WO2013118386A1 - X線検査装置、検査方法およびx線検出器 - Google Patents
X線検査装置、検査方法およびx線検出器 Download PDFInfo
- Publication number
- WO2013118386A1 WO2013118386A1 PCT/JP2012/082126 JP2012082126W WO2013118386A1 WO 2013118386 A1 WO2013118386 A1 WO 2013118386A1 JP 2012082126 W JP2012082126 W JP 2012082126W WO 2013118386 A1 WO2013118386 A1 WO 2013118386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- sample
- ray inspection
- inspection apparatus
- source
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/043—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/16—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/18—Investigating the presence of flaws defects or foreign matter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/642—Specific applications or type of materials moving sheet, web
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/643—Specific applications or type of materials object on conveyor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/646—Specific applications or type of materials flaws, defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/652—Specific applications or type of materials impurities, foreign matter, trace amounts
Definitions
- the present invention relates to an X-ray inspection apparatus, an inspection method, and an X-ray detector used in an X-ray inspection apparatus that irradiates a sample with X-rays and inspects the sample based on an intensity distribution of X-rays transmitted through the sample.
- Patent Document 1 JP-A-9-72863.
- This publication states that “in an X-ray transmission automatic inspection apparatus in which an object to be inspected is transported at a height level of several tens of centimeters or more above the floor surface, an X-ray source having a focus size diameter of 50 ⁇ m or more, A shield box in which an image pickup surface for picking up an image of the inspection object is disposed at an inner position below the loading / unloading port of the inspection object; Up and down between the height level of the loading / unloading port and the height level of the imaging surface at the imaging location, up to the inspection level above the imaging surface, supporting the inspection object received at the loading port Simplified high-resolution X-ray transmission automatic, characterized in that a lifting platform is provided that has a function of horizontally moving the inspection object that descends and supports the imaged inspection object and rises to the height level of the carry-out port Inspection apparatus "(Claim 1 of the claims) is disclosed.
- a lifting platform is provided that has a
- the minute metal foreign matter contained in the electrode material of the lithium ion secondary battery it is required to inspect the minute metal object of 50 ⁇ m or less at high speed.
- the sheet-like electrode material is continuously conveyed at a high speed of 500 mm / s or more by roll conveyance. Therefore, in order to perform in-line inspection, it is continuously performed at a sample scanning speed of 500 mm / s or more. Inspection is necessary.
- the amount of X-ray light refers to the product of the intensity of X-rays applied to the sample and the accumulation time (exposure time) of the detector.
- the former is necessary because when the resolution is low with respect to the size of the object, the image is blurred and the contrast of the object image is lowered.
- shot noise is also called photon shot noise or quantum noise.
- the ratio of shot noise components in the image noise is large, the SN ratio of the image is increased by increasing the X-ray light amount. Improves in proportion to the square root of.
- Patent Document 1 describes a high-resolution automatic X-ray transmission inspection apparatus.
- the apparatus disclosed in Patent Document 1 has a configuration for acquiring a high-resolution image “at the imaging location in the shield box, between the height level of the loading / unloading port and the height level of the imaging surface”.
- the “lift platform having a function of horizontally transferring an inspection object” is described, the necessity of increasing the amount of X-ray light is not described.
- the present application includes a plurality of means for solving the above-mentioned problems.
- an X-ray source is irradiated with an X-ray and a focal spot size larger than the defect diameter is irradiated with the X-ray source.
- An X-ray TDI detector that detects X-rays transmitted through the sample as an X-ray transmission image, has a long pixel in a direction parallel to the scanning direction of the sample, and is arranged close to the sample;
- a defect detection unit that detects a defect based on an X-ray transmission image detected by the line TDI detector.
- a minute defect can be detected by obtaining a high-resolution X-ray transmission image with a sufficiently large amount of X-ray light.
- an example of an X-ray inspection apparatus that irradiates a sample with X-rays and inspects the sample based on the intensity distribution of X-rays transmitted through the sample will be described.
- FIG. 1 is an example of a configuration diagram of the X-ray inspection apparatus of the present embodiment.
- the X-ray inspection apparatus 100 includes an X-ray source 1, a radiation source shielding unit 2, a radiation source slit 3, an X-ray TDI camera 4, a direct light shielding unit 5, a device cover 6, a defect determination unit 7, a control unit 8, and a display unit. 9
- the X-ray source 1 irradiates the sample W with X-rays.
- the shape of the X-ray irradiation area on the sample by the X-ray source 1 is limited by the source slit 3.
- the radiation source shielding unit 2 shields X-rays directed to areas other than the irradiation area on the sample.
- the radiation source shielding part 2 and the radiation source slit 3 reduce the amount of X-ray leakage that is not necessary for the inspection, and the safety of the X-ray inspection apparatus 100 is improved.
- X-rays irradiated on the sample W are transmitted through the sample W and detected as an X-ray transmission image by the X-ray TDI camera 4.
- the X-ray TDI camera 4 as a detector, it is possible to continuously acquire X-ray transmission images of the sample W that is continuously conveyed.
- the storage time can be increased by the number of stages of TDI, and an image with a high S / N ratio can be obtained by increasing the amount of X-ray light. improves.
- the direct light shielding unit 5 shields the X-rays transmitted through the sample W and the X-ray TDI camera 4 and prevents the X-rays from leaking out of the apparatus.
- the device cover 6 shields the X-ray component and the reflection / scattering X-ray component that cannot be shielded by the radiation source shielding portion 2, the radiation source slit 3, and the direct light shielding portion 5, and also isolates the space irradiated with the X-ray. In order to prevent human hands from entering the space.
- the interlock is activated and the X-ray irradiation by the X-ray source 1 is stopped.
- FIG. 1 shows an arrangement in which the X-ray source 1 is placed above the sample W and the X-ray TDI camera 4 is placed below the sample W
- the X-ray inspection apparatus 100 to the sample W from the floor on which the X-ray inspection apparatus 100 is installed is shown. If the distance is long and a sufficient space can be secured below the sample W, the X-ray source 1 is installed below the sample W and the X-ray is placed on the sample W in order to make the outer shape of the X-ray inspection apparatus 100 compact.
- a TDI camera 4 may be installed. Further, the defect determination unit 7, the control unit 8, or the display unit 9 may be installed inside the device cover 6.
- the defect determination unit 7 determines a defect existing in the sample based on the X-ray transmission image detected by the X-ray TDI camera 4 and outputs the presence / absence, the number, position, or size of the existence.
- the defect is a factor that can reduce the reliability of the finished lithium ion secondary battery in the electrode material of the lithium ion secondary battery.
- the positive electrode material, the negative electrode material, the current collector of the lithium ion secondary battery Including fine metal foreign substances contained in the separator, positive electrode material, negative electrode material, separator pores and coating defects.
- the size of the defect is measured from the difference in brightness from the background of the defect portion and the spatial spread of the brightness.
- the defect image including the defect portion and the surrounding background is stored in a memory built in the defect determination unit 7 or the control unit 8 so that the above defect determination result can be confirmed after the inspection.
- the control unit 8 receives signals from the input unit 10 or the above-described components, and performs parameter setting and control of the X-ray source 1, the X-ray TDI camera 4, and the defect determination unit 7.
- the parameter setting values, states, inspection conditions, and defect determination results (defect number, position, defect size, defect image) of each component described above are displayed on the display unit 9.
- the input unit 10 receives input of parameter setting values, inspection conditions, and the like of each component requirement from the outside such as a user and sends them to the control unit 8.
- a sample W to be inspected is transported and scanned by the transport system 11.
- the line rate of the X-ray TDI camera 4 is set in accordance with the speed of sample scanning by the transport system 11, and imaging is performed in synchronization with the scanning speed.
- the transport system 11 outputs information such as a transport speed or a transport distance necessary for timing synchronization of the X-ray TDI camera 4 to the control unit 8.
- the X-ray inspection apparatus 100 when the X-ray inspection apparatus 100 is used in an environment where the sample is transported at a substantially constant speed in advance in the sample manufacturing process, etc., the X-ray inspection apparatus 100 itself needs to have the transport system 11.
- the X-ray TDI camera 4 may be set and operated so as to synchronize with a transport system that is preliminarily installed in a sample manufacturing process or the like. In this case, if necessary, synchronize the output of the transport system such as the sample manufacturing process or the position measurement value obtained by measuring the sample being conveyed with the encoder or the speed measurement value obtained by measuring with the speedometer. It is used by inputting it to the control unit as information used for.
- FIG. 2 is a block diagram illustrating the X-ray source of this embodiment.
- the X-ray source 1 has a plurality of X-ray tubes. 2 and FIG. 6 and FIG. 7 to be described later, an example in which the X-ray source 1 has two X-ray tubes 101 and 102 is illustrated. However, in order to increase the amount of X-ray light, three or more X-rays are used. A tube may be used. Each of the X-ray tubes 101 and 102 irradiates different areas on the sample W. The source slit 3 is installed and adjusted so that the irradiation areas do not overlap on the sample W. X-rays transmitted through the region on the sample W irradiated by the X-ray tubes 101 and 102 enter the light receiving unit 103 of the X-ray TDI camera 4 and are detected.
- the length of the region irradiated by one X-ray tube becomes 1 / N times, and the distance between the X-ray tube and the sample becomes 1 / N times. Since the X-ray irradiation intensity is inversely proportional to the square of the distance from the X-ray tube, the X-ray intensity given per unit area on the sample increases to the square of N. As a result, the amount of X-ray light can be increased.
- FIG. 7 is a diagram for explaining the arrangement of the light source unit and the TDI camera of this embodiment.
- the scanning direction of the sample W is the X direction, and the direction perpendicular thereto is the Y direction.
- the X-ray TDI camera 4 is installed and adjusted so that the X direction is the TDI accumulation direction and the Y direction is the longitudinal direction.
- a plurality of X-ray tubes (101, 102) included in the X-ray source 1 are arranged along the Y direction.
- FIG. 3 is a diagram for explaining the positional relationship among the X-ray source, the inspection object, and the TDI camera of this embodiment.
- the region where X-rays are generated inside the X-ray tube included in the X-ray source is called a focal point.
- Reference numeral 201 in FIG. 3 indicates the focal region of the X-ray tube.
- the focal area 201 has a finite size.
- the focal point size d is set to be larger than the defect diameter.
- X-rays emitted from the focal region 201 pass through the sample surface W and form an image 204 of the minute object 203 on the light receiving unit.
- an image blur 205 corresponding to the focal size d occurs on both sides of the image 204.
- the size of the blur with respect to the image of the minute object can be reduced. If the size of the blur is larger than the size of the image of the minute object, the contrast of the minute object in the transmitted X-ray intensity distribution detected by the light receiving unit 103 is lowered, so that the detection sensitivity is lowered.
- the size of the blur 205 on the light receiving unit is expressed as bd / a using the focal point size d, the source-sample distance a, and the sample-light receiving unit distance b. Since the image on the sample is magnified at the magnification (a + b) / a times on the light receiving portion, the size of the blur 205 converted to the dimension on the sample is obtained as bd / (a + b).
- FIG. 4 is a diagram for explaining the relationship between the positional relationship between the light source unit, the inspection object, and the TDI camera and the image blur amount according to the present embodiment.
- the horizontal axis represents the ratio between the sample-light receiving portion distance b and the radiation source-light receiving portion distance (a + b), and the vertical axis represents the amount of blur on the sample surface. .
- the thickness of the positive electrode material to be inspected is about 200 ⁇ m.
- the sample-light receiving portion distance b can be brought closer to about 1 mm.
- the source-sample distance a is 140 mm.
- the size of the blur 205 converted to the dimension on the sample is d / 140, and even if a high-power X-ray source having a large focal spot size of about 5 mm is used, it can be suppressed to about 36 ⁇ m.
- the distance between the X-ray tube and the sample tends to be short, and the size of the blur 205 converted to the dimension on the sample tends to increase. Is as thin as 1 mm or less, for example, the sample-light receiving portion distance b can be reduced to about 1 mm, and a sufficiently high resolution can be secured.
- FIG. 5 is a configuration diagram illustrating a configuration example in which a plurality of TDI cameras are arranged in parallel.
- a wide-width sample can be inspected by arranging a plurality of X-ray optical systems having the X-ray source 1, the radiation source shielding unit 2, the radiation source slit 3, and the TDI camera 4 in the Y direction.
- a plurality of TDI cameras 303 and 304 are shifted in the X direction so that they do not interfere mechanically, and are arranged so that there are no gaps between the plurality of light receiving portions 301 and 302 in the Y direction (the width direction of the sample). Omissions can be eliminated.
- FIG. 5 illustrates an example in which two are arranged in parallel, three or more may be arranged in parallel.
- FIG. 6 is a diagram for explaining overlapping of images by a plurality of X-ray tubes.
- an image of a partial region (region 404) near the boundary of the irradiation region of each X-ray tube in the Y direction is displayed on the light receiving unit (region). 405) are detected in duplicate.
- the defect determination unit 7 performs defect determination processing corresponding to image overlap.
- ⁇ The closer the X-ray incident angle at the boundary is near to the vertical and the shorter the sample-light receiving portion distance, the smaller the overlapping area of the image.
- an X-ray tube having a small irradiation angle (expansion angle of the X-ray beam emitted from the X-ray tube) (for example, 30 degrees or less) is used, or the thickness is particularly thin.
- FIG. 8 is a diagram for explaining an X-ray TDI camera having flat pixels.
- the X-ray TDI camera 4 needs to synchronize the scanning speed of the sample and the imaging frequency (line rate) in order to correctly perform the TDI accumulation operation.
- the obtained image is blurred in the X direction and spreads, so the inspection sensitivity is lowered.
- the sample scanning speed vx is high, there is a problem that synchronous imaging becomes difficult due to the restriction on the upper limit of the line rate of the TDI camera.
- the optical system that brings the sample W close to the light receiving unit keeps the image magnification rate M low (close to 1), so that the line rate required for synchronization can be kept low, and the sample scanning speed vx is high. It is effective for conducting inspections.
- the line rate required for synchronization can be reduced, and high-speed inspection can be handled.
- Increasing the pixel size leads to a decrease in sensitivity because the resolution of the detected image decreases, but keeping the pixel size in the Y direction small and increasing only the pixel size in the X direction minimizes the decrease in sensitivity due to the decrease in resolution.
- High-speed inspection can be performed while limiting to the limit.
- a normal square pixel TDI camera as a TDI camera in which the pixel size in the X direction is larger than the pixel size in the Y direction by performing a binning operation only in the X direction.
- the method of making flat pixels by binning N pixels in the X direction has the advantage that signal saturation is less likely to occur even under extremely large X-ray light amounts because the saturation upper limit charge amount of a TDI camera increases due to binning.
- FIG. 9 is a diagram for explaining another embodiment of an X-ray TDI camera having flat pixels.
- the X-ray TDI camera has a configuration in which a scintillator is coupled to a TDI camera for visible light with a fiber plate.
- the fiber plate has a role of transferring an image converted into light by a scintillator to a TDI camera for visible light at an equal magnification without deforming the image.
- an asymmetric fiber plate 501 that reduces the X direction to 1 / N relative to the Y direction, or expands the Y direction N times relative to the X direction, as shown in FIG.
- an X-ray TDI camera having flat pixels long in the X direction is formed.
- a tapered optical fiber is used as the asymmetric fiber plate 501.
- the output surface of the scintillator is imaged on the light receiving unit 502 of the TDI camera for visible light by an imaging optical system having a combination of a cylindrical lens, an aspherical lens, a spherical lens, etc. and having different optical magnifications in the X and Y directions. May be.
- the number of TDI storage stages is reduced to 1 / N by binning, whereas the method of creating flat pixels using an asymmetric fiber plate is the same as that of the original TDI camera. Since the number of TDI accumulation stages is maintained, there is an advantage that a larger amount of X-ray light can be obtained even under the same X-ray irradiation conditions.
- FIG. 10 is a diagram for explaining the configuration of a high-resolution X-ray TDI camera.
- X-ray TDI cameras detect X-rays by converting them into visible light with a scintillator, but light is diffused during the conversion process, causing blurring, so the upper limit of resolution is limited to about 50 ⁇ m. .
- the aperture masks 511 and 513 having higher resolution than the upper limit of the scintillator resolution are arranged above and below the scintillator 512, and the transmitted light is guided to the light receiving portion by the fiber plate 514, thereby suppressing blurring due to light diffusion in the conversion process. And a high resolution of 50 ⁇ m or less is obtained.
- the relative positions of the opening mask 511 and the opening mask 513 are set so that the central portion of the light beam output from the scintillator 512 by the X-ray light beam that has passed through each opening portion of the opening mask 511 passes through each corresponding opening portion of the opening mask 513. Adjusted.
- the light receiving unit 103 of the X-ray TDI camera 4 corresponds to the input surface of the scintillator 512 (and substantially the same as the surface of the opening mask 511 when an opening mask is used).
- FIG. 11 is a diagram illustrating an aperture mask that improves the resolution of the scintillator of the X-ray TDI camera.
- the transmission area is displayed in white and the shading area is displayed in black.
- the aperture mask 511 is made of a material that shields X-rays
- the light shielding region of the aperture mask 513 is made of a material that shields light output from the scintillator.
- transmission regions of ⁇ 25 ⁇ m are arranged at a pitch of 50 ⁇ m in the X and Y directions, and a resolution of 25 ⁇ m and an aperture ratio of 39% are obtained.
- FIG. 12 is a flowchart for explaining the X-ray inspection method according to the present invention.
- the control unit 8 receives a signal relating to the inspection conditions received from the input unit 10 and other components in FIG. 1 (step 1201), and the control unit 8 causes the transport system 11, the X-ray TDI camera 4, the X-ray source 1, and the like. Is set (step 1202). Thereafter, the sample is irradiated with X-rays under the conditions set in step 1202 by the X-ray source 1 (step 1203). The X-rays irradiated in Step 1203 pass through the sample, and an X-ray transmission image is detected by the X-ray TDI camera 4 (Step 1204).
- the defect determination unit 7 processes the X-ray transmission image detected in step 1204 to detect defects present in the sample (step 1205).
- the defect detection result in step 1205 is displayed on the display unit 9 (step 1206).
- FIG. 13 is a diagram for explaining the arrangement of the light receiving sensors of the X-ray TDI camera according to the present invention.
- a camera in which a long light receiving region is formed in the Y direction by a plurality of light receiving sensors 413 and 414 whose positions are shifted in the X direction, and an X-ray tube corresponding to each light receiving sensor is used.
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
リチウムイオン二次電池の正極材料に含まれる微小金属異物の検査では、X線TDIカメラ4の固定パターンノイズ、ランダムに発生するショットノイズ、およびシート状の正極の活物質の厚さムラ、密度ムラなどが背景ノイズとなる。検出した画像に対し、背景ノイズを減衰し、微小金属異物などに基づく欠陥信号を強調するフィルタ処理を行い、フィルタ後の画像に対し、その残存ノイズ成分を実質的に検出しないしきい値レベルを設定し、しきい値レベルを越える箇所を欠陥と判定することで、微小金属異物などの欠陥が検出される。金属異物が正極に付着している場合、あるいは正極材料より重い元素からなる金属異物が正極材料内部に埋まっている場合、X線透過像において背景より暗い欠陥信号として現れる。正極材料より軽い元素からなる金属異物が正極材料内部に埋まっている場合、あるいは正極材料の塗工漏れ、空孔がある場合は、X線透過像において背景より明るい欠陥信号として現れる。欠陥部の明度の空間的な広がりの中心(背景との明度差が最大となる位置、あるいは明度差の重心位置)を欠陥位置として計測する。さらに、欠陥部の背景との明度差および明度の空間的な広がりから欠陥の大きさを計測する。以上の欠陥判定結果を検査後に確認できるよう、欠陥部と周囲の背景を含む欠陥画像が、欠陥判定部7あるいは制御部8が内蔵するメモリに保存される。
搬送系11によって、検査対象の試料Wが搬送、走査される。搬送系11による試料走査の速度に合せて、X線TDIカメラ4のラインレートが設定され、走査速度に同期した撮像が行われる。搬送系11はX線TDIカメラ4のタイミング同期に必要な、搬送速度、あるいは搬送距離などの情報を制御部8に出力する。例えばX線検査装置100を、試料の製造工程などにおいて予め試料が実質的に一定速度にて搬送されている環境に設置して用いる場合は、X線検査装置100自体が搬送系11を有する必要はなく、試料の製造工程などに予め設置されている搬送系を兼用し、これに同期するようX線TDIカメラ4を設定して動作すればよい。この場合、必要に応じて、試料の製造工程などの搬送系の出力あるいは搬送されている試料をエンコーダによって計測して得られる位置計測値、あるいは速度計によって計測して得られる速度計測値を同期に用いる情報として制御部に入力して用いる。
図1の入力部10や他の各構成部品から受信した検査条件等に関する信号を制御部8が受けて(step1201)、制御部8により搬送系11やX線TDIカメラ4、X線源1などの条件設定を行う(step1202)。その後、X線源1によりstep1202で設定した条件にて試料にX線を照射する(step1203)。Step1203にて照射されたX線が試料を透過し、X線透過像をX線TDIカメラ4により検出する(step1204)。欠陥判定部7がstep1204で検出したX線透過像を処理して試料に存在する欠陥を検出する(step1205)。step1205による欠陥の検出結果を表示部9に表示する(step1206)。
2…線源遮蔽部
3…線源スリット
4…X線TDIカメラ
5…直接光遮蔽部
6…装置カバー
7…欠陥判定部
8…制御部
9…表示部
Claims (17)
- 試料にX線を照射し、欠陥の径より大きい焦点サイズを持つX線源と、
前記X線源により照射されて該試料を透過したX線をX線透過像として検出し、該試料の走査方向と平行な方向に長い画素を持ち該試料に近接して配置されたX線TDI検出器と、
前記X線TDI検出器により検出されたX線透過像に基づき欠陥を検出する欠陥検出部と、を備えるX線検査装置。 - 請求項1記載のX線検査装置であって、
さらに、前記X線源から照射されたX線の該試料の表面における照射領域を制限する線源スリットを備えることを特徴とするX線検査装置。 - 請求項1記載のX線検査装置であって、
前記X線TDI検出器は、該試料に対して前記X線源と反対側に配置されていることを特徴とするX線検査装置。 - 請求項1記載のX線検査装置であって、
前記X線源は複数のX線管を備えており、前記複数のX線管から照射されるX線は、該試料の表面の互いに異なる領域を照射することを特徴とするX線検査装置。 - 請求項2記載のX線検査装置であって、
前記X線源は複数のX線管を備えており、
前記線源スリットは、前記複数のX線管が該試料の表面の互いに異なる領域を照射するように配置されていることを特徴とするX線検査装置。 - 請求項1記載のX線検査装置であって、
前記X線TDI検出器は、該試料の走査方向に直交する方向に並列に複数配置されていることを特徴とするX線検査装置。 - 請求項6記載のX線検査装置であって、
前記複数配置された前記X線TDI検出器の受光部は間に隙間がないように配置されていることを特徴とするX線検査装置。 - 請求項1記載のX線検査装置であって、
前記欠陥検出部により検出された欠陥を表示する表示部を備えることを特徴とするX線検査装置。 - 欠陥の径より大きい焦点サイズを持つX線源から該試料にX線を照射するX線照射工程と、
前記X線照射工程により照射されて該試料を透過したX線を、該試料の走査方向と平行な方向に長い画素を持ち該試料に近接して配置されたX線TDI検出器によりX線透過像として検出するX線透過像検出工程と、
前記X線透過像検出工程により検出されたX線透過像に基づき欠陥を検出する欠陥検出工程と、を備えるX線検査方法。 - 請求項9記載のX線検査方法であって、
さらに、前記X線源から照射されたX線の該試料の表面における照射領域を制限する制限工程を備えることを特徴とするX線検査方法。 - 請求項9記載のX線検査方法であって、
前記X線TDI検出器は、該試料に対して前記X線源と反対側に配置されていることを特徴とするX線検査方法。 - 請求項9記載のX線検査方法であって、
前記X線源は複数のX線管を備えており、
前記X線照射工程では、該試料の表面の互いに異なる領域を照射することを特徴とするX線検査方法。 - 請求項10記載のX線検査方法であって、
前記X線源は複数のX線管を備えており、
前記制限工程では、前記複数のX線管が該試料の表面の互いに異なる領域を照射するように制限することを特徴とするX線検査方法。 - 請求項9記載のX線検査方法であって、
前記X線TDI検出器は、該試料の走査方向に直交する方向に並列に複数配置されていることを特徴とするX線検査方法。 - 請求項14記載のX線検査方法であって、
前記複数配置された前記X線TDI検出器の受光部は間に隙間がないように配置されていることを特徴とするX線検査方法。 - 請求項9記載のX線検査方法であって、
前記欠陥検出工程により検出された欠陥を表示する表示工程を備えることを特徴とするX線検査方法。 - X線源により照射されて試料を透過したX線をX線透過像として検出し、該試料の走査方向と平行な方向に長い画素を持つX線検出器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/371,427 US9506876B2 (en) | 2012-02-06 | 2012-12-12 | X-ray inspection device, inspection method, and X-ray detector |
EP12868086.5A EP2813841B1 (en) | 2012-02-06 | 2012-12-12 | X-ray inspection device and inspection method |
KR1020147015748A KR20140089431A (ko) | 2012-02-06 | 2012-12-12 | X선 검사 장치, 검사 방법 및 x선 검출기 |
CN201280059202.2A CN103975233B (zh) | 2012-02-06 | 2012-12-12 | X射线检查装置、检查方法以及x射线检测器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-022650 | 2012-02-06 | ||
JP2012022650 | 2012-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118386A1 true WO2013118386A1 (ja) | 2013-08-15 |
Family
ID=48947173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082126 WO2013118386A1 (ja) | 2012-02-06 | 2012-12-12 | X線検査装置、検査方法およびx線検出器 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9506876B2 (ja) |
EP (1) | EP2813841B1 (ja) |
JP (1) | JP2013178242A (ja) |
KR (1) | KR20140089431A (ja) |
CN (1) | CN103975233B (ja) |
WO (1) | WO2013118386A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160041110A1 (en) * | 2014-08-11 | 2016-02-11 | Hitachi High-Technologies Corporation | X-ray transmission inspection apparatus and extraneous substance detecting method |
JP2018031643A (ja) * | 2016-08-24 | 2018-03-01 | 株式会社日立ハイテクサイエンス | X線透過検査装置 |
US10746541B2 (en) | 2016-01-19 | 2020-08-18 | The Yokohama Rubber Co., Ltd. | Inspection device for conveyor belt |
US10989672B2 (en) * | 2016-08-18 | 2021-04-27 | Fujifilm Corporation | Defect inspection device, defect inspection method, and program |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5792472B2 (ja) | 2011-01-25 | 2015-10-14 | 浜松ホトニクス株式会社 | 放射線画像取得装置 |
JP5944254B2 (ja) | 2012-07-20 | 2016-07-05 | 浜松ホトニクス株式会社 | 放射線画像取得装置 |
EP2859963A1 (de) * | 2013-10-11 | 2015-04-15 | Sikora Ag | Vorrichtung und Verfahren zum Sortieren von Schüttgut |
JP6246061B2 (ja) * | 2014-04-28 | 2017-12-13 | 三菱電機株式会社 | 多層基板の検査方法 |
JP6671839B2 (ja) * | 2014-10-07 | 2020-03-25 | キヤノン株式会社 | 放射線撮像装置及び撮像システム |
JP6512980B2 (ja) * | 2015-07-29 | 2019-05-15 | 株式会社日立ハイテクサイエンス | X線透過検査装置及びx線透過検査方法 |
JP6266574B2 (ja) * | 2015-09-10 | 2018-01-24 | 株式会社日立ハイテクサイエンス | X線検査方法及びx線検査装置 |
CN108139489B (zh) * | 2015-09-30 | 2021-02-19 | 浜松光子学株式会社 | 放射线图像取得系统和放射线图像取得方法 |
JP6864888B2 (ja) * | 2016-07-15 | 2021-04-28 | 株式会社リガク | X線検査装置、x線薄膜検査方法およびロッキングカーブ測定方法 |
JP6933513B2 (ja) * | 2016-11-30 | 2021-09-08 | 住友化学株式会社 | 欠陥検査装置、欠陥検査方法、セパレータ捲回体の製造方法、及びセパレータ捲回体 |
KR20180111562A (ko) * | 2017-03-30 | 2018-10-11 | 스미또모 가가꾸 가부시키가이샤 | 검사 장치, 검사 방법 및 필름 권회체의 제조 방법 |
JP7138515B2 (ja) * | 2017-09-08 | 2022-09-16 | 住友化学株式会社 | 検査装置 |
KR20190071111A (ko) | 2017-12-14 | 2019-06-24 | 삼성전자주식회사 | 엑스선 검사 장비 및 이를 이용하는 반도체 장치 제조 방법 |
EP3764766A4 (en) | 2018-03-14 | 2022-02-23 | Monsanto Technology LLC | SEED IMAGING |
JP2019175363A (ja) * | 2018-03-29 | 2019-10-10 | 住友化学株式会社 | 画像処理装置、異物検査装置、画像処理方法、および異物検査方法 |
JP7063681B2 (ja) * | 2018-03-29 | 2022-05-09 | 住友化学株式会社 | 異物検査装置及び異物検査方法 |
JP2019174410A (ja) * | 2018-03-29 | 2019-10-10 | 住友化学株式会社 | 画像処理装置、異物検査装置及び画像処理方法 |
MX2020013129A (es) | 2018-06-11 | 2021-02-18 | Monsanto Technology Llc | Seleccion de semillas. |
CN113167567B (zh) * | 2019-01-25 | 2023-03-24 | 东丽株式会社 | 结构体检查方法及制造方法、结构体检查装置及制造装置 |
JP7201481B2 (ja) * | 2019-03-04 | 2023-01-10 | 株式会社日立ハイテクサイエンス | X線検査装置及びx線検査方法 |
CN109821766A (zh) * | 2019-03-05 | 2019-05-31 | 天津美腾科技有限公司 | Tds智能干选机双射源识别方法及系统 |
CN110231353A (zh) * | 2019-05-17 | 2019-09-13 | 中国石油化工股份有限公司 | 基于x射线数字成像技术的翅片管检测方法 |
CN111582367A (zh) * | 2020-05-07 | 2020-08-25 | 电子科技大学 | 一种小金属威胁检测的方法 |
CN111992514B (zh) * | 2020-08-06 | 2022-03-25 | 北京霍里思特科技有限公司 | 宽体智能分选设备的双光源信号采集单元及信号采集方法 |
WO2024024296A1 (ja) * | 2022-07-27 | 2024-02-01 | 東レ株式会社 | X線検査装置およびx線検査方法 |
WO2024043034A1 (ja) * | 2022-08-23 | 2024-02-29 | 東レ株式会社 | X線検査装置及びx線検査方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06317544A (ja) * | 1993-05-06 | 1994-11-15 | Toyota Motor Corp | セーフティパッドの検査方法 |
JPH0972863A (ja) | 1995-06-28 | 1997-03-18 | Kobe Steel Ltd | 簡易型高分解能x線透過自動検査装置 |
JP2009080030A (ja) * | 2007-09-26 | 2009-04-16 | Ishida Co Ltd | X線検査装置 |
JP2010230559A (ja) * | 2009-03-27 | 2010-10-14 | Ishida Co Ltd | X線検査装置 |
JP2011149701A (ja) * | 2010-01-19 | 2011-08-04 | Shonai Create Kogyo:Kk | ラインセンサーカメラを用いたx線検査装置 |
JP2011169777A (ja) * | 2010-02-19 | 2011-09-01 | Yokogawa Electric Corp | 放射線測定装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11316197A (ja) | 1998-05-06 | 1999-11-16 | Matsushita Electric Works Ltd | 平板材の内部検査方法及び装置 |
US6324249B1 (en) | 2001-03-21 | 2001-11-27 | Agilent Technologies, Inc. | Electronic planar laminography system and method |
DE10251448A1 (de) * | 2002-11-05 | 2004-05-19 | Siemens Ag | Verfahren für die Computertomographie eines periodisch sich bewegenden Untersuchungsobjektes, sowie ein CT-Gerät zur Durchführung dieses Verfahrens |
US7065176B2 (en) * | 2003-05-28 | 2006-06-20 | General Electric Company | Method and system to inspect a component |
US6901132B2 (en) * | 2003-06-26 | 2005-05-31 | General Electric Company | System and method for scanning an object in tomosynthesis applications |
US20070189460A1 (en) * | 2006-02-15 | 2007-08-16 | Buck Dean C | Precise x-ray inspection system |
US7384193B2 (en) * | 2006-10-27 | 2008-06-10 | Agilent Technologies, Inc. | Method for relocating the range of focus in a line scan camera having time domain integration image sensors |
WO2008050298A2 (en) * | 2006-10-27 | 2008-05-02 | Koninklijke Philips Electronics N.V. | Imaging system for imaging an object |
JP5559471B2 (ja) * | 2008-11-11 | 2014-07-23 | 浜松ホトニクス株式会社 | 放射線検出装置、放射線画像取得システム、放射線検査システム、及び放射線検出方法 |
JP5443033B2 (ja) * | 2009-03-27 | 2014-03-19 | トヨタ自動車株式会社 | 欠陥検査装置および方法 |
JP5024973B2 (ja) * | 2010-01-06 | 2012-09-12 | 株式会社リガク | X線トポグラフィ装置 |
JP5813923B2 (ja) * | 2010-03-15 | 2015-11-17 | 株式会社日立ハイテクサイエンス | X線透過検査装置及びx線透過検査方法 |
-
2012
- 2012-12-12 KR KR1020147015748A patent/KR20140089431A/ko not_active Application Discontinuation
- 2012-12-12 WO PCT/JP2012/082126 patent/WO2013118386A1/ja active Application Filing
- 2012-12-12 CN CN201280059202.2A patent/CN103975233B/zh not_active Expired - Fee Related
- 2012-12-12 EP EP12868086.5A patent/EP2813841B1/en not_active Not-in-force
- 2012-12-12 US US14/371,427 patent/US9506876B2/en not_active Expired - Fee Related
-
2013
- 2013-02-04 JP JP2013019068A patent/JP2013178242A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06317544A (ja) * | 1993-05-06 | 1994-11-15 | Toyota Motor Corp | セーフティパッドの検査方法 |
JPH0972863A (ja) | 1995-06-28 | 1997-03-18 | Kobe Steel Ltd | 簡易型高分解能x線透過自動検査装置 |
JP2009080030A (ja) * | 2007-09-26 | 2009-04-16 | Ishida Co Ltd | X線検査装置 |
JP2010230559A (ja) * | 2009-03-27 | 2010-10-14 | Ishida Co Ltd | X線検査装置 |
JP2011149701A (ja) * | 2010-01-19 | 2011-08-04 | Shonai Create Kogyo:Kk | ラインセンサーカメラを用いたx線検査装置 |
JP2011169777A (ja) * | 2010-02-19 | 2011-09-01 | Yokogawa Electric Corp | 放射線測定装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2813841A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160041110A1 (en) * | 2014-08-11 | 2016-02-11 | Hitachi High-Technologies Corporation | X-ray transmission inspection apparatus and extraneous substance detecting method |
US10746541B2 (en) | 2016-01-19 | 2020-08-18 | The Yokohama Rubber Co., Ltd. | Inspection device for conveyor belt |
US10989672B2 (en) * | 2016-08-18 | 2021-04-27 | Fujifilm Corporation | Defect inspection device, defect inspection method, and program |
JP2018031643A (ja) * | 2016-08-24 | 2018-03-01 | 株式会社日立ハイテクサイエンス | X線透過検査装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103975233B (zh) | 2017-01-04 |
US20140328459A1 (en) | 2014-11-06 |
KR20140089431A (ko) | 2014-07-14 |
US9506876B2 (en) | 2016-11-29 |
CN103975233A (zh) | 2014-08-06 |
JP2013178242A (ja) | 2013-09-09 |
EP2813841A4 (en) | 2015-09-09 |
EP2813841A1 (en) | 2014-12-17 |
EP2813841B1 (en) | 2018-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013118386A1 (ja) | X線検査装置、検査方法およびx線検出器 | |
JP5190405B2 (ja) | ガラス表面の異物検査装置及びその方法 | |
TWI266861B (en) | Apparatus and method of inspecting mura-defect and method of fabricating photomask | |
JP2012002792A (ja) | 透明フィルム検査装置及び欠陥検出方法 | |
JP2016045194A (ja) | 光学フィルム検査装置 | |
CN112154322A (zh) | 放射线透过检查方法和装置、以及微多孔膜的制造方法 | |
US9105445B2 (en) | Inspection system, inspection image data generation method, inspection display unit, defect determination method, and storage medium on which inspection display program is recorded | |
JP6920009B2 (ja) | 欠陥検出装置、欠陥検出方法および欠陥観察装置 | |
KR20060066658A (ko) | 얼룩 결함 검사 방법과 시스템, 및 포토 마스크의 제조방법 | |
KR100374762B1 (ko) | 결함 검사 장치 및 그 방법 | |
US10586323B2 (en) | Reference-image confirmation method, mask inspection method, and mask inspection device | |
US8986913B2 (en) | Method and apparatus for inspecting a mask substrate for defects, method of manufacturing a photomask, and method of manufacturing a semiconductor device | |
JP5281815B2 (ja) | 光学デバイス欠陥検査方法及び光学デバイス欠陥検査装置 | |
JP4977068B2 (ja) | 画像採取装置及び試料検査装置 | |
JP2021135125A (ja) | 膜電極接合体の検査方法および検査装置 | |
EP4411317A1 (en) | Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method | |
JP2012088139A (ja) | 塗工膜の欠陥検査装置及び検査方法 | |
JP2015132625A (ja) | 異物検査装置、異物検査方法 | |
JP5521005B2 (ja) | 検査装置 | |
JP2011203132A (ja) | 外観検査装置 | |
JP2003139524A (ja) | 検査装置 | |
JP7582507B2 (ja) | X線検査装置及びx線検査方法 | |
WO2024024296A1 (ja) | X線検査装置およびx線検査方法 | |
JP2014190701A (ja) | X線検査システム及びx線検査方法 | |
JP2013117465A (ja) | 表面検査装置及び表面検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12868086 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147015748 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012868086 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14371427 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |