WO2014045609A1 - 加湿装置及び加湿装置を備えた空気調和機 - Google Patents
加湿装置及び加湿装置を備えた空気調和機 Download PDFInfo
- Publication number
- WO2014045609A1 WO2014045609A1 PCT/JP2013/054731 JP2013054731W WO2014045609A1 WO 2014045609 A1 WO2014045609 A1 WO 2014045609A1 JP 2013054731 W JP2013054731 W JP 2013054731W WO 2014045609 A1 WO2014045609 A1 WO 2014045609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- humidifying
- porous metal
- metal body
- water
- support member
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/12—Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
- F24F6/14—Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
- F24F6/04—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0071—Indoor units, e.g. fan coil units with means for purifying supplied air
- F24F1/0073—Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0087—Indoor units, e.g. fan coil units with humidification means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
- F24F6/04—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
- F24F2006/046—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements with a water pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/147—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
- F24F6/025—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using electrical heating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
- F24F6/08—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F6/02—Air-humidification, e.g. cooling by humidification by evaporation of water in the air
- F24F6/08—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
- F24F6/10—Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S261/00—Gas and liquid contact apparatus
- Y10S261/15—Duct humidifiers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S261/00—Gas and liquid contact apparatus
- Y10S261/41—Pad retaining means in humidifiers and air conditioners
Definitions
- the present invention relates to a humidifier and an air conditioner equipped with a humidifier.
- the indoor temperature is set as the management standard value for the air environment in accordance with the so-called Building Sanitation Management Law (the Law Concerning the Hygienic Environment in Buildings). Is to be maintained at 17 [° C.] to 28 [° C.] and the relative humidity should be maintained at 40 [%] to 70 [%].
- the indoor temperature is managed relatively easily with the spread of air conditioners. However, it is difficult to say that the relative humidity is sufficiently controlled, and in particular, the lack of humidification in winter is a problem.
- the vaporization type is a method of performing humidification in the room by allowing the moisture contained in the filter to exchange heat with the air flow by ventilating the filter having water absorption performance to evaporate the moisture from the filter.
- the steam method is a method of humidifying a room by evaporating moisture by energizing a heating means for heating water in the water storage tank.
- the water spraying method is a method in which moisture is refined by pressurizing moisture, and the refined moisture performs heat exchange with the airflow to humidify the room.
- each water-containing material described in Patent Document 1 is fitted in a slit provided on the bottom plate of the upper chamber and formed with small holes on both sides, and the lower edge of each water-containing material is a groove provided in the lower chamber. Is held in. Further, it is described that as the water-containing material, a condensing material such as a porous metal, a sintered metal, a metal fiber, or a ceramic fiber or other porous material is used.
- the present invention has been made to solve the above-described problems, and suppresses generation of a slime, scale, and water droplet bridge in the lower portion of the humidifying member, and suppresses a decrease in humidification performance.
- An object of the present invention is to obtain a humidifying device and an air conditioner equipped with the humidifying device.
- a humidifying device includes a humidifying member having a plurality of gaps therein, a blowing unit that blows air to the humidifying member, and a water supply unit that supplies water to the humidifying member, and is provided at a lower end portion of the humidifying member.
- a humidifying member having a plurality of gaps therein
- a blowing unit that blows air to the humidifying member
- a water supply unit that supplies water to the humidifying member, and is provided at a lower end portion of the humidifying member.
- the present invention it is possible to suppress water from being accumulated in the lower portion of the humidifying member. Therefore, the growth of bacteria and molds in the lower portion of the humidifying member and the generation of water droplet bridges can be suppressed, and the reduction in humidification performance can be suppressed.
- FIG. 3 is a view showing a state in which a water droplet bridge 303 is formed in a gap between porous metal bodies 5.
- Embodiment 4 It is another block diagram of the humidification apparatus which concerns on Embodiment 4 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 5 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 6 of this invention. It is a figure explaining the sensor 21 of the humidification apparatus which concerns on Embodiment 6 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 7 of this invention. It is a perspective view of the principal part which shows the structure of the humidification apparatus which concerns on Embodiment 8 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 8 of this invention.
- FIG. 9 It is a perspective view of the principal part which shows the structure of the humidification apparatus which concerns on Embodiment 9 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 9 of this invention. It is a side view which shows the other example of the lower support material 8 which concerns on Embodiment 9 of this invention. It is a block diagram of the porous metal body 5 seen from the upstream of the humidification apparatus which concerns on Embodiment 10 of this invention. It is a block diagram of the air conditioner 100 provided with the humidification apparatus which concerns on Embodiment 11 of this invention.
- FIG. 1 is a configuration diagram of a humidifier according to Embodiment 1 of the present invention.
- the humidifier according to the first embodiment includes a supply pipe 1 for supplying humidified water to the humidified space, a supply unit 2 for storing humidified water sent from the supply pipe 1, and this supply
- the nozzle 3 which supplies the humidified water in the part 2 downward as the water droplet 301, and the porous metal body 5 as a humidifying member which has the some space
- the humidifier includes an upper upstream support member 6 and an upper downstream support member 7 that support the upper part of the porous metal body 5, a lower support member 8 that supports the lower part of the porous metal body 5, and a porous metal.
- a fan 9 as air blowing means for allowing air to pass through the body 5 and a drain pan 11 for receiving and discharging water droplets 302 leached from the porous metal body 5 are provided.
- the upper upstream support member 6 and the upper downstream support member 7 are attached to a housing 12 that accommodates the supply unit 2 and the nozzle 3 therein.
- the lower support member 8 is joined to the housing 13 that houses the drain pan 11 on the front side (left side in FIG. 1) and the back side (right side in FIG. 1) of the humidifier.
- a blower outlet 10 for blowing out humidified air is provided on the downstream side of the fan 9.
- FIG. 1 may be referred to as the upstream or near side of the air flow, and the right side of FIG. 1 may be referred to as the downstream or back side of the air flow.
- the supply pipe 1, the supply unit 2, and the nozzle 3 are water supply means for supplying humidified water to the porous metal body 5.
- the supply of humidified water to the porous metal body 5 by this water supply means is controlled by a control device (not shown).
- the nozzle 3 is installed immediately above the porous metal body 5, and drops the humidified water conveyed from the supply pipe 1 and supplies it to the upper part of the porous metal body 5.
- the nozzle 3 has a hollow shape, and its outer shape and inner diameter may be selected according to the size of the porous metal body 5.
- the tip shape of the nozzle 3 may be any shape such as a triangular pyramid shape, a circular tube shape, or a square tube shape, but here, as a preferable shape, the tip has a triangular pyramid shape, and the outlet hole diameter is 0.5 [mm]. ]. If the tip has an acute angle, the water drops are better.
- the acute angle is more preferable, but if it is too sharp, handling becomes difficult and the strength becomes brittle, and therefore the acute angle is preferably in the range of 10 to 45 degrees.
- the hole diameter at the outlet of the nozzle 3 is too large, water is excessively supplied and is wasted.
- the nozzle 3 is likely to be clogged with particles and scales mixed in the water.
- the range of mm] to 0.7 [mm] is preferable.
- the material of the nozzle 3 may be a metal such as stainless steel, tungsten, titanium, silver or copper, or a resin such as Teflon (registered trademark), polyethylene or polypropylene, but is not limited thereto. .
- the number of nozzles 3 can be set according to the length of the porous metal body 5 in the air flow direction (the length from the upstream side to the downstream side), and the length of the porous metal body 5 in the air flow direction. When the length is longer, the number of nozzles 3 is increased than when the length is shorter. For example, if the length of the porous metal body 5 in the air flow direction is 60 [mm] or less, the number of nozzles 3 may be one, but if it exceeds 60 [mm], it is preferable to provide a plurality of nozzles 3. .
- the amount of humidified water supplied to the porous metal body 5 by the nozzle 3 needs to be larger than the amount of water actually used for humidification. It is desirable to control.
- the humidification performance of the porous metal body 5 is 2000 [mL / h / m 2 ]
- the size of the porous metal body 5 is 200 [mm] ⁇ 50 [mm]
- both the front and back surfaces of the porous metal body 5 are humidified. If it is configured so that the humidification amount per piece of the porous metal body 5 is 40 [mL / h], it is 1.5 to 5 times 60 [mL / h] to 200 [mL] / H], it is desirable to supply humidified water to the porous metal body 5.
- the humidified water may be pure water, tap water, soft water or hard water for the purpose of humidifying the humidified space, but in order to reduce the blockage of the voids of the porous metal body 5 due to the scale, What has few mineral components containing a calcium ion or a magnesium ion is preferable. This is because, when humidified water containing a large amount of minerals is used, the ionic component in the solution reacts with carbon dioxide to generate a solid, which may block the voids of the porous metal body 5. For this reason, you may use the humidified water from which the ion component was removed using the ion exchange membrane for cations and anions.
- the porous metal body 5 is made of a porous metal having a three-dimensional network structure having a plurality of voids, and the porous metal body 5 of the first embodiment is generally plate-shaped.
- the porous metal body 5 is installed in such a direction that its flat plate surface is substantially parallel to the air flow and substantially vertical.
- the porous metal body 5 of the first embodiment has a pentagonal shape as shown in FIG. More specifically, the upper end portion of the porous metal body 5 is horizontal, and the lower end portion of the porous metal body 5 is provided with a tip portion 16 having a square shape protruding downward.
- the tip portion 16 corresponds to the protrusion of the present invention.
- the tip 16 is provided such that the tip of the corner is located at the center in the depth direction of the porous metal body 5. Further, the value of the inner angle of the distal end portion 16 is referred to as an angle ⁇ 1.
- the cross-sectional area in the horizontal plane at the bottom of the porous metal body 5 decreases stepwise from top to bottom.
- the shape of the lower end part of the porous metal body 5 is not limited to a linear inclination, and may be, for example, an arc shape.
- FIG. 2 is a configuration diagram of the porous metal body 5 viewed from the upstream side of the humidifier according to Embodiment 1 of the present invention.
- the humidifying apparatus of the first embodiment is provided with a plurality of porous metal bodies 5, and the plurality of porous metal bodies 5 are installed with a predetermined gap so that their flat plate surfaces are substantially parallel.
- the porous metal body 5 does not need to be installed in a direction in which the flat plate surface is in the vertical direction.
- the porous metal body 5 may be installed by tilting the flat plate surface with respect to the vertical direction.
- the plurality of porous metal bodies 5 do not need to have flat plate surfaces parallel to each other. For example, some of the porous metal bodies 5 may be inclined and installed.
- the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 correspond to the humidifying member support member of the present invention, and the porous metal body 5 is housed in the casing. 12 and 13 are supported.
- the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 also have a function of keeping the intervals between the plurality of porous metal bodies 5 constant.
- the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 each have a groove for fitting a part of the porous metal body 5.
- the number of the porous metal bodies 5 is five, but the number of the porous metal bodies 5 is not limited to this and may be any number of one or more.
- the material of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 may be arbitrary, but it is desirable that the upper support member 6, the upper support member 7, and the lower support member 8 be integrated with the porous metal body 5 so that there is no gap.
- FIG. 3 is a partially enlarged cross-sectional view of porous metal body 5 of the humidifying device according to Embodiment 1 of the present invention.
- the three-dimensional network structure of the porous metal body 5 is shown.
- the porous metal body 5 has a three-dimensional network structure, which is the same structure as a resin foam such as a sponge.
- the porous metal body 5 is formed by a metal part 14 and a large number of voids 15 formed in the metal part 14.
- the porous metal body 5 is generally used for applications such as a filter, a catalyst carrier, and a gas diffusion layer for a fuel cell, and can be manufactured by a known method. For example, by introducing bubbles into a slurry containing a metal powder that is a raw material of a porous metal and a solvent, and then forming the slurry into a desired shape and then sintering the slurry, Can be manufactured.
- a metal powder that is a raw material of porous metal, a binder resin that decomposes and disappears by high-temperature firing, and a slurry containing a solvent are formed into a desired shape, and then a porous metal body is produced even by degreasing and sintering. can do.
- the porous metal body 5 has a larger porosity and average pore diameter than the porous ceramic. Thereby, clogging due to impurities contained in the humidified water is suppressed in the gap 15 of the porous metal body 5. Moreover, since the porous metal body 5 has a capillary force, the capillary force can efficiently supply water droplets 301 from the supply unit 2 to the inside of the porous metal body 5 without requiring a drive unit such as a pump. Can do.
- the metal species constituting the porous metal body 5 is not particularly limited, and examples of the metal species include metals such as titanium, copper, aluminum or nickel, noble metals such as gold, silver or platinum, or And alloys such as nickel alloys and cobalt alloys. These can be used alone or in combination of two or more.
- titanium is the most preferable metal species because it is hardly affected by corrosion and can stably humidify while maintaining the shape of the porous metal body 5 over a long period of time.
- a solvent used for manufacture of a porous metal For example, water is mentioned.
- binder resin used for manufacture of a porous metal An acrylic resin, an epoxy resin, or a polyester resin is mentioned.
- the sintering temperature is not particularly limited, and may be appropriately adjusted according to the material to be used.
- a porous metal body 5 may be used in which a porous body is formed from a resin and a metal powder is coated.
- the surface layer of the porous metal body 5 be subjected to a hydrophilic treatment from the viewpoint of increasing the amount of humidified water retained and preventing deterioration of water absorption performance.
- the type of the hydrophilic treatment method is not limited, and for example, the hydrophilic treatment by coating with a hydrophilic resin, or the hydrophilic treatment by corona discharge or atmospheric pressure plasma may be performed. .
- an example of the hydrophilic treatment of the porous metal body 5 will be described.
- Hydrophilic treatment method An example of a specific method for coating the porous metal body 5 with a hydrophilic material is as follows.
- the porous metal body 5 is subjected to atmospheric oxidation treatment at 400 ° C. for 30 minutes, and further subjected to phosphoric acid chromate treatment for the purpose of improving the corrosion resistance of the surface. It is immersed for a minute and then dried at 80 ° C. for 5 hours to form a silica coating film on the surface.
- the film thickness of the coating is preferably in the range of 0.01 [ ⁇ m] to 10 [ ⁇ m]. If the film is too thick, the pores of the foamed part are blocked, which is not preferable. On the other hand, if the membrane is made too thin, it is not preferable because the membrane peels off with the passage of time, and the hydrophilicity of the surface is lowered and the water content is reduced.
- hydrophilic material a silane coupling agent or a dimethylformamide solution of titanium oxide may be used instead of silica.
- an organic polymer resin may be used, and for example, polybilyl alcohol, polyethylene glycol, cellulose, or an epoxy dimethylformamide solution may be used.
- the hydrophilic performance can be further improved if the surface of the porous metal body 5 is smoother, the surface roughness may be removed.
- an organic polymer resin film is preferably laminated.
- the atmospheric pressure plasma treatment may be performed as a pretreatment of the coating treatment. By doing in this way, the adhesive force of a coating film and a metal foam is strengthened, and durability with time can be improved.
- the porous metal body 5 may be formed into a desired shape by producing a sheet-like porous metal having a thickness of 0.5 [mm] or more and 2 [mm] or less and then cutting it into a desired shape.
- the processing method is not particularly limited, and can be performed by various methods such as wire cutting, laser cutting, press punching, shaving, manual cutting or bending.
- the porosity of the porous metal body 5 is desirably 60 [%] to 90 [%]. By doing so, a sufficient amount of water absorption by the porous metal body 5 is ensured, and the porous metal body 5 Keep the strength moderate.
- the pore diameter of the porous metal body 5 is desirably 50 [ ⁇ m] to 600 [ ⁇ m]. By doing so, the strength of the porous metal body 5 is maintained and the voids 15 are clogged by impurities. Suppress.
- FIG. 4 is a partial enlarged cross-sectional view of a humidifying member made of metal fibers in the humidifying device according to Embodiment 1 of the present invention.
- the humidifying member shown in FIG. 4 has a configuration in which a large number of metal fibers 4 having a diameter of about 0.1 mm are tangled. A plurality of voids are formed between the entangled metal fibers 4, and water is retained in the voids.
- the material of the metal fiber 4 may be anything similar to the porous metal body 5, for example, a metal such as titanium, copper, aluminum or nickel, a noble metal such as gold, silver or platinum, or an alloy such as nickel alloy or cobalt alloy. Can be used. Such a metal fiber may be processed into the same shape as the porous metal body 5 shown in FIG. 1 to constitute a humidifying member.
- Embodiment 1 selectively performs the humidification operation.
- the water supplied from the supply pipe 1 is stored in the supply unit 2, and the water stored in the supply unit 2 is conveyed to the nozzle 3 as humidified water.
- the humidified water transported to the nozzle 3 is dropped as water droplets 301 from the tip of the nozzle 3 from above the porous metal body 5 toward the top of the porous metal body 5. Thereby, humidified water is supplied to the porous metal body 5.
- the humidified water is uniformly diffused throughout the porous metal body 5 through the voids 15 of the porous metal body 5 and is porous.
- the solid metal body 5 holds a certain amount of water.
- the drying operation of the humidifier according to Embodiment 1 will be described.
- the humidifier stops the dripping of water from the nozzle 3, and the fan 9 performs a drying operation of blowing air for a certain time.
- the porous metal body 5 By drying the porous metal body 5 by this drying operation, the growth of microorganisms such as bacteria and mold in the porous metal body 5 is suppressed.
- microorganisms such as bacteria and mold grow, the porous metal body 5 becomes unsanitary, and when the humidification operation is performed again, microorganisms and mold spores may be mixed in the air.
- air may be blown as it is, or warm air heated by heating means such as a heater (not shown) may be blown.
- the drying time can be shortened by blowing warm air, but since energy is required for heating, either one is selected depending on the target specification.
- the frequency of drying operation it is desirable to determine the frequency of drying operation according to the growth rate of microorganisms. For example, considering that Escherichia coli grows in a large amount in one day if conditions are good, it is desirable to perform a drying operation after the humidification operation for one day is completed. However, if the frequency of drying the porous metal body 5 is high, the scale in the water will precipitate and the humidification performance will be reduced. Therefore, the frequency of drying operation should be considered in consideration of the growth rate of bacteria and mold and the hardness of tap water. It is desirable to decide.
- the humidifying device according to the first embodiment can discharge the excess water of the porous metal body 5 from the distal end portion 16. For this reason, since it is difficult for water droplets to collect at the lower end of the porous metal body 5, it becomes possible to suppress the growth of bacteria and mold.
- FIG. 5 shows a comparative configuration example for explaining the operation of the humidifier according to Embodiment 1 of the present invention.
- FIG. 5 is a view showing a comparative example of the humidifier, and unlike the first embodiment, the lower surface of the porous metal body 5 is a horizontal plane.
- the lower end of the porous metal body 5 is horizontal, water tends to collect from the upstream side to the downstream side of the lower end portion of the porous metal body 5. For this reason, in the drying operation, an operation time for drying the porous metal body 5 is required, and energy is wasted.
- the drying time is insufficient and the water droplets 302 remain in the porous metal body 5, slime is likely to be formed. Therefore, odor at the air outlet 10 and mixing of microorganisms or mold spores into the humidified air occurs. It becomes easy to do.
- FIG. 6 shows a state in which a water droplet bridge 303 is formed in the gap between the porous metal bodies 5.
- the lower end portion of the porous metal body 5 is not leveled, but the lower end portion of the porous metal body 5 is provided with a tip portion 16 having a corner protruding downward.
- the water below the porous metal body 5 can be discharged efficiently. By efficiently draining the water below the porous metal body 5 in this way, the growth of microorganisms such as bacteria and fungi is suppressed, the decrease in humidification performance is suppressed, and the initial humidification performance is maintained longer. Can do.
- the lower support member 8 is configured not to support the lower end portion of the porous metal body 5 but to support the downstream side wall portion as shown in FIG. If the lower support material 8 is configured to support the lower end portion of the porous metal body 5, water easily accumulates at the joint between the lower support material 8 and the porous metal body 5, and slime is generated. Can be promoted. However, by making the lower support material 8 support the side wall portion above the lower end portion of the porous metal body 5, it is difficult for water to deposit at the joint portion between the lower support material 8 and the porous metal body 5. The effect which becomes can be acquired.
- the angle ⁇ 1 of the tip portion 16 if the angle ⁇ 1 is too large, the effect of not depositing water on the lower end portion of the porous metal body 5 is reduced, and if the angle ⁇ 1 is too small, the processing of the porous metal body 5 is difficult. And the strength becomes brittle. For this reason, the angle ⁇ 1 of the tip portion 16 is set to an appropriate angle in consideration of the degree of water accumulation on the lower end portion of the porous metal body 5, the processing of the porous metal body 5, and the strength of the tip portion 16. The range of 30 to 150 degrees is preferable.
- FIG. 7 is a configuration diagram showing a modified example of the porous metal body 5 of the humidifying device according to Embodiment 1 of the present invention.
- the distal end portion 16 has a rectangular protrusion shape that protrudes downward. More specifically, a protrusion protruding downward in a step shape is formed at the center of the lower surface of the porous metal body 5 in the depth direction, and the tip portion 16 is constituted by this protrusion.
- the cross-sectional area in the horizontal plane of the front end portion 16 is smaller than the cross-sectional area in the horizontal plane of the porous metal body 5 above the front end portion 16.
- tip part 16 becomes large, the draining effect will become small, and if the width
- an appropriate width exists as the width (width in the depth direction) of the protrusion constituting the tip portion 16, and a range of 2 [mm] to 10 [mm] is preferable.
- the shape of the protrusion constituting the distal end portion 16 may be a columnar shape, a conical shape, a truncated cone shape, etc. in addition to a prismatic shape.
- FIG. 8 is a configuration diagram showing a modification of the porous metal body 5 of the humidifying device according to Embodiment 1 of the present invention.
- the rectangular porous metal body 5 is installed so as to be inclined in the depth direction, so that one of the two lower corners of the rectangle is positioned below the other. ing.
- the corner portion located on the lower side is the tip portion 16. Therefore, the cross-sectional area in the horizontal plane of the porous metal body 5 is smaller toward the lower part.
- the corner portion of the rectangular porous metal body 5 is used as the tip portion 16, the water of the porous metal body 5 can be efficiently distributed as in the configuration examples of FIGS. 1 and 7. Therefore, the growth of microorganisms such as bacteria and fungi can be suppressed, and the initial humidification performance can be maintained.
- FIG. 9 is a configuration diagram of a humidifier according to Embodiment 2 of the present invention.
- the tip 16 is provided at the center of the lower end of the porous metal body 5 as shown in FIG.
- a tip portion 16 that protrudes downward is provided in the lower portion of the porous metal body 5 in the upstream portion of the air flow (left side in FIG. 9).
- the lower surface of the porous metal body 5 is inclined upward from the distal end portion 16 in the depth direction.
- an upper porous metal body 17 that is an upper humidifying member is provided on the porous metal body 5 of the second embodiment.
- FIG. 10 is a configuration diagram of the main part viewed from the upstream side of the humidifier according to Embodiment 2 of the present invention.
- the upper porous metal body 17 is configured to cover all of the upper ends of the plurality of porous metal bodies 5. Further, the upper porous metal body 17 is brought into close contact with the porous metal body 5 by applying a load from the upper part of the upper porous metal body 17.
- the upper porous metal body 17 plays a role of a buffer material for transmitting water to the porous metal body 5, not a function of humidifying air. That is, water dripped from the nozzle 3 is once absorbed by the upper porous metal body 17, spreads over the entire upper porous metal body 17, and then transmitted from the lower portion of the upper porous metal body 17 to the porous metal body 5. Is done.
- the operation of the humidifying operation of the humidifier is the same as that of the first embodiment.
- the humidifying operation air is humidified in order in the process of flowing from the upstream side portion (left side of the paper surface of FIG. 9) to the downstream side portion (right side of the paper surface of FIG. 9) of the porous metal body 5.
- the air located in the downstream portion of the porous metal body 5 has a higher relative humidity than the air located in the upstream portion. Since the humidification capacity is proportional to the vapor pressure, the humidification performance decreases when the humidity in the air is high. That is, when the humidification operation is performed from the state where the porous metal body 5 is uniformly impregnated with water, the water remaining in the upstream portion is used because the water upstream from the porous metal body 5 is used for humidification first. There is a relatively small phenomenon that water remaining in the downstream portion increases.
- the tip portion 16 is provided in the upstream portion of the porous metal body 5.
- moisture content of the porous metal body 5 during humidification operation can be made small.
- water is once absorbed by the upper porous metal body 17 and is passed through the porous metal body 5 through the upper porous metal body 17. Variation in water can be reduced.
- the tip 16 is provided on the upstream side for all the porous metal bodies 5, but for example, “upstream side—center part—upstream side—center part—upstream side”, “upstream side— The distal end portions 16 may be provided at alternate positions such as “downstream side ⁇ upstream side ⁇ downstream side ⁇ upstream side”, and the positions of the distal end portions 16 in the depth direction may be different between the adjacent porous metal bodies 5. Moreover, while providing the front-end
- the operation of the drying operation is the same as in the first embodiment.
- the upper porous metal body 17 is provided in close contact with and covers the upper portions of the plurality of porous metal bodies 5, and water supplied from the supply unit 2 is supplied to the upper porous metal body 17. It was made to supply to each porous metal body 5 via. For this reason, the dispersion
- Embodiment 3 The humidifying device according to the third embodiment will be described with a focus on differences from the second embodiment.
- the configuration of the humidifier of the third embodiment is the same as the configuration of the second embodiment shown in FIG.
- the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 of Embodiment 3 are made of a material having high thermal conductivity, and are joined to the casings 12 and 13 without any gaps.
- a material having high thermal conductivity a metal such as titanium, copper, aluminum, or nickel, or a noble metal such as gold, silver, or platinum can be used.
- porous metal body 5 and the casings 12 and 13 of the third embodiment are made of a metal having high thermal conductivity.
- the thermal conductivity of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 is the same as or higher than that of the porous metal body 5.
- FIG. 11 is a characteristic diagram showing the temperature dependence of the vapor pressure of water derived from the Antoine equation. Antoine's formula is expressed by the following formula (1).
- p is the vapor pressure.
- the vapor pressure depends on the temperature, and it is known that the higher the temperature, the higher the vapor pressure. Since the vapor pressure is proportional to the humidification capacity, the humidification performance can be improved by raising the temperature of the porous metal body 5.
- the temperature of the porous metal body 5 is lowered by the latent heat of evaporation caused by humidification.
- the humidification ability is lowered. Therefore, it is effective to quickly discharge the cold heat generated by the latent heat of vaporization from the porous metal body 5 in order to maintain the humidification performance.
- Embodiment 1 it has been described that either the porous metal body 5 or the metal fiber may be used as the humidifying member.
- the porous metal body 5 is used for the following reason. It is desirable to use as a humidifying member.
- the contact point between the metal fibers in FIG. 4 is a point and the contact area is small, whereas the porous metal body in FIG. In the body 5, the metals are substantially integrated. Due to such a difference in contact area, there is a large difference in heat conduction performance between the two. That is, with respect to the porous metal body 5, the metal fiber has a reduced thermal conductivity performance and a humidification performance. For this reason, it is desirable to use the porous metal body 5 as a humidifying member.
- the operation of the humidifier is the same as in the first embodiment.
- a porous metal body 5 made of a metal having high thermal conductivity is used as a humidifying member, and an upper upstream support member 6, an upper downstream support member 7, and a lower support member 8 are It was made of a metal member or ceramic having the same thermal conductivity as that of the porous metal body 5 or higher than that of the porous metal body 5. Further, the porous metal body 5 and the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8, and the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 and the housing. The body 12 and the housing 13 were joined and integrated without a gap.
- FIG. 12 is a configuration diagram of a humidifying device according to Embodiment 4 of the present invention. 12 is different from the above-described FIG. 9 in that a heater 18 as a heating member is installed in the housing 12.
- the heater 18 is for heating the porous metal body 5.
- the heater 18 may be anything as long as it generates heat. For example, it may be a nichrome wire, a PTC (Positive Temperature Coefficient) heater, a heat pump, a Peltier element, or the like.
- the heat conduction is better when it is as close as possible to the porous metal body 5, so that the vicinity of the upper upstream support member 6 or the upper downstream support member 7 is desirable.
- the porous metal body 5 can be heated by the heat generated from the heater 18.
- the humidifier of the fourth embodiment applies a voltage to the heater 18 to heat the porous metal body 5 in the drying operation, thereby improving the efficiency of the drying operation.
- the other operation of the humidifier is the same as that of the first embodiment.
- a porous metal body 5 made of a metal having high thermal conductivity is used as a humidifying member, and further, an upper upstream support member 6 and an upper downstream support member are used.
- the material 7 and the lower support material 8 were made of a metal member or ceramic having the same thermal conductivity as that of the porous metal body 5 or higher than that of the porous metal body 5.
- the body 12 and the housing 13 were joined and integrated without a gap.
- the heater 12 is provided in the casing 12, and the porous metal body 5 is heated by the heater 18 during the drying operation. For this reason, even during the drying operation, the latent heat of vaporization can be efficiently discharged to the outside in the same manner as during the humidification operation. Therefore, the water at the tip portion 16 of the porous metal body 5 can be efficiently dried, and the drying operation Can be shortened. Thus, by efficiently drying the water at the lower end of the porous metal body 5, it is possible to suppress the growth of bacteria and mold and maintain the initial humidification performance.
- FIG. 13 is another configuration diagram of the humidifying device according to Embodiment 4 of the present invention.
- heat radiating fins 19 made of aluminum or the like are attached to the housing 12.
- the heat of the porous metal body 5 is configured to be transmitted to the housing 12 through the upper upstream support member 6 or the upper downstream support member 7 and the housing 12. Even if the heat dissipating fins 19 are provided in this manner, the same effects as those obtained when the heater 18 is provided can be obtained.
- a substrate circuit including circuit components for operating the humidifier may be provided at a position where heat is transmitted to the porous metal body 5 in place of the heater 18. Since the substrate circuit generates heat during operation, for example, when the substrate circuit is provided in the same place as the heater 18, the heat of the substrate circuit is generated by the housing 12, the upper upstream support member 6, the upper downstream support member 7, and the lower support. It is transmitted to the porous metal body 5 through the material 8, and the same effect as when the heater 18 is provided can be obtained.
- the casing 12 is provided with heating means (heater 18 or substrate circuit) for heating the porous metal body 5 and heat radiation means (radiation fins 19) for releasing heat transmitted from the porous metal body 5.
- heating means heat radiation means
- the installation location of the heating means and the heat dissipation means is not limited to the housing 12. As long as the above-described functions of the heating unit and the heat dissipation unit can be exhibited, the heating unit and the heat dissipation unit can be provided in any place.
- FIG. 14 is a configuration diagram of a humidifying device according to Embodiment 5 of the present invention.
- a damper 20 is installed on the upstream side of the porous metal body 5.
- the damper 20 is a member for changing the air flow path toward the porous metal body 5.
- the damper 20 is configured such that air flows preferentially in the vicinity of the front end portion 16 of the porous metal body 5 in a state where the flow path cross-sectional area is reduced.
- the water droplet 302 is attached to the tip 16 due to surface tension, the water droplet can be forcibly scattered by applying an external force exceeding the surface tension. Further, since the flow velocity of the air passing through the porous metal body 5 can be increased by reducing the cross-sectional area of the flow path by the damper 20, the drying of the water droplets 302 remaining on the tip 16 is also accelerated, and the porous metal body. 5 drying time is shortened.
- the damper 20 is controlled so that the cross-sectional area of the air flow toward the porous metal body 5 is maximized.
- Other operations in the humidifying operation are the same as those in the first embodiment.
- the damper 20 is controlled so that the air flow path toward the porous metal body 5 is narrowed as shown in FIG. 14 and this air preferentially flows in the vicinity of the tip portion 16. .
- Other operations in the drying operation are the same as those in the first embodiment.
- the fifth embodiment air is preferentially flowed to the front end portion 16 of the porous metal body 5 in the drying operation. For this reason, the front-end
- the damper 20 is provided as a means for increasing the wind speed of the air passing through the porous metal body 5 .
- the fan 9 in the drying operation is provided instead of or in addition to the damper 20, the fan 9 in the drying operation is provided.
- the rotational speed per unit time may be increased. Even in this way, the wind speed of the air passing through the porous metal body 5 can be increased, so that the time for the drying operation can be shortened.
- FIG. 15 is a configuration diagram of a humidifier according to the sixth embodiment.
- the housing 13 is provided with a sensor 21 as moisture detection means for detecting the presence or absence of a water droplet 302 at the tip 16 at a position facing the tip 16 of the porous metal body 5. It has been.
- the sensor 21 is a device that detects the presence or absence of a water droplet 302 in the detection region based on, for example, a light scattering method.
- FIG. 16 is a diagram illustrating the sensor 21 of the humidifier according to Embodiment 6 of the present invention.
- the sensor 21 includes an LED (Light Emitting Diode) 22 as a light source that emits light, a photomultiplier 23 that outputs a signal corresponding to the amount of received light, a power supply 24 that supplies power to the LED 22, An amplifying circuit 25 that amplifies the output from the photomultiplier 23 and a discriminating means 26 that discriminates the presence or absence of the water droplet 302 based on the output from the amplifying circuit 25 are provided.
- the wavelength of the light emitted from the LED 22 is not particularly limited, and it can be used from ultraviolet light to infrared light.
- a light source is not limited to LED, You may use the other member which emits light as a light source.
- the determination unit 26 includes, for example, a circuit component that can determine the magnitude between the output from the amplifier circuit 25 and a predetermined threshold value. The discrimination result of the discrimination means 26 is input to a humidifier control device (not shown).
- the drying operation when the water droplet 302 exists on the optical path of the light emitted from the LED 22, the light from the LED 22 is scattered, and the photomultiplier 23 is irradiated with a part of the scattered light. Since the light irradiated to the photomultiplier 23 generates an electromotive force, the light is boosted to a constant voltage by the amplifier circuit 25 and input to the determination means 26.
- the discriminating means 26 discriminates the presence or absence of the water droplet 302 based on the magnitude of the preset voltage threshold and the inputted value, and inputs the discrimination result to the control device.
- the control device continues the drying operation when it is determined that the water droplet 302 is present, and stops the drying operation when it is determined that the water droplet 302 does not exist.
- the rotational speed of the fan 9 may be controlled according to the output of the amplifier circuit 25 instead of determining the presence or absence of the water droplet 302 based on the threshold set in the determination means 26.
- a sensor for detecting humidity may be used instead of such a sensor 21, but instead of such a sensor 21, a sensor for detecting humidity may be used. Even when a sensor for detecting humidity is used, the presence or absence of the water droplet 302 may be determined based on the magnitude of the detected humidity value and a preset threshold value, as in the light scattering sensor 21, and amplification. Depending on the output of the circuit 25, the magnitude of the rotational speed of the fan 9 may be controlled.
- the operation in the humidifying operation is the same as that in the first embodiment.
- the presence or absence of water droplets 302 in the vicinity of the tip portion 16 of the porous metal body 5 is detected by the sensor 21, and the drying operation is performed based on the detection result. Since the drying operation can be continued while the water droplet 302 remains on the tip portion 16, the growth of bacteria and mold in the porous metal body 5 can be suppressed, and the initial humidification performance can be maintained. In addition, if there is no water droplet 302 remaining at the tip portion 16, the drying operation can be stopped, so that wasteful drying operation can be suppressed and energy saving can be achieved.
- Embodiment 7 FIG. The humidifying device according to the seventh embodiment will be described with a focus on differences from the first embodiment.
- FIG. 17 is a configuration diagram of a humidifying device according to Embodiment 7 of the present invention.
- the humidifying apparatus according to the seventh embodiment provides a space between the porous metal body 5 and the porous metal body 5 on the upstream side of the structure shown in FIG. 1.
- a grounding portion 29 is attached to the porous metal body 5.
- the conductor electrode 27 is for forming an electric field in a space (gap) between the porous metal body 5.
- the conductor electrode 27 needs to have conductivity in order to form an electric field in the space between the porous metal body 5 and the material of the conductor electrode 27 is, for example, a metal, a metal alloy, or a conductive resin. Is preferred.
- the conductor electrode 27 should just be a thing with low electrical resistance, and although aluminum, copper, or stainless steel etc. are preferable from a versatility and workability viewpoint, it is not limited to this.
- the size of the conductor electrode 27 is not particularly limited, and may be appropriately adjusted according to the size of the humidifier to be manufactured.
- the power source 28 is connected to the conductor electrode 27 and applies a voltage to the conductor electrode 27.
- the power source 28 applies a voltage to the conductor electrode 27, an electric field is formed in the space between the porous metal body 5 and the conductor electrode 27.
- the porous metal body 5 is grounded to the grounding portion 29, and a conductor provided at the opposing portion of the porous metal body 5.
- a DC positive voltage can be applied to the porous metal body 5 to ground the conductor electrode 27 provided at the opposing portion, whichever configuration is adopted. May be.
- a DC positive voltage is applied to the porous metal body 5 containing water, there is a possibility that the porous metal body 5 is deteriorated due to electric corrosion. Therefore, as shown in FIG. It is more desirable to apply a direct current negative voltage to the conductor electrode 27 which is grounded and provided in the facing portion.
- a voltage value applied by the power source 28 to the conductor electrode 27 it is desirable to apply -10 [kV] or more and ⁇ 4 [kV] or less when applying a DC negative voltage. This is because if the applied voltage is greater than ⁇ 4 [kV] and less than 0 [kV], the strength of the electric field formed between the porous metal body 5 and the conductor electrode 27 is weak, and the porous metal body 5 This is because water cannot be drawn from the water. On the other hand, if the applied voltage is smaller than ⁇ 10 [kV] (that is, the absolute value of the applied voltage is larger than 10 [kV]), the load on the power supply 28 becomes large and the insulation design becomes difficult.
- the porous metal body 5 and the conductor electrode 27 are formed between the porous metal body 5 and the conductor electrode 27 so as not to generate discharge in the humidifying device. It is desirable to set the strength of the electric field to less than 30 [kV / cm] which is the dielectric breakdown field strength of the gas. When an electric field strength of 30 [kV / cm] is formed between the porous metal body 5 and the conductor electrode 27 by the power source 28, a spark discharge is generated between the porous metal body 5 and the conductor electrode 27. This is because there is a problem that the porous metal body 5 has a short life, and the invalid power consumption due to heat generation increases.
- the gap length of the space between the porous metal body 5 and the conductor electrode 27 is preferably 3 [mm] or more and 20 [mm] or less. This is because when the gap length is less than 3 [mm], the space between the porous metal body 5 and the conductor electrode 27 is narrow, so that the pressure loss of the air blown by the fan 9 becomes large and the power load of the fan 9 is high. Because it becomes. On the other hand, when the gap length is longer than 20 [mm], the electric field strength sufficient to draw water from the porous metal body 5 is not reached, so that there is a problem that the humidifying ability is lowered.
- the porous metal body 5 of the seventh embodiment has a water absorption at the lower part of the porous metal body 5 that is a ground electrode, and a tip protruding downward.
- a portion 16 is provided. The distal end portion 16 is located below the conductor electrode 27 in the seventh embodiment.
- the shape of the distal end portion 16 may be any shape as long as the water droplet 302 can be easily dropped.
- the shape shown in FIGS. 7 and 8 may be used, or the porous metal body 5 as shown in FIG. You may provide the front-end
- the tip portion 16 may be made of a material having water absorption, and the tip portion 16 may be made of the same material as the porous metal body 5 or may be made of a material different from the porous metal body 5. May be.
- the humidified water is uniformly diffused throughout the porous metal body 5 through the voids 15 of the porous metal body 5 and is porous.
- the solid metal body 5 holds a certain amount of water.
- This tailor cone is kept in a triangular pyramid shape by the balance between the Coulomb force and surface tension that the induction-charged water receives from the electric field.
- the value of the input voltage applied from the power source 28 to the conductor electrode 27 is increased to increase the electric field strength, and the Coulomb force exceeds the surface tension of the water forming the tailor cone, it is drawn from the porous metal body 5.
- the tailor cone is released into the space in the form of a mist and atomized to a size of several tens [nm] by Rayleigh splitting.
- the electric field strength between the porous metal body 5 and the conductor electrode 27 is controlled by the power supply 28 so as not to cause a discharge phenomenon, so that on the surface of the porous metal body 5.
- the water is kept in a tailor cone.
- the water in the surface layer of the porous metal body 5 and the tailor cone extracted from the porous metal body 5 by the electric field are provided upstream or downstream of the humidifying part composed of the porous metal body 5 and the conductor electrode 27.
- the air is vaporized by gas-liquid contact with the gas to be treated, which is air blown by the fan 9, and humidifies the humidified space.
- the blowing direction of the gas to be processed by the fan 9 is set to be perpendicular to the direction of the electric field formed in the space between the porous metal body 5 and the conductor electrode 27.
- the electric field strength between the porous metal body 5 and the conductor electrode 27 is increased by increasing the voltage applied by the power source 28 to the conductor electrode 27, the formation of the tailor cone is promoted.
- the contact area with the processing gas increases, and the humidification performance can be increased.
- the surplus water reaches the lower end of the porous metal body 5 and forms water droplets. Then, it is dropped into the drain pan 11 and discharged. At this time, if the spatial distance between the water droplet 302 and the conductor electrode 27 is too short, abnormal discharge may occur.
- the tip 16 is provided at the lower part of the porous metal body 5, and excess water is dropped from the tip 16 as the water droplet 302 onto the drain pan 11. The conductor electrode 27 was disposed above the tip portion 16. For this reason, the spatial distance between the water droplet 302 and the conductor electrode 27 can be increased, and abnormal discharge between the water droplet 302 and the conductor electrode 27 can be suppressed.
- the water of the lower end part of the porous metal body 5 can be efficiently drained from the tip part 16, the growth of bacteria and mold in the porous metal body 5 is suppressed, and the humidification performance in the initial state is maintained. be able to.
- the humidifying member is configured by the porous metal body 5 or the metal fiber 4
- the humidifying member may be configured by porous ceramic.
- an electric field can be formed between the humidifying member and the conductor electrode 27 by configuring the humidifying member with a porous ceramic having conductivity.
- Embodiments 1 to 7 can be used in combination with each other.
- the configurations of the porous metal body 5 and the tip portion 16 exemplified in the first embodiment and the second embodiment may be applied to any of the other embodiments.
- Embodiment 8 FIG. The humidifying device according to the eighth embodiment will be described focusing on differences from the first and second embodiments.
- FIG. 18 is a perspective view of the main part showing the configuration of the humidifying device according to Embodiment 8 of the present invention.
- FIG. 19 is a configuration diagram of a humidifier according to Embodiment 8 of the present invention, and shows a schematic cross section on a side surface.
- the difference from FIG. 1 showing the first embodiment and FIG. 9 showing the second embodiment is that the lower ends of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8. It is the shape.
- the sides forming the lower surfaces of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 are all horizontal.
- the lower surface was a horizontal plane.
- the lower surface of the upper upstream support material 6, the upper downstream support material 7, and the lower support material 8 is inclined rather than horizontal.
- the sides forming the lower surfaces of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 are all linear, and the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8
- the lower surface is a flat inclined surface. Since such a lower surface is formed, the lower part of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 has a horizontal sectional area that is smaller on the lower side than on the upper side.
- the lower ends of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 have a shape protruding downward.
- the protruding shape of the lower end portions of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 is referred to as a tip portion 31.
- the upper side 8a of the lower support member 8 in contact with the porous metal body 5 is a linear side having an upward gradient from the upstream side to the downstream side of the air flow. Furthermore, the upper surface of the lower support member 8 is inclined in the air flow direction and a direction perpendicular thereto.
- the upper upstream support material 6, the upper downstream support material 7, and the lower support material 8 are not porous bodies but are provided as, for example, resin molded products or metal molded products. .
- water is transmitted from the porous metal body 5 or the upper porous metal body 17 to the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8, and water is transmitted on the surface thereof.
- the water that flows on the surfaces of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 made of resin or metal flows downward along these inclined lower surfaces, and flows down from the tip 31.
- the water transmitted from the porous metal body 5 to the upper surface of the lower support material 8 and the water dropped from the upper downstream support material 7 onto the upper surface of the lower support material 8 are the upper side 8a and the upper surface of the inclined lower support material 8. Flowing along.
- the lower surface of the upper upstream support member 6 is an inclined surface having a downward slope from the upstream side to the downstream side of the air flow, and the lower surface of the upper downstream support member 7 is air.
- This is an inclined surface having an upward slope from the upstream side to the downstream side of each flow, and any lower surface is lowered as it approaches the porous metal body 5.
- the water that flows on the surfaces of the upper upstream support member 6 and the upper downstream support member 7 and dripped from the tip 31 is received by the drain pan 11 disposed under the porous metal body 5.
- the lower surface of the lower support member 8 is an inclined surface that is inclined upward from the upstream side to the downstream side of the air flow, and the water droplets 304 dropped from the front end portion 31 of the lower support member 8 are also received by the drain pan 11. .
- the porous metal body 5 is configured so that the horizontal cross-sectional area shown in the first and second embodiments, that is, the lower horizontal cross-sectional area decreases stepwise or steplessly from the upper side to the lower side.
- the tip portion 16 can be used.
- the humidifying operation and the drying operation of the humidifying device are the same as in the first embodiment.
- the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 are not leveled at the lower ends thereof, but the upper upstream support member 6, the upper downstream support member 7 and The lower end of the lower support member 8 is provided with a tip 31 that protrudes downward at the lower end of the inclined surface. For this reason, since the water which flows into the upper upstream support material 6, the upper downstream support material 7, and the lower support material 8 gathers at the front-end
- the humidification performance in the initial state can be maintained for a longer time.
- the water transmitted from the porous metal body 5 to the upper portion of the lower support material 8 is directed to the upper side 8a.
- the water that flows smoothly downward along the surface and adheres to the lower support member 8 can be discharged efficiently.
- the upper surface of the lower support member 8 is inclined in both the air flow direction and the direction perpendicular thereto, and water adhering to the upper surface of the lower support member 8 is It can flow smoothly toward the lowered portion (corner portion).
- the water adhering to the lower support material 8 tends to gather at the tip 31 and adheres to the lower support material 8. Water can be discharged efficiently.
- the tip 31 is not provided with all the lower surfaces of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 as inclined surfaces. You may provide the front-end
- Embodiment 9 FIG. The humidifying device according to the ninth embodiment will be described focusing on differences from the eighth embodiment.
- FIG. 20 is a perspective view of the main part showing the configuration of the humidifying apparatus according to Embodiment 9 of the present invention.
- FIG. 21 is a configuration diagram of a humidifier according to Embodiment 9 of the present invention, and shows a schematic cross section on a side surface.
- the ninth embodiment is different from the eighth embodiment in the shapes of the lower and upper portions of the lower support member 8.
- the sides forming the lower surface of the lower support member 8 are all straight and the lower surface of the lower support member 8 is a flat inclined surface.
- the lower surface of the lower support member 8 of the form 9 is an inclined surface that is recessed upward and is curved in an arc shape.
- the side forming the lower surface of the lower support member 8 has an arc shape in a side view.
- a protruding tip portion 31 protruding downward is formed at the lowermost portion of the lower support member 8.
- the upper side 8a of the lower support material 8 in contact with the porous metal body 5 is linear, and the upper surface of the lower support material 8 is a flat inclined surface.
- the upper side 8a of the ninth embodiment is curved in an arc shape, and the upper surface of the lower support member 8 is also an inclined surface curved in an arc shape.
- the humidifying operation and the drying operation of the humidifying device are the same as in the first embodiment.
- the lower surface of the lower support member 8 is an inclined surface curved in an arc shape, and the protruding tip portion 31 is provided at the lowermost portion of the lower support member 8. For this reason, the water that has propagated from the porous metal body 5 to the lower support member 8 and has flowed through the lower support member 8 gathers at the tip 31 and drops as water droplets 304. Therefore, as in the above-described eighth embodiment, the water below the lower support member 8 can be efficiently drained, the growth of microorganisms such as bacteria and mold is suppressed, and the deterioration of the humidification performance is suppressed to the initial state. The humidifying performance can be maintained for a longer time.
- the upper side 8a of the lower support member 8 in contact with the porous metal body 5 is formed in an arc shape and inclined, it is transmitted from the porous metal body 5 to the upper portion of the lower support material 8.
- the water smoothly flows downward along the upper side 8a, and the water adhering to the lower support member 8 can be drained efficiently.
- By efficiently draining the water adhering to the lower support material 8 in this way it is possible to suppress the growth of microorganisms such as bacteria and mold, to suppress the decrease in the humidification performance, and to maintain the initial humidification performance for a longer time. it can.
- the upper surface of the lower support member 8 is an inclined surface curved in an arc shape, the water adhering to the upper surface of the lower support member 8 is the lowest portion (corner portion) of the upper surface. ) Can flow smoothly toward.
- FIG. 22 is a side view showing another example of the lower support member 8 according to Embodiment 9 of the present invention.
- the lower surface of the lower support member 8 is composed of a plurality of continuous flat surfaces, and a tip portion 31 that protrudes downward is formed at the lower portion of the lower support member 8.
- the shape of the lower surface of the lower support member 8 is not limited as long as a part of the lower portion of the lower support member 8 protrudes downward. The same applies to the upper surfaces of the upper upstream support member 6 and the upper downstream support member 7 and the upper surface of the lower support member 8.
- Embodiment 10 FIG. The humidifying device according to the tenth embodiment will be described focusing on the differences from the first embodiment.
- FIG. 23 is a configuration diagram of the porous metal body 5 as viewed from the upstream side of the humidifier according to Embodiment 10 of the present invention.
- the humidifying device of the tenth embodiment is provided with a plurality of porous metal bodies 5, and the plurality of porous metal bodies 5 are set up with a predetermined gap so that their flat surfaces are substantially parallel. It is installed.
- a tip end portion 16 is provided at the lower end of the porous metal body 5 of FIG.
- the tip end portion 16 of the porous metal body 5 of the tenth embodiment has a tapered shape that is narrower toward the lower side when viewed from the upstream side of the air flow.
- the cross section is generally formed in a pencil shape. Therefore, the tip 16 of the porous metal body 5 has a smaller horizontal cross-sectional area on the lower side than on the upper side.
- the shape of the porous metal body 5 when viewed from the side may be a rectangular shape as in FIG. 5, but as shown in FIG. It is preferable to form the tip portion 16. Further, the shape of the tip 16 in that case may be a rectangular protrusion shown in FIG. 7 or a triangular protrusion in a side view shown in FIG. 9, or a rectangular porous shape in a side view as shown in FIG. You may install the quality metal body 5 inclining.
- the humidifying operation and the drying operation of the humidifying device are the same as in the first embodiment.
- Embodiment 11 FIG. In the eleventh embodiment, an air conditioner including a humidifier will be described with reference to the drawings.
- FIG. 24 is a configuration diagram of the air conditioner 100 including the humidifier according to Embodiment 11 of the present invention.
- the air conditioner 100 shown in FIG. 24 performs a humidifying operation using a humidifying device, and performs a cooling / heating operation simultaneously with or independently of the humidifying operation.
- the humidifying device shown in FIG. 24 differs from the humidifying device shown in the first to tenth embodiments in the arrangement and shape of a part of the configuration, but corresponds to the configuration shown in the first to tenth embodiments.
- the same reference numerals are used for explanation.
- a humidifier is installed in a casing 35 that forms the outline of the air conditioner 100.
- a supply unit 2, a nozzle 3, a porous metal body 5, a fan 9, and a drain pan 11 are installed inside the housing 35.
- the fan 9 is arranged on the upstream side of the porous metal body 5, but this arrangement is not limited, and the fan 9 is arranged on the downstream side of the porous metal body 5 as in the first to tenth embodiments. 9 may be arranged.
- a heat exchanger 33 is provided between the fan 9 and the porous metal body 5 in the casing 35 of the air conditioner 100.
- a filter 32 that collects dust and dirt is provided in a suction port 34 that is an air inlet to the housing 35.
- Heated or cooled refrigerant flows through the heat exchanger 33, and heat exchange is performed between the air flowing around the heat exchanger 33 and the refrigerant.
- the heat exchanger 33 is arranged to face the porous metal body 5, and the air blown from the fan 9 flows into the porous metal body 5 after passing through the heat exchanger 33.
- the shape of the porous metal body 5 is generally a rhombus shape in side view so as to follow the outer shape of the heat exchanger 33 facing the porous metal body 5.
- the lower surface of the porous metal body 5 is inclined in the vertical direction, and a tip portion 16 protruding downward is formed at the lower portion of the porous metal body 5.
- tip part 16 is not limited to the example of FIG. 24, For example, you may employ
- a plurality of plate-like porous metal bodies 5 are erected in parallel with each other through a gap, and water for humidification is supplied to the upper part of the porous metal body 5 via the supply unit 2 and the nozzle 3.
- the supplied point is the same as in the first embodiment.
- the air conditioner 100 including the humidifying device according to the eleventh embodiment has a function of performing a humidifying operation and a cooling / heating operation.
- the air conditioner 100 includes a sensor (not shown) that detects either or both of the temperature and humidity of the air in the air-conditioning target space, and performs a humidification operation according to the temperature or humidity condition of the air in the air-conditioning target space. And air conditioning operation are performed simultaneously or selectively.
- the humidification operation is the same as in the first embodiment, and the water stored in the supply unit 2 is conveyed to the nozzle 3 as humidified water.
- the humidified water conveyed to the nozzle 3 is dropped from the tip of the nozzle 3 from above the porous metal body 5 toward the top of the porous metal body 5. Thereby, humidified water is supplied to the porous metal body 5. Utilizing the capillary force of the porous metal body 5 and the gravity of the humidified water, the humidified water is uniformly diffused throughout the porous metal body 5 through the voids 15 of the porous metal body 5 and is porous.
- the solid metal body 5 holds a certain amount of water.
- humidified air can be supplied to the space to be humidified.
- heat exchange can be caused between the refrigerant flowing through the heat exchanger 33 and the air, and the temperature of the air can be changed.
- heating or cooling the air by the heat exchanger 33 and evaporating water in the porous metal body 5 a desired temperature environment and humidity environment can be created in the air-conditioning target space.
- the drying operation of the humidifier provided in the air conditioner 100 is the same as in the first embodiment. After humidifying for a predetermined time, the dripping of water from the nozzle 3 is stopped, and the fan 9 is left as it is. Fan for hours. By performing this drying operation to dry the porous metal body 5, growth of microorganisms such as bacteria and mold in the porous metal body 5 is suppressed. In the drying operation, the air sucked from the suction port 34 may be blown as it is to the porous metal body 5 without flowing the refrigerant through the heat exchanger 33, or the heat exchanger 33 is heated through the heated refrigerant. Hot air may be blown to the porous metal body 5.
- the air conditioner 100 including the humidifying device according to the eleventh embodiment can discharge excess water of the porous metal body 5 from the tip portion 16. For this reason, it is difficult for water droplets to accumulate at the lower end portion of the porous metal body 5, so that the growth of bacteria and fungi can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Air Humidification (AREA)
Abstract
Description
(加湿装置の全体構成)
図1は、本発明の実施の形態1に係る加湿装置の構成図である。
図1で示されるように、本実施の形態1に係る加湿装置は、加湿空間へ加湿水を供給するための供給配管1、供給配管1から送られる加湿水を貯留する供給部2、この供給部2内の加湿水を水滴301として下方に供給するノズル3、及び複数の空隙を内部に有し供給される加湿水を保持する加湿部材としての多孔質金属体5を備える。また、加湿装置は、多孔質金属体5の上部を支持する上部上流側支持材6及び上部下流側支持材7と、多孔質金属体5の下部を支持する下部支持材8と、多孔質金属体5に空気を通過させるための送風手段としてのファン9と、多孔質金属体5から浸み出した水滴302を受けて外部に排出するためのドレンパン11とを備えている。上部上流側支持材6及び上部下流側支持材7は、内部に供給部2及びノズル3を収容する筐体12に取り付けられている。また、図1には図示しないが、下部支持材8は、加湿装置の手前側(図1の紙面左側)及び奥側(図1の紙面右側)において、ドレンパン11を収容する筐体13に接合されている。ファン9の下流側には、加湿した空気を吹き出すための吹出口10が設けられている。
多孔質金属体5は、複数の空隙を備えた三次元網目構造を有する多孔質金属によって構成されており、本実施の形態1の多孔質金属体5は概ね平板形状である。多孔質金属体5は、その平板面が空気流れと略平行かつ略鉛直方向となる向きで設置されている。本実施の形態1の多孔質金属体5は、図1に示すように五角形状である。より詳しくは、多孔質金属体5の上端部分は水平であり、多孔質金属体5の下端部には、下方に向かって突出した角形状からなる先端部16が設けられている。先端部16は、本発明の突部に相当する。先端部16は、本実施の形態1では、多孔質金属体5の奥行き方向の中心に角の先端が位置するようにして設けられている。また、先端部16の内角の値を角度θ1と称する。このような先端部16を設けることによって、多孔質金属体5の下部の水平面における断面積は、上から下に向かって無段階的に小さくなっている。
なお、多孔質金属体5の下端部の形状は、直線的な傾斜に限られず、例えば円弧状であってもよい。
なお、多孔質金属体5は、平板面が鉛直方向となる向きで設置される必要はなく、例えば平板面を鉛直方向に対して傾けて多孔質金属体5を設置してもよい。
また、複数の多孔質金属体5は、その平板面が互いに平行である必要はなく、例えば一部の多孔質金属体5を傾けて設置してもよい。
また、樹脂を材質として多孔質体を形成したものに、金属の粉末をコーティングしたものを、多孔質金属体5として用いてもよい。
親水化の材料を多孔質金属体5にコーティングする具体的な方法の一例は以下のとおりである。多孔質金属体5を400℃、30分の条件で大気酸化処理を行い、さらに表面の耐食性を向上させる目的でリン酸クロメート処理を行った後、ケイ酸ナトリウム水溶液100[mg/L]に10分間浸漬させ、80℃、5時間の条件で乾燥させて、表面にシリカのコーティング膜を形成する。
次に、図1を参照しながら、本実施の形態1に係る加湿装置の動作について説明する。本実施の形態1の加湿装置は、加湿運転とを選択的に行う。
まず、加湿装置の加湿運転を説明する。
供給配管1から供給された水は供給部2に貯留され、供給部2に貯留された水は加湿水としてノズル3へ搬送される。ノズル3へ搬送された加湿水は、多孔質金属体5の上方から、多孔質金属体5の上部へ向けて、ノズル3の先端から水滴301として滴下される。これにより、多孔質金属体5に加湿水が供給される。多孔質金属体5が有する毛細管力と、加湿水の重力とを利用して、加湿水は、多孔質金属体5の空隙部15を通じて、多孔質金属体5の全体に均一に拡散し、多孔質金属体5は水を一定量保持することになる。
加湿装置は、所定時間の加湿を行った後に、ノズル3からの水の滴下を停止させ、ファン9はそのまま一定時間の間、送風するという乾燥運転を行う。この乾燥運転によって多孔質金属体5を乾燥させることで、多孔質金属体5における細菌やカビ等の微生物の生長を抑制する。細菌やカビ等の微生物が生長すると多孔質金属体5が不衛生となり、再度加湿運転を行ったときに、空気中に微生物やカビの胞子が混入される可能性があることから好ましくない。なお、乾燥運転においては、空気をそのまま送風してもよいし、図示しないヒーター等の加熱手段により加熱された温風を送風してもよい。温風を送風した方が乾燥時間を短縮することができるが、加熱にエネルギーが必要なため、目標とする仕様によってどちらかを選択する。
以上の構成のように、本実施の形態1の加湿装置は、多孔質金属体5の余剰の水を先端部16から排出することができる。このため、多孔質金属体5の下端部に水滴が溜まりにくいので、細菌やカビの生長を抑制することが可能となる。
しかし、本実施の形態1のように、多孔質金属体5の下端部を水平にするのではなく、多孔質金属体5の下端部に下方へ突出する角からなる先端部16を設けることで、多孔質金属体5の下部の水を効率よく排出することができる。このように多孔質金属体5の下部の水を効率よく排水することで、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。
本実施の形態2に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
図9は、本発明の実施の形態2に係る加湿装置の構成図である。
前述の実施の形態1では、図1に示したように、先端部16を多孔質金属体5の下端部の中心に設けた。
一方、本実施の形態2では、図9に示すように、多孔質金属体5の下部のうち空気流れの上流部(図9の紙面左側)に、下方に突出する先端部16を設けている。本実施の形態2の例では、多孔質金属体5の下面は、先端部16から奥行き方向に向かって、上方に傾斜している。
さらに、本実施の形態2の多孔質金属体5の上には、上部加湿部材である上部多孔質金属体17が設けられている。
以上の構成のように、多孔質金属体5に先端部16を設けたので、実施の形態1と同様に、多孔質金属体5の下端部の水を効率よく排水することができる。したがって、細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。また、本実施の形態2では、先端部16を、多孔質金属体5における送風方向上流側に設けたので、多孔質金属体5における水分の分布のばらつきを抑制することができる。したがって、多孔質金属体5の水分を、効率よく加湿運転に利用することができ、加湿性能を向上させることができる。
本実施の形態3に係る加湿装置について、実施の形態2と相違する点を中心に説明する。
本実施の形態3の加湿装置の構成は、図9に示した実施の形態2の構成と同様である。しかし、本実施の形態3の上部上流側支持材6、上部下流側支持材7、及び下部支持材8は、熱伝導性の高い材料で構成され、また、筐体12、13と隙間なく接合されている。熱伝導性の高い材料としては、チタン、銅、アルミニウム若しくはニッケル等の金属、金、銀若しくは白金等の貴金属などを用いることができる。
アントワンの式は以下の式(1)で表される。
本実施の形態3では、加湿部材として熱伝導性の高い金属で構成された多孔質金属体5を用い、さらに上部上流側支持材6、上部下流側支持材7、及び下部支持材8を、多孔質金属体5と同じか多孔質金属体5よりも高い熱伝導性を有する金属部材又はセラミックで構成した。また、多孔質金属体5と上部上流側支持材6、上部下流側支持材7、及び下部支持材8、並びに上部上流側支持材6、上部下流側支持材7、及び下部支持材8と筐体12及び筐体13とを、隙間なく接合して一体化した。このような構成により、蒸発潜熱によって多孔質金属体5に生じた冷熱を効率よく外部に放出することが可能となり、加湿性能の低下を抑えることができる。さらに乾燥運転においても、加湿運転と同様に蒸発潜熱を効率的に外部に排出することができるので、多孔質金属体5の先端部16における水の乾燥を効率よく行え、乾燥運転の時間を短縮化することができる。このように多孔質金属体5の下端部の水を効率よく乾燥することにより、細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。
本実施の形態4に係る加湿装置について、実施の形態3と相違する点を中心に説明する。
図12は、本発明の実施の形態4に係る加湿装置の構成図である。図12において、前述の図9と異なる点は、加熱部材としてのヒーター18を筐体12に設置している点である。このヒーター18は、多孔質金属体5を加熱するためのものである。ヒーター18は発熱するものであれば何でもよく、例えばニクロム線でもよいしPTC(Positive Temperature Coefficient)ヒーターやヒートポンプ、ペルチェ素子などでもよい。設置位置としては、多孔質金属体5になるべく近いほうが、熱伝導がよいことから、上部上流側支持材6又は上部下流側支持材7の近傍が望ましい。このように構成することで、ヒーター18から発生した熱によって多孔質金属体5を加熱することが可能となる。
本実施の形態4では、前述の実施の形態3と同様に、加湿部材として熱伝導性の高い金属で構成された多孔質金属体5を用い、さらに上部上流側支持材6、上部下流側支持材7、及び下部支持材8を、多孔質金属体5と同じか多孔質金属体5よりも高い熱伝導性を有する金属部材又はセラミックで構成した。また、多孔質金属体5と上部上流側支持材6、上部下流側支持材7、及び下部支持材8、並びに上部上流側支持材6、上部下流側支持材7、及び下部支持材8と筐体12及び筐体13とを、隙間なく接合して一体化した。このような構成により、実施の形態3と同様に、蒸発潜熱によって多孔質金属体5に生じた冷熱を効率よく外部に放出することが可能となり、加湿性能の低下を抑えることができる。
図13は、本発明の実施の形態4に係る加湿装置の他の構成図である。図13に示す例では、ヒーター18に代えて、アルミニウムなどを材料とする放熱フィン19が筐体12に取り付けられている。多孔質金属体5の熱は、上部上流側支持材6又は上部下流側支持材7、及び筐体12を介して、筐体12に伝わるように構成されている。このように放熱フィン19を設けても、ヒーター18を設けた場合と同様の効果を得ることができる。
本実施の形態5に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
本実施の形態5に係る加湿装置は、乾燥運転において多孔質金属体5を通過する空気の風速を、実施の形態1よりも上昇させる。
図14は、本発明の実施の形態5に係る加湿装置の構成図である。図14に示すように、多孔質金属体5の上流側には、ダンパー20が設置されている。ダンパー20は、多孔質金属体5に向かう空気の流路を変化させるための部材である。図14に示すように、ダンパー20は、流路断面積を絞った状態において、多孔質金属体5の先端部16の近傍に優先的に空気が流れるように構成されている。水滴302は、表面張力により先端部16に付着しているが、表面張力を上回る外力を与えることで強制的に水滴を飛散させることができる。また、ダンパー20によって流路断面積を小さくすることで多孔質金属体5を通過する空気の風速を速めることができるので、先端部16に残存した水滴302の乾燥も速くなり、多孔質金属体5の乾燥時間が短くなる。
また、乾燥運転においては、ダンパー20は、図14に示すように多孔質金属体5に向かう空気の流路を絞るとともに、この空気が先端部16の近傍に優先的に流れるように制御される。乾燥運転におけるその他の動作は実施の形態1と同様である。
本実施の形態5によれば、乾燥運転において多孔質金属体5の近傍を通過する空気の風速を、加湿運転における空気の風速よりも速くしたので、前述の実施の形態1と同様の効果を得ることができるほか、乾燥運転において多孔質金属体5の乾燥を効率よく行うことができる。したがって、乾燥運転の時間を短縮化することができる。
本実施の形態6に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
図15は、実施の形態6に係る加湿装置の構成図である。図15に示すように、筐体13には、多孔質金属体5の先端部16と対向する位置に、先端部16における水滴302の有無を検出するための水分検出手段として、センサ21が設けられている。センサ21は、例えば光散乱方式を原理として、検出領域内における水滴302の有無を検知する装置である。
乾燥運転において、LED22から発せられた光の光路上に水滴302が存在しているときは、LED22からの光が散乱し、フォトマル23に散乱光の一部が照射される。フォトマル23に照射された光は起電力を生じることから増幅回路25で一定電圧に昇圧され、判別手段26に入力される。判別手段26は、あらかじめ設定された電圧の閾値と入力された値との大小により、水滴302の有無を判別し、判別結果を制御装置に入力する。制御装置は、水滴302が存在すると判別された場合には乾燥運転を継続し、水滴302が存在しないと判別された場合には乾燥運転を止める。
本実施の形態6では、多孔質金属体5の先端部16近傍における水滴302の有無をセンサ21によって検出し、その検出結果に基づいて乾燥運転を実施するようにした。水滴302が先端部16に残存している間は乾燥運転を継続することができるので、多孔質金属体5における細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。また、先端部16に残存する水滴302がなくなれば、乾燥運転を停止することができるので、無駄な乾燥運転を抑制して省エネルギー化を図ることができる。
本実施の形態7に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
図17は、本発明の実施の形態7に係る加湿装置の構成図である。図17で示されるように、本実施の形態7に係る加湿装置は、図1に示した構成に加えて、多孔質金属体5の上流側に多孔質金属体5との間に空間を設けて設置された導電体電極27と、この導電体電極27に電圧を印加する電源28とを備える。また、多孔質金属体5には、接地部29が取り付けられている。
また、吸水性を有する材料で先端部16を構成すればよく、先端部16は多孔質金属体5と同一の材料により構成されていてもよいし、多孔質金属体5とは別材料により構成されていてもよい。
次に、図17を参照しながら、本実施の形態7に係る加湿装置の動作について説明する。
まず、加湿装置の加湿運転を説明する。
供給配管1から供給された水は供給部2に貯留され、供給部2に貯留された水は加湿水としてノズル3へ搬送される。ノズル3へ搬送された加湿水は、多孔質金属体5の上方から、多孔質金属体5の上部へ向けて、ノズル3の先端から水滴301として滴下される。これにより、多孔質金属体5に加湿水が供給される。多孔質金属体5が有する毛細管力と、加湿水の重力とを利用して、加湿水は、多孔質金属体5の空隙部15を通じて、多孔質金属体5の全体に均一に拡散し、多孔質金属体5は水を一定量保持することになる。
また、電源28が導電体電極27に印加する電圧を上昇させて多孔質金属体5と導電体電極27との間の電界強度を増加させることによって、テーラーコーンの形成が促進されるので、被処理ガスとの接触面積が増加し、加湿性能を増加させることができる。
本実施の形態7によれば、多孔質金属体5と導電体電極27との間に電界を形成し、多孔質金属体5からテーラーコーンを引き出すようにした。このため、多孔質金属体5の表面層の水の蒸散に加え、テーラーコーンの蒸散によって、加湿対象空間の加湿を行うことができる。したがって、加湿性能を向上させることができる。
本実施の形態8に係る加湿装置について、実施の形態1及び実施の形態2と相違する点を中心に説明する。
図18は、本発明の実施の形態8に係る加湿装置の構成を示す主要部の斜視図である。図19は、本発明の実施の形態8に係る加湿装置の構成図であり、側面における概略断面を示している。
本実施の形態8において、実施の形態1を示す図1及び実施の形態2を示す図9と異なる点は、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部分の形状である。前述の実施の形態1、2では、図1又は図9に示したように、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面を形成する辺はすべて水平であり、下面は水平面であった。一方、本実施の形態8を示す図18及び図19においては、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面は水平ではなく傾斜している。上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面を形成する辺はすべて直線状であり、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面は平らな傾斜面である。このような下面が形成されているため、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下部は、水平断面積が、上側に対して下側の方が小さくなっており、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部は下方に向かって突出した形状である。上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部の突形状を、先端部31と称する。
本実施の形態8では、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部分を水平にするのではなく、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面を傾斜面としてこれらの下端部に下方へ突出する先端部31を設けた。このため、上部上流側支持材6、上部下流側支持材7及び下部支持材8に流れる水は、重力によって先端部31に集まって滴下するので、効率よく排水することができる。このように上部上流側支持材6、上部下流側支持材7及び下部支持材8の下部の水を効率よく排水することで、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。
また、先端部31の形状は、実施の形態1の多孔質金属体5に設けた先端部16と同様に角状(三角形状)でもよいし、図7の先端部16と同様に矩形の突起状としてもよい。
また、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面の傾斜方向、並びに下部支持材8の上辺8a及び上面の傾斜方向は、図示のものに限定されず、空気の流れ方向及びこれと直交する方向のいずれか又は両方において傾斜させることができる。
本実施の形態9に係る加湿装置について、実施の形態8と相違する点を中心に説明する。
図20は、本発明の実施の形態9に係る加湿装置の構成を示す主要部の斜視図である。図21は、本発明の実施の形態9に係る加湿装置の構成図であり、側面における概略断面を示している。
本実施の形態9において、実施の形態8と異なるのは、下部支持材8の下部及び上部の形状である。前述の実施の形態8では、図18に示したように、下部支持材8の下面を形成する辺はすべて直線であって下部支持材8の下面は平らな傾斜面であったが、本実施の形態9の下部支持材8の下面は、上方に向かって凹んでおり、円弧状に湾曲した傾斜面である。図21に示すように、下部支持材8の下面を形成する辺は、側面視における形状が円弧状である。図20、図21に示すように、下部支持材8の最下部には、下方に向かって突出する突形状の先端部31が形成される。
本実施の形態9では、下部支持材8の下面を円弧状に湾曲した傾斜面とし、下部支持材8の最下部に突形状の先端部31を設けた。このため、多孔質金属体5から下部支持材8に伝播して下部支持材8を流れた水は、先端部31に集まり、水滴304として滴下する。したがって、前述の実施の形態8と同様に、下部支持材8の下部の水を効率よく排水することができ、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。
また、上部上流側支持材6、上部下流側支持材7、及び下部支持材8の下面の形状は、実施の形態8で示した平らな一面からなる傾斜面、あるいは実施の形態9で示した湾曲した傾斜面に限定されない。図22は、本発明の実施の形態9に係る下部支持材8の他の例を示す側面図である。図22に示す例では、下部支持材8の下面は、連なる複数の平らな面で構成されており、下部支持材8の下部には下方に向かって突出する先端部31が形成されている。このような形状のほか、下部支持材8の下部の一部が下方に突出する形状であれば、下部支持材8の下面の形状は限定されない。このことは、上部上流側支持材6及び上部下流側支持材7の上面、並びに下部支持材8の上面についても同様である。
本実施の形態10に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
以上の構成のように本実施の形態10では、多孔質金属体5の下端に、下方へ突出する先端部16を設け、この先端部16の形状を、空気の流れの上流側(正面側)からみて幅方向に狭くなる先細り形状とした。このため、多孔質金属体5の余剰水は、先端部16に集まり、先端部16から漏れ出して下方に滴下するので、下端部の水を効率よく排水することができる。したがって、細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。
本実施の形態11では、加湿装置を備えた空気調和機について、図面を参照して説明する。
図24は、本発明の実施の形態11に係る加湿装置を備えた空気調和機100の構成図である。図24に示す空気調和機100は、加湿装置を用いて加湿運転を行うとともに、加湿運転と同時にあるいは独立して冷暖房運転を行う。なお、図24に示す加湿装置は、実施の形態1~10で示した加湿装置とは一部の構成の配置及び形状が異なるが、実施の形態1~10で示す構成と対応するものには同一の符号を付して説明する。
次に、図24を参照しながら、本実施の形態11に係る加湿装置の動作について説明する。
本実施の形態11の加湿装置を備えた空気調和機100は、加湿運転を行うとともに冷暖房運転を行う機能も備えている。空気調和機100は、空調対象空間の空気の温度と湿度のいずれか又は両方を検知するセンサ(図示せず)を備えており、空調対象空間の空気の温度又は湿度条件に応じて、加湿運転と冷暖房運転とを同時又は選択的に行う。
このときに熱交換器33に加熱又は冷却した冷媒を流すことで、熱交換器33を流れる冷媒と空気との間で熱交換を生じさせ、空気の温度を変化させることができる。熱交換器33による空気の加熱又は冷却、及び多孔質金属体5における水の蒸発により、空調対象空間に希望する温度環境及び湿度環境を作り出すことができる。
以上の構成のように、本実施の形態11の加湿装置を備えた空気調和機100は、多孔質金属体5の余剰の水を先端部16から排出することができる。このため、多孔質金属体5の下端部に水滴が溜まりにくいので、細菌やカビの生長を抑制することができる。
Claims (22)
- 複数の空隙を内部に有する加湿部材と、
前記加湿部材に送風する送風手段と、
前記加湿部材に水を供給する給水手段とを備え、
前記加湿部材の下端部には、突起又は角からなる突部が形成されている
ことを特徴とする加湿装置。 - 前記突部は、前記加湿部材における送風方向上流側に設けられている
ことを特徴とする請求項1記載の加湿装置。 - 複数の前記加湿部材と、
複数の空隙を内部に有し、前記複数の加湿部材の上端部を覆う上部加湿部材とを備え、
前記給水手段からの水が、前記上部加湿部材を介して前記複数の加湿部材に供給される
ことを特徴とする請求項1又は請求項2に記載の加湿装置。 - 前記加湿部材と同じか前記加湿部材よりも高い熱伝導性を有し、筐体に対して前記加湿部材を支持する加湿部材支持材を備え、
前記加湿部材と前記加湿部材支持材、及び前記加湿部材支持材と前記筐体は、隙間なく接合されている
ことを特徴とする請求項1~請求項3のいずれか一項に記載の加湿装置。 - 前記加湿部材を加熱する加熱手段、又は前記加湿部材から伝わる熱を放出する放熱手段を備えた
ことを特徴とする請求項1~請求項4のいずれか一項に記載の加湿装置。 - 前記給水手段が前記加湿部材に水を供給するとともに、前記送風手段が前記加湿部材に送風する加湿運転と、
前記加湿部材に水を供給せず、前記送風手段が前記加湿部材に送風する乾燥運転とを選択的に行う
ことを特徴とする請求項1~請求項5のいずれか一項に記載の加湿装置。 - 前記乾燥運転においては、前記加湿運転よりも速い風速の風が前記加湿部材に送風される
ことを特徴とする請求項6記載の加湿装置。 - 前記乾燥運転においては、前記加湿部材の前記突部に対し、前記加湿部材の前記突部以外の部分よりも優先的に送風される
ことを特徴とする請求項6又は請求項7記載の加湿装置。 - 前記加湿部材の前記突部における水の有無を検出する水分検出手段を備え、
前記水分検出手段の検出結果に基づいて、前記乾燥運転を継続するか否かが制御される
ことを特徴とする請求項6~請求項8のいずれか一項に記載の加湿装置。 - 前記加湿部材と間隔を隔てて対向配置された導電体電極と、
前記加湿部材と前記導電体電極との間に電圧を印加する電源とを備えた
ことを特徴とする請求項1~請求項9のいずれか一項に記載の加湿装置。 - 前記導電体電極は、前記加湿部材の前記突部よりも上側に配置されている
ことを特徴とする請求項10記載の加湿装置。 - 前記加湿部材の表面には、親水化処理が施されている
ことを特徴とする請求項1~請求項11のいずれか一項に記載の加湿装置。 - 前記加湿部材は、立設された板状の部材である
ことを特徴とする請求項1~請求項12のいずれか一項に記載の加湿装置。 - 前記加湿部材の下部は、水平断面積が上側から下側に向かって階段状あるいは無段階に小さくなるように構成されている
ことを特徴とする請求項1~請求項13のいずれか一項に記載の加湿装置。 - 前記加湿部材は、金属若しくはセラミックを発泡させた多孔質材、又は金属若しくはセラミックの繊維で構成されている
ことを特徴とする請求項1~請求項14のいずれか一項に記載の加湿装置。 - 前記加湿部材支持材の下面は傾斜している
ことを特徴とする請求項4、又は請求項4に従属する請求項5~請求項15のいずれか一項に記載の加湿装置。 - 前記加湿部材支持材の下面は、平らな傾斜面又は円弧状の傾斜面である
ことを特徴とする請求項16記載の加湿装置。 - 前記加湿部材に接する前記加湿部材支持材の上辺は傾斜している
ことを特徴とする請求項4、又は請求項4に従属する請求項5~請求項17のいずれか一項に記載の加湿装置。 - 前記加湿部材に接する前記加湿部材支持材の上辺は、直線状又は円弧状に形成されている
ことを特徴とする請求項18記載の加湿装置。 - 前記加湿部材支持材の上面は、平らな傾斜面又は円弧状の傾斜面である
ことを特徴とする請求項4、又は請求項4に従属する請求項5~請求項19のいずれか一項に記載の加湿装置。 - 発泡金属に親水性の表面処理が施された部材で構成され、互いに間隔を隔てて対向配置された複数の加湿部材と、
前記複数の加湿部材に水を供給する給水手段と、
前記加湿部材に送風する送風手段とを備え、
前記加湿部材は、下部の水平断面積が上側から下側に向かって階段状あるいは無段階に小さくなるように構成され、先端部が突起又は突部で構成されている
ことを特徴とする加湿装置。 - 請求項1~請求項21のいずれか一項に記載の加湿装置を備えた空気調和機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/417,470 US9816715B2 (en) | 2012-09-18 | 2013-02-25 | Humidifier and air-conditioning apparatus with humidifier |
JP2014536615A JP5955395B2 (ja) | 2012-09-18 | 2013-02-25 | 加湿装置及び加湿装置を備えた空気調和機 |
CN201380048442.7A CN104641181B (zh) | 2012-09-18 | 2013-02-25 | 加湿装置及具有加湿装置的空气调节器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012204713 | 2012-09-18 | ||
JP2012-204713 | 2012-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045609A1 true WO2014045609A1 (ja) | 2014-03-27 |
Family
ID=50340942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054731 WO2014045609A1 (ja) | 2012-09-18 | 2013-02-25 | 加湿装置及び加湿装置を備えた空気調和機 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9816715B2 (ja) |
JP (1) | JP5955395B2 (ja) |
CN (1) | CN104641181B (ja) |
WO (1) | WO2014045609A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015170415A1 (ja) * | 2014-05-09 | 2015-11-12 | 三菱電機株式会社 | 加湿装置及び加湿装置付きの空気調和機 |
WO2016181535A1 (ja) * | 2015-05-13 | 2016-11-17 | 三菱電機株式会社 | 加湿装置 |
WO2021035926A1 (zh) * | 2019-08-30 | 2021-03-04 | 成都中邦智能科技有限责任公司 | 可用于加湿器的蒸发器上置式结构 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5955395B2 (ja) * | 2012-09-18 | 2016-07-20 | 三菱電機株式会社 | 加湿装置及び加湿装置を備えた空気調和機 |
WO2015093078A1 (ja) * | 2013-12-18 | 2015-06-25 | 三菱電機株式会社 | 親水性コーティング膜及びその製造方法、加湿エレメント並びに加湿装置 |
TWI559947B (en) * | 2014-10-09 | 2016-12-01 | Delta Electronics Inc | Humidifier for continuous positive airway pressure |
WO2016190675A1 (en) * | 2015-05-27 | 2016-12-01 | Samsung Electronics Co., Ltd. | Humidifying apparatus |
EP3120719A1 (en) * | 2015-07-20 | 2017-01-25 | Imperiali Industries SA | Container system with a controlled environment |
US10143956B2 (en) * | 2015-08-24 | 2018-12-04 | John B. Hayden | Air cleaning fountain |
US10329180B2 (en) | 2015-08-24 | 2019-06-25 | John B. Hayden | Air cleaning fountain |
JP6076553B1 (ja) * | 2016-02-09 | 2017-02-08 | 三菱電機株式会社 | 加湿装置及び空気調和機 |
CN106403034A (zh) * | 2016-09-30 | 2017-02-15 | 美的集团武汉制冷设备有限公司 | 空调器室内机和空调器 |
CN106247461A (zh) * | 2016-09-30 | 2016-12-21 | 美的集团武汉制冷设备有限公司 | 空调器室内机和空调器 |
CN106225091B (zh) * | 2016-09-30 | 2022-03-11 | 美的集团武汉制冷设备有限公司 | 空调器室内机和空调器 |
CN106440037A (zh) * | 2016-09-30 | 2017-02-22 | 美的集团武汉制冷设备有限公司 | 空调器室内机和空调器 |
KR102665126B1 (ko) * | 2016-10-06 | 2024-05-13 | 삼성전자주식회사 | 공기조화기 및 그 제어방법 |
US11320158B2 (en) * | 2017-05-11 | 2022-05-03 | Coway Co., Ltd. | Multifunctional circulation system enabling purification of outside air |
US11698064B2 (en) * | 2017-12-29 | 2023-07-11 | Koninklijke Philips N.V. | System and method for operating a pump in a humidifier |
US20210364176A1 (en) * | 2018-02-12 | 2021-11-25 | Noritake Co., Limited | Liquid atomizing apparatus |
JP2019208727A (ja) * | 2018-06-01 | 2019-12-12 | 株式会社ナノシード | 液体蒸散装置 |
WO2020021796A1 (ja) * | 2018-07-24 | 2020-01-30 | 株式会社リンテック | 気化器 |
US11340019B2 (en) * | 2018-10-24 | 2022-05-24 | Purdue Research Foundation | Evaporative cooling systems and methods of using |
CN110260439B (zh) * | 2019-05-23 | 2021-12-17 | 青岛海尔空调电子有限公司 | 加湿器、加湿器的控制方法和机房空调 |
CN110425673B (zh) * | 2019-08-30 | 2024-08-13 | 成都中邦智能科技有限责任公司 | 蒸发器上置式加湿器 |
KR20210098046A (ko) * | 2020-01-31 | 2021-08-10 | 삼성전자주식회사 | 가습기 및 그의 제어 방법 |
TWI806419B (zh) * | 2022-02-11 | 2023-06-21 | 陳冠宏 | 散熱裝置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01178539U (ja) * | 1988-06-03 | 1989-12-21 | ||
JPH02192528A (ja) * | 1989-01-20 | 1990-07-30 | Matsushita Refrig Co Ltd | 加湿器 |
JPH04143536A (ja) * | 1990-10-05 | 1992-05-18 | Hitachi Ltd | 自然蒸発式加湿器 |
JPH04363528A (ja) * | 1991-06-10 | 1992-12-16 | Memo Raidaa Hanbai Kk | 加湿装置 |
JPH0684230U (ja) * | 1993-05-07 | 1994-12-02 | ユニチカ株式会社 | 加湿器の天材 |
JPH07305883A (ja) * | 1994-05-11 | 1995-11-21 | Matsushita Refrig Co Ltd | 加湿装置 |
JP2005201507A (ja) * | 2004-01-15 | 2005-07-28 | Mitsubishi Electric Corp | 加湿機 |
JP2006010135A (ja) * | 2004-06-23 | 2006-01-12 | Zojirushi Corp | 加湿器 |
JP2007278576A (ja) * | 2006-04-05 | 2007-10-25 | Saga Denshi Kogyo Kk | 加湿器具 |
JP2011185501A (ja) * | 2010-03-08 | 2011-09-22 | Tokyo Electric Power Co Inc:The | 気化式加湿器 |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US654725A (en) * | 1898-04-21 | 1900-07-31 | Gustavus F Swift | Air-cooling apparatus. |
US684217A (en) * | 1900-07-30 | 1901-10-08 | Gustavus F Swift | Air-cooling apparatus. |
DE19910441C1 (de) * | 1999-03-10 | 2000-06-21 | Fraunhofer Ges Forschung | Luftbefeuchtung |
US1283950A (en) * | 1917-02-17 | 1918-11-05 | John W Stiefel | Radiator for automobiles. |
US1903250A (en) * | 1930-11-11 | 1933-03-28 | Tenney Dwight | Air conditioning apparatus |
US1965255A (en) * | 1932-07-25 | 1934-07-03 | Andrew J Peabody | Air cooling device |
US2099009A (en) * | 1935-11-13 | 1937-11-16 | Walter H Finley | Humidifying system and apparatus |
US2161834A (en) * | 1936-12-09 | 1939-06-13 | Utica Radiator Corp | Air conditioning apparatus |
US2204016A (en) * | 1937-06-25 | 1940-06-11 | Parks Cramer Co | Ventilating and humidifying system |
US2251734A (en) * | 1939-07-20 | 1941-08-05 | Fuld | Diffusion and drip apparatus |
US2326089A (en) * | 1941-07-30 | 1943-08-03 | Richard C Wittman | Humidifier |
GB1121161A (en) * | 1965-01-16 | 1968-07-24 | Singer Cobble Ltd | Filter for a humidifier |
US3378238A (en) * | 1965-07-15 | 1968-04-16 | Robert S. Babington | Porous block humidification |
US3523681A (en) * | 1968-09-12 | 1970-08-11 | Richard C Jaye | Evaporator unit |
US3722838A (en) * | 1969-12-22 | 1973-03-27 | J Swimmer | Humidifier |
BE758570A (fr) * | 1970-11-06 | 1971-04-16 | Lefebvre Simon | Procede et appareillage pour la mise en contact de fluides et le transfert de matiere et de chaleur entre ceux-ci. |
JPS5636028U (ja) | 1979-08-27 | 1981-04-07 | ||
US4389352A (en) * | 1982-03-12 | 1983-06-21 | Acme Engineering & Manufacturing Corporation | Cooling pad support assembly |
CH667514A5 (en) * | 1984-07-06 | 1988-10-14 | Intersensor S A | Humidifying element for transporting moisture sensitive goods - has porous or cellular material saturated with soluble substance in water enclosed by plastics film |
JPS62175537A (ja) | 1986-01-27 | 1987-08-01 | Mitsubishi Electric Corp | 空気調和機用加湿装置 |
JPH01178539A (ja) | 1987-12-29 | 1989-07-14 | Toyoda Gosei Co Ltd | 水素添加ニトリルゴム系配合物 |
US5226935A (en) * | 1989-12-08 | 1993-07-13 | Skandinavisk Miljo System A/S | Air humidification apparatus |
JPH0684230A (ja) | 1992-09-03 | 1994-03-25 | Matsushita Electric Ind Co Ltd | ビデオテープレコーダ |
JP3197705B2 (ja) | 1993-09-30 | 2001-08-13 | アイホン株式会社 | テレビドアホン装置 |
JP3390534B2 (ja) | 1994-07-20 | 2003-03-24 | ブラザー工業株式会社 | テープ印字装置 |
AUPM777294A0 (en) * | 1994-08-30 | 1994-09-22 | William Allen Trusts Pty Ltd | Spaced evaporative wicks within an air cooler |
CA2158417C (en) * | 1995-02-17 | 1998-12-29 | Hisao Yokoya | Humidifier |
US6669626B1 (en) * | 1999-12-23 | 2003-12-30 | Hill-Rom Services, Inc. | Humidifier for a patient support apparatus |
US6550748B2 (en) * | 2001-05-29 | 2003-04-22 | Emerson Electric Co. | Dry out mechanism for humidifier |
US20050133942A1 (en) * | 2003-12-19 | 2005-06-23 | Rps Products, Inc. | Cartridge humidifier |
US7513126B2 (en) * | 2005-01-25 | 2009-04-07 | Boland David V | Outdoor cooling device |
TW200743247A (en) * | 2006-05-04 | 2007-11-16 | Ind Tech Res Inst | External gas humidifying apparatus of fuel cell |
KR100820149B1 (ko) * | 2006-11-22 | 2008-04-08 | 엘지전자 주식회사 | 공기조화기용 가습장치 및 이를 구비한 공기조화기 |
US7931991B2 (en) * | 2006-12-26 | 2011-04-26 | Canon Kabushiki Kaisha | Fuel cell |
US8550075B2 (en) * | 2007-06-28 | 2013-10-08 | Resmed Limited | Removable and/or replaceable humidifier |
US20100207286A1 (en) * | 2009-02-18 | 2010-08-19 | Jursich Donald N | Humidifier with adjustable air flow |
JP4818399B2 (ja) * | 2009-06-15 | 2011-11-16 | 三菱電機株式会社 | 静電霧化装置及び空気調和機 |
KR20160097389A (ko) * | 2009-10-09 | 2016-08-17 | 필립모리스 프로덕츠 에스.에이. | 다중-구성요소 위크를 포함하는 에어로졸 발생기 |
CN103237589B (zh) * | 2010-12-02 | 2015-11-25 | 三菱电机株式会社 | 除湿装置 |
CN114522318A (zh) * | 2011-01-24 | 2022-05-24 | 瑞思迈私人有限公司 | 增湿器 |
CN201992755U (zh) * | 2011-03-07 | 2011-09-28 | 中国人民解放军总后勤部建筑工程研究所 | 一种蒸发式加湿器 |
CA2738326A1 (en) * | 2011-04-26 | 2012-10-26 | Jeri Rodrigs | Room vent humidifier(a.k.a. rumidifier) |
US9228752B2 (en) * | 2011-08-29 | 2016-01-05 | Mitsbuishi Electric Corporation | Humidifier |
US20130106004A1 (en) * | 2011-11-01 | 2013-05-02 | William C. Stumphauzer | Humidifier assembly |
US9285133B2 (en) * | 2012-01-21 | 2016-03-15 | Air System Components, Inc. | Air humidification system |
US8943851B2 (en) * | 2012-02-17 | 2015-02-03 | United Technologies Corporation | Evaporative cooler including one or more rotating cooler louvers |
AU2013201234A1 (en) * | 2012-03-08 | 2013-09-26 | Ff Seeley Nominees Pty Ltd | Wetting of Evapoartive Cooler Pads |
JP5936054B2 (ja) * | 2012-06-15 | 2016-06-15 | 清水建設株式会社 | 加湿処理装置 |
JP5955395B2 (ja) * | 2012-09-18 | 2016-07-20 | 三菱電機株式会社 | 加湿装置及び加湿装置を備えた空気調和機 |
WO2014045668A1 (ja) * | 2012-09-20 | 2014-03-27 | 三菱電機株式会社 | 加湿器、加湿材の親水化処理方法 |
JP2014163580A (ja) * | 2013-02-25 | 2014-09-08 | Sharp Corp | 気化式空気調和機 |
WO2014174867A1 (ja) * | 2013-04-22 | 2014-10-30 | 三菱電機株式会社 | 加湿装置及び加湿装置を備えた空気調和機 |
CN105556216B (zh) * | 2013-09-18 | 2019-02-15 | 三菱电机株式会社 | 加湿装置及具备加湿装置的空气调节机 |
WO2015093078A1 (ja) * | 2013-12-18 | 2015-06-25 | 三菱電機株式会社 | 親水性コーティング膜及びその製造方法、加湿エレメント並びに加湿装置 |
-
2013
- 2013-02-25 JP JP2014536615A patent/JP5955395B2/ja active Active
- 2013-02-25 US US14/417,470 patent/US9816715B2/en active Active
- 2013-02-25 WO PCT/JP2013/054731 patent/WO2014045609A1/ja active Application Filing
- 2013-02-25 CN CN201380048442.7A patent/CN104641181B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01178539U (ja) * | 1988-06-03 | 1989-12-21 | ||
JPH02192528A (ja) * | 1989-01-20 | 1990-07-30 | Matsushita Refrig Co Ltd | 加湿器 |
JPH04143536A (ja) * | 1990-10-05 | 1992-05-18 | Hitachi Ltd | 自然蒸発式加湿器 |
JPH04363528A (ja) * | 1991-06-10 | 1992-12-16 | Memo Raidaa Hanbai Kk | 加湿装置 |
JPH0684230U (ja) * | 1993-05-07 | 1994-12-02 | ユニチカ株式会社 | 加湿器の天材 |
JPH07305883A (ja) * | 1994-05-11 | 1995-11-21 | Matsushita Refrig Co Ltd | 加湿装置 |
JP2005201507A (ja) * | 2004-01-15 | 2005-07-28 | Mitsubishi Electric Corp | 加湿機 |
JP2006010135A (ja) * | 2004-06-23 | 2006-01-12 | Zojirushi Corp | 加湿器 |
JP2007278576A (ja) * | 2006-04-05 | 2007-10-25 | Saga Denshi Kogyo Kk | 加湿器具 |
JP2011185501A (ja) * | 2010-03-08 | 2011-09-22 | Tokyo Electric Power Co Inc:The | 気化式加湿器 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015170415A1 (ja) * | 2014-05-09 | 2015-11-12 | 三菱電機株式会社 | 加湿装置及び加湿装置付きの空気調和機 |
JPWO2015170415A1 (ja) * | 2014-05-09 | 2017-04-20 | 三菱電機株式会社 | 加湿装置及び加湿装置付きの空気調和機 |
US10451299B2 (en) | 2014-05-09 | 2019-10-22 | Mitsubishi Electric Corporation | Humidifier and air-conditioning apparatus including humidifier |
WO2016181535A1 (ja) * | 2015-05-13 | 2016-11-17 | 三菱電機株式会社 | 加湿装置 |
JPWO2016181535A1 (ja) * | 2015-05-13 | 2017-07-27 | 三菱電機株式会社 | 加湿装置 |
WO2021035926A1 (zh) * | 2019-08-30 | 2021-03-04 | 成都中邦智能科技有限责任公司 | 可用于加湿器的蒸发器上置式结构 |
Also Published As
Publication number | Publication date |
---|---|
US20150219346A1 (en) | 2015-08-06 |
CN104641181A (zh) | 2015-05-20 |
US9816715B2 (en) | 2017-11-14 |
JP5955395B2 (ja) | 2016-07-20 |
JPWO2014045609A1 (ja) | 2016-08-18 |
CN104641181B (zh) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5955395B2 (ja) | 加湿装置及び加湿装置を備えた空気調和機 | |
JP5646068B2 (ja) | 加湿装置 | |
JP6076553B1 (ja) | 加湿装置及び空気調和機 | |
JP6165328B2 (ja) | 加湿装置及び加湿装置付きの空気調和機 | |
JP5989236B2 (ja) | 加湿装置及び加湿装置を備えた空気調和機 | |
JP6076544B2 (ja) | 加湿装置、及び加湿装置を備えた空気調和機 | |
JP2010284625A (ja) | 静電霧化装置及び空気調和機 | |
JP5574636B2 (ja) | 静電霧化装置及び空気調和機 | |
JP4805421B2 (ja) | 静電霧化装置及び空気調和機 | |
JP5885653B2 (ja) | 加湿装置 | |
JP5627639B2 (ja) | 静電霧化装置及び空気調和機 | |
JP2011106807A (ja) | 静電霧化装置及び空気調和機 | |
JP5159742B2 (ja) | 静電霧化装置および空気調和機 | |
JP2011173118A (ja) | 静電霧化装置及び空気調和機 | |
JP4841701B2 (ja) | 静電霧化装置及び空気調和機 | |
JP2011033322A (ja) | 静電霧化装置及び空気調和機 | |
JP2011169580A (ja) | 空気調和機 | |
JP2012021763A (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13839472 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014536615 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14417470 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13839472 Country of ref document: EP Kind code of ref document: A1 |