[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014045609A1 - 加湿装置及び加湿装置を備えた空気調和機 - Google Patents

加湿装置及び加湿装置を備えた空気調和機 Download PDF

Info

Publication number
WO2014045609A1
WO2014045609A1 PCT/JP2013/054731 JP2013054731W WO2014045609A1 WO 2014045609 A1 WO2014045609 A1 WO 2014045609A1 JP 2013054731 W JP2013054731 W JP 2013054731W WO 2014045609 A1 WO2014045609 A1 WO 2014045609A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidifying
porous metal
metal body
water
support member
Prior art date
Application number
PCT/JP2013/054731
Other languages
English (en)
French (fr)
Inventor
彰 守川
隆弘 酒井
稲永 康隆
堤 博司
勝 高田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/417,470 priority Critical patent/US9816715B2/en
Priority to JP2014536615A priority patent/JP5955395B2/ja
Priority to CN201380048442.7A priority patent/CN104641181B/zh
Publication of WO2014045609A1 publication Critical patent/WO2014045609A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • F24F2006/046Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements with a water pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/025Air-humidification, e.g. cooling by humidification by evaporation of water in the air using electrical heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • F24F6/10Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/15Duct humidifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/41Pad retaining means in humidifiers and air conditioners

Definitions

  • the present invention relates to a humidifier and an air conditioner equipped with a humidifier.
  • the indoor temperature is set as the management standard value for the air environment in accordance with the so-called Building Sanitation Management Law (the Law Concerning the Hygienic Environment in Buildings). Is to be maintained at 17 [° C.] to 28 [° C.] and the relative humidity should be maintained at 40 [%] to 70 [%].
  • the indoor temperature is managed relatively easily with the spread of air conditioners. However, it is difficult to say that the relative humidity is sufficiently controlled, and in particular, the lack of humidification in winter is a problem.
  • the vaporization type is a method of performing humidification in the room by allowing the moisture contained in the filter to exchange heat with the air flow by ventilating the filter having water absorption performance to evaporate the moisture from the filter.
  • the steam method is a method of humidifying a room by evaporating moisture by energizing a heating means for heating water in the water storage tank.
  • the water spraying method is a method in which moisture is refined by pressurizing moisture, and the refined moisture performs heat exchange with the airflow to humidify the room.
  • each water-containing material described in Patent Document 1 is fitted in a slit provided on the bottom plate of the upper chamber and formed with small holes on both sides, and the lower edge of each water-containing material is a groove provided in the lower chamber. Is held in. Further, it is described that as the water-containing material, a condensing material such as a porous metal, a sintered metal, a metal fiber, or a ceramic fiber or other porous material is used.
  • the present invention has been made to solve the above-described problems, and suppresses generation of a slime, scale, and water droplet bridge in the lower portion of the humidifying member, and suppresses a decrease in humidification performance.
  • An object of the present invention is to obtain a humidifying device and an air conditioner equipped with the humidifying device.
  • a humidifying device includes a humidifying member having a plurality of gaps therein, a blowing unit that blows air to the humidifying member, and a water supply unit that supplies water to the humidifying member, and is provided at a lower end portion of the humidifying member.
  • a humidifying member having a plurality of gaps therein
  • a blowing unit that blows air to the humidifying member
  • a water supply unit that supplies water to the humidifying member, and is provided at a lower end portion of the humidifying member.
  • the present invention it is possible to suppress water from being accumulated in the lower portion of the humidifying member. Therefore, the growth of bacteria and molds in the lower portion of the humidifying member and the generation of water droplet bridges can be suppressed, and the reduction in humidification performance can be suppressed.
  • FIG. 3 is a view showing a state in which a water droplet bridge 303 is formed in a gap between porous metal bodies 5.
  • Embodiment 4 It is another block diagram of the humidification apparatus which concerns on Embodiment 4 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 5 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 6 of this invention. It is a figure explaining the sensor 21 of the humidification apparatus which concerns on Embodiment 6 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 7 of this invention. It is a perspective view of the principal part which shows the structure of the humidification apparatus which concerns on Embodiment 8 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 8 of this invention.
  • FIG. 9 It is a perspective view of the principal part which shows the structure of the humidification apparatus which concerns on Embodiment 9 of this invention. It is a block diagram of the humidification apparatus which concerns on Embodiment 9 of this invention. It is a side view which shows the other example of the lower support material 8 which concerns on Embodiment 9 of this invention. It is a block diagram of the porous metal body 5 seen from the upstream of the humidification apparatus which concerns on Embodiment 10 of this invention. It is a block diagram of the air conditioner 100 provided with the humidification apparatus which concerns on Embodiment 11 of this invention.
  • FIG. 1 is a configuration diagram of a humidifier according to Embodiment 1 of the present invention.
  • the humidifier according to the first embodiment includes a supply pipe 1 for supplying humidified water to the humidified space, a supply unit 2 for storing humidified water sent from the supply pipe 1, and this supply
  • the nozzle 3 which supplies the humidified water in the part 2 downward as the water droplet 301, and the porous metal body 5 as a humidifying member which has the some space
  • the humidifier includes an upper upstream support member 6 and an upper downstream support member 7 that support the upper part of the porous metal body 5, a lower support member 8 that supports the lower part of the porous metal body 5, and a porous metal.
  • a fan 9 as air blowing means for allowing air to pass through the body 5 and a drain pan 11 for receiving and discharging water droplets 302 leached from the porous metal body 5 are provided.
  • the upper upstream support member 6 and the upper downstream support member 7 are attached to a housing 12 that accommodates the supply unit 2 and the nozzle 3 therein.
  • the lower support member 8 is joined to the housing 13 that houses the drain pan 11 on the front side (left side in FIG. 1) and the back side (right side in FIG. 1) of the humidifier.
  • a blower outlet 10 for blowing out humidified air is provided on the downstream side of the fan 9.
  • FIG. 1 may be referred to as the upstream or near side of the air flow, and the right side of FIG. 1 may be referred to as the downstream or back side of the air flow.
  • the supply pipe 1, the supply unit 2, and the nozzle 3 are water supply means for supplying humidified water to the porous metal body 5.
  • the supply of humidified water to the porous metal body 5 by this water supply means is controlled by a control device (not shown).
  • the nozzle 3 is installed immediately above the porous metal body 5, and drops the humidified water conveyed from the supply pipe 1 and supplies it to the upper part of the porous metal body 5.
  • the nozzle 3 has a hollow shape, and its outer shape and inner diameter may be selected according to the size of the porous metal body 5.
  • the tip shape of the nozzle 3 may be any shape such as a triangular pyramid shape, a circular tube shape, or a square tube shape, but here, as a preferable shape, the tip has a triangular pyramid shape, and the outlet hole diameter is 0.5 [mm]. ]. If the tip has an acute angle, the water drops are better.
  • the acute angle is more preferable, but if it is too sharp, handling becomes difficult and the strength becomes brittle, and therefore the acute angle is preferably in the range of 10 to 45 degrees.
  • the hole diameter at the outlet of the nozzle 3 is too large, water is excessively supplied and is wasted.
  • the nozzle 3 is likely to be clogged with particles and scales mixed in the water.
  • the range of mm] to 0.7 [mm] is preferable.
  • the material of the nozzle 3 may be a metal such as stainless steel, tungsten, titanium, silver or copper, or a resin such as Teflon (registered trademark), polyethylene or polypropylene, but is not limited thereto. .
  • the number of nozzles 3 can be set according to the length of the porous metal body 5 in the air flow direction (the length from the upstream side to the downstream side), and the length of the porous metal body 5 in the air flow direction. When the length is longer, the number of nozzles 3 is increased than when the length is shorter. For example, if the length of the porous metal body 5 in the air flow direction is 60 [mm] or less, the number of nozzles 3 may be one, but if it exceeds 60 [mm], it is preferable to provide a plurality of nozzles 3. .
  • the amount of humidified water supplied to the porous metal body 5 by the nozzle 3 needs to be larger than the amount of water actually used for humidification. It is desirable to control.
  • the humidification performance of the porous metal body 5 is 2000 [mL / h / m 2 ]
  • the size of the porous metal body 5 is 200 [mm] ⁇ 50 [mm]
  • both the front and back surfaces of the porous metal body 5 are humidified. If it is configured so that the humidification amount per piece of the porous metal body 5 is 40 [mL / h], it is 1.5 to 5 times 60 [mL / h] to 200 [mL] / H], it is desirable to supply humidified water to the porous metal body 5.
  • the humidified water may be pure water, tap water, soft water or hard water for the purpose of humidifying the humidified space, but in order to reduce the blockage of the voids of the porous metal body 5 due to the scale, What has few mineral components containing a calcium ion or a magnesium ion is preferable. This is because, when humidified water containing a large amount of minerals is used, the ionic component in the solution reacts with carbon dioxide to generate a solid, which may block the voids of the porous metal body 5. For this reason, you may use the humidified water from which the ion component was removed using the ion exchange membrane for cations and anions.
  • the porous metal body 5 is made of a porous metal having a three-dimensional network structure having a plurality of voids, and the porous metal body 5 of the first embodiment is generally plate-shaped.
  • the porous metal body 5 is installed in such a direction that its flat plate surface is substantially parallel to the air flow and substantially vertical.
  • the porous metal body 5 of the first embodiment has a pentagonal shape as shown in FIG. More specifically, the upper end portion of the porous metal body 5 is horizontal, and the lower end portion of the porous metal body 5 is provided with a tip portion 16 having a square shape protruding downward.
  • the tip portion 16 corresponds to the protrusion of the present invention.
  • the tip 16 is provided such that the tip of the corner is located at the center in the depth direction of the porous metal body 5. Further, the value of the inner angle of the distal end portion 16 is referred to as an angle ⁇ 1.
  • the cross-sectional area in the horizontal plane at the bottom of the porous metal body 5 decreases stepwise from top to bottom.
  • the shape of the lower end part of the porous metal body 5 is not limited to a linear inclination, and may be, for example, an arc shape.
  • FIG. 2 is a configuration diagram of the porous metal body 5 viewed from the upstream side of the humidifier according to Embodiment 1 of the present invention.
  • the humidifying apparatus of the first embodiment is provided with a plurality of porous metal bodies 5, and the plurality of porous metal bodies 5 are installed with a predetermined gap so that their flat plate surfaces are substantially parallel.
  • the porous metal body 5 does not need to be installed in a direction in which the flat plate surface is in the vertical direction.
  • the porous metal body 5 may be installed by tilting the flat plate surface with respect to the vertical direction.
  • the plurality of porous metal bodies 5 do not need to have flat plate surfaces parallel to each other. For example, some of the porous metal bodies 5 may be inclined and installed.
  • the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 correspond to the humidifying member support member of the present invention, and the porous metal body 5 is housed in the casing. 12 and 13 are supported.
  • the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 also have a function of keeping the intervals between the plurality of porous metal bodies 5 constant.
  • the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 each have a groove for fitting a part of the porous metal body 5.
  • the number of the porous metal bodies 5 is five, but the number of the porous metal bodies 5 is not limited to this and may be any number of one or more.
  • the material of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 may be arbitrary, but it is desirable that the upper support member 6, the upper support member 7, and the lower support member 8 be integrated with the porous metal body 5 so that there is no gap.
  • FIG. 3 is a partially enlarged cross-sectional view of porous metal body 5 of the humidifying device according to Embodiment 1 of the present invention.
  • the three-dimensional network structure of the porous metal body 5 is shown.
  • the porous metal body 5 has a three-dimensional network structure, which is the same structure as a resin foam such as a sponge.
  • the porous metal body 5 is formed by a metal part 14 and a large number of voids 15 formed in the metal part 14.
  • the porous metal body 5 is generally used for applications such as a filter, a catalyst carrier, and a gas diffusion layer for a fuel cell, and can be manufactured by a known method. For example, by introducing bubbles into a slurry containing a metal powder that is a raw material of a porous metal and a solvent, and then forming the slurry into a desired shape and then sintering the slurry, Can be manufactured.
  • a metal powder that is a raw material of porous metal, a binder resin that decomposes and disappears by high-temperature firing, and a slurry containing a solvent are formed into a desired shape, and then a porous metal body is produced even by degreasing and sintering. can do.
  • the porous metal body 5 has a larger porosity and average pore diameter than the porous ceramic. Thereby, clogging due to impurities contained in the humidified water is suppressed in the gap 15 of the porous metal body 5. Moreover, since the porous metal body 5 has a capillary force, the capillary force can efficiently supply water droplets 301 from the supply unit 2 to the inside of the porous metal body 5 without requiring a drive unit such as a pump. Can do.
  • the metal species constituting the porous metal body 5 is not particularly limited, and examples of the metal species include metals such as titanium, copper, aluminum or nickel, noble metals such as gold, silver or platinum, or And alloys such as nickel alloys and cobalt alloys. These can be used alone or in combination of two or more.
  • titanium is the most preferable metal species because it is hardly affected by corrosion and can stably humidify while maintaining the shape of the porous metal body 5 over a long period of time.
  • a solvent used for manufacture of a porous metal For example, water is mentioned.
  • binder resin used for manufacture of a porous metal An acrylic resin, an epoxy resin, or a polyester resin is mentioned.
  • the sintering temperature is not particularly limited, and may be appropriately adjusted according to the material to be used.
  • a porous metal body 5 may be used in which a porous body is formed from a resin and a metal powder is coated.
  • the surface layer of the porous metal body 5 be subjected to a hydrophilic treatment from the viewpoint of increasing the amount of humidified water retained and preventing deterioration of water absorption performance.
  • the type of the hydrophilic treatment method is not limited, and for example, the hydrophilic treatment by coating with a hydrophilic resin, or the hydrophilic treatment by corona discharge or atmospheric pressure plasma may be performed. .
  • an example of the hydrophilic treatment of the porous metal body 5 will be described.
  • Hydrophilic treatment method An example of a specific method for coating the porous metal body 5 with a hydrophilic material is as follows.
  • the porous metal body 5 is subjected to atmospheric oxidation treatment at 400 ° C. for 30 minutes, and further subjected to phosphoric acid chromate treatment for the purpose of improving the corrosion resistance of the surface. It is immersed for a minute and then dried at 80 ° C. for 5 hours to form a silica coating film on the surface.
  • the film thickness of the coating is preferably in the range of 0.01 [ ⁇ m] to 10 [ ⁇ m]. If the film is too thick, the pores of the foamed part are blocked, which is not preferable. On the other hand, if the membrane is made too thin, it is not preferable because the membrane peels off with the passage of time, and the hydrophilicity of the surface is lowered and the water content is reduced.
  • hydrophilic material a silane coupling agent or a dimethylformamide solution of titanium oxide may be used instead of silica.
  • an organic polymer resin may be used, and for example, polybilyl alcohol, polyethylene glycol, cellulose, or an epoxy dimethylformamide solution may be used.
  • the hydrophilic performance can be further improved if the surface of the porous metal body 5 is smoother, the surface roughness may be removed.
  • an organic polymer resin film is preferably laminated.
  • the atmospheric pressure plasma treatment may be performed as a pretreatment of the coating treatment. By doing in this way, the adhesive force of a coating film and a metal foam is strengthened, and durability with time can be improved.
  • the porous metal body 5 may be formed into a desired shape by producing a sheet-like porous metal having a thickness of 0.5 [mm] or more and 2 [mm] or less and then cutting it into a desired shape.
  • the processing method is not particularly limited, and can be performed by various methods such as wire cutting, laser cutting, press punching, shaving, manual cutting or bending.
  • the porosity of the porous metal body 5 is desirably 60 [%] to 90 [%]. By doing so, a sufficient amount of water absorption by the porous metal body 5 is ensured, and the porous metal body 5 Keep the strength moderate.
  • the pore diameter of the porous metal body 5 is desirably 50 [ ⁇ m] to 600 [ ⁇ m]. By doing so, the strength of the porous metal body 5 is maintained and the voids 15 are clogged by impurities. Suppress.
  • FIG. 4 is a partial enlarged cross-sectional view of a humidifying member made of metal fibers in the humidifying device according to Embodiment 1 of the present invention.
  • the humidifying member shown in FIG. 4 has a configuration in which a large number of metal fibers 4 having a diameter of about 0.1 mm are tangled. A plurality of voids are formed between the entangled metal fibers 4, and water is retained in the voids.
  • the material of the metal fiber 4 may be anything similar to the porous metal body 5, for example, a metal such as titanium, copper, aluminum or nickel, a noble metal such as gold, silver or platinum, or an alloy such as nickel alloy or cobalt alloy. Can be used. Such a metal fiber may be processed into the same shape as the porous metal body 5 shown in FIG. 1 to constitute a humidifying member.
  • Embodiment 1 selectively performs the humidification operation.
  • the water supplied from the supply pipe 1 is stored in the supply unit 2, and the water stored in the supply unit 2 is conveyed to the nozzle 3 as humidified water.
  • the humidified water transported to the nozzle 3 is dropped as water droplets 301 from the tip of the nozzle 3 from above the porous metal body 5 toward the top of the porous metal body 5. Thereby, humidified water is supplied to the porous metal body 5.
  • the humidified water is uniformly diffused throughout the porous metal body 5 through the voids 15 of the porous metal body 5 and is porous.
  • the solid metal body 5 holds a certain amount of water.
  • the drying operation of the humidifier according to Embodiment 1 will be described.
  • the humidifier stops the dripping of water from the nozzle 3, and the fan 9 performs a drying operation of blowing air for a certain time.
  • the porous metal body 5 By drying the porous metal body 5 by this drying operation, the growth of microorganisms such as bacteria and mold in the porous metal body 5 is suppressed.
  • microorganisms such as bacteria and mold grow, the porous metal body 5 becomes unsanitary, and when the humidification operation is performed again, microorganisms and mold spores may be mixed in the air.
  • air may be blown as it is, or warm air heated by heating means such as a heater (not shown) may be blown.
  • the drying time can be shortened by blowing warm air, but since energy is required for heating, either one is selected depending on the target specification.
  • the frequency of drying operation it is desirable to determine the frequency of drying operation according to the growth rate of microorganisms. For example, considering that Escherichia coli grows in a large amount in one day if conditions are good, it is desirable to perform a drying operation after the humidification operation for one day is completed. However, if the frequency of drying the porous metal body 5 is high, the scale in the water will precipitate and the humidification performance will be reduced. Therefore, the frequency of drying operation should be considered in consideration of the growth rate of bacteria and mold and the hardness of tap water. It is desirable to decide.
  • the humidifying device according to the first embodiment can discharge the excess water of the porous metal body 5 from the distal end portion 16. For this reason, since it is difficult for water droplets to collect at the lower end of the porous metal body 5, it becomes possible to suppress the growth of bacteria and mold.
  • FIG. 5 shows a comparative configuration example for explaining the operation of the humidifier according to Embodiment 1 of the present invention.
  • FIG. 5 is a view showing a comparative example of the humidifier, and unlike the first embodiment, the lower surface of the porous metal body 5 is a horizontal plane.
  • the lower end of the porous metal body 5 is horizontal, water tends to collect from the upstream side to the downstream side of the lower end portion of the porous metal body 5. For this reason, in the drying operation, an operation time for drying the porous metal body 5 is required, and energy is wasted.
  • the drying time is insufficient and the water droplets 302 remain in the porous metal body 5, slime is likely to be formed. Therefore, odor at the air outlet 10 and mixing of microorganisms or mold spores into the humidified air occurs. It becomes easy to do.
  • FIG. 6 shows a state in which a water droplet bridge 303 is formed in the gap between the porous metal bodies 5.
  • the lower end portion of the porous metal body 5 is not leveled, but the lower end portion of the porous metal body 5 is provided with a tip portion 16 having a corner protruding downward.
  • the water below the porous metal body 5 can be discharged efficiently. By efficiently draining the water below the porous metal body 5 in this way, the growth of microorganisms such as bacteria and fungi is suppressed, the decrease in humidification performance is suppressed, and the initial humidification performance is maintained longer. Can do.
  • the lower support member 8 is configured not to support the lower end portion of the porous metal body 5 but to support the downstream side wall portion as shown in FIG. If the lower support material 8 is configured to support the lower end portion of the porous metal body 5, water easily accumulates at the joint between the lower support material 8 and the porous metal body 5, and slime is generated. Can be promoted. However, by making the lower support material 8 support the side wall portion above the lower end portion of the porous metal body 5, it is difficult for water to deposit at the joint portion between the lower support material 8 and the porous metal body 5. The effect which becomes can be acquired.
  • the angle ⁇ 1 of the tip portion 16 if the angle ⁇ 1 is too large, the effect of not depositing water on the lower end portion of the porous metal body 5 is reduced, and if the angle ⁇ 1 is too small, the processing of the porous metal body 5 is difficult. And the strength becomes brittle. For this reason, the angle ⁇ 1 of the tip portion 16 is set to an appropriate angle in consideration of the degree of water accumulation on the lower end portion of the porous metal body 5, the processing of the porous metal body 5, and the strength of the tip portion 16. The range of 30 to 150 degrees is preferable.
  • FIG. 7 is a configuration diagram showing a modified example of the porous metal body 5 of the humidifying device according to Embodiment 1 of the present invention.
  • the distal end portion 16 has a rectangular protrusion shape that protrudes downward. More specifically, a protrusion protruding downward in a step shape is formed at the center of the lower surface of the porous metal body 5 in the depth direction, and the tip portion 16 is constituted by this protrusion.
  • the cross-sectional area in the horizontal plane of the front end portion 16 is smaller than the cross-sectional area in the horizontal plane of the porous metal body 5 above the front end portion 16.
  • tip part 16 becomes large, the draining effect will become small, and if the width
  • an appropriate width exists as the width (width in the depth direction) of the protrusion constituting the tip portion 16, and a range of 2 [mm] to 10 [mm] is preferable.
  • the shape of the protrusion constituting the distal end portion 16 may be a columnar shape, a conical shape, a truncated cone shape, etc. in addition to a prismatic shape.
  • FIG. 8 is a configuration diagram showing a modification of the porous metal body 5 of the humidifying device according to Embodiment 1 of the present invention.
  • the rectangular porous metal body 5 is installed so as to be inclined in the depth direction, so that one of the two lower corners of the rectangle is positioned below the other. ing.
  • the corner portion located on the lower side is the tip portion 16. Therefore, the cross-sectional area in the horizontal plane of the porous metal body 5 is smaller toward the lower part.
  • the corner portion of the rectangular porous metal body 5 is used as the tip portion 16, the water of the porous metal body 5 can be efficiently distributed as in the configuration examples of FIGS. 1 and 7. Therefore, the growth of microorganisms such as bacteria and fungi can be suppressed, and the initial humidification performance can be maintained.
  • FIG. 9 is a configuration diagram of a humidifier according to Embodiment 2 of the present invention.
  • the tip 16 is provided at the center of the lower end of the porous metal body 5 as shown in FIG.
  • a tip portion 16 that protrudes downward is provided in the lower portion of the porous metal body 5 in the upstream portion of the air flow (left side in FIG. 9).
  • the lower surface of the porous metal body 5 is inclined upward from the distal end portion 16 in the depth direction.
  • an upper porous metal body 17 that is an upper humidifying member is provided on the porous metal body 5 of the second embodiment.
  • FIG. 10 is a configuration diagram of the main part viewed from the upstream side of the humidifier according to Embodiment 2 of the present invention.
  • the upper porous metal body 17 is configured to cover all of the upper ends of the plurality of porous metal bodies 5. Further, the upper porous metal body 17 is brought into close contact with the porous metal body 5 by applying a load from the upper part of the upper porous metal body 17.
  • the upper porous metal body 17 plays a role of a buffer material for transmitting water to the porous metal body 5, not a function of humidifying air. That is, water dripped from the nozzle 3 is once absorbed by the upper porous metal body 17, spreads over the entire upper porous metal body 17, and then transmitted from the lower portion of the upper porous metal body 17 to the porous metal body 5. Is done.
  • the operation of the humidifying operation of the humidifier is the same as that of the first embodiment.
  • the humidifying operation air is humidified in order in the process of flowing from the upstream side portion (left side of the paper surface of FIG. 9) to the downstream side portion (right side of the paper surface of FIG. 9) of the porous metal body 5.
  • the air located in the downstream portion of the porous metal body 5 has a higher relative humidity than the air located in the upstream portion. Since the humidification capacity is proportional to the vapor pressure, the humidification performance decreases when the humidity in the air is high. That is, when the humidification operation is performed from the state where the porous metal body 5 is uniformly impregnated with water, the water remaining in the upstream portion is used because the water upstream from the porous metal body 5 is used for humidification first. There is a relatively small phenomenon that water remaining in the downstream portion increases.
  • the tip portion 16 is provided in the upstream portion of the porous metal body 5.
  • moisture content of the porous metal body 5 during humidification operation can be made small.
  • water is once absorbed by the upper porous metal body 17 and is passed through the porous metal body 5 through the upper porous metal body 17. Variation in water can be reduced.
  • the tip 16 is provided on the upstream side for all the porous metal bodies 5, but for example, “upstream side—center part—upstream side—center part—upstream side”, “upstream side— The distal end portions 16 may be provided at alternate positions such as “downstream side ⁇ upstream side ⁇ downstream side ⁇ upstream side”, and the positions of the distal end portions 16 in the depth direction may be different between the adjacent porous metal bodies 5. Moreover, while providing the front-end
  • the operation of the drying operation is the same as in the first embodiment.
  • the upper porous metal body 17 is provided in close contact with and covers the upper portions of the plurality of porous metal bodies 5, and water supplied from the supply unit 2 is supplied to the upper porous metal body 17. It was made to supply to each porous metal body 5 via. For this reason, the dispersion
  • Embodiment 3 The humidifying device according to the third embodiment will be described with a focus on differences from the second embodiment.
  • the configuration of the humidifier of the third embodiment is the same as the configuration of the second embodiment shown in FIG.
  • the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 of Embodiment 3 are made of a material having high thermal conductivity, and are joined to the casings 12 and 13 without any gaps.
  • a material having high thermal conductivity a metal such as titanium, copper, aluminum, or nickel, or a noble metal such as gold, silver, or platinum can be used.
  • porous metal body 5 and the casings 12 and 13 of the third embodiment are made of a metal having high thermal conductivity.
  • the thermal conductivity of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 is the same as or higher than that of the porous metal body 5.
  • FIG. 11 is a characteristic diagram showing the temperature dependence of the vapor pressure of water derived from the Antoine equation. Antoine's formula is expressed by the following formula (1).
  • p is the vapor pressure.
  • the vapor pressure depends on the temperature, and it is known that the higher the temperature, the higher the vapor pressure. Since the vapor pressure is proportional to the humidification capacity, the humidification performance can be improved by raising the temperature of the porous metal body 5.
  • the temperature of the porous metal body 5 is lowered by the latent heat of evaporation caused by humidification.
  • the humidification ability is lowered. Therefore, it is effective to quickly discharge the cold heat generated by the latent heat of vaporization from the porous metal body 5 in order to maintain the humidification performance.
  • Embodiment 1 it has been described that either the porous metal body 5 or the metal fiber may be used as the humidifying member.
  • the porous metal body 5 is used for the following reason. It is desirable to use as a humidifying member.
  • the contact point between the metal fibers in FIG. 4 is a point and the contact area is small, whereas the porous metal body in FIG. In the body 5, the metals are substantially integrated. Due to such a difference in contact area, there is a large difference in heat conduction performance between the two. That is, with respect to the porous metal body 5, the metal fiber has a reduced thermal conductivity performance and a humidification performance. For this reason, it is desirable to use the porous metal body 5 as a humidifying member.
  • the operation of the humidifier is the same as in the first embodiment.
  • a porous metal body 5 made of a metal having high thermal conductivity is used as a humidifying member, and an upper upstream support member 6, an upper downstream support member 7, and a lower support member 8 are It was made of a metal member or ceramic having the same thermal conductivity as that of the porous metal body 5 or higher than that of the porous metal body 5. Further, the porous metal body 5 and the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8, and the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 and the housing. The body 12 and the housing 13 were joined and integrated without a gap.
  • FIG. 12 is a configuration diagram of a humidifying device according to Embodiment 4 of the present invention. 12 is different from the above-described FIG. 9 in that a heater 18 as a heating member is installed in the housing 12.
  • the heater 18 is for heating the porous metal body 5.
  • the heater 18 may be anything as long as it generates heat. For example, it may be a nichrome wire, a PTC (Positive Temperature Coefficient) heater, a heat pump, a Peltier element, or the like.
  • the heat conduction is better when it is as close as possible to the porous metal body 5, so that the vicinity of the upper upstream support member 6 or the upper downstream support member 7 is desirable.
  • the porous metal body 5 can be heated by the heat generated from the heater 18.
  • the humidifier of the fourth embodiment applies a voltage to the heater 18 to heat the porous metal body 5 in the drying operation, thereby improving the efficiency of the drying operation.
  • the other operation of the humidifier is the same as that of the first embodiment.
  • a porous metal body 5 made of a metal having high thermal conductivity is used as a humidifying member, and further, an upper upstream support member 6 and an upper downstream support member are used.
  • the material 7 and the lower support material 8 were made of a metal member or ceramic having the same thermal conductivity as that of the porous metal body 5 or higher than that of the porous metal body 5.
  • the body 12 and the housing 13 were joined and integrated without a gap.
  • the heater 12 is provided in the casing 12, and the porous metal body 5 is heated by the heater 18 during the drying operation. For this reason, even during the drying operation, the latent heat of vaporization can be efficiently discharged to the outside in the same manner as during the humidification operation. Therefore, the water at the tip portion 16 of the porous metal body 5 can be efficiently dried, and the drying operation Can be shortened. Thus, by efficiently drying the water at the lower end of the porous metal body 5, it is possible to suppress the growth of bacteria and mold and maintain the initial humidification performance.
  • FIG. 13 is another configuration diagram of the humidifying device according to Embodiment 4 of the present invention.
  • heat radiating fins 19 made of aluminum or the like are attached to the housing 12.
  • the heat of the porous metal body 5 is configured to be transmitted to the housing 12 through the upper upstream support member 6 or the upper downstream support member 7 and the housing 12. Even if the heat dissipating fins 19 are provided in this manner, the same effects as those obtained when the heater 18 is provided can be obtained.
  • a substrate circuit including circuit components for operating the humidifier may be provided at a position where heat is transmitted to the porous metal body 5 in place of the heater 18. Since the substrate circuit generates heat during operation, for example, when the substrate circuit is provided in the same place as the heater 18, the heat of the substrate circuit is generated by the housing 12, the upper upstream support member 6, the upper downstream support member 7, and the lower support. It is transmitted to the porous metal body 5 through the material 8, and the same effect as when the heater 18 is provided can be obtained.
  • the casing 12 is provided with heating means (heater 18 or substrate circuit) for heating the porous metal body 5 and heat radiation means (radiation fins 19) for releasing heat transmitted from the porous metal body 5.
  • heating means heat radiation means
  • the installation location of the heating means and the heat dissipation means is not limited to the housing 12. As long as the above-described functions of the heating unit and the heat dissipation unit can be exhibited, the heating unit and the heat dissipation unit can be provided in any place.
  • FIG. 14 is a configuration diagram of a humidifying device according to Embodiment 5 of the present invention.
  • a damper 20 is installed on the upstream side of the porous metal body 5.
  • the damper 20 is a member for changing the air flow path toward the porous metal body 5.
  • the damper 20 is configured such that air flows preferentially in the vicinity of the front end portion 16 of the porous metal body 5 in a state where the flow path cross-sectional area is reduced.
  • the water droplet 302 is attached to the tip 16 due to surface tension, the water droplet can be forcibly scattered by applying an external force exceeding the surface tension. Further, since the flow velocity of the air passing through the porous metal body 5 can be increased by reducing the cross-sectional area of the flow path by the damper 20, the drying of the water droplets 302 remaining on the tip 16 is also accelerated, and the porous metal body. 5 drying time is shortened.
  • the damper 20 is controlled so that the cross-sectional area of the air flow toward the porous metal body 5 is maximized.
  • Other operations in the humidifying operation are the same as those in the first embodiment.
  • the damper 20 is controlled so that the air flow path toward the porous metal body 5 is narrowed as shown in FIG. 14 and this air preferentially flows in the vicinity of the tip portion 16. .
  • Other operations in the drying operation are the same as those in the first embodiment.
  • the fifth embodiment air is preferentially flowed to the front end portion 16 of the porous metal body 5 in the drying operation. For this reason, the front-end
  • the damper 20 is provided as a means for increasing the wind speed of the air passing through the porous metal body 5 .
  • the fan 9 in the drying operation is provided instead of or in addition to the damper 20, the fan 9 in the drying operation is provided.
  • the rotational speed per unit time may be increased. Even in this way, the wind speed of the air passing through the porous metal body 5 can be increased, so that the time for the drying operation can be shortened.
  • FIG. 15 is a configuration diagram of a humidifier according to the sixth embodiment.
  • the housing 13 is provided with a sensor 21 as moisture detection means for detecting the presence or absence of a water droplet 302 at the tip 16 at a position facing the tip 16 of the porous metal body 5. It has been.
  • the sensor 21 is a device that detects the presence or absence of a water droplet 302 in the detection region based on, for example, a light scattering method.
  • FIG. 16 is a diagram illustrating the sensor 21 of the humidifier according to Embodiment 6 of the present invention.
  • the sensor 21 includes an LED (Light Emitting Diode) 22 as a light source that emits light, a photomultiplier 23 that outputs a signal corresponding to the amount of received light, a power supply 24 that supplies power to the LED 22, An amplifying circuit 25 that amplifies the output from the photomultiplier 23 and a discriminating means 26 that discriminates the presence or absence of the water droplet 302 based on the output from the amplifying circuit 25 are provided.
  • the wavelength of the light emitted from the LED 22 is not particularly limited, and it can be used from ultraviolet light to infrared light.
  • a light source is not limited to LED, You may use the other member which emits light as a light source.
  • the determination unit 26 includes, for example, a circuit component that can determine the magnitude between the output from the amplifier circuit 25 and a predetermined threshold value. The discrimination result of the discrimination means 26 is input to a humidifier control device (not shown).
  • the drying operation when the water droplet 302 exists on the optical path of the light emitted from the LED 22, the light from the LED 22 is scattered, and the photomultiplier 23 is irradiated with a part of the scattered light. Since the light irradiated to the photomultiplier 23 generates an electromotive force, the light is boosted to a constant voltage by the amplifier circuit 25 and input to the determination means 26.
  • the discriminating means 26 discriminates the presence or absence of the water droplet 302 based on the magnitude of the preset voltage threshold and the inputted value, and inputs the discrimination result to the control device.
  • the control device continues the drying operation when it is determined that the water droplet 302 is present, and stops the drying operation when it is determined that the water droplet 302 does not exist.
  • the rotational speed of the fan 9 may be controlled according to the output of the amplifier circuit 25 instead of determining the presence or absence of the water droplet 302 based on the threshold set in the determination means 26.
  • a sensor for detecting humidity may be used instead of such a sensor 21, but instead of such a sensor 21, a sensor for detecting humidity may be used. Even when a sensor for detecting humidity is used, the presence or absence of the water droplet 302 may be determined based on the magnitude of the detected humidity value and a preset threshold value, as in the light scattering sensor 21, and amplification. Depending on the output of the circuit 25, the magnitude of the rotational speed of the fan 9 may be controlled.
  • the operation in the humidifying operation is the same as that in the first embodiment.
  • the presence or absence of water droplets 302 in the vicinity of the tip portion 16 of the porous metal body 5 is detected by the sensor 21, and the drying operation is performed based on the detection result. Since the drying operation can be continued while the water droplet 302 remains on the tip portion 16, the growth of bacteria and mold in the porous metal body 5 can be suppressed, and the initial humidification performance can be maintained. In addition, if there is no water droplet 302 remaining at the tip portion 16, the drying operation can be stopped, so that wasteful drying operation can be suppressed and energy saving can be achieved.
  • Embodiment 7 FIG. The humidifying device according to the seventh embodiment will be described with a focus on differences from the first embodiment.
  • FIG. 17 is a configuration diagram of a humidifying device according to Embodiment 7 of the present invention.
  • the humidifying apparatus according to the seventh embodiment provides a space between the porous metal body 5 and the porous metal body 5 on the upstream side of the structure shown in FIG. 1.
  • a grounding portion 29 is attached to the porous metal body 5.
  • the conductor electrode 27 is for forming an electric field in a space (gap) between the porous metal body 5.
  • the conductor electrode 27 needs to have conductivity in order to form an electric field in the space between the porous metal body 5 and the material of the conductor electrode 27 is, for example, a metal, a metal alloy, or a conductive resin. Is preferred.
  • the conductor electrode 27 should just be a thing with low electrical resistance, and although aluminum, copper, or stainless steel etc. are preferable from a versatility and workability viewpoint, it is not limited to this.
  • the size of the conductor electrode 27 is not particularly limited, and may be appropriately adjusted according to the size of the humidifier to be manufactured.
  • the power source 28 is connected to the conductor electrode 27 and applies a voltage to the conductor electrode 27.
  • the power source 28 applies a voltage to the conductor electrode 27, an electric field is formed in the space between the porous metal body 5 and the conductor electrode 27.
  • the porous metal body 5 is grounded to the grounding portion 29, and a conductor provided at the opposing portion of the porous metal body 5.
  • a DC positive voltage can be applied to the porous metal body 5 to ground the conductor electrode 27 provided at the opposing portion, whichever configuration is adopted. May be.
  • a DC positive voltage is applied to the porous metal body 5 containing water, there is a possibility that the porous metal body 5 is deteriorated due to electric corrosion. Therefore, as shown in FIG. It is more desirable to apply a direct current negative voltage to the conductor electrode 27 which is grounded and provided in the facing portion.
  • a voltage value applied by the power source 28 to the conductor electrode 27 it is desirable to apply -10 [kV] or more and ⁇ 4 [kV] or less when applying a DC negative voltage. This is because if the applied voltage is greater than ⁇ 4 [kV] and less than 0 [kV], the strength of the electric field formed between the porous metal body 5 and the conductor electrode 27 is weak, and the porous metal body 5 This is because water cannot be drawn from the water. On the other hand, if the applied voltage is smaller than ⁇ 10 [kV] (that is, the absolute value of the applied voltage is larger than 10 [kV]), the load on the power supply 28 becomes large and the insulation design becomes difficult.
  • the porous metal body 5 and the conductor electrode 27 are formed between the porous metal body 5 and the conductor electrode 27 so as not to generate discharge in the humidifying device. It is desirable to set the strength of the electric field to less than 30 [kV / cm] which is the dielectric breakdown field strength of the gas. When an electric field strength of 30 [kV / cm] is formed between the porous metal body 5 and the conductor electrode 27 by the power source 28, a spark discharge is generated between the porous metal body 5 and the conductor electrode 27. This is because there is a problem that the porous metal body 5 has a short life, and the invalid power consumption due to heat generation increases.
  • the gap length of the space between the porous metal body 5 and the conductor electrode 27 is preferably 3 [mm] or more and 20 [mm] or less. This is because when the gap length is less than 3 [mm], the space between the porous metal body 5 and the conductor electrode 27 is narrow, so that the pressure loss of the air blown by the fan 9 becomes large and the power load of the fan 9 is high. Because it becomes. On the other hand, when the gap length is longer than 20 [mm], the electric field strength sufficient to draw water from the porous metal body 5 is not reached, so that there is a problem that the humidifying ability is lowered.
  • the porous metal body 5 of the seventh embodiment has a water absorption at the lower part of the porous metal body 5 that is a ground electrode, and a tip protruding downward.
  • a portion 16 is provided. The distal end portion 16 is located below the conductor electrode 27 in the seventh embodiment.
  • the shape of the distal end portion 16 may be any shape as long as the water droplet 302 can be easily dropped.
  • the shape shown in FIGS. 7 and 8 may be used, or the porous metal body 5 as shown in FIG. You may provide the front-end
  • the tip portion 16 may be made of a material having water absorption, and the tip portion 16 may be made of the same material as the porous metal body 5 or may be made of a material different from the porous metal body 5. May be.
  • the humidified water is uniformly diffused throughout the porous metal body 5 through the voids 15 of the porous metal body 5 and is porous.
  • the solid metal body 5 holds a certain amount of water.
  • This tailor cone is kept in a triangular pyramid shape by the balance between the Coulomb force and surface tension that the induction-charged water receives from the electric field.
  • the value of the input voltage applied from the power source 28 to the conductor electrode 27 is increased to increase the electric field strength, and the Coulomb force exceeds the surface tension of the water forming the tailor cone, it is drawn from the porous metal body 5.
  • the tailor cone is released into the space in the form of a mist and atomized to a size of several tens [nm] by Rayleigh splitting.
  • the electric field strength between the porous metal body 5 and the conductor electrode 27 is controlled by the power supply 28 so as not to cause a discharge phenomenon, so that on the surface of the porous metal body 5.
  • the water is kept in a tailor cone.
  • the water in the surface layer of the porous metal body 5 and the tailor cone extracted from the porous metal body 5 by the electric field are provided upstream or downstream of the humidifying part composed of the porous metal body 5 and the conductor electrode 27.
  • the air is vaporized by gas-liquid contact with the gas to be treated, which is air blown by the fan 9, and humidifies the humidified space.
  • the blowing direction of the gas to be processed by the fan 9 is set to be perpendicular to the direction of the electric field formed in the space between the porous metal body 5 and the conductor electrode 27.
  • the electric field strength between the porous metal body 5 and the conductor electrode 27 is increased by increasing the voltage applied by the power source 28 to the conductor electrode 27, the formation of the tailor cone is promoted.
  • the contact area with the processing gas increases, and the humidification performance can be increased.
  • the surplus water reaches the lower end of the porous metal body 5 and forms water droplets. Then, it is dropped into the drain pan 11 and discharged. At this time, if the spatial distance between the water droplet 302 and the conductor electrode 27 is too short, abnormal discharge may occur.
  • the tip 16 is provided at the lower part of the porous metal body 5, and excess water is dropped from the tip 16 as the water droplet 302 onto the drain pan 11. The conductor electrode 27 was disposed above the tip portion 16. For this reason, the spatial distance between the water droplet 302 and the conductor electrode 27 can be increased, and abnormal discharge between the water droplet 302 and the conductor electrode 27 can be suppressed.
  • the water of the lower end part of the porous metal body 5 can be efficiently drained from the tip part 16, the growth of bacteria and mold in the porous metal body 5 is suppressed, and the humidification performance in the initial state is maintained. be able to.
  • the humidifying member is configured by the porous metal body 5 or the metal fiber 4
  • the humidifying member may be configured by porous ceramic.
  • an electric field can be formed between the humidifying member and the conductor electrode 27 by configuring the humidifying member with a porous ceramic having conductivity.
  • Embodiments 1 to 7 can be used in combination with each other.
  • the configurations of the porous metal body 5 and the tip portion 16 exemplified in the first embodiment and the second embodiment may be applied to any of the other embodiments.
  • Embodiment 8 FIG. The humidifying device according to the eighth embodiment will be described focusing on differences from the first and second embodiments.
  • FIG. 18 is a perspective view of the main part showing the configuration of the humidifying device according to Embodiment 8 of the present invention.
  • FIG. 19 is a configuration diagram of a humidifier according to Embodiment 8 of the present invention, and shows a schematic cross section on a side surface.
  • the difference from FIG. 1 showing the first embodiment and FIG. 9 showing the second embodiment is that the lower ends of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8. It is the shape.
  • the sides forming the lower surfaces of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 are all horizontal.
  • the lower surface was a horizontal plane.
  • the lower surface of the upper upstream support material 6, the upper downstream support material 7, and the lower support material 8 is inclined rather than horizontal.
  • the sides forming the lower surfaces of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 are all linear, and the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8
  • the lower surface is a flat inclined surface. Since such a lower surface is formed, the lower part of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 has a horizontal sectional area that is smaller on the lower side than on the upper side.
  • the lower ends of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 have a shape protruding downward.
  • the protruding shape of the lower end portions of the upper upstream support member 6, the upper downstream support member 7 and the lower support member 8 is referred to as a tip portion 31.
  • the upper side 8a of the lower support member 8 in contact with the porous metal body 5 is a linear side having an upward gradient from the upstream side to the downstream side of the air flow. Furthermore, the upper surface of the lower support member 8 is inclined in the air flow direction and a direction perpendicular thereto.
  • the upper upstream support material 6, the upper downstream support material 7, and the lower support material 8 are not porous bodies but are provided as, for example, resin molded products or metal molded products. .
  • water is transmitted from the porous metal body 5 or the upper porous metal body 17 to the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8, and water is transmitted on the surface thereof.
  • the water that flows on the surfaces of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 made of resin or metal flows downward along these inclined lower surfaces, and flows down from the tip 31.
  • the water transmitted from the porous metal body 5 to the upper surface of the lower support material 8 and the water dropped from the upper downstream support material 7 onto the upper surface of the lower support material 8 are the upper side 8a and the upper surface of the inclined lower support material 8. Flowing along.
  • the lower surface of the upper upstream support member 6 is an inclined surface having a downward slope from the upstream side to the downstream side of the air flow, and the lower surface of the upper downstream support member 7 is air.
  • This is an inclined surface having an upward slope from the upstream side to the downstream side of each flow, and any lower surface is lowered as it approaches the porous metal body 5.
  • the water that flows on the surfaces of the upper upstream support member 6 and the upper downstream support member 7 and dripped from the tip 31 is received by the drain pan 11 disposed under the porous metal body 5.
  • the lower surface of the lower support member 8 is an inclined surface that is inclined upward from the upstream side to the downstream side of the air flow, and the water droplets 304 dropped from the front end portion 31 of the lower support member 8 are also received by the drain pan 11. .
  • the porous metal body 5 is configured so that the horizontal cross-sectional area shown in the first and second embodiments, that is, the lower horizontal cross-sectional area decreases stepwise or steplessly from the upper side to the lower side.
  • the tip portion 16 can be used.
  • the humidifying operation and the drying operation of the humidifying device are the same as in the first embodiment.
  • the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 are not leveled at the lower ends thereof, but the upper upstream support member 6, the upper downstream support member 7 and The lower end of the lower support member 8 is provided with a tip 31 that protrudes downward at the lower end of the inclined surface. For this reason, since the water which flows into the upper upstream support material 6, the upper downstream support material 7, and the lower support material 8 gathers at the front-end
  • the humidification performance in the initial state can be maintained for a longer time.
  • the water transmitted from the porous metal body 5 to the upper portion of the lower support material 8 is directed to the upper side 8a.
  • the water that flows smoothly downward along the surface and adheres to the lower support member 8 can be discharged efficiently.
  • the upper surface of the lower support member 8 is inclined in both the air flow direction and the direction perpendicular thereto, and water adhering to the upper surface of the lower support member 8 is It can flow smoothly toward the lowered portion (corner portion).
  • the water adhering to the lower support material 8 tends to gather at the tip 31 and adheres to the lower support material 8. Water can be discharged efficiently.
  • the tip 31 is not provided with all the lower surfaces of the upper upstream support member 6, the upper downstream support member 7, and the lower support member 8 as inclined surfaces. You may provide the front-end
  • Embodiment 9 FIG. The humidifying device according to the ninth embodiment will be described focusing on differences from the eighth embodiment.
  • FIG. 20 is a perspective view of the main part showing the configuration of the humidifying apparatus according to Embodiment 9 of the present invention.
  • FIG. 21 is a configuration diagram of a humidifier according to Embodiment 9 of the present invention, and shows a schematic cross section on a side surface.
  • the ninth embodiment is different from the eighth embodiment in the shapes of the lower and upper portions of the lower support member 8.
  • the sides forming the lower surface of the lower support member 8 are all straight and the lower surface of the lower support member 8 is a flat inclined surface.
  • the lower surface of the lower support member 8 of the form 9 is an inclined surface that is recessed upward and is curved in an arc shape.
  • the side forming the lower surface of the lower support member 8 has an arc shape in a side view.
  • a protruding tip portion 31 protruding downward is formed at the lowermost portion of the lower support member 8.
  • the upper side 8a of the lower support material 8 in contact with the porous metal body 5 is linear, and the upper surface of the lower support material 8 is a flat inclined surface.
  • the upper side 8a of the ninth embodiment is curved in an arc shape, and the upper surface of the lower support member 8 is also an inclined surface curved in an arc shape.
  • the humidifying operation and the drying operation of the humidifying device are the same as in the first embodiment.
  • the lower surface of the lower support member 8 is an inclined surface curved in an arc shape, and the protruding tip portion 31 is provided at the lowermost portion of the lower support member 8. For this reason, the water that has propagated from the porous metal body 5 to the lower support member 8 and has flowed through the lower support member 8 gathers at the tip 31 and drops as water droplets 304. Therefore, as in the above-described eighth embodiment, the water below the lower support member 8 can be efficiently drained, the growth of microorganisms such as bacteria and mold is suppressed, and the deterioration of the humidification performance is suppressed to the initial state. The humidifying performance can be maintained for a longer time.
  • the upper side 8a of the lower support member 8 in contact with the porous metal body 5 is formed in an arc shape and inclined, it is transmitted from the porous metal body 5 to the upper portion of the lower support material 8.
  • the water smoothly flows downward along the upper side 8a, and the water adhering to the lower support member 8 can be drained efficiently.
  • By efficiently draining the water adhering to the lower support material 8 in this way it is possible to suppress the growth of microorganisms such as bacteria and mold, to suppress the decrease in the humidification performance, and to maintain the initial humidification performance for a longer time. it can.
  • the upper surface of the lower support member 8 is an inclined surface curved in an arc shape, the water adhering to the upper surface of the lower support member 8 is the lowest portion (corner portion) of the upper surface. ) Can flow smoothly toward.
  • FIG. 22 is a side view showing another example of the lower support member 8 according to Embodiment 9 of the present invention.
  • the lower surface of the lower support member 8 is composed of a plurality of continuous flat surfaces, and a tip portion 31 that protrudes downward is formed at the lower portion of the lower support member 8.
  • the shape of the lower surface of the lower support member 8 is not limited as long as a part of the lower portion of the lower support member 8 protrudes downward. The same applies to the upper surfaces of the upper upstream support member 6 and the upper downstream support member 7 and the upper surface of the lower support member 8.
  • Embodiment 10 FIG. The humidifying device according to the tenth embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 23 is a configuration diagram of the porous metal body 5 as viewed from the upstream side of the humidifier according to Embodiment 10 of the present invention.
  • the humidifying device of the tenth embodiment is provided with a plurality of porous metal bodies 5, and the plurality of porous metal bodies 5 are set up with a predetermined gap so that their flat surfaces are substantially parallel. It is installed.
  • a tip end portion 16 is provided at the lower end of the porous metal body 5 of FIG.
  • the tip end portion 16 of the porous metal body 5 of the tenth embodiment has a tapered shape that is narrower toward the lower side when viewed from the upstream side of the air flow.
  • the cross section is generally formed in a pencil shape. Therefore, the tip 16 of the porous metal body 5 has a smaller horizontal cross-sectional area on the lower side than on the upper side.
  • the shape of the porous metal body 5 when viewed from the side may be a rectangular shape as in FIG. 5, but as shown in FIG. It is preferable to form the tip portion 16. Further, the shape of the tip 16 in that case may be a rectangular protrusion shown in FIG. 7 or a triangular protrusion in a side view shown in FIG. 9, or a rectangular porous shape in a side view as shown in FIG. You may install the quality metal body 5 inclining.
  • the humidifying operation and the drying operation of the humidifying device are the same as in the first embodiment.
  • Embodiment 11 FIG. In the eleventh embodiment, an air conditioner including a humidifier will be described with reference to the drawings.
  • FIG. 24 is a configuration diagram of the air conditioner 100 including the humidifier according to Embodiment 11 of the present invention.
  • the air conditioner 100 shown in FIG. 24 performs a humidifying operation using a humidifying device, and performs a cooling / heating operation simultaneously with or independently of the humidifying operation.
  • the humidifying device shown in FIG. 24 differs from the humidifying device shown in the first to tenth embodiments in the arrangement and shape of a part of the configuration, but corresponds to the configuration shown in the first to tenth embodiments.
  • the same reference numerals are used for explanation.
  • a humidifier is installed in a casing 35 that forms the outline of the air conditioner 100.
  • a supply unit 2, a nozzle 3, a porous metal body 5, a fan 9, and a drain pan 11 are installed inside the housing 35.
  • the fan 9 is arranged on the upstream side of the porous metal body 5, but this arrangement is not limited, and the fan 9 is arranged on the downstream side of the porous metal body 5 as in the first to tenth embodiments. 9 may be arranged.
  • a heat exchanger 33 is provided between the fan 9 and the porous metal body 5 in the casing 35 of the air conditioner 100.
  • a filter 32 that collects dust and dirt is provided in a suction port 34 that is an air inlet to the housing 35.
  • Heated or cooled refrigerant flows through the heat exchanger 33, and heat exchange is performed between the air flowing around the heat exchanger 33 and the refrigerant.
  • the heat exchanger 33 is arranged to face the porous metal body 5, and the air blown from the fan 9 flows into the porous metal body 5 after passing through the heat exchanger 33.
  • the shape of the porous metal body 5 is generally a rhombus shape in side view so as to follow the outer shape of the heat exchanger 33 facing the porous metal body 5.
  • the lower surface of the porous metal body 5 is inclined in the vertical direction, and a tip portion 16 protruding downward is formed at the lower portion of the porous metal body 5.
  • tip part 16 is not limited to the example of FIG. 24, For example, you may employ
  • a plurality of plate-like porous metal bodies 5 are erected in parallel with each other through a gap, and water for humidification is supplied to the upper part of the porous metal body 5 via the supply unit 2 and the nozzle 3.
  • the supplied point is the same as in the first embodiment.
  • the air conditioner 100 including the humidifying device according to the eleventh embodiment has a function of performing a humidifying operation and a cooling / heating operation.
  • the air conditioner 100 includes a sensor (not shown) that detects either or both of the temperature and humidity of the air in the air-conditioning target space, and performs a humidification operation according to the temperature or humidity condition of the air in the air-conditioning target space. And air conditioning operation are performed simultaneously or selectively.
  • the humidification operation is the same as in the first embodiment, and the water stored in the supply unit 2 is conveyed to the nozzle 3 as humidified water.
  • the humidified water conveyed to the nozzle 3 is dropped from the tip of the nozzle 3 from above the porous metal body 5 toward the top of the porous metal body 5. Thereby, humidified water is supplied to the porous metal body 5. Utilizing the capillary force of the porous metal body 5 and the gravity of the humidified water, the humidified water is uniformly diffused throughout the porous metal body 5 through the voids 15 of the porous metal body 5 and is porous.
  • the solid metal body 5 holds a certain amount of water.
  • humidified air can be supplied to the space to be humidified.
  • heat exchange can be caused between the refrigerant flowing through the heat exchanger 33 and the air, and the temperature of the air can be changed.
  • heating or cooling the air by the heat exchanger 33 and evaporating water in the porous metal body 5 a desired temperature environment and humidity environment can be created in the air-conditioning target space.
  • the drying operation of the humidifier provided in the air conditioner 100 is the same as in the first embodiment. After humidifying for a predetermined time, the dripping of water from the nozzle 3 is stopped, and the fan 9 is left as it is. Fan for hours. By performing this drying operation to dry the porous metal body 5, growth of microorganisms such as bacteria and mold in the porous metal body 5 is suppressed. In the drying operation, the air sucked from the suction port 34 may be blown as it is to the porous metal body 5 without flowing the refrigerant through the heat exchanger 33, or the heat exchanger 33 is heated through the heated refrigerant. Hot air may be blown to the porous metal body 5.
  • the air conditioner 100 including the humidifying device according to the eleventh embodiment can discharge excess water of the porous metal body 5 from the tip portion 16. For this reason, it is difficult for water droplets to accumulate at the lower end portion of the porous metal body 5, so that the growth of bacteria and fungi can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Air Humidification (AREA)

Abstract

 加湿部材の下部にスライム、スケール、及び水滴のブリッジが生成されるのを抑え、加湿性能の低下を抑制することのできる加湿装置を提供する。 複数の空隙部15を内部に有する1以上の加湿部材としての多孔質金属体5と、多孔質金属体5に送風するファン9と、多孔質金属体5に水を供給する給水手段(供給配管1、供給部2、及びノズル3)とを備え、多孔質金属体5の下端部には、突起又は角からなる先端部16を備えた。

Description

加湿装置及び加湿装置を備えた空気調和機
 本発明は、加湿装置及び加湿装置を備えた空気調和機に関する。
 敷地面積が3000[m]以上の商業施設又は事務所等の特定建築物は、いわゆるビル衛生管理法(建築物における衛生的環境の確保に関する法律)により、空気環境の管理基準値として室内温度を17[℃]~28[℃]、及び、相対湿度を40[%]~70[%]に保つべきことが定められている。このうち、室内温度は、エアーコンディショナーの普及に伴い、比較的容易に管理されている。しかし、相対湿度は十分に管理されているとは言い難く、特に冬場の加湿量不足が課題となっている。
 従来の室内加湿方法としては、気化式、蒸気式及び水噴霧式等がある。このうち、気化式は、吸水性能を有するフィルターに通風することによってフィルターが含有する水分を気流と熱交換させて、フィルターから水分を蒸発させ、室内の加湿を行う方法である。また、蒸気式は、貯水槽内の水を加熱する加熱手段に通電することによって水分を蒸発させて、室内の加湿を行う方法である。そして、水噴霧式は、水分を加圧することによって微細化し、その微細化した水分が気流との熱交換を行うことによって室内の加湿を行う方法である。
 従来の気化式の加湿方法を利用した加湿装置として、上部チャンバーと下部チャンバーとの間に多数枚の板状含水材を適当な通風間隙を配して垂直に平行立設したものが提案されている(例えば、特許文献1参照)。この特許文献1に記載の各含水材の上縁は、上部チャンバーの底板に設けられ両側に小孔が形成されたスリットに嵌められ、各含水材の下縁は、下部チャンバーに設けられた溝に保持されている。また、含水材としては、多孔質金属、焼結金属、金属繊維、セラミック繊維等の集結材その他の多孔質材を使用することが記載されている。
特公平8-30594号公報
 しかしながら、特許文献1に記載の加湿装置では、チャンバーの溝に嵌められた板状の含水材である加湿部材の下端部分に水が溜まると、細菌やカビが生長しやすい。細菌やカビが生長すると、スライムが形成され、形成されたスライムが臭気物質を放散し、吹き出し口の空気が汚染されるという課題があった。また、形成されたスライムやスケールが加湿部材を構成する多孔質金属体の孔に詰まったり、加湿部材同士の間隙に水滴が溜まるブリッジと呼ばれる現象が生じたりすることで、空気の流通が悪化し、熱交換効率が下がり、加湿性能が低下するという課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、加湿部材の下部にスライム、スケール、及び水滴のブリッジが生成されるのを抑え、加湿性能の低下を抑制することのできる加湿装置及び加湿装置を備えた空気調和機を得ることを目的とする。
 本発明に係る加湿装置は、複数の空隙を内部に有する加湿部材と、前記加湿部材に送風する送風手段と、前記加湿部材に水を供給する給水手段とを備え、前記加湿部材の下端部には、突起又は角からなる突部が形成されているものである。
 本発明によれば、加湿部材の下部に水が溜まることを抑制することができる。したがって、加湿部材の下部における細菌やカビ等の生長及び水滴のブリッジの生成が抑えられ、加湿性能の低下を抑制することができる。
本発明の実施の形態1に係る加湿装置の構成図である。 本発明の実施の形態1に係る加湿装置の上流側から見た多孔質金属体5の構成図である。 本発明の実施の形態1に係る加湿装置の多孔質金属体5の部分拡大断面図である。 本発明の実施の形態1に係る加湿装置の、金属繊維で構成された加湿部材の部分拡大断面図である。 加湿装置の比較例を示した図である。 多孔質金属体5の間隙に水滴のブリッジ303が形成された状態を示す図である。 本発明の実施の形態1に係る加湿装置の多孔質金属体5の変形例を示す構成図である。 本発明の実施の形態1に係る加湿装置の多孔質金属体5の変形例を示す構成図である。 本発明の実施の形態2に係る加湿装置の構成図である。 本発明の実施の形態2に係る加湿装置の上流側から見た主要部の構成図である。 アントワンの式から導出した水の蒸気圧の温度依存性を示した特性図である。 本発明の実施の形態4に係る加湿装置の構成図である。 本発明の実施の形態4に係る加湿装置の他の構成図である。 本発明の実施の形態5に係る加湿装置の構成図である。 本発明の実施の形態6に係る加湿装置の構成図である。 本発明の実施の形態6に係る加湿装置のセンサ21を説明する図である。 本発明の実施の形態7に係る加湿装置の構成図である。 本発明の実施の形態8に係る加湿装置の構成を示す主要部の斜視図である。 本発明の実施の形態8に係る加湿装置の構成図である。 本発明の実施の形態9に係る加湿装置の構成を示す主要部の斜視図である。 本発明の実施の形態9に係る加湿装置の構成図である。 本発明の実施の形態9に係る下部支持材8の他の例を示す側面図である。 本発明の実施の形態10に係る加湿装置の上流側から見た多孔質金属体5の構成図である。 本発明の実施の形態11に係る加湿装置を備えた空気調和機100の構成図である。
 以下、本発明に係る加湿装置の実施の形態を、図面を参照して説明する。なお、以下に示す図面の形態によって本発明が限定されるものではない。なお、各図において同一又は対応する構成には、同一の符号を付している。
実施の形態1.
(加湿装置の全体構成)
 図1は、本発明の実施の形態1に係る加湿装置の構成図である。
 図1で示されるように、本実施の形態1に係る加湿装置は、加湿空間へ加湿水を供給するための供給配管1、供給配管1から送られる加湿水を貯留する供給部2、この供給部2内の加湿水を水滴301として下方に供給するノズル3、及び複数の空隙を内部に有し供給される加湿水を保持する加湿部材としての多孔質金属体5を備える。また、加湿装置は、多孔質金属体5の上部を支持する上部上流側支持材6及び上部下流側支持材7と、多孔質金属体5の下部を支持する下部支持材8と、多孔質金属体5に空気を通過させるための送風手段としてのファン9と、多孔質金属体5から浸み出した水滴302を受けて外部に排出するためのドレンパン11とを備えている。上部上流側支持材6及び上部下流側支持材7は、内部に供給部2及びノズル3を収容する筐体12に取り付けられている。また、図1には図示しないが、下部支持材8は、加湿装置の手前側(図1の紙面左側)及び奥側(図1の紙面右側)において、ドレンパン11を収容する筐体13に接合されている。ファン9の下流側には、加湿した空気を吹き出すための吹出口10が設けられている。
 なお、これ以降の説明では、図1の紙面左側を、空気流れの上流側あるいは手前側と称し、図1の紙面右側を、空気流れの下流側あるいは奥側と称する場合がある。
 供給配管1、供給部2、及びノズル3は、多孔質金属体5に加湿水を供給するための給水手段である。この給水手段による多孔質金属体5への加湿水の供給は、図示しない制御装置によって制御される。
 ノズル3は、多孔質金属体5の直上に設置されており、供給配管1から搬送された加湿水を滴下して多孔質金属体5の上部に供給するものである。ノズル3は、中空形状であり、その外形及び内径は多孔質金属体5の大きさに応じて選択すればよい。また、ノズル3の先端形状は、三角錐形状、円管形状又は四角管形状等のいずれの形状でもよいが、ここでは好ましい形状として先端が三角錐形状とし、出口の孔径を0.5[mm]とした。先端が鋭角とした方が、水滴の切れがよい。より鋭角の方が好ましいが、あまり鋭角にすると取り扱いが難しくなり強度面でも脆くなることから、鋭角の角度としては10度~45度の範囲が好ましい。またノズル3の出口の孔径はあまり大きすぎると水が過剰に供給されて無駄になり、一方小さすぎると水に混入した粒子やスケールでノズル3が詰まりやすいことから、孔径としては0.3[mm]~0.7[mm]の範囲が好ましい。また、ノズル3の材質は、ステンレス、タングステン、チタン、銀若しくは銅等の金属、又は、テフロン(登録商標)、ポリエチレン若しくはポリプロピレン等の樹脂を用いることができるが、これらに限定されるものではない。
 また、ノズル3の数は、多孔質金属体5の空気流れ方向の長さ(上流側から下流側の長さ)に応じて設定することができ、多孔質金属体5の空気流れ方向の長さが長い場合には、短い場合よりもノズル3の数を増やす。例えば、多孔質金属体5の空気流れ方向の長さが60[mm]以下であればノズル3は1個でよいが、60[mm]を越える場合は複数個のノズル3を設けるのが好ましい。
 ノズル3が多孔質金属体5に供給する加湿水の量については、実際に加湿で使用される水量よりも多くする必要があるが、あまり多くしても水が無駄になるので、適正な量に制御することが望ましい。例えば多孔質金属体5の加湿性能を2000[mL/h/m]とし、多孔質金属体5の大きさを200[mm]×50[mm]とし、多孔質金属体5の表裏とも加湿できるように構成するとすれば、多孔質金属体5の一枚あたりの加湿量は40[mL/h]となるので、その1.5倍~5倍の60[mL/h]~200[mL/h]の範囲で加湿水を多孔質金属体5に供給するのが望ましい。
 加湿水は、加湿空間の加湿を目的とする場合、純水、水道水、軟水又は硬水のいずれを使用してもよいが、スケールによる多孔質金属体5の空隙の閉塞を低減するために、カルシウムイオン又はマグネシウムイオンを含むミネラル成分が少ないものが好ましい。ミネラル分が多い加湿水を使用すると、溶液中のイオン成分と二酸化炭素とが反応して固形物が生成され、多孔質金属体5の空隙部を閉塞させる可能性があるためである。このため、陽イオン及び陰イオン用イオン交換膜等を使用してイオン成分を取り除いた加湿水を使用してもよい。
(多孔質金属体の構成)
 多孔質金属体5は、複数の空隙を備えた三次元網目構造を有する多孔質金属によって構成されており、本実施の形態1の多孔質金属体5は概ね平板形状である。多孔質金属体5は、その平板面が空気流れと略平行かつ略鉛直方向となる向きで設置されている。本実施の形態1の多孔質金属体5は、図1に示すように五角形状である。より詳しくは、多孔質金属体5の上端部分は水平であり、多孔質金属体5の下端部には、下方に向かって突出した角形状からなる先端部16が設けられている。先端部16は、本発明の突部に相当する。先端部16は、本実施の形態1では、多孔質金属体5の奥行き方向の中心に角の先端が位置するようにして設けられている。また、先端部16の内角の値を角度θ1と称する。このような先端部16を設けることによって、多孔質金属体5の下部の水平面における断面積は、上から下に向かって無段階的に小さくなっている。
 なお、多孔質金属体5の下端部の形状は、直線的な傾斜に限られず、例えば円弧状であってもよい。
 図2は、本発明の実施の形態1に係る加湿装置の上流側から見た多孔質金属体5の構成図である。図2では、多孔質金属体5、上部上流側支持材6及び下部支持材8のみを図示している。本実施の形態1の加湿装置には、複数の多孔質金属体5が設けられており、複数の多孔質金属体5はその平板面が概ね平行になるようにして所定の隙間をおいて設置されている。
 なお、多孔質金属体5は、平板面が鉛直方向となる向きで設置される必要はなく、例えば平板面を鉛直方向に対して傾けて多孔質金属体5を設置してもよい。
 また、複数の多孔質金属体5は、その平板面が互いに平行である必要はなく、例えば一部の多孔質金属体5を傾けて設置してもよい。
 図2に示すように、上部上流側支持材6、上部下流側支持材7、及び下部支持材8は、本発明の加湿部材支持材に相当するものであり、多孔質金属体5を筐体12、13に対して支持する。上部上流側支持材6、上部下流側支持材7、及び下部支持材8は、複数の多孔質金属体5の間隔を一定に保持するための機能も果たしている。上部上流側支持材6、上部下流側支持材7、及び下部支持材8には、それぞれ、多孔質金属体5の一部分を嵌めこむための溝が切られている。
 なお、図2においては、多孔質金属体5の枚数を5枚としているが、多孔質金属体5の枚数をこれに限定されるものではなく、1枚以上の任意の枚数でよい。上部上流側支持材6、上部下流側支持材7、及び下部支持材8の材質は任意でよいが、多孔質金属体5と一体化して隙間がないように構成する方が望ましい。
 図3は、本発明の実施の形態1に係る加湿装置の多孔質金属体5の部分拡大断面図である。図3では、多孔質金属体5の三次元網目構造を示している。図3に示すように、多孔質金属体5は、三次元網目構造となっており、スポンジ等の樹脂発泡体と同様の構造である。多孔質金属体5は、金属部14、及び金属部14中に形成された多数の空隙部15によって形成されている。
 多孔質金属体5は、フィルター、触媒担持体、及び、燃料電池用ガス拡散層等の用途で一般的に使用されており、公知の方法によって製造することが可能である。例えば、多孔質金属の原料である金属粉末及び溶媒を含むスラリーにバブル(泡)を導入し、その後、このスラリーを所望の形状に成形し、その後、焼結させることで、多孔質金属体を製造することができる。あるいは、多孔質金属の原料である金属粉末、高温焼成によって分解消失するバインダー樹脂、及び、溶媒を含むスラリーを所望の形状に成形した後、脱脂及び焼結させても、多孔質金属体を製造することができる。
 この多孔質金属体5は、多孔質セラミックに比べて気孔率及び平均細孔径を大きいものとしている。これによって、多孔質金属体5の空隙部15において、加湿水に含まれる不純物による目詰まりが抑制される。また、多孔質金属体5は毛細管力を有するので、この毛細管力によってポンプ等の駆動部を要することなく、供給部2からの水滴301を多孔質金属体5の内部へ効率的に供給することができる。
 また、多孔質金属体5を構成する金属種としては特に限定されるものではなく、その金属種として、例えば、チタン、銅、アルミニウム若しくはニッケル等の金属、金、銀若しくは白金等の貴金属、又は、ニッケル合金若しくはコバルト合金等の合金が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。これらの中でも、チタンは、腐食の影響を受けにくく、長期に渡って多孔質金属体5の形状を保持して安定して加湿を行うことができるため、最も好ましい金属種である。また、多孔質金属の製造に用いられる溶媒としては、特に限定されるものではなく、例えば、水が挙げられる。また、多孔質金属の製造に用いられるバインダー樹脂としては、特に限定されるものではなく、アクリル樹脂、エポキシ樹脂又はポリエステル樹脂等が挙げられる。焼結温度についても特に限定されるものではなく、使用する材料にあわせて適宜調整するものとすればよい。
 また、樹脂を材質として多孔質体を形成したものに、金属の粉末をコーティングしたものを、多孔質金属体5として用いてもよい。
 また、多孔質金属体5の表面層には、加湿水の保持量の増大、及び、吸水性能劣化防止の観点から、親水化処理を施した方が望ましい。その親水化処理の方法の種類についても限定されることはなく、例えば、親水化樹脂でコーティングすることによる親水化処理、又は、コロナ放電や大気圧プラズマによる親水化処理を実施するものとしてもよい。以下、多孔質金属体5の親水化処理の一例を説明する。
(親水化処理方法)
 親水化の材料を多孔質金属体5にコーティングする具体的な方法の一例は以下のとおりである。多孔質金属体5を400℃、30分の条件で大気酸化処理を行い、さらに表面の耐食性を向上させる目的でリン酸クロメート処理を行った後、ケイ酸ナトリウム水溶液100[mg/L]に10分間浸漬させ、80℃、5時間の条件で乾燥させて、表面にシリカのコーティング膜を形成する。
 コーティングの膜厚は0.01[μm]~10[μm]の範囲が好ましく、あまり膜を厚くすると発泡部分の細孔を塞ぐことになり好ましくない。反対に膜を薄くしすぎると時間の経過とともに膜が剥離して表面の親水性が低下して含水能力が低下することから好ましくない。
 親水系の材料としては、シリカの代替として、シランカップリング剤又は酸化チタンのジメチルホルムアミド溶液を用いてもよい。また有機系の高分子樹脂でもよく、例えばポリビリルアルコール、ポリエチレングリコール、セルロール、又はエポキシのジメチルホルムアミド溶液を用いてもよい。
 多孔質金属体5の表面が滑らかな方が親水性能をより向上させることができるので、表面の凹凸を無くす処理を行ってもよい。この場合は有機系の高分子樹脂の膜を積層するのが好ましい。以上の処理を行うことで、多孔質金属体5の表面は親水化し、多孔質金属体5への吸水を迅速に行う効果を発揮する。
 なお、大気圧プラズマ処理をコーティング処理の下処理として実施してもよい。このようにすることで、コーティング膜と金属発泡体の接着力が強化され、経時的な耐久性を向上させることができる。
 多孔質金属体5は厚さ0.5[mm]以上2[mm]以下のシート状の多孔質金属を作製した後、所望の形状に切断して所望の形状に加工すればよい。その加工方法については特に限定されるものではなく、例えば、ワイヤーカット、レーザーカット、プレス打ち抜き、削りだし、手切断又は折り曲げ等の各種方法によって行うことができる。
 多孔質金属体5の気孔率は60[%]~90[%]が望ましく、このようにすることで、多孔質金属体5による吸水量を十分に確保し、また、多孔質金属体5の強度を適度に保つ。また、多孔質金属体5の細孔径は50[μm]~600[μm]が望ましく、このようにすることで、多孔質金属体5の強度を維持し、不純物による空隙部15の目詰まりを抑制する。
 なお、本実施の形態1では、多孔質金属体5により加湿部材を構成する例を示すが、多孔質金属体5に代えて、金属繊維を加湿部材として用いてもよい。図4は、本発明の実施の形態1に係る加湿装置の、金属繊維で構成された加湿部材の部分拡大断面図である。図4に示す加湿部材は、φ0.1mm程度の多数の金属繊維4が複雑に絡まった構成となっている。絡み合った金属繊維4同士の間には、複数の空隙部が形成されており、この空隙部に水が保持される。金属繊維4の材質は多孔質金属体5と同様に何でもよく、例えば、チタン、銅、アルミニウム若しくはニッケル等の金属、金、銀若しくは白金等の貴金属、又は、ニッケル合金若しくはコバルト合金等の合金を用いることができる。このような金属繊維を、図1に示す多孔質金属体5と同様の形状に加工して加湿部材を構成してもよい。
(加湿装置の動作)
 次に、図1を参照しながら、本実施の形態1に係る加湿装置の動作について説明する。本実施の形態1の加湿装置は、加湿運転とを選択的に行う。
 まず、加湿装置の加湿運転を説明する。
 供給配管1から供給された水は供給部2に貯留され、供給部2に貯留された水は加湿水としてノズル3へ搬送される。ノズル3へ搬送された加湿水は、多孔質金属体5の上方から、多孔質金属体5の上部へ向けて、ノズル3の先端から水滴301として滴下される。これにより、多孔質金属体5に加湿水が供給される。多孔質金属体5が有する毛細管力と、加湿水の重力とを利用して、加湿水は、多孔質金属体5の空隙部15を通じて、多孔質金属体5の全体に均一に拡散し、多孔質金属体5は水を一定量保持することになる。
 ファン9が動作すると、空気は多孔質金属体5の上流側(図1の紙面左側)から下流側(図1の紙面右側)に向かって流れ(図1の矢印200)、多孔質金属体5を通過し、ファン9に吸引され(図1の矢印201)、加湿装置の外部へと搬送される(図1の矢印202)。多孔質金属体5に保持されている水は、ファン9の動作によって流れる空気との気液接触によって蒸散し、空気を加湿する。
 加湿に使用されなかった多孔質金属体5内の余剰の水は、重力によって多孔質金属体5の下部の先端部16に集合し、先端部16から漏れ出して下方に滴下する。多孔質金属体5から漏れ出した水は、ドレンパン11によって受けられ、加湿装置の外部に排出される。
 このような加湿装置の加湿運転により、加湿した空気を加湿対象となる空間に供給することができる。
 次に、実施の形態1に係る加湿装置の乾燥運転を説明する。
 加湿装置は、所定時間の加湿を行った後に、ノズル3からの水の滴下を停止させ、ファン9はそのまま一定時間の間、送風するという乾燥運転を行う。この乾燥運転によって多孔質金属体5を乾燥させることで、多孔質金属体5における細菌やカビ等の微生物の生長を抑制する。細菌やカビ等の微生物が生長すると多孔質金属体5が不衛生となり、再度加湿運転を行ったときに、空気中に微生物やカビの胞子が混入される可能性があることから好ましくない。なお、乾燥運転においては、空気をそのまま送風してもよいし、図示しないヒーター等の加熱手段により加熱された温風を送風してもよい。温風を送風した方が乾燥時間を短縮することができるが、加熱にエネルギーが必要なため、目標とする仕様によってどちらかを選択する。
 乾燥運転の頻度に関しては、微生物の繁殖速度によって決めるのが望ましい。例えば大腸菌は環境のよい条件が整えば1日間で大量に増殖することを考えると、1日の加湿運転が終了した後に、乾燥運転を行うことが望ましい。ただし、多孔質金属体5を乾燥させる頻度が高いと、水中のスケールが析出して、加湿性能を低下させるため、細菌やカビの生長速度及び水道水の硬度を勘案して乾燥運転の頻度を決定することが望ましい。
(実施の形態1の効果)
 以上の構成のように、本実施の形態1の加湿装置は、多孔質金属体5の余剰の水を先端部16から排出することができる。このため、多孔質金属体5の下端部に水滴が溜まりにくいので、細菌やカビの生長を抑制することが可能となる。
 ここで、図5に、本発明の実施の形態1に係る加湿装置の作用を説明するための比較構成例を示す。図5は、加湿装置の比較例を示した図であり、本実施の形態1とは異なり、多孔質金属体5の下面は水平面となっている。図5に示すように、多孔質金属体5の下端が水平であると、多孔質金属体5の下端部の上流側から下流側まで全体にわたって水が溜まりやすい。このため、乾燥運転において多孔質金属体5を乾燥する運転時間が長く必要となり、エネルギーの無駄が生じる。また、乾燥時間が不十分で水滴302が多孔質金属体5に残存する場合は、スライムが形成されやすくなるため、吹出口10における臭気、及び加湿空気への微生物又はカビの胞子の混入が発生しやすくなる。
 また、多孔質金属体5の下端部に水が溜まると、複数の多孔質金属体5同士の間隙で水滴が連なるブリッジと呼ばれる現象が生じうる。ここで、図6に、多孔質金属体5の間隙に水滴のブリッジ303が形成された状態を示す。図6に示すような水滴のブリッジ303が形成されると、スライム発生の温床となるばかりか、この部分には空気が通過しないことから多孔質金属体5の加湿性能の低下につながる。
 このように、多孔質金属体5の下端部の水の排出効率が悪い場合には、細菌やカビ等の微生物が生長しやすく、また、加湿性能の低下が生じやすい。
 しかし、本実施の形態1のように、多孔質金属体5の下端部を水平にするのではなく、多孔質金属体5の下端部に下方へ突出する角からなる先端部16を設けることで、多孔質金属体5の下部の水を効率よく排出することができる。このように多孔質金属体5の下部の水を効率よく排水することで、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。
 なお、下部支持材8は、多孔質金属体5の下端部分ではなく、図1に示すように下流側の側壁部分を支持するように構成した方が望ましい。仮に、下部支持材8が多孔質金属体5の下端部を支えるように構成した場合には、下部支持材8と多孔質金属体5との接合部分に水が堆積しやすくなり、スライムの生成が促進されうる。しかし、多孔質金属体5の下端部よりも上方の側壁部分を下部支持材8が支持するようにすることで、下部支持材8と多孔質金属体5との接合部分に水が堆積しにくくなる効果を得ることができる。
 また、先端部16の角度θ1については、角度θ1が大きすぎると多孔質金属体5の下端部に水を堆積させない効果が小さくなり、角度θ1が小さすぎると多孔質金属体5の加工が困難になるとともに強度も脆くなる。このため、先端部16の角度θ1は、多孔質金属体5の下端部への水の堆積度合い、多孔質金属体5の加工、及び先端部16の強度を考慮して適切な角度とするのがよく、30度~150度の範囲が好ましい。
 また、図1の例では、先端部16を角状(三角形状)とした例を示したが、先端部16の形状はこれに限定されない。図7は、本発明の実施の形態1に係る加湿装置の多孔質金属体5の変形例を示す構成図である。図7に示す例では、先端部16を、下方へ突出する矩形の突起状としている。より詳しくは、多孔質金属体5の下面の奥行き方向の中央部には、階段状に下方に突出した突起が形成されており、この突起部分により先端部16が構成されている。先端部16の水平面における断面積は、この先端部16よりも上側の多孔質金属体5の水平面における断面積よりも小さい。このように先端部16の形状を突起状としても、多孔質金属体5の先端部16に水が集合し、多孔質金属体5の余剰の水を効率よく排水することができる。したがって、多孔質金属体5における細菌やカビ等の微生物の生長を抑制し、初期状態の加湿性能を維持することができる。なお、先端部16を構成する突起の幅(奥行き方向の幅)が大きくなると排水する効果が小さくなり、突起の幅が小さくなると多孔質金属体5の加工が困難になるとともに強度面でも脆くなる。このため、先端部16を構成する突起の幅(奥行き方向の幅)としては、適切な幅が存在し、2[mm]~10[mm]の範囲が好ましい。また、先端部16を構成する突起の形状は、角柱状のほか、円柱状、円錐状、円錐台状等としてもよい。
 また、図1の例では、多孔質金属体5を五角形に構成し、その五角形の角部の一つを先端部16とした例を示したが、図8のように構成してもよい。図8は、本発明の実施の形態1に係る加湿装置の多孔質金属体5の変形例を示す構成図である。図8に示す例では、長方形状の多孔質金属体5を奥行き方向に傾けて設置することによって、長方形の下側の二つの角のうち一方の角が他方よりも下側に位置するようにしている。そして、下側に位置する方の角部分を、先端部16としている。したがって、多孔質金属体5の水平面における断面積は、下部ほど小さくなっている。このように長方形状の多孔質金属体5の角部分を先端部16としても、図1及び図7の構成例と同様に、多孔質金属体5の水を効率よく配することができる。したがって、細菌やカビなどの微生物の生長を抑制し、初期状態の加湿性能を維持することができる。
実施の形態2.
 本実施の形態2に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
 図9は、本発明の実施の形態2に係る加湿装置の構成図である。
 前述の実施の形態1では、図1に示したように、先端部16を多孔質金属体5の下端部の中心に設けた。
 一方、本実施の形態2では、図9に示すように、多孔質金属体5の下部のうち空気流れの上流部(図9の紙面左側)に、下方に突出する先端部16を設けている。本実施の形態2の例では、多孔質金属体5の下面は、先端部16から奥行き方向に向かって、上方に傾斜している。
 さらに、本実施の形態2の多孔質金属体5の上には、上部加湿部材である上部多孔質金属体17が設けられている。
 図10は、本発明の実施の形態2に係る加湿装置の上流側から見た主要部の構成図である。図10に示すように、上部多孔質金属体17は、複数の多孔質金属体5の上端のすべてを覆うように構成されている。また、上部多孔質金属体17の上部から荷重を掛けることにより、上部多孔質金属体17が多孔質金属体5に密着するようにしている。この上部多孔質金属体17は、空気の加湿の役割ではなく、多孔質金属体5へ水を伝達するための緩衝材の役割を果たしている。すなわちノズル3から滴下される水は、いったん上部多孔質金属体17に吸収され、上部多孔質金属体17の全体に行き渡った後、上部多孔質金属体17の下部から多孔質金属体5に伝達される。
 加湿装置の加湿運転の動作は、前述の実施の形態1と同様である。
 ここで、加湿運転の際には、空気は多孔質金属体5の上流側部分(図9の紙面左側)から下流側部分(図9の紙面右側)に流れる過程において順に加湿されるため、多孔質金属体5の上流側部分に位置している空気に対して下流側部分に位置している空気は相対湿度が高くなる。加湿能力は蒸気圧に比例することから、空気中の湿度が高いと加湿性能が低下する。すなわち、多孔質金属体5に均一に水が含浸している状態から加湿運転を行うと、多孔質金属体5の上流側の水から先に加湿に使われるため上流側部分に残存する水が相対的に少なくなり、下流側部分に残存する水が多くなる現象が見られる。
 しかし、本実施の形態2では、この現象を考慮し、多孔質金属体5の上流側部分に先端部16を設けている。このようにすることで、先端部16及びその上部に水が集まりやすくなり、多孔質金属体5の上流側部分に水が多く供給されることになる。このため、加湿運転中の多孔質金属体5の全体の水分の分布のばらつきを小さくすることができる。
 本実施の形態2では、上部多孔質金属体17にいったん水が吸水されて、上部多孔質金属体17を介して多孔質金属体5に通水することから、多孔質金属体5の上部において水のばらつきを少なくすることができる。
 なお、図9においては、すべての多孔質金属体5について、上流側に先端部16を設けたが、例えば、「上流側-中央部-上流側-中央部-上流側」、「上流側-下流側-上流側-下流側-上流側」のように互い違いの位置に先端部16を設け、隣接する多孔質金属体5同士で先端部16の奥行き方向の位置を異ならせてもよい。また、すべての多孔質金属体5において上流側に先端部16を設けるとともに、各多孔質金属体5の上下方向の長さを異ならせ、先端部16の高さを互い違いにしてもよい。このようにすることで、図6に示したブリッジ303の発生をさらに抑制することができる。
 乾燥運転の動作については実施の形態1と同様である。
(実施の形態2の効果)
 以上の構成のように、多孔質金属体5に先端部16を設けたので、実施の形態1と同様に、多孔質金属体5の下端部の水を効率よく排水することができる。したがって、細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。また、本実施の形態2では、先端部16を、多孔質金属体5における送風方向上流側に設けたので、多孔質金属体5における水分の分布のばらつきを抑制することができる。したがって、多孔質金属体5の水分を、効率よく加湿運転に利用することができ、加湿性能を向上させることができる。
 また、本実施の形態2では、複数の多孔質金属体5の上部に密着してこれらを覆う上部多孔質金属体17を設け、供給部2から供給される水を、上部多孔質金属体17を介して各多孔質金属体5に供給するようにした。このため、多孔質金属体5内における水分の分布のばらつきを抑制することができ、効率よく加湿することができる。
実施の形態3.
 本実施の形態3に係る加湿装置について、実施の形態2と相違する点を中心に説明する。
 本実施の形態3の加湿装置の構成は、図9に示した実施の形態2の構成と同様である。しかし、本実施の形態3の上部上流側支持材6、上部下流側支持材7、及び下部支持材8は、熱伝導性の高い材料で構成され、また、筐体12、13と隙間なく接合されている。熱伝導性の高い材料としては、チタン、銅、アルミニウム若しくはニッケル等の金属、金、銀若しくは白金等の貴金属などを用いることができる。
 また、本実施の形態3の多孔質金属体5、及び筐体12、13についても熱伝導性の高い金属を材料とする。上部上流側支持材6、上部下流側支持材7、及び下部支持材8の熱伝導性は、多孔質金属体5と同じかそれ以上である。
 図11は、アントワンの式から導出した水の蒸気圧の温度依存性を示した特性図である。
 アントワンの式は以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、pは蒸気圧である。また、A、B、Cは物質と温度の単位に依存するアントワン定数で、水の場合はpの単位としてmmHg、Tの単位としてセルシウス度とすると、A=8.0275、B=1705.62、C=231.41である。
 図11に示すとおり、蒸気圧は温度に依存し、温度が高いほど蒸気圧が高いことが知られている。蒸気圧は加湿能力に比例することから、多孔質金属体5の温度を上げることで、加湿性能を向上させることができる。
 一方、加湿によって生じる蒸発潜熱により多孔質金属体5の温度が低下する。多孔質金属体5の温度が低下すると加湿能力が低下することから、蒸発潜熱によって生じた冷熱を多孔質金属体5から迅速に排出することが加湿性能の維持のために効果的である。
 したがって、前述の実施の形態1では、加湿部材として多孔質金属体5と金属繊維のいずれを用いてもよいことを説明したが、本実施の形態3では、以下の理由により多孔質金属体5を加湿部材として用いるのが望ましい。図3に示した多孔質金属体5と図4に示した金属繊維とを比較すると、図4の金属繊維同士の接点は点であって接触面積が小さいのに対し、図3の多孔質金属体5は金属同士が実質的にはほぼ一体となっている。このような接触面積の違いにより、両者の間には熱伝導性能に大きな差が生じる。すなわち、多孔質金属体5に対して金属繊維は熱電導性能が低下し、加湿性能も低下する。このため、多孔質金属体5を加湿部材として用いる方が望ましい。
 加湿装置の動作については実施の形態1と同様である。
(実施の形態3の効果)
 本実施の形態3では、加湿部材として熱伝導性の高い金属で構成された多孔質金属体5を用い、さらに上部上流側支持材6、上部下流側支持材7、及び下部支持材8を、多孔質金属体5と同じか多孔質金属体5よりも高い熱伝導性を有する金属部材又はセラミックで構成した。また、多孔質金属体5と上部上流側支持材6、上部下流側支持材7、及び下部支持材8、並びに上部上流側支持材6、上部下流側支持材7、及び下部支持材8と筐体12及び筐体13とを、隙間なく接合して一体化した。このような構成により、蒸発潜熱によって多孔質金属体5に生じた冷熱を効率よく外部に放出することが可能となり、加湿性能の低下を抑えることができる。さらに乾燥運転においても、加湿運転と同様に蒸発潜熱を効率的に外部に排出することができるので、多孔質金属体5の先端部16における水の乾燥を効率よく行え、乾燥運転の時間を短縮化することができる。このように多孔質金属体5の下端部の水を効率よく乾燥することにより、細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。
実施の形態4.
 本実施の形態4に係る加湿装置について、実施の形態3と相違する点を中心に説明する。
 図12は、本発明の実施の形態4に係る加湿装置の構成図である。図12において、前述の図9と異なる点は、加熱部材としてのヒーター18を筐体12に設置している点である。このヒーター18は、多孔質金属体5を加熱するためのものである。ヒーター18は発熱するものであれば何でもよく、例えばニクロム線でもよいしPTC(Positive Temperature Coefficient)ヒーターやヒートポンプ、ペルチェ素子などでもよい。設置位置としては、多孔質金属体5になるべく近いほうが、熱伝導がよいことから、上部上流側支持材6又は上部下流側支持材7の近傍が望ましい。このように構成することで、ヒーター18から発生した熱によって多孔質金属体5を加熱することが可能となる。
 本実施の形態4の加湿装置は、乾燥運転において、ヒーター18に電圧を印加して多孔質金属体5を加熱し、乾燥運転を効率化する。それ以外の加湿装置の動作は、実施の形態1と同様である。
(実施の形態4の効果)
 本実施の形態4では、前述の実施の形態3と同様に、加湿部材として熱伝導性の高い金属で構成された多孔質金属体5を用い、さらに上部上流側支持材6、上部下流側支持材7、及び下部支持材8を、多孔質金属体5と同じか多孔質金属体5よりも高い熱伝導性を有する金属部材又はセラミックで構成した。また、多孔質金属体5と上部上流側支持材6、上部下流側支持材7、及び下部支持材8、並びに上部上流側支持材6、上部下流側支持材7、及び下部支持材8と筐体12及び筐体13とを、隙間なく接合して一体化した。このような構成により、実施の形態3と同様に、蒸発潜熱によって多孔質金属体5に生じた冷熱を効率よく外部に放出することが可能となり、加湿性能の低下を抑えることができる。
 さらに本実施の形態4では、筐体12にヒーター18を設け、乾燥運転中にはヒーター18によって多孔質金属体5を加熱するようにした。このため、乾燥運転中においても、加湿運転中と同様に蒸発潜熱を効率的に外部に排出することができるので、多孔質金属体5の先端部16における水の乾燥を効率よく行え、乾燥運転の時間を短縮化することができうる。このように多孔質金属体5の下端部の水を効率よく乾燥することにより、細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。
 なお、上記説明ではヒーター18を設ける例を示したが、そのほかに以下のような構成を採用することもできる。
 図13は、本発明の実施の形態4に係る加湿装置の他の構成図である。図13に示す例では、ヒーター18に代えて、アルミニウムなどを材料とする放熱フィン19が筐体12に取り付けられている。多孔質金属体5の熱は、上部上流側支持材6又は上部下流側支持材7、及び筐体12を介して、筐体12に伝わるように構成されている。このように放熱フィン19を設けても、ヒーター18を設けた場合と同様の効果を得ることができる。
 また、図示しないが、ヒーター18に代えて、この加湿装置を動作させるための回路部品等を含む基板回路を、多孔質金属体5との間で熱が伝わる位置に設けてもよい。基板回路は動作時に発熱するので、例えばヒーター18と同じ場所に基板回路を設けた場合、基板回路の熱が、筐体12、上部上流側支持材6、上部下流側支持材7、及び下部支持材8を介して多孔質金属体5に伝わり、ヒーター18を設けた場合と同様の効果を得ることができる。
 なお、上記説明では、多孔質金属体5を加熱する加熱手段(ヒーター18又は基板回路)と、多孔質金属体5から伝わる熱を放出する放熱手段(放熱フィン19)とを筐体12に設ける例を示したが、加熱手段及び放熱手段の設置場所は筐体12に限定されない。上述した加熱手段と放熱手段の機能を発揮できる場所であれば、任意の場所に加熱手段と放熱手段とを設けることができる。
実施の形態5.
 本実施の形態5に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
 本実施の形態5に係る加湿装置は、乾燥運転において多孔質金属体5を通過する空気の風速を、実施の形態1よりも上昇させる。
 図14は、本発明の実施の形態5に係る加湿装置の構成図である。図14に示すように、多孔質金属体5の上流側には、ダンパー20が設置されている。ダンパー20は、多孔質金属体5に向かう空気の流路を変化させるための部材である。図14に示すように、ダンパー20は、流路断面積を絞った状態において、多孔質金属体5の先端部16の近傍に優先的に空気が流れるように構成されている。水滴302は、表面張力により先端部16に付着しているが、表面張力を上回る外力を与えることで強制的に水滴を飛散させることができる。また、ダンパー20によって流路断面積を小さくすることで多孔質金属体5を通過する空気の風速を速めることができるので、先端部16に残存した水滴302の乾燥も速くなり、多孔質金属体5の乾燥時間が短くなる。
 次に、実施の形態5に係る加湿装置の動作を説明する。加湿運転においては、ダンパー20は、多孔質金属体5に向かう空気の流路断面積が最大となるように制御される。加湿運転におけるその他の動作は実施の形態1と同様である。
 また、乾燥運転においては、ダンパー20は、図14に示すように多孔質金属体5に向かう空気の流路を絞るとともに、この空気が先端部16の近傍に優先的に流れるように制御される。乾燥運転におけるその他の動作は実施の形態1と同様である。
(実施の形態5の効果)
 本実施の形態5によれば、乾燥運転において多孔質金属体5の近傍を通過する空気の風速を、加湿運転における空気の風速よりも速くしたので、前述の実施の形態1と同様の効果を得ることができるほか、乾燥運転において多孔質金属体5の乾燥を効率よく行うことができる。したがって、乾燥運転の時間を短縮化することができる。
 また、本実施の形態5では、乾燥運転において多孔質金属体5の先端部16に優先的に空気を流すようにした。このため、多孔質金属体5の先端部16を効率よく乾燥させることができる。したがって、先端部16における細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。
 なお、上記説明では、多孔質金属体5を通過する空気の風速を上昇させる手段としてダンパー20を設ける例を示したが、ダンパー20に代えて、あるいはこれに加えて、乾燥運転におけるファン9の単位時間当たりの回転数を大きくしてもよい。このようにしても多孔質金属体5を通過する空気の風速を速めることができるので、乾燥運転の時間を短縮化することができる。
実施の形態6.
 本実施の形態6に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
 図15は、実施の形態6に係る加湿装置の構成図である。図15に示すように、筐体13には、多孔質金属体5の先端部16と対向する位置に、先端部16における水滴302の有無を検出するための水分検出手段として、センサ21が設けられている。センサ21は、例えば光散乱方式を原理として、検出領域内における水滴302の有無を検知する装置である。
 図16は、本発明の実施の形態6に係る加湿装置のセンサ21を説明する図である。図16に示すように、センサ21は、光を発する光源としてのLED(Light Emitting Diode)22と、受光量に応じた信号を出力するフォトマル23と、LED22に電力を供給する電源24と、フォトマル23からの出力を増幅する増幅回路25と、増幅回路25からの出力に基づいて水滴302の有無を判別する判別手段26を備えている。LED22が発する光の波長を特に制限するものではなく、紫外光から赤外光まで使用可能である。また、光源はLEDに限定されず、光を発する他の部材を光源として用いてもよい。また、判別手段26は、例えば、増幅回路25からの出力と予め定められた閾値との大小を判別することのできる回路部品で構成される。判別手段26の判別結果は、図示しない加湿装置の制御装置に入力される。
 次に、実施の形態6に係る加湿装置の動作を説明する。
 乾燥運転において、LED22から発せられた光の光路上に水滴302が存在しているときは、LED22からの光が散乱し、フォトマル23に散乱光の一部が照射される。フォトマル23に照射された光は起電力を生じることから増幅回路25で一定電圧に昇圧され、判別手段26に入力される。判別手段26は、あらかじめ設定された電圧の閾値と入力された値との大小により、水滴302の有無を判別し、判別結果を制御装置に入力する。制御装置は、水滴302が存在すると判別された場合には乾燥運転を継続し、水滴302が存在しないと判別された場合には乾燥運転を止める。
 なお、判別手段26において設定された閾値に基づいて水滴302の有無を判別するのではなく、増幅回路25の出力に応じて、ファン9の回転数の大小を制御してもよい。
 また、本実施の形態6では、光散乱方式のセンサ21を用いる例を示したが、このようなセンサ21に代えて、湿度を検出するセンサを用いてもよい。湿度を検出するセンサを用いた場合も、光散乱方式のセンサ21と同様に、検出された湿度の値と予め設定された閾値との大小によって水滴302の有無を判別してもよいし、増幅回路25の出力に応じて、ファン9の回転数の大小を制御してもよい。
 なお、加湿運転における動作は、実施の形態1と同様である。
(実施の形態6の効果)
 本実施の形態6では、多孔質金属体5の先端部16近傍における水滴302の有無をセンサ21によって検出し、その検出結果に基づいて乾燥運転を実施するようにした。水滴302が先端部16に残存している間は乾燥運転を継続することができるので、多孔質金属体5における細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。また、先端部16に残存する水滴302がなくなれば、乾燥運転を停止することができるので、無駄な乾燥運転を抑制して省エネルギー化を図ることができる。
実施の形態7.
 本実施の形態7に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
(加湿装置の構成)
 図17は、本発明の実施の形態7に係る加湿装置の構成図である。図17で示されるように、本実施の形態7に係る加湿装置は、図1に示した構成に加えて、多孔質金属体5の上流側に多孔質金属体5との間に空間を設けて設置された導電体電極27と、この導電体電極27に電圧を印加する電源28とを備える。また、多孔質金属体5には、接地部29が取り付けられている。
 導電体電極27は、多孔質金属体5との間の空間(ギャップ)に、電界を形成するためのものである。導電体電極27は、多孔質金属体5との間の空間において電界を形成するために導電性を有する必要があり、導電体電極27の材質としては、例えば金属、金属合金又は導電性樹脂等が好ましい。また、導電体電極27は、電気抵抗が低いものであればよく、汎用性及び加工性の観点からアルミニウム、銅又はステンレス等が好ましいが、これに限定されるものではない。また、導電体電極27の大きさについても特に限定されるものではなく、製造する加湿装置の大きさに合わせて適宜調整すればよい。
 電源28は、導電体電極27に接続されており、この導電体電極27に電圧を印加する。電源28が導電体電極27に電圧を印加することにより、多孔質金属体5と導電体電極27との空間に電界が形成される。
 ここで、多孔質金属体5が加湿を行うためには、図17に示すように、多孔質金属体5を接地部29に接地し、多孔質金属体5の対向部に設けられた導電体電極27に直流負極性電圧を印加するほか、図示しないが多孔質金属体5に直流正極性電圧を印加し、対向部に設けられる導電体電極27を接地することができ、いずれの構成を採用してもよい。しかし、水を含んだ多孔質金属体5に直流正極性電圧を印加した場合、電気腐食により多孔質金属体5を劣化させる可能性があるため、図17に示すように多孔質金属体5を接地し、対向部に設けられる導電体電極27は直流負極性電圧を印加する方が、より望ましい。
 また、電源28が導電体電極27に印加する電圧値として、直流負極性電圧を印加する場合には-10[kV]以上-4[kV]以下を印加することが望ましい。これは、印加電圧が-4[kV]より大きく0[kV]未満であれば、多孔質金属体5と導電体電極27との間に形成される電界の強度が弱く、多孔質金属体5から水を引き出すことができないためである。一方、印加電圧が-10[kV]より小さく(すなわち、印加電圧の絶対値が10[kV]より大きく)なると、電源28の負荷が大きくなって絶縁設計が難しくなるためである。
 また、本実施の形態7に係る加湿装置の動作の説明で後述するように、加湿装置において放電を発生させないようにするため、多孔質金属体5と導電体電極27との間で形成される電界の強度を気体の絶縁破壊電界強度である30[kV/cm]未満に設定することが望ましい。電源28によって多孔質金属体5と導電体電極27との間に30[kV/cm]の電界強度が形成されると、多孔質金属体5と導電体電極27との間で火花放電が発生して多孔質金属体5の短寿命化、及び、発熱による無効消費電力が増大するという問題があるためである。
 多孔質金属体5と導電体電極27との空間のギャップ長は、3[mm]以上20[mm]以下であることが望ましい。これは、ギャップ長が3[mm]未満である場合、多孔質金属体5と導電体電極27との空間が狭いため、ファン9による送風の圧力損失が大きくなり、ファン9の電力負荷が高くなるためである。一方、ギャップ長が20[mm]よりも長くなると、多孔質金属体5から水を引き出すために十分な電界強度に達しないため、加湿能力が低下するといった問題があるためである。
 また、本実施の形態7の多孔質金属体5は、実施の形態1と同様に、接地電極である多孔質金属体5の下部には、吸水性を有し、下方に向かって突出する先端部16を設けている。先端部16は、本実施の形態7では、導電体電極27よりも下側に位置している。
 なお、先端部16の形状は、水滴302が滴下しやすい形状であればよく、例えば、図7、図8に示した形状であってもよいし、図9に示すように多孔質金属体5の奥行き方向の端部に先端部16を設けてもよい。
 また、吸水性を有する材料で先端部16を構成すればよく、先端部16は多孔質金属体5と同一の材料により構成されていてもよいし、多孔質金属体5とは別材料により構成されていてもよい。
(加湿装置の動作)
 次に、図17を参照しながら、本実施の形態7に係る加湿装置の動作について説明する。
 まず、加湿装置の加湿運転を説明する。
 供給配管1から供給された水は供給部2に貯留され、供給部2に貯留された水は加湿水としてノズル3へ搬送される。ノズル3へ搬送された加湿水は、多孔質金属体5の上方から、多孔質金属体5の上部へ向けて、ノズル3の先端から水滴301として滴下される。これにより、多孔質金属体5に加湿水が供給される。多孔質金属体5が有する毛細管力と、加湿水の重力とを利用して、加湿水は、多孔質金属体5の空隙部15を通じて、多孔質金属体5の全体に均一に拡散し、多孔質金属体5は水を一定量保持することになる。
 このとき、多孔質金属体5と対向するように所定の間隔を隔てて設けられた導電体電極27に電源28によって電圧が印加されると、大地接地された多孔質金属体5と導電体電極27との間に電界が形成され、多孔質金属体5の表面近傍に電荷が移動する。多孔質金属体5の表面近傍に移動した電荷は、多孔質金属体5の空隙部15に存在する水を誘導帯電させ、誘導帯電された水は、電界によるクーロン力によって、導電体電極27に向かう方向に三角錐形状のテーラーコーンを形成する。このテーラーコーンは、誘導帯電された水が電界から受けるクーロン力と表面張力との釣り合いによって三角錐形状に保たれる。電源28から導電体電極27に印加される入力電圧の値を上げて、電界強度を増加させ、クーロン力がテーラーコーンを形成する水の表面張力を超えると、多孔質金属体5から引き出されたテーラーコーンがミスト状に空間に放出され、レイリー分裂により数十[nm]サイズに微粒化されることになる。しかし、本実施の形態7においては放電現象を起こさないように電源28によって多孔質金属体5と導電体電極27との間の電界強度が制御されることにより、多孔質金属体5の表面上の水はテーラーコーンの状態で保たれている。
 多孔質金属体5の表面層の水、及び、電界により多孔質金属体5から引き出されたテーラーコーンは、多孔質金属体5及び導電体電極27からなる加湿部の上流部又は下流部に設けたファン9によって送風される空気である被処理ガスとの気液接触によって蒸散し、加湿空間を加湿する。なお、ファン9による被処理ガスの送風方向は、多孔質金属体5と導電体電極27との空間に形成された電界方向と垂直となるようにする。
 また、電源28が導電体電極27に印加する電圧を上昇させて多孔質金属体5と導電体電極27との間の電界強度を増加させることによって、テーラーコーンの形成が促進されるので、被処理ガスとの接触面積が増加し、加湿性能を増加させることができる。
 供給部2からの加湿水の供給量よりも多孔質金属体5からの水の蒸散量が少ない場合には、多孔質金属体5に含まれる加湿に使用されなかった余剰水は、重力によって多孔質金属体5の下部の先端部16に集合し、先端部16から漏れ出して下方に滴下する。多孔質金属体5の先端部16より漏れ出した水は、ドレンパン11によって受けられ、加湿装置の外部に排出される。
(実施の形態7の効果)
 本実施の形態7によれば、多孔質金属体5と導電体電極27との間に電界を形成し、多孔質金属体5からテーラーコーンを引き出すようにした。このため、多孔質金属体5の表面層の水の蒸散に加え、テーラーコーンの蒸散によって、加湿対象空間の加湿を行うことができる。したがって、加湿性能を向上させることができる。
 また、供給部2からの加湿水の供給量よりも多孔質金属体5からの水の蒸散量が少ない場合には、余剰水は多孔質金属体5の下端部まで到達し、水滴を形成してドレンパン11に滴下して排出される。このとき、水滴302と導電体電極27の空間距離が短すぎると、異常放電が発生する可能性がある。しかし、本実施の形態7では、多孔質金属体5の下部に先端部16を設け、この先端部16から余剰水を水滴302としてドレンパン11へ滴下させるようにした。そして、導電体電極27を、先端部16よりも上側に配置した。このため、水滴302と導電体電極27との間の空間距離を広げることができ、水滴302と導電体電極27との間の異常放電を抑制することができる。
 また、多孔質金属体5の下端部の水を、先端部16から効率よく排水することができるので、多孔質金属体5における細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。
 なお、上記実施の形態1~7では、多孔質金属体5又は金属繊維4により加湿部材を構成する例を示したが、多孔質セラミックにより加湿部材を構成してもよい。上記実施の形態7においては、導電性を有する多孔質セラミックにより加湿部材を構成することで、この加湿部材と導電体電極27との間に電界を形成することができる。
 また、上記実施の形態1~7で示した構成は、互いに組み合わせて用いることができる。特に、実施の形態1及び実施の形態2で例示した多孔質金属体5及び先端部16の構成は、他の実施の形態のいずれに適用してもよい。
実施の形態8.
 本実施の形態8に係る加湿装置について、実施の形態1及び実施の形態2と相違する点を中心に説明する。
(加湿装置の構成)
 図18は、本発明の実施の形態8に係る加湿装置の構成を示す主要部の斜視図である。図19は、本発明の実施の形態8に係る加湿装置の構成図であり、側面における概略断面を示している。
 本実施の形態8において、実施の形態1を示す図1及び実施の形態2を示す図9と異なる点は、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部分の形状である。前述の実施の形態1、2では、図1又は図9に示したように、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面を形成する辺はすべて水平であり、下面は水平面であった。一方、本実施の形態8を示す図18及び図19においては、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面は水平ではなく傾斜している。上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面を形成する辺はすべて直線状であり、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面は平らな傾斜面である。このような下面が形成されているため、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下部は、水平断面積が、上側に対して下側の方が小さくなっており、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部は下方に向かって突出した形状である。上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部の突形状を、先端部31と称する。
 また、図20に示すように、多孔質金属体5に接する下部支持材8の上辺8aは、空気の流れの上流側から下流側に向けて上り勾配となる直線状の辺である。さらに下部支持材8の上面は、空気の流れ方向及びこれと直交する方向に傾斜している。
 多孔質金属体5と異なり、上部上流側支持材6、上部下流側支持材7及び下部支持材8はいずれも多孔質体ではなく、例えば樹脂成型品又は金属成型品として供されるものである。加湿運転時には、多孔質金属体5又は上部多孔質金属体17から上部上流側支持材6、上部下流側支持材7及び下部支持材8に水が伝わり、その表面を水が伝播する。樹脂又は金属製の上部上流側支持材6、上部下流側支持材7及び下部支持材8の表面を流れた水は、これらの傾斜した下面に沿って下方向に流れ、先端部31から流れ落ちる。また、多孔質金属体5から下部支持材8の上面に伝わった水、及び上部下流側支持材7から下部支持材8の上面に滴下した水は、傾斜した下部支持材8の上辺8a及び上面に沿って流れる。
 図18、図19に示す例では、上部上流側支持材6の下面は、空気の流れの上流側から下流側に向けて下り勾配となる傾斜面、上部下流側支持材7の下面は、空気の流れの上流側から下流側に向けて上り勾配となる傾斜面であり、いずれの下面も多孔質金属体5に近づくほど下がっている。このため、上部上流側支持材6及び上部下流側支持材7の表面を流れ、先端部31から滴下した水は、多孔質金属体5の下に配置されたドレンパン11に受けられる。また、下部支持材8の下面は、空気の流れの上流側から下流側に向けて上り勾配となる傾斜面であり、下部支持材8の先端部31から滴下した水滴304もドレンパン11に受けられる。
 なお、多孔質金属体5については、実施の形態1、2で示したもの、つまり下部の水平断面積が、上側から下側に向かって階段状あるいは無段階に小さくなるように構成されることにより先端部16が形成されたものを用いることができる。
 加湿装置の加湿運転及び乾燥運転の動作については実施の形態1と同様である。
(実施の形態8の効果)
 本実施の形態8では、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下端部分を水平にするのではなく、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面を傾斜面としてこれらの下端部に下方へ突出する先端部31を設けた。このため、上部上流側支持材6、上部下流側支持材7及び下部支持材8に流れる水は、重力によって先端部31に集まって滴下するので、効率よく排水することができる。このように上部上流側支持材6、上部下流側支持材7及び下部支持材8の下部の水を効率よく排水することで、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。
 また、本実施の形態8では、多孔質金属体5に接する下部支持材8の上辺8aを傾斜させたので、多孔質金属体5から下部支持材8の上部に伝わった水は、上辺8aに沿って下へ向かって円滑に流れ、下部支持材8に付着した水を効率よく排出することができる。このように下部支持材8に付着した水を効率よく排水することで、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。また、本実施の形態8では、下部支持材8の上面を、空気の流れ方向及びこれと直交する方向の両方に傾斜させており、下部支持材8の上面に付着した水をこの上面の最も低くなった部分(角部分)に向かって円滑に流すことができる。また、本実施の形態8では、下部支持材8の上面と下面の勾配方向を一致させているので、下部支持材8に付着した水は先端部31に集まりやすく、下部支持材8に付着した水を効率よく排出することができる。
 なお、上部上流側支持材6、上部下流側支持材7、下部支持材8のすべての下面を傾斜面として先端部31を設けるのではなく、例えば、最も水の流下が多い下部支持材8の下面だけを傾斜面として先端部31を設けてもよい。
 また、先端部31の形状は、実施の形態1の多孔質金属体5に設けた先端部16と同様に角状(三角形状)でもよいし、図7の先端部16と同様に矩形の突起状としてもよい。
 また、上部上流側支持材6、上部下流側支持材7及び下部支持材8の下面の傾斜方向、並びに下部支持材8の上辺8a及び上面の傾斜方向は、図示のものに限定されず、空気の流れ方向及びこれと直交する方向のいずれか又は両方において傾斜させることができる。
実施の形態9.
 本実施の形態9に係る加湿装置について、実施の形態8と相違する点を中心に説明する。
(加湿装置の構成)
 図20は、本発明の実施の形態9に係る加湿装置の構成を示す主要部の斜視図である。図21は、本発明の実施の形態9に係る加湿装置の構成図であり、側面における概略断面を示している。
 本実施の形態9において、実施の形態8と異なるのは、下部支持材8の下部及び上部の形状である。前述の実施の形態8では、図18に示したように、下部支持材8の下面を形成する辺はすべて直線であって下部支持材8の下面は平らな傾斜面であったが、本実施の形態9の下部支持材8の下面は、上方に向かって凹んでおり、円弧状に湾曲した傾斜面である。図21に示すように、下部支持材8の下面を形成する辺は、側面視における形状が円弧状である。図20、図21に示すように、下部支持材8の最下部には、下方に向かって突出する突形状の先端部31が形成される。
 また、前述の実施の形態8では、多孔質金属体5に接する下部支持材8の上辺8aは直線状であって、下部支持材8の上面は平らな傾斜面であった。しかし、本実施の形態9の上辺8aは、円弧状に湾曲しており、下部支持材8の上面も円弧状に湾曲した傾斜面である。
 加湿装置の加湿運転及び乾燥運転の動作については実施の形態1と同様である。
(実施の形態9の効果)
 本実施の形態9では、下部支持材8の下面を円弧状に湾曲した傾斜面とし、下部支持材8の最下部に突形状の先端部31を設けた。このため、多孔質金属体5から下部支持材8に伝播して下部支持材8を流れた水は、先端部31に集まり、水滴304として滴下する。したがって、前述の実施の形態8と同様に、下部支持材8の下部の水を効率よく排水することができ、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。
 また、本実施の形態9では、多孔質金属体5に接する下部支持材8の上辺8aを円弧状に形成して傾斜させたので、多孔質金属体5から下部支持材8の上部に伝わった水は上辺8aに沿って下へ向かって円滑に流れ、下部支持材8に付着した水を効率よく排水することができる。このように下部支持材8に付着した水を効率よく排水することで、細菌やカビ等の微生物の生長を抑制し、加湿性能の低下を抑えて初期状態の加湿性能をより長く維持することができる。また、本実施の形態9では、下部支持材8の上面を、円弧状に湾曲した傾斜面としたので、下部支持材8の上面に付着した水をこの上面の最も低くなった部分(角部分)に向かって円滑に流すことができる。
 なお、本実施の形態9で示した下部支持材8と同様にして、上部上流側支持材6及び上部下流側支持材7の下面を、円弧状に湾曲した傾斜面としてもよい。
 また、上部上流側支持材6、上部下流側支持材7、及び下部支持材8の下面の形状は、実施の形態8で示した平らな一面からなる傾斜面、あるいは実施の形態9で示した湾曲した傾斜面に限定されない。図22は、本発明の実施の形態9に係る下部支持材8の他の例を示す側面図である。図22に示す例では、下部支持材8の下面は、連なる複数の平らな面で構成されており、下部支持材8の下部には下方に向かって突出する先端部31が形成されている。このような形状のほか、下部支持材8の下部の一部が下方に突出する形状であれば、下部支持材8の下面の形状は限定されない。このことは、上部上流側支持材6及び上部下流側支持材7の上面、並びに下部支持材8の上面についても同様である。
実施の形態10.
 本実施の形態10に係る加湿装置について、実施の形態1と相違する点を中心に説明する。
 図23は、本発明の実施の形態10に係る加湿装置の上流側から見た多孔質金属体5の構成図である。図23では、多孔質金属体5、上部上流側支持材6及び下部支持材8のみを図示している。本実施の形態10の加湿装置には、複数の多孔質金属体5が設けられており、複数の多孔質金属体5はその平板面が概ね平行になるようにして所定の隙間をおいて立設されている。図23の多孔質金属体5の下端には先端部16が設けられている。
 図23に示すように本実施の形態10の多孔質金属体5の先端部16は、空気の流れの上流側からみると、下方ほど幅の狭い先細り形状であり、多孔質金属体5の正面断面は概ね鉛筆状に構成されている。したがって、多孔質金属体5の先端部16は、上側に対して下側の方が水平断面積が小さくなっている。
 多孔質金属体5を側方からみたときの形状は、図5と同様に矩形状であってもよいが、図1に示すように上側に対して下側の方が幅の狭い突出形状の先端部16を形成するのが好ましい。また、その場合の先端部16の形状は、図7に示す矩形の突起状又は図9に示す側面視三角形の突起状であってもよいし、図8に示すように側面視矩形状の多孔質金属体5を傾けて設置してもよい。
 加湿装置の加湿運転及び乾燥運転の動作については実施の形態1と同様である。
(実施の形態10の効果)
 以上の構成のように本実施の形態10では、多孔質金属体5の下端に、下方へ突出する先端部16を設け、この先端部16の形状を、空気の流れの上流側(正面側)からみて幅方向に狭くなる先細り形状とした。このため、多孔質金属体5の余剰水は、先端部16に集まり、先端部16から漏れ出して下方に滴下するので、下端部の水を効率よく排水することができる。したがって、細菌やカビの生長を抑制し、初期状態の加湿性能を維持することができる。
実施の形態11.
 本実施の形態11では、加湿装置を備えた空気調和機について、図面を参照して説明する。
(加湿装置の構成)
 図24は、本発明の実施の形態11に係る加湿装置を備えた空気調和機100の構成図である。図24に示す空気調和機100は、加湿装置を用いて加湿運転を行うとともに、加湿運転と同時にあるいは独立して冷暖房運転を行う。なお、図24に示す加湿装置は、実施の形態1~10で示した加湿装置とは一部の構成の配置及び形状が異なるが、実施の形態1~10で示す構成と対応するものには同一の符号を付して説明する。
 図24に示すように、空気調和機100の外郭を構成する筐体35の中に、加湿装置が設置されている。筐体35の内部には、供給部2、ノズル3、多孔質金属体5、ファン9、及びドレンパン11が設置されている。図24の例では、ファン9は多孔質金属体5の上流側に配置されているが、この配置は限定されず、実施の形態1~10と同様に多孔質金属体5の下流側にファン9が配置されていてもよい。空気調和機100の筐体35内には、ファン9と多孔質金属体5との間に、熱交換器33が設けられている。また、筐体35への空気の入口である吸込口34には、塵埃ゴミを捕集するフィルター32が設けられている。
 熱交換器33には、加熱又は冷却された冷媒が流れ、熱交換器33の周囲を流れる空気と冷媒との間で熱交換が行われる。熱交換器33は、多孔質金属体5と対向配置されており、ファン9から送風された空気は、熱交換器33を通過した後に多孔質金属体5に流入する。
 多孔質金属体5の形状は、この多孔質金属体5と対向する熱交換器33の外形形状に沿うように、側面視で概ね菱形形状である。多孔質金属体5の下面は上下方向に傾斜しており、多孔質金属体5の下部には下方に向かって突出する先端部16が形成されている。なお、先端部16の具体的形状は図24の例に限定されず、例えば図1、図7、図8、図9又は図23で示した他の形状を採用してもよい。また、複数の板状の多孔質金属体5が、互いに隙間を介して平行に立設されており、この多孔質金属体5の上部に供給部2及びノズル3を介して加湿用の水が供給される点は、実施の形態1と同様である。
(加湿装置の動作)
 次に、図24を参照しながら、本実施の形態11に係る加湿装置の動作について説明する。
 本実施の形態11の加湿装置を備えた空気調和機100は、加湿運転を行うとともに冷暖房運転を行う機能も備えている。空気調和機100は、空調対象空間の空気の温度と湿度のいずれか又は両方を検知するセンサ(図示せず)を備えており、空調対象空間の空気の温度又は湿度条件に応じて、加湿運転と冷暖房運転とを同時又は選択的に行う。
 加湿運転については実施の形態1と同様であり、供給部2に貯留された水は加湿水としてノズル3へ搬送される。ノズル3へ搬送された加湿水は、多孔質金属体5の上方から多孔質金属体5の上部へ向けて、ノズル3の先端から滴下される。これにより、多孔質金属体5に加湿水が供給される。多孔質金属体5が有する毛細管力と、加湿水の重力とを利用して、加湿水は、多孔質金属体5の空隙部15を通じて、多孔質金属体5の全体に均一に拡散し、多孔質金属体5は水を一定量保持することになる。
 ファン9が動作すると、吸込口34から筐体35内に空気が吸い込まれ、フィルター32、ファン9、熱交換器33を順次通過した後に多孔質金属体5を通過し、空気調和機100の筐体35に形成された吹出口10から空気調和機100の外部(室内)へと搬送される。多孔質金属体5に保持されている水は、ファン9の動作によって流れる空気との気液接触によって蒸散し、空気を加湿する。
 加湿に使用されなかった多孔質金属体5内の余剰の水は、重力によって多孔質金属体5の下部の先端部16に集合し、先端部16から漏れ出して水滴302として下方に滴下する。多孔質金属体5から漏れ出した水は、ドレンパン11によって受けられ、加湿装置の外部に排出される。
 このような加湿装置の加湿運転により、加湿した空気を加湿対象となる空間に供給することができる。
 このときに熱交換器33に加熱又は冷却した冷媒を流すことで、熱交換器33を流れる冷媒と空気との間で熱交換を生じさせ、空気の温度を変化させることができる。熱交換器33による空気の加熱又は冷却、及び多孔質金属体5における水の蒸発により、空調対象空間に希望する温度環境及び湿度環境を作り出すことができる。
 空気調和機100に設けられた加湿装置の乾燥運転については、実施の形態1と同様であり、所定時間の加湿を行った後に、ノズル3からの水の滴下を停止させ、ファン9はそのまま所定時間送風する。この乾燥運転を実行して多孔質金属体5を乾燥させることで、多孔質金属体5における細菌やカビ等の微生物の生長を抑制する。なお、乾燥運転においては、熱交換器33に冷媒を流さず吸込口34から吸い込んだ空気をそのまま多孔質金属体5に送風してもよいし、熱交換器33に加熱した冷媒を通して加熱された温風を多孔質金属体5に送風してもよい。
(実施の形態11の効果)
 以上の構成のように、本実施の形態11の加湿装置を備えた空気調和機100は、多孔質金属体5の余剰の水を先端部16から排出することができる。このため、多孔質金属体5の下端部に水滴が溜まりにくいので、細菌やカビの生長を抑制することができる。
 1 供給配管、2 供給部、3 ノズル、4 金属繊維、5 多孔質金属体、6 上部上流側支持材、7 上部下流側支持材、8 下部支持材、8a 上辺、9 ファン、10 吹出口、11 ドレンパン、12 筐体、13 筐体、14 金属部、15 空隙部、16 先端部、17 上部多孔質金属体、18 ヒーター、19 放熱フィン、20 ダンパー、21 センサ、22 LED、23 フォトマル、24 電源、25 増幅回路、26 判別手段、27 導電体電極、28 電源、29 接地部、31 先端部、32 フィルター、33 熱交換器、34 吸込口、 35 筐体、100 空気調和機、200 矢印、201 矢印、202 矢印、301 水滴、302 水滴、303 ブリッジ、304 水滴。

Claims (22)

  1.  複数の空隙を内部に有する加湿部材と、
     前記加湿部材に送風する送風手段と、
     前記加湿部材に水を供給する給水手段とを備え、
     前記加湿部材の下端部には、突起又は角からなる突部が形成されている
     ことを特徴とする加湿装置。
  2.  前記突部は、前記加湿部材における送風方向上流側に設けられている
     ことを特徴とする請求項1記載の加湿装置。
  3.  複数の前記加湿部材と、
     複数の空隙を内部に有し、前記複数の加湿部材の上端部を覆う上部加湿部材とを備え、
     前記給水手段からの水が、前記上部加湿部材を介して前記複数の加湿部材に供給される
     ことを特徴とする請求項1又は請求項2に記載の加湿装置。
  4.  前記加湿部材と同じか前記加湿部材よりも高い熱伝導性を有し、筐体に対して前記加湿部材を支持する加湿部材支持材を備え、
     前記加湿部材と前記加湿部材支持材、及び前記加湿部材支持材と前記筐体は、隙間なく接合されている
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の加湿装置。
  5.  前記加湿部材を加熱する加熱手段、又は前記加湿部材から伝わる熱を放出する放熱手段を備えた
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の加湿装置。
  6.  前記給水手段が前記加湿部材に水を供給するとともに、前記送風手段が前記加湿部材に送風する加湿運転と、
     前記加湿部材に水を供給せず、前記送風手段が前記加湿部材に送風する乾燥運転とを選択的に行う
     ことを特徴とする請求項1~請求項5のいずれか一項に記載の加湿装置。
  7.  前記乾燥運転においては、前記加湿運転よりも速い風速の風が前記加湿部材に送風される
     ことを特徴とする請求項6記載の加湿装置。
  8.  前記乾燥運転においては、前記加湿部材の前記突部に対し、前記加湿部材の前記突部以外の部分よりも優先的に送風される
     ことを特徴とする請求項6又は請求項7記載の加湿装置。
  9.  前記加湿部材の前記突部における水の有無を検出する水分検出手段を備え、
     前記水分検出手段の検出結果に基づいて、前記乾燥運転を継続するか否かが制御される
     ことを特徴とする請求項6~請求項8のいずれか一項に記載の加湿装置。
  10.  前記加湿部材と間隔を隔てて対向配置された導電体電極と、
     前記加湿部材と前記導電体電極との間に電圧を印加する電源とを備えた
     ことを特徴とする請求項1~請求項9のいずれか一項に記載の加湿装置。
  11.  前記導電体電極は、前記加湿部材の前記突部よりも上側に配置されている
     ことを特徴とする請求項10記載の加湿装置。
  12.  前記加湿部材の表面には、親水化処理が施されている
     ことを特徴とする請求項1~請求項11のいずれか一項に記載の加湿装置。
  13.  前記加湿部材は、立設された板状の部材である
     ことを特徴とする請求項1~請求項12のいずれか一項に記載の加湿装置。
  14.  前記加湿部材の下部は、水平断面積が上側から下側に向かって階段状あるいは無段階に小さくなるように構成されている
     ことを特徴とする請求項1~請求項13のいずれか一項に記載の加湿装置。
  15.  前記加湿部材は、金属若しくはセラミックを発泡させた多孔質材、又は金属若しくはセラミックの繊維で構成されている
     ことを特徴とする請求項1~請求項14のいずれか一項に記載の加湿装置。
  16.  前記加湿部材支持材の下面は傾斜している
     ことを特徴とする請求項4、又は請求項4に従属する請求項5~請求項15のいずれか一項に記載の加湿装置。
  17.  前記加湿部材支持材の下面は、平らな傾斜面又は円弧状の傾斜面である
     ことを特徴とする請求項16記載の加湿装置。
  18.  前記加湿部材に接する前記加湿部材支持材の上辺は傾斜している
     ことを特徴とする請求項4、又は請求項4に従属する請求項5~請求項17のいずれか一項に記載の加湿装置。
  19.  前記加湿部材に接する前記加湿部材支持材の上辺は、直線状又は円弧状に形成されている
     ことを特徴とする請求項18記載の加湿装置。
  20.  前記加湿部材支持材の上面は、平らな傾斜面又は円弧状の傾斜面である
     ことを特徴とする請求項4、又は請求項4に従属する請求項5~請求項19のいずれか一項に記載の加湿装置。
  21.  発泡金属に親水性の表面処理が施された部材で構成され、互いに間隔を隔てて対向配置された複数の加湿部材と、
     前記複数の加湿部材に水を供給する給水手段と、
     前記加湿部材に送風する送風手段とを備え、
     前記加湿部材は、下部の水平断面積が上側から下側に向かって階段状あるいは無段階に小さくなるように構成され、先端部が突起又は突部で構成されている
     ことを特徴とする加湿装置。
  22.  請求項1~請求項21のいずれか一項に記載の加湿装置を備えた空気調和機。
PCT/JP2013/054731 2012-09-18 2013-02-25 加湿装置及び加湿装置を備えた空気調和機 WO2014045609A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/417,470 US9816715B2 (en) 2012-09-18 2013-02-25 Humidifier and air-conditioning apparatus with humidifier
JP2014536615A JP5955395B2 (ja) 2012-09-18 2013-02-25 加湿装置及び加湿装置を備えた空気調和機
CN201380048442.7A CN104641181B (zh) 2012-09-18 2013-02-25 加湿装置及具有加湿装置的空气调节器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012204713 2012-09-18
JP2012-204713 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014045609A1 true WO2014045609A1 (ja) 2014-03-27

Family

ID=50340942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054731 WO2014045609A1 (ja) 2012-09-18 2013-02-25 加湿装置及び加湿装置を備えた空気調和機

Country Status (4)

Country Link
US (1) US9816715B2 (ja)
JP (1) JP5955395B2 (ja)
CN (1) CN104641181B (ja)
WO (1) WO2014045609A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170415A1 (ja) * 2014-05-09 2015-11-12 三菱電機株式会社 加湿装置及び加湿装置付きの空気調和機
WO2016181535A1 (ja) * 2015-05-13 2016-11-17 三菱電機株式会社 加湿装置
WO2021035926A1 (zh) * 2019-08-30 2021-03-04 成都中邦智能科技有限责任公司 可用于加湿器的蒸发器上置式结构

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955395B2 (ja) * 2012-09-18 2016-07-20 三菱電機株式会社 加湿装置及び加湿装置を備えた空気調和機
WO2015093078A1 (ja) * 2013-12-18 2015-06-25 三菱電機株式会社 親水性コーティング膜及びその製造方法、加湿エレメント並びに加湿装置
TWI559947B (en) * 2014-10-09 2016-12-01 Delta Electronics Inc Humidifier for continuous positive airway pressure
WO2016190675A1 (en) * 2015-05-27 2016-12-01 Samsung Electronics Co., Ltd. Humidifying apparatus
EP3120719A1 (en) * 2015-07-20 2017-01-25 Imperiali Industries SA Container system with a controlled environment
US10143956B2 (en) * 2015-08-24 2018-12-04 John B. Hayden Air cleaning fountain
US10329180B2 (en) 2015-08-24 2019-06-25 John B. Hayden Air cleaning fountain
JP6076553B1 (ja) * 2016-02-09 2017-02-08 三菱電機株式会社 加湿装置及び空気調和機
CN106403034A (zh) * 2016-09-30 2017-02-15 美的集团武汉制冷设备有限公司 空调器室内机和空调器
CN106247461A (zh) * 2016-09-30 2016-12-21 美的集团武汉制冷设备有限公司 空调器室内机和空调器
CN106225091B (zh) * 2016-09-30 2022-03-11 美的集团武汉制冷设备有限公司 空调器室内机和空调器
CN106440037A (zh) * 2016-09-30 2017-02-22 美的集团武汉制冷设备有限公司 空调器室内机和空调器
KR102665126B1 (ko) * 2016-10-06 2024-05-13 삼성전자주식회사 공기조화기 및 그 제어방법
US11320158B2 (en) * 2017-05-11 2022-05-03 Coway Co., Ltd. Multifunctional circulation system enabling purification of outside air
US11698064B2 (en) * 2017-12-29 2023-07-11 Koninklijke Philips N.V. System and method for operating a pump in a humidifier
US20210364176A1 (en) * 2018-02-12 2021-11-25 Noritake Co., Limited Liquid atomizing apparatus
JP2019208727A (ja) * 2018-06-01 2019-12-12 株式会社ナノシード 液体蒸散装置
WO2020021796A1 (ja) * 2018-07-24 2020-01-30 株式会社リンテック 気化器
US11340019B2 (en) * 2018-10-24 2022-05-24 Purdue Research Foundation Evaporative cooling systems and methods of using
CN110260439B (zh) * 2019-05-23 2021-12-17 青岛海尔空调电子有限公司 加湿器、加湿器的控制方法和机房空调
CN110425673B (zh) * 2019-08-30 2024-08-13 成都中邦智能科技有限责任公司 蒸发器上置式加湿器
KR20210098046A (ko) * 2020-01-31 2021-08-10 삼성전자주식회사 가습기 및 그의 제어 방법
TWI806419B (zh) * 2022-02-11 2023-06-21 陳冠宏 散熱裝置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178539U (ja) * 1988-06-03 1989-12-21
JPH02192528A (ja) * 1989-01-20 1990-07-30 Matsushita Refrig Co Ltd 加湿器
JPH04143536A (ja) * 1990-10-05 1992-05-18 Hitachi Ltd 自然蒸発式加湿器
JPH04363528A (ja) * 1991-06-10 1992-12-16 Memo Raidaa Hanbai Kk 加湿装置
JPH0684230U (ja) * 1993-05-07 1994-12-02 ユニチカ株式会社 加湿器の天材
JPH07305883A (ja) * 1994-05-11 1995-11-21 Matsushita Refrig Co Ltd 加湿装置
JP2005201507A (ja) * 2004-01-15 2005-07-28 Mitsubishi Electric Corp 加湿機
JP2006010135A (ja) * 2004-06-23 2006-01-12 Zojirushi Corp 加湿器
JP2007278576A (ja) * 2006-04-05 2007-10-25 Saga Denshi Kogyo Kk 加湿器具
JP2011185501A (ja) * 2010-03-08 2011-09-22 Tokyo Electric Power Co Inc:The 気化式加湿器

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US654725A (en) * 1898-04-21 1900-07-31 Gustavus F Swift Air-cooling apparatus.
US684217A (en) * 1900-07-30 1901-10-08 Gustavus F Swift Air-cooling apparatus.
DE19910441C1 (de) * 1999-03-10 2000-06-21 Fraunhofer Ges Forschung Luftbefeuchtung
US1283950A (en) * 1917-02-17 1918-11-05 John W Stiefel Radiator for automobiles.
US1903250A (en) * 1930-11-11 1933-03-28 Tenney Dwight Air conditioning apparatus
US1965255A (en) * 1932-07-25 1934-07-03 Andrew J Peabody Air cooling device
US2099009A (en) * 1935-11-13 1937-11-16 Walter H Finley Humidifying system and apparatus
US2161834A (en) * 1936-12-09 1939-06-13 Utica Radiator Corp Air conditioning apparatus
US2204016A (en) * 1937-06-25 1940-06-11 Parks Cramer Co Ventilating and humidifying system
US2251734A (en) * 1939-07-20 1941-08-05 Fuld Diffusion and drip apparatus
US2326089A (en) * 1941-07-30 1943-08-03 Richard C Wittman Humidifier
GB1121161A (en) * 1965-01-16 1968-07-24 Singer Cobble Ltd Filter for a humidifier
US3378238A (en) * 1965-07-15 1968-04-16 Robert S. Babington Porous block humidification
US3523681A (en) * 1968-09-12 1970-08-11 Richard C Jaye Evaporator unit
US3722838A (en) * 1969-12-22 1973-03-27 J Swimmer Humidifier
BE758570A (fr) * 1970-11-06 1971-04-16 Lefebvre Simon Procede et appareillage pour la mise en contact de fluides et le transfert de matiere et de chaleur entre ceux-ci.
JPS5636028U (ja) 1979-08-27 1981-04-07
US4389352A (en) * 1982-03-12 1983-06-21 Acme Engineering & Manufacturing Corporation Cooling pad support assembly
CH667514A5 (en) * 1984-07-06 1988-10-14 Intersensor S A Humidifying element for transporting moisture sensitive goods - has porous or cellular material saturated with soluble substance in water enclosed by plastics film
JPS62175537A (ja) 1986-01-27 1987-08-01 Mitsubishi Electric Corp 空気調和機用加湿装置
JPH01178539A (ja) 1987-12-29 1989-07-14 Toyoda Gosei Co Ltd 水素添加ニトリルゴム系配合物
US5226935A (en) * 1989-12-08 1993-07-13 Skandinavisk Miljo System A/S Air humidification apparatus
JPH0684230A (ja) 1992-09-03 1994-03-25 Matsushita Electric Ind Co Ltd ビデオテープレコーダ
JP3197705B2 (ja) 1993-09-30 2001-08-13 アイホン株式会社 テレビドアホン装置
JP3390534B2 (ja) 1994-07-20 2003-03-24 ブラザー工業株式会社 テープ印字装置
AUPM777294A0 (en) * 1994-08-30 1994-09-22 William Allen Trusts Pty Ltd Spaced evaporative wicks within an air cooler
CA2158417C (en) * 1995-02-17 1998-12-29 Hisao Yokoya Humidifier
US6669626B1 (en) * 1999-12-23 2003-12-30 Hill-Rom Services, Inc. Humidifier for a patient support apparatus
US6550748B2 (en) * 2001-05-29 2003-04-22 Emerson Electric Co. Dry out mechanism for humidifier
US20050133942A1 (en) * 2003-12-19 2005-06-23 Rps Products, Inc. Cartridge humidifier
US7513126B2 (en) * 2005-01-25 2009-04-07 Boland David V Outdoor cooling device
TW200743247A (en) * 2006-05-04 2007-11-16 Ind Tech Res Inst External gas humidifying apparatus of fuel cell
KR100820149B1 (ko) * 2006-11-22 2008-04-08 엘지전자 주식회사 공기조화기용 가습장치 및 이를 구비한 공기조화기
US7931991B2 (en) * 2006-12-26 2011-04-26 Canon Kabushiki Kaisha Fuel cell
US8550075B2 (en) * 2007-06-28 2013-10-08 Resmed Limited Removable and/or replaceable humidifier
US20100207286A1 (en) * 2009-02-18 2010-08-19 Jursich Donald N Humidifier with adjustable air flow
JP4818399B2 (ja) * 2009-06-15 2011-11-16 三菱電機株式会社 静電霧化装置及び空気調和機
KR20160097389A (ko) * 2009-10-09 2016-08-17 필립모리스 프로덕츠 에스.에이. 다중-구성요소 위크를 포함하는 에어로졸 발생기
CN103237589B (zh) * 2010-12-02 2015-11-25 三菱电机株式会社 除湿装置
CN114522318A (zh) * 2011-01-24 2022-05-24 瑞思迈私人有限公司 增湿器
CN201992755U (zh) * 2011-03-07 2011-09-28 中国人民解放军总后勤部建筑工程研究所 一种蒸发式加湿器
CA2738326A1 (en) * 2011-04-26 2012-10-26 Jeri Rodrigs Room vent humidifier(a.k.a. rumidifier)
US9228752B2 (en) * 2011-08-29 2016-01-05 Mitsbuishi Electric Corporation Humidifier
US20130106004A1 (en) * 2011-11-01 2013-05-02 William C. Stumphauzer Humidifier assembly
US9285133B2 (en) * 2012-01-21 2016-03-15 Air System Components, Inc. Air humidification system
US8943851B2 (en) * 2012-02-17 2015-02-03 United Technologies Corporation Evaporative cooler including one or more rotating cooler louvers
AU2013201234A1 (en) * 2012-03-08 2013-09-26 Ff Seeley Nominees Pty Ltd Wetting of Evapoartive Cooler Pads
JP5936054B2 (ja) * 2012-06-15 2016-06-15 清水建設株式会社 加湿処理装置
JP5955395B2 (ja) * 2012-09-18 2016-07-20 三菱電機株式会社 加湿装置及び加湿装置を備えた空気調和機
WO2014045668A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 加湿器、加湿材の親水化処理方法
JP2014163580A (ja) * 2013-02-25 2014-09-08 Sharp Corp 気化式空気調和機
WO2014174867A1 (ja) * 2013-04-22 2014-10-30 三菱電機株式会社 加湿装置及び加湿装置を備えた空気調和機
CN105556216B (zh) * 2013-09-18 2019-02-15 三菱电机株式会社 加湿装置及具备加湿装置的空气调节机
WO2015093078A1 (ja) * 2013-12-18 2015-06-25 三菱電機株式会社 親水性コーティング膜及びその製造方法、加湿エレメント並びに加湿装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178539U (ja) * 1988-06-03 1989-12-21
JPH02192528A (ja) * 1989-01-20 1990-07-30 Matsushita Refrig Co Ltd 加湿器
JPH04143536A (ja) * 1990-10-05 1992-05-18 Hitachi Ltd 自然蒸発式加湿器
JPH04363528A (ja) * 1991-06-10 1992-12-16 Memo Raidaa Hanbai Kk 加湿装置
JPH0684230U (ja) * 1993-05-07 1994-12-02 ユニチカ株式会社 加湿器の天材
JPH07305883A (ja) * 1994-05-11 1995-11-21 Matsushita Refrig Co Ltd 加湿装置
JP2005201507A (ja) * 2004-01-15 2005-07-28 Mitsubishi Electric Corp 加湿機
JP2006010135A (ja) * 2004-06-23 2006-01-12 Zojirushi Corp 加湿器
JP2007278576A (ja) * 2006-04-05 2007-10-25 Saga Denshi Kogyo Kk 加湿器具
JP2011185501A (ja) * 2010-03-08 2011-09-22 Tokyo Electric Power Co Inc:The 気化式加湿器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170415A1 (ja) * 2014-05-09 2015-11-12 三菱電機株式会社 加湿装置及び加湿装置付きの空気調和機
JPWO2015170415A1 (ja) * 2014-05-09 2017-04-20 三菱電機株式会社 加湿装置及び加湿装置付きの空気調和機
US10451299B2 (en) 2014-05-09 2019-10-22 Mitsubishi Electric Corporation Humidifier and air-conditioning apparatus including humidifier
WO2016181535A1 (ja) * 2015-05-13 2016-11-17 三菱電機株式会社 加湿装置
JPWO2016181535A1 (ja) * 2015-05-13 2017-07-27 三菱電機株式会社 加湿装置
WO2021035926A1 (zh) * 2019-08-30 2021-03-04 成都中邦智能科技有限责任公司 可用于加湿器的蒸发器上置式结构

Also Published As

Publication number Publication date
US20150219346A1 (en) 2015-08-06
CN104641181A (zh) 2015-05-20
US9816715B2 (en) 2017-11-14
JP5955395B2 (ja) 2016-07-20
JPWO2014045609A1 (ja) 2016-08-18
CN104641181B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
JP5955395B2 (ja) 加湿装置及び加湿装置を備えた空気調和機
JP5646068B2 (ja) 加湿装置
JP6076553B1 (ja) 加湿装置及び空気調和機
JP6165328B2 (ja) 加湿装置及び加湿装置付きの空気調和機
JP5989236B2 (ja) 加湿装置及び加湿装置を備えた空気調和機
JP6076544B2 (ja) 加湿装置、及び加湿装置を備えた空気調和機
JP2010284625A (ja) 静電霧化装置及び空気調和機
JP5574636B2 (ja) 静電霧化装置及び空気調和機
JP4805421B2 (ja) 静電霧化装置及び空気調和機
JP5885653B2 (ja) 加湿装置
JP5627639B2 (ja) 静電霧化装置及び空気調和機
JP2011106807A (ja) 静電霧化装置及び空気調和機
JP5159742B2 (ja) 静電霧化装置および空気調和機
JP2011173118A (ja) 静電霧化装置及び空気調和機
JP4841701B2 (ja) 静電霧化装置及び空気調和機
JP2011033322A (ja) 静電霧化装置及び空気調和機
JP2011169580A (ja) 空気調和機
JP2012021763A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536615

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14417470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839472

Country of ref document: EP

Kind code of ref document: A1