[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014049992A1 - 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2014049992A1
WO2014049992A1 PCT/JP2013/005377 JP2013005377W WO2014049992A1 WO 2014049992 A1 WO2014049992 A1 WO 2014049992A1 JP 2013005377 W JP2013005377 W JP 2013005377W WO 2014049992 A1 WO2014049992 A1 WO 2014049992A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
negative electrode
active material
battery
electrode active
Prior art date
Application number
PCT/JP2013/005377
Other languages
English (en)
French (fr)
Inventor
博之 南
井町 直希
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50387439&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014049992(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/420,732 priority Critical patent/US20150221950A1/en
Priority to JP2014538138A priority patent/JP6092885B2/ja
Priority to CN201380046892.2A priority patent/CN104603993B/zh
Publication of WO2014049992A1 publication Critical patent/WO2014049992A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the negative electrode active material.
  • the silicon oxide represented by SiO X has a high specific capacity and a volume expansion coefficient when absorbing lithium during charging is smaller than that of Si, it has been studied to mix with graphite and use it as a negative electrode active material. (See Patent Document 1).
  • the nonaqueous electrolyte secondary battery using the silicon oxide represented by SiO X as the negative electrode active material has significantly higher initial charge / discharge efficiency and capacity at the beginning of the cycle than when only graphite is used as the negative electrode active material. There is a problem of lowering.
  • composite particles having a structure in which silicon oxide is dispersed in a carbon active material and silicon and a lithium silicate phase are included in the silicon oxide have been proposed (Patent Document 2). reference).
  • the negative electrode active material of the present invention includes particles made of SiO X (0.8 ⁇ X ⁇ 1.2) containing a lithium silicate phase inside, and the surface of the particles made of SiO X is 50% or more and 100% in carbon. % Or less is covered.
  • the initial charge / discharge efficiency and the cycle characteristics are dramatically improved.
  • substantially ** means “substantially equivalent” as an example, and it is intended to include not only exactly the same but also what is recognized as substantially the same.
  • the negative electrode active material of the present invention is a particle composed of SiO X (0.8 ⁇ X ⁇ 1.2) containing a lithium silicate phase inside, and the surface of the particle composed of SiO X is 50% or more and 100% of carbon. % Or less is covered.
  • the initial charge / discharge efficiency and the cycle characteristics can be improved. The reason is shown below.
  • SiO X is a fine mixture of Si and SiO 2, and the initial charge reaction when used as a negative electrode active material can be generally expressed by the following formula (1).
  • Li 4 SiO 4 is generated during the initial charge, and this Li 4 SiO 4 is an irreversible reactant. Therefore, not all Si in SiO X reacts reversibly, and the theoretical efficiency is lowered.
  • Li 4 SiO 4 is generated as an irreversible reactant as in the above formula (1), four of the 16 lithium ions are irreversible, so the theoretical efficiency is 75%. Become.
  • SiO X in which a lithium silicate phase such as Li 4 SiO 4 is formed is used as SiO X at the time of battery fabrication (before the first charge).
  • the amount of lithium taken away by the irreversible reactant during the first charge is reduced, so that the first charge / discharge efficiency can be drastically improved.
  • the volume of the SiO X particles is increased by forming a lithium silicate phase. Therefore, in the case of using SiO X as a negative electrode active material, SiO X having lithium silicate phase, the expansion during charge and discharge than SiO X having no lithium silicate phase displacement during shrinkage is small.
  • the lithium silicate phase may be composed of not only Li 4 SiO 4 but also Li 2 SiO 3 or the like, but in any case, it is electrochemically inactive. Further, the lithium silicate phase is not formed electrochemically, but is formed by a chemical reaction. For example, it can be formed by the following method.
  • a lithium compound such as LiOH, Li 2 CO 3 , LiF, or LiCl can be mixed with SiO X and heat-treated at a high temperature.
  • the reaction formula when LiOH is used as the lithium compound is shown in the following formula (2).
  • SiO 2 existing in SiO X reacts with LiOH to produce Li 4 SiO 4 .
  • the lithium silicate phase is a compound of Li, Si, and O.
  • there are Li 2 SiO 3 and Li 2 Si 2 O 5 there are Li 2 SiO 3 and Li 2 Si 2 O 5 , and the product depends on the amount of lithium compound added and the processing method. May be different.
  • the ratio of the lithium silicate phase to the total amount of SiO X (0.8 ⁇ X ⁇ 1.2) particles is preferably 0.5 mol% or more and 25 mol% or less.
  • the proportion of the lithium silicate phase is less than 0.5 mol%, the effect of improving the initial charge / discharge efficiency is small.
  • the proportion of the lithium silicate phase exceeds 25 mol%, the amount of Si that undergoes reversible reaction decreases, and the charge / discharge capacity decreases.
  • the surface of SiO X used in the present invention is 50% or more and 100% or less, preferably 100%, of carbon.
  • SiO X surface covered 50% to 100% carbon when to form a lithium silicate phase in SiO X, it is possible to suppress the lithium compound and SiO X is direct contact, the interior of the SiO X particles This is because it is possible to uniformly react lithium with SiO X.
  • the SiO X surface is covered with carbon means that the surface of the SiO X particle is covered with a carbon film having a thickness of at least 1 nm when the particle cross section is observed by SEM. .
  • the SiO X surface is 100% coated with carbon.
  • the SiO X particle surface is covered with a carbon film having a thickness of at least 1 nm. That's what it means.
  • the thickness of the carbon coating is preferably 1 nm or more and 200 nm or less. If it is less than 1 nm, the conductivity is low and it is difficult to coat uniformly. On the other hand, if it exceeds 200 nm, the carbon coating inhibits lithium diffusion, so that lithium does not reach SiO X sufficiently and the capacity is greatly reduced. Further, in the case of carbon coating, the ratio of carbon to SiO X is desirably 10% by mass or less.
  • the average primary particle diameter of SiO X used in the present invention is preferably 1 ⁇ m or more and 15 ⁇ m or less.
  • the average primary particle diameter of SiO X is less than 1 ⁇ m, the particle surface area becomes too large, the amount of reaction with the electrolytic solution increases, and the capacity may decrease. Further, the amount of expansion and contraction of SiO X is small, and the influence on the negative electrode mixture layer is small. Therefore, even if a lithium silicate phase is not formed in advance in SiO X , separation between the negative electrode mixture layer and the negative electrode current collector hardly occurs and the cycle characteristics do not deteriorate so much.
  • the average primary particle diameter of SiO X exceeds 15 ⁇ m, lithium may not diffuse into the inside of SiO X during the formation of the lithium silicate phase, and the lithium silicate phase may be formed only on the SiO X surface. . Since the lithium silicate phase is insulative, when such a structure is used, lithium diffusion is hindered, and lithium cannot be diffused to the vicinity of the center of SiO during charge / discharge, which may result in a decrease in capacity and load characteristics. Therefore, the average primary particle diameter of SiO X is preferably 1 ⁇ m or more and 15 ⁇ m or less, and particularly preferably 4 ⁇ m or more and 10 ⁇ m or less. In addition, the average primary particle diameter (D 50 ) of SiO X is the cumulative 50 volume% diameter in the particle size distribution measured by the laser diffraction scattering method.
  • SiO X used in the present invention may be used alone as a negative electrode active material, or may be used by mixing with a carbon-based active material such as graphite or hard carbon. Since the specific capacity of SiO X is higher than that of the carbon-based active material, the capacity can be increased as the addition amount increases. However, SiO X has a larger expansion / contraction rate at the time of charge / discharge than the carbon-based active material, and if the ratio is too large, peeling at the interface between the negative electrode mixture layer and the negative electrode current collector, or the negative electrode active material Since the conductive contact between the particles is reduced, the cycle characteristics may be significantly reduced.
  • the ratio of SiO X to the total amount of the negative electrode active material is preferably 20% by mass or less.
  • the proportion of SiO X is too small, the merit of increasing the capacity by adding SiO X is reduced, so the proportion of SiO X with respect to the total amount of the negative electrode active material is preferably 1% by mass or more.
  • the positive electrode and the non-aqueous electrolyte can be used without any particular limitation as long as they are used for a non-aqueous electrolyte secondary battery.
  • the positive electrode active material include lithium complex oxide containing lithium cobaltate, nickel or manganese, olivine type lithium phosphate represented by lithium iron phosphate (LiFePO 4 ), and the like.
  • the lithium composite oxide containing nickel or manganese include lithium composite oxides such as Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al. These positive electrode active materials may be used alone or in combination.
  • the positive electrode active material contains an oxide containing lithium and a metal element M
  • the metal element M contains at least one selected from the group containing cobalt and nickel
  • the ratio x / M C to the amount M C of the metal element M contained in the oxides of the above for example, preferably greater than 1.01, more preferably greater than 1.03. If the ratio x / M C is within the above range, so that the proportion of lithium ions supplied to the battery is quite large. That is, it is advantageous in terms of compensation for irreversible capacity.
  • the ratio x / M C for example, when the anode active material is a mixture of a SiO X and the carbon-based active material containing lithium silicate phase therein, the proportion of SiO X such with respect to the total amount of the anode active material, fluctuate.
  • the ratio x / M C is the amount M C of the metal element M contained in the lithium content x and the positive electrode active material contained in the positive electrode and the negative electrode, were quantified, respectively, dividing the amount of x in an amount M C of the metal element M This can be calculated.
  • the amount M C of lithium content x and the metal element M can be quantified as follows. First, the battery is completely discharged and then decomposed to remove the nonaqueous electrolyte, and the inside of the battery is washed with a solvent such as dimethyl carbonate. Next, the positive electrode and the negative electrode are respectively collected by a predetermined mass, and the amount of lithium (molar amount) x is determined by quantifying the amount of lithium contained in the positive electrode and the negative electrode by ICP analysis. Also, as in the case of the amount of lithium in the positive electrode, the amount of metal element M contained in the positive electrode (molar amount) determined by the M C ICP analysis.
  • the solvent and solute of the nonaqueous electrolyte solution are not particularly limited as long as they can be used for the nonaqueous electrolyte secondary battery.
  • lithium salt having the oxalato complex as an anion examples include LiBOB [lithium-bisoxalate borate] and a lithium salt having an anion in which C 2 O 4 2 ⁇ is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer).
  • M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table
  • R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group
  • x is a positive integer
  • y is 0 or a positive integer
  • Li [B (C 2 O 4 ) F 2 ] Li [P (C 2 O 4 ) F 4 ] Li [P (C 2 O 4 ) 2 F 2 ]
  • LiBOB it is most preferable to use LiBOB in order to form a stable film on the surface of the negative electrode even in a high temperature environment.
  • the said solute may be used not only independently but in mixture of 2 or more types.
  • the concentration of the solute is not particularly limited, but is preferably 0.8 to 1.8 mol per liter of the electrolyte.
  • the concentration of the solute is desirably 1.0 to 1.6 mol per liter of the electrolyte.
  • carbonate solvents such as ethylene carbonate, propylene carbonate, ⁇ -butyl lactone, diethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, and a part of hydrogen in these solvents are F.
  • Substituted carbonate solvents are preferably used.
  • the solvent it is preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • the difference from the invention described in Patent Document 2 is as follows. (1) As described above, also in the present invention, the surface of SiO X is coated with carbon. Accordingly, not only the invention described in Patent Document 2 but also the present invention includes carbon in the SiO X particles. However, in the invention described in Patent Document 2, carbon exists up to the inside of the particle, whereas in the present invention, carbon exists only on the surface of the particle. In relation to this, the proportion of carbon in the particles is about 10% by mass or less and extremely low in the present invention, whereas in the invention described in Patent Document 2, it is about 50% by mass or more. It is extremely numerous.
  • the coating was performed using a CVD method, the ratio of carbon to SiO X was 10 mass%, and the carbon coverage on the SiO X surface was 100%.
  • 1 mol of SiO X and 0.2 mol of LiOH were mixed in a powder state (the ratio of LiOH to SiO X is 20 mol%), and LiOH was adhered to the surface of SiO X.
  • heat treatment was performed in an Ar atmosphere at 800 ° C. for 10 hours to produce SiO X in which a lithium silicate phase was formed.
  • the carbon coverage on the SiO X surface was confirmed by the following method. Using an ion milling device (ex. IM4000) manufactured by Hitachi High-Tech, the cross section of the negative electrode active material particles was exposed, and the particle cross section was confirmed by SEM and a backscattered electron image. The interface between the carbon coating layer in the particle cross section and SiO X was specified from the reflected electron image. Then, the ratio of the carbon film having a film thickness of 1 nm or more on the surface of each SiO X particle was calculated from the ratio of the sum of the interface lengths of the carbon film having a film thickness of 1 nm or more and SiO X to the outer peripheral length of SiO X in the particle cross section. . The average value of the ratio of the carbon coating of 30 SiO X particles was defined as the carbon coverage.
  • SiO X having the lithium silicate phase formed thereon and PAN (polyacrylonitrile) as a binder are mixed at a mass ratio of 95: 5, and NMP (N-methyl-2-pyrrolidone as a diluent solvent is further mixed. ) was added.
  • the negative electrode mixture slurry was applied on one surface of a copper foil such that the mass per lm 2 of the negative electrode mixture layer was 25 g / m 2 . Next, this was dried at 105 ° C. in the atmosphere and rolled to prepare a negative electrode.
  • the filling density of the negative electrode mixture layer was 1.50 g / ml.
  • an electrode body was produced using the above negative electrode with a Ni tab attached to the outer periphery, a lithium metal foil, and a polyethylene separator disposed between the negative electrode and the lithium metal foil.
  • This electrode body was put into a battery casing made of an aluminum laminate, and a non-aqueous electrolyte was injected into the battery casing, and then the battery casing was sealed to produce a battery.
  • the battery thus produced is hereinafter referred to as battery A1.
  • Example 2 When mixing and heat-treating the lithium source and SiO X , Li 2 CO 3 was used instead of LiOH as the lithium source (the ratio of Li 2 CO 3 to SiO X was 10 mol%), A battery was fabricated in the same manner as in Example 1 of the first example. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery A2.
  • Example 4 When mixing and heat-treating the lithium source and SiO X , LiCl was used instead of LiOH as the lithium source (the ratio of LiCl to SiO X was 20 mol%).
  • a battery was produced in the same manner as in Example 1. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery A3.
  • Example 4 When the heat treatment was performed by mixing the lithium source and SiO X , LiF was used instead of LiOH as the lithium source (the ratio of LiF to SiO X was 20 mol%).
  • a battery was produced in the same manner as in Example 1. Incidentally, the SiO X after heat treatment, was analyzed by XRD, the peak of the Li 4 SiO 4 and Li 2 SiO 3 is a lithium silicate was confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 5 mol%. The battery thus produced is hereinafter referred to as battery A4.
  • a battery was produced in the same manner as in Example 1. When this SiO X was analyzed by XRD, a lithium silicate phase was not confirmed as shown in FIG. The battery thus produced is hereinafter referred to as battery Z.
  • Batteries A1 to A4 using SiO X having a lithium silicate phase inside have improved initial charge / discharge efficiency and cycle characteristics as compared with battery Z using SiO X having no lithium silicate phase inside. I understand. This is because if SiO X before charge / discharge has a lithium silicate phase in advance, the amount of lithium taken away by Li 4 SiO 4 generated at the time of initial charge is small, and the amount of lithium that can be involved in charge / discharge increases. Because it does. In addition, SiO X having a lithium silicate phase inside has a smaller degree of expansion during charging although the charge amount is the same as SiO X having no lithium silicate phase inside.
  • the difference in expansion and contraction during charge / discharge is reduced, and peeling at the negative electrode mixture layer is suppressed.
  • the lithium compound used in the heat treatment is not limited to LiOH, Li 2 CO 3, LiCl , or LiF to express same effect it was confirmed. Moreover, it can be estimated that even if it is lithium compounds other than these, the same effect is expressed.
  • Example 1 When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 2 mol% of LiOH was added to SiO X.
  • SiO X after the heat treatment was analyzed by XRD, a peak of Li 2 SiO 3 which is a lithium silicate was confirmed.
  • the ratio of the lithium silicate phase in SiO X after the heat treatment was 0.5 mol%.
  • the battery thus produced is hereinafter referred to as battery B1.
  • Example 2 When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 50 mol% of LiOH was added to SiO X.
  • SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed.
  • the ratio of the lithium silicate phase in SiO X after the heat treatment was 12.5 mol%.
  • the battery thus produced is hereinafter referred to as battery B2.
  • Example 3 When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 80 mol% of LiOH was added to SiO X. When SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed. Moreover, the ratio of the lithium silicate phase in SiO X after the heat treatment was 20 mol%. The battery thus produced is hereinafter referred to as battery B3.
  • Example 4 When LiOH and SiO X were mixed and heat-treated, a battery was fabricated in the same manner as in Example 1 of the first example except that 100 mol% of LiOH was added to SiO X.
  • SiO X after the heat treatment was analyzed by XRD, peaks of lithium silicates Li 4 SiO 4 and Li 2 SiO 3 were confirmed.
  • the ratio of the lithium silicate phase in SiO X after the heat treatment was 25 mol%.
  • the battery thus produced is hereinafter referred to as battery B4.
  • Batteries A1, B1 ⁇ B4 using a SiO X having an internal lithium silicate phase, than the batteries Z using the SiO X having no internal lithium silicate phase, high initial charge and discharge efficiency, cycle characteristics was also found to be good. Further, when the batteries A1 and B1 to B4 were compared, it was found that the higher the ratio of the lithium silicate phase in SiO X , the higher the initial charge / discharge efficiency and the better the cycle characteristics. Furthermore, in the batteries B2 to B4 in which the ratio of the lithium silicate phase in SiO X is 12.5 mol% or more, the initial charge / discharge efficiency exceeding the theoretical charge / discharge efficiency (75%) when SiO X is used as the negative electrode active material It was confirmed that
  • the proportion of the lithium silicate phase in SiO X is 0.5 mol% or more and 25 mol% or less.
  • the proportion of the lithium silicate phase in SiO X is less than 0.5 mol%, the effect of forming the lithium silicate phase is reduced, and when the proportion exceeds 25 mol%, the charge / discharge capacity decreases.
  • the average primary particle diameter of SiO X is preferably 1 ⁇ m or more and 15 ⁇ m or less.
  • the average primary particle diameter of SiO X is less than 1 ⁇ m, the particle surface area is large, so that a side reaction of the electrolytic solution easily occurs.
  • the average primary particle diameter of SiO X exceeds 15 ⁇ m, lithium does not diffuse to the inside of the SiO X during the chemical conversion treatment, and many lithium silicate phases are formed on the surface of the SiO X. May cause a drop.
  • Example 1 The SiO X after heat treatment, washed with pure water until pH of the filtrate reached 8.0, and filtered, except that removal of the lithium compound unreacted from the surface of the SiO X after the heat treatment, the first A battery was fabricated in the same manner as in Example 1 of the example.
  • the battery thus produced is hereinafter referred to as battery D1.
  • Example 2 A battery was fabricated in the same manner as in Example 1 of the first example except that the following treatment was performed before the heat treatment.
  • a predetermined amount of SiO X and a nonionic surfactant (trade name: SN Wet 980, polyether-based surfactant manufactured by San Nopco) are added to a solution in which LiOH is previously dissolved in water. Agent) was added and dispersed.
  • the addition amount of the nonionic surfactant was 1 mass% with respect to the total amount of solid content.
  • the dispersion was dried in a thermostatic bath set at a temperature of 110 ° C., water as a solvent was removed, and heat treatment was performed.
  • the battery thus produced is hereinafter referred to as battery D2.
  • Example 3 The SiO X after heat treatment, washed with pure water until pH of the filtrate reached 8.0, and filtered, except that to remove unreacted lithium compound from the surface of the SiO X after the heat treatment, the fourth embodiment A battery was fabricated in the same manner as in Example 2. The battery thus produced is hereinafter referred to as battery D3.
  • the battery D1 subjected to the water washing after the heat treatment has improved the initial charge / discharge efficiency and the cycle characteristics as compared with the battery A1 not subjected to the water washing. Washing with water as in the battery D1 can remove the lithium compound that is an unreacted substance during the heat treatment, so that the surface resistance of the negative electrode active material particles decreases. Therefore, it is considered that a sufficient conductive path is formed between the negative electrode active material particles during discharge.
  • the battery D2 that has been wet-treated using a surfactant in advance is more than the battery A1 that simply dry-mixed the SiO X and the lithium compound before the heat treatment. It can be seen that the initial charge / discharge efficiency and the cycle characteristics were improved.
  • a surfactant is added and wet-kneaded as in the battery D1, fine LiOH is uniformly deposited on the SiO X surface. For this reason, it is considered that a more uniform lithium silicate phase was formed during the heat treatment.
  • the battery D3 that has been subjected to the wet treatment using the surfactant and the water washing treatment after the chemical conversion treatment has improved initial charge / discharge efficiency and cycle characteristics compared to the batteries D1 and D2 that have been subjected to only one treatment. You can see that Therefore, the characteristics can be further improved by combining the two processes. Incidentally, from the above experimental results, it was found that preferable to uniformly arrange the LiOH to SiO X surface, in such a state, not limited to the above wet process, a dry process Can also be achieved.
  • Example 1 [Production of positive electrode] Lithium cobaltate as a positive electrode active material, acetylene black (HS100, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder have a mass ratio of 95.0: 2. Weighed and mixed to a ratio of 5: 2.5, and added N-methyl-2-pyrrolidone (NMP) as a dispersion medium. Next, this was stirred using a mixer (Primix Co., Ltd., TK Hibismix) to prepare a positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • this positive electrode slurry is applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and then rolled by a rolling roller to produce a positive electrode in which a positive electrode mixture layer is formed on both surfaces of the positive electrode current collector. did.
  • the filling density in the positive electrode mixture layer was 3.60 g / ml.
  • the mixture of SiO X and graphite after heat treatment used in Example 1 of the first example was used as the negative electrode active material.
  • the ratio of SiO X after the heat treatment with respect to the total amount of the negative electrode active material was 5% by mass.
  • the negative electrode active material carboxymethylcellulose (CMC, manufactured by Daicel Finechem # 1380, degree of etherification: 1.0 to 1.5) as a thickener, and SBR (styrene-butadiene rubber) as a binder
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • the positive electrode and the negative electrode were opposed to each other through a separator made of a polyethylene microporous film.
  • the positive electrode tab and the negative electrode tab were attached to the positive electrode and the negative electrode so as to be positioned on the outermost peripheral portion of each electrode, and then the positive electrode, the negative electrode, and the separator were wound in a spiral shape to produce an electrode body.
  • the electrode body was placed in a battery outer package made of an aluminum laminate and vacuum-dried at 105 ° C. for 2 hours.
  • Example 1 of the first embodiment the same non-aqueous electrolyte as the non-aqueous electrolyte shown in Example 1 of the first embodiment is injected into the battery outer package, and the opening of the battery outer package is sealed to make the non-aqueous electrolyte.
  • An electrolyte secondary battery was produced.
  • the design capacity of the nonaqueous electrolyte secondary battery is 800 mAh.
  • the battery thus produced is hereinafter referred to as battery E1.
  • Example 2 A battery was fabricated in the same manner as in Example 1 of the above fifth example, except that in the production of the negative electrode, the ratio of SiO X after heat treatment to the total amount of the negative electrode active material was 10% by mass.
  • the battery thus produced is hereinafter referred to as battery E2.
  • Example 3 A battery was fabricated in the same manner as in Example 1 of the above fifth example, except that in the production of the negative electrode, the ratio of SiO X after heat treatment to the total amount of the negative electrode active material was 20% by mass. The battery thus produced is hereinafter referred to as battery E3.
  • the batteries E1 to E3 and Y1 to Y3 were charged / discharged under the following conditions, and the initial charge / discharge efficiency and cycle life shown in the above formula (3) were examined. The results are shown in Table 5.
  • the cycle life was defined as the cycle number when the discharge capacity reached 80% of the first cycle.
  • the cycle life of each battery is expressed as an index when the cycle life of the battery Y1 is 100.
  • the improvement rates in the initial charge / discharge efficiency and the cycle life are those when the batteries having the same mixing ratio of SiO X are compared. For example, in the case of the battery E1, the improvement rate with respect to the battery Y1. is there.
  • the batteries E1 to E3 have improved initial charge / discharge efficiency and cycle characteristics compared to the batteries Y1 to Y3. Therefore, even in the case of using a negative electrode active material of a mixture of SiO X and graphite, as SiO X, it can be seen that it is preferable to use a SiO X after heat treatment (SiO X having an internal lithium silicate phase) . Moreover, it is recognized that the improvement rate in the initial charge / discharge efficiency and the improvement rate in the cycle characteristics are higher as the ratio of SiO X is higher. However, if the ratio of SiO X becomes too high, the negative electrode mixture layer may be peeled off significantly.
  • the proportion of SiO X is preferably 20% by mass or less.
  • the ratio of SiO X is at least 1 mass%.
  • Example 1 [Production of negative electrode]
  • the mixture of SiO X and graphite after heat treatment used in Example 1 of the first example was used as the negative electrode active material.
  • the ratio of SiO X after the heat treatment with respect to the total amount of the negative electrode active material was 5% by mass.
  • the negative electrode active material carboxymethylcellulose (CMC, manufactured by Daicel Finechem # 1380, degree of etherification: 1.0 to 1.5) as a thickener, and SBR (styrene-butadiene rubber) as a binder
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • an electrode body was produced using the above negative electrode with a Ni tab attached to the outer periphery, a lithium metal foil, and a polyethylene separator disposed between the negative electrode and the lithium metal foil.
  • This electrode body was put into a battery casing made of an aluminum laminate, and a non-aqueous electrolyte was injected into the battery casing, and then the battery casing was sealed to produce a battery.
  • the battery thus produced is hereinafter referred to as battery F1.
  • the batteries F1 to F3 have improved initial charge capacity and initial charge / discharge efficiency compared to the batteries Z1 to Z3.
  • the negative electrode active material used in the batteries Z1 to Z3 has a structure in which SiO is dispersed in carbonaceous material.
  • the negative electrode active materials in the batteries F1 to F3 have a structure having a thin carbon coating film on the SiO surface.
  • the particle size of SiO is less than 1.0 ⁇ m, it is recognized that the difference in battery characteristics between the structure in which SiO is dispersed in the carbonaceous material and the structure having a thin carbon coating film on the SiO surface is small.
  • the structure having a thin carbon coating film on the SiO surface has a larger initial charge capacity and initial charge / discharge efficiency. This is because in the case of the structure in which SiO is dispersed in the carbonaceous material described in Patent Document 2, it is considered that the carbonaceous material covering the SiO serves as a resistance, reducing the utilization rate of SiO during charging and discharging. It is. From the results of Table 6 above, it can be seen that when the structure has a thin carbon coating film on the SiO surface and the particle diameter is 1.0 ⁇ m or more, the SiO utilization rate is increased and the initial efficiency is increased.
  • Example 1 2 wt% the proportion of carbon to SiO X, except that the carbon coverage of the SiO X surface and 80%, in the same manner as in Example 2 of the first embodiment, a battery was prepared.
  • the battery thus manufactured is hereinafter referred to as battery G1.
  • Example 2 1.5 wt% the proportion of carbon to SiO X, carbon coverage of SiO X surface except that was 50%, in the same manner as in Example 2 of the first embodiment, a battery was prepared.
  • the battery thus produced is hereinafter referred to as battery G2.
  • Example 1 A battery was fabricated in the same manner as in Example 2 of the first example except that the SiO X surface was not coated with carbon. The battery thus produced is hereinafter referred to as battery R1.
  • Comparative Example 2 A battery was fabricated in the same manner as Comparative Example 1 of the first example except that the SiO X surface was not coated with carbon. The battery thus manufactured is hereinafter referred to as battery R2.
  • the batteries A2 and G1 to G2 using SiO X having 50% or more of the surface coated with carbon and having a lithium silicate phase are first charged compared to the batteries R1 to R2 and Z. It can be seen that the discharge efficiency and cycle characteristics are improved.
  • the present invention can be applied to a drive power source of a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA, for example, in an application requiring a high capacity.
  • a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA
  • it can be expected to be used in high-power applications that require continuous driving at high temperatures, such as in electric vehicles and power tools where the battery operating environment is severe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 負極活物質としてSiOを用いた非水電解質二次電池において、初回充放電効率とサイクル特性とを改善することを目的とする。内部にリチウムシリケート相を含むSiOからなる粒子を備え、上記SiOxからなる粒子の表面が炭素で50%以上100%以下被覆されている、負極活物質を提供する。また、上記SiOからなる粒子の総モル量に対する、上記リチウムシリケート相のモル数の割合は、0.5mol%以上25mol%以下であり、上記SiOxからなる粒子の平均一次粒子径は、1μm以上15μm以下である。

Description

非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
 本発明は、非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池に関するものである。
 SiOで表わされるシリコン酸化物は、比容量が高く、充電時にリチウムを吸収した際の体積膨張率もSiに比べて小さいことから、黒鉛と混合して負極活物質として用いることが検討されている(特許文献1参照)。
 しかしながら、SiOで表わされるシリコン酸化物を負極活物質として用いた非水電解質二次電池は、黒鉛のみを負極活物質として使用した場合に比べ、初回充放電効率、及びサイクル初期における容量が著しく低下するという課題がある。
 初回充放電効率の向上を図るべく、炭素活物質中にシリコン酸化物が分散され、該シリコン酸化物中にシリコンとリチウムシリケート相とを有する構造の複合体粒子が提案されている(特許文献2参照)。
特開2011-233245号公報 特開2007-59213号公報
 しかしながら、特許文献2に記載の提案では、炭素活物質中に分散されたシリコン酸化物は、炭素マトリクス内にシリコン酸化物が点在した構造を有するため、充放電時に炭素マトリクスがリチウム拡散を阻害する。このため、リチウムがシリコン酸化物に十分届かない場合があり、実際の電池容量が理論容量よりも著しく小さくなって、初回充放電効率が低下する等の課題を有していた。
 本発明の負極活物質は、内部にリチウムシリケート相を含むSiO(0.8≦X≦1.2)からなる粒子を備え、上記SiOからなる粒子の表面が、炭素で50%以上100%以下被覆されている。
 本発明の実施例によれば、負極活物質としてSiOを用いた非水電解質二次電池において、初回充放電効率とサイクル特性とが飛躍的に向上する。
電池A1、ZにおけるSiOのXRD測定結果を表すグラフである。
 本明細書において「略**」とは、「略同等」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。
 本発明の負極活物質は、内部にリチウムシリケート相を含むSiO(0.8≦X≦1.2)からなる粒子であって、SiOからなる粒子の表面が、炭素で50%以上100%以下被覆されている。
 上記構成の負極活物質を用いた電池では、初回充放電効率とサイクル特性とを向上させることができる。この理由を以下に示す。
 SiOは、SiとSiOとの微細混合体であり、負極活物質として用いた場合の初回充電反応は、一般的に下記(1)式で表せる。
 4SiO(2Si+2SiO)+16Li+16e→3LiSi+LiSiO・・・(1)
 上記(1)式の如く、初回充電時にLiSiOが生成されるが、このLiSiOは不可逆反応物である。したがって、SiO中の全てのSiが可逆反応するものではなく、理論効率が低くなる。具体的には、上記(1)式のように不可逆反応物としてLiSiOが生成される場合には、16個のリチウムイオンのうち4個が不可逆となるため、理論効率は75%となる。
 そこで、上記構成の如く、電池作製時(初回充電前)のSiOに、LiSiO等のリチウムシリケート相が形成されたSiOを用いる。このような構成であれば、初回充電時において、不可逆反応物に奪われるリチウムが少なくなるので、初回充放電効率を飛躍的に改善することが可能となる。また、SiO粒子は、リチウムシリケート相を形成することにより、体積が大きくなる。そのため、SiOを負極活物質として用いた場合、リチウムシリケート相を有するSiOは、リチウムシリケート相を有しないSiOよりも充放電時における膨張、収縮時の変位が小さい。したがって、リチウムシリケート相を有するSiOを用いれば、負極合剤層内での剥離や、負極合剤層と負極集電体と
の剥離を抑制することができるので、サイクル特性が向上する。加えて、SiOの回りには炭素マトリクスが存在しないので、リチウム拡散が円滑に行われる。したがって、実際の電池容量が大きくなる。
 尚、上記リチウムシリケート相はLiSiOのみならずLiSiO等で構成されることもあるが、いずれの場合にも電気化学的に不活性である。また、リチウムシリケート相は電気化学的に形成するのではなく、化学反応により形成する。例えば、以下の方法により形成できる。
 SiO中にリチウムシリケート相を形成するには、例えば、LiOH、LiCO、LiF、又はLiClといったリチウム化合物とSiOとを混合し、高温で熱処理することにより得ることができる。この場合、リチウム化合物としてLiOHを用いた場合の反応式を下記(2)式に示す。(2)式から明らかなように、SiO中に存在するSiOとLiOHとが反応して、LiSiOが生成することがわかる。
 SiO+4LiOH→LiSiO+2HO・・・(2)
 リチウムシリケート相は、LiとSi、Oとの化合物であり、LiSiO以外にも、LiSiOやLiSiがあり、リチウム化合物の添加量や処理方法によって生成物が異なる場合がある。
 SiO(0.8≦X≦1.2)粒子の総量に対する上記リチウムシリケート相の割合が、0.5モル%以上25モル%以下であることが好ましい。リチウムシリケート相の割合が0.5モル%未満の場合には、初回充放電効率の改善効果が小さい。一方、リチウムシリケート相の割合が25モル%を超える場合には、可逆反応するSiが少なくなって、充放電容量が低下する。
 本発明において用いるSiOは、表面が炭素で50%以上100%以下、好ましくは、100%被覆されている。SiO表面が炭素で50%以上100%以下被覆されていると、SiOにリチウムシリケート相を形成させる際、リチウム化合物とSiOとが直接接触することを抑制できるので、SiO粒子の内部において、リチウムとSiOとを均一に反応させることが可能となるからである。なお、本発明において、SiO表面が炭素で被覆されているとは、粒子断面をSEM観察した場合に、SiO粒子表面が、少なくとも1nm厚以上の炭素被膜で覆われているということである。本発明において、SiO表面が炭素で100%被覆されているとは、粒子断面をSEM観察した場合に、SiO粒子表面の略100%が、少なくとも1nm厚以上の炭素被膜で覆われているということである。炭素で被覆する場合、SiOの反応均一性を高めるべく、SiOの表面を均一に被覆することが好ましい。炭素被膜の厚みは、1nm以上200nm以下であることが好ましい。1nm未満では、導電性が低く、また均一に被覆するのが難しい。一方、200nmを超えると、炭素被膜がリチウム拡散を阻害して、SiOに十分リチウムが届かず、大きく容量が低下する。更に、炭素被覆する場合、SiOに対する炭素の割合は10質量%以下であることが望ましい。
 本発明に用いるSiOの平均一次粒子径は、1μm以上15μm以下であることが好ましい。SiOの平均一次粒子径が1μm未満の場合は、粒子表面積が大きくなり過ぎて、電解液との反応量が大きくなり、容量低下することがある。また、SiOの膨張収縮量が小さく、負極合剤層へ与える影響は小さい。そのため、SiO中に予めリチウムシリケート相を形成しなくても、負極合剤層と負極集電体との間で剥離が生じ難く、サイクル特性がさほど低下しない。一方、SiOの平均一次粒子径が15μmを超えている場合は、リチウムシリケート相の形成時に、SiO内部までリチウムが拡散せず、SiO表面にのみリチウムシリケート相が形成されることがある。リチウムシリケート相は絶縁性であるため、このような構造になると、リチウム拡散が阻害されて、充放電時にリチウムがSiOの中心付近まで拡散できないため、容量低下や負荷特性が低下することがある。したがって、SiOの平均一次粒子径は、1μm以上15μm以下であることが好ましく、特に4μm以上10μm以下であることが好ましい。
 なお、SiOの平均一次粒子径(D50)とは、レーザー回折散乱法で測定された粒度分布における累積50体積%径のことである。
 本発明において用いるSiOは、負極活物質として単独で用いても良く、黒鉛やハードカーボンといった炭素系活物質と混合して用いても良い。SiOは、炭素系活物質よりも比容量が高いため、添加量が多いほど高容量化が可能となる。しかし、SiOは、炭素系活物質よりも、充放電時の膨張、収縮率が大きく、その割合が多過ぎると、負極合剤層と負極集電体との界面における剥離や、負極活物質粒子間の導電接触が低下するため、サイクル特性が大幅に低下することがある。したがって、SiOと炭素系活物質とを混合して用いる場合、負極活物質の総量に対するSiOの割合は、20質量%以下であることが好ましい。一方、SiOの割合が少な過ぎると、SiOを添加して高容量化するメリットが小さくなるので、負極活物質の総量に対するSiOの割合は1質量%以上であることが好ましい。
 正極及び非水電解質は、非水電解質二次電池に用いるものであれば、特に限定されることなく用いることができる。
 正極活物質としては、例えば、コバルト酸リチウム、ニッケルあるいはマンガンを含むリチウム複合酸化物、リン酸鉄リチウム(LiFePO)に代表されるオリビン型リン酸リチウム等などが挙げられる。ニッケルあるいはマンガンを含むリチウム複合酸化物としては、Ni-Co-Mn、Ni-Mn-Al、及びNi-Co-Alなどのリチウム複合酸化物などが挙げられる。正極活物質はこれらを単独で用いても良いし、混合して用いてもよい。
 正極活物質が、リチウムと、金属元素Mとを含む酸化物を含み、前記金属元素Mが、コバルト、ニッケルを含む群より選択される少なくとも一種を含む場合、正極および負極に含まれるリチウム量の総和xと、上記の酸化物に含まれる金属元素Mの量Mとの比率x/Mは、例えば、1.01より大きいことが好ましく、1.03より大きいことがさらに好ましい。
 比率x/Mが上記範囲である場合、電池内に供給されるリチウムイオンの比率が非常に大きくなることになる。つまり、不可逆容量の補填の点で有利である。
 上記比率x/Mは、例えば、負極活物質が内部にリチウムシリケート相を含むSiOと炭素系活物質とを混合したものである場合、負極活物質の総量に対するSiOの割合等によって、変動する。
 比率x/Mは、正極および負極中に含まれるリチウム量xと正極活物質に含まれる金属元素Mの量Mを、それぞれ定量し、xの量を金属元素Mの量Mで除することにより算出できる。
 リチウム量xおよび金属元素Mの量Mは、次のようにして定量できる。
 まず、電池を、完全に放電した後、分解し、非水電解質を除去して、電池内部をジメチルカーボネートなどの溶媒を用いて洗浄する。次いで、正極および負極をそれぞれ所定の質量だけ採取し、ICP分析により、正極および負極に含まれるリチウム量を定量することにより、リチウム量(モル量)xを求める。また、正極中のリチウム量の場合と同様にして、正極に含まれる金属元素Mの量(モル量)MをICP分析により定量する。
 非水電解液の溶媒、溶質については、非水電解質二次電池に用いることができるものであれば特に限定されるものではない。
 上記非水電解液の溶質としては、LiBF,LiPF,LiN(SOCF,LiN(SO,LiPF6-x(C2n+1[但し、1<x<6,n=1または2]、或いは、オキサラト錯体をアニオンとするリチウム塩を用いることもできる。このオキサラト錯体をアニオンとするリチウム塩としては、LiBOB〔リチウム-ビスオキサレートボレート〕の他、中心原子にC 2-が配位したアニオンを有するリチウム塩、例えば、Li[M(C](式中、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C)F]、Li[P(C)F]、Li[P(C]等がある。但し、高温環境下においても負極の表面に安定な被膜を形成するためには、LiBOBを用いることが最も好ましい。
 尚、上記溶質は、単独で用いるのみならず、2種以上を混合して用いても良い。また、溶質の濃度は特に限定されないが、電解液1リットル当り0.8~1.8モルであることが望ましい。更に、大電流での放電を必要とする用途では、上記溶質の濃度が電解液1リットル当たり1.0~1.6モルであることが望ましい。
 一方、上記非水電解液の溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ-ブチルラクトン、ジエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどのカーボネート系溶媒や、これらの溶媒の水素の一部がFにより置換されているカーボネート系溶媒が好ましく用いられる。溶媒としては、環状カーボネートと鎖状カーボネートを組み合わせて用いることが好ましい。
 尚、上記特許文献2に記載の発明との違いは以下の通りである。
(1)上記の如く、本発明でもSiOの表面を炭素で被覆している。したがって、特許文献2に記載の発明のみならず本発明においても、SiO粒子に炭素が含まれる。しかしながら、特許文献2に記載の発明では、粒子の内部にまで炭素が存在するのに対して、本発明では粒子の表面にしか炭素が存在しない。また、このことに関連して、粒子中の炭素の割合は、本発明では約10質量%以下であって極めて少ないのに対して、特許文献2に記載の発明では約50質量%以上であって極めて多い。
(2)特許文献2に記載の発明では、SiO粉末と、炭素粉末と、リチウム化合物との存在下で、熱処理を行っている。したがって、リチウム化合物のリチウムは、SiOのみならず炭素中にも取り込まれる。これに対し、本発明では、SiO粉末と、リチウム化合物との存在下で、熱処理を行った後、炭素粉末と混合している。したがって、リチウム化合物のリチウムは、SiOにのみ取り込まれる(炭素中には取り込まれない)。
(3)特許文献2に記載の発明の如く、SiOが炭素マトリクス内に点在した構造の場合、SiOの粒径が小さく、しかも、応力を緩和できる炭素マトリクスでSiOが覆われている。したがって、充放電時の負極活物質の膨張、収縮によって、負極合剤層に与える影響(負極集電体と負極合剤層との間での剥離等)は極めて小さい。このため、特許文献2に記載の発明では、負極活物質の膨張、収縮を緩和することによって電池特性を向上させるという作用効果は、僅かに発揮されるだけである。
 これに対して、本発明の如く、内部にリチウムシリケート相を含むSiOからなる粒子(SiOの単独粒子)と黒鉛と混合して用いる場合には、電解液との副反応を抑制するためにSiOの粒径をある程度大きくする必要があり、しかも、SiOの周りには、応力を緩和できるマトリクスも存在しない。したがって、負極活物質の膨張、収縮による、負極合剤層に与える影響は極めて大きい。このため、本発明では、負極活物質の膨張、収縮を緩和することによって電池特性を向上させるという作用効果が大いに発揮される。
 以下、本発明を具体的な実施例によりさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
                 〈第1実施例〉
(実施例1)
〔負極の作製〕
 表面を炭素で被覆したSiO(X=0.93、平均一次粒子径:5.0μm)を準備した。尚、被覆はCVD法を用いて行い、また、SiOに対する炭素の割合は10質量%、SiO表面の炭素被覆率を100%とした。上記SiO1モルとLiOH0.2モルとを粉状態で混合して(SiOに対するLiOHの割合は20モル%となっている)、SiOの表面にLiOHを付着させた。次に、Ar雰囲気中、800℃で10時間熱処理することにより、内部にリチウムシリケート相が形成されたSiOを作製した。この熱処理後のSiOをXRD(線源はCuKαである)で解析したところ、図1に示すように、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、SiOの総モル数に対するリチウムシリケート相のモル数(以下、SiO中のリチウムシリケート相の割合、と称することがある)は5モル%であった。
 なお、SiO表面の炭素被覆率は、次の方法で確認した。日立ハイテク社製のイオンミリング装置(ex. IM4000)を用いて、負極活物質粒子の断面を露出させ、粒子断面をSEM及び反射電子像で確認した。粒子断面の炭素被覆層とSiOとの界面は、反射電子像から特定した。そして、各SiO粒子表面における膜厚1nm以上の炭素被膜の割合を、粒子断面におけるSiO外周長に対する、膜厚1nm以上の炭素被膜とSiOとの界面長さの総和の比より算出した。SiO粒子30個の炭素被膜の割合の平均値を、炭素被覆率とした。
 上記リチウムシリケート相が形成されたSiOと、バインダーであるPAN(ポリアクリロニトリル)とを、質量比で95:5となるように混合し、更に希釈溶媒としてのNMP(N-メチル-2-ピロリドン)を添加した。これを、混合機(プライミクス社製、ロボミックス)を用いて攪拌し、負極合剤スラリーを調製した。
 上記負極合剤スラリーを、銅箔の片面上に負極合剤層のlm当りの質量が、25g/mとなるように塗布した。次に、これを大気中105℃で乾燥し、圧延することにより負極を作製した。尚、負極合剤層の充填密度は、1.50g/mlとした。
〔非水電解液の調製〕
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比が3:7の割合となるように混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を、1.0モル/リットル添加して非水電解液を調製した。
〔電池の組み立て〕
 不活性雰囲気中で、外周にNiタブを取り付けた上記負極と、リチウム金属箔と、負極とリチウム金属箔との間に配置させたポリエチレン製セパレータとを用いて電極体を作製した。この電極体を、アルミニウムラミネートからなる電池外装体内に入れ、更に、非水電解液を電池外装体内に注入し、その後電池外装体を封止して電池を作製した。このようにして作製した電池を、以下、電池A1と称する。
(実施例2)
 リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiCOを用いた(SiOに対するLiCOの割合は10モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池A2と称する。
(実施例4)
 リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiClを用いた(SiOに対するLiClの割合は20モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池A3と称する。
(実施例4)
 リチウム源とSiOとを混合して熱処理する際、リチウム源として、LiOHの代わりにLiFを用いた(SiOに対するLiFの割合は20モル%とした)こと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOを、XRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池A4と称する。
(比較例)
 LiOHとSiOとを混合せず、且つ、熱処理を行わなかった(即ち、負極活物質としてのSiOとして、未処理のSiOを用いた)こと以外は、上記第1実施例の実施例1と同様に電池を作製した。このSiOをXRDで解析したところ、図1に示すように、リチウムシリケート相は確認されなかった。このようにして作製した電池を、以下、電池Zと称する。
(実験)
 上記電池A1~A4、Zを、以下の条件で充放電し、下記(3)式で示す初回充放電効率と下記(4)式で示す10サイクル目の容量維持率とを調べたので、その結果を表1に示す。
〔充放電条件〕
 0.2It(4mA)の電流で電圧が0Vになるまで定電流充電を行った後、0.05It(1mA)の電流で電圧が0Vになるまで定電流充電を行った。次に、10分間休止した後、0.2It(4mA)の電流で電圧が1.0Vになるまで定電流放電を行った。
〔初回充放電効率の算出式〕
 初回充放電効率(%)=(1サイクル目の放電容量/1サイクル目の充電容量)×100・・・(3)
〔10サイクル目の容量維持率の算出式〕
 10サイクル目の容量維持率(%)=(10サイクル目の放電容量/1サイクル目の放電容量)×100・・・(4)
Figure JPOXMLDOC01-appb-T000001
 内部にリチウムシリケート相を有するSiOを用いた電池A1~A4は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率及びサイクル特性が向上することがわかる。これは、充放電前のSiOにおいて、予めリチウムシリケート相を有していれば、初回充電時に生成するLiSiOに奪われるリチウム量が少量で済み、充放電に関与できるリチウム量が増加するからである。また、内部にリチウムシリケート相を有するSiOは、内部にリチウムシリケート相を有していないSiOに比べた場合、充電量は同一であるにも関わらず、充電時の膨張度合いが小さくなる。したがって、充放電時の膨張収縮量の差が小さくなり、負極合剤層での剥離等が抑制されるからと考えられる。
 尚、熱処理時に用いるリチウム化合物としては、LiOHに限らず、LiCO、LiCl、又はLiFでも同様の効果を発現することが確認できた。また、これら以外のリチウム化合物であっても、同様の効果を発現すると推測できる。
                 〈第2実施例〉
(実施例1)
 LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを2モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は0.5モル%であった。このようにして作製した電池を、以下、電池B1と称する。
(実施例2)
 LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを50モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は12.5モル%であった。このようにして作製した電池を、以下、電池B2と称する。
(実施例3)
 LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを80モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は20モル%であった。このようにして作製した電池を、以下、電池B3と称する。
(実施例4)
 LiOHとSiOとを混合して熱処理する際、SiOに対してLiOHを100モル%添加したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は25モル%であった。このようにして作製した電池を、以下、電池B4と称する。
(実験)
 上記電池B1~B4を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表2に示す。尚、表2には電池A1、Zの結果についても記載している。
Figure JPOXMLDOC01-appb-T000002
 内部にリチウムシリケート相を有するSiOを用いた電池A1、B1~B4は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率が高く、サイクル特性も良好であることがわかった。また、電池A1、B1~B4を比較した場合、SiO中のリチウムシリケート相の割合が高いほど、初回充放電効率が高く、サイクル特性も良好であることがわかった。更に、SiO中のリチウムシリケート相の割合が12.5モル%以上の電池B2~B4では、負極活物質としてSiOを用いた場合の理論充放電効率(75%)を越える初回充放電効率を示すことが確認できた。
 以上より、SiO中のリチウムシリケート相の割合は0.5モル%以上25モル%以下であることが望ましい。SiO中のリチウムシリケート相の割合が0.5モル%未満の場合には、リチウムシリケート相を形成した効果が低くなり、当該割合が25モル%を超えると、充放電容量が低下する。
                 〈第3実施例〉
(実施例1)
 原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が1.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池C1と称する。
(実施例2)
 原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が15.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。また、熱処理後のSiO中のリチウムシリケート相の割合は5モル%であった。このようにして作製した電池を、以下、電池C2と称する。
(実験)
 上記電池C1、C2を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表3に示す。尚、表3には電池A1、Zの結果についても記載している。
Figure JPOXMLDOC01-appb-T000003
 内部にリチウムシリケート相を有するSiOを用いた電池A1、C1、C2は、内部にリチウムシリケート相を有していないSiOを用いた電池Zに比べて、初回充放電効率が高く、サイクル特性も良好であることがわかった。したがって、SiOの平均一次粒子径は、1μm以上15μm以下であることが好ましい。尚、SiOの平均一次粒子径が1μm未満の場合には、粒子表面積が大きいため、電解液の副反応が起こり易くなる。一方、SiOの平均一次粒子径が15μmを超える場合は、化成処理時にリチウムがSiO内部まで拡散せず、多くのリチウムシリケート相がSiO表面に形成されるため、容量低下や負荷特性の低下を招くことがある。
                 〈第4実施例〉
(実施例1)
 熱処理後のSiOを、ろ液のpHが8.0になるまで純水で水洗、濾過して、熱処理後のSiOの表面から未反応のリチウム化合物を除去したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池D1と称する。
(実施例2)
 以下のような処理を、熱処理前に施したこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
 SiOとLiOHとを混合する際、LiOHを予め水に溶解させた液に、所定量のSiOと、非イオン性界面活性剤(商品名:SNウエット980、サンノプコ社製ポリエーテル系界面活性剤)とを添加して、分散させた。尚、非イオン性界面活性剤の添加量は、固形分の総量に対して1質量%とした。次いで、上記分散液を温度110℃に設定した恒温槽で乾燥し、溶媒である水を除去した後、熱処理を行った。このようにして作製した電池を、以下、電池D2と称する。
(実施例3)
 熱処理後のSiOを、ろ液のpHが8.0になるまで純水で水洗、濾過して、熱処理後のSiOの表面から未反応リチウム化合物を除去したこと以外は、上記第4実施例の実施例2と同様にして電池を作製した。このようにして作製した電池を、以下、電池D3と称する。
(実験)
 上記電池D1~D3を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表4に示す。尚、表4には電池A1の結果についても記載している。
Figure JPOXMLDOC01-appb-T000004
 熱処理後の水洗を行った電池D1は、水洗を行わなかった電池A1よりも、初回充放電効率及びサイクル特性が向上したことがわかる。電池D1の如く水洗を行えば、熱処理時の未反応物であるリチウム化合物を除去することができるので、負極活物質粒子の表面抵抗が低下する。したがって、放電時に負極活物質粒子間の導電パスが十分に形成されるからと考えられる。
 また、熱処理前のSiOとリチウム化合物とを混合する際、予め界面活性剤を用いて湿式処理を行った電池D2は、熱処理前のSiOとリチウム化合物とを単に乾式混合した電池A1よりも、初回充放電効率及びサイクル特性が向上したことがわかる。電池D1の如く界面活性剤を添加して湿式で混練すれば、SiO表面により微細なLiOHが均一に析出する。このため、熱処理時に、より均一なリチウムシリケート相が形成されたことによると考えられる。
 更に、界面活性剤を用いた湿式処理と化成処理後の水洗処理とを行った電池D3は、一方の処理しか行っていない電池D1、D2に比べて、初回充放電効率及びサイクル特性が向上していることがわかる。したがって、2つの処理を組み合わせることで、更に特性を改善できる。
 尚、上記実験結果より、SiO表面にLiOHを均一に配置させるのが好ましいことがわかったが、このような状
態とするには、上記湿式処理に限定するものではなく、乾式処理であっても達成できる。
                 〈第5実施例〉
(実施例1)
[正極の作製]
 正極活物質としてのコバルト酸リチウムと、導電剤としてのアセチレンブラック(電気化学工業社製、HS100)と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、質量比が95.0:2.5:2.5の割合になるように秤量、混合し、分散媒としてのN-メチル-2-ピロリドン(NMP)を添加した。次に、これを混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、この正極スラリーを、アルミニウム箔から成る正極集電体の両面に塗布、乾燥した後、圧延ローラにより圧延して、正極集電体の両面に正極合剤層が形成された正極を作製した。尚、正極合剤層における充填密度は3.60g/mlとした。
[負極の作製]
 上記第1実施例の実施例1で用いた熱処理後のSiOと黒鉛との混合物を、負極活物質として用いた。尚、負極活物質の総量に対する熱処理後のSiOの割合は5質量%とした。上記負極活物質と、増粘剤としてのカルボキシメチルセルロース(CMC、ダイセルファインケム社製♯1380、エーテル化度:1.0~1.5)と,結着剤としてのSBR(スチレン-ブタジエンゴム)とを、質量比で97.5:1.0:1.5となるように混合し、希釈溶媒としての水を添加した。これを、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、上記負極スラリーを、銅箔から成る負極集電体の両面に、負極合剤層の1m当たりの質量が190gとなるように均一に塗布した。次いで、これを大気中105℃で乾燥させた後、圧延ローラにより圧延して、負極集電体の両面に負極合剤層が形成された負極を作製した。尚、負極合剤層における充填密度は1.60g/mlとした。
[電池の作製]
 上記正極と負極とを、ポリエチレン微多孔膜からなるセパレータを介して対向させた。次に、正極タブと負極タブとを、各電極における最外周部に位置するように正極及び負極に取り付けた後、正極、負極及びセパレータを渦巻き状に巻回して電極体を作製した。次いで、該電極体をアルミニウムラミネートからなる電池外装体内に配置し、105℃で2時間真空乾燥した。その後、上記第1実施例の実施例1で示した非水電解液と同一の非水電解液を上記電池外装体内に注入し、更に、電池外装体の開口部を封止することにより非水電解質二次電池を作製した。当該非水電解質二次電池の設計容量は800mAhである。このようにして作製した電池を、以下、電池E1と称する。
(実施例2)
 上記負極の作製において、負極活物質の総量に対する熱処理後のSiOの割合を10質量%としたこと以外は、上記第5実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池E2と称する。
(実施例3)
 上記負極の作製において、負極活物質の総量に対する熱処理後のSiOの割合を20質量%としたこと以外は、上記第5実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池E3と称する。
(比較例1~3)
 SiOとして、未処理のSiO(熱処理していないSiO)を用いたこと以外は、それぞれ、上記第5実施例の実施例1~実施例3と同様にして電池を作製した。このようにして作製した電池を、以下それぞれ、電池Y1~Y3と称する。
(実験)
 上記電池E1~E3、Y1~Y3を、以下の条件で充放電し、上記(3)式で示した初回充放電効率とサイクル寿命とを調べたので、それらの結果を表5に示す。尚、1サイクル目の放電容量の80%に達したときのサイクル数をサイクル寿命とした。また、各電池のサイクル寿命は、電池Y1のサイクル寿命を100としたときの指数で表している。
 更に、初回充放電効率とサイクル寿命とにおける向上率は、SiOの混合率が同じである電池同士を比較したときのものであり、例えば、電池E1の場合には、電池Y1に対する向上率である。
〔充放電条件〕
 1.0It(800mA)電流で電池電圧が4.2Vとなるまで定電流充電を行った後、4.2Vの電圧で電流値が0.05It(40mA)となるまで定電圧充電を行った。10分間休止した後、1.0It(800mA)電流で電池電圧が2.75Vとなるまで定電流放電を行った。〔正極及び負極中のリチウム量xと正極活物質に含まれる金属元素Mの量Mとの比x/M〕
 これらの電池において正極および負極中に含まれるリチウム量xと、正極材料に含まれる金属元素Mの量Mとを、既述のように定量し、x/M比を算出した結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上記表5から明らかなように、電池E1~E3は電池Y1~Y3に比べて、初回充放電効率とサイクル特性とが向上していることが認められる。したがって、SiOと黒鉛とを混合した負極活物質を用いた場合であっても、SiOとして、熱処理後のSiO(内部にリチウムシリケート相を有するSiO)を用いることが好ましいことがわかる。
 また、SiOの割合が高いほど、初回充放電効率における向上率とサイクル特性における向上率とが高くなっていることが認められる。但し、SiOの割合が高くなり過ぎると、負極合剤層の剥がれが顕著に生じることがある。したがって、SiOの割合は20質量%以下であることが好ましい。尚、SiOの割合が少な過ぎると、SiOの添加効果が十分に発揮されないので、SiOの割合は1質量%以上であることが望ましい。
                 〈第6実施例〉
(実施例1)
[負極の作製]
 上記第1実施例の実施例1で用いた熱処理後のSiOと黒鉛との混合物を、負極活物質として用いた。尚、負極活物質の総量に対する熱処理後のSiOの割合は5質量%とした。上記負極活物質と、増粘剤としてのカルボキシメチルセルロース(CMC、ダイセルファインケム社製♯1380、エーテル化度:1.0~1.5)と,結着剤としてのSBR(スチレン-ブタジエンゴム)とを、質量比で97.5:1.0:1.5となるように混合し、希釈溶媒としての水を添加した。これを、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、上記負極スラリーを、銅箔から成る負極集電体の両面に、負極合剤層の1m当たりの質量が190gとなるように均一に塗布した。次いで、これを大気中105℃で乾燥させた後、圧延ローラにより圧延して、負極集電体の両面に負極合剤層が形成された負極を作製した。尚、負極合剤層における充填密度は1.60g/mlとした。
〔非水電解液の調製〕
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比が3:7の割合となるように混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を、1.0モル/リットル添加して非水電解液を調製した。
〔電池の組み立て〕
 不活性雰囲気中で、外周にNiタブを取り付けた上記負極と、リチウム金属箔と、負極とリチウム金属箔との間に配置させたポリエチレン製セパレータとを用いて電極体を作製した。この電極体を、アルミニウムラミネートからなる電池外装体内に入れ、更に、非水電解液を電池外装体内に注入し、その後電池外装体を封止して電池を作製した。このようにして作製した電池を、以下、電池F1と称する。
(実施例2)
 原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が1.0μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第6実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。このようにして作製した電池を、以下、電池F2と称する。
(実施例3)
 原料としてのSiO(熱処理前のSiO)として、平均一次粒子径が0.5μmであるSiO(x=0.93、炭素被覆量10質量%)を用いたこと以外は、上記第6実施例の実施例1と同様にして電池を作製した。尚、熱処理後のSiOをXRDで解析したところ、リチウムシリケートであるLiSiOとLiSiOとのピークが確認された。このようにして作製した電池を、以下、電池F3と称する。
(比較例1)
 SiO(x=0.93、平均一次粒子径15.0μm)とLiOH0.2mol(SiOxに対しLiOHを0.2mol%)を、遊星ボールミルを用いて混合し、平均一次粒子径5.0μmのSiOを作製した。さらに黒鉛を加えて混合した後、ハードカーボンと複合化し、Ar雰囲気中800℃で5時間熱処理し、平均一次粒子径40μmの負極活物質を作製した。
 負極活物質と黒鉛とを、質量比で10:90(SiO:黒鉛=5:95)としたこと以外は、上記第6実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池Z1と称する。
(比較例2)
 ボールミル処理後の平均一次粒子径を1.0μmとしたSiO(x=0.93、炭素被覆量10質量%)を用い、ハードカーボンと複合後の負極活物質の平均一次粒子径を8.0μmとしたこと以外は、上記第6実施例の比較例1と同様にして電池を作製した。このように作製した電池を、以下、電池Z2と称する。
(比較例3)
 ボールミル処理後の平均一次粒子径を0.5μmとしたSiO(x=0.93、炭素被覆量10質量%)を用い、ハードカーボンと複合後の負極活物質の平均一次粒子径を4.0μmとしたこと以外は、上記第6実施例の比較例1と同様にして電池を作製した。このように作製した電池を、以下、電池Z3と称する。
 尚、上記第6実施例の比較例1~比較例3の電池Z1~Z3に使用された負極活物質は、特許文献2に近い内容である。
(実験)
(電池性能評価)
上記電池F1~F3、Z1~Z3の初回充電容量及び上記(3)式で示した初回充放電効率を測定したので、それらの結果を表6に示す。尚、充放電条件は、上記第1実施例の実験で示した条件と同様である。
Figure JPOXMLDOC01-appb-T000006
 上記表6から明らかなように、電池F1~F3は電池Z1~Z3に比べて、初回充電容量と初回充放電効率とが向上していることが認められる。
電池Z1~Z3に使用されている負極活物質は、炭素質中にSiOを分散させた構造を持つ。一方、電池F1~F3における負極活物質は、SiO表面に薄く炭素被覆膜を有する構造を持つ。SiOの粒径が1.0μm未満の場合、炭素質中にSiOを分散させた構造とSiO表面に薄く炭素被覆膜を有する構造の違いにおける電池特性の差異は小さいことが認められる。一方、SiOの粒径が1.0μm以上の場合、SiO表面に薄く炭素被覆膜を有する構造の方が、初回充電容量、初回充放電効率共に大きいことが分かる。これは、特許文献2に記載の炭素質中にSiOを分散させた構造の場合、SiOを覆っている炭素質が抵抗となり、充放電時のSiOの利用率を下げていることが考えられるためである。上記表6の結果より、SiO表面に薄く炭素被覆膜を有する構造でかつ、粒径が1.0μm以上の場合に、SiOの利用率を高め、初回効率が上がる効果が認められる。
                 〈第7実施例〉
(実施例1)
 SiOに対する炭素の割合を2質量%、SiO表面の炭素被覆率を80%としたこと以外は、第1実施例の実施例2と同様にして、電池を作製した。このように作製した電池を、以下、電池G1と称する。
(実施例2)
 SiOに対する炭素の割合を1.5質量%、SiO表面の炭素被覆率を50%としたこと以外は、第1実施例の実施例2と同様にして、電池を作製した。このように作製した電池を、以下、電池G2と称する。
(比較例1)
 SiO表面に炭素被覆を行わなかったこと以外は、第1実施例の実施例2と同様にして、電池を作製した。このように作製した電池を、以下、電池R1と称する。
(比較例2)
 SiO表面に炭素被覆を行わなかったこと以外は、第1実施例の比較例1と同様にして、電池を作製した。このように作製した電池を、以下、電池R2と称する。
(実験)
 上記電池G1~G2及びR1~R2を、上記第1実施例の実験で示した条件と同様の条件で充放電し、上記(3)式で示した初回充放電効率と、上記(4)式で示した10サイクル目の容量維持率とを調べたので、その結果を表7に示す。尚、表7には電池A2、Zの結果についても記載している。
Figure JPOXMLDOC01-appb-T000007
 上記表7から明らかなように、表面の50%以上が炭素被覆され、かつ、リチウムシリケート相を有するSiOを用いた電池A2及びG1~G2は電池R1~R2及びZに比べて、初回充放電効率とサイクル特性とが向上していることが認められる。
 本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、電気自動車や電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。

Claims (7)

  1.  非水電解質二次電池用負極活物質であって、内部にリチウムシリケート相を含むSiO(0.8≦X≦1.2)からなる粒子を備え、上記SiOからなる粒子の表面が、炭素で50%以上100%以下被覆されている、負極活物質。
  2.  上記SiOからなる粒子の総モル量に対する、上記リチウムシリケート相のモル数の割合が、0.5mol%以上25mol%以下である、請求項1に記載の負極活物質。
  3.  上記SiOからなる粒子の表面が、炭素で100%被覆されている、請求項1又は2に記載の負極活物質。
  4.  上記SiOからなる粒子の平均一次粒子径は、1μm以上15μm以下である、請求項1~3の何れか1項に記載の負極活物質。
  5.  黒鉛をさらに備える、請求項1~4の何れか1項に記載の負極活物質。
  6.  請求項1~5の何れか1項に記載の負極活物質を含む負極と、
     正極活物質を含む正極と、
     上記正極と上記負極との間に配置されたセパレータと、
     非水電解質と、
     を備える非水電解質二次電池。
  7.  前記正極活物質が、リチウムと、金属元素Mとを含む酸化物を含み、
     前記金属元素Mが、コバルト、ニッケルを含む群より選択される少なくとも一種を含み、
     前記正極および前記負極に含まれるリチウム量の総和xと、前記酸化物に含まれる前記金属元素Mの量Mとの比率x/Mが、1.01より大きい、請求項6に記載の非水電解質二次電池。
PCT/JP2013/005377 2012-09-27 2013-09-11 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池 WO2014049992A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/420,732 US20150221950A1 (en) 2012-09-27 2013-09-11 Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery using negative electrode active material
JP2014538138A JP6092885B2 (ja) 2012-09-27 2013-09-11 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
CN201380046892.2A CN104603993B (zh) 2012-09-27 2013-09-11 非水电解质二次电池用负极活性物质以及使用该负极活性物质的非水电解质二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-214841 2012-09-27
JP2012214841 2012-09-27
JP2013061394 2013-03-25
JP2013-061394 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014049992A1 true WO2014049992A1 (ja) 2014-04-03

Family

ID=50387439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005377 WO2014049992A1 (ja) 2012-09-27 2013-09-11 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池

Country Status (4)

Country Link
US (1) US20150221950A1 (ja)
JP (1) JP6092885B2 (ja)
CN (1) CN104603993B (ja)
WO (1) WO2014049992A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772969A1 (en) * 2011-10-24 2014-09-03 LG Chem, Ltd. Method for manufacturing cathode active material, cathode active material, and lithium secondary battery including same
WO2015107581A1 (ja) * 2014-01-16 2015-07-23 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
WO2016009590A1 (ja) * 2014-07-15 2016-01-21 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
EP3086386A1 (en) * 2015-04-22 2016-10-26 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, method of producing the same, non-aqueous electrolyte secondary battery using the negative electrode active material, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
WO2017141661A1 (ja) * 2016-02-15 2017-08-24 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP2017188344A (ja) * 2016-04-07 2017-10-12 株式会社大阪チタニウムテクノロジーズ Li含有酸化珪素粉末及びその製造方法
KR101837347B1 (ko) * 2016-06-02 2018-03-09 주식회사 엘지화학 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
JP2018152161A (ja) * 2017-03-09 2018-09-27 株式会社豊田自動織機 負極材料
KR20190062448A (ko) * 2016-10-21 2019-06-05 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극, 리튬 이온 이차 전지, 부극 활물질의 제조 방법 및 리튬 이온 이차 전지의 제조 방법
KR20190092311A (ko) * 2018-01-30 2019-08-07 주식회사 엘지화학 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
JPWO2019107033A1 (ja) * 2017-11-29 2020-11-19 パナソニックIpマネジメント株式会社 リチウムイオン電池
KR20230000609A (ko) * 2021-06-25 2023-01-03 주식회사 한솔케미칼 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210442B (zh) * 2015-01-28 2020-06-16 三洋电机株式会社 非水电解质二次电池用负极活性物质和非水电解质二次电池
JP6389159B2 (ja) * 2015-10-08 2018-09-12 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
JP6445956B2 (ja) 2015-11-17 2018-12-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池
JP6422847B2 (ja) * 2015-11-17 2018-11-14 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6460960B2 (ja) * 2015-11-18 2019-01-30 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6535581B2 (ja) * 2015-11-18 2019-06-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池
JP6453203B2 (ja) * 2015-11-20 2019-01-16 信越化学工業株式会社 負極活物質、負極電極、リチウムイオン二次電池、非水電解質二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP6496672B2 (ja) * 2016-01-21 2019-04-03 信越化学工業株式会社 負極活物質の製造方法及び非水電解質二次電池の製造方法
JP6867821B2 (ja) * 2016-02-23 2021-05-12 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法
US11196040B2 (en) * 2016-11-30 2021-12-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and non-aqueous electrolyte secondary battery
CN106816594B (zh) * 2017-03-06 2021-01-05 贝特瑞新材料集团股份有限公司 一种复合物、其制备方法及在锂离子二次电池中的用途
JP6765997B2 (ja) * 2017-03-13 2020-10-07 信越化学工業株式会社 負極材及びその負極材の製造方法、並びに混合負極材
JP6634398B2 (ja) * 2017-03-13 2020-01-22 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
KR102223723B1 (ko) 2017-05-12 2021-03-05 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
JP6802111B2 (ja) * 2017-06-02 2020-12-16 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP7209266B2 (ja) * 2017-12-28 2023-01-20 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
US11152613B2 (en) 2018-01-19 2021-10-19 Amprius, Inc. Stabilized, prelithiated silicon oxide particles for lithium ion battery anodes
JP6981338B2 (ja) * 2018-03-28 2021-12-15 トヨタ自動車株式会社 負極材料、非水電解質二次電池およびそれらの製造方法
JP2022511608A (ja) * 2018-10-12 2022-02-01 アルベマール コーポレーション ケイ素とリチウムとを含有する粒子
CN109755500B (zh) * 2018-12-05 2022-06-24 华为技术有限公司 一种硅氧复合负极材料及其制作方法
CN111293284B (zh) 2018-12-07 2023-02-28 贝特瑞新材料集团股份有限公司 一种负极材料、及其制备方法和用途
US11594725B1 (en) * 2019-12-03 2023-02-28 GRU Energy Lab Inc. Solid state pretreatment of active materials for negative electrodes in electrochemical cells
CN112349895B (zh) * 2020-10-23 2023-08-15 欣旺达电动汽车电池有限公司 复合负极材料及其制备方法和锂离子电池
KR102511822B1 (ko) * 2021-02-18 2023-03-17 에스케이온 주식회사 리튬 이차 전지용 음극 활물질 이를 포함하는 리튬 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160328A (ja) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd リチウム含有酸化珪素粉末及びその製造方法
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
JP2011113862A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池およびその製造方法
JP2011178601A (ja) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法
WO2012176039A1 (en) * 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216719B2 (en) * 2006-02-13 2012-07-10 Hitachi Maxell Energy, Ltd. Non-aqueous secondary battery and method for producing the same
JP2009277485A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp Si/C複合体型負極活物質の製造方法
CN102122708A (zh) * 2010-01-08 2011-07-13 中国科学院物理研究所 用于锂离子二次电池的负极材料、含该负极材料的负极及其制备方法以及含该负极的电池
JP5411780B2 (ja) * 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
KR102096193B1 (ko) * 2010-10-22 2020-04-02 암프리우스, 인코포레이티드 껍질에 제한된 고용량 활물질을 함유하는 복합 구조물
KR101181848B1 (ko) * 2011-01-28 2012-09-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160328A (ja) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd リチウム含有酸化珪素粉末及びその製造方法
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
JP2011113862A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池およびその製造方法
JP2011178601A (ja) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法
WO2012176039A1 (en) * 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532267A (ja) * 2011-10-24 2014-12-04 エルジー・ケム・リミテッド 負極活物質の製造方法、その負極活物質、及びそれを備えるリチウム二次電池
EP2772969A4 (en) * 2011-10-24 2015-04-08 Lg Chemical Ltd METHOD FOR PRODUCING A CATHODE ACTIVE MATERIAL, CATHODIC ACTIVATING MATERIAL AND LITHIUM SUBSTITUTING BATTERY THEREWITH
US9315882B2 (en) 2011-10-24 2016-04-19 Lg Chem, Ltd. Method for preparing anode active material, anode active material prepared therefrom and lithium secondary battery having the same
EP2772969A1 (en) * 2011-10-24 2014-09-03 LG Chem, Ltd. Method for manufacturing cathode active material, cathode active material, and lithium secondary battery including same
WO2015107581A1 (ja) * 2014-01-16 2015-07-23 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP2015156328A (ja) * 2014-01-16 2015-08-27 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
US10396351B2 (en) 2014-01-16 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
JPWO2016009590A1 (ja) * 2014-07-15 2017-04-27 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
WO2016009590A1 (ja) * 2014-07-15 2016-01-21 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
US10529984B2 (en) 2014-07-15 2020-01-07 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
CN106067543A (zh) * 2015-04-22 2016-11-02 信越化学工业株式会社 非水电解质二次电池及其负极材料的制造方法、其负极活性物质及该物质的制造方法
JP2016207446A (ja) * 2015-04-22 2016-12-08 信越化学工業株式会社 非水電解質二次電池用負極活物質及びその製造方法、並びにその負極活物質を用いた非水電解質二次電池及び非水電解質二次電池用負極材の製造方法
EP3086386A1 (en) * 2015-04-22 2016-10-26 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, method of producing the same, non-aqueous electrolyte secondary battery using the negative electrode active material, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
WO2017141661A1 (ja) * 2016-02-15 2017-08-24 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP2017147057A (ja) * 2016-02-15 2017-08-24 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP7078346B2 (ja) 2016-02-15 2022-05-31 信越化学工業株式会社 負極活物質及びリチウムイオン二次電池の製造方法
US11316147B2 (en) 2016-02-15 2022-04-26 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing negative electrode active material
JP2017188344A (ja) * 2016-04-07 2017-10-12 株式会社大阪チタニウムテクノロジーズ Li含有酸化珪素粉末及びその製造方法
KR101837347B1 (ko) * 2016-06-02 2018-03-09 주식회사 엘지화학 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
US11133524B2 (en) 2016-06-02 2021-09-28 Lg Chem, Ltd. Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
US11757126B2 (en) 2016-06-02 2023-09-12 Lg Energy Solution, Ltd. Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
KR102357569B1 (ko) 2016-10-21 2022-02-04 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극, 리튬 이온 이차 전지, 부극 활물질의 제조 방법 및 리튬 이온 이차 전지의 제조 방법
KR20190062448A (ko) * 2016-10-21 2019-06-05 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극, 리튬 이온 이차 전지, 부극 활물질의 제조 방법 및 리튬 이온 이차 전지의 제조 방법
JP2018152161A (ja) * 2017-03-09 2018-09-27 株式会社豊田自動織機 負極材料
JPWO2019107033A1 (ja) * 2017-11-29 2020-11-19 パナソニックIpマネジメント株式会社 リチウムイオン電池
JP7209265B2 (ja) 2017-11-29 2023-01-20 パナソニックIpマネジメント株式会社 リチウムイオン電池
KR20190092311A (ko) * 2018-01-30 2019-08-07 주식회사 엘지화학 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
KR102290961B1 (ko) * 2018-01-30 2021-08-20 주식회사 엘지에너지솔루션 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
US11605811B2 (en) 2018-01-30 2023-03-14 Lg Energy Solution, Ltd. Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode
KR20230000609A (ko) * 2021-06-25 2023-01-03 주식회사 한솔케미칼 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지
KR102694221B1 (ko) * 2021-06-25 2024-08-13 주식회사 한솔케미칼 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
CN104603993B (zh) 2017-09-01
JPWO2014049992A1 (ja) 2016-08-22
CN104603993A (zh) 2015-05-06
US20150221950A1 (en) 2015-08-06
JP6092885B2 (ja) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6092885B2 (ja) 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
JP6092558B2 (ja) 負極活物質の製造方法
CN110800142B (zh) 锂二次电池用负极活性材料及其制备方法
JP6129404B2 (ja) リチウム二次電池用負極活物質、この製造方法、及びこれを含むリチウム二次電池
JP6314990B2 (ja) 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
Wu et al. Sol–gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries
KR20030047037A (ko) 극판, 이를 채용한 리튬전지, 및 극판 제조방법
Shen et al. Lithium cobalt oxides functionalized by conductive Al-doped ZnO coating as cathode for high-performance lithium ion batteries
KR20230109122A (ko) 이차 전지용 음극 및 이를 포함하는 이차 전지
JP7415019B2 (ja) マンガン酸リチウム正極活性材料及びそれを含む正極シート、二次電池、電池モジュール、電池パック及び電気装置
JP2020510976A (ja) 二次電池用陰極、その製造方法及びこれを使用して製造されたリチウム二次電池
WO2013146054A1 (ja) 非水電解質二次電池
US10164255B2 (en) Silicon material and negative electrode of secondary battery
WO2014119274A1 (ja) リチウムイオン電池及びリチウムイオン電池用セパレータ
JP2012049124A (ja) 非水電解質二次電池
WO2016006381A1 (ja) 非水電解液及びリチウムイオン二次電池
EP2869365A1 (en) Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
KR101722960B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP6913067B2 (ja) 酸化ケイ素−及びLiPONコーティングを有する粒子によりケイ素ベースの負極の寿命を延長する方法
EP4394923A1 (en) Negative electrode active material and preparation method therefor, secondary battery comprising negative electrode active material, and electric device
CN113784916B (zh) 制备负极活性材料的方法
CA2950251C (en) Silicon material and negative electrode of secondary battery
EP4148823A1 (en) Anode active material and lithium secondary battery including the same
JP2024512901A (ja) 単一壁炭素ナノチューブが適用された負極およびそれを含む二次電池
KR20230118210A (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538138

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14420732

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840557

Country of ref document: EP

Kind code of ref document: A1