the expansion valve (76), and the evaporator (25) are sequentially connected by a refrigerant pipe.
  • a high-pressure liquid pipe (81) is provided between the condenser (23) and the expansion valve (76), and a low-pressure liquid pipe is provided between the expansion valve (76) and the evaporator (25).
  • a pipe (82) is provided, and a low-pressure gas pipe (83) is provided between the evaporator (25) and the compressor (21).
  • an external fan (24) for taking in air outside the container (C) into the condenser (23) is provided.
  • the high pressure liquid pipe (81) includes a receiver (73), a first subcooling heat exchanger (60), a first on-off valve (35), a dryer (42), and a second subcooling heat exchange.
  • the low-pressure gas pipe (83) is provided with a suction proportional valve (66).
  • the compressor (21) compresses and discharges the refrigerant.
  • the compressor (21) is configured to be able to switch between driving and stopping in response to control by the controller (100).
  • the compressor (21) has a compression mechanism (not shown) and a compressor motor (not shown) that drives the compression mechanism.
  • the rotation speed of the compressor motor is constant. That is, the compressor motor is configured to be driven at a constant rotational speed.
  • the condenser (23) flows in the refrigerant discharged from the compressor (21), and the heat of the refrigerant that has flowed into the condenser (23) passes through the condenser (23) (in this example, outside air) ) To condense the refrigerant. That is, in the condenser (23), the refrigerant flowing through the condenser (23) and the air passing through the condenser (23) exchange heat with each other, and the refrigerant flowing through the condenser (23) condenses, while the condenser ( 23) Air passing through is heated.
  • the condenser (23) may be configured by a heat exchanger (a so-called cross fin type fin-and-tube heat exchanger) including a heat transfer tube that is a circular tube.
  • the receiver (73) is provided on the downstream side of the refrigerant flow direction (the refrigerant flow direction in the refrigerant circuit (16)) of the condenser (23), and converts the refrigerant flowing in from the condenser (23) into a saturated liquid and a saturated gas. It is comprised so that it may isolate
  • the receiver (73) is constituted by a vertically long and cylindrical sealed container.
  • the first subcooling heat exchanger (60) has a first high pressure side flow path (61) and a first low pressure side flow path (62).
  • the first high-pressure channel (61) of the first subcooling heat exchanger (60) is provided downstream of the receiver (73) in the refrigerant flow direction.
  • the first on-off valve (35) adjusts the flow rate of the refrigerant between the dryer (42) and the expansion valve (76) of the high-pressure liquid pipe (81), and responds to the control by the controller (100).
  • the opening degree can be adjusted.
  • the dryer (42) is provided downstream of the first on-off valve (35) in the refrigerant flow direction, and the liquid refrigerant (in this example, the receiver (73) and the first subcooling heat flowed out from the condenser (23). It is configured to capture moisture in the liquid refrigerant that has passed through the exchanger (60) and the first on-off valve (35).
  • the second subcooling heat exchanger (63) has a second high-pressure side flow path (64) and a second low-pressure side flow path (65).
  • the second high pressure side flow path (64) of the second subcooling heat exchanger (63) is provided downstream of the dryer (42) in the refrigerant flow direction.
  • Expansion valve (expansion mechanism) expands and depressurizes the refrigerant flowing through the expansion valve (76), and is configured to be able to adjust the opening degree in response to control by the controller (100).
  • the evaporator (25) flows in the refrigerant that flows out from the expansion valve (76) (in this example, the refrigerant that flows out into the low-pressure liquid pipe (82)), and converts the refrigerant that flows into the evaporator (25) into the evaporator
  • the air passing through (25) (specifically, the suction air sucked from the inside of the container (C)) is absorbed to cool the air. That is, in the evaporator (25), the refrigerant flowing through the evaporator (25) and the air passing through the evaporator (25) exchange heat with each other, and the refrigerant flowing through the evaporator (25) evaporates. 25) Air passing through is cooled.
  • the evaporator (25) is configured by a heat exchanger (a so-called cross fin type fin-and-tube heat exchanger) including a heat transfer tube which is a circular tube.
  • the heat transfer tube of the evaporator (25) extends along the interior width direction of the container (C).
  • the suction proportional valve (66) adjusts the flow rate of the refrigerant circulating in the refrigerant circuit (16), and is configured to be able to adjust the opening degree in response to control by the controller (100). That is, the refrigerant circuit (16) is configured to be able to adjust the refrigerant circulation amount in response to control by the controller (100).
  • a first branch pipe (85) into which a part of the refrigerant flowing through the high pressure gas pipe (80) flows is connected to the high pressure gas pipe (80).
  • the first and second connection pipes (91, 92) further branch from the first branch pipe (85). That is, one end of the first branch pipe (85) is connected in the middle of the high-pressure gas pipe (80).
  • First to third connecting pipe One end of the first connection pipe (91) is connected to the other end of the first branch pipe (85), and the other end is connected in the middle of the low-pressure liquid pipe (82).
  • the first connection pipe (91) is provided with a heater electromagnetic valve (71).
  • the second connection pipe (92) has one end connected to the other end of the first branch pipe (85) and the other end connected to the low pressure liquid pipe (82).
  • the second connection pipe (92) is provided with a reheat solenoid valve (70) and a reheat heat exchanger (32) in this order. Further, in the middle of the first connection pipe (91) (specifically, between the other end of the first connection pipe (91) connected to the low-pressure liquid pipe (82) and the heater solenoid valve (71)).
  • the third connection pipe (93) is connected. One end of the third connection pipe (93) is connected in the middle of the first connection pipe (91), and the other end is connected in the middle of the low-pressure liquid pipe (82).
  • the third connection pipe (93) is provided with a drain pan heater (77).
  • the reheat solenoid valve (70) and the heater solenoid valve (71) are configured to be adjustable in opening degree in response to control by the controller (100).
  • the refrigerant flow rates in the first connection pipe (91) and the third connection pipe (93) are adjusted by the opening degree of the heater electromagnetic valve (71).
  • the refrigerant flow rate in the second connection pipe (92) is adjusted by the opening degree of the reheat solenoid valve (70).
  • the heater solenoid valve (71) is set to an open state when the drain pan heater (77) is driven.
  • the drain pan heater (77) heats a drain pan (not shown) in which water condensed by the evaporator (25) is stored, and melts water frozen in the drain pan.
  • the drain pan heater (77) is configured such that refrigerant discharged from the compressor (21) (that is, hot gas) flows into the drain pan heater (77).
  • reheat heat exchanger In the reheat heat exchanger (32), a part of the refrigerant discharged from the compressor (21) flows in the dehumidifying operation, and the heat of the refrigerant flowing into the reheat heat exchanger (32) is reheated to the reheat heat exchanger (32). The air is heated by radiating heat to the air passing through the air (specifically, air cooled and dehumidified in the evaporator (25)).
  • the reheat heat exchanger (32) in the dehumidifying operation, the refrigerant flowing through the reheat heat exchanger (32) and the air passing through the reheat heat exchanger (32) exchange heat with each other, and the reheat heat exchanger (32) While the refrigerant flowing through is condensed, the air passing through the reheat heat exchanger (32) is heated.
  • the reheat heat exchanger (32) is configured by a heat exchanger (a so-called cross fin type fin-and-tube heat exchanger) including a heat transfer tube which is a circular tube.
  • the heat transfer tube of the reheat heat exchanger (32) extends along the interior width direction of the container (C).
  • the refrigerant that has flowed out of the reheat heat exchanger (32) flows into the low-pressure liquid pipe (82).
  • a refrigerant flowing through the high-pressure liquid pipe (81) is provided in the middle of the high-pressure liquid pipe (81) (specifically, between the first supercooling heat exchanger (60) and the first on-off valve (35)).
  • a second branch pipe (86) through which a part of the pipe flows is connected.
  • One end of the second branch pipe (86) is connected in the middle of the high-pressure liquid pipe (81), and the other end is connected to an intermediate port communicating with the compression chamber serving as an intermediate pressure of the compressor (21). Yes.
  • the second branch pipe (86) includes a second on-off valve (36), a capillary tube (39), a second low-pressure channel (65) of the second subcooling heat exchanger (63), and a first A first low-pressure channel (62) of the supercooling heat exchanger (60) is provided in order.
  • the second on-off valve (36) adjusts the flow rate of the refrigerant flowing through the second branch pipe (86), and is configured to be able to adjust the opening degree in response to control by the controller (100).
  • the second on-off valve (36) is set to an open state when the refrigerant is subcooled in the first and second subcooling heat exchangers (60, 63), and the first and second subcooling are set. When the refrigerant is not supercooled in the heat exchanger (60, 63), the closed state is set.
  • ⁇ 4th connecting pipe is connected between the one end and the second on-off valve (36).
  • One end of the fourth connecting pipe (94) is connected to the middle of the second branch pipe (86), and the other end is connected to the middle of the low-pressure liquid pipe (82).
  • a fifth connection pipe (95) is connected to the middle of the fourth connection pipe (94).
  • One end of the fifth connection pipe (95) is connected to the middle of the fourth connection pipe (94), while the other end is in the middle of the low-pressure gas pipe (83) (specifically, the compressor (21) Between the suction side and the suction proportional valve (66)).
  • the fifth connection pipe (95) is provided with a third on-off valve (37).
  • the third on-off valve (37) adjusts the flow rate of the refrigerant flowing through the fifth connection pipe (95), and is configured to be able to adjust the opening degree in response to control by the controller (100).
  • the third on-off valve (37) is provided for protecting the refrigerant circuit (16), and the discharge pressure of the compressor (21) (pressure of the high-pressure gas refrigerant discharged from the compressor (21)) is previously set. When it becomes higher than a predetermined high-pressure abnormality threshold, it is set to an open state.
  • a sixth connection is provided in the middle of the low-pressure gas pipe (83) (specifically, upstream of the refrigerant of the suction proportional valve (66), that is, between the evaporator (25) and the suction proportional valve (66)).
  • a tube (96) is connected.
  • the sixth connecting pipe (96) has one end connected to the middle of the low pressure gas pipe (83), and the other end connected to the middle of the high pressure gas pipe (80).
  • the sixth connection pipe (96) is provided with a fourth on-off valve (38).
  • the fourth on-off valve (38) adjusts the flow rate of the refrigerant flowing through the sixth connection pipe (96), and is configured to be able to adjust the opening degree in response to control by the controller (100).
  • the fourth on-off valve (38) is provided to protect the refrigerant circuit (16), and the suction pressure of the compressor (21) (the pressure of the low-pressure gas refrigerant sucked into the compressor (21)) is set in advance. When it becomes lower than a predetermined low-pressure abnormality threshold, the open state is set.
  • the refrigerant circuit (16) is provided with various sensors.
  • the refrigerant circuit (16) includes a high pressure switch (110), a high pressure sensor (111), a discharge temperature sensor (112), a low pressure sensor (113), and an intake temperature sensor (114). And are provided.
  • the high pressure switch (110), the high pressure sensor (111), and the discharge temperature sensor (112) are provided in the high pressure gas pipe (80) of the refrigerant circuit (16).
  • the low pressure sensor (113) and the suction temperature sensor (114) are provided between the evaporator (25) and the compressor (21) in the low pressure gas pipe (83).
  • the high pressure sensor (111) detects the pressure of the high pressure gas refrigerant discharged from the compressor (21) (that is, the discharge pressure of the compressor (21)).
  • the discharge temperature sensor (112) detects the temperature of the high-pressure gas refrigerant discharged from the compressor (21).
  • the low pressure sensor (113) detects the pressure of the low pressure gas refrigerant sucked into the compressor (21) (that is, the suction pressure of the compressor (21)).
  • the suction temperature sensor (114) detects the temperature of the low-pressure gas refrigerant sucked into the compressor (21). Values (pressure, temperature, etc.) detected by the sensors (111 to 114) are sent to the controller (100) and used appropriately for each control described later.
  • the controller (100) controls the operation of the container refrigeration apparatus (10). That is, the controller (100) controls the cooling unit (18) so that the cooling operation and the dehumidifying operation are performed. As shown in FIG. 5, in this example, the first to third dehumidifying controls are performed in the dehumidifying operation.
  • the controller (100) includes a temperature control unit (101), a target control unit (201), and an operation control unit (105).
  • the temperature control unit (101) monitors the temperature of the blown air (ie, the blown detection temperature (Tss)) detected by the blown temperature sensor (34) in the cooling operation and the dehumidifying operation, and the blown detection temperature (Tss) is
  • the cooling unit (18) is controlled so as to reach the target temperature (Tx). Specifically, the temperature control unit (101) performs the first cooling operation when the blowing detection temperature (Tss) is higher than the target temperature (Tx), and the blowing detection temperature (Tss) is the target temperature (Tx). If it is lower, the second cooling operation is performed.
  • the first cooling operation is an operation for increasing the cooling capacity in the evaporator (25), and the second cooling operation is an operation for decreasing the cooling capacity in the evaporator (25). That is.
  • the temperature controller (101) increases the opening of the suction proportional valve (66) of the refrigerant circuit (16) in the first cooling operation, and the suction proportional valve of the refrigerant circuit (16) in the second cooling operation. Reduce the opening of (66).
  • the temperature control unit (101) changes the first operation according to the opening degree of the suction proportional valve (66) of the refrigerant circuit (16). Either one of the first and second cooling operations is performed.
  • the temperature control unit (101) performs the first cooling operation when the opening degree of the suction proportional valve (66) is larger than “100 pls”, and the opening degree of the suction proportional valve (66) is “ If it is 100 pls or less, the second cooling operation is performed.
  • the target control unit (201) sets (or corrects) a target temperature with respect to the blowing detection temperature (Tss) in the cooling operation and the dehumidifying operation.
  • the target setting unit (102) sets the target temperature (Tx) to a first set temperature that is the same as the set temperature (Tsp) that is predetermined for the store temperature of the container (C). .
  • the target setting unit (102) sets the target temperature (Tx) to the internal set temperature (Tsp) when the operation mode of the container refrigeration apparatus (10) is switched from the cooling operation to the dehumidifying operation.
  • the second set temperature that is, a value set higher than the set value of the internal temperature of the container (C) (the internal set temperature (Tsp)) by a predetermined value) is added.
  • the target setting unit (102) sets the target temperature (Tx) to the second set temperature in the first and second dehumidification controls, and sets the target temperature (Tx) to the first temperature in the cooling operation and the third dehumidification control.
  • Set to the set temperature For example, as shown in FIG. 6, the target addition temperature is set to “0.6 ° C.”. Note that “0.6 ° C.” is an example of the target additional temperature, and is not limited to this.
  • the first correction unit (103) monitors the temperature of the intake air detected by the suction temperature sensor (33) (that is, the suction detection temperature (Trs)), and the operation mode of the container refrigeration apparatus (10) is the cooling operation. After switching to the dehumidifying operation, the target temperature (Tx) is corrected when the suction detection temperature (Trs) becomes higher (or lower) than a predetermined suction reference temperature. Specifically, the first correction unit (103) lowers the target temperature (Tx) when the suction detection temperature (Trs) is higher than the target temperature (Tx), while the suction detection temperature (Trs) is the suction reference temperature. If lower than that, the target temperature (Tx) is increased.
  • the first correction unit (103) corrects the target temperature (Tx) after the operation mode of the container refrigeration apparatus (10) is switched from the cooling operation to the dehumidifying operation (ie, the suction detection temperature (Trs)).
  • the operation of correcting the target temperature (Tx) according to the comparison result with the suction reference temperature may be periodically performed.
  • the first correction unit (103) corrects the target temperature (Tx) so that the target temperature (Tx) is equal to or higher than the set temperature (Tsp) in the cabinet. That is, the lower limit of the target temperature (Tx) is set to the internal set temperature (Tsp).
  • the suction reference temperature is the temperature detected by the suction temperature sensor (33) during stable cooling operation (that is, the intake air detected by the suction temperature sensor (33) when the cooling operation is in a stable state). Temperature, hereinafter referred to as a stable suction temperature (Trs')).
  • the stable cooling operation time (that is, when the cooling operation is stable) means that, for example, as shown in FIG. 8, the inside of the container (C) is cooled by the cooling operation, and the temperature of the blown air is After the temperature drops, the temperature control is performed so that the temperature of the blown air (specifically, the blown detection temperature (Tss)) fluctuates within the predetermined temperature range (in-range) with respect to the internal set temperature (Tsp).
  • the first correction unit (103) of the target control unit (201) is configured to store the stable suction temperature (Trs ′) during the cooling operation (that is, before switching from the cooling operation to the dehumidifying operation). May be.
  • the first correction unit (103) corrects the target temperature (Tx) by adding the first correction temperature (Y) to the target temperature (Tx). That is, the target temperature (Tx) corrected by the first correction unit (103) corresponds to a temperature obtained by adding the first correction temperature (Y) to the target temperature (Tx) before correction.
  • the first correction unit (103) sets the first correction temperature (Y) to a negative value, and the suction detection temperature (Trs) When it is lower than the suction reference temperature, the first correction temperature (Y) is set to a positive value.
  • the first correction unit (103) adjusts the first correction temperature (that is, after switching from the cooling operation to the dehumidifying operation (that is, The suction detection temperature (Trs) and the suction reference temperature are compared with the suction reference temperature, and the first correction temperature is adjusted periodically.
  • the suction reference temperature is set to the suction stable temperature (Trs'), and the target temperature (Tx) before correction is the second set temperature obtained by adding the target additional temperature (+ 0.6 ° C) to the chamber set temperature (Tsp) (Ie, Tsp + 0.6 ° C.), the first correction temperature (Y) indicating a negative value is set to “ ⁇ 0.2 ° C.”, and the first correction temperature (Y) indicating a positive value is set to “+0. If it is set to “2 ° C.”, the first correction unit (103) corrects the target temperature (Tx) as follows.
  • the first correction unit (103) is Then, the first correction temperature ( ⁇ 0.2 ° C.) indicating a negative value is added to the target temperature (Tx). As a result, the target temperature (Tx) becomes “Tsp + 0.6 ° C. ⁇ 0.2 ° C.”.
  • the first correction unit (103) A first correction temperature ( ⁇ 0.2 ° C.) indicating a negative value is further added to (Tx). As a result, the target temperature (Tx) becomes “Tsp + 0.6 ⁇ (0.2 ° C. ⁇ 2)”.
  • the first correction unit (103 ) Adds the first correction temperature (+ 0.2 ° C.) indicating a positive value to the target temperature (Tx). Thereby, the target temperature (Tx) becomes “Tsp + 0.6 ° C. + 0.2 ° C.”. If the suction detection temperature (Trs) after switching to the dehumidifying operation by this correction is lower than the suction stable temperature (Trs ′), the first correction unit (103) A first correction temperature (+ 0.2 ° C.) indicating a positive value is further added to (Tx). Thereby, the target temperature (Tx) becomes “Tsp + 0.6 + (0.2 ° C. ⁇ 2)”.
  • the second correction unit (104) monitors the dehumidifying capacity in the evaporator (25) in the dehumidifying operation (in this example, the second dehumidifying control), and the target temperature (Tx) increases as the dehumidifying capacity in the evaporator (25) increases.
  • the target temperature (Tx) is corrected in accordance with the dehumidifying capacity of the evaporator (25) so that becomes higher. That is, the second correction unit (104) increases the target temperature (Tx) as the dehumidifying capacity of the evaporator (25) increases.
  • the second correction unit (104) is configured to detect the discharge pressure (pressure of the discharged refrigerant) of the compressor (21) detected by the high pressure sensor (111) in the dehumidifying operation (specifically, the second dehumidifying control). ) And the target temperature (Tx) is corrected according to the discharge pressure of the compressor (21) so that the target temperature (Tx) increases as the discharge pressure of the compressor (21) increases.
  • the second correction unit (104) corrects the target temperature (Tx) by adding the second correction temperature (Z) to the target temperature (Tx). That is, the target temperature (Tx) corrected by the second correction unit (104) corresponds to a temperature obtained by adding the second correction temperature (Z) to the target temperature (Tx) before correction.
  • the second correction unit (104) increases the second correction temperature (Z) as the dehumidifying capacity of the evaporator (25) increases (in this example, the discharge pressure of the compressor (21) increases).
  • the second correction temperature (Z) is adjusted in accordance with the dehumidifying capacity of the evaporator (25) (in this example, the discharge pressure of the compressor (21)). For example, as shown in FIG. 6, the second correction unit (104) sets the second correction temperature (Z) to “0.2 ° C.” or “0.4 ° C.” as the dehumidifying capacity of the evaporator (25) increases. Increase in steps in the order of “0.6 ° C”.
  • the operation control unit (105) sets the operation mode of the container refrigeration apparatus (10) to the cooling operation.
  • the operation control unit (105) monitors the suction detection humidity (the humidity of the suction air detected by the humidity sensor (53)), the suction detection temperature (Trs), and the blowout detection temperature (Tss), and the container refrigeration
  • the operation mode of the device (10) is switched (that is, switching between the cooling operation and the dehumidifying operation).
  • the operation control unit (105) performs any one of the first to third dehumidifying controls in the dehumidifying operation.
  • the operation control unit (105) stops the heating device (17) (in this example, the reheat heat exchanger (32)) and sucks air sucked in from the container (C) into the refrigerant circuit.
  • the cooling unit (18) is controlled so as to be cooled in the evaporator (25) of (16).
  • the operation control unit (105) sets the first on-off valve (35) to the open state, sets the reheat solenoid valve (70) to the closed state, and opens the expansion valve (76).
  • the degree is set to a predetermined opening degree, and the compressor (21), the external fan (24), and the internal fan (26) are set to the driving state.
  • the operation control unit (105) causes the intake air sucked from the inside of the container (C) to be cooled and dehumidified in the evaporator (25) of the refrigerant circuit (16), so that the heating device (17) ( In this example, the cooling unit (18) is controlled so as to be heated in the reheat heat exchanger (32)).
  • the operation control unit (105) causes a part of the refrigerant discharged from the compressor (21) to flow (directly flow) into the reheat heat exchanger (32). Specifically, the operation control unit (105) sets the first on-off valve (35) and the reheat solenoid valve (70) to the open state, and sets the opening degree of the expansion valve (76) to a predetermined opening degree. Then, the compressor (21), the external fan (24), and the internal fan (26) are set to the driving state.
  • the operation control unit (105) sets the first on-off valve (35) and the reheat electromagnetic valve (70) to the open state, as in the first dehumidification control, and the expansion valve
  • the opening degree of (76) is set to a predetermined opening degree, and the compressor (21), the external fan (24), and the internal fan (26) are set to the drive state.
  • the operation control unit (105) controls the cooling unit (18) so that the dehumidification capability in the evaporator (25) is higher than the dehumidification capability in the first dehumidification control. Further, in the second dehumidification control, the operation control unit (105) causes the refrigerant circuit to increase as the dehumidification load (that is, the difference between the humidity of the intake air detected by the humidity sensor (53) and a predetermined target humidity) increases.
  • the cooling unit (18) is controlled in accordance with the dehumidifying load so that the dehumidifying capacity in the evaporator (25) of (16) is increased. That is, the operation control unit (105) increases the dehumidifying capacity of the evaporator (25) as the dehumidifying load increases.
  • the operation control unit (105) monitors the discharge pressure of the compressor (21) detected by the high pressure sensor (111), and the discharge pressure of the compressor (21)
  • the outside fan (24) is controlled so as to achieve a predetermined target discharge pressure. Specifically, when the discharge pressure of the compressor (21) is lower than the target discharge pressure, the operation control unit (105) stops the outside fan (24) and discharges the compressor (21). When is higher than the target discharge pressure, the outside fan (24) is driven. Furthermore, in this example, the operation control unit (105) monitors the dehumidification load in the second dehumidification control, and sets the target discharge pressure according to the dehumidification load so that the target discharge pressure increases as the dehumidification load increases. To do. Note that the minimum value of the target discharge pressure (variable value) in the second dehumidification control is higher than the target discharge pressure (constant value) in the first dehumidification control.
  • the operation control unit (105) stops the heating device (17) (in this example, the reheat heat exchanger (32)) and sucks in the air sucked from the container (C).
  • the cooling unit (18) is controlled so as to be cooled and dehumidified in the evaporator (25) of the refrigerant circuit (16).
  • the operation control unit (105) sets the first on-off valve (35) to the open state, sets the reheat solenoid valve (70) to the closed state, and sets the expansion valve (76). Is set to a predetermined opening, and the compressor (21), the external fan (24), and the internal fan (26) are set to the drive state.
  • the operation control unit (105) performs switching between the cooling operation and the dehumidifying operation and switching between the first to third dehumidifying controls as follows.
  • the operation control unit (105) switches the operation mode of the container refrigeration apparatus (10) from the cooling operation to the dehumidifying operation when all of the following conditions are satisfied in the cooling operation.
  • Condition 1 Suction detection humidity (humidity of suction air detected by the humidity sensor (53)) is higher than a predetermined target humidity.
  • Condition 2 The blowing detection temperature (Tss) is within a predetermined blowing temperature range (temperature range including the target temperature (Tx)).
  • Condition 3 Suction detection temperature (Trs) is within a predetermined suction temperature range (temperature range including target temperature (Tx)).
  • Second dehumidification control When the operation mode of the container refrigeration apparatus is switched from the cooling operation to the dehumidifying operation, the operation control unit (105) performs the first dehumidifying control. In addition, when all of the following conditions are satisfied in the first dehumidification control, the operation control unit (105) ends the first dehumidification control and performs the second dehumidification control.
  • -Condition 1 Suction detection humidity is higher than target humidity.
  • -Condition 2 The blowing detection temperature (Tss) is within the blowing temperature range.
  • Second dehumidification control ⁇ First dehumidification control
  • the operation control unit (105) ends the second dehumidification control and performs the first dehumidification control.
  • Condition 1 Suction detection humidity is lower than a predetermined reference humidity (humidity lower than target humidity).
  • Condition 2 The blowing detection temperature (Tss) is higher than a predetermined first reference temperature (temperature in the blowing temperature range).
  • the blowing detection temperature (Tss) is higher than a predetermined second reference temperature (a temperature higher than the first reference temperature and lower than the upper limit temperature of the blowing temperature range).
  • the operation control unit (105) ends the third dehumidification control and performs the first dehumidification control.
  • -Condition 1 Suction detection humidity is higher than target humidity.
  • -Condition 2 The blowing detection temperature (Tss) is within the blowing temperature range.
  • the operation control unit (105) sets the operation mode of the container refrigeration apparatus (10) when at least one of the following conditions is satisfied in the dehumidifying operation (specifically, the first to third dehumidifying controls). Switch from dehumidifying operation to cooling operation.
  • -Condition 1 Suction detection humidity is lower than target humidity.
  • -Condition 2 The blowing detection temperature (Tss) is lower than the lower limit temperature of the blowing temperature range.
  • -Condition 3 Suction detection temperature (Trs) is lower than the lower limit temperature of the suction temperature range.
  • Condition 4 The suction detection temperature (Trs) is higher than the upper limit temperature of the suction temperature range.
  • the refrigerant discharged from the compressor (21) passes through the high-pressure gas pipe (80) and is sent to the condenser (23).
  • the refrigerant flowing through the condenser (23) exchanges heat with the air passing through the condenser (23) (that is, outside air sent by the outside fan (24)).
  • the refrigerant in the condenser (23) dissipates heat to the air passing through the condenser (23) (external air) and condenses.
  • the liquid refrigerant that has flowed out of the condenser (23) flows through the high-pressure liquid pipe (81), flows into the receiver (73), and is separated into saturated liquid and saturated gas. It is sent to the first high-pressure channel (61) of the cooling heat exchanger (60).
  • the refrigerant that has passed through the first on-off valve (35) is supplemented with moisture in the dryer (42), and then flows into the second high-pressure channel (64) of the second subcooling heat exchanger (63).
  • the refrigerant that has passed through the second high-pressure channel (64) of the second subcooling heat exchanger (63) flows through the high-pressure liquid pipe (81) and is decompressed by the expansion valve (76). 82) and sent to the evaporator (25).
  • the refrigerant flowing through the evaporator (25) exchanges heat with the air passing through the evaporator (25) (internal air sent by the internal fan (26), that is, suction air).
  • the refrigerant flowing through the evaporator (25) absorbs heat from the air (suction air) passing through the evaporator (25) and evaporates, and the air (suction air) passing through the evaporator (25) is cooled.
  • the refrigerant flowing out of the evaporator (25) flows through the low-pressure gas pipe (83), passes through the suction proportional valve (66), is sucked into the compressor (21), and is compressed again.
  • the suction air that has passed through the suction port (51) from the container (C) and sucked into the storage space (S2) is cooled in the evaporator (25). It passes through the reheat heat exchanger (32) that is stopped and is blown out from the outlet (52) and returns to the interior.
  • the target control unit (201) sets the target temperature (Tx) to the first set temperature that is the same as the internal set temperature (Tsp). Therefore, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the same first set temperature as the internal set temperature (Tsp).
  • the temperature control unit (101) When the blowout detection temperature (Tss) is higher than the first set temperature, the temperature control unit (101) performs the first cooling operation. In the first cooling operation, the temperature controller (101) increases the opening of the suction proportional valve (66) of the refrigerant circuit (16). Thereby, the refrigerant
  • the temperature control unit (101) performs the second cooling operation.
  • the temperature control unit (101) decreases the opening of the suction proportional valve (66).
  • the refrigerant coolant circulation amount in a refrigerant circuit (16) reduces, and the cooling capability in an evaporator (25) falls.
  • the temperature of the blown air that passes through the evaporator (25) and the reheat heat exchanger (32) in sequence and is blown into the container (C) is increased, and the blown detection temperature (Tss) is increased. It approaches the first set temperature (that is, the internal set temperature (Tsp)).
  • the temperature control unit (101) may set the fourth on-off valve (38) in an open state in order to protect the compressor (21).
  • Part of the refrigerant that has passed through the first high-pressure channel (61) of the first subcooling heat exchanger (60) is diverted to the second branch pipe (86) and passes through the second on-off valve (36). On the other hand, the remainder flows through the high pressure liquid pipe (81) and passes through the first on-off valve (35).
  • the refrigerant that has passed through the second on-off valve (36) is depressurized in the capillary tube (39), and then the second low-pressure channel (65) of the second subcooling heat exchanger (63) and the first subcooling heat. It passes through the first low-pressure channel (62) of the exchanger (60) in order and flows into the intermediate port of the compressor (21).
  • the refrigerants flowing through the first high-pressure side flow path (61) and the first low-pressure side flow path (62) exchange heat, and the first high-pressure side flow path ( The refrigerant flowing through 61) is supercooled.
  • the refrigerant having passed through the first on-off valve (35) is supplemented with moisture in the dryer (42), and then flows into the second high-pressure side flow path (64) of the second subcooling heat exchanger (63).
  • the refrigerants flowing through the second high-pressure side flow path (64) and the second low-pressure side flow path (65) exchange heat, and the second high-pressure side flow path (64).
  • the refrigerant flowing through is supercooled.
  • the refrigerant supercooled in the second high-pressure channel (64) of the second supercooling heat exchanger (63) flows through the high-pressure liquid pipe (81) and is depressurized by the expansion valve (76), and then the low-pressure liquid. It flows through the pipe (82) and is sent to the evaporator (25).
  • the first subcooling heat exchanger (60) and the refrigerant flowing through the first high-pressure side flow path (61) The refrigerant flowing through the first low-pressure channel (62) is heat-exchanged with each other to supercool the refrigerant flowing through the first high-pressure channel (61).
  • the second supercooling heat exchanger (63) causes the refrigerant flowing through the second high-pressure side flow path (64) and the refrigerant flowing through the second low-pressure side flow path (65) to exchange heat with each other, so The refrigerant flowing through the side flow path (64) is supercooled.
  • part of the refrigerant discharged from the compressor (21) flows through the second connection pipe (92), passes through the reheat solenoid valve (70), and flows into the reheat heat exchanger (32) (directly). Inflow).
  • the remainder of the refrigerant discharged from the compressor (21) that is, the refrigerant that does not flow into the second connection pipe (92)
  • the condenser (23) is condensed by the condenser (23) in the same manner as in the cooling operation, and the expansion valve (76 ) And then evaporate in the evaporator (25).
  • the refrigerant flowing through the evaporator (25) exchanges heat with the air passing through the evaporator (25) (inside air sent by the inside fan (26), that is, suction air).
  • the refrigerant flowing through the evaporator (25) absorbs heat from the air (suction air) passing through the evaporator (25) and evaporates, and the air (suction air) passing through the evaporator (25) is cooled. Condensation. For this reason, the suction air is dehumidified.
  • the refrigerant (high-pressure gas refrigerant) flowing through the reheat heat exchanger (32) exchanges heat with air passing through the reheat heat exchanger (32) (that is, air cooled and dehumidified in the evaporator (25)).
  • the refrigerant (high-pressure gas refrigerant) flowing through the reheat heat exchanger (32) dissipates heat to the air passing through the reheat heat exchanger (32), condenses, and passes through the reheat heat exchanger (32). Is heated.
  • the suction air that has passed through the suction port (51) from the container (C) and sucked into the storage space (S2) was cooled and dehumidified in the evaporator (25). Later, it is heated in the reheat heat exchanger (32), blown out from the outlet (52), and returned to the interior.
  • the target setting unit (102) stores the target temperature (Tx). Set to the second set temperature by adding the target additional temperature to the internal set temperature (Tsp). Therefore, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the second set temperature obtained by adding the target added temperature to the internal set temperature (Tsp).
  • the temperature control unit (101) When the blowout detection temperature (Tss) is higher than the second set temperature, the temperature control unit (101) performs the first cooling operation. As a result, the cooling capacity in the evaporator (25) is increased, and as a result, the amount of the blown-out air that passes through the evaporator (25) and the reheat heat exchanger (32) in order and is blown into the container (C). The temperature is lowered, and the blown-out detection temperature (Tss) is lowered to approach the second set temperature (that is, the temperature obtained by adding the target added temperature to the internal set temperature (Tsp)).
  • the temperature control unit (101) performs the second cooling operation.
  • the cooling capacity of the evaporator (25) is reduced, and as a result, the blown air blown into the container (C) through the evaporator (25) and the reheat heat exchanger (32) in turn.
  • the temperature rises and the blowout detection temperature (Tss) rises and approaches the second set temperature (that is, the temperature obtained by adding the target added temperature to the internal set temperature (Tsp)).
  • the temperature control is performed.
  • the cooling capacity of the evaporator (25) can be increased by the first cooling operation of the control unit (101), and the temperature of the blown air can be decreased. Thereby, the temperature rise of the blowing air in a dehumidification driving
  • Second dehumidification control Even when dehumidification is performed by the first dehumidification control, when the dehumidification of the air in the container (C) is insufficient (that is, when the suction detection humidity is higher than the target humidity in the first dehumidification control), the operation control unit ( 105) ends the first dehumidification control and performs the second dehumidification control.
  • the first on-off valve (35) and the reheat solenoid valve (70) are in an open state, and the opening degree of the expansion valve (76) is a predetermined opening degree, and compression is performed.
  • the machine (21), the external fan (24), and the internal fan (26) are in a driving state.
  • the target temperature (Tx) is set to the second set temperature (the temperature obtained by adding the target added temperature to the internal set temperature (Tsp)). That is, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the second set temperature.
  • the operation control unit (105) sets the target discharge pressure according to the dehumidification load so that the target discharge pressure increases as the dehumidification load increases. Then, the operation control unit (105) controls the start and stop of the external fan (24) according to the discharge pressure of the compressor (21) detected by the high pressure sensor (111). Specifically, when the discharge pressure of the compressor (21) detected by the high pressure sensor (111) becomes lower than the target discharge pressure, the operation control unit (105) stops the external fan (24). Thereby, the heat exchange in a condenser (23) is inhibited and the discharge pressure of a compressor (21) becomes high.
  • the operation control unit (105) drives the external fan (24). Thereby, heat exchange in the condenser (23) is promoted, and the discharge pressure of the compressor (21) is lowered. That is, the higher the target discharge pressure, the higher the discharge pressure of the compressor (21).
  • coolant which flows into a reheat heat exchanger (32) becomes high, so that the discharge pressure of a compressor (21) becomes high, As a result, the heating capability in a reheat heat exchanger (32) becomes high.
  • the temperature control unit (101) A first cooling operation is performed to lower the temperature (Tss).
  • the cooling capacity in the evaporator (25) is increased and the temperature of the blown air is lowered, and as a result, the blown detection temperature (Tss) is lowered and approaches the target temperature (Tx).
  • the cooling capacity in the evaporator (25) is increased, the amount of moisture that is condensed in the evaporator (25) increases. That is, the dehumidifying capacity in the evaporator (25) is increased.
  • the dehumidifying capacity at the evaporator (25) according to the dehumidifying load so that the dehumidifying capacity at the evaporator (25) increases as the dehumidifying load increases. Can be set.
  • reheat heat exchange is performed so that the blowout detection temperature (Tss) becomes the target temperature (Tx) by the control of the cooling unit (18) by the temperature control unit (101) and the operation control unit (105).
  • the dehumidifying capacity of the evaporator (25) can be increased by increasing the cooling capacity of the evaporator (25) as the heating capacity of the evaporator (32) increases.
  • Second dehumidification control >> Moreover, when the blowing detection temperature (Tss) rises in the first dehumidification control, the operation control unit (105) ends the first dehumidification control and performs the third dehumidification control. In the third dehumidification control, the reheat solenoid valve (70) is closed. In the third dehumidification control, the first on-off valve (35) is open, the opening of the expansion valve (76) is a predetermined opening, and the compressor (21) and the outside fan (24) and the internal fan (26) are in a driving state.
  • the refrigerant discharged from the compressor evaporates in the condenser (23), expands in the expansion valve (76) and then evaporates in the evaporator (25), as in the cooling operation. That is, the air (suction air) passing through the evaporator (25) is cooled by heat exchange with the refrigerant flowing through the evaporator (25) and condensed. Thus, the intake air sucked from the inside of the container (C) is cooled and dehumidified in the evaporator (25).
  • the target setting unit (102) sets the target temperature (Tx) to the first set temperature that is the same as the internal set temperature (Tsp). Therefore, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the first set temperature.
  • the air passing through the heating device (17) in this example, the reheat heat exchanger (32)
  • the air passing through the heating device (17) may not be heated uniformly.
  • temperature unevenness occurs in the air blown from the reheat heat exchanger (32) due to the temperature difference of the refrigerant in the heat transfer tube (heat transfer tube extending in the interior width direction) of the reheat heat exchanger (32).
  • the blowout temperature sensor (34) for example, as shown in FIG.
  • the target temperature (Tx) is the second set temperature (that is, the internal setting) that is higher than the internal setting temperature. Since the target added temperature is added to the temperature (Tsp), the temperature of the blown air blown into the container (C) can be increased as a whole. As a result, even if the air passing through the heating device (17) is not heated uniformly in the width direction of the container (C), the minimum temperature of the blown air in the width direction of the container (C) It can suppress becoming lower than internal setting temperature (Tsp).
  • the first correction unit (103) monitors the temperature of the intake air detected by the suction temperature sensor (33) (that is, the suction detection temperature (Trs)), and the first correction unit (103) After the operation mode is switched from cooling operation to dehumidifying operation, if the suction detection temperature (Trs) becomes higher than the target temperature (Tx), the target temperature (Tx) is lowered, while the suction detection temperature (Trs) is the suction reference temperature. If lower than that, the target temperature (Tx) is increased.
  • the air blown out from the evaporator (25) and the heating device (17) into the container (C) is circulated through the container (C) and sucked into the evaporator (25) again.
  • the intake air sucked from the inside of the container (C) has less temperature unevenness in the width direction of the inside of the container (C) than the blown air blown into the inside of the container (C).
  • the change in the suction detection temperature (Trs) depends on the change in the internal temperature of the container (C). Specifically, when the internal temperature of the container (C) increases, the temperature of the intake air increases and the suction detection temperature (Trs) increases.
  • the container (C) when the internal temperature of the container (C) becomes low, the temperature of the intake air becomes low and the suction detection temperature (Trs) becomes low. Therefore, if the suction detection temperature (Trs) becomes higher than the suction reference temperature (in this example, the suction stable temperature (Trs')) after switching from the cooling operation to the dehumidifying operation, the container (C) It can be determined that the internal temperature has increased, and when the suction detection temperature (Trs) is lower than the suction reference temperature, it can be determined that the internal temperature of the container (C) has decreased.
  • the suction detection temperature (Trs) is lower than the suction reference temperature
  • the first correction unit (103) responds to changes in the suction detection temperature (Trs) before and after switching from the cooling operation to the dehumidifying operation. Correct the target temperature (Tx). That is, before and after switching from the cooling operation to the dehumidifying operation, the temperature inside the container (C) rises and the suction detection temperature (Trs) is higher than the suction reference temperature (in this example, the suction stable temperature (Trs')). Then, the first correction unit (103) reduces the target temperature (Tx). Thereby, the temperature of blowing air can be reduced and, as a result, the internal temperature of a container (C) can be reduced.
  • the first correction unit (103) Increase (Tx). Thereby, the temperature of blowing air can be raised and, as a result, the internal temperature of a container (C) can be raised.
  • the container (C) associated with the switching from the cooling operation to the dehumidifying operation is controlled.
  • a change in the internal temperature can be suppressed.
  • the second correction unit (104) is configured such that the discharge pressure of the compressor (21) detected by the high pressure sensor (111) in the dehumidifying operation (specifically, the second dehumidifying control). And the target temperature (Tx) is corrected according to the discharge pressure of the compressor (21) so that the target temperature (Tx) increases as the discharge pressure of the compressor (21) increases.
  • the dehumidifying capacity of the evaporator (25) depends on the discharge pressure of the compressor (21). That is, when the discharge pressure of the compressor (21) increases, the pressure of the refrigerant flowing into the reheat heat exchanger (32) increases, and as a result, the heating capacity in the reheat heat exchanger (32) increases. Moreover, the temperature of blowing air becomes high by the raise of the heating capability in a reheat heat exchanger (32), and blowing detection temperature (Tss) becomes higher than target temperature (Tx). And a temperature control part (101) controls a cooling part (18) so that blowing detection temperature (Tss) may become low, and raises the cooling capacity in an evaporator (25). Thereby, the dehumidification capability in an evaporator (25) rises.
  • the dehumidification capability in the evaporator (25) depends on the discharge pressure of the compressor (21)
  • the target temperature (Tx) can be corrected so that the target temperature (Tx) increases as the dehumidifying capacity in the evaporator (25) increases.
  • the air is dehumidified by being cooled and condensed in the evaporator (25). That is, in the dehumidifying operation, the temperature of the blown air tends to decrease as the dehumidifying capacity (cooling capacity) in the evaporator (25) increases.
  • the second correction unit (104) has a higher target temperature (Tx) as the dehumidifying capacity in the evaporator (25) is higher in the dehumidifying operation.
  • the target temperature (Tx) is corrected according to the dehumidifying ability of the evaporator (25).
  • the temperature of the blown air can be increased when the temperature of the blown air is likely to decrease during the dehumidifying operation.
  • the target temperature (Tx) is the second set temperature (Tsp) higher than the internal set temperature (Tsp). That is, the air passing through the heating device (17) (in this example, the reheat heat exchanger (32)) is set to the container (C) by setting the internal correction temperature (Tsp) to the target correction temperature).
  • the heating device (17) in this example, the reheat heat exchanger (32)
  • Tsp the internal correction temperature
  • Tsp the minimum temperature of the blown air in the container width direction of the container (C) from becoming lower than the set temperature (Tsp) in the container (C) it can. Thereby, the low temperature failure of the load of a container (C) can be prevented.
  • the target according to the change in the suction detection temperature (Trs) after switching from the cooling operation to the dehumidification operation (specifically, the result of comparison between the suction detection temperature (Trs) and the suction stable temperature (Trs'))
  • Tx the temperature of the suction detection temperature (Trs) after switching from the cooling operation to the dehumidification operation.
  • the cooling operation is switched to the dehumidifying operation based on the suction stable temperature (Trs'). It can be determined whether or not the suction detection temperature (Trs) has changed due to the change in the internal temperature of the container (C) before and after switching.
  • the temperature of the blown air is likely to decrease in the dehumidifying operation.
  • the temperature of the blown air can be increased. Thereby, the fall of the internal temperature of the container (C) accompanying the raise of the dehumidification capability in an evaporator (25) can be suppressed.
  • the intake air sucked from the inside of the container (C) is converted into the evaporator (25).
  • the reheat heat exchanger (32) it can be dehumidified by cooling and heated. Thereby, the internal air of a container (C) can be dehumidified, suppressing the fall of the internal temperature of a container (C).
  • the reheat heat exchanger (32) so that the blowout detection temperature (Tss) becomes the target temperature (Tx).
  • Tss blowout detection temperature
  • the cooling capacity in the evaporator (25) can be increased to increase the dehumidifying capacity in the evaporator (25).
  • the dehumidifying capacity in the vessel (25) can be increased.
  • the operation control unit (105) monitors the degree of superheat in the evaporator (25) and expands the cooling unit (18) so that the degree of superheat in the evaporator (25) becomes a predetermined target superheat degree. You may be comprised so that the opening degree of a valve (76) may be controlled. Specifically, when the superheat degree in the evaporator (25) is lower than the target superheat degree, the operation control unit (105) reduces the opening of the expansion valve (76) in the evaporator (25).
  • the degree of superheat in the evaporator (25) can be reduced by increasing the opening of the expansion valve (76). Good.
  • the operation control unit (105) performs the following operation when the discharge pressure of the compressor (21) is the maximum value (limit value) in the second dehumidification control, thereby performing the evaporator ( The dehumidifying capacity in 25) may be increased. That is, the operation control unit (105) is configured to monitor the dehumidification load in the second dehumidification control and set the target superheat degree according to the dehumidification load so that the target superheat degree increases as the dehumidification load increases. May be.
  • the operation control unit (105) gradually increases the target superheat degree in the order of “2 ° C.” “5 ° C.” “8 ° C.” “11 ° C.” “14 ° C.” May be higher.
  • the temperature control unit (101) When the temperature of the blown air rises and the blown detection temperature (Tss) becomes higher than the target temperature (Tx), the temperature control unit (101) performs the first cooling operation (specifically, the suction proportional valve (66 ) To increase the refrigerant circulation amount in the refrigerant circuit (16). Thereby, the cooling capacity in the evaporator (25) is increased and the temperature of the blown air is lowered. As a result, the blown detection temperature (Tss) is lowered and approaches the target temperature (Tx).
  • the dehumidifying capacity at the evaporator (25) according to the dehumidifying load so that the dehumidifying capacity at the evaporator (25) increases as the dehumidifying load increases. Can be set.
  • the outlet evaporation temperature in the evaporator (25) so that the blowout detection temperature (Tss) becomes the target temperature (Tx) by the control of the cooling part (18) by the temperature control part (101) and the operation control part (105) Since the refrigerant circulation amount in the refrigerant circuit (16) can be increased along with the decrease in the temperature, the dehumidifying ability in the evaporator (25) can be increased while suppressing the change in the internal temperature of the container (C).
  • the suction reference temperature is not the suction stable temperature (Trs'), but the suction preset temperature (Tsp) plus the predetermined suction additional temperature ( That is, it is set to the set value (the value based on the set temperature (Tsp) in the store) of the temperature inside the container (C).
  • the first correction unit (103) lowers the target temperature (Tx) when the suction detection temperature (Trs) becomes higher than the suction setting temperature after switching from the cooling operation to the dehumidification operation, while the suction detection temperature ( When Trs) is lower than the suction setting temperature, the target temperature (Tx) is increased.
  • Other configurations are the same as those of the container refrigeration apparatus (10) according to the first embodiment.
  • first and second suction reference temperatures may be provided as the suction reference temperature. That is, a first suction reference temperature for determining an increase in suction detection temperature (Trs) and a second suction reference temperature for determining a decrease in suction detection temperature (Trs) may be provided.
  • the first suction reference temperature is set to the first suction set temperature obtained by adding the first suction addition temperature (for example, + 3.0 ° C.) to the inside set temperature (Tsp)
  • the second suction reference temperature is You may set to the 2nd suction setting temperature which added 2nd suction addition temperature (temperature lower than 1st suction addition temperature, for example, +0.5 degreeC) to internal setting temperature (Tsp).
  • the first suction reference temperature is set to the first suction set temperature (that is, “Tsp + 3.0 ° C.”) obtained by adding the first suction additional temperature (+ 3.0 ° C.) to the internal set temperature (Tsp), 2Suction reference temperature is set to the second suction set temperature (ie, “Tsp + 0.5 ° C”), which is obtained by adding the second suction additional temperature (+ 0.5 ° C) to the chamber set temperature (Tsp).
  • Temperature (Tx) is set to the second set temperature (ie, Tsp + 0.6 ° C), which is obtained by adding the target additional temperature (+ 0.6 ° C) to the internal set temperature (Tsp), and the first correction temperature indicating a negative value If (Y) is set to “ ⁇ 0.2 ° C.” and the first correction temperature (Y) indicating a positive value is set to “+ 0.2 ° C.”, the first correction unit (103)
  • the target temperature (Tx) is corrected as follows.
  • the suction detection temperature (Trs) becomes higher than the first suction reference temperature (Tsp + 3.0 ° C.
  • the first correction unit (103) First correction temperature ( ⁇ 0.2 ° C.) indicating a negative value is added to Tx).
  • the target temperature (Tx) becomes “Tsp + 0.6 ° C. ⁇ 0.2 ° C.”.
  • the first correction unit (103) A first correction temperature ( ⁇ 0.2 ° C.) indicating a negative value is further added to the subsequent target temperature (Tx). As a result, the target temperature (Tx) becomes “Tsp + 0.6 ⁇ (0.2 ° C. ⁇ 2)”.
  • the first correction unit (103) First correction temperature (+ 0.2 ° C.) indicating a positive value is added to Tx). Thereby, the target temperature (Tx) becomes “Tsp + 0.6 ° C. + 0.2 ° C.”. If the suction detection temperature (Trs) after switching to the dehumidifying operation is lower than the second suction reference temperature (Tsp + 0.5 ° C) by this correction, the first correction unit (103) A first correction temperature (+ 0.2 ° C.) indicating a positive value is further added to the subsequent target temperature (Tx). Thereby, the target temperature (Tx) becomes “Tsp + 0.6 + (0.2 ° C. ⁇ 2)”.
  • the other actions and effects of the container refrigeration apparatus (10) of the second embodiment are the same as the actions and effects of the container refrigeration apparatus (10) of the first embodiment.
  • the heating device (17) is configured not by the reheat heat exchanger (32) but by an electric heater (78). Further, from the refrigerant circuit (16), the configuration related to the reheat heat exchanger (32) (specifically, the first branch pipe (85), the second connection pipe (92), the reheat solenoid valve (70), and the reheat Configuration related to heat exchanger (32)) and drain pan heater (77) (specifically, first and third connecting pipes (91, 93), heater solenoid valve (71) and drain pan heater (77)) And are omitted. Other configurations are the same as the configuration of the container refrigeration apparatus (10) according to the first embodiment.
  • the electric heater (78) is configured to change its heating capacity in response to control by the controller (100).
  • the electric heater (78) is provided on the downstream side of the evaporator (25) in the flow direction of the suction air sucked from the inside of the container (C), and is substantially parallel to the evaporator (25). It extends in the width direction of the container (C).
  • the operation control unit (105) controls the electric heater (78) as follows in the cooling operation and the dehumidifying operation (specifically, the first to third dehumidifying operations). Note that the switching operation of the first to third dehumidification controls in which the operation mode is switched by the operation control unit (105) is the same as that of the first embodiment.
  • the operation control unit (105) stops the electric heater (78).
  • the operation control unit (105) sets the first on-off valve (35) to an open state and sets the opening of the expansion valve (76) to a predetermined opening, as in the first embodiment. Then, the compressor (21), the external fan (24), and the internal fan (26) are set to the driving state.
  • First dehumidification control In the first dehumidification control, the operation control unit (105) drives the electric heater (78). In the first dehumidification control, the operation control unit (105) sets the first on-off valve (35) to an open state and sets the opening of the expansion valve (76) to a predetermined opening, as in the first embodiment. And the compressor (21), the external fan (24), and the internal fan (26) are set in the driving state.
  • Second dehumidification control In the second dehumidification control, the operation control unit (105) drives the electric heater (78) and sets the first on-off valve (35) to the open state, as in the first dehumidification control, and the expansion valve (76). Is set to a predetermined opening, and the compressor (21), the external fan (24), and the internal fan (26) are set to the drive state. Further, in the second dehumidification control, the operation control unit (105) monitors the dehumidification load, and the electric heater (78 according to the dehumidification load increases so that the heating capacity of the electric heater (78) increases as the dehumidification load increases. ) Is set. Note that the minimum value of the heating capacity (variable value) of the electric heater (78) in the second dehumidifying control is higher than the heating capacity (constant value) of the electric heater (78) in the first dehumidifying control.
  • Third dehumidification control In the third dehumidification control, the operation control unit (105) stops the electric heater (78). In the third dehumidification control, the operation control unit (105) sets the first on-off valve (35) to an open state and sets the opening of the expansion valve (76) to a predetermined opening, as in the first embodiment. And the compressor (21), the external fan (24), and the internal fan (26) are set in the driving state.
  • the target control unit (201) sets the target temperature (Tx) to the first set temperature that is the same as the internal set temperature (Tsp). Therefore, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the same first set temperature as the internal set temperature (Tsp).
  • the refrigerant discharged from the compressor (21) is condensed by the condenser (23), expanded by the expansion valve (76), and then evaporated by the evaporator (25), as in the cooling operation. That is, the refrigerant flowing through the evaporator (25) exchanges heat with the air passing through the evaporator (25) (inside air sent by the inside fan (26), that is, suction air). As a result, the refrigerant flowing through the evaporator (25) absorbs heat from the air (suction air) passing through the evaporator (25) and evaporates, and the air (suction air) passing through the evaporator (25) is cooled. Condensation. For this reason, the suction air is dehumidified. On the other hand, the air passing through the electric heater (78) (that is, the air cooled and dehumidified in the evaporator (25)) is heated by the electric heater (78).
  • the suction air that has passed through the suction port (51) from the container (C) and sucked into the storage space (S2) was cooled and dehumidified in the evaporator (25). After that, it is heated in the electric heater (78), blown out from the blowout port (52), and returns to the inside.
  • the target setting unit (102) stores the target temperature (Tx). Set to the second set temperature by adding the target additional temperature to the internal set temperature (Tsp). Therefore, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the second set temperature obtained by adding the target added temperature to the internal set temperature (Tsp).
  • the temperature control unit The cooling capacity in the evaporator (25) can be increased by the first cooling operation (101), and the temperature of the blown air can be decreased. Thereby, the temperature rise of the blowing air in a dehumidification driving
  • Second dehumidification control Even when dehumidification is performed by the first dehumidification control, when the dehumidification of the air in the container (C) is insufficient (that is, when the suction detection humidity is higher than the target humidity in the first dehumidification control), the operation control unit ( 105) ends the first dehumidification control and performs the second dehumidification control.
  • the electric heater (78) is driven, the first on-off valve (35) is in an open state, and the opening degree of the expansion valve (76) is a predetermined opening degree.
  • the compressor (21), the external fan (24), and the internal fan (26) are in a driving state.
  • the target temperature (Tx) is set to the second set temperature (the temperature obtained by adding the target added temperature to the internal set temperature (Tsp)). That is, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the second set temperature.
  • the operation control unit (105) sets the heating capacity of the electric heater (78) according to the dehumidifying load so that the heating capacity of the electric heater (78) increases as the dehumidifying load increases. To do. Note that the heating capacity of the electric heater (78) increases as the heating capacity of the electric heater (78) increases.
  • the temperature control unit (101) In order to reduce Tss), the first cooling operation is performed.
  • the cooling capacity in the evaporator (25) is increased and the temperature of the blown air is lowered, and as a result, the blown detection temperature (Tss) is lowered and approaches the target temperature (Tx). Further, when the cooling capacity in the evaporator (25) is increased, the amount of moisture that is condensed in the evaporator (25) increases. That is, the dehumidifying capacity in the evaporator (25) is increased.
  • the dehumidifying load in the evaporator (25) increases as the dehumidifying load increases, so that the evaporator (25 The dehumidifying capacity in 25) can be set.
  • the electric heater (Tss) is controlled to the target temperature (Tx) by controlling the cooling unit (18) by the temperature control unit (101) and the operation control unit (105).
  • the dehumidifying capacity in the evaporator (25) can be increased by increasing the cooling capacity in the evaporator (25) as the heating capacity in 78) increases.
  • Second dehumidification control >> Moreover, when the blowing detection temperature (Tss) rises in the first dehumidification control, the operation control unit (105) ends the first dehumidification control and performs the third dehumidification control. In the third dehumidification control, the electric heater (78) is stopped. In the third dehumidification control, the first on-off valve (35) is open, the opening of the expansion valve (76) is a predetermined opening, and the compressor (21) and the outside fan (24) and the internal fan (26) are in a driving state.
  • the refrigerant discharged from the compressor evaporates in the condenser (23), expands in the expansion valve (76) and then evaporates in the evaporator (25), as in the cooling operation. That is, the air (suction air) passing through the evaporator (25) is cooled by heat exchange with the refrigerant flowing through the evaporator (25) and condensed. Thus, the intake air sucked from the inside of the container (C) is cooled and dehumidified in the evaporator (25).
  • the target setting unit (102) sets the target temperature (Tx) to the first set temperature that is the same as the internal set temperature (Tsp). Therefore, the temperature control unit (101) performs the first and second cooling operations so that the blowing detection temperature (Tss) becomes the first set temperature.
  • the target temperature (Tx) is the second set temperature (Tsp) higher than the internal set temperature (Tsp). That is, by setting the internal set temperature (Tsp) to the target correction temperature), the air passing through the heating device (17) (in this example, the electric heater (78)) is transferred to the container (C). Even when it is not heated uniformly in the interior width direction, it is possible to suppress the lowest temperature of the blown air in the interior width direction of the container (C) from becoming lower than the interior set temperature (Tsp). Thereby, the low temperature failure of the load of a container (C) can be prevented.
  • the heating device (17) in this example, the electric heater (78)
  • the intake air sucked from the inside of the container (C) is converted into the evaporator (25). Since the air can be cooled and dehumidified and heated in the electric heater (78), the internal air of the container (C) can be dehumidified while suppressing a decrease in the internal temperature of the container (C).
  • the dehumidifying operation (specifically, the second dehumidifying control)
  • heating in the electric heater (78) is performed so that the blowout detection temperature (Tss) becomes the target temperature (Tx).
  • Tss blowout detection temperature
  • the cooling capacity in the evaporator (25) can be increased to increase the dehumidifying capacity in the evaporator (25), so that the evaporator ( The dehumidifying capacity in 25) can be increased.
  • the other actions and effects of the container refrigeration apparatus (10) of the third embodiment are the same as the actions and effects of the container refrigeration apparatus (10) of the first embodiment.
  • the case where the rotation speed of the compressor (21) (specifically, the rotation speed of the compressor motor) is a constant speed is taken as an example.
  • the compressor (21) 100) may be configured to be able to change its rotational speed in response to the control according to 100).
  • the temperature control unit (101) may be configured to control the rotational speed of the compressor (21) so that the blown-out detection temperature (Tss) becomes the target temperature (Tx). Specifically, the temperature control unit (101) increases the rotational speed of the compressor (21) in the first cooling operation.
  • coolant circulation amount in a refrigerant circuit (16) can be increased, and the cooling capability in an evaporator (25) can be raised.
  • the temperature control unit (101) decreases the rotational speed of the compressor (21) in the second cooling operation. Thereby, the refrigerant
  • the present invention is useful for a container refrigeration apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Air Conditioning Control Device (AREA)
  • Storage Of Harvested Produce (AREA)

Abstract

 吹出温度センサ(34)は、蒸発器(25)および加熱装置(17)を順に通過してコンテナ(C)の庫内に吹き出される吹出空気の温度を検知する。温度制御部(101)は、冷却運転および除湿運転において、吹出温度センサ(34)によって検知された吹出検知温度(Tss)が目標温度(Tx)となるように冷却部(18)を制御する。目標制御部(201)は、冷却運転において目標温度(Tx)を庫内設定温度(Tsp)と同一の第1設定温度に設定する一方、冷却運転から除湿運転に切り換えられた場合に、目標温度(Tx)を庫内設定温度(Tsp)に目標加算温度を加えた第2設定温度に設定する。

Description

コンテナ用冷凍装置
 本発明は、コンテナ用冷凍装置に関し、特に、低温障害の防止対策に係るものである。
 従来、海上輸送等に用いるコンテナ内を冷却するために、コンテナ用冷凍装置が用いられている。特許文献1に示されたコンテナ用冷凍装置は、圧縮機と凝縮器とレシーバと電子膨張弁と蒸発器とが順に接続された冷媒回路を備えている。また、このコンテナ用冷凍装置には、冷媒回路の蒸発器の風下側に位置する加熱用熱交換器(加熱装置)が設けられている。この加熱用熱交換器は、圧縮機の吐出ガス冷媒が流れるように構成されている。そして、このコンテナ用冷凍装置では、コンテナの庫内から吸い込まれた空気を蒸発器において冷却する冷却運転と、コンテナの庫内から吸い込まれて蒸発器において冷却して除湿された空気を加熱用熱交換器において加熱する除湿運転とが切り換えて行われる。
特開平11-63769号公報
 ところで、上述したようなコンテナ用冷凍装置では、コンテナの庫内から吸い込まれた空気は、蒸発器および加熱装置(例えば、加熱用熱交換器)を通過した後に、コンテナの庫内幅方向に延びる吹出口を通過してコンテナの庫内に吹き出される。また、吹出口の一箇所には、吹出口から吹き出される空気(すなわち、吹出空気)の温度を検知する吹出温度センサが設けられる。そして、冷却運転および除湿運転の各々において、吹出温度センサによって検知された吹出空気の温度(以下、吹出検知温度と表記)が予め定められた庫内設定温度となるように温度制御が行われる。
 しかしながら、上述のようなコンテナ用冷凍装置では、除湿運転において、加熱装置を通過する空気(すなわち、蒸発器において冷却除湿された空気)がコンテナの庫内幅方向において均一に加熱されない場合がある。例えば、加熱用熱交換器の冷媒温度が庫内幅方向において均一となっていない場合、加熱用熱交換器を通過する空気は、庫内幅方向において均一に加熱されなくなり、図11のように、加熱用熱交換器から吹き出される空気に温度ムラが生じてしまう。このような場合、冷却運転から除湿運転に切り換わると、吹出温度センサによって庫内幅方向における吹出空気の最低温度を正確に検知することが困難となる。具体的には、除湿運転において吹出検知温度が庫内幅方向における吹出空気の実際の最低温度よりも高くなってしまう可能性がある。したがって、除湿運転において吹出検知温度が庫内設定温度となるように温度制御が行われたとしても、庫内幅方向における吹出空気の最低温度が庫内設定温度よりも低くなり、その結果、コンテナの積荷の低温障害を引き起こしてしまうおそれがある。
 そこで、本発明は、コンテナの積荷の低温障害を防止することが可能なコンテナ用冷凍装置を提供することを目的とする。
 第1の発明は、圧縮機(21)と凝縮器(23)と膨張機構(76)と蒸発器(25)とが順に接続されて冷媒が循環する冷媒回路(16)と、コンテナ(C)の庫内から吸い込まれた吸込空気の流れ方向において上記蒸発器(25)の下流側に設けられた加熱装置(17)とを有し、該吸込空気が該蒸発器(25)および該加熱装置(17)を順に通過して該コンテナ(C)の庫内に吹き出される冷却部(18)を備え、上記加熱装置(17)を停止させて上記吸込空気を上記蒸発器(25)において冷却する冷却運転と、上記吸込空気を上記蒸発器(25)において冷却除湿して上記加熱装置(17)において加熱する除湿運転とを行うコンテナ用冷凍装置であって、上記蒸発器(25)および上記加熱装置(17)を順に通過して上記コンテナ(C)の庫内に吹き出される吹出空気の温度を検知する吹出温度センサ(34)と、上記冷却運転および上記除湿運転において、上記吹出温度センサ(34)によって検知された吹出空気の温度である吹出検知温度(Tss)が予め定められた目標温度(Tx)となるように上記冷却部(18)を制御する温度制御部(101)と、上記冷却運転において上記目標温度(Tx)を上記コンテナ(C)の庫内温度に対して予め定められた庫内設定温度(Tsp)と同一の第1設定温度に設定する一方、該冷却運転から上記除湿運転に切り換えられた場合に、該目標温度(Tx)を該庫内設定温度(Tsp)に予め定められた目標加算温度を加えた第2設定温度に設定する目標制御部(201)とを備えていることを特徴とするコンテナ用冷凍装置である。
 上記第1の発明では、冷却運転と除湿運転とが行われる。各運転では、冷却部(18)の冷媒回路(16)において、圧縮機(21)から吐出された冷媒が凝縮器(23)で凝縮して膨張機構(76)で膨張した後に蒸発器(25)で蒸発する冷凍サイクルが行われる。冷却運転では、コンテナ(C)の庫内から吸い込まれた吸込空気は、蒸発器(25)を通過する際に蒸発器(25)を流れる冷媒と熱交換して冷却される。目標制御部(201)は、冷却運転において目標温度(Tx)を庫内設定温度(Tsp)と同一の第1設定温度に設定する。したがって、冷却運転では、温度制御部(101)は、吹出検知温度(Tss)が庫内設定温度(Tsp)と同一の第1設定温度となるように冷却部(18)を制御する。
 また、上記第1の発明では、冷却運転から除湿運転に切り換えられた場合、コンテナ(C)の庫内から吸い込まれた吸込空気は、蒸発器(25)を通過する際に蒸発器(25)を流れる冷媒と熱交換して冷却されて結露し(すなわち、冷却除湿され)、加熱装置(17)を通過する際に加熱装置(17)によって加熱される。目標制御部(201)は、目標温度(Tx)を庫内設定温度(Tsp)に目標補正温度を加えた第2設定温度に設定する。したがって、冷却運転から除湿運転に切り換えられた場合、温度制御部(101)は、吹出検知温度(Tss)が庫内設定温度(Tsp)に目標補正温度を加えた第2設定温度となるように冷却部(18)を制御する。
 なお、除湿運転において、加熱装置(17)を通過する空気(すなわち、蒸発器(25)において冷却除湿された空気)がコンテナ(C)の庫内幅方向において均一に加熱されない場合がある。この場合、蒸発器(25)および加熱装置(17)を通過してコンテナ(C)の庫内に吹き出される吹出空気に温度ムラが生じてしまい、その結果、吹出検知温度(Tss)がコンテナ(C)の庫内幅方向における吹出空気の最低温度よりも高くなってしまう可能性がある。したがって、仮に、除湿運転において吹出検知温度(Tss)が庫内設定温度(Tsp)となるように温度制御が行われたとしても、コンテナ(C)の庫内幅方向における吹出空気の最低温度が庫内設定温度(Tsp)よりも低くなってしまうおそれがある。
 一方、上記第1の発明では、冷却運転から除湿運転に切り換えられた場合、目標温度(Tx)が庫内設定温度(Tsp)よりも高い第2設定温度(すなわち、庫内設定温度(Tsp)に目標補正温度を加えた温度)に設定されるので、コンテナ(C)の庫内に吹き出される吹出空気の温度を全体的に高くすることができ、その結果、コンテナ(C)の庫内幅方向における吹出空気の温度も高くすることができる。これにより、加熱装置(17)を通過する空気がコンテナ(C)の庫内幅方向において均一に加熱されない場合であっても、コンテナ(C)の庫内幅方向における吹出空気の最低温度が庫内設定温度(Tsp)よりも低くなることを抑制することができる。
 第2の発明は、上記第1の発明において、上記吸込空気の温度を検知する吸込温度センサ(33)をさらに備え、上記目標制御部(201)が、上記冷却運転から上記除湿運転に切り換えられた後に、上記吸込温度センサ(33)によって検知された吸込空気の温度である吸込検知温度(Trs)が予め定められた吸込基準温度よりも高くなると上記目標温度(Tx)を低くする一方、該吸込検知温度(Trs)が該吸込基準温度よりも低くなると該目標温度(Tx)を高くすることを特徴とするコンテナ用冷凍装置である。
 上記第2の発明では、蒸発器(25)および加熱装置(17)からコンテナ(C)の庫内に吹き出された空気は、コンテナ(C)の庫内を循環して再び蒸発器(25)に吸い込まれることになる。そのため、吸込検知温度(Trs)の変化は、コンテナ(C)の庫内温度の変化に依存している。具体的には、コンテナ(C)の庫内温度が高くなると、吸込空気の温度が高くなって吸込検知温度(Trs)が高くなる。一方、コンテナ(C)の庫内温度が低くなると、吸込空気の温度が低くなって吸込検知温度(Trs)が低くなる。そして、目標制御部(201)は、冷却運転から除湿運転への切り換え後における吸込検知温度(Trs)の変化に応じて目標温度(Tx)を補正する。すなわち、冷却運転から除湿運転への切り換え後においてコンテナ(C)の庫内温度が上昇して吸込検知温度(Trs)が吸込基準温度よりも高くなると、目標制御部(201)は、目標温度(Tx)を低くする。これにより、吹出空気の温度を低下させることができ、その結果、コンテナ(C)の庫内温度を低下させることができる。一方、冷却運転から除湿運転への切り換え後においてコンテナ(C)の庫内温度が低下して吸込検知温度(Trs)が吸込基準温度よりも低くなると、目標制御部(201)は、目標温度(Tx)を高くする。これにより、吹出空気の温度を上昇させることができ、その結果、コンテナ(C)の庫内温度を上昇させることができる。このように、冷却運転から除湿運転への切り換え後における吸込検知温度(Trs)の変化(具体的には、吸込検知温度(Trs)と吸込基準温度との比較の結果)に応じて吹出空気の温度を制御することにより、冷却運転から除湿運転への切り換えに伴うコンテナ(C)の庫内温度の変化を抑制することができる。
 第3の発明は、上記第2の発明において、上記吸込基準温度が、上記冷却運転が安定状態となっている場合において上記吸込温度センサ(33)によって検知された吸込空気の温度である吸込安定温度(Trs')、または、上記庫内設定温度(Tsp)に予め定められた吸込加算温度を加えた吸込設定温度に設定されていることを特徴とするコンテナ用冷凍装置である。
 上記第3の発明では、目標制御部(201)は、冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が吸込安定温度(Trs')(または、吸込設定温度)よりも高くなると目標温度(Tx)を低くする一方、吸込検知温度(Trs)が吸込安定温度(Trs')(または、吸込設定温度)よりも低くなると目標温度(Tx)を高くする。このように、吸込安定温度(Trs')または吸込設定温度を基準として、冷却運転から除湿運転への切り換え後におけるコンテナ(C)の庫内温度の変化に起因して吸込検知温度(Trs)が変化したか否かを判定することができる。
 第4の発明は、上記第1~第3の発明の何れか1つにおいて、上記目標制御部(201)が、上記除湿運転において上記蒸発器(25)における除湿能力が高くなるほど上記目標温度(Tx)が高くなるように、該蒸発器(25)における除湿能力に応じて該目標温度(Tx)を補正することを特徴とするコンテナ用冷凍装置である。
 上記第4の発明では、蒸発器(25)において空気が冷却されて結露することにより空気が除湿される。すなわち、除湿運転において、蒸発器(25)における除湿能力(冷却能力)が高くなるほど、吹出空気の温度が下がりやすくなる傾向にある。したがって、除湿運転において蒸発器(25)における除湿能力が高くなるほど目標温度(Tx)が高くなるように蒸発器(25)における除湿能力に応じて目標温度(Tx)を補正することにより、除湿運転において吹出空気の温度が下がりやすくなった場合に吹出空気の温度を高くすることができる。
 第5の発明は、上記第2~第4の発明の何れか1つにおいて、上記目標制御部(201)が、上記目標温度(Tx)が上記庫内設定温度(Tsp)以上となるように該目標温度(Tx)を補正することを特徴とするコンテナ用冷凍装置である。
 上記第5の発明では、目標温度(Tx)の下限を庫内設定温度(Tsp)に設定することにより、吹出空気の過剰な温度低下を防止することができる。これにより、コンテナ(C)の庫内温度が過剰に低下することを防止することができる。
 第6の発明は、上記第1~第5の発明の何れか1つにおいて、上記加熱装置(17)が、上記除湿運転において上記圧縮機(21)の吐出冷媒の一部が流入するレヒート熱交換器(32)によって構成されていることを特徴とするコンテナ用冷凍装置である。
 上記第6の発明では、除湿運転において、圧縮機(21)から吐出された冷媒のうち一部の冷媒がレヒート熱交換器(32)に流入し、残りの冷媒が冷媒回路(16)を循環して蒸発器(25)に流入する。蒸発器(25)を通過する空気は、蒸発器(25)を流れる冷媒と熱交換して冷却されて結露する(すなわち、冷却除湿される)。一方、レヒート熱交換器(32)を通過する空気は、レヒート熱交換器(32)を流れる冷媒と熱交換して加熱される。これにより、除湿運転において、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿してレヒート熱交換器(32)において加熱することができる。
 第7の発明は、上記第6の発明において、上記除湿運転において、上記レヒート熱交換器(32)に上記圧縮機(21)の吐出冷媒の一部を流入させる第1除湿制御と、該レヒート熱交換器(32)に該圧縮機(21)の吐出冷媒の一部を流入させた状態で該圧縮機(21)の吐出圧力が該第1除湿制御における吐出圧力よりも高くなるように上記冷却部(18)を制御する第2除湿制御とを行う運転制御部(105)をさらに備えていることを特徴とするコンテナ用冷凍装置である。
 上記第7の発明では、第1除湿制御と第2除湿制御とが行われる。第1除湿制御では、圧縮機(21)から吐出された冷媒のうち一部の冷媒がレヒート熱交換器(32)に流入し、残りの冷媒が冷媒回路(16)を循環して蒸発器(25)に流入する。これにより、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿してレヒート熱交換器(32)において加熱することができる。また、第2除湿制御では、圧縮機(21)の吐出圧力が第1除湿制御における圧縮機(21)の吐出圧力よりも高くなるように冷却部(18)を制御することにより、レヒート熱交換器(32)における加熱能力を上昇させることができる。なお、レヒート熱交換器(32)における加熱能力が上昇すると、吹出空気の温度が高くなって吹出検知温度(Tss)が目標温度(Tx)よりも高くなる。したがって、温度制御部(101)は、吹出検知温度(Tss)を低下させるために冷却部(18)を制御して蒸発器(25)における冷却能力を上昇させる。例えば、温度制御部(101)は、冷却部(18)の冷媒回路(16)における冷媒循環量を増加させることによって蒸発器(25)における冷却能力を上昇させる。これにより、吹出空気の温度を低下させ、その結果、吹出検知温度(Tss)を低下させて目標温度(Tx)に近づけることができる。また、蒸発器(25)における冷却能力を上昇させることにより、蒸発器(25)における除湿能力を上昇させることができる。
 第8の発明は、上記第1~第5の発明の何れか1つにおいて、上記加熱装置(17)が、電気ヒータ(78)によって構成されていることを特徴とするコンテナ用冷凍装置である。
 上記第8の発明では、除湿運転において、蒸発器(25)を通過する空気は、蒸発器(25)を流れる冷媒と熱交換して冷却されて結露する(すなわち、冷却除湿される)。一方、電気ヒータ(78)を通過する空気は、電気ヒータ(78)によって加熱される。これにより、除湿運転において、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿して電気ヒータ(78)において加熱することができる。
 第9の発明は、上記第8の発明において、上記除湿運転において、上記電気ヒータ(78)を駆動させる第1除湿制御と、該電気ヒータ(78)を駆動させた状態で該電気ヒータ(78)の加熱容量を該第1除湿制御における加熱容量よりも高くする第2除湿制御とを行う運転制御部(105)をさらに備えていることを特徴とするコンテナ用冷凍装置である。
 上記第9の発明では、第1除湿制御と第2除湿制御とが行われる。第1除湿制御では、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿して電気ヒータ(78)において加熱することができる。また、第2除湿制御では、電気ヒータ(78)の加熱容量を第1除湿制御における加熱容量よりも大きくすることにより、電気ヒータ(78)における加熱能力を上昇させることができる。なお、電気ヒータ(78)における加熱能力が上昇すると、吹出空気の温度が高くなって吹出検知温度(Tss)が目標温度(Tx)よりも高くなる。したがって、温度制御部(101)は、吹出検知温度(Tss)を低下させるために冷却部(18)を制御して蒸発器(25)における冷却能力を上昇させる。これにより、吹出空気の温度を低下させ、その結果、吹出検知温度(Tss)を低下させて目標温度(Tx)に近づけることができる。また、蒸発器(25)における冷却能力を上昇させることにより、蒸発器(25)における除湿能力を上昇させることができる。
 第1の発明によれば、冷却運転から除湿運転に切り換えられた場合に、目標温度(Tx)を第2設定温度(すなわち、庫内設定温度(Tsp)に目標補正温度を加えた温度)に設定することにより、加熱装置(17)を通過する空気がコンテナ(C)の庫内幅方向において均一に加熱されない場合であっても、コンテナ(C)の庫内幅方向における吹出空気の最低温度が庫内設定温度(Tsp)よりも低くなることを抑制することができるので、コンテナ(C)の積荷の低温障害を防止することができる。
 第2および第3の発明によれば、冷却運転から除湿運転への切り換え後における吸込検知温度(Trs)の変化に応じて目標温度(Tx)を補正することにより、冷却運転から除湿運転への切り換えに伴うコンテナ(C)の庫内温度の変化を抑制することができるので、除湿運転においてコンテナ(C)の積荷の低温障害を防止しつつコンテナ(C)の庫内温度の上昇も防止することができる。
 第4の発明によれば、除湿運転において蒸発器(25)における除湿能力に応じて目標温度(Tx)を補正することにより、除湿運転において吹出空気の温度が下がりやすくなった場合に吹出空気の温度を高くすることができるので、蒸発器(25)における除湿能力の上昇に伴うコンテナ(C)の庫内温度の低下を抑制することができる。
 第5の発明によれば、目標温度(Tx)の下限を庫内設定温度(Tsp)に設定することにより、コンテナ(C)の庫内温度が過剰に低下することを防止することができるので、除湿運転におけるコンテナ(C)の積荷の低温障害を確実に防止することができる。
 第6の発明によれば、除湿運転において、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿してレヒート熱交換器(32)において加熱することができるので、コンテナ(C)の庫内温度の低下を抑制しつつ、コンテナ(C)の庫内空気を除湿することができる。
 第7の発明によれば、第2除湿制御において、吹出検知温度(Tss)が目標温度(Tx)となるようにレヒート熱交換器(32)における加熱能力の上昇とともに蒸発器(25)における冷却能力を上昇させて蒸発器(25)における除湿能力を上昇させることができるので、コンテナ(C)の庫内温度の変化を抑制しつつ、蒸発器(25)における除湿能力を上昇させることができる。
 第8の発明によれば、除湿運転において、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿して電気ヒータ(78)において加熱することができるので、コンテナ(C)の庫内温度の低下を抑制しつつ、コンテナ(C)の庫内空気を除湿することができる。
 第9の発明によれば、第2除湿制御において、吹出検知温度(Tss)が目標温度(Tx)となるように電気ヒータ(78)における加熱能力の上昇とともに蒸発器(25)における冷却能力を上昇させて蒸発器(25)における除湿能力を上昇させることができるので、コンテナ(C)の庫内温度の変化を抑制しつつ、蒸発器(25)における除湿能力を上昇させることができる。
実施形態1のコンテナ用冷凍装置を庫外側から見た斜視図である。 実施形態1のコンテナ用冷凍装置の構成を示す断面図である。 実施形態1のケーシングを庫内側から見たときの正面図である。 実施形態1のコンテナ用冷凍装置の冷却部の構成を示す配管系統図である。 実施形態1の冷却運転および除湿運転を説明するための状態遷移図である。 実施形態1の除湿運転における第1~第3除湿制御を説明するための図である。 実施形態1の第1補正部による動作を説明するための図であり、(a)は、目標温度を下げる補正例を示し、(b)は、目標温度を上げる補正例を示す。 実施形態1の冷却運転および除湿運転における時間と温度との関係を示すグラフである。 実施形態1の除湿運転におけるコンテナの庫内幅方向と温度との関係を示すグラフである。 実施形態3のコンテナ用冷凍装置の冷却部の構成を示す配管系統図である。 コンテナ用冷凍装置の従来例の除湿運転におけるコンテナの庫内幅方向と温度との関係を示すグラフである。
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
 〔実施形態1〕
 図1~図3に示すように、実施形態1によるコンテナ用冷凍装置(10)は、海上輸送等に用いられるコンテナ(C)内の冷蔵または冷凍を行うものである。コンテナ(C)は、一側面が開放された箱状(または、有底筒状)に形成されている。そして、コンテナ用冷凍装置(10)は、コンテナ(C)の開口端部を塞ぐように配設される。なお、コンテナ(C)の庫内には、冷却対象となる積荷(図示を省略)が積まれている。積荷の例示としては、生鮮食品や精密電子部品などである。
 図4に示すように、コンテナ用冷凍装置(10)は、コントローラ(100)と、冷媒回路(16)および加熱装置(17)を有する冷却部(18)と、吸込温度センサ(33)と、吹出温度センサ(34)と、湿度センサ(53)とを備えている。冷媒回路(16)は、冷媒が充填された閉回路であり、圧縮機(21)と凝縮器(23)と膨張弁(76)と蒸発器(25)とが順に接続されて構成されている。
 図2に示すように、冷却部(18)では、加熱装置(17)は、コンテナ(C)の庫内から吸い込まれた空気(吸込空気)の流れ方向において冷媒回路(16)の蒸発器(25)の下流側に設けられている。すなわち、冷却部(18)では、吸込空気は、蒸発器(25)および加熱装置(17)を順に通過してコンテナ(C)の庫内に吹き出される。この例では、加熱装置(17)は、レヒート熱交換器(32)によって構成されている。
 また、コンテナ用冷凍装置(10)は、冷却部(18)の冷媒回路(16)の冷凍サイクルを利用してコンテナ(C)の庫内の空気を冷却するように構成されている。具体的には、このコンテナ用冷凍装置(10)では、加熱装置(17)を停止させて吸込空気を蒸発器(25)において冷却する冷却運転と、吸込空気を蒸発器(25)において冷却除湿して加熱装置(17)において加熱する除湿運転とが行われる。
  〈コンテナ用冷凍装置の構造〉
 図1および図2に示すように、コンテナ用冷凍装置(10)は、コンテナ(C)の開口端部を塞ぐように周縁部がコンテナ(C)に取り付けられるケーシング(11)を備えている。なお、この例では、コンテナ用冷凍装置(10)の冷却部(18)は、冷媒回路(16)および加熱装置(17)(この例では、レヒート熱交換器(32))の他に、庫外ファン(24)と庫外モータ(45)と送風ユニット(30)とを有している。
 図2に示すように、ケーシング(11)は、庫外側に位置する庫外ケーシング(12)と、庫内側に位置する庫内ケーシング(13)とを備えている。庫外ケーシング(12)および庫内ケーシング(13)は、金属製のアルミニウム合金によって構成されている。また、庫外ケーシング(12)と庫内ケーシング(13)との間の空間には、断熱材(14)が設けられている。
 庫外ケーシング(12)は、コンテナ(C)の開口端部を塞ぐようにコンテナ(C)の開口端部に取り付けられる。また、庫外ケーシング(12)は、その下部が庫内側へ膨出するように形成されている。庫内ケーシング(13)は、庫外ケーシング(12)に沿うように形成されており、その下部が庫外ケーシング(12)の下部に対応して庫内側へ膨出している。このように、ケーシング(11)の下部は、コンテナ(C)の庫内側に向かって膨出するように形成されていて、これにより、ケーシング(11)の下部の庫外には凹部(11a)が形成される。すなわち、ケーシング(11)の下部の庫外側には庫外収納空間(S1)が、ケーシング(11)の上部の庫内側には庫内収納空間(S2)が、それぞれ形成されている。
 また、ケーシング(11)の庫内側には、仕切板(48)が設けられている。仕切板(48)は、略矩形状の板部材によって構成され、ケーシング(11)と隙間を隔てて対向するような姿勢で立設されている。庫内収納空間(S2)は、この仕切板(48)によってコンテナ(C)の庫内と区画されている。そして、仕切板(48)の上端とコンテナ(C)の天井面との間には隙間が形成され、この隙間が、コンテナ(C)の庫内空気を庫内収納空間(S2)に取り込む吸込口(51)を構成している。また、仕切板(48)の下端とコンテナ(C)の底面との間には隙間が形成され、この隙間が、コンテナ用冷凍装置(10)によって処理された空気(すなわち、蒸発器(25)および加熱装置(17)を順に通過した空気)を庫内へ吹き出す吹出口(52)を構成している。なお、仕切板(48)の庫内幅方向の両端部は、コンテナ(C)の庫内幅方向の両側面に固定されている。
   《庫外収納空間》
 庫外収納空間(S1)内には、圧縮機(21)と凝縮器(23)と庫外ファン(24)と庫外モータ(45)とが設けられている。圧縮機(21)および凝縮器(23)は、冷媒回路(16)に接続されている。庫外ファン(24)は、庫外モータ(45)によって回転駆動され、庫外の空気を庫外収納空間(S1)内へ誘引して凝縮器(23)へ搬送する。庫外モータ(45)は、コントローラ(100)による制御に応答して駆動と停止(発停)を切り換え可能に構成されている。すなわち、庫外ファン(24)の発停は、コントローラ(100)によって制御される。凝縮器(23)では、コンテナ(C)の庫外から吸い込まれた空気と冷媒との間で熱交換が行われる。
   《庫内収納空間》
 庫内収納空間(S2)には、ケーシング(11)の庫内側の上部に、レヒート熱交換器(32)と蒸発器(25)と送風ユニット(30)と吸込温度センサ(33)と湿度センサ(53)とが設けられ、ケーシング(11)の庫内側の下部に、吹出温度センサ(34)が設けられている。具体的には、庫内収納空間(S2)において、吸込口(51)に最も近い上部(すなわち、吸込口(51)の近傍)に吸込温度センサ(33)および湿度センサ(53)が配置され、この吸込温度センサ(33)の直下に送風ユニット(30)が配置され、送風ユニット(30)の直下に蒸発器(25)が配置され、蒸発器(25)の直下にレヒート熱交換器(32)が配置され、吹出口(52)に最も近い下部(すなわち、吹出口(52)の近傍)に吹出温度センサ(34)が配置されている。
    -送風ユニット-
 送風ユニット(30)は、コンテナ(C)の庫内空気を庫内収納空間(S2)(具体的には、蒸発器(25)およびレヒート熱交換器(32))へ搬送する。送風ユニット(30)は、庫内収納空間(S2)の上部に設けられ、ケーシング(11)の幅方向に2台が並んで配置されている。各送風ユニット(30)は、ファンハウジング(31)と、庫内ファン(26)と、庫内モータ(46)とを備えている。庫内ファン(26)は、庫内モータ(46)によって回転駆動され、コンテナ(C)の庫内空気を仕切板(48)の上側の吸込口(51)から誘引して庫内収納空間(S2)(具体的には、蒸発器(25)およびレヒート熱交換器(32))へ搬送する。庫内モータ(46)は、コントローラ(100)による制御に応答して駆動と停止(発停)を切り換え可能に構成されている。すなわち、庫内ファン(26)の発停は、コントローラ(100)によって制御される。そして、庫内ファン(26)によってコンテナ(C)の庫内から吸い込まれた空気(吸込空気)は、蒸発器(25)およびレヒート熱交換器(32)を順に通過し、その後、仕切板(48)の下側の吹出口(52)からコンテナ(C)の庫内に吹き出される。すなわち、レヒート熱交換器(32)は、コンテナ(C)の庫内から吸い込まれた吸込空気の流れ方向において蒸発器(25)の下流側に設けられている。
    -吸込温度センサ-
 吸込温度センサ(33)は、コンテナ(C)の庫内から吸い込まれる吸込空気(すなわち、コンテナ(C)の庫内から庫内収納空間(S2)に送り込まれる空気)の温度を検知する。この例では、吸込温度センサ(33)は、2台の送風ユニット(30,30)の間において送風ユニット(30)の上部とほぼ水平となる高さに設けられている。吸込温度センサ(33)によって検知された吸込空気の温度(以下、吸込検知温度(Trs)と表記)は、コントローラ(100)に送られる。
    -吹出温度センサ-
 吹出温度センサ(34)は、庫内収納空間(S2)からコンテナ(C)の庫内に吹き出される空気(吹出空気)の温度を検知する。すなわち、吹出温度センサ(34)は、蒸発器(25)およびレヒート熱交換器(32)を順に通過してコンテナ(C)の庫内に吹き出される吹出空気の温度を検知する。この例では、吹出温度センサ(34)は、庫内収納空間(S2)の下部(すなわち、庫内ケーシング(13)の膨出した部分)と仕切板(48)との間において庫内幅方向の略中央位置に設けられている。吹出温度センサ(34)によって検知された吹出空気の温度(以下、吹出検知温度(Tss)と表記)は、コントローラ(100)に送られる。
    -湿度センサ-
 湿度センサ(53)は、コンテナ(C)の庫内から吸い込まれる吸込空気の湿度を検知する。湿度センサ(53)によって検知された吸込空気の湿度(以下、吸込検知湿度と表記)は、コントローラ(100)に送られる。
   《コンテナ用冷凍装置のその他の構造》
 また、図1に示すように、ケーシング(11)には、その上側寄りの位置に開口する開口孔(27)が幅方向に並んで2つ配置されている。開口孔(27)には、メンテナンス時に開閉可能な開閉扉(28)が取り付けられている。ケーシング(11)の庫外収納空間(S1)内には、庫外ファン(24)と隣接する位置に電装品ボックス(29)が配設されている。
 また、図3に示すように、ケーシング(11)の上部の庫内側には、ケーシング(11)の幅方向に延びて蒸発器(25)を保持する蒸発器保持枠(15)が設けられている。また、ケーシング(11)の庫内側には、サイドステー(40)および枠支持部材(43)が設けられている。サイドステー(40)は、ケーシング(11)の幅方向の両端側に立設され、庫内側に膨出したケーシング(11)の下部に接続されている。枠支持部材(43)は、断面略コの字状に形成された柱状部材であり、ケーシング(11)の下部の庫内側においてケーシング(11)の幅方向の中央部分に上下方向に延びるように設けられている。蒸発器保持枠(15)は、その幅方向の両端部がサイドステー(40)によって支持されるとともに、その幅方向の中央部が枠支持部材(43)によって支持されている。具体的には、蒸発器保持枠(15)の幅方向の中央部分は、ケーシング(11)の庫内側の幅方向の中央部に固定され且つ枠支持部材(43)の上端部に接続されている。
  〈冷媒回路の構成〉
 図4に示すように、冷媒回路(16)では、圧縮機(21)と凝縮器(23)と膨張弁(76)と蒸発器(25)とが冷媒管によって順に接続されている。この例では、凝縮器(23)と膨張弁(76)との間には、高圧液管(81)が設けられ、膨張弁(76)と蒸発器(25)との間には、低圧液管(82)が設けられ、蒸発器(25)と圧縮機(21)との間には、低圧ガス管(83)が設けられている。凝縮器(23)の近傍には、凝縮器(23)へコンテナ(C)の庫外の空気を取り込むための庫外ファン(24)が設けられている。蒸発器(25)の近傍には、蒸発器(25)へコンテナ(C)の庫内の空気を取り込むための庫内ファン(26)が設けられている。また、高圧液管(81)には、レシーバ(73)と、第1過冷却熱交換器(60)と、第1開閉弁(35)と、ドライヤ(42)と、第2過冷却熱交換器(63)とが順に設けられ、低圧ガス管(83)には、吸入比例弁(66)が設けられている。
   《圧縮機》
 圧縮機(21)は、冷媒を圧縮して吐出する。また、圧縮機(21)は、コントローラ(100)による制御に応答して駆動と停止を切換可能に構成されている。この例では、圧縮機(21)は、圧縮機構(図示を省略)と、圧縮機構を駆動する圧縮機モータ(図示を省略)を有している。また、圧縮機モータの回転数は、一定速となっている。すなわち、圧縮機モータは、一定の回転数で駆動するように構成されている。
   《凝縮器》
 凝縮器(23)は、圧縮機(21)から吐出された冷媒を流入し、凝縮器(23)に流入した冷媒の熱を凝縮器(23)を通過する空気(この例では、庫外空気)へ放熱させて冷媒を凝縮させる。すなわち、凝縮器(23)では、凝縮器(23)を流れる冷媒と凝縮器(23)を通過する空気とが互いに熱交換し、凝縮器(23)を流れる冷媒が凝縮する一方、凝縮器(23)を通過する空気が加熱される。例えば、凝縮器(23)は、円管である伝熱管を備えた熱交換器(所謂、クロスフィン型のフィン・アンド・チューブ熱交換器)によって構成されていてもよい。
   《レシーバ》
 レシーバ(73)は、凝縮器(23)の冷媒流れ方向(冷媒回路(16)における冷媒の流れ方向)の下流側に設けられ、凝縮器(23)から流入した冷媒を飽和液と飽和ガスとに分離して飽和液を流出するよう構成されている。例えば、レシーバ(73)は、縦長で円筒状の密閉容器によって構成されている。
   《第1過冷却熱交換器》
 第1過冷却熱交換器(60)は、第1高圧側流路(61)および第1低圧側流路(62)を有している。第1過冷却熱交換器(60)の第1高圧側流路(61)は、レシーバ(73)の冷媒流れ方向の下流側に設けられている。
   《第1開閉弁》
 第1開閉弁(35)は、高圧液管(81)のドライヤ(42)と膨張弁(76)との間における冷媒の流量を調節するものであり、コントローラ(100)による制御に応答してその開度を調節可能に構成されている。
   《ドライヤ》
 ドライヤ(42)は、第1開閉弁(35)の冷媒流れ方向の下流側に設けられ、凝縮器(23)から流出された液冷媒(この例では、レシーバ(73)と第1過冷却熱交換器(60)と第1開閉弁(35)とを通過した液冷媒)の中の水分を捕捉するように構成されている。
   《第2過冷却熱交換器》
 第2過冷却熱交換器(63)は、第2高圧側流路(64)と第2低圧側流路(65)とを有している。第2過冷却熱交換器(63)の第2高圧側流路(64)は、ドライヤ(42)の冷媒流れ方向の下流側に設けられている。
   《膨張弁(膨張機構)》
 膨張弁(76)は、その内部を流れる冷媒を膨張させて減圧させるものであり、コントローラ(100)による制御に応答してその開度を調節可能に構成されている。
   《蒸発器》
 蒸発器(25)は、膨張弁(76)から流出された冷媒(この例では、低圧液管(82)に流出された冷媒)を流入し、蒸発器(25)に流入した冷媒に蒸発器(25)を通過する空気(具体的には、コンテナ(C)の庫内から吸い込まれた吸込空気)の熱を吸熱させて空気を冷却する。すなわち、蒸発器(25)では、蒸発器(25)を流れる冷媒と蒸発器(25)を通過する空気とが互いに熱交換し、蒸発器(25)を流れる冷媒が蒸発する一方、蒸発器(25)を通過する空気が冷却される。例えば、蒸発器(25)は、円管である伝熱管を備えた熱交換器(所謂、クロスフィン型のフィン・アンド・チューブ熱交換器)によって構成されている。蒸発器(25)の伝熱管は、コンテナ(C)の庫内幅方向に沿って延びている。
   《吸入比例弁》
 吸入比例弁(66)は、冷媒回路(16)を循環する冷媒の流量を調節するものであり、コントローラ(100)による制御に応答してその開度を調節可能に構成されている。すなわち、冷媒回路(16)は、コントローラ(100)による制御に応答して冷媒循環量を調節可能に構成されている。
   《第1分岐管》
 また、高圧ガス管(80)の途中には、高圧ガス管(80)を流れる冷媒の一部が流入する第1分岐管(85)が接続されている。この第1分岐管(85)から第1および第2接続管(91,92)がさらに分岐している。すなわち、第1分岐管(85)は、その一端が高圧ガス管(80)の途中に接続されている。
   《第1~第3接続管》
 第1接続管(91)は、その一端が第1分岐管(85)の他端に接続される一方、その他端が低圧液管(82)の途中に接続されている。第1接続管(91)には、ヒータ電磁弁(71)が設けられている。第2接続管(92)は、その一端が第1分岐管(85)の他端に接続される一方、その他端が低圧液管(82)の途中に接続されている。第2接続管(92)には、レヒート電磁弁(70)とレヒート熱交換器(32)とが順に設けられている。また、第1接続管(91)の途中(具体的には、低圧液管(82)に接続された第1接続管(91)の他端とヒータ電磁弁(71)との間)には、第3接続管(93)が接続されている。第3接続管(93)は、その一端が第1接続管(91)の途中に接続される一方、その他端が低圧液管(82)の途中に接続される。第3接続管(93)には、ドレンパンヒータ(77)が設けられている。
   《ヒータ電磁弁,レヒート電磁弁》
 レヒート電磁弁(70)およびヒータ電磁弁(71)は、コントローラ(100)による制御に応答してその開度を調節可能に構成されている。第1接続管(91)および第3接続管(93)における冷媒流量は、ヒータ電磁弁(71)の開度によって調節される。第2接続管(92)における冷媒流量は、レヒート電磁弁(70)の開度によって調節される。なお、ヒータ電磁弁(71)は、ドレンパンヒータ(77)を駆動させる場合に開状態に設定される。
   《ドレンパンヒータ》
 ドレンパンヒータ(77)は、蒸発器(25)で結露した水が溜められるドレンパン(図示を省略)を加熱してドレンパンにおいて凍った水を溶かす。ドレンパンヒータ(77)は、圧縮機(21)の吐出冷媒(すなわち、ホットガス)が流入するよう構成されている。
   《レヒート熱交換器》
 レヒート熱交換器(32)は、除湿運転において圧縮機(21)から吐出された冷媒の一部が流入し、レヒート熱交換器(32)に流入した冷媒の熱をレヒート熱交換器(32)を通過する空気(具体的には、蒸発器(25)において冷却除湿された空気)に放熱させて空気を加熱する。すなわち、レヒート熱交換器(32)では、除湿運転においてレヒート熱交換器(32)を流れる冷媒とレヒート熱交換器(32)を通過する空気とが互いに熱交換し、レヒート熱交換器(32)を流れる冷媒が凝縮する一方、レヒート熱交換器(32)を通過する空気が加熱される。例えば、レヒート熱交換器(32)は、円管である伝熱管を備えた熱交換器(所謂、クロスフィン型のフィン・アンド・チューブ熱交換器)によって構成されている。レヒート熱交換器(32)の伝熱管は、コンテナ(C)の庫内幅方向に沿って延びている。レヒート熱交換器(32)から流出された冷媒は、低圧液管(82)に流入する。
   《第2分岐管》
 また、高圧液管(81)の途中(具体的には、第1過冷却熱交換器(60)と第1開閉弁(35)との間)には、高圧液管(81)を流れる冷媒の一部が流れる第2分岐管(86)が接続されている。第2分岐管(86)は、その一端が高圧液管(81)の途中に接続される一方、その他端が圧縮機(21)の中間圧となる圧縮室に連通する中間ポートに接続されている。第2分岐管(86)には、第2開閉弁(36)と、キャピラリチューブ(39)と、第2過冷却熱交換器(63)の第2低圧側流路(65)と、第1過冷却熱交換器(60)の第1低圧側流路(62)とが順に設けられている。
   《第2開閉弁》
 第2開閉弁(36)は、第2分岐管(86)を流れる冷媒の流量を調節するものであり、コントローラ(100)による制御に応答してその開度を調節可能に構成されている。なお、第2開閉弁(36)は、第1および第2過冷却熱交換器(60,63)において冷媒の過冷却を行う場合には、開状態に設定され、第1および第2過冷却熱交換器(60,63)において冷媒の過冷却を行わない場合には、閉状態に設定される。
   《第4接続管》
 また、第2分岐管(86)の途中(具体的には、第2開閉弁(36)の冷媒の吸入側、すなわち、高圧液管(81)に接続された第2分岐管(86)の一端と第2開閉弁(36)との間)には、第4接続管(94)が接続されている。第4接続管(94)は、その一端が第2分岐管(86)の途中に接続される一方、その他端が低圧液管(82)の途中に接続されている。
   《第5接続管》
 また、第4接続管(94)の途中には、第5接続管(95)が接続されている。第5接続管(95)は、その一端が第4接続管(94)の途中に接続される一方、その他端が低圧ガス管(83)の途中(具体的には、圧縮機(21)の吸入側と吸入比例弁(66)との間)に接続されている。第5接続管(95)には、第3開閉弁(37)が設けられている。
   《第3開閉弁》
 第3開閉弁(37)は、第5接続管(95)を流れる冷媒の流量を調節するものであり、コントローラ(100)による制御に応答してその開度を調節可能に構成されている。なお、第3開閉弁(37)は、冷媒回路(16)の保護のために設けられ、圧縮機(21)の吐出圧力(圧縮機(21)から吐出される高圧ガス冷媒の圧力)が予め定められた高圧異常閾値よりも高くなった場合に開状態に設定される。
   《第6接続管》
 低圧ガス管(83)の途中(具体的には、吸入比例弁(66)の冷媒の上流側、すなわち、蒸発器(25)と吸入比例弁(66)との間)には、第6接続管(96)が接続されている。第6接続管(96)は、その一端が低圧ガス管(83)の途中に接続される一方、その他端が高圧ガス管(80)の途中に接続されている。第6接続管(96)には、第4開閉弁(38)が設けられている。
   《第4開閉弁》
 第4開閉弁(38)は、第6接続管(96)を流れる冷媒の流量を調節するものであり、コントローラ(100)による制御に応答してその開度を調節可能に構成されている。なお、第4開閉弁(38)は、冷媒回路(16)の保護のために設けられ、圧縮機(21)の吸入圧力(圧縮機(21)に吸入される低圧ガス冷媒の圧力)が予め定められた低圧異常閾値よりも低くなった場合に開状態に設定される。
   《センサ類》
 また、冷媒回路(16)には、各種のセンサ類が設けられている。この例では、冷媒回路(16)には、高圧圧力スイッチ(110)と、高圧圧力センサ(111)と、吐出温度センサ(112)と、低圧圧力センサ(113)と、吸入温度センサ(114)とが設けられている。高圧圧力スイッチ(110)と高圧圧力センサ(111)と吐出温度センサ(112)とは、冷媒回路(16)の高圧ガス管(80)に設けられている。低圧圧力センサ(113)と吸入温度センサ(114)とは、低圧ガス管(83)において蒸発器(25)と圧縮機(21)の間に設けられている。
 高圧圧力センサ(111)は、圧縮機(21)から吐出される高圧ガス冷媒の圧力(すなわち、圧縮機(21)の吐出圧力)を検出する。吐出温度センサ(112)は、圧縮機(21)から吐出される高圧ガス冷媒の温度を検出する。低圧圧力センサ(113)は、圧縮機(21)に吸入される低圧ガス冷媒の圧力(すなわち、圧縮機(21)の吸入圧力)を検出する。吸入温度センサ(114)は、圧縮機(21)に吸入される低圧ガス冷媒の温度を検出する。各センサ(111~114)によって検知された値(圧力や温度など)は、コントローラ(100)に送られ、後述する各制御に適宜用いられる。
  〈コントローラの構成〉
 コントローラ(100)は、コンテナ用冷凍装置(10)の運転制御を行う。すなわち、コントローラ(100)は、冷却運転と除湿運転とが行われるように冷却部(18)を制御する。図5に示すように、この例では、除湿運転において第1~第3除湿制御が行われる。コントローラ(100)は、温度制御部(101)と、目標制御部(201)と、運転制御部(105)とを備えている。
   《温度制御部》
 温度制御部(101)は、冷却運転および除湿運転において、吹出温度センサ(34)によって検知された吹出空気の温度(すなわち、吹出検知温度(Tss))を監視し、吹出検知温度(Tss)が目標温度(Tx)となるように冷却部(18)を制御する。具体的には、温度制御部(101)は、吹出検知温度(Tss)が目標温度(Tx)よりも高い場合には第1冷却動作を行い、吹出検知温度(Tss)が目標温度(Tx)よりも低い場合には第2冷却動作を行う。なお、第1冷却動作とは、蒸発器(25)における冷却能力を上昇させるための動作のことであり、第2冷却動作とは、蒸発器(25)における冷却能力を低下させるための動作のことである。
 この例では、温度制御部(101)は、第1冷却動作において冷媒回路(16)の吸入比例弁(66)の開度を大きくし、第2冷却動作において冷媒回路(16)の吸入比例弁(66)の開度を小さくする。また、コンテナ用冷凍装置(10)の運転モードが除湿運転から冷却運転に切り換えられると、温度制御部(101)は、冷媒回路(16)の吸入比例弁(66)の開度に応じて第1および第2冷却動作のいずれか一方を行う。具体的には、温度制御部(101)は、吸入比例弁(66)の開度が「100pls」よりも大きい場合には第1冷却動作を行い、吸入比例弁(66)の開度が「100pls」以下である場合には第2冷却動作を行う。
   《目標制御部》
 目標制御部(201)は、冷却運転および除湿運転において、吹出検知温度(Tss)に対する目標温度を設定(または、補正)するものであり、目標設定部(102)と第1補正部(103)と第2補正部(104)とを有している。
    -目標設定部-
 目標設定部(102)は、冷却運転において、目標温度(Tx)をコンテナ(C)の庫内温度に対して予め定められた庫内設定温度(Tsp)と同一の第1設定温度に設定する。また、目標設定部(102)は、コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられた場合に、目標温度(Tx)を庫内設定温度(Tsp)に予め定められた目標加算温度を加えた第2設定温度(すなわち、コンテナ(C)の庫内温度の設定値(庫内設定温度(Tsp))から所定値だけ高くした値)に設定する。
 この例では、目標設定部(102)は、第1および第2除湿制御において目標温度(Tx)を第2設定温度に設定し、冷却運転および第3除湿制御において目標温度(Tx)を第1設定温度に設定する。例えば、図6に示すように、目標加算温度は、「0.6℃」に設定されている。なお、「0.6℃」は、目標加算温度の例示であり、これに限られるものではない。
    -第1補正部-
 第1補正部(103)は、吸込温度センサ(33)によって検知された吸込空気の温度(すなわち、吸込検知温度(Trs))を監視し、コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が予め定められた吸込基準温度よりも高く(または、低く)なった場合に目標温度(Tx)を補正する。具体的には、第1補正部(103)は、吸込検知温度(Trs)が目標温度(Tx)よりも高くなると目標温度(Tx)を低くする一方、吸込検知温度(Trs)が吸込基準温度よりも低くなると目標温度(Tx)を高くする。また、第1補正部(103)は、コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられた後に、目標温度(Tx)の補正(すなわち、吸込検知温度(Trs)と吸込基準温度との比較結果に応じて目標温度(Tx)を補正する動作)を周期的に行うように構成されていてもよい。
 なお、第1補正部(103)は、目標温度(Tx)が庫内設定温度(Tsp)以上となるように目標温度(Tx)を補正する。すなわち、目標温度(Tx)の下限は、庫内設定温度(Tsp)に設定されている。
 この例では、吸込基準温度は、安定した冷却運転時の吸込温度センサ(33)の検知温度(すなわち、冷却運転が安定状態となっている場合において吸込温度センサ(33)によって検知された吸込空気の温度、以下、吸込安定温度(Trs')と表記)に設定されている。なお、安定した冷却運転時(すなわち、冷却運転が安定している場合)とは、例えば、図8に示すように、冷却運転によってコンテナ(C)の庫内が冷却されて吹出空気の温度が低下した後に、吹出空気の温度(具体的には、吹出検知温度(Tss))が庫内設定温度(Tsp)に対して所定の温度範囲内(インレンジ)で変動するように温度制御が行われる状態のことである。また、目標制御部(201)の第1補正部(103)は、冷却運転の際に(すなわち、冷却運転から除湿運転に切り換えられる前に)吸込安定温度(Trs')を記憶するように構成されていてもよい。
 また、この例では、図6に示すように、第1補正部(103)は、目標温度(Tx)に第1補正温度(Y)を加えることによって目標温度(Tx)を補正する。すなわち、第1補正部(103)によって補正された目標温度(Tx)は、補正前の目標温度(Tx)に第1補正温度(Y)を加えた温度に相当する。そして、第1補正部(103)は、吸込検知温度(Trs)が吸込基準温度よりも高い場合には、第1補正温度(Y)を負の値に設定し、吸込検知温度(Trs)が吸込基準温度よりも低い場合には、第1補正温度(Y)を正の値に設定する。
 また、この例では、図7(A)および図7(B)に示すように、第1補正部(103)は、冷却運転から除湿運転に切り換えられた後に、第1補正温度の調節(すなわち、吸込検知温度(Trs)と吸込基準温度と比較して第1補正温度を調節する動作)を周期的に行うように構成されている。例えば、吸込基準温度が吸込安定温度(Trs')に設定され、補正前の目標温度(Tx)が庫内設定温度(Tsp)に目標加算温度(+0.6℃)を加えた第2設定温度(すなわち、Tsp+0.6℃)に設定され、負の値を示す第1補正温度(Y)が「-0.2℃」に設定され、正の値を示す第1補正温度(Y)が「+0.2℃」に設定されているとすると、第1補正部(103)は、次のように目標温度(Tx)を補正する。
 図7(A)に示すように、冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が吸込安定温度(Trs')よりも高くなった場合、第1補正部(103)は、目標温度(Tx)に負の値を示す第1補正温度(-0.2℃)を加算する。これにより、目標温度(Tx)は「Tsp+0.6℃-0.2℃」となる。そして、この補正によっても除湿運転に切り換えられた後の吸込検知温度(Trs)が吸込安定温度(Trs')よりも高くなっている場合、第1補正部(103)は、補正後の目標温度(Tx)に負の値を示す第1補正温度(-0.2℃)をさらに加算する。これにより、目標温度(Tx)は「Tsp+0.6-(0.2℃×2)」となる。
 一方、図7(B)に示すように、冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が吸込安定温度(Trs')よりも低くなった場合、第1補正部(103)は、目標温度(Tx)に正の値を示す第1補正温度(+0.2℃)を加算する。これにより、目標温度(Tx)は「Tsp+0.6℃+0.2℃」となる。そして、この補正によっても除湿運転に切り換えられた後の吸込検知温度(Trs)が吸込安定温度(Trs')よりも低くなっている場合、第1補正部(103)は、補正後の目標温度(Tx)に正の値を示す第1補正温度(+0.2℃)をさらに加算する。これにより、目標温度(Tx)は「Tsp+0.6+(0.2℃×2)」となる。
    -第2補正部-
 第2補正部(104)は、除湿運転(この例では、第2除湿制御)において蒸発器(25)における除湿能力を監視し、蒸発器(25)における除湿能力が高くなるほど目標温度(Tx)が高くなるように、蒸発器(25)における除湿能力に応じて目標温度(Tx)を補正する。すなわち、第2補正部(104)は、蒸発器(25)における除湿能力が高くなるのに伴って目標温度(Tx)を高くする。
 この例では、第2補正部(104)は、除湿運転(具体的には、第2除湿制御)において高圧圧力センサ(111)によって検知された圧縮機(21)の吐出圧力(吐出冷媒の圧力)を監視し、圧縮機(21)の吐出圧力が高くなるほど目標温度(Tx)が高くなるように、圧縮機(21)の吐出圧力に応じて目標温度(Tx)を補正する。
 また、この例では、図6に示すように、第2補正部(104)は、目標温度(Tx)に第2補正温度(Z)を加えることによって目標温度(Tx)を補正する。すなわち、第2補正部(104)によって補正された目標温度(Tx)は、補正前の目標温度(Tx)に第2補正温度(Z)を加えた温度に相当する。また、第2補正部(104)は、蒸発器(25)における除湿能力が高くなるほど(この例では、圧縮機(21)の吐出圧力が高くなるほど)第2補正温度(Z)が高くなるように、蒸発器(25)における除湿能力(この例では、圧縮機(21)の吐出圧力)に応じて第2補正温度(Z)を調節する。例えば、図6に示すように、第2補正部(104)は、蒸発器(25)における除湿能力が高くなるのに伴って、第2補正温度(Z)を「0.2℃」「0.4℃」「0.6℃」の順で段階的に高くする。
   《運転制御部》
 運転制御部(105)は、コンテナ用冷凍装置(10)が起動されると、コンテナ用冷凍装置(10)の運転モードを冷却運転に設定する。また、運転制御部(105)は、吸込検知湿度(湿度センサ(53)によって検知された吸込空気の湿度)と吸込検知温度(Trs)と吹出検知温度(Tss)とを監視し、コンテナ用冷凍装置(10)の運転モードの切り換え(すなわち、冷却運転と除湿運転との切り換え)を行う。さらに、運転制御部(105)は、除湿運転において第1~第3除湿制御のうちいずれか一つを行う。
    -冷却運転における制御-
 冷却運転では、運転制御部(105)は、加熱装置(17)(この例では、レヒート熱交換器(32))が停止するとともにコンテナ(C)の庫内から吸い込まれた吸込空気が冷媒回路(16)の蒸発器(25)において冷却されるように、冷却部(18)を制御する。
 この例では、冷却運転において、運転制御部(105)は、第1開閉弁(35)を開状態に設定し、レヒート電磁弁(70)を閉状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。
    -第1除湿制御-
 第1除湿制御では、運転制御部(105)は、コンテナ(C)の庫内から吸い込まれた吸込空気が冷媒回路(16)の蒸発器(25)において冷却除湿されて加熱装置(17)(この例では、レヒート熱交換器(32))において加熱されるように、冷却部(18)を制御する。
 この例では、第1除湿制御において、運転制御部(105)は、レヒート熱交換器(32)に圧縮機(21)の吐出冷媒の一部を流入(直接流入)させる。具体的には、運転制御部(105)は、第1開閉弁(35)とレヒート電磁弁(70)とを開状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。
    -第2除湿制御-
 この例では、第2除湿制御において、運転制御部(105)は、第1除湿制御と同様に、第1開閉弁(35)とレヒート電磁弁(70)とを開状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。
 また、第2除湿制御では、運転制御部(105)は、蒸発器(25)における除湿能力が第1除湿制御における除湿能力よりも高くなるように冷却部(18)を制御する。さらに、第2除湿制御では、運転制御部(105)は、除湿負荷(すなわち、湿度センサ(53)によって検知された吸込空気の湿度と予め定められた目標湿度との差)が大きくなるほど冷媒回路(16)の蒸発器(25)における除湿能力が高くなるように、除湿負荷に応じて冷却部(18)を制御する。すなわち、運転制御部(105)は、除湿負荷が高くなるのに伴って蒸発器(25)における除湿能力を高くする。
 この例では、第2除湿制御において、運転制御部(105)は、高圧圧力センサ(111)によって検知された圧縮機(21)の吐出圧力を監視し、圧縮機(21)の吐出圧力が予め定められた目標吐出圧力となるように、庫外ファン(24)を制御する。具体的には、運転制御部(105)は、圧縮機(21)の吐出圧力が目標吐出圧力よりも低い場合には、庫外ファン(24)を停止させ、圧縮機(21)の吐出圧力が目標吐出圧力よりも高い場合には、庫外ファン(24)を駆動させる。さらに、この例では、運転制御部(105)は、第2除湿制御において、除湿負荷を監視し、除湿負荷が大きくなるほど目標吐出圧力が高くなるように、除湿負荷に応じて目標吐出圧力を設定する。なお、第2除湿制御における目標吐出圧力(可変値)の最低値は、第1除湿制御における目標吐出圧力(一定値)よりも高くなっている。
    -第3除湿制御-
 第3除湿制御では、運転制御部(105)は、加熱装置(17)(この例では、レヒート熱交換器(32))が停止するとともにコンテナ(C)の庫内から吸い込まれた吸込空気が冷媒回路(16)の蒸発器(25)において冷却除湿されるように、冷却部(18)を制御する。
 この例では、第3除湿制御において、運転制御部(105)は、第1開閉弁(35)を開状態に設定し、レヒート電磁弁(70)を閉状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。
  〈運転モードの切り換え〉
 次に、図5を参照して、運転制御部(105)による運転モードの切り換えについて説明する。この例では、運転制御部(105)は、次のように冷却運転と除湿運転との切り換えと第1~第3除湿制御の切り換えとを行う。
   《冷却運転→除湿運転》
 運転制御部(105)は、冷却運転において下記の条件の全部が満たされると、コンテナ用冷凍装置(10)の運転モードを冷却運転から除湿運転に切り換える。
・条件1:吸込検知湿度(湿度センサ(53)によって検知された吸込空気の湿度)が予め定められた目標湿度よりも高い。
・条件2:吹出検知温度(Tss)が予め定められた吹出温度範囲(目標温度(Tx)を含む温度範囲)内に収まっている。
・条件3:吸込検知温度(Trs)が予め定められた吸込温度範囲(目標温度(Tx)を含む温度範囲)内に収まっている。
   《第1除湿制御→第2除湿制御》
 コンテナ用冷凍装置の運転モードが冷却運転から除湿運転に切り換えられると、運転制御部(105)は、第1除湿制御を行う。また、運転制御部(105)は、第1除湿制御において下記の条件の全部が満たされると、第1除湿制御を終了して第2除湿制御を行う。
・条件1:吸込検知湿度が目標湿度よりも高い。
・条件2:吹出検知温度(Tss)が吹出温度範囲内に収まっている。
   《第2除湿制御→第1除湿制御》
 また、運転制御部(105)は、第2除湿制御において下記の条件のうち少なくとも一つが満たされると、第2除湿制御を終了して第1除湿制御を行う。
・条件1:吸込検知湿度が予め定められた基準湿度(目標湿度よりも低い湿度)よりも低い。
・条件2:吹出検知温度(Tss)が予め定められた第1基準温度(吹出温度範囲の中の温度)よりも高い。
   《第1除湿制御→第3除湿制御》
 また、運転制御部(105)は、第1除湿制御において下記の条件が満たされると、第1除湿制御を終了して第3除湿制御を行う。
・条件1:吹出検知温度(Tss)が予め定められた第2基準温度(第1基準温度よりも高く吹出温度範囲の上限温度よりも低い温度)よりも高い。
   《第3除湿制御→第1除湿制御》
 また、運転制御部(105)は、第3除湿制御において下記の条件の全部が満たされると、第3除湿制御を終了して第1除湿制御を行う。
・条件1:吸込検知湿度が目標湿度よりも高い。
・条件2:吹出検知温度(Tss)が吹出温度範囲内に収まっている。
   《除湿運転→冷却運転》
 また、運転制御部(105)は、除湿運転(具体的には、第1~第3除湿制御)において下記の条件のうち少なくとも一つが満たされると、コンテナ用冷凍装置(10)の運転モードを除湿運転から冷却運転に切り換える。
・条件1:吸込検知湿度が目標湿度よりも低い。
・条件2:吹出検知温度(Tss)が吹出温度範囲の下限温度よりも低い。
・条件3:吸込検知温度(Trs)が吸込温度範囲の下限温度よりも低い。
・条件4:吸込検知温度(Trs)が吸込温度範囲の上限温度よりも高い。
  〈コンテナ用冷凍装置の運転動作〉
 次に、実施形態1のコンテナ用冷凍装置(10)による冷却運転および除湿運転について説明する。なお、以下では、説明の簡略化のために、第2開閉弁(36)と第3開閉弁(37)と第4開閉弁(38)とヒータ電磁弁(71)が閉状態に設定されているものとする。
   《冷却運転》
 冷却運転では、第1開閉弁(35)が開状態となり、レヒート電磁弁(70)が閉状態となり、膨張弁(76)の開度が所定の開度となる。また、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とが駆動状態となる。
 圧縮機(21)の吐出冷媒は、高圧ガス管(80)を通過して凝縮器(23)へ送られる。凝縮器(23)を流れる冷媒は、凝縮器(23)を通過する空気(すなわち、庫外ファン(24)によって送られる庫外空気)と熱交換する。その結果、凝縮器(23)の冷媒は、凝縮器(23)を通過する空気(庫外空気)に放熱して凝縮する。
 凝縮器(23)から流出された液冷媒は、高圧液管(81)を流れてレシーバ(73)に流入して飽和液と飽和ガスとに分離され、飽和液となった冷媒が第1過冷却熱交換器(60)の第1高圧側流路(61)へ送られる。
 第1過冷却熱交換器(60)の第1高圧側流路(61)を通過した冷媒は、高圧液管(81)を流れて第1開閉弁(35)を通過する。第1開閉弁(35)を通過した冷媒は、ドライヤ(42)において水分を補足された後、第2過冷却熱交換器(63)の第2高圧側流路(64)に流入する。第2過冷却熱交換器(63)の第2高圧側流路(64)を通過した冷媒は、高圧液管(81)を流れ、膨張弁(76)で減圧された後、低圧液管(82)を流れて蒸発器(25)へ送られる。
 蒸発器(25)を流れる冷媒は、蒸発器(25)を通過する空気(庫内ファン(26)によって送られる庫内空気、すなわち、吸込空気)と熱交換する。その結果、蒸発器(25)を流れる冷媒は、蒸発器(25)を通過する空気(吸込空気)から吸熱して蒸発し、蒸発器(25)を通過する空気(吸込空気)が冷却される。蒸発器(25)から流出された冷媒は、低圧ガス管(83)を流れ、吸入比例弁(66)を通過し、圧縮機(21)に吸入されて再び圧縮される。
 このように、冷却運転では、コンテナ(C)の庫内から吸込口(51)を通過して庫内収納空間(S2)に吸い込まれた吸込空気は、蒸発器(25)において冷却された後に停止中のレヒート熱交換器(32)を通過して吹出口(52)から吹き出されて庫内へ戻っていく。
 また、冷却運転では、目標制御部(201)は、目標温度(Tx)を庫内設定温度(Tsp)と同一の第1設定温度に設定する。したがって、温度制御部(101)は、吹出検知温度(Tss)が庫内設定温度(Tsp)と同一の第1設定温度となるように、第1および第2冷却動作を行う。
 吹出検知温度(Tss)が第1設定温度よりも高い場合、温度制御部(101)は、第1冷却動作を行う。第1冷却動作では、温度制御部(101)は、冷媒回路(16)の吸入比例弁(66)の開度を大きくする。これにより、冷媒回路(16)における冷媒循環量が増加して、蒸発器(25)における冷却能力が上昇する。その結果、蒸発器(25)およびレヒート熱交換器(32)を順に通過してコンテナ(C)の庫内に吹き出される吹出空気の温度が低くなり、吹出検知温度(Tss)が低くなって第1設定温度(すなわち、庫内設定温度(Tsp))に近づく。
 一方、吹出検知温度(Tss)が第1設定温度よりも低い場合、温度制御部(101)は、第2冷却動作を行う。第2冷却動作では、温度制御部(101)は、吸入比例弁(66)の開度を小さくする。これにより、冷媒回路(16)における冷媒循環量が減少して、蒸発器(25)における冷却能力が低下する。その結果、蒸発器(25)およびレヒート熱交換器(32)を順に通過してコンテナ(C)の庫内に吹き出される吹出空気の温度が高くなり、吹出検知温度(Tss)が高くなって第1設定温度(すなわち、庫内設定温度(Tsp))に近づく。なお、第2冷却動作において、温度制御部(101)は、圧縮機(21)の保護のために第4開閉弁(38)を開状態に設定してもよい。
    -第1および第2過冷却熱交換器における冷媒の過冷却-
 なお、冷却運転において第2開閉弁(36)が開状態に設定されている場合、第1および第2の過冷却熱交換器(60,63)において冷媒の過冷却が行われる。すなわち、冷媒回路(18)において、冷媒が次のように循環する。
 第1過冷却熱交換器(60)の第1高圧側流路(61)を通過した冷媒は、その一部が第2分岐管(86)に分流して第2開閉弁(36)を通過する一方、残りが高圧液管(81)を流れて第1開閉弁(35)を通過する。第2開閉弁(36)を通過した冷媒は、キャピラリチューブ(39)において減圧された後、第2過冷却熱交換器(63)の第2低圧側流路(65)と第1過冷却熱交換器(60)の第1低圧側流路(62)とを順に通過して圧縮機(21)の中間ポートに流入する。なお、第1過冷却熱交換器(60)では、第1高圧側流路(61)および第1低圧側流路(62)を流れる冷媒同士が熱交換して、第1高圧側流路(61)を流れる冷媒が過冷却される。
 一方、第1開閉弁(35)を通過した冷媒は、ドライヤ(42)において水分を補足された後、第2過冷却熱交換器(63)の第2高圧側流路(64)に流入する。第2過冷却熱交換器(63)では、第2高圧側流路(64)および第2低圧側流路(65)を流れる冷媒同士が熱交換して、第2高圧側流路(64)を流れる冷媒が過冷却される。第2過冷却熱交換器(63)の第2高圧側流路(64)において過冷却された冷媒は、高圧液管(81)を流れ、膨張弁(76)で減圧された後、低圧液管(82)を流れて蒸発器(25)へ送られる。
 このように、冷却運転において第2開閉弁(36)が開状態に設定されている場合、第1過冷却熱交換器(60)は、第1高圧側流路(61)を流れる冷媒と第1低圧側流路(62)を流れる冷媒とを互いに熱交換させて、第1高圧側流路(61)を流れる冷媒を過冷却する。また、第2過冷却熱交換器(63)は、第2高圧側流路(64)を流れる冷媒と第2低圧側流路(65)を流れる冷媒とを互いに熱交換させて、第2高圧側流路(64)を流れる冷媒を過冷却する。
   《除湿運転(第1除湿制御)》
 コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられると、第1除湿制御が行われ、レヒート電磁弁(70)が開状態となる。なお、第1除湿制御では、第1開閉弁(35)は開状態となっており、膨張弁(76)の開度は所定の開度となっており、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とは駆動状態となっている。
 除湿運転では、圧縮機(21)から吐出される冷媒の一部は、第2接続管(92)を流れ、レヒート電磁弁(70)を通過してレヒート熱交換器(32)へ流入(直接流入)する。一方、圧縮機(21)から吐出される冷媒の残り(すなわち、第2接続管(92)に流れ込まない冷媒)は、冷却運転と同様に、凝縮器(23)で凝縮して膨張弁(76)で膨張した後に蒸発器(25)で蒸発する。すなわち、蒸発器(25)を流れる冷媒は、蒸発器(25)を通過する空気(庫内ファン(26)によって送られる庫内空気、すなわち、吸込空気)と熱交換する。その結果、蒸発器(25)を流れる冷媒は、蒸発器(25)を通過する空気(吸込空気)から吸熱して蒸発し、蒸発器(25)を通過する空気(吸込空気)が冷却されて結露する。このため、吸込空気が除湿される。
 一方、レヒート熱交換器(32)を流れる冷媒(高圧のガス冷媒)は、レヒート熱交換器(32)を通過する空気(すなわち、蒸発器(25)において冷却除湿された空気)と熱交換する。その結果、レヒート熱交換器(32)を流れる冷媒(高圧のガス冷媒)は、レヒート熱交換器(32)を通過する空気へ放熱して凝縮し、レヒート熱交換器(32)を通過する空気が加熱される。
 このように、除湿運転では、コンテナ(C)の庫内から吸込口(51)を通過して庫内収納空間(S2)に吸い込まれた吸込空気は、蒸発器(25)において冷却除湿された後にレヒート熱交換器(32)において加熱され、吹出口(52)から吹き出されて庫内へ戻っていく。
 また、コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられると(すなわち、第1除湿制御が行われると)、目標設定部(102)は、目標温度(Tx)を庫内設定温度(Tsp)に目標加算温度を加えた第2設定温度に設定する。したがって、温度制御部(101)は、吹出検知温度(Tss)が庫内設定温度(Tsp)に目標加算温度を加えた第2設定温度となるように、第1および第2冷却動作を行う。
 吹出検知温度(Tss)が第2設定温度よりも高い場合、温度制御部(101)は、第1冷却動作を行う。これにより、蒸発器(25)における冷却能力が上昇し、その結果、蒸発器(25)およびレヒート熱交換器(32)を順に通過してコンテナ(C)の庫内に吹き出される吹出空気の温度が低くなり、吹出検知温度(Tss)が低くなって第2設定温度(すなわち、庫内設定温度(Tsp)に目標加算温度を加えた温度)に近づく。
 一方、吹出検知温度(Tss)が第2設定温度よりも低い場合、温度制御部(101)は、第2冷却動作を行う。これにより、蒸発器(25)における冷却能力が低下し、その結果、蒸発器(25)およびレヒート熱交換器(32)を順に通過してコンテナ(C)の庫内に吹き出される吹出空気の温度が高くなり、吹出検知温度(Tss)が高くなって第2設定温度(すなわち、庫内設定温度(Tsp)に目標加算温度を加えた温度)に近づく。
 このように温度制御が行われることにより、レヒート熱交換器(32)における加熱によって吹出空気の温度が上昇して吹出検知温度(Tss)が目標温度(Tx)よりも高くなったとしても、温度制御部(101)の第1冷却動作によって蒸発器(25)における冷却能力を上昇させて、吹出空気の温度を低下させることができる。これにより、除湿運転における吹出空気の温度上昇を抑制することができる。
   《第2除湿制御》
 第1除湿制御による除湿を行ってもなお、コンテナ(C)の庫内空気の除湿が不足した場合(すなわち、第1除湿制御において吸込検知湿度が目標湿度よりも高い場合)、運転制御部(105)は、第1除湿制御を終了して第2除湿制御を行う。なお、第2除湿制御では、第1開閉弁(35)とレヒート電磁弁(70)とは開状態となっており、膨張弁(76)の開度は所定の開度となっており、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とは駆動状態となっている。
 また、第2除湿制御では、目標温度(Tx)は、第2設定温度(庫内設定温度(Tsp)に目標加算温度を加えた温度)に設定されている。すなわち、温度制御部(101)は、吹出検知温度(Tss)が第2設定温度となるように第1および第2冷却動作を行う。
 また、第2除湿制御では、運転制御部(105)は、除湿負荷が大きくなるほど目標吐出圧力が高くなるように、除湿負荷に応じて目標吐出圧力を設定する。そして、運転制御部(105)は、高圧圧力センサ(111)によって検知された圧縮機(21)の吐出圧力に応じて庫外ファン(24)の発停を制御する。具体的には、高圧圧力センサ(111)によって検知された圧縮機(21)の吐出圧力が目標吐出圧力よりも低くなると、運転制御部(105)は、庫外ファン(24)を停止させる。これにより、凝縮器(23)における熱交換が阻害され、圧縮機(21)の吐出圧力が高くなる。一方、高圧圧力センサ(111)によって検知された圧縮機(21)の吐出圧力が目標吐出圧力よりも高くなると、運転制御部(105)は、庫外ファン(24)を駆動させる。これにより、凝縮器(23)における熱交換が促進され、圧縮機(21)の吐出圧力が低くなる。すなわち、目標吐出圧力が高くなるほど、圧縮機(21)の吐出圧力が高くなる。
 なお、圧縮機(21)の吐出圧力が高くなるほど、レヒート熱交換器(32)に流入する冷媒の圧力が高くなり、その結果、レヒート熱交換器(32)における加熱能力が高くなる。また、レヒート熱交換器(32)における加熱能力の上昇によって吹出空気の温度が上昇して吹出検知温度(Tss)が目標温度(Tx)よりも高くなると、温度制御部(101)は、吹出検知温度(Tss)を低下させるために第1冷却動作を行う。これにより、蒸発器(25)における冷却能力が上昇して吹出空気の温度が低下し、その結果、吹出検知温度(Tss)が低下して目標温度(Tx)に近づく。また、蒸発器(25)における冷却能力が上昇すると、蒸発器(25)において結露する水分量が増加する。すなわち、蒸発器(25)における除湿能力が上昇する。
 このように、除湿負荷に応じて目標吐出圧力を設定することにより、除湿負荷が大きくなるほど蒸発器(25)における除湿能力が高くなるように、除湿負荷に応じて蒸発器(25)における除湿能力を設定することができる。
 また、第2除湿制御では、温度制御部(101)および運転制御部(105)による冷却部(18)の制御により、吹出検知温度(Tss)が目標温度(Tx)となるようにレヒート熱交換器(32)における加熱能力の上昇とともに蒸発器(25)における冷却能力を上昇させて蒸発器(25)における除湿能力を上昇させることができる。
   《第3除湿制御》
 また、第1除湿制御において吹出検知温度(Tss)が上昇した場合、運転制御部(105)は、第1除湿制御を終了して第3除湿制御を行う。第3除湿制御では、レヒート電磁弁(70)が閉状態となる。なお、第3除湿制御では、第1開閉弁(35)は開状態となっており、膨張弁(76)の開度は所定の開度となっており、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とは駆動状態となっている。
 第3除湿制御では、圧縮機の吐出冷媒は、冷却運転と同様に、凝縮器(23)で蒸発して膨張弁(76)で膨張した後に蒸発器(25)で蒸発する。すなわち、蒸発器(25)を通過する空気(吸込空気)は、蒸発器(25)を流れる冷媒と熱交換して冷却されて結露する。このように、コンテナ(C)の庫内から吸い込まれた吸込空気は、蒸発器(25)において冷却除湿される。
 また、第3除湿制御では、目標設定部(102)は、目標温度(Tx)を庫内設定温度(Tsp)と同一の第1設定温度に設定する。したがって、温度制御部(101)は、吹出検知温度(Tss)が第1設定温度となるように第1および第2冷却動作を行う。
  〈冷却運転から除湿運転への切り換えに伴う吹出空気の温度変化〉
 なお、除湿運転では、加熱装置(17)(この例では、レヒート熱交換器(32))を通過する空気が均一に加熱されない場合がある。例えば、レヒート熱交換器(32)の伝熱管(庫内幅方向に延びる伝熱管)内における冷媒の温度差によってレヒート熱交換器(32)から吹き出される吹出空気に温度ムラが発生してしまう。このような場合、冷却運転から除湿運転に切り換えられると、吹出温度センサ(34)によって庫内幅方向における吹出空気の最低温度を正確に検知することが困難となる。例えば、図9に示すように、コンテナ(C)の庫内幅方向の中央部に吹出温度センサ(34)が設けられている場合に、庫内幅方向の中央部ではなく庫内幅方向の中央部よりもやや端部よりの部分において吹出空気が最低温度となっている場合、吹出温度センサ(34)によって検知される吹出空気の温度(すなわち、吹出検知温度(Tss))は、庫内幅方向における吹出空気の実際の最低温度よりも高くなってしまう。
 一方、実施形態1によるコンテナ用冷凍装置(10)では、冷却運転から除湿運転に切り換えられた場合に、目標温度(Tx)が庫内設定温度よりも高い第2設定温度(すなわち、庫内設定温度(Tsp)に目標加算温度を加えた温度)に設定されるので、コンテナ(C)の庫内に吹き出される吹出空気の温度を全体的に高くすることができる。これにより、加熱装置(17)を通過する空気がコンテナ(C)の庫内幅方向において均一に加熱されない場合であっても、コンテナ(C)の庫内幅方向における吹出空気の最低温度が庫内設定温度(Tsp)よりも低くなることを抑制することができる。
  〈第1補正部による目標温度の補正〉
 次に、第1補正部(103)による目標温度(Tx)の補正について説明する。上述のように、第1補正部(103)は、吸込温度センサ(33)によって検知された吸込空気の温度(すなわち、吸込検知温度(Trs))を監視し、コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が目標温度(Tx)よりも高くなると目標温度(Tx)を低くする一方、吸込検知温度(Trs)が吸込基準温度よりも低くなると目標温度(Tx)を高くする。
 なお、蒸発器(25)および加熱装置(17)からコンテナ(C)の庫内に吹き出された空気は、コンテナ(C)の庫内を循環して再び蒸発器(25)に吸い込まれる。そのため、コンテナ(C)の庫内から吸い込まれる吸込空気は、コンテナ(C)の庫内に吹き出される吹出空気よりもコンテナ(C)の庫内幅方向における温度ムラが小さくなっている。また、吸込検知温度(Trs)の変化は、コンテナ(C)の庫内温度の変化に依存している。具体的には、コンテナ(C)の庫内温度が高くなると、吸込空気の温度が高くなって吸込検知温度(Trs)が高くなる。一方、コンテナ(C)の庫内温度が低くなると、吸込空気の温度が低くなって吸込検知温度(Trs)が低くなる。したがって、冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が吸込基準温度(この例では、吸込安定温度(Trs'))よりも高くなった場合には、コンテナ(C)の庫内温度が高くなったと判断することができ、吸込検知温度(Trs)が吸込基準温度よりも低くなった場合には、コンテナ(C)の庫内温度が低くなったと判断することができる。
 そして、実施形態1によるコンテナ用冷凍装置(10)では、上述のように、第1補正部(103)は、冷却運転から除湿運転への切り換え前後における吸込検知温度(Trs)の変化に応じて目標温度(Tx)を補正する。すなわち、冷却運転から除湿運転への切り換え前後においてコンテナ(C)の庫内温度が上昇して吸込検知温度(Trs)が吸込基準温度(この例では、吸込安定温度(Trs'))よりも高くなると、第1補正部(103)は、目標温度(Tx)を低くする。これにより、吹出空気の温度を低下させることができ、その結果、コンテナ(C)の庫内温度を低下させることができる。一方、冷却運転から除湿運転への切り換え前後においてコンテナ(C)の庫内温度が低下して吸込検知温度(Trs)が吸込基準温度よりも低くなると、第1補正部(103)は、目標温度(Tx)を高くする。これにより、吹出空気の温度を上昇させることができ、その結果、コンテナ(C)の庫内温度を上昇させることができる。
 このように、冷却運転から除湿運転への切り換え前後における吸込検知温度(Trs)の変化に応じて吹出空気の温度を制御することにより、冷却運転から除湿運転への切り換えに伴うコンテナ(C)の庫内温度の変化を抑制することができる。
  〈第2補正部による目標温度の補正〉
 次に、第2補正部(104)による目標温度の補正について説明する。上述のように、この例では、第2補正部(104)は、除湿運転(具体的には、第2除湿制御)において高圧圧力センサ(111)によって検知された圧縮機(21)の吐出圧力を監視し、圧縮機(21)の吐出圧力が高くなるほど目標温度(Tx)が高くなるように、圧縮機(21)の吐出圧力に応じて目標温度(Tx)を補正する。
 なお、蒸発器(25)における除湿能力は、圧縮機(21)の吐出圧力に依存している。すなわち、圧縮機(21)の吐出圧力が高くなると、レヒート熱交換器(32)に流入する冷媒の圧力が高くなり、その結果、レヒート熱交換器(32)における加熱能力が上昇する。また、レヒート熱交換器(32)における加熱能力の上昇により、吹出空気の温度が高くなって吹出検知温度(Tss)が目標温度(Tx)よりが高くなる。そして、温度制御部(101)は、吹出検知温度(Tss)が低くなるように冷却部(18)を制御して蒸発器(25)における冷却能力を上昇させる。これにより、蒸発器(25)における除湿能力が上昇する。
 このように、蒸発器(25)における除湿能力が圧縮機(21)の吐出圧力に依存しているので、圧縮機(21)の吐出圧力に応じて目標温度(Tx)を補正することにより、蒸発器(25)における除湿能力が高くなるほど目標温度(Tx)が高くなるように目標温度(Tx)を補正することができる。
 また、除湿運転では、蒸発器(25)において空気が冷却されて結露することにより空気が除湿される。すなわち、除湿運転において、蒸発器(25)における除湿能力(冷却能力)が高くなるほど、吹出空気の温度が下がりやすくなる傾向にある。
 そして、実施形態1によるコンテナ用冷凍装置(10)では、上述のように、第2補正部(104)は、除湿運転において蒸発器(25)における除湿能力が高くなるほど目標温度(Tx)が高くなるように、蒸発器(25)における除湿能力に応じて目標温度(Tx)を補正する。これにより、除湿運転において吹出空気の温度が下がりやすくなった場合に吹出空気の温度を高くすることができる。
  〈実施形態1による効果〉
 以上のように、実施形態1によるコンテナ用冷凍装置(10)では、冷却運転から除湿運転に切り換えられた場合、目標温度(Tx)が庫内設定温度(Tsp)よりも高い第2設定温度(すなわち、庫内設定温度(Tsp)に目標補正温度を加えた温度)に設定することにより、加熱装置(17)(この例では、レヒート熱交換器(32))を通過する空気がコンテナ(C)の庫内幅方向において均一に加熱されない場合であっても、コンテナ(C)の庫内幅方向における吹出空気の最低温度が庫内設定温度(Tsp)よりも低くなることを抑制することができる。これにより、コンテナ(C)の積荷の低温障害を防止することができる。
 また、冷却運転から除湿運転への切り換え後における吸込検知温度(Trs)の変化(具体的には、吸込検知温度(Trs)と吸込安定温度(Trs')との比較の結果)に応じて目標温度(Tx)を補正することにより、冷却運転から除湿運転への切り換えに伴うコンテナ(C)の庫内温度の変化を抑制することができる。これにより、除湿運転においてコンテナ(C)の積荷の低温障害を防止しつつコンテナ(C)の庫内温度の上昇も防止することができる。
 また、吸込検知温度(Trs)の変化を判定するための吸込基準温度を吸込安定温度(Trs')に設定することにより、吸込安定温度(Trs')を基準として、冷却運転から除湿運転への切り換え前後におけるコンテナ(C)の庫内温度の変化に起因して吸込検知温度(Trs)が変化したか否かを判定することができる。
 また、除湿運転(具体的には、第2除湿制御)において蒸発器(25)における除湿能力に応じて目標温度(Tx)を補正することにより、除湿運転において吹出空気の温度が下がりやすくなった場合に、吹出空気の温度を高くすることができる。これにより、蒸発器(25)における除湿能力の上昇に伴うコンテナ(C)の庫内温度の低下を抑制することができる。
 また、目標温度(Tx)の下限を庫内設定温度(Tsp)に設定することにより、吹出空気の過剰な温度低下を防止することができる。これにより、コンテナ(C)の庫内温度が過剰に低下することを防止することができるので、除湿運転におけるコンテナ(C)の積荷の低温障害を確実に防止することができる。
 また、実施形態1によるコンテナ用冷凍装置(10)では、除湿運転(具体的には、第1除湿制御)において、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿してレヒート熱交換器(32)において加熱することができる。これにより、コンテナ(C)の庫内温度の低下を抑制しつつ、コンテナ(C)の庫内空気を除湿することができる。
 また、実施形態1によるコンテナ用冷凍装置では、除湿運転(具体的には、第2除湿制御)において、吹出検知温度(Tss)が目標温度(Tx)となるようにレヒート熱交換器(32)における加熱能力の上昇とともに蒸発器(25)における冷却能力を上昇させて蒸発器(25)における除湿能力を上昇させることができるので、コンテナ(C)の庫内温度の変化を抑制しつつ、蒸発器(25)における除湿能力を上昇させることができる。
  〈運転制御部の変形例〉
 なお、運転制御部(105)は、蒸発器(25)における過熱度を監視し、蒸発器(25)における過熱度が予め定められた目標過熱度となるように、冷却部(18)の膨張弁(76)の開度を制御するように構成されていてもよい。具体的には、運転制御部(105)は、蒸発器(25)における過熱度が目標過熱度よりも低い場合には、膨張弁(76)の開度を小さくして蒸発器(25)における過熱度を高くし、蒸発器(25)における過熱度が目標過熱度よりも高い場合には、膨張弁(76)の開度を大きくして蒸発器(25)における過熱度を低くしてもよい。
 さらに、運転制御部(105)は、第2除湿制御において、圧縮機(21)の吐出圧力が最大値(限界値)となっている場合に、次のような動作を行うことによって蒸発器(25)における除湿能力を上昇させてもよい。すなわち、運転制御部(105)は、第2除湿制御において、除湿負荷を監視し、除湿負荷が大きくなるほど目標過熱度が高くなるように、除湿負荷に応じて目標過熱度を設定するように構成されていてもよい。例えば、運転制御部(105)は、除湿負荷が大きくなるのに伴って、目標過熱度を「2℃」「5℃」「8℃」「11℃」「14℃」の順で段階的に高くしてもよい。
 蒸発器(25)における過熱度が高くなると、圧縮機(21)の吸入圧力が低くなって蒸発器(25)における出口蒸発温度が低くなる。これにより、蒸発器(25)において結露する水分量が増加する。なお、圧縮機(21)の吸入圧力が低くなると、蒸発器(25)を流れる冷媒の比体積が大きくなって冷媒回路(16)における冷媒循環量が減少し、その結果、蒸発器(25)における冷却能力が低下して吹出空気の温度が上昇する。そして、吹出空気の温度が上昇して吹出検知温度(Tss)が目標温度(Tx)よりも高くなると、温度制御部(101)は、第1冷却動作(具体的には、吸入比例弁(66)の開度を大きくして冷媒回路(16)における冷媒循環量を増加させる動作)を行う。これにより、蒸発器(25)における冷却能力が上昇して吹出空気の温度が低下し、その結果、吹出検知温度(Tss)が低下して目標温度(Tx)に近づく。
 このように、除湿負荷に応じて目標過熱度を設定することにより、除湿負荷が大きくなるほど蒸発器(25)における除湿能力が高くなるように、除湿負荷に応じて蒸発器(25)における除湿能力を設定することができる。
 また、温度制御部(101)および運転制御部(105)による冷却部(18)の制御により、吹出検知温度(Tss)が目標温度(Tx)となるように蒸発器(25)における出口蒸発温度の低下とともに冷媒回路(16)における冷媒循環量を増加させることができるので、コンテナ(C)の庫内温度の変化を抑制しつつ、蒸発器(25)における除湿能力を上昇させることができる。
 〔実施形態2〕
 次に、実施形態2によるコンテナ用冷凍装置(10)について説明する。実施形態2によるコンテナ用冷凍装置(10)では、吸込基準温度は、吸込安定温度(Trs')ではなく、庫内設定温度(Tsp)に予め定められた吸込加算温度を加えた吸込設定温度(すなわち、コンテナ(C)の庫内温度の設定値(庫内設定温度(Tsp))に基づく値)に設定される。すなわち、第1補正部(103)は、冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が吸込設定温度よりも高くなると目標温度(Tx)を低くする一方、吸込検知温度(Trs)が吸込設定温度よりも低くなると目標温度(Tx)を高くする。その他の構成は、実施形態1によるコンテナ用冷凍装置(10)と同様である。
 なお、吸込基準温度として、二種類の吸込基準温度(第1および第2吸込基準温度)が設けられていてもよい。すなわち、吸込検知温度(Trs)の上昇を判定するための第1吸込基準温度と、吸込検知温度(Trs)の低下を判定するための第2吸込基準温度とが設けられていてもよい。例えば、第1吸込基準温度は、庫内設定温度(Tsp)に第1吸込加算温度(例えば、+3.0℃)を加えた第1吸込設定温度に設定され、第2吸込基準温度は、庫内設定温度(Tsp)に第2吸込加算温度(第1吸込加算温度よりも低い温度、例えば、+0.5℃)を加えた第2吸込設定温度に設定されていてもよい。
 例えば、第1吸込基準温度が庫内設定温度(Tsp)に第1吸込加算温度(+3.0℃)を加えた第1吸込設定温度(すなわち、「Tsp+3.0℃」)に設定され、第2吸込基準温度が庫内設定温度(Tsp)に第2吸込加算温度(+0.5℃)を加えた第2吸込設定温度(すなわち、「Tsp+0.5℃」)に設定され、補正前の目標温度(Tx)が庫内設定温度(Tsp)に目標加算温度(+0.6℃)を加えた第2設定温度(すなわち、Tsp+0.6℃)に設定され、負の値を示す第1補正温度(Y)が「-0.2℃」に設定され、正の値を示す第1補正温度(Y)が「+0.2℃」に設定されているとすると、第1補正部(103)は、次のように目標温度(Tx)を補正する。
 すなわち、冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が第1吸込基準温度(Tsp+3.0℃)よりも高くなった場合、第1補正部(103)は、目標温度(Tx)に負の値を示す第1補正温度(-0.2℃)を加算する。これにより、目標温度(Tx)は「Tsp+0.6℃-0.2℃」となる。そして、この補正によっても除湿運転に切り換えられた後の吸込検知温度(Trs)が第1吸込基準温度(Tsp+3.0℃)よりも高くなっている場合、第1補正部(103)は、補正後の目標温度(Tx)に負の値を示す第1補正温度(-0.2℃)をさらに加算する。これにより、目標温度(Tx)は「Tsp+0.6-(0.2℃×2)」となる。
 一方、冷却運転から除湿運転に切り換えられた後に、吸込検知温度(Trs)が第2吸込基準温度(Tsp+0.5℃)よりも低くなった場合、第1補正部(103)は、目標温度(Tx)に正の値を示す第1補正温度(+0.2℃)を加算する。これにより、目標温度(Tx)は「Tsp+0.6℃+0.2℃」となる。そして、この補正によっても除湿運転に切り換えられた後の吸込検知温度(Trs)が第2吸込基準温度(Tsp+0.5℃)よりも低くなっている場合、第1補正部(103)は、補正後の目標温度(Tx)に正の値を示す第1補正温度(+0.2℃)をさらに加算する。これにより、目標温度(Tx)は「Tsp+0.6+(0.2℃×2)」となる。
  〈実施形態2による効果〉
 以上のように、吸込検知温度(Trs)の変化を判定するための吸込基準温度を、吸込設定温度(すなわち、庫内設定温度(Tsp)に吸込加算温度を加えた温度)に設定することにより、吸込設定温度を基準として、冷却運転から除湿運転への切り換え後におけるコンテナ(C)の庫内温度の変化に起因して吸込検知温度(Trs)が変化したか否かを判定することができる。
 なお、実施形態2のコンテナ用冷凍装置(10)によるその他の作用・効果は、実施形態1のコンテナ用冷凍装置(10)による作用・効果と同様である。
 〔実施形態3〕
 次に、実施形態3によるコンテナ用冷凍装置(10)について説明する。実施形態3によるコンテナ用冷凍装置(10)では、加熱装置(17)は、レヒート熱交換器(32)ではなく、電気ヒータ(78)によって構成されている。また、冷媒回路(16)から、レヒート熱交換器(32)に関連する構成(具体的には、第1分岐管(85)と第2接続管(92)とレヒート電磁弁(70)とレヒート熱交換器(32))と、ドレンパンヒータ(77)に関連する構成(具体的には、第1および第3接続管(91,93)とヒータ電磁弁(71)とドレンパンヒータ(77))とが省略されている。その他の構成は、実施形態1によるコンテナ用冷凍装置(10)の構成と同様である。
  〈電気ヒータ〉
 電気ヒータ(78)は、コントローラ(100)による制御に応答してその加熱容量を変更可能に構成されている。また、電気ヒータ(78)は、コンテナ(C)の庫内から吸い込まれた吸込空気の流れ方向において蒸発器(25)の下流側に設けられ、蒸発器(25)と略平行となるようにコンテナ(C)の庫内幅方向に延びている。
  〈運転制御部〉
 この例では、運転制御部(105)は、冷却運転および除湿運転(具体的には、第1~第3除湿運転)において電気ヒータ(78)を次のように制御する。なお、運転制御部(105)による運転モードの切り換えた第1~第3除湿制御の切り換え動作は、実施形態1と同様である。
   《冷却運転における制御》
 冷却運転では、運転制御部(105)は、電気ヒータ(78)を停止させる。なお、冷却運転では、運転制御部(105)は、実施形態1と同様に、第1開閉弁(35)を開状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。
   《第1除湿制御》
 第1除湿制御では、運転制御部(105)は、電気ヒータ(78)を駆動させる。なお、第1除湿制御では、運転制御部(105)は、実施形態1と同様に、第1開閉弁(35)を開状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。
   《第2除湿制御》
 第2除湿制御では、運転制御部(105)は、第1除湿制御と同様に、電気ヒータ(78)を駆動させ、第1開閉弁(35)を開状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。さらに、第2除湿制御では、運転制御部(105)は、除湿負荷を監視し、除湿負荷が大きくなるほど電気ヒータ(78)の加熱容量が大きくなるように、除湿負荷に応じて電気ヒータ(78)の加熱容量を設定する。なお、第2除湿制御における電気ヒータ(78)の加熱容量(可変値)の最低値は、第1除湿制御における電気ヒータ(78)の加熱容量(一定値)よりも高くなっている。
   《第3除湿制御》
 第3除湿制御では、運転制御部(105)は、電気ヒータ(78)を停止させる。なお、第3除湿制御では、運転制御部(105)は、実施形態1と同様に、第1開閉弁(35)を開状態に設定し、膨張弁(76)の開度を所定の開度に設定し、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とを駆動状態に設定する。
  〈コンテナ用冷凍装置の運転動作〉
 次に、実施形態3のコンテナ用冷凍装置(10)による冷却運転および除湿運転について説明する。なお、第1および第2補正部(103,104)による目標温度(Tx)の補正は、実施形態1と同様である。また、以下では、説明の簡略化のために、第2開閉弁(36)と第3開閉弁(37)と第4開閉弁(38)とヒータ電磁弁(71)が閉状態に設定されているものとする。
   《冷却運転》
 冷却運転では、電気ヒータ(78)が停止し、第1開閉弁(35)が開状態となり、膨張弁(76)の開度が所定の開度となる。また、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とが駆動状態となる。これにより、冷却運転では、コンテナ(C)の庫内から吸込口(51)を通過して庫内収納空間(S2)に吸い込まれた吸込空気は、蒸発器(25)において冷却された後に停止中の電気ヒータ(78)を通過して吹出口(52)から吹き出されて庫内へ戻っていく。
 また、実施形態1と同様に、冷却運転では、目標制御部(201)は、目標温度(Tx)を庫内設定温度(Tsp)と同一の第1設定温度に設定する。したがって、温度制御部(101)は、吹出検知温度(Tss)が庫内設定温度(Tsp)と同一の第1設定温度となるように、第1および第2冷却動作を行う。
   《除湿運転(第1除湿制御)》
 コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられると、第1除湿制御が行われ、電気ヒータ(78)が駆動する。なお、第1除湿制御では、第1開閉弁(35)は開状態となっており、膨張弁(76)の開度は所定の開度となっており、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とは駆動状態となっている。
 除湿運転では、圧縮機(21)から吐出された冷媒は、冷却運転と同様に、凝縮器(23)で凝縮して膨張弁(76)で膨張した後に蒸発器(25)で蒸発する。すなわち、蒸発器(25)を流れる冷媒は、蒸発器(25)を通過する空気(庫内ファン(26)によって送られる庫内空気、すなわち、吸込空気)と熱交換する。その結果、蒸発器(25)を流れる冷媒は、蒸発器(25)を通過する空気(吸込空気)から吸熱して蒸発し、蒸発器(25)を通過する空気(吸込空気)が冷却されて結露する。このため、吸込空気が除湿される。一方、電気ヒータ(78)を通過する空気(すなわち、蒸発器(25)において冷却除湿された空気)は、電気ヒータ(78)によって加熱される。
 このように、除湿運転では、コンテナ(C)の庫内から吸込口(51)を通過して庫内収納空間(S2)に吸い込まれた吸込空気は、蒸発器(25)において冷却除湿された後に電気ヒータ(78)において加熱され、吹出口(52)から吹き出されて庫内へ戻っていく。
 また、コンテナ用冷凍装置(10)の運転モードが冷却運転から除湿運転に切り換えられると(すなわち、第1除湿制御が行われると)、目標設定部(102)は、目標温度(Tx)を庫内設定温度(Tsp)に目標加算温度を加えた第2設定温度に設定する。したがって、温度制御部(101)は、吹出検知温度(Tss)が庫内設定温度(Tsp)に目標加算温度を加えた第2設定温度となるように、第1および第2冷却動作を行う。
 このように温度制御が行われることにより、電気ヒータ(78)による加熱によって吹出空気の温度が上昇して吹出検知温度(Tss)が目標温度(Tx)よりも高くなったとしても、温度制御部(101)の第1冷却動作によって蒸発器(25)における冷却能力を上昇させて、吹出空気の温度を低下させることができる。これにより、除湿運転における吹出空気の温度上昇を抑制することができる。
   《第2除湿制御》
 第1除湿制御による除湿を行ってもなお、コンテナ(C)の庫内空気の除湿が不足した場合(すなわち、第1除湿制御において吸込検知湿度が目標湿度よりも高い場合)、運転制御部(105)は、第1除湿制御を終了して第2除湿制御を行う。なお、第2除湿制御では、電気ヒータ(78)が駆動し、第1開閉弁(35)は開状態となっており、膨張弁(76)の開度は所定の開度となっており、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とは駆動状態となっている。
 また、第2除湿制御では、目標温度(Tx)は、第2設定温度(庫内設定温度(Tsp)に目標加算温度を加えた温度)に設定されている。すなわち、温度制御部(101)は、吹出検知温度(Tss)が第2設定温度となるように第1および第2冷却動作を行う。
 また、第2除湿制御では、運転制御部(105)は、除湿負荷が大きくなるほど電気ヒータ(78)の加熱容量が大きくなるように、除湿負荷に応じて電気ヒータ(78)の加熱容量を設定する。なお、電気ヒータ(78)の加熱容量が大きくなるほど、電気ヒータ(78)における加熱能力が高くなる。また、電気ヒータ(78)における加熱能力の上昇によって吹出空気の温度が上昇して吹出検知温度(Tss)が目標温度(Tx)よりも高くなると、温度制御部(101)は、吹出検知温度(Tss)を低下させるために第1冷却動作を行う。これにより、蒸発器(25)における冷却能力が上昇して吹出空気の温度が低下し、その結果、吹出検知温度(Tss)が低下して目標温度(Tx)に近づく。また、蒸発器(25)における冷却能力が上昇すると、蒸発器(25)において結露する水分量が増加する。すなわち、蒸発器(25)における除湿能力が上昇する。
 このように、除湿負荷に応じて電気ヒータ(78)の加熱容量を設定することにより、除湿負荷が大きくなるほど蒸発器(25)における除湿能力が高くなるように、除湿負荷に応じて蒸発器(25)における除湿能力を設定することができる。
 また、第2除湿制御では、温度制御部(101)および運転制御部(105)による冷却部(18)の制御によって、吹出検知温度(Tss)が目標温度(Tx)となるように電気ヒータ(78)における加熱能力の上昇とともに蒸発器(25)における冷却能力を上昇させて蒸発器(25)における除湿能力を上昇させることができる。
   《第3除湿制御》
 また、第1除湿制御において吹出検知温度(Tss)が上昇した場合、運転制御部(105)は、第1除湿制御を終了して第3除湿制御を行う。第3除湿制御では、電気ヒータ(78)が停止する。なお、第3除湿制御では、第1開閉弁(35)は開状態となっており、膨張弁(76)の開度は所定の開度となっており、圧縮機(21)と庫外ファン(24)と庫内ファン(26)とは駆動状態となっている。
 第3除湿制御では、圧縮機の吐出冷媒は、冷却運転と同様に、凝縮器(23)で蒸発して膨張弁(76)で膨張した後に蒸発器(25)で蒸発する。すなわち、蒸発器(25)を通過する空気(吸込空気)は、蒸発器(25)を流れる冷媒と熱交換して冷却されて結露する。このように、コンテナ(C)の庫内から吸い込まれた吸込空気は、蒸発器(25)において冷却除湿される。
 また、第3除湿制御では、目標設定部(102)は、目標温度(Tx)を庫内設定温度(Tsp)と同一の第1設定温度に設定する。したがって、温度制御部(101)は、吹出検知温度(Tss)が第1設定温度となるように第1および第2冷却動作を行う。
  〈実施形態3による効果〉
 以上のように、実施形態3によるコンテナ用冷凍装置(10)では、冷却運転から除湿運転に切り換えられた場合、目標温度(Tx)が庫内設定温度(Tsp)よりも高い第2設定温度(すなわち、庫内設定温度(Tsp)に目標補正温度を加えた温度)に設定することにより、加熱装置(17)(この例では、電気ヒータ(78))を通過する空気がコンテナ(C)の庫内幅方向において均一に加熱されない場合であっても、コンテナ(C)の庫内幅方向における吹出空気の最低温度が庫内設定温度(Tsp)よりも低くなることを抑制することができる。これにより、コンテナ(C)の積荷の低温障害を防止することができる。
 また、実施形態3によるコンテナ用冷凍装置(10)では、除湿運転(具体的には、第1除湿制御)において、コンテナ(C)の庫内から吸い込まれた吸込空気を、蒸発器(25)において冷却除湿して電気ヒータ(78)において加熱することができるので、コンテナ(C)の庫内温度の低下を抑制しつつ、コンテナ(C)の庫内空気を除湿することができる。
 また、実施形態3によるコンテナ用冷凍装置では、除湿運転(具体的には、第2除湿制御)において、吹出検知温度(Tss)が目標温度(Tx)となるように電気ヒータ(78)における加熱能力の上昇とともに蒸発器(25)における冷却能力を上昇させて蒸発器(25)における除湿能力を上昇させることができるので、コンテナ(C)の庫内温度の変化を抑制しつつ、蒸発器(25)における除湿能力を上昇させることができる。
 なお、実施形態3のコンテナ用冷凍装置(10)によるその他の作用・効果は、実施形態1のコンテナ用冷凍装置(10)による作用・効果と同様である。
 〔その他の実施形態〕
 以上の説明において、圧縮機(21)の回転数(具体的には、圧縮機モータの回転数)が一定速となっている場合を例に挙げたが、圧縮機(21)は、コントローラ(100)による制御に応答してその回転数を変更可能に構成されていてもよい。この場合、温度制御部(101)は、吹出検知温度(Tss)が目標温度(Tx)となるように圧縮機(21)の回転数を制御するように構成されていてもよい。具体的には、温度制御部(101)は、第1冷却動作において圧縮機(21)の回転数を上昇させる。これにより、冷媒回路(16)における冷媒循環量を増加させて蒸発器(25)における冷却能力を上昇させることができる。また、温度制御部(101)は、第2冷却動作において圧縮機(21)の回転数を低下させる。これにより、冷媒回路(16)における冷媒循環量を減少させて蒸発器(25)における冷却能力を低下させることができる。
 なお、以上の実施形態を適宜組み合わせて実施してもよい。以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、コンテナ用冷凍装置について有用である。
16     冷媒回路
17     加熱装置
18     冷却部
21     圧縮機
23     凝縮器
25     蒸発器
32     レヒート熱交換器
33     吸込温度センサ
34     吹出温度センサ
53     湿度センサ
76     膨張弁(膨張機構)
78     電気ヒータ
101    温度制御部
102    目標設定部
103    第1補正部
104    第2補正部
105    運転制御部
201    目標制御部

Claims (9)

  1.  圧縮機(21)と凝縮器(23)と膨張機構(76)と蒸発器(25)とが順に接続されて冷媒が循環する冷媒回路(16)と、コンテナ(C)の庫内から吸い込まれた吸込空気の流れ方向において上記蒸発器(25)の下流側に設けられた加熱装置(17)とを有し、該吸込空気が該蒸発器(25)および該加熱装置(17)を順に通過して該コンテナ(C)の庫内に吹き出される冷却部(18)を備え、上記加熱装置(17)を停止させて上記吸込空気を上記蒸発器(25)において冷却する冷却運転と、上記吸込空気を上記蒸発器(25)において冷却除湿して上記加熱装置(17)において加熱する除湿運転とを行うコンテナ用冷凍装置であって、
     上記蒸発器(25)および上記加熱装置(17)を順に通過して上記コンテナ(C)の庫内に吹き出される吹出空気の温度を検知する吹出温度センサ(34)と、
     上記冷却運転および上記除湿運転において、上記吹出温度センサ(34)によって検知された吹出空気の温度である吹出検知温度(Tss)が予め定められた目標温度(Tx)となるように上記冷却部(18)を制御する温度制御部(101)と、
     上記冷却運転において上記目標温度(Tx)を上記コンテナ(C)の庫内温度に対して予め定められた庫内設定温度(Tsp)と同一の第1設定温度に設定する一方、該冷却運転から上記除湿運転に切り換えられた場合に、該目標温度(Tx)を該庫内設定温度(Tsp)に予め定められた目標加算温度を加えた第2設定温度に設定する目標制御部(201)とを備えている
    ことを特徴とするコンテナ用冷凍装置。
  2.  請求項1において、
     上記吸込空気の温度を検知する吸込温度センサ(33)をさらに備え、
     上記目標制御部(201)は、上記冷却運転から上記除湿運転に切り換えられた後に、上記吸込温度センサ(33)によって検知された吸込空気の温度である吸込検知温度(Trs)が予め定められた吸込基準温度よりも高くなると上記目標温度(Tx)を低くする一方、該吸込検知温度(Trs)が該吸込基準温度よりも低くなると該目標温度(Tx)を高くする
    ことを特徴とするコンテナ用冷凍装置。
  3.  請求項2において、
     上記吸込基準温度は、上記冷却運転が安定状態となっている場合において上記吸込温度センサ(33)によって検知された吸込空気の温度である吸込安定温度(Trs')、または、上記庫内設定温度(Tsp)に予め定められた吸込加算温度を加えた吸込設定温度に設定されている
    ことを特徴とするコンテナ用冷凍装置。
  4.  請求項1~3の何れか1つにおいて、
     上記目標制御部(201)は、上記除湿運転において上記蒸発器(25)における除湿能力が高くなるほど上記目標温度(Tx)が高くなるように、該蒸発器(25)における除湿能力に応じて該目標温度(Tx)を補正する
    ことを特徴とするコンテナ用冷凍装置。
  5.  請求項2~4の何れか1つにおいて、
     上記目標制御部(201)は、上記目標温度(Tx)が上記庫内設定温度(Tsp)以上となるように該目標温度(Tx)を補正する
    ことを特徴とするコンテナ用冷凍装置。
  6.  請求項1~5の何れか1つにおいて、
     上記加熱装置(17)は、上記除湿運転において上記圧縮機(21)の吐出冷媒の一部が流入するレヒート熱交換器(32)によって構成されている
    ことを特徴とするコンテナ用冷凍装置。
  7.  請求項6において、
     上記除湿運転において、上記レヒート熱交換器(32)に上記圧縮機(21)の吐出冷媒の一部を流入させる第1除湿制御と、該レヒート熱交換器(32)に該圧縮機(21)の吐出冷媒の一部を流入させた状態で該圧縮機(21)の吐出圧力が該第1除湿制御における吐出圧力よりも高くなるように上記冷却部(18)を制御する第2除湿制御とを行う運転制御部(105)をさらに備えている
    ことを特徴とするコンテナ用冷凍装置。
  8.  請求項1~5の何れか1つにおいて、
     上記加熱装置(17)は、電気ヒータ(78)によって構成されている
    ことを特徴とするコンテナ用冷凍装置。
  9.  請求項8において、
     上記除湿運転において、上記電気ヒータ(78)を駆動させる第1除湿制御と、該電気ヒータ(78)を駆動させた状態で該電気ヒータ(78)の加熱容量を該第1除湿制御における加熱容量よりも高くする第2除湿制御とを行う運転制御部(105)をさらに備えている
    ことを特徴とするコンテナ用冷凍装置。
PCT/JP2013/006892 2012-11-22 2013-11-22 コンテナ用冷凍装置 WO2014080637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380061070.1A CN104813124B (zh) 2012-11-22 2013-11-22 集装箱用冷冻装置
US14/646,653 US20150338135A1 (en) 2012-11-22 2013-11-22 Refrigeration device for container
EP13856262.4A EP2924376B1 (en) 2012-11-22 2013-11-22 Refrigeration device for container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012256856 2012-11-22
JP2012-256856 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080637A1 true WO2014080637A1 (ja) 2014-05-30

Family

ID=50775832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006892 WO2014080637A1 (ja) 2012-11-22 2013-11-22 コンテナ用冷凍装置

Country Status (4)

Country Link
US (1) US20150338135A1 (ja)
EP (1) EP2924376B1 (ja)
JP (1) JP5664741B2 (ja)
WO (1) WO2014080637A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613665A (zh) * 2015-02-02 2015-05-13 珠海格力电器股份有限公司 热泵空调系统
US10703174B2 (en) 2015-11-30 2020-07-07 Thermo King Corporation Device and method for controlling operation of transport refrigeration unit
KR102395456B1 (ko) 2016-06-09 2022-05-06 엘지전자 주식회사 온도 상황 인식적 냉장고 및 이를 제어하는 방법
SE541965C2 (en) * 2016-07-12 2020-01-14 Es Energy Save Holding Ab Heat pump apparatus module
KR20210087161A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087158A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 물품 보관 시스템
KR20210087152A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087151A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087155A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고
KR20210087150A (ko) * 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 냉장고 및 그 제어 방법
KR20210087153A (ko) 2020-01-02 2021-07-12 엘지전자 주식회사 현관용 물품 보관 시스템
CN114034157B (zh) * 2021-11-26 2022-11-11 澳柯玛股份有限公司 一种可冷热转换的风冷立式透明门储藏箱
US20230382196A1 (en) * 2022-05-31 2023-11-30 Thermo King Llc Time-based pulldown and pullup using trajectory tracking and box parameter learning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988315U (ja) * 1982-12-08 1984-06-15 東洋サ−モコントロ−ル株式会社 車載用除湿装置
JPH063769A (ja) 1992-06-24 1994-01-14 Fuji Photo Film Co Ltd 写真印画紙用支持体
JPH0640845U (ja) * 1992-11-06 1994-05-31 タバイエスペック株式会社 温度雰囲気発生装置
JPH09189477A (ja) * 1996-01-06 1997-07-22 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH1151544A (ja) * 1997-08-05 1999-02-26 Daikin Ind Ltd 冷凍コンテナ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286642A (ja) * 1987-05-19 1988-11-24 Toshiba Corp 空気調和機
JP2586599B2 (ja) * 1988-09-22 1997-03-05 ダイキン工業株式会社 空気調和機
US4918932A (en) * 1989-05-24 1990-04-24 Thermo King Corporation Method of controlling the capacity of a transport refrigeration system
US5088295A (en) * 1990-07-30 1992-02-18 Carrier Corporation Air conditioner with dehumidification mode
US5782102A (en) * 1992-04-24 1998-07-21 Nippondenso Co., Ltd. Automotive air conditioner having condenser and evaporator provided within air duct
JPH07294071A (ja) * 1994-04-22 1995-11-10 Nippondenso Co Ltd 自動車用空気調和装置
JPH09300951A (ja) * 1996-05-13 1997-11-25 Matsushita Electric Ind Co Ltd 電気自動車用空調制御装置
JPH1163769A (ja) * 1997-08-12 1999-03-05 Daikin Ind Ltd 冷凍コンテナ用冷凍装置
US6347528B1 (en) * 1999-07-26 2002-02-19 Denso Corporation Refrigeration-cycle device
US6293116B1 (en) * 2000-04-10 2001-09-25 Delphi Technologies, Inc. Humidity control method for a variable capacity vehicle climate control system
US6427461B1 (en) * 2000-05-08 2002-08-06 Lennox Industries Inc. Space conditioning system with outdoor air and refrigerant heat control of dehumidification of an enclosed space
WO2003006890A1 (en) * 2001-07-13 2003-01-23 Ebara Corporation Dehumidifying air-conditioning apparatus
US20040089015A1 (en) * 2002-11-08 2004-05-13 York International Corporation System and method for using hot gas reheat for humidity control
DE10253357B4 (de) * 2002-11-13 2006-05-18 Visteon Global Technologies, Inc., Dearborn Kombinierte Kälteanlage/Wärmepumpe zum Einsatz in Kraftfahrzeugen zum Kühlen, Heizen und Entfeuchten des Fahrzeuginnenraumes
JP3736847B2 (ja) * 2002-12-06 2006-01-18 松下電器産業株式会社 空調装置及び空調方法
JP3596549B2 (ja) * 2003-03-10 2004-12-02 ダイキン工業株式会社 調湿装置
US7080521B2 (en) * 2004-08-31 2006-07-25 Thermo King Corporation Mobile refrigeration system and control
JP4135766B2 (ja) * 2006-09-19 2008-08-20 ダイキン工業株式会社 空調制御の仲介装置、空調制御システム、空調制御方法および空調制御プログラム
US20080083834A1 (en) * 2006-10-04 2008-04-10 Steve Krebs System and method for selecting an operating level of a heating, ventilation, and air conditioning system
US8757506B2 (en) * 2007-01-03 2014-06-24 Trane International Inc. PTAC dehumidification without reheat and without a humidistat
US20100170271A1 (en) * 2007-06-08 2010-07-08 Carrier Corporation Refrigerant system
JP4954230B2 (ja) * 2009-03-03 2012-06-13 フジプラント株式会社 乾燥貯蔵システム
DK177003B1 (en) * 2009-08-20 2010-11-15 Maersk Container Ind As Dehumidifier
JP4770976B2 (ja) * 2009-11-25 2011-09-14 ダイキン工業株式会社 コンテナ用冷凍装置
KR101837452B1 (ko) * 2010-10-28 2018-03-12 삼성전자주식회사 냉장고 및 그 제습 운전 제어 방법
JP5625878B2 (ja) * 2010-12-20 2014-11-19 株式会社デンソー 車両用空調装置
CN103328238B (zh) * 2011-01-21 2015-11-25 三电有限公司 车辆用空气调节装置
CN104972866A (zh) * 2011-03-03 2015-10-14 三电有限公司 车辆用空气调节装置
DE102012205200B4 (de) * 2011-04-04 2020-06-18 Denso Corporation Kältemittelkreislaufvorrichtung
US20120318007A1 (en) * 2011-06-16 2012-12-20 A.P. Moller - Maersk A/S Internal air circulation control in a refrigerated transport container
JP5944135B2 (ja) * 2011-10-17 2016-07-05 サンデンホールディングス株式会社 車両用空気調和装置
US9726387B2 (en) * 2013-07-02 2017-08-08 Johnson Controls Technology Company Hot gas reheat modulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988315U (ja) * 1982-12-08 1984-06-15 東洋サ−モコントロ−ル株式会社 車載用除湿装置
JPH063769A (ja) 1992-06-24 1994-01-14 Fuji Photo Film Co Ltd 写真印画紙用支持体
JPH0640845U (ja) * 1992-11-06 1994-05-31 タバイエスペック株式会社 温度雰囲気発生装置
JPH09189477A (ja) * 1996-01-06 1997-07-22 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH1151544A (ja) * 1997-08-05 1999-02-26 Daikin Ind Ltd 冷凍コンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2924376A4

Also Published As

Publication number Publication date
CN104813124A (zh) 2015-07-29
US20150338135A1 (en) 2015-11-26
EP2924376A1 (en) 2015-09-30
EP2924376A4 (en) 2016-08-24
EP2924376B1 (en) 2017-06-28
JP5664741B2 (ja) 2015-02-04
JP2014122780A (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5664741B2 (ja) コンテナ用冷凍装置
JP3988780B2 (ja) 冷凍装置
JP5472391B2 (ja) コンテナ用冷凍装置
US9316423B2 (en) Container refrigeration apparatus
JP5370551B1 (ja) コンテナ用冷凍装置
JP5110192B1 (ja) 冷凍装置
JP5594425B2 (ja) 冷凍装置
JP6545252B2 (ja) 冷凍サイクル装置
WO2017221287A1 (ja) 冷却装置
JP2014020715A (ja) 冷蔵庫
JP4328892B2 (ja) 調温調湿装置および環境試験装置
JP6223564B2 (ja) 冷蔵庫
JP2008138915A (ja) 冷凍装置
JP2007309585A (ja) 冷凍装置
JP6149921B2 (ja) 冷凍装置
JP5008440B2 (ja) 冷却貯蔵庫
JP2012032063A (ja) 冷凍装置
JP2007271215A (ja) 室外機、及びその室外機を備えた空気調和装置
JP2013122328A (ja) コンテナ用冷凍装置
JP2013029295A (ja) コンテナ用冷凍装置
JP2008164200A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646653

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013856262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013856262

Country of ref document: EP