[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013153938A1 - 光半導体光源及び車両用照明装置 - Google Patents

光半導体光源及び車両用照明装置 Download PDF

Info

Publication number
WO2013153938A1
WO2013153938A1 PCT/JP2013/058446 JP2013058446W WO2013153938A1 WO 2013153938 A1 WO2013153938 A1 WO 2013153938A1 JP 2013058446 W JP2013058446 W JP 2013058446W WO 2013153938 A1 WO2013153938 A1 WO 2013153938A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor light
light emitting
optical semiconductor
emitting elements
light source
Prior art date
Application number
PCT/JP2013/058446
Other languages
English (en)
French (fr)
Inventor
登志浩 畑中
智宏 溝口
土屋 竜二
大資 小杉
Original Assignee
東芝ライテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012090619A external-priority patent/JP5988135B2/ja
Priority claimed from JP2012090617A external-priority patent/JP2013219289A/ja
Priority claimed from JP2012100438A external-priority patent/JP6052573B2/ja
Application filed by 東芝ライテック株式会社 filed Critical 東芝ライテック株式会社
Publication of WO2013153938A1 publication Critical patent/WO2013153938A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • F21S41/192Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • F21S41/194Bayonet attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/39Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • F21S43/195Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/37Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • F21S45/48Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/006Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate being distinct from the light source holder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • Embodiments described herein relate generally to an optical semiconductor light source and a vehicle lighting device.
  • Optical semiconductor light sources using semiconductor light emitting devices can reduce power consumption and extend their life compared to light sources using incandescent bulbs, cold cathode tubes, discharge tubes, etc. Easy.
  • exterior lighting for vehicles using a semiconductor light emitting element as a light source has begun to be adopted mainly by high-end vehicles of various automobile manufacturers, and is used for front combination lights, rear combination lights, and the like. Furthermore, the use of rear combination lights is expanding to popular vehicles such as the so-called liter car class and minicars, and the number of installed vehicles is steadily increasing.
  • the semiconductor light emitting device When adopting a semiconductor light emitting element, an important item in design is a heat radiation design of the semiconductor light emitting element.
  • the semiconductor light emitting device has a characteristic that the light emission efficiency decreases when the temperature of the device itself increases. Therefore, it is important how to reduce the influence of temperature due to self-temperature rise and heat generation of surrounding parts.
  • the mounting interval of heat-emitting elements such as semiconductor light-emitting elements and current limiting resistors is widened to alleviate the thermal effect between adjacent elements, and the drive current of the semiconductor light-emitting elements is lowered to reduce the required light quantity.
  • Another way to suppress heat generation is to mount a semiconductor light-emitting element or current limiting resistor on a metal substrate with high thermal conductivity or a ceramic material substrate and bring it into contact with a heat dissipation member to reduce the temperature rise. It is done.
  • This means is effective for reducing the size of the light source, and makes the light source versatile.
  • a semiconductor light source, a current limiting resistor, an external power supply component such as a connector, and other necessary components are mounted on a metal substrate or a ceramic substrate, a corresponding substrate area is required, which tends to increase costs.
  • the material cost can be reduced. A measure to lower it is also conceivable. However, this is also likely to lead to a decrease in the light emission efficiency and long-term reliability of the semiconductor light emitting device.
  • an optical semiconductor light source and vehicle lighting device that can reduce the reduction in luminous efficiency and long-term reliability while suppressing costs.
  • an optical semiconductor mounting substrate a plurality of semiconductor light emitting elements provided on the optical semiconductor mounting substrate, a reflector provided on the optical semiconductor mounting substrate and surrounding the semiconductor light emitting elements, And an optical semiconductor light source.
  • the plurality of semiconductor light emitting elements are arranged at an equal distance from the reflector. The distance from the center of the space surrounded by the reflector to each of the plurality of semiconductor light emitting elements is larger than the distance from each of the plurality of semiconductor light emitting elements to the reflector.
  • an optical semiconductor mounting substrate a plurality of semiconductor light emitting elements provided on the optical semiconductor mounting substrate, a reflector provided on the optical semiconductor mounting substrate and surrounding the semiconductor light emitting elements, And an optical semiconductor light source.
  • the optical semiconductor light source is provided in a space surrounded by the reflector, a first region provided on the reflector side, and provided closer to a center side of the space surrounded by the reflector than the first region. A second region.
  • the plurality of semiconductor light emitting elements are disposed in the first region and the second region, respectively, and each of the plurality of semiconductor light emitting elements disposed in the first region from the center of the space surrounded by the reflector. Is greater than the distance from each of the plurality of semiconductor light emitting elements to the reflector.
  • an optical semiconductor light source and a vehicle lighting device capable of reducing a decrease in luminous efficiency and a decrease in long-term reliability while suppressing costs.
  • FIG. 1 is a perspective assembly view of a vehicle lighting device according to a first embodiment.
  • FIG. 2A is a schematic perspective view of the vehicular illumination device according to the first embodiment as viewed from the front side
  • FIG. 2B is a schematic view as viewed from the back side.
  • FIG. 3A is an enlarged schematic perspective view showing the optical semiconductor mounting substrate and the control substrate
  • FIG. 3B is a schematic plan view showing the arrangement of the semiconductor light emitting elements.
  • FIG. 4A is a schematic plan view showing the circuit configuration of the optical semiconductor light source according to the first embodiment
  • FIG. 4B is an equivalent circuit diagram thereof
  • FIG. It is a schematic plan view showing the state after having been given.
  • FIG. 5A is a schematic plan view showing a modification of the circuit configuration of the optical semiconductor light source according to the first embodiment, and FIG. 5B is an equivalent circuit diagram thereof.
  • FIG. 6A is a schematic plan view showing an optical semiconductor light source of a comparative example, and FIG. 6B is an equivalent circuit diagram thereof.
  • FIG. 7A is an enlarged schematic perspective view showing the connecting means of the optical semiconductor light source according to the second embodiment, and FIG. 7B is a schematic sectional view taken along the line AA.
  • FIG. 8A is a schematic perspective view showing another specific example of the optical semiconductor light source according to the second embodiment, and FIG. 8B is a schematic side view thereof.
  • FIG. 9A is a schematic perspective view showing another specific example of the optical semiconductor light source according to the second embodiment, and FIG.
  • FIG. 9B is a schematic side view thereof.
  • 10 (a) to 10 (c) are schematic views showing an optical semiconductor light source according to the third embodiment
  • FIG. 10 (a) is a schematic plan view
  • FIG. 10 (b) is a schematic side view
  • FIG. 10C is a schematic cross-sectional view taken along one-dot chain line BB in
  • FIG. 11 (a) to 11 (c) are schematic views showing an optical semiconductor light source according to the fourth embodiment
  • FIG. 11 (a) is a schematic plan view
  • FIG. 11 (b) is a schematic side view
  • FIGS. 11C and 11D are schematic cross-sectional views taken along one-dot chain line CC in FIG. 11A.
  • FIG. 12 is a perspective assembly view of the vehicular lighting device according to the fifth embodiment.
  • FIG. 13A and 13B are schematic views illustrating an optical semiconductor light source according to the fifth embodiment, FIG. 13A is a schematic plan view, and FIG. 13B is equivalent. It is a circuit diagram.
  • FIG. 14 is a schematic plan view showing the arrangement of the semiconductor light emitting elements of the optical semiconductor light source according to the fifth embodiment.
  • FIG. 15 is a schematic plan view illustrating another specific example of the arrangement of the semiconductor light emitting elements in the fifth embodiment.
  • FIG. 16 is a schematic plan view showing another specific example of the arrangement of the semiconductor light emitting elements in the fifth embodiment.
  • 17A and 17B are schematic views showing a semiconductor light source according to the sixth embodiment, FIG. 17A is a schematic plan view, and FIG. 17B is an equivalent circuit diagram. It is.
  • FIG. 17A and 17B are schematic views showing a semiconductor light source according to the sixth embodiment, FIG. 17A is a schematic plan view, and FIG. 17B is an equivalent circuit diagram. It is.
  • FIG. 17A and 17B are schematic views showing a
  • FIGS. 19A to 19C are schematic views showing other semiconductor light sources according to the sixth embodiment, and FIG. 19A is a schematic plan view of the optical semiconductor light sources. b) is a partially enlarged view thereof, and FIG. 19C is an equivalent circuit diagram.
  • FIG. 20 is a schematic plan view illustrating another specific example of the arrangement of the semiconductor light emitting elements in the sixth embodiment.
  • FIG. 21 is a schematic view illustrating an optical semiconductor light source according to the seventh embodiment, FIG. 21A is a schematic plan view, FIG. 21B is a schematic cross-sectional view, and FIG. ) Is a partially enlarged sectional view.
  • FIG. 22A to 22C are schematic views illustrating an optical semiconductor light source as a comparative example according to the seventh embodiment, and FIG. 22A is a plan view of the optical semiconductor light source.
  • FIG. 22B is a sectional view, and FIG. 22C is a partially enlarged sectional view.
  • FIG. 23A is a schematic perspective view of the vehicular illumination device according to the eighth embodiment as viewed from the front side, and FIG. 23B is a schematic view as viewed from the back side.
  • FIG. 24 is a schematic cross-sectional view of a lamp mounted with the vehicle lighting device of the eighth embodiment.
  • FIG. 25 is a perspective assembly view of the vehicle lighting device according to the ninth embodiment.
  • FIG. 26A is a schematic perspective view of the vehicular lighting device according to the ninth embodiment viewed from the front side
  • FIG. 26B is a schematic view viewed from the back side
  • FIG. 27A is a schematic perspective view illustrating the relationship among the first heat sink 300, the optical semiconductor mounting substrate 10, and the control substrate 50
  • FIG. 27B is a cross-sectional perspective view thereof.
  • 28 (a) is a schematic plan view corresponding to FIG. 27 (a)
  • FIG. 28 (b) is a schematic plan view showing a state in which the control board 50 is removed
  • FIG. FIG. 29 is a schematic perspective view corresponding to FIG.
  • FIG. 29A is a schematic perspective view of the first heat sink 300.
  • FIG. 29D are schematic perspective views showing specific examples of the radiation fins, and are schematic views of the first heat sink 300 as viewed from the back side.
  • FIG. 30A is a schematic perspective view showing a specific example in which the second heat sink 310 is provided outside the first heat sink 300 according to the tenth embodiment, and FIG. 30B and FIG. ) Are schematic views of the second heat sink 310 as viewed from the side where the first heat sink 300 is accommodated.
  • FIG. 31A is a schematic perspective view showing a specific example in which the surface area of the second heat sink 310 is increased
  • FIG. 31B is a sectional perspective view thereof
  • FIG. 31C is a second heat sink.
  • FIG. 31D is a cross-sectional view taken along one-dot chain line AA in FIG. 31A.
  • FIG. 32A is a schematic perspective view illustrating a specific example in which the volume of the first heat sink 300 is increased, and FIG. 32B is a cross-sectional perspective view thereof.
  • FIG. 33A is a schematic perspective view showing a specific example in which the surface areas of the first heat sink 300 and the second heat sink 310 are increased, and FIG. 33B is a cross-sectional perspective view thereof.
  • FIG. 34 (a) is a schematic view of the vehicular illumination device according to the eleventh embodiment as viewed from the back side
  • FIG. 33 (b) shows a vehicular illumination device according to a comparative example according to the embodiment of the present invention. It is the schematic diagram seen from the back side.
  • FIG. 34 (a) is a schematic view of the vehicular illumination device according to the eleventh embodiment as viewed from the back side
  • FIG. 33 (b) shows a vehicular illumination device according to a comparative example according to the embodiment of the present invention. It is the schematic diagram seen from the back side.
  • FIG. 35A is a schematic view of the vehicular lighting device according to the twelfth embodiment as viewed from the back surface side
  • FIG. 35B is a schematic view of the vehicle illumination device as viewed from the right side
  • FIG. 36A is a schematic view of the vehicular illumination device according to the thirteenth embodiment as viewed from the back surface side
  • FIG. 36B is a schematic view as viewed from the right side.
  • FIG. 1 is a perspective assembly view of a vehicle lighting device according to a first embodiment.
  • FIG. 2A is a schematic perspective view of the vehicular lighting device according to the present embodiment as seen from the front side
  • FIG. 2B is a schematic view as seen from the back side.
  • the vehicle lighting device 100 includes an optical semiconductor light source 150 and a cover 700 that covers the light source.
  • the optical semiconductor light source 150 includes a first heat sink (first heat radiating member) 300, an optical semiconductor mounting substrate 10 mounted thereon, and a control substrate 50.
  • the back surface of the optical semiconductor mounting substrate 10 is in contact with the first heat sink 300.
  • the “contact” is not limited to the case where the optical semiconductor mounting substrate 10 or the control substrate 50 is in direct contact with the first heat sink 300.
  • the heat generated in the optical semiconductor mounting substrate 10 is the first heat sink.
  • heat transfer grease, heat transfer adhesive, and the like are also included.
  • the optical semiconductor mounting substrate 10 On the optical semiconductor mounting substrate 10, a semiconductor light emitting element (such as a semiconductor light emitting element 18 to be described later) using an LED (Light Emitting Diode) serving as a light source is mounted.
  • the optical semiconductor mounting substrate 10 can be formed of an inorganic material such as alumina or aluminum nitride, for example.
  • the optical semiconductor mounting substrate 10 can be a substrate in which the surface of a metal plate is covered with an insulating layer.
  • the insulating layer may be an organic material or an inorganic material.
  • a reflector 22 having a recess 27 is mounted on the optical semiconductor mounting substrate 10 so as to surround the semiconductor light emitting element.
  • a region where a plurality of semiconductor light emitting elements and reflectors 22 are mounted is referred to as a light emitting unit 20. That is, the light emitting unit 20 includes the semiconductor light emitting element 18 and the reflector 22.
  • the reflector 22 is made of, for example, resin or ceramics.
  • the reflector 22 has a recess 27, and the reflector 22 is mounted on the optical semiconductor mounting substrate 10 so that the semiconductor light emitting element 18 (see FIGS. 3A and 3B) is exposed in the recess 27. Is done.
  • the inner wall surface of the recessed part 27 of the reflector 22 forms the reflective surface.
  • the light emitted from the semiconductor light emitting element 18 can be directly taken out upward, or reflected by the inner wall surface of the recess 27 and taken out upward.
  • the shape of the reflector 22 is not limited to the illustrated shape, and may be, for example, a shape hollowed in a conical shape at the center of a rectangular parallelepiped.
  • control substrate 50 On the control substrate 50, circuit elements (such as a current limiting resistor 60 described later) included in the drive circuit (such as a drive circuit 51 described later) mounted on the optical semiconductor mounting substrate 10 are included. Circuit elements 51A and the like to be described later are mounted.
  • the control board 50 can be a glass epoxy board, for example.
  • the first heat sink 300 releases heat generated in the optical semiconductor mounting substrate 10 and the control substrate 50 to the outside of the optical semiconductor light source 150.
  • the first heat sink 300 is formed of a material having high thermal conductivity such as aluminum.
  • the first heat sink 300 is provided with an engaging convex portion 302 that engages with the cover 700, a flange portion 304, a plurality of fins 306, and a through hole 308.
  • the optical semiconductor mounting substrate 10 and the control substrate 50 are electrically connected by the connecting means 40.
  • An electrode (not shown) formed on the optical semiconductor mounting substrate 10 and an electrode (not shown) formed on the control substrate 50 are connected to the connection means 40.
  • the connection means 40 a metal wire, a ribbon, a strap, or the like can be used.
  • the connection means 40 can be made of phosphor bronze. Alternatively, soldering can be used as the connecting means 40.
  • the control board 50 is provided with power supply terminals 72, 74, and 76.
  • the power supply terminals 72, 74, and 76 extend through a through hole 308 provided in the first heat sink 300, are connected to a connector 720 inserted from the rear of the first heat sink 300, and are supplied with power from the outside. .
  • the power supply terminals 72, 74, and 76 are not limited to this specific example.
  • the power supply terminals 72, 74, and 76 may be composed of two power supply terminals, or may be four or more.
  • the number of power supply terminals is not limited as long as the power supply terminals are provided so that the optical semiconductor light source 150 has desired characteristics.
  • the cover 700 has an engagement opening 702 that engages with an engagement protrusion 302 provided on the first heat sink 300. In a state where the engagement opening 702 and the engagement convex portion 302 are engaged, the cover 700 is engaged with the first heat sink 300.
  • FIG. 3A is a schematic perspective view showing the optical semiconductor mounting substrate 10 and the control substrate 50 in an enlarged manner.
  • FIG. 3B is a schematic plan view showing the arrangement of the semiconductor light emitting elements 18.
  • the semiconductor light emitting element 18 mounted on the optical semiconductor mounting substrate 10 emits light by electric power supplied from the outside.
  • the semiconductor light emitting element 18 may be in the form of a semiconductor chip such as an LED diced from a wafer, or may be in the form of a submount mounted on a ceramic substrate such as aluminum nitride, or a semiconductor chip such as an LED may be used.
  • the form mounted in packages, such as resin and ceramic, may be sufficient.
  • These semiconductor chips, submounts, and packages can be mounted on the optical semiconductor mounting substrate 10 with solder, conductive adhesive, or the like.
  • the plurality of semiconductor light emitting elements 18 are arranged equidistant from the reflector 22 (distance d2 in FIG. 3B).
  • a distance d1 from the center C of the space surrounded by the reflector 22 to each of the semiconductor light emitting elements 18 is larger than a distance d2 from each of the semiconductor light emitting elements 18 to the reflector 22.
  • the plurality of semiconductor light emitting elements 18 arranged in a limited region in the reflector 22 can be kept away from each other. That is, by disposing and arranging a plurality of semiconductor light emitting elements in a limited space, it is possible to make it less susceptible to the influence of heat emitted from each semiconductor light emitting element 18. Further, by moving the respective semiconductor light emitting elements 18 away from each other, it is possible to disperse the heat sources, prevent heat concentration, and promote heat dissipation from the respective semiconductor light emitting elements 18 to the first heat sink 300.
  • the light emitted from the semiconductor light emitting element 18 can be efficiently reflected by the reflector 22 and taken out to the outside. That is, the ratio of the light reflected by the reflector 22 among the light emitted from the semiconductor light emitting element 18 can be increased.
  • the light reflectance of the reflector 22 is usually higher than the light reflectance on the mounting surface of the semiconductor light emitting element 18 (the bottom surface of the space surrounded by the reflector 22). Therefore, if the proportion of the light reflected by the reflector 22 is increased, the light extraction efficiency can be increased accordingly.
  • the emission color of the semiconductor light-emitting element 18 such as an LED can be appropriately set according to the application, such as yellow or white, in addition to red light.
  • the semiconductor light emitting device 18 is mounted as a semiconductor chip, for example, the light emitting unit 20 is provided so as to cover the periphery of the semiconductor light emitting device 18 in order to protect the semiconductor light emitting device 18 from moisture or gas derived from the outside. It may be sealed with a translucent resin (not shown). In the case where the semiconductor light emitting element 18 is sealed with resin, for example, the light emitted from the semiconductor light emitting element 18 by being dispersed in the resin sealed in the light emitting unit 20 is absorbed to have different wavelengths. It may have a phosphor (not shown) that emits.
  • a circuit element such as a resistor (a circuit element 51A to be described later) is appropriately disposed.
  • the optical semiconductor mounting substrate 10 is formed of a metal plate coated with alumina, aluminum nitride, or an insulating layer, and the control substrate 50 is formed of a glass epoxy substrate, the optical semiconductor mounting substrate 10 is more heated. It can be said that the conductivity is high.
  • the semiconductor light emitting element 18 tends to have a reduced luminous efficiency and a shorter life when the temperature rises.
  • heat radiation can be promoted by mounting the semiconductor light emitting element 18 on the optical semiconductor mounting substrate 10 having high thermal conductivity.
  • heat dissipation to the first heat sink 300 can be promoted, and a decrease in the light emission efficiency and the life of the semiconductor light emitting element 18 can be suppressed.
  • the semiconductor light emitting element 18 is mounted on the optical semiconductor mounting substrate 10 having high thermal conductivity, thereby reducing the cost and reducing the cost
  • the heat dissipation from 18 can be promoted, and the decrease in luminous efficiency and the life can be suppressed.
  • heat radiation to the first heat sink 300 can be promoted via the optical semiconductor mounting substrate 10, and high light emission efficiency and good long-term reliability can be maintained.
  • circuit elements such as a diode, a capacitor, a resistor, a protection element, and a connector (not shown) are appropriately mounted. That is, the circuit elements included in the drive circuit of the semiconductor light emitting element 18 are mounted. In such a case, if the light source is composed only of a substrate having a high thermal conductivity, it is necessary to secure a mounting area for circuit elements that do not generate heat on the substrate having a high thermal conductivity, which increases the cost of the light source.
  • circuit elements other than the semiconductor light emitting element 18 are mounted not on the optical semiconductor mounting substrate 10 but on the control substrate 50 which has low thermal conductivity but is inexpensive. By doing so, the cost for the component mounting area can be kept low.
  • the amount of heat generated on the optical semiconductor mounting substrate 10 is reduced, and the temperature rise of the semiconductor light emitting element 18 disposed adjacent thereto is also reduced. Thereby, the luminous efficiency of the semiconductor light emitting element 18 is improved, the optical semiconductor mounting substrate 10 can be miniaturized, and the cost can be further reduced.
  • the optical semiconductor mounting substrate 10 Compared with the case where a glass epoxy substrate or the like is used as the optical semiconductor mounting substrate 10, heat radiation is improved, so that components can be arranged densely and the light source can be downsized. As a result, it is possible to reduce the restrictions on the mounting of the light source for various lamp designs and to provide a highly versatile light source. Furthermore, cost reduction can be expected by minimizing the substrate area and the quantity of semiconductor light emitting devices used.
  • FIG. 4A is a schematic plan view of the optical semiconductor light source according to the first embodiment.
  • FIG. 4B is an equivalent circuit diagram thereof.
  • FIG. 4C is a schematic plan view showing the optical semiconductor light source after trimming.
  • Electrodes 12, 14, and 16 are formed on the optical semiconductor mounting substrate 10.
  • a semiconductor light emitting element 18 is connected between the electrode 12 and the electrode 14, and a reflector 22 is disposed so as to surround the semiconductor light emitting element 18 to form a light emitting unit 20.
  • a first current limiting resistor 30 is connected between the electrode 14 and the electrode 16.
  • the number of the semiconductor light emitting elements 18 is not limited to the illustrated one. It is sufficient that at least one semiconductor light emitting element 18 is provided. Connection in the case of providing a plurality of semiconductor light emitting elements 18 may be in series or in parallel.
  • electrodes 52, 54, and 56 are formed on the control substrate 50.
  • a second current limiting resistor 60 (circuit element 51A) is connected between the electrode 54 and the electrode 56.
  • the second current limiting resistor 60 (circuit element 51 ⁇ / b> A) is included in the drive circuit 51 of the light emitting unit 20.
  • the electrode 52 and the electrode 56 are connected to power supply terminals 70 and 70 from an external circuit.
  • the electrodes 12 and 16 of the optical semiconductor mounting substrate 10 and the electrodes 52 and 54 of the control substrate 50 are electrically connected by connecting means 40 and 40.
  • connection locations of the electrodes 12, 16 and 52, 54 and the connection means 40, 40 provided on the optical semiconductor mounting substrate 10 and the control substrate 50 are not limited to the illustrated locations. As long as the connection means 40 and 40 electrically connect the optical semiconductor mounting substrate 10 and the control substrate 50, the connection location is not limited.
  • the light emitting unit 20, the first current limiting resistor 30, and the second current limiting resistor 60 are connected in series between the pair of power supply terminals 70. It is connected to the. Therefore, when a driving voltage is applied between the power supply terminals 70 and 70, the current limited by the first and second current limiting resistors 30 and 60 can flow through the light emitting unit 20 to emit light.
  • a plurality of the first current limiting resistors 30 may be arranged.
  • the power supply minus ( ⁇ ) is on the wiring on the power source plus (+) side as viewed from the semiconductor light emitting element 18. May be arranged on both the power supply positive (+) side and the power supply negative ( ⁇ ) side wiring.
  • Examples of the form of the first current limiting resistor 30 include a surface mount type resistance element and a printing resistor formed on a substrate by means such as printing.
  • a plurality of second current limiting resistors 60 may also be arranged.
  • the wiring on the power source plus (+) side as viewed from the semiconductor light emitting element 18 It may be arranged on the wiring on the power source minus ( ⁇ ) side or on both the power source plus (+) side and the power source minus ( ⁇ ) side wiring.
  • Examples of the form of the second current limiting resistor 60 include a discrete mounted resistive element and a surface mounted resistive element.
  • the amount of heat generated by the first current limiting resistor 30 provided on the optical semiconductor mounting substrate 10 is reduced.
  • the temperature rise of the semiconductor light emitting element 18 disposed in the vicinity thereof is also reduced. Thereby, the light emission efficiency of the semiconductor light emitting element 18 is improved, the optical semiconductor mounting substrate 10 can be downsized, and the cost can be further reduced.
  • the first current limiting resistor 30 can be trimmed.
  • FIG. 4C shows a state after trimming.
  • the first current limiting resistor 30 has a cut portion 36 formed by trimming.
  • the cut portion 36 can be formed, for example, by removing a part of the current limiting resistor 30 by irradiating a laser. Alternatively, it is possible to remove a part of the current limiting resistor 30 by pressing a jig.
  • the first current limiting resistor 30 When a printing resistor formed by printing is formed as the first current limiting resistor 30, such trimming can be easily performed. By trimming the first current limiting resistor 30 on the optical semiconductor mounting substrate 10 with respect to variations in electrical and optical characteristics of the light emitting unit 20, it is possible to suppress variations between the light sources of the respective characteristics. .
  • FIG. 5A is a schematic plan view showing a modification of the circuit configuration of the optical semiconductor light source according to the first embodiment
  • FIG. 5B is an equivalent circuit diagram thereof.
  • the optical semiconductor light source 160 of the present embodiment two types of lighting circuits are formed on the optical semiconductor mounting substrate 10.
  • these two types of lighting circuits are a lighting circuit for a taillight (taillight) and a control light (stoplight) for a vehicle, respectively.
  • Electrodes 12 to 17 are formed on the optical semiconductor mounting substrate 10.
  • a first current limiting resistor 32 is connected between the electrode 12 and the electrode 13.
  • Two semiconductor light emitting elements 18 are connected in parallel between the electrode 13 and the electrodes 14 and 14.
  • Two semiconductor light emitting elements 18 are connected in parallel between the electrodes 14, 14 and the electrode 15.
  • One semiconductor light emitting element 18 is connected between the electrode 15 and the electrode 16.
  • a first current limiting resistor 34 is connected between the electrode 16 and the electrode 17.
  • electrodes 52 to 58 are formed on the control substrate 50. Between these electrodes, circuit elements such as second current limiting resistors 62 and 64, diodes 80 and 82, and a capacitor 84 are connected.
  • a second current limiting resistor 62 is connected between the electrode 52 and the electrode 53.
  • a diode 80 is connected between the electrode 53 and the electrode 54.
  • a capacitor 84 is connected between the electrode 55 and the electrode 56.
  • a second current limiting resistor 64 is connected between the electrode 56 and the electrode 57.
  • a diode 82 is connected between the electrode 57 and the electrode 58.
  • the electrode 12 of the optical semiconductor mounting substrate 10 and the electrode 52 of the control substrate 50 are connected by connection means 42.
  • the electrode 15 of the optical semiconductor mounting board 10 and the electrode 55 of the control board 50 are connected by the connecting means 44
  • the electrode 17 of the optical semiconductor mounting board 10 and the electrode 56 of the control board 50 are connected by the connecting means 46. It is connected.
  • the lighting circuit AG is formed between the power supply terminal 72 and the power supply terminal 74
  • the lighting circuit BG is formed between the power supply terminal 74 and the power supply terminal 76.
  • the lighting circuit AG is a lighting circuit for a vehicle control lamp (stoplight), and the lighting circuit BG is a lighting circuit for a taillight.
  • the lighting circuits AG light the four semiconductor light emitting elements 18 connected in two series and two in parallel at, for example, 6.4 volts and 200 milliamperes. That is, in the lighting circuit BG, each semiconductor light emitting element 18 is lit at VF (forward voltage) 3.2 volts and IF (forward current) 100 mA.
  • the lighting circuit BG lights one semiconductor light emitting element 18 with, for example, VF 3 volts and IF 20 milliamperes.
  • the total current limiting resistance of the circuit AG is 35.5 ohms
  • the total current limiting resistance of the circuit B is 525 ohms. That is, the value of the current limiting resistor differs by 10 times or more between the circuit AG and the circuit BG.
  • FIG. 6A is a schematic plan view showing an optical semiconductor light source of a comparative example
  • FIG. 6B is an equivalent circuit diagram thereof.
  • a semiconductor light emitting device 818 a semiconductor light emitting device 818, current limiting resistors 832 and 834, and diodes 880 and 882 are mounted on a substrate 810 having a high thermal conductivity.
  • the diode 880, the current limiting resistor 832, and the four semiconductor light emitting elements 818 constitute a lighting circuit AG.
  • the diode 882, the current limiting resistor 834, and one semiconductor light emitting element 818 constitute a lighting circuit BG.
  • the substrate 810 since all circuit elements are first mounted on the substrate 810 having high thermal conductivity, the substrate 810 has a large area and costs increase. Since all the current limiting resistors are mounted on the same substrate 810 as the semiconductor light emitting device 818, the temperature of the semiconductor light emitting device 818 is likely to rise due to the heat released from the current limiting resistor, resulting in a decrease in light emission efficiency and a decrease in lifetime. Deterioration is likely to occur.
  • the current limiting resistors 832 and 834 of the circuit AG and the circuit BG are both configured by printing resistors, as described above, the value of the current limiting resistor differs by 10 times or more for each circuit. Therefore, the sizes of the resistors are greatly different from each other. As a result, the arrangement of elements on the substrate 810 becomes non-uniform or the area of the substrate 810 increases.
  • the comparative example it is necessary to change the resistance material in order to make the current limiting resistors 832 and 834 formed of printing resistors and to have the same size. That is, it is necessary to use a resistive material having a resistivity for the current limiting resistor 832 and to use a high-resistance resistive material for the current limiting resistor 834.
  • the second current limiting resistors 62 and 64 mounted on the control board 50 have a current limiting action. Part of it can be transferred. That is, for the current limiting resistors 62 and 64, surface mount type resistance elements having appropriate resistance values can be used. As a result, the resistance values of the first current limiting resistors 32 and 34 are made closer by reducing the size of the first current limiting resistors 32 and 34 and adjusting the resistance values of the second current limiting resistors 62 and 64. be able to. As a result, even when the current limiting resistors 32 and 34 are formed by printing resistors, they can be formed by one printing using the same resistance material, so that the cost can be suppressed.
  • the first and second current limiting resistors 32 and 34 are trimmed with a laser or the like, so that variations in electrical and optical characteristics of the light emitting unit 20 can be adjusted.
  • FIG. 7A is a schematic perspective view showing the vicinity of the connection means 48 in the optical semiconductor light source 170 in the vehicle lighting device according to the second embodiment in an enlarged manner
  • FIG. 7 (a) is a schematic cross-sectional view taken along one-dot chain line AA.
  • the connection means 48 is fixed to the reflector 22 of the light emitting unit 20 and extends to the lower side and the side of the reflector 22, respectively. Below the reflector 22, the connection means 48 is connected to an electrode (not shown) formed on the optical semiconductor mounting substrate 10. On the side of the reflector 22, the connection means 48 is connected to an electrode (not shown) formed on the control board 50.
  • the connecting means 48 can be formed integrally with the reflector 22 and fixed by forming the reflector 22 from resin and insert-molding it in the resin. Alternatively, the connecting means 48 may be fitted to the reflector 22 or fixed by driving.
  • the number of parts can be reduced, the assembly process can be simplified, the structure is small and simple, and the mechanical strength and reliability can be improved.
  • the connection means that is durable against vibration, temperature change, and the like, and to realize a small and highly reliable vehicular lighting device.
  • FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B are a schematic perspective view and a side view respectively showing other specific examples of the optical semiconductor light source according to the present embodiment. is there.
  • the optical semiconductor light sources 180 and 190 shown in FIGS. 8A, 8B, 9A, and 9B the light emitting unit 20 is mounted on the optical semiconductor mounting substrate 10. Has been.
  • the connecting means 48 is fixed to the reflector 22 of the light emitting unit 20.
  • the connection means 48 connects the optical semiconductor mounting substrate 10 and the control substrate 50. That is, the connection means 48 is appropriately connected to an electrode pattern, a current limiting resistor (not shown), etc. formed on the semiconductor light emitting element 18 and the optical semiconductor mounting substrate 10. Then, the connecting means 48 extends toward the outside of the optical semiconductor mounting substrate 10 and is connected to the electrodes formed on the control substrate 50.
  • connection means 48 in this specific example may be any material that is conductive and has a predetermined mechanical strength.
  • the optical semiconductor mounting substrate 10 and the control substrate 50 are arranged on substantially the same plane, and the connection means 48 is extended in the horizontal direction so as to extend the control substrate. 50 may be connected.
  • the optical semiconductor mounting substrate 10 and the control substrate 50 are arranged vertically, and the connection means 48 extends downward to connect to the control substrate 50. May be.
  • FIGS. 10A to 10C are schematic views showing an optical semiconductor light source according to the third embodiment. These figures represent the first heat sink 300.
  • FIG. 10A is a schematic plan view of the first heat sink 300
  • FIG. 10B is a schematic side view of the first heat sink 300.
  • FIG. 10C is a schematic cross-sectional view taken along one-dot chain line BB in FIG.
  • the first heat sink 300 shown in FIGS. 10A to 10C corresponds to the first heat sink 300 described above with reference to FIGS. 1, 2A, and 2B.
  • the first heat sink 300 has the first mounting surface 320 on which the optical semiconductor mounting substrate 10 is mounted and the control substrate 50 mounted on the upper surface thereof.
  • a non-mounting surface 340 on which the optical semiconductor mounting substrate 10 and the control substrate 50 are not mounted is provided on the opposite side of the second mounting surface 330 via the first mounting surface 320.
  • the upper surface of the first heat sink 300 in contact with the optical semiconductor mounting substrate 10 is higher than the upper surface of the first heat sink 300 in contact with the control substrate 50. Even higher. That is, among the upper surfaces of the first heat sink 300, the first mounting surface 320 on which the optical semiconductor mounting substrate 10 is mounted is higher than the second mounting surface 330 on which the control substrate 50 is mounted, and between these mounting surfaces. Has a step. That is, the optical semiconductor mounting substrate 10 is kept away from the heat dissipation path of the control substrate 50. By doing so, it is possible to suppress the heat released from the control substrate 50 from flowing into the optical semiconductor mounting substrate 10. In other words, the optical semiconductor mounting substrate 10 is not easily affected by heat radiation from the control substrate 50.
  • the optical semiconductor mounting substrate 10 is arranged higher than the control substrate 50, the position of the optical semiconductor mounting substrate 10 can be arbitrarily set regardless of the position of the control substrate 50, so that the degree of freedom of light source design is increased. .
  • the non-mounting surface 340 is desirably set to be substantially the same as the first mounting surface 320 or higher than the first mounting surface 320. With this configuration, heat generated in the optical semiconductor mounting substrate 10 is conducted to the first mounting surface 320 and further easily conducted in the direction of the non-mounting surface 340. Heat conduction can be promoted.
  • FIGS. 11A to 11B are schematic views showing an optical semiconductor light source according to the fourth embodiment. These drawings show modifications of the first heat sink 300.
  • FIG. 11A is a schematic plan view of the first heat sink 300
  • FIG. 11B is a schematic side view of the first heat sink 300.
  • FIG. 11C is a schematic cross-sectional view taken along one-dot chain line CC in FIG.
  • FIG. 11D is a schematic cross-sectional view of another example taken along one-dot chain line CC in FIG.
  • the first heat sink 300 shown in FIGS. 11A to 11C corresponds to the first heat sink 300 described above with reference to FIGS. 1, 2A, and 2B.
  • a guide 350 is provided between the first mounting surface 320 and the second mounting surface 330 to guide the optical semiconductor mounting substrate 10 and the control substrate 50 to predetermined positions.
  • the guide 350 can be formed in a convex shape, for example.
  • the convex guide 350 is brought into contact with the side surface of the optical semiconductor mounting substrate 10 or the control substrate 50, whereby the positions of the optical semiconductor mounting substrate 10 and the control substrate 50 can be determined.
  • the present embodiment is not limited to this.
  • the first mounting surface 320 is not limited to the portion with which the optical semiconductor mounting substrate 10 abuts. It is desirable that the height of the non-mounting surface 340 is set to be substantially the same height as the second mounting surface 320 or higher than the first mounting surface 320. By setting it as such a structure, the heat conduction from the optical semiconductor mounting board
  • the former may be lower than the latter.
  • the surface orthogonal to the first mounting surface 320 serves as the guide 350.
  • FIG. 12 is a perspective assembly view of the vehicular lighting device according to the fifth embodiment.
  • the vehicular illumination device 100 includes the optical semiconductor light source 151 and the cover 700 that covers the light semiconductor light source 151.
  • the optical semiconductor light source 151 according to the present embodiment includes, for example, FIG. 1, FIG. 2 (a), FIG. 2 (b), FIG. 3 (a), FIG. 3 (b), FIG. ) And FIG. 4C, the configuration described with respect to the optical semiconductor light source 150 can be provided. That is, as illustrated in FIG. 12, the optical semiconductor light source 151 according to the present embodiment includes an optical semiconductor mounting substrate 10, a plurality of semiconductor light emitting elements 18 provided on the optical semiconductor mounting substrate 10, and an optical semiconductor mounting. And a reflector 22 provided on the substrate 10 and surrounding the plurality of semiconductor light emitting elements 18. Also in this example, the light emitting unit 20 includes the semiconductor light emitting element 18 and the reflector 22.
  • FIG. 13A and FIG. 13B are schematic views illustrating the light emitting unit of the optical semiconductor light source according to the fifth embodiment.
  • FIG. 13A is a schematic plan view of the optical semiconductor light source 171 and
  • FIG. 13B is an equivalent circuit diagram thereof.
  • the light emitting unit 20 includes a reflector 22 and a plurality of semiconductor light emitting elements 18 such as LEDs provided therein.
  • the main surface on which the semiconductor light emitting element 18 is mounted may be a part of the reflector 22 or the surface of the optical semiconductor mounting substrate 10.
  • the light emitting unit 20 is mounted on the optical semiconductor mounting substrate 10 and appropriately mounted on the heat sink 300.
  • the electrode 14 and the electrode 12 having a shape surrounding the tip thereof are provided at the bottom of the space surrounded by the reflector 22.
  • Four semiconductor light emitting elements 18 are mounted on the electrode 12.
  • a wire 200 is connected to the tip of the electrode 14 from each of the semiconductor light emitting elements 18. As can be seen from FIG. 13B, the four semiconductor light emitting elements 18 are connected in parallel.
  • the distance from the center of the space surrounded by the reflector 22 to each of the plurality of semiconductor light emitting elements 18 is larger than the distance from each of the plurality of semiconductor light emitting elements 18 to the reflector 22. That is, the plurality of semiconductor light emitting elements 18 are arranged near the reflector 22, not near the center, in the space surrounded by the reflector 22.
  • FIG. 14 is a schematic plan view showing the arrangement of the semiconductor light emitting elements of the optical semiconductor light source according to the fifth embodiment.
  • the plurality of semiconductor light emitting elements 18 are arranged equidistant from the reflector 22 (distance d2 in FIG. 14).
  • a distance d1 from the center C of the space surrounded by the reflector 22 to each of the semiconductor light emitting elements 18 is larger than a distance d2 from each of the semiconductor light emitting elements 18 to the reflector 22.
  • the plurality of semiconductor light emitting elements 18 arranged in a limited region in the reflector 22 can be kept away from each other. That is, by disposing and arranging a plurality of semiconductor light emitting elements in a limited space, it is possible to make it less susceptible to the influence of heat emitted from each semiconductor light emitting element 18. Further, by moving the respective semiconductor light emitting elements 18 away from each other, it is possible to disperse the heat sources, prevent heat concentration, and promote heat dissipation from the respective semiconductor light emitting elements 18 to the first heat sink 300.
  • the light emitted from the semiconductor light emitting element 18 can be efficiently reflected by the reflector 22 and taken out to the outside. That is, the ratio of the light reflected by the reflector 22 among the light emitted from the semiconductor light emitting element 18 can be increased.
  • the light reflectance of the reflector 22 is usually higher than the light reflectance on the mounting surface of the semiconductor light emitting element 18 (the bottom surface of the space surrounded by the reflector 22). Therefore, if the proportion of the light reflected by the reflector 22 is increased, the light extraction efficiency can be increased accordingly.
  • the planar shape of the reflector 22 is an ellipse or a flat circle.
  • the intersection point of the major axis and the minor axis of the ellipse or flat circle can be the center C of the space surrounded by the reflector 22.
  • the distance d1 from the center C of the space surrounded by the reflector 22 to each of the semiconductor light emitting elements 18 in both the long axis direction and the short axis direction is from each of the semiconductor light emitting elements 18 to the reflector 22. Is greater than the distance d2.
  • the planar shape of the reflector 22 is a square.
  • the intersection of diagonal lines can be the center C of the space surrounded by the reflector 22.
  • the distance d2 from each of the reflectors 22 is larger than the distance d2.
  • a plurality of semiconductor light emitting elements are dispersedly arranged in a limited space in the reflector 22, and the heat source is dispersed.
  • heat concentration can be prevented, and heat radiation from each semiconductor light emitting element 18 to the first heat sink 300 can be promoted.
  • the wire 200 connected to the semiconductor light emitting element 18 is surrounded by the reflector 22 instead of the reflector 22 as viewed from the semiconductor light emitting element 18. Wired in the direction of the center of the space. By doing so, the region where the wire 200 is bonded can be used efficiently.
  • the wires 200 are respectively connected from the four semiconductor light emitting elements 18 provided in the periphery to one electrode 14 provided in the center. Can connect. That is, since it is not necessary to form four electrode pads for the four semiconductor light emitting elements 18 and the wire 200 can be connected to one electrode 14, it is necessary to secure an extra area for wire bonding. Disappear.
  • the wire 200 in the direction of the center of the space surrounded by the reflector 22 instead of the reflector 22 as viewed from the semiconductor light emitting element 18, the light emitted from the semiconductor light emitting element 18 to the reflector 22 adjacent to the light is emitted.
  • light shielding and scattering by the wire 200 can be eliminated, and efficient reflection by the reflector 22 can be further promoted. That is, by not providing the wire 200 in the path of light emitted toward the reflector 22 adjacent to each semiconductor light emitting element 18, it is possible to prevent light from being blocked or scattered on this path.
  • FIGS. 17A and 17B are schematic views showing a semiconductor light source according to the sixth embodiment.
  • FIG. 17A is a schematic plan view of the optical semiconductor light source 181
  • FIG. 17B is an equivalent circuit diagram thereof.
  • the optical semiconductor light source 181 of the present embodiment also includes a light emitting unit 20 including a reflector 22 and a plurality of semiconductor light emitting elements 18A and 18B such as LEDs provided therein.
  • the light emitting unit 20 is mounted on the optical semiconductor mounting substrate 10 and appropriately mounted on the heat sink 300.
  • the semiconductor light emitting element 18A is arranged closer to the reflector 22 than the center thereof in the first region, that is, the space surrounded by the reflector 22.
  • the semiconductor light emitting element 18B is disposed in the second region, that is, near the center of the space surrounded by the reflector 22.
  • the number of the semiconductor light emitting elements 18B arranged in the second region is described as a plurality of examples, but is not limited to the number. For example, the number of the semiconductor light emitting elements 18B is one, and the center of the space surrounded by the reflector 22 is one. You may arrange in.
  • the distance from the center of the space surrounded by the reflector 22 to the semiconductor light emitting element 18A arranged in the first region is larger than the distance from each of the semiconductor light emitting elements 18A to the reflector 22. This is the same as the relationship between the distance d1 and the distance d2 described above with reference to FIGS.
  • concentration of heat can be suppressed by dispersing and arranging the semiconductor light emitting elements 18A in the first region, that is, around the semiconductor light emitting elements 18B, as shown in FIG. Can also be arranged.
  • the semiconductor light emitting element 18A and the semiconductor light emitting element 18B adjacent thereto are connected by a wire 200. That is, adjacent semiconductor light emitting element 18A and semiconductor light emitting element 18B are connected in series.
  • the number of the wires 200 can be reduced, and a compact arrangement and efficient electrical connection can be realized.
  • FIG. 18 is a schematic plan view illustrating another specific example of the arrangement of the semiconductor light emitting elements in the sixth embodiment.
  • four semiconductor light emitting elements 18 ⁇ / b> A and four semiconductor light emitting elements 18 ⁇ / b> B are mounted in the reflector 22.
  • the semiconductor light emitting element 18A is an LED having an N-up type, that is, an n-type semiconductor on the upper side.
  • the semiconductor light emitting element 18B is an LED having a P-up type, that is, a p-type semiconductor on the upper side. That is, the upper side electrode of the semiconductor light emitting device 18A is a cathode electrode, and the upper side electrode of the semiconductor light emitting device 18B is an anode electrode.
  • FIGS. 19A to 19C are schematic views showing an optical semiconductor light source according to the sixth embodiment. These drawings show specific examples of connecting semiconductor light emitting elements in series in this way.
  • FIG. 19A is a schematic plan view of an optical semiconductor light source
  • FIG. 19B is a partially enlarged view thereof
  • FIG. 19C is an equivalent circuit diagram thereof.
  • the optical semiconductor light source 185 of the present embodiment also has a light emitting unit 20 having a reflector 22 and a plurality of semiconductor light emitting elements 18A, 18B, 18C such as LEDs provided therein.
  • the light emitting unit 20 is mounted on the optical semiconductor mounting substrate 10 and appropriately mounted on the heat sink 300.
  • the four semiconductor light emitting elements 18A and the four semiconductor light emitting elements 18B arranged in the light emitting unit 20 are arranged closer to the reflector 22 than the center in the space surrounded by the reflector 22.
  • the four semiconductor light emitting elements 18 ⁇ / b> C are arranged near the center of the space surrounded by the reflector 22.
  • Dispersing and arranging the semiconductor light emitting elements 18A and 18B in the periphery can suppress heat concentration, and heat dissipation is ensured even if the semiconductor light emitting element 18C is arranged near the center.
  • the semiconductor light emitting element 18A is mounted on the electrode 15. That is, the lower electrode of the semiconductor light emitting element 18A is connected to the electrode 15.
  • the semiconductor light emitting element 18B is mounted on the electrode 16. That is, the lower electrode of the semiconductor light emitting element 18B is connected to the electrode 16.
  • the semiconductor light emitting element 18C is mounted on the electrode 17. That is, the lower electrode of the semiconductor light emitting element 18C is connected to the electrode 17.
  • the upper electrodes of the four semiconductor light emitting elements 18A and the adjacent electrodes 17 are connected by wires 200.
  • the upper electrode of the semiconductor light emitting element 18C and the upper electrode of the semiconductor light emitting element 18B are connected by wires 200, respectively.
  • This equivalent circuit is as shown in FIG. That is, the four semiconductor light emitting elements 18A are connected in parallel.
  • the semiconductor light emitting element 18B and the semiconductor light emitting element 18C are connected in series one by one, and four series circuits are connected in parallel.
  • Such a connection relationship includes, for example, using an LED having a P-up type, that is, a p-type semiconductor on the upper side as the semiconductor light-emitting element 18A and the semiconductor light-emitting element 18C, and an N-up type, that is, an n-type semiconductor, on the upper side
  • an LED having a P-up type, that is, a p-type semiconductor on the upper side as the semiconductor light-emitting element 18A and the semiconductor light-emitting element 18C
  • an N-up type that is, an n-type semiconductor
  • the optical semiconductor light source 185 of the present embodiment is used for a tail lamp of a vehicle, a taillight (taillight) and a control light (stoplight) can be displayed by switching a drive current. That is, the tail lamp may be lit with a small current, and the control lamp may be lit with a large current. That is, it is advantageous in that the tail lamp and the control lamp can be lit using the same semiconductor light emitting element, and it is not necessary to provide separate semiconductor light emitting elements and lighting circuits.
  • FIG. 20 is a schematic plan view illustrating another specific example of the arrangement of the semiconductor light emitting elements in the sixth embodiment.
  • four semiconductor light emitting elements 18 ⁇ / b> A and four semiconductor light emitting elements 18 ⁇ / b> B are mounted in the reflector 22.
  • the semiconductor light emitting element 18A and the semiconductor light emitting element 18B are semiconductor elements having the same polarity. That is, the semiconductor light emitting element 18A and the semiconductor light emitting element 18B are all N-up type or all P-up type.
  • the upper electrode of the adjacent semiconductor light emitting element 18A and the upper electrode of the semiconductor light emitting element 18B are connected by a wire 200, and further connected to the adjacent electrode 17 by a wire 200. Then, a parallel circuit can be formed by commonly connecting the lower electrode of the adjacent semiconductor light emitting element 18A and the lower electrode of the semiconductor light emitting element 18B. That is, the adjacent semiconductor light emitting element 18A and semiconductor light emitting element 18B can be connected in parallel.
  • FIG. 21A to FIG. 21C are schematic views illustrating an optical semiconductor light source according to the seventh embodiment.
  • FIG. 21A is a schematic plan view of an optical semiconductor light source
  • FIG. 21B is a schematic sectional view thereof
  • FIG. 21C is a partially enlarged sectional view thereof.
  • the optical semiconductor light source 191 of the present embodiment also includes a light emitting unit 20 including a reflector 22 and a plurality of semiconductor light emitting elements 18 such as LEDs provided therein.
  • the semiconductor light emitting element 18 is disposed closer to the reflector 22 than the center of the space surrounded by the reflector 22.
  • the light emitting unit 20 is mounted on the optical semiconductor mounting substrate 10 and mounted on the first heat sink 300.
  • the plurality of semiconductor light emitting elements 18 are arranged near the reflector 22 instead of near the center in the space surrounded by the reflector 22. That is, as shown in FIG. 21B, the distance d2 between the center of the semiconductor light emitting element 18 and the lower end of the reflector 22 is the distance between the center C of the space surrounded by the reflector 22 and the center of the semiconductor light emitting element 18. smaller than d1.
  • the lower end of the reflector 22 is a position on the mounting surface of the semiconductor light emitting element 18.
  • Each of the plurality of semiconductor light emitting elements 18 is individually sealed with a resin 25 in a dome shape.
  • the main surface on which the semiconductor light emitting element 18 is mounted may be a part of the reflector 22 or the surface of the optical semiconductor mounting substrate 10.
  • FIG. 22A to FIG. 22C are schematic views illustrating an optical semiconductor light source as a comparative example according to the seventh embodiment.
  • 22A is a plan view of the optical semiconductor light source
  • FIG. 22B is a sectional view thereof
  • FIG. 22C is a partially enlarged sectional view thereof.
  • the semiconductor light emitting element 18 is not individually sealed with the resin 25. That is, the plurality of semiconductor light emitting elements 18 are integrally sealed with the resin 25 inside the reflector 22.
  • the light extraction efficiency is lowered. That is, a part of the light emitted from the semiconductor light emitting element 18 is taken out from the resin 25 (for example, a sealing resin) as indicated by an arrow T. However, another part of the light emitted from the semiconductor light emitting element 18 is totally reflected on the surface of the resin 25 because the incident angle ⁇ is small, and returns to the resin 25 as indicated by the arrow R. End up. As a result, the light extraction efficiency decreases.
  • the resin 25 for example, a sealing resin
  • the semiconductor light emitting element 18 is disposed close to the reflector 22 and the wire 200 connected to the semiconductor light emitting element 18 is connected to the semiconductor light emitting element 18. It is included in the scope of the present embodiment in that it is wired not in the reflector 22 side but in the direction of the central axis C of the space surrounded by the reflector 22.
  • the light emitted in the direction of the central axis C is indicated by an arrow R in FIGS. 22B and 22C. As shown, it is incident on the surface of the resin 25 at a shallow angle. When the light enters the surface of the resin 25 at such a shallow angle, it may be reflected and not taken out to the outside.
  • the incident angle ⁇ of the light emitted from the semiconductor light emitting element 18 on the surface of the resin 25 is increased by individually sealing each of the plurality of semiconductor light emitting elements 18 with the resin 25 in a dome shape. be able to.
  • the light is extracted from the resin 25 to the outside, and the light extraction efficiency can be increased.
  • a part of the resin 25 that seals each of the plurality of semiconductor light emitting elements 18 may be connected to each other.
  • the resin 25 extends thinly between the two semiconductor light emitting elements 18 and seals each semiconductor light emitting element 18. It may be connected to the resin 25 to be stopped. If the upper surface of the thin resin 25 layer extending between the two semiconductor light emitting elements 18 is lower than the position of the light emitting layer (or active layer) included in the semiconductor light emitting element 18, the semiconductor light emitting element 18 is laterally moved. This is because there is little influence that the emitted light enters the thin resin 25 layer and the light extraction efficiency decreases.
  • the wire 200 connected to the semiconductor light emitting element 18 is wired from the semiconductor light emitting element 18 in the direction of the central axis C of the space surrounded by the reflector 22 instead of the reflector 22 side. ing.
  • a region for connecting the wire 200 can be formed in the center of the space surrounded by the reflector 22.
  • the wire 200 is not provided in the path of light emitted from the respective semiconductor light emitting elements 18 toward the reflector 22 in the vicinity. By doing so, light shielding and scattering by the wire 200 can be eliminated, and efficient reflection by the reflector 22 can be further promoted.
  • the light extraction efficiency can be increased in this way, the number of semiconductor light emitting elements 18 can be reduced. As a result, the optical semiconductor light source can be reduced in size. Furthermore, if the light extraction efficiency can be increased, the drive current supplied to the semiconductor light emitting element 18 can be reduced. As a result, it is possible to reduce power consumption, suppress heat generation of the semiconductor light emitting element 18, and further improve the light emission efficiency and extend the life.
  • phosphors may be dispersed in the resin 25 to extract light having a desired wavelength.
  • FIG. 23A and FIG. 23B are diagrams showing a vehicular lighting device 100 according to an eighth embodiment.
  • FIG. 23A is a schematic perspective view of the vehicular illumination device according to the present embodiment as seen from the front side
  • FIG. 23B is a schematic view as seen from the back side.
  • a second heat sink (second heat radiating member) 310 that engages with the first heat sink 300 is provided outside the first heat sink 300.
  • a material having a higher thermal emissivity than that of the first heat sink 300 as the material of the second heat sink 310, heat dissipation from the first heat sink 300 can be promoted.
  • the first heat sink 300 is formed of aluminum and the second heat sink 310 is formed of a resin such as PBT (Poly Buthylene Terephthalete)
  • the heat released from the light-emitting portion is the first heat sink 300.
  • the heat sink is efficiently transmitted to the second heat sink 310 and is efficiently discharged from the second heat sink 310 to the outside.
  • the second heat sink may be a resin in which a filler that enhances thermal conductivity is mixed with a resin such as PBT.
  • the second heat sink 310 may be configured by forming a material having a high thermal emissivity on the surface of the first heat sink 300.
  • the second heat sink 310 may be an aluminum oxide layer formed by oxidizing the surface of the first heat sink 300 made of aluminum.
  • the second heat sink 310 may be an alumite (trademark) layer formed by anodizing the surface of the first heat sink 300 made of aluminum.
  • FIG. 24 is a schematic cross-sectional view of a lamp mounted with the vehicle lighting device 100 of the eighth embodiment.
  • the lamp 600 includes a reflector 620 and a lens 650.
  • the vehicle lighting device 100 of this embodiment is inserted into an opening 640 provided at a position facing the reflector 620 and the lens 650.
  • the light emitted from the vehicle lighting device 100 is reflected directly or by the reflector 620 and emitted to the outside via the lens 650.
  • This lamp 600 can be provided, for example, in a taillight part of an automobile.
  • a portion in front of the flange portion 304 formed on the first heat sink 300 is surrounded by the reflector 620 and the lens 650.
  • the vehicle lighting device 100 and the reflector 620 can be engaged in a watertight manner. If necessary, a seal 660 made of a material such as rubber or silicone may be provided between the vehicle lighting device 100 and the reflector 620.
  • the vehicle lighting device 100 may have a lamp engaging convex portion 360 as shown in FIG. 23A, for example, and the engagement with the lamp 600 may be further strengthened as shown in FIG.
  • An engaging recess (not shown) corresponding to the lamp engaging protrusion 360 may be provided in the lamp 600.
  • the lamp 600 may be provided with engagement means (not shown) made of an elastic body, for example. Means for further strengthening the engagement between the vehicle lighting device 100 and the lamp 600 can be provided.
  • any optical semiconductor light source described with respect to the first to seventh embodiments can be used.
  • FIG. 25 is a perspective assembly view of the vehicle lighting device according to the ninth embodiment.
  • FIG. 26A is a schematic perspective view of the vehicle lighting device according to the present embodiment as seen from the front side
  • FIG. 26B is a schematic view as seen from the back side.
  • the vehicle lighting device 100 includes the optical semiconductor light source 152 and the cover 700 that covers the light semiconductor light source 152.
  • the optical semiconductor light source 152 according to the present embodiment can have the configuration already described with respect to the optical semiconductor light source 150, for example. That is, as illustrated in FIG.
  • the optical semiconductor light source 152 includes an optical semiconductor mounting substrate 10, a plurality of semiconductor light emitting elements 18 provided on the optical semiconductor mounting substrate 10, and an optical semiconductor mounting. And a reflector 22 provided on the substrate 10 and surrounding the plurality of semiconductor light emitting elements 18. Also in this example, the light emitting unit 20 includes the semiconductor light emitting element 18 and the reflector 22.
  • the optical semiconductor light source 152 includes a first heat sink (first heat radiating member) 300, an optical semiconductor mounting substrate 10 mounted thereon, and a control substrate 50.
  • the first heat sink 300 is provided with an engaging convex portion 302 that engages with the cover 700, a flange portion 304, a plurality of heat radiation fins 403, and a connector insertion portion 404.
  • the control board 50 is provided with power supply terminals 72, 74, and 76.
  • the power supply terminals 72, 74, and 76 extend in a connector insertion portion 404 provided in the first heat sink 300, are connected to a connector 720 inserted from the rear of the first heat sink 300, and are supplied with power from the outside.
  • the power feeding terminals 72, 74, and 76 are not limited to this example, and for example, two power feeding terminals may be configured.
  • the number of power supply terminals is not limited as long as the power supply terminals are provided so that the optical semiconductor light source 152 has desired characteristics.
  • the cover 700 has an engagement opening 702 that engages with an engagement protrusion 302 provided on the first heat sink 300. In a state where the engagement opening 702 and the engagement convex portion 302 are engaged, the cover 700 is engaged with the first heat sink 300.
  • FIG. 27A is a schematic perspective view illustrating the relationship among the first heat sink 300, the optical semiconductor mounting substrate 10, and the control substrate 50
  • FIG. 27B is a cross-sectional perspective view thereof.
  • 28 (a) is a schematic plan view corresponding to FIG. 27 (a)
  • FIG. 28 (b) is a schematic plan view showing a state in which the control board 50 is removed
  • FIG. FIG. 29 is a schematic perspective view corresponding to FIG.
  • the first heat sink 300 has a mounting surface 405 for mounting the optical semiconductor mounting substrate 10 and a mounting surface 406 for mounting the control substrate 50 on its upper surface.
  • a heat radiating fin 403 is formed on the back side of the first heat sink 300.
  • the first heat sink 300 from aluminum, the heat released from the optical semiconductor mounting substrate 10 can be efficiently conducted through the first heat sink 300 and efficiently transmitted to the outside through the radiation fins 403. Can be released.
  • a part of the control board 50 is the first heat sink.
  • the other part protrudes outside the first heat sink 300 and covers the connector insertion portion 404 formed on the first heat sink 300.
  • the circuit elements provided on the control substrate 50 are resistors, diodes, capacitors, transistors, and the like that constitute the drive circuit of the semiconductor light emitting element 18 mounted on the optical semiconductor mounting substrate 10, and all of them have a small heat dissipation, The fluctuation of the characteristics is also small with respect to the rise of. For this reason, even if the control board 50 is arranged so as to protrude from the first heat sink 300, the operation of the circuit elements provided on the control board 50 is not adversely affected.
  • the control board 50 By extending the control board 50 from the first heat sink 300 so as to cover the connector insertion portion 404 of the first heat sink 300, the power supply terminals 72, 74, and 76 are extended into the connector insertion portion 404.
  • the connector 720 can be inserted and connected from the back side of the first heat sink 300.
  • the connector 720 is a waterproof connector around the connector insertion portion 404, it is possible to prevent moisture from entering from the connector insertion portion 404. That is, the vehicular illumination device 100 having a waterproof structure can be provided on the back surface side (the first heat sink 300 side).
  • FIGS. 29 (a) to 29 (d) are schematic views showing other specific examples of the vehicular illumination device of the ninth embodiment.
  • FIG. 29A is a schematic perspective view of the first heat sink 300.
  • FIG. 29B, FIG. 29C, and FIG. 29D are schematic perspective views showing specific examples of the radiation fins 403, and are schematic views of the first heat sink 300 viewed from the back side.
  • the connector insertion portion 404 is provided in the first heat sink 300, and the power supply terminals 72, 74, and 76 of the control board 50 are inserted.
  • the shape of the heat dissipating fin 403 includes a heat conducting portion 403A that spreads in a plurality of directions from the center of the first heat sink 300, as shown in FIG.
  • a heat conducting portion 403A that spreads in a plurality of directions from the center of the first heat sink 300, as shown in FIG.
  • a plurality of heat radiation portions 403B branched from the heat conduction portions 403A provided in the heat radiation fins 403 of FIG. 29 (b) may be provided.
  • the heat radiation unit 403 ⁇ / b> B is not limited to those connected to each other.
  • the heat radiating portion 403B may be configured in pieces, and the form is limited as long as the heat radiating portion 403B is branched from the heat conducting portion 403A. Not.
  • FIG. 30A is a schematic perspective view showing a specific example in which a second heat sink (second heat radiating member) 310 is provided outside the first heat sink 300
  • FIG. 30B and FIG. Are schematic views of the second heat sink 310 as viewed from the side where the first heat sink 300 is accommodated.
  • the second heat sink 310 has an insertion hole 417 that accommodates the first heat sink 300.
  • the first heat sink 300 and the second heat sink 310 are in close contact with each other and have good thermal contact.
  • the second heat sink 310 has a connector insertion portion 414.
  • the power supply terminals 72, 74, and 76 provided on the control board 50 are connected to the connector insertion portion 404 provided to the first heat sink 300 and the connector insertion portion 414 provided to the second heat sink 310. It is connected to a connector 720 inserted from the rear of the second heat sink 310 and supplied with power from the outside.
  • the connector insertion portion 414 may be provided only in the second heat sink 310 so that only the power supply terminals 72, 74, and 76 pass through the first heat sink 300.
  • the first heat sink 300 is formed of aluminum and the second heat sink 310 is formed of a resin such as PBT (Poly Buthylene Terephthalete) or a resin mixed with a filler that enhances thermal conductivity, the light is emitted from the light emitting portion. The generated heat is efficiently transmitted from the first heat sink 300 to the second heat sink 310 and is released to the outside.
  • PBT Poly Buthylene Terephthalete
  • the thermal emissivity of aluminum is as low as about 0.05 in the case of a mirror surface, and is only about 0.3 to 0.4 even in the case of a rough surface.
  • the thermal emissivity of a resin such as PBT is as high as 0.9 to 0.95. Therefore, the first heat sink 300 is formed of a metal such as aluminum and the second heat sink 310 is formed of a resin such as PBT, so that heat from the optical semiconductor mounting substrate 10 and the control substrate 50 is transferred to the first heat sink 300.
  • the second heat sink 310 can be efficiently discharged to the surrounding atmosphere.
  • the second heat sink 310 is provided with an insertion hole 417 for accommodating these heat radiation fins 403. That is, the heat radiation fins 403 of the first heat sink 300 are embedded in the second heat sink 310. From the viewpoint of waterproofing, it is desirable that the insertion hole 417 does not penetrate the second heat sink 310 and is terminated on the back surface side of the second heat sink 310.
  • the contact area between the first heat sink 300 and the second heat sink 310 is increased, and heat conduction from the first heat sink 300 to the second heat sink 310 can be promoted. As a result, heat radiation from the second heat sink 310 to the surrounding atmosphere can be promoted.
  • FIG. 31A is a schematic perspective view showing a specific example in which the surface area of the second heat sink 310 is increased
  • FIG. 31B is a sectional perspective view thereof
  • FIG. 31C is a second heat sink
  • FIG. 31D is a cross-sectional view taken along the alternate long and short dash line AA in FIG. 31A.
  • the first heat sink 300 has heat radiation fins 403 concentrically.
  • the second heat sink 310 may have a heat conducting portion 413A spreading in a plurality of directions from the center of the second heat sink 310 and a plurality of heat radiating portions 403B branched from the heat conducting portion 413A. . That is, as shown in FIG.
  • FIG. 31D which is a cross-sectional view taken along one-dot chain line AA in FIG. 31A
  • the heat dissipating fins 403 of the first heat sink 300 and the second The heat conducting portions 413A of the heat sink 310 are alternately present. In this way, the heat released from the optical semiconductor mounting substrate 10 is transmitted both in the radial direction and in the concentric direction, and heat dissipation to the outside via the second heat sink 310 can be promoted.
  • FIG. 32A is a schematic perspective view illustrating a specific example in which the volume of the first heat sink 300 is increased
  • FIG. 32B is a cross-sectional perspective view thereof.
  • the second heat sink 310 embedded in the back surface side of the first heat sink 300 can indirectly increase the emissivity of the first heat sink 300. As a result, it can be efficiently discharged from the wall surface of the second heat sink 310 to the outside. Thus, even if the 1st heat sink 300 is a simple block structure, heat dissipation can be improved.
  • FIG. 33A is a schematic perspective view showing a specific example in which the surface areas of the first heat sink 300 and the second heat sink 310 are increased
  • FIG. 33B is a cross-sectional perspective view thereof.
  • a trench 418 is formed between adjacent radiating fins 403 while covering each of the radiating fins 403.
  • the surface area of the second heat sink 310 can be increased.
  • the heat transferred through the heat radiation fin 403 can be efficiently released from the wall surface of the trench 418 to the outside.
  • the second heat sink 310 may be configured by forming a material having a high thermal emissivity on the surface of the first heat sink 300.
  • the second heat sink 310 may be formed by oxidizing the surface of the first heat sink 300 made of aluminum.
  • FIG. 34A is a schematic view of the vehicular illumination device according to the embodiment of the present invention as seen from the back side
  • FIG. 34B shows the vehicular illumination device of the comparative example according to the embodiment of the present invention. It is the schematic diagram seen from the back side.
  • a plurality of heat radiation fins 403 are formed on the back surface side of the vehicle lighting device 100. These radiating fins 403 are formed to extend in one direction (vertical direction in FIG. 34A).
  • the connector insertion portion 404 into which the connector 720 (see FIG. 25) is inserted includes a connector insertion hole 404A and a connector insertion wall 404B provided at the periphery of the connector insertion hole 404A.
  • the connector insertion hole 404A and the connector insertion wall 404B. Each have a rectangular shape. That is, the cross-sectional shape of the connector 720 (see FIG. 25) inserted into the connector insertion portion 404 is also rectangular.
  • the connector insertion portion 404 may be a square, a flat circle, an oval, or the like.
  • the shapes of the connector insertion portion 404 and the connector 720 are not limited to specific shapes.
  • the extending direction of the heat dissipating fins 403 and the direction of the long side of the connector insertion portion 404, that is, the connector 720 are parallel.
  • the direction of the long side of the connector insertion portion 404, that is, the connector 720 is along the extending direction of the heat radiation fin 403. That is, the extending direction of the radiation fin 403 and the direction of the long side of the connector insertion portion 404 (connector 720) are both in the vertical direction in FIG.
  • the extending direction of the heat dissipating fins 403 and the connector insertion portion 404 that is, the direction of the long side of the connector 720, are substantially perpendicular. That is, the extending direction of the heat dissipating fins 403 is the vertical direction in FIG. 34A, and the direction of the long side of the connector insertion portion 404 (connector 720) is the left-right direction in FIG.
  • the long side of the connector insertion portion 404 is parallel to the extending direction of the radiating fins 403.
  • the long side of the connector insertion hole 404A is not limited even when the connector insertion portion 404 is configured only by the connector insertion hole 404A. More preferably, it is parallel to the extending direction of the radiating fins 403.
  • FIG. 35A is a schematic view of the vehicular lighting device according to the twelfth embodiment as viewed from the back surface side
  • FIG. 35B is a schematic view of the vehicle illumination device as viewed from the right side.
  • a cable 722 as an electrical wiring extends from the connector 720 inserted into the connector insertion portion 404.
  • the cable 722 is connected to the connector 720 so as to extend in the long side direction of the connector 720, that is, upward in FIG. 35A. Yes.
  • the cable 722 By connecting the cable 722 in this way, the flow of air flowing through the gap between the heat radiation fins 403 is not hindered.
  • the cable 722 extends in the penetration direction of the connector insertion portion 404, that is, in the direction perpendicular to the paper surface in FIG. As is present, it may be connected to the connector 720. Alternatively, the cable 722 may be connected to the connector 720 so as to extend in a direction perpendicular to the extending direction of the radiation fins 403, that is, in the right direction in FIG. In any of these cases, the cable 722 does not hinder the flow of air flowing through the gaps between the radiation fins 403.
  • FIG. 36A is a schematic view of the vehicular lighting device 100 according to the thirteenth embodiment as viewed from the back surface side
  • FIG. 36B is a schematic view of the vehicle illumination device 100 as viewed from the right side.
  • the connector 720 is connected not to the back surface of the vehicle lighting device 100 but to the side surface. That is, the connector insertion portion 404 (see FIG. 26) is formed not on the back surface of the vehicle lighting device 100 but on the side surface, and the connector 720 is inserted into the connector insertion portion 404.
  • the heat radiation fins 403 are formed on almost the entire surface on the back surface side of the vehicle lighting device 100, and heat dissipation can be further promoted. Since the connector 720 and the cable 722 are not provided on the back side of the vehicular lighting device 100, the air flow generated around the radiating fin 403 is not obstructed.
  • the cable 722 is perpendicular to the extending direction of the connector insertion portion 404, that is, with respect to the paper surface in FIG. And may be connected to the connector 720 so as to extend in a vertical direction. Alternatively, the cable 722 may be connected to the connector 720 so as to extend in a direction perpendicular to the extending direction of the radiation fins 403, that is, in the right direction in FIG. In any of these cases, the cable 722 does not hinder the flow of air flowing through the gaps between the radiation fins 403.
  • the vehicle illumination device 100 according to the ninth to thirteenth embodiments can also be applied to the lamp described with reference to FIG.
  • the configuration in which the optical semiconductor mounting substrate 10 and the control substrate 50 are separated has been described.
  • the optical semiconductor mounting substrate 10 and the control substrate 50 are integrally formed.
  • the light emitting unit 20, the drive circuit 51, and the like may be mounted on a single substrate.
  • optical semiconductor light sources and vehicular illumination devices that can be implemented by those skilled in the art based on the above-described optical semiconductor light source and vehicular illumination device as embodiments of the present invention are also included in the present invention. As long as the gist is included, it belongs to the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 光半導体実装基板と、前記光半導体実装基板の上に設けられた複数の半導体発光素子と、前記光半導体実装基板の上に設けられ前記複数の半導体発光素子を囲むリフレクタと、を備えた光半導体光源が提供される。前記複数の半導体発光素子は、前記リフレクタから等距離に配置される。前記リフレクタにより囲まれた空間の中心から前記複数の半導体発光素子のそれぞれまでの距離は、前記複数の半導体発光素子のそれぞれから前記リフレクタまでの距離よりも大きい。

Description

光半導体光源及び車両用照明装置
 本発明の実施形態は、光半導体光源及び車両用照明装置に関する。
 発光ダイオード(Light Emitting Diode:LED)などの半導体発光素子を用いた光半導体光源は、白熱電球や冷陰極管、放電管などを用いた光源よりも消費電力を低減させたり長寿命化することが容易である。
 一例として、半導体発光素子を光源とした車両用エクステリア照明は、各自動車メーカーの高級車両を中心に採用が始まり、フロントコンビネーションライトやリアコンビネーションライトなどに用いられている。さらに、リアコンビネーションライトについては、いわゆるリッターカークラスや軽自動車などの普及車両にまで採用が拡大しており、着実に搭載車両が増えている状況である。
 半導体発光素子を採用する上で、設計面での重要な項目として、半導体発光素子の放熱設計が挙げられる。半導体発光素子は、素子自体の温度が高くなると発光効率が低下する特性を有する。したがって、自己温度上昇や、周囲部品の発熱による温度の影響をいかに軽減できるかが重要である。
 発熱を抑える手段として、半導体発光素子や電流制限抵抗などの発熱素子の実装間隔を広げて、隣接する素子間の熱影響を緩和させる手段や、半導体発光素子の駆動電流を下げ、必要な光量を半導体発光素子の使用数で補う手段などが挙げられる。
 しかし、これらの手段によると、光源自体が大きなものとなることから灯具デザインにより様々な制約が生じると共に、光源に汎用性が無く、灯具に対する一品一様の光源設計が必要となる。使用する基板材料の面積や、半導体発光素子の使用数が増えることで、コスト高となる傾向がある。
 発熱を抑えるもうひとつの手段として、半導体発光素子や電流制限抵抗などを、熱伝導の高い金属基板や、セラミックス材料の基板などに実装し、放熱部材と接触させて、温度上昇を下げる手段が考えられる。
 この手段は、光源の小型化に有効であり、光源に汎用性を持たすことが可能となる。しかし、金属基板やセラミックス基板に半導体光源と電流制限抵抗、コネクタ等の外部からの給電部品、その他必要な部品を実装するため、相応の基板面積が必要となり、コスト高となる傾向がある。
 一方で、半導体発光素子ひとつあたりの駆動電力を上げ、半導体発光素子の使用数量を削減し、半導体発光素子の実装基板に低コストで熱伝導率の低い材料を使用するなどして、部材コストを下げる方策も考えられる。しかし、これも、半導体発光素子の発光効率の低下や、長期信頼性の低下につながる可能性が高い。
特開2003-115208号公報
 コストを抑えつつ、発光効率の低下や長期信頼性の低下を低減できる光半導体光源及び車両用照明装置を提供する。
 実施形態によれば、光半導体実装基板と、前記光半導体実装基板の上に設けられた複数の半導体発光素子と、前記光半導体実装基板の上に設けられ前記複数の半導体発光素子を囲むリフレクタと、を備えた光半導体光源が提供される。前記複数の半導体発光素子は、前記リフレクタから等距離に配置される。前記リフレクタにより囲まれた空間の中心から前記複数の半導体発光素子のそれぞれまでの距離は、前記複数の半導体発光素子のそれぞれから前記リフレクタまでの距離よりも大きい。
 実施形態によれば、光半導体実装基板と、前記光半導体実装基板の上に設けられた複数の半導体発光素子と、前記光半導体実装基板の上に設けられ前記複数の半導体発光素子を囲むリフレクタと、を備えた光半導体光源が提供される。前記光半導体光源は、前記リフレクタにより囲まれた空間において、前記リフレクタ側に設けられた第1の領域と、前記第1の領域よりも、前記リフレクタにより囲まれた空間の中心側に設けられた第2の領域と、を有す。前記複数の半導体発光素子は、前記第1の領域および前記第2の領域に配置され、前記リフレクタにより囲まれた空間の中心から前記第1の領域に配置された前記複数の半導体発光素子のそれぞれまでの距離は、前記複数の半導体発光素子のそれぞれから前記リフレクタまでの距離よりも大きい。
 コストを抑えつつ、発光効率の低下や長期信頼性の低下を低減できる光半導体光源及び車両用照明装置が提供される。 
図1は、第1の実施の形態に係る車両用照明装置の斜視組立図である。 図2(a)は、第1の実施形態に係る車両用照明装置を正面側からみた模式斜視図であり、図2(b)は、裏面側からみた模式図である。 図3(a)は、光半導体実装基板および制御基板を拡大して表した模式斜視図であり、図3(b)は、半導体発光素子の配置を表す模式平面図である。 図4(a)は、第1の実施形態にかかる光半導体光源の回路構成を表す模式平面図であり、図4(b)は、その等価回路図であり、図4(c)は、トリミングが施された後の状態を表す模式平面図である。 図5(a)は、第1の実施形態に係る光半導体光源の回路構成の変形例を表す模式平面図であり、図5(b)は、その等価回路図である。 図6(a)は、比較例の光半導体光源を表す模式平面図であり、図6(b)は、その等価回路図である。 図7(a)は第2の実施形態に係る光半導体光源の接続手段を拡大して示した模式斜視図であり、図7(b)はそのA-A線の模式断面図である。 図8(a)は、第2の実施形態に係る光半導体光源の他の具体例を表す模式斜視図であり、図8(b)は、その模式側面図である。 図9(a)は、第2の実施形態に係る光半導体光源の他の具体例を表す模式斜視図であり、図9(b)は、その模式側面図である。 図10(a)~図10(c)は、第3の実施形態に係る光半導体光源を表す模式図であり、図10(a)は模式平面図であり、図10(b)は模式側面図であり、図10(c)は、図10(a)の一点鎖線B-Bにおける模式断面図である。 図11(a)~図11(c)は、第4の実施形態に係る光半導体光源を表す模式図であり、図11(a)は模式平面図であり、図11(b)は模式側面図であり、図11(c)及び図11(d)は、図11(a)の一点鎖線C-Cにおける模式断面図である。 図12は、第5の実施形態に係る車両用照明装置の斜視組立図である。 図13(a)及び図13(b)は、第5の実施形態に係る光半導体光源を例示する模式図であり、図13(a)は模式平面図であり、図13(b)は等価回路図である。 図14は、第5の実施形態に係る光半導体光源の半導体発光素子の配置を表す模式平面図である。 図15は、第5の実施形態における半導体発光素子の配置の他の具体例を表す模式平面図である。 図16は、第5の本実施形態における半導体発光素子の配置の他の具体例を表す模式平面図である。 図17(a)及び図17(b)は、第6の実施形態に係る半導体光源を表す模式図であり、図17(a)は模式平面図であり、図17(b)は等価回路図である。 図18は、第6の実施形態における半導体発光素子の配置の他の具体例を表す模式平面図である。 図19(a)~図19(c)は、第6の実施形態に係る他の半導体光源を表す模式図であり、図19(a)は光半導体光源の模式平面図であり、図19(b)はその一部拡大図であり、図19(c)は等価回路図である。 図20は、第6の実施形態における半導体発光素子の配置の他の具体例を表す模式平面図である。 図21は、第7の実施形態に係る光半導体光源を例示する模式図であり、図21(a)は模式平面図であり、図21(b)は模式断面図であり、図21(c)は一部拡大断面図である。 図22(a)~図22(c)は、第7の実施形態に係る比較例としての光半導体光源を例示する模式図であり、図22(a)は光半導体光源の平面図であり、図22(b)は断面図であり、図22(c)は一部拡大断面図である。 図23(a)は、第8の実施形態に係る車両用照明装置を正面側からみた模式斜視図であり、図23(b)は、裏面側からみた模式図である。 図24は、第8の実施形態の車両用照明装置を搭載した灯具の模式断面図である。 図25は、第9の実施形態に係る車両用照明装置の斜視組立図である。 図26(a)は、第9の実施形態に係る車両用照明装置を正面側からみた模式斜視図であり、図26(b)は、裏面側からみた模式図である。 図27(a)は、第1のヒートシンク300と光半導体実装基板10と制御基板50の関係を例示する模式斜視図であり、図27(b)は、その断面斜視図である。 図28(a)は、図27(a)に対応する模式平面図であり、図28(b)は、制御基板50を取り外した状態を表す模式平面図であり、図28(c)は、図28(b)に対応する模式斜視図である。 図29(a)は、第1のヒートシンク300の模式斜視図である。図29(b)、図29(c)及び図29(d)は、放熱フィンの具体例を表す模式斜視図であり、第1のヒートシンク300を裏面側から眺めた模式図である。 図30(a)は、第10の実施形態に係る第1のヒートシンク300の外側に第2のヒートシンク310を設けた具体例を表す模式斜視図であり、図30(b)及び図30(c)はそれぞれ、第2のヒートシンク310を第1のヒートシンク300が収容される側から眺めた模式図である。 図31(a)は、第2のヒートシンク310の表面積を増加させた具体例を表す模式斜視図であり、図31(b)は、その断面斜視図、図31(c)は第2のヒートシンク310の裏側からみた図であり、図31(d)は図31(a)の一点鎖線A-Aにおける断面図である。 図32(a)は、第1のヒートシンク300の体積を増加させた具体例を表す模式斜視図であり、図32(b)は、その断面斜視図である。 図33(a)は、第1のヒートシンク300と第2のヒートシンク310の表面積を増加させた具体例を表す模式斜視図であり、図33(b)は、その断面斜視図である。 図34(a)は、第11の実施形態に係る車両用照明装置を裏面側からみた模式図であり、図33(b)は、本発明の実施形態に係る比較例の車両用照明装置を裏面側からみた模式図である。 図35(a)は、第12の実施形態に係る車両用照明装置を裏面側からみた模式図であり、図35(b)は、向かって右側からみた模式図である。 図36(a)は、第13の実施形態に係る車両用照明装置を裏面側からみた模式図であり、図36(b)は、向かって右側からみた模式図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。なお、各図面において、同様の要素には同一の符号を付し、詳細な説明は適宜省略する。 
 図1は、第1の実施の形態に係る車両用照明装置の斜視組立図である。 
 図2(a)は、本実施形態に係る車両用照明装置を正面側からみた模式斜視図であり、図2(b)は、裏面側からみた模式図である。 
 車両用照明装置100は、光半導体光源150と、これを覆うカバー700と、を備える。
 光半導体光源150は、第1のヒートシンク(第1の放熱部材)300と、この上に搭載された光半導体実装基板10と、制御基板50と、を有する。光半導体実装基板10の裏面は、第1のヒートシンク300と当接している。「当接」とは、光半導体実装基板10や制御基板50が第1のヒートシンク300に直接的に接触するものには限定されず、例えば、光半導体実装基板10において生ずる熱を第1のヒートシンク300に効率よく伝達するため、伝熱性のグリースや、伝熱性の接着剤などを介して搭載されているものも含むものとする。
 光半導体実装基板10の上には、光源となるLED(Light Emitting Diode)などを用いた半導体発光素子(後述する半導体発光素子18など)が実装されている。光半導体実装基板10は、例えば、アルミナや窒化アルミニウムなどの無機材料により形成することができる。あるいは、光半導体実装基板10は、金属板の表面に絶縁層を被覆した基板とすることができる。この場合の絶縁層は、有機材料でも無機材料でもよい。
 光半導体実装基板10には、半導体発光素子を取り囲むように、凹部27を有するリフレクタ22が実装されている。複数の半導体発光素子、リフレクタ22が実装された領域のことを、以降、発光部20と称す。すなわち、発光部20は、半導体発光素子18及びリフレクタ22を含む。
 リフレクタ22は、例えば、樹脂やセラミックスなどからなる。リフレクタ22は凹部27を有し、凹部27の中に半導体発光素子18(図3(a)、図3(b)参照)が露出するように、リフレクタ22が光半導体実装基板10の上に実装される。そして、リフレクタ22の凹部27の内壁面が反射面を形成している。半導体発光素子18から放出された光は、上方に向けて直接取り出されるか、あるいは、凹部27の内壁面で反射されて上方へ向けて取り出すことができる。リフレクタ22の形状は、図示したものに限定されず、例えば直方体の中心に円錐状にくり抜かれた形状であってもよい。
 制御基板50の上には、光半導体実装基板10に実装された、発光部20の駆動回路(後述する駆動回路51など)に含まれる抵抗(後述する電流制限抵抗60など)などの回路素子(後述する回路素子51Aなど)が実装されている。制御基板50は、例えば、ガラスエポキシ基板とすることができる。
 第1のヒートシンク300は、光半導体実装基板10や制御基板50で発生した熱を光半導体光源150の外部に放出する。第1のヒートシンク300は、例えばアルミニウムなどの熱伝導性の高い材料により形成されている。第1のヒートシンク300には、カバー700と係合する係合凸部302、フランジ部304、複数のフィン306、貫通孔308が設けられている。
 光半導体実装基板10と制御基板50とは、接続手段40により電気的に接続されている。接続手段40には、光半導体実装基板10に形成された電極(図示しない)と、制御基板50に形成された電極(図示しない)と、が接続されている。接続手段40としては、金属のワイヤ、リボン、ストラップなどを用いることができる。一例として、接続手段40をリン青銅により形成することができる。あるいは、接続手段40として、はんだ付けを用いることもできる。
 制御基板50には、給電端子72、74、76が設けられている。給電端子72、74、76は、第1のヒートシンク300に設けられた貫通孔308のなかに延在し、第1のヒートシンク300の後方から挿入されるコネクタ720に接続され、外部から給電される。給電端子72、74、76はこの具体例には限定されず、例えば給電端子が2つで構成されていてもよく、4つ以上であってもよい。光半導体光源150が所望の特性を有するように給電端子が設けられていれば、給電端子の数量は限定されない。
 カバー700は、第1のヒートシンク300に設けられた係合凸部302と係合する係合開口702を有する。係合開口702と係合凸部302とを係合させた状態において、カバー700は、第1のヒートシンク300と係合する。
 図3(a)は、光半導体実装基板10および制御基板50を拡大して表した模式斜視図である。図3(b)は、半導体発光素子18の配置を表す模式平面図である。 
 光半導体実装基板10に実装された半導体発光素子18は、外部より供給された電力により光を放出する。半導体発光素子18は、ウェーハからダイシングされたLEDなどの半導体チップのままの形態でもよく、あるいは、窒化アルミニウムなどのセラミック基板に実装されたサブマウントの形態でもよく、あるいは、LEDなどの半導体チップが樹脂やセラミックなどのパッケージに実装された形態でもよい。これら半導体チップやサブマウント形態、パッケージの形態のものは、はんだや導電性接着剤などにより、光半導体実装基板10に実装できる。 
 本実施形態においては、複数の半導体発光素子18は、リフレクタ22から等距離(図3(b)において、距離d2)に配置されている。そして、リフレクタ22により囲まれた空間の中心Cから半導体発光素子18のそれぞれまでの距離d1は、半導体発光素子18のそれぞれからリフレクタ22までの距離d2よりも大きい。
 こうすることにより、リフレクタ22の中の限られた領域に配置される複数の半導体発光素子18どうしを遠ざけることができる。つまり、限られたスペースの中で複数の半導体発光素子を分散して配置することにより、それぞれの半導体発光素子18が放出する熱の影響を互いに受けにくくすることができる。さらに、それぞれの半導体発光素子18を遠ざけることにより、熱源を分散させて、熱の集中を防ぎ、それぞれの半導体発光素子18から第1のヒートシンク300への放熱を促進させることができる。
 さらに、半導体発光素子18をリフレクタ22に接近させることにより、半導体発光素子18から放出された光をリフレクタ22で効率よく反射させ、外部に取り出すことができる。つまり、半導体発光素子18から放出された光のうちで、リフレクタ22により反射される光の割合を高めることができる。リフレクタ22の光反射率は、通常、半導体発光素子18の実装面(リフレクタ22により囲まれた空間の底面)における光反射率よりも高い。したがって、リフレクタ22により反射される光の割合を高くすれば、それだけ光の取り出し効率を上げることが可能となる。
 LEDなどの半導体発光素子18の発光色は、赤色光の他、黄色や白色など、用途に応じて適宜設定することができる。 
 半導体発光素子18が半導体チップのまま実装された場合には、半導体発光素子18を外部由来の湿気やガスなどから保護するため、例えば、半導体発光素子18の周縁を覆うように、発光部20が透光性の樹脂(図示しない)で封止されていてもよい。半導体発光素子18が樹脂で封止されている場合には、例えば、発光部20に封止された樹脂の中に分散させて半導体発光素子18より放出される光を吸収して異なる波長の光を放出する蛍光体(図示しない)を有していてもよい。 
 一方、制御基板50の上には、例えば抵抗などの回路素子(後述する回路素子51Aなど)が適宜配置されている。
 上述した具体例において、アルミナや窒化アルミニウムあるいは絶縁層で被覆した金属板により光半導体実装基板10を形成し、ガラスエポキシ基板により制御基板50を形成した場合には、光半導体実装基板10のほうが熱伝導率が高いといえる。
 半導体発光素子18は、温度が上昇すると発光効率が低下し、寿命も短くなる傾向がある。これに対して、本実施形態によれば、熱伝導性の高い光半導体実装基板10に半導体発光素子18を実装することにより、放熱を促進できる。光半導体実装基板10を第1のヒートシンク300の上に搭載することで、第1のヒートシンク300への放熱を促進させ、半導体発光素子18の発光効率の低下や寿命の劣化を抑制できる。
 特に、複数の半導体発光素子18を用いる場合にも、本実施形態によれば、熱伝導性の高い光半導体実装基板10に半導体発光素子18を実装することで、コストを抑えつつ、半導体発光素子18からの放熱を促進させ、発光効率の低下や寿命の劣化を抑制できる。特に、本具体例のように、複数の半導体発光素子18が高い密度で実装される場合、熱も高い密度で発生するので、放熱が重要である。これに対して、本実施形態によれば、光半導体実装基板10を介して第1のヒートシンク300への放熱を促進でき、高い発光効率や良好な長期信頼性を維持できる。
 実際に車両用照明装置などの光源として使用する場合は、図示しないダイオード、コンデンサ、抵抗、保護素子、コネクタなどの回路素子が適宜搭載される。つまり、半導体発光素子18の駆動回路に含まれる回路素子が搭載される。このような場合に、熱伝導率の高い基板だけで光源を構成すると、発熱しない回路素子の搭載面積も熱伝導率の高い基板上に確保する必要があり、光源がコスト高になる。
 これに対して本実施形態においては、半導体発光素子18以外の回路素子を、光半導体実装基板10ではなく、熱伝導率は低いが安価な制御基板50の上に実装する。こうすることで、部品実装面積に対するコストを低く抑えることができる。
 半導体発光素子18以外の回路素子を制御基板50の側に実装することで、光半導体実装基板10上における発熱量が低減し、これに近接配置される半導体発光素子18の温度上昇も低減する。これにより、半導体発光素子18の発光効率が向上し、光半導体実装基板10を小型化でき、さらなるコスト低減も可能となる。
 光半導体実装基板10としてガラスエポキシ基板などを使用する場合に比べて、放熱が良好になるために部品を密集して配置でき、光源を小型化できる。その結果として、各種の灯具デザインに対して光源の取り付けの制約を軽減でき、汎用性の高い光源を提供することが可能となる。さらに、基板面積の最小化、半導体発光素子の使用数量の最小化により、コスト低減も期待できる。
 次に、本実施形態に係る光半導体光源の回路構成について、さらに詳しく説明する。 
 図4(a)は、第1の実施形態にかかる光半導体光源の模式平面図である。図4(b)は、その等価回路図である。図4(c)は、トリミングが施された後の光半導体光源を表す模式平面図である。
 光半導体実装基板10の上には、電極12、14、16が形成されている。電極12と電極14との間には、半導体発光素子18が接続され、半導体発光素子18を取り囲むようにリフレクタ22が配置されて発光部20が形成されている。電極14と電極16との間には、第1の電流制限抵抗30が接続されている。
 半導体発光素子18は、図4(b)に表したように、2つずつ並列に接続された回路が3段に直列接続されている。
 ただし、半導体発光素子18の数は、図示したものには、限定されない。半導体発光素子18は、少なくともひとつ設けられていればよい。複数の半導体発光素子18を設ける場合の接続は、直列でもよく並列でもよい。 
 一方、制御基板50の上には、電極52、54、56が形成されている。電極54と電極56との間には、第2の電流制限抵抗60(回路素子51A)が接続されている。第2の電流制限抵抗60(回路素子51A)は、発光部20の駆動回路51に含まれる。電極52と電極56には、外部回路からの給電端子70、70が接続されている。 
 光半導体実装基板10の電極12、16と、制御基板50の電極52、54と、は、接続手段40、40により電気的に接続されている。
 光半導体実装基板10および制御基板50に設けられた電極12、16ならびに52、54、および、接続手段40、40の接続箇所は、図示した箇所に限定されない。接続手段40、40が、光半導体実装基板10と制御基板50とを電気的に接続していれば、接続箇所は限定されない。
 図4(b)に表した等価回路からも分かるように、一対の給電端子70の間で、発光部20と、第1の電流制限抵抗30と、第2の電流制限抵抗60と、は直列に接続されている。したがって、給電端子70、70の間に駆動電圧を印加すると、第1及び第2の電流制限抵抗30、60により制限された電流が発光部20を流れ、発光させることができる。
 第1の電流制限抵抗30は、複数個配置されていてもよく、半導体発光素子18との電気的接続において、半導体発光素子18からみて電源プラス(+)側の配線上、電源マイナス(-)側の配線上、電源プラス(+)側と電源マイナス(-)側の両方の配線上に配置してもよい。第1の電流制限抵抗30の形態としては、表面実装型の抵抗素子や、基板上に印刷等の手段で形成した印刷抵抗などを挙げることができる。
 第2の電流制限抵抗60も、複数個配置されてもよく、図4(b)に表した半導体発光素子18との電気的接続において、半導体発光素子18からみて電源プラス(+)側の配線上、電源マイナス(-)側の配線上、電源プラス(+)側と電源マイナス(-)側の両方の配線上、のいずれに配置してもよい。第2の電流制限抵抗60の形態としては、ディスクリート実装抵抗素子や表面実装抵抗素子などを挙げることができる。
 本実施形態の構成のように、第2の電流制限抵抗60を制御基板50の側に実装することで、光半導体実装基板10上に設けられた第1の電流制限抵抗30の発熱量が低減し、これに近接配置される半導体発光素子18の温度上昇も低減する。これにより、半導体発光素子18の発光効率が向上し、光半導体実装基板10も小型化でき、さらなるコスト低減も可能となる。
 本実施形態の光半導体光源150においては、第1の電流制限抵抗30は、トリミングが可能とされている。 
 図4(c)は、トリミングが施された後の状態を表す。第1の電流制限抵抗30は、トリミングにより形成された切除部36を有する。切除部36は、例えば、レーザーを照射して電流制限抵抗30の一部を除去することにより形成できる。あるいは、治具を押し当てて電流制限抵抗30の一部を除去することも可能である。
 第1の電流制限抵抗30として、印刷により形成した印刷抵抗を形成すると、このようなトリミングを容易に実施できる。発光部20の電気的、光学的特性のばらつきに対して、光半導体実装基板10上の第1の電流制限抵抗30にトリミングを施すことで、それぞれの特性の光源間のばらつきを抑えることができる。
 図5(a)は、第1の実施形態に係る光半導体光源の回路構成の変形例を表す模式平面図であり、図5(b)は、その等価回路図である。 
 本実施形態の光半導体光源160においては、光半導体実装基板10の上に、2種類の点灯回路が形成されている。本具体例においては、これら2種類の点灯回路は、それぞれ車両用の尾灯(テールライト)と制御灯(ストップライト)の点灯回路である。
 光半導体実装基板10の上には、電極12~17が形成されている。電極12と電極13との間には、第1の電流制限抵抗32が接続されている。電極13と電極14、14との間には、2つの半導体発光素子18が並列に接続されている。電極14、14と電極15との間には、さらに2つの半導体発光素子18が並列に接続されている。電極15と電極16との間には、ひとつの半導体発光素子18が接続されている。電極16と電極17との間には、第1の電流制限抵抗34が接続されている。
 一方、制御基板50の上には、電極52~58が形成されている。そして、これら電極のあいだに、第2の電流制限抵抗62、64、ダイオード80、82、コンデンサ84などの回路素子が接続されている。電極52と電極53との間には、第2の電流制限抵抗62が接続されている。電極53と電極54との間には、ダイオード80が接続されている。電極55と電極56との間には、コンデンサ84が接続されている。電極56と電極57との間には、第2の電流制限抵抗64が接続されている。電極57と電極58との間には、ダイオード82が接続されている。
 光半導体実装基板10の電極12と制御基板50の電極52とは、接続手段42により接続されている。同様に、光半導体実装基板10の電極15と制御基板50の電極55とは、接続手段44により接続され、光半導体実装基板10の電極17と制御基板50の電極56とは、接続手段46により接続されている。 
 このようにして、給電端子72と給電端子74との間に、点灯回路A-Gが形成され、給電端子74と給電端子76との間に、点灯回路B-Gが形成されている。
 点灯回路A-Gは車両用の制御灯(ストップライト)の点灯回路であり、点灯回路B-Gは尾灯(テールライト)の点灯回路である。点灯回路A-Gは、2直列2並列に接続された4つの半導体発光素子18を、例えば、6.4ボルト、200ミリアンペアで点灯させる。すなわち、点灯回路B-Gにおいては、半導体発光素子18ひとつあたり、VF(順方向電圧)3.2ボルト、IF(順方向電流)100ミリアンペアで点灯させる。点灯回路B-Gは、ひとつの半導体発光素子18を、例えば、VF3ボルト、IF20ミリアンペアで点灯させる。
 この光半導体光源160を13.5ボルトの電源で駆動させる場合、回路A-Gの電流制限抵抗の合計は35.5オームであり、回路Bの電流制限抵抗の合計は525オームである。つまり、電流制限抵抗の値は、回路A-Gと回路B-Gとのあいだで、10倍以上異なる。
 図6(a)は、比較例の光半導体光源を表す模式平面図であり、図6(b)は、その等価回路図である。 
 本比較例の光半導体光源800においては、熱伝導率が高い基板810の上に、半導体発光素子818、電流制限抵抗832、834、ダイオード880、882が実装されている。ダイオード880と電流制限抵抗832と4つの半導体発光素子818とは、点灯回路A-Gを構成している。ダイオード882と電流制限抵抗834とひとつの半導体発光素子818とは、点灯回路B-Gを構成している。
 この比較例の光半導体光源800の場合、まず、熱伝導性の高い基板810の上に全ての回路素子を搭載するので、基板810が大面積となり、コストが上昇する。全ての電流制限抵抗が半導体発光素子818と同一の基板810の上に実装されるので、電流制限抵抗から放出された熱により半導体発光素子818の温度が上昇しやすく、発光効率の低下や寿命の劣化が生じやすい。
 比較例において、回路A-G、回路B-Gの電流制限抵抗832、834をいずれも印刷抵抗で構成しようとすると、前述したように、電流制限抵抗の値が回路毎に10倍以上も異なるので、抵抗のサイズが互いに大きく異なる。その結果として、基板810上の各素子の配置が不均一になったり、基板810が大面積化する。
 一方、比較例において、電流制限抵抗832、834を印刷抵抗で形成しつつ、そのサイズを同程度にするためには、抵抗材料を変える必要がある。すなわち、電流制限抵抗832には抵抗率の抵抗材料を用い、電流制限抵抗834には高抵抗の抵抗材料を用いる必要がある。しかし、このように異なる抵抗材料を用いるためには、異なる抵抗率の抵抗材料を、抵抗率ごとに複数回印刷する必要があり、コスト高となる。
 これに対して、本実施形態によれば、図5(a)及び図5(b)に表したように、制御基板50に実装する第2の電流制限抵抗62、64に、電流制限作用の一部を移すことが可能となる。つまり、電流制限抵抗62、64に、それぞれ適当な抵抗値を有する面実装型の抵抗素子などを用いることができる。その結果として、第1の電流制限抵抗32、34のサイズを小さくし
 第2の電流制限抵抗62、64の抵抗値を調整することにより、第1の電流制限抵抗32、34の抵抗値を近づけることができる。その結果として、電流制限抵抗32、34を印刷抵抗で形成する場合でも、同一の抵抗材料を用いて一回の印刷で形成できるので、コストを抑えることができる。
 図4(c)に関して前述したように、第1の電流制限抵抗32、34をレーザーなどでトリミングすることで、発光部20の電気的、光学的特性のばらつきを調整することができる。
 (第2の実施形態)
 図7(a)は、第2の実施形態に係る車両用照明装置における光半導体光源170の内、接続手段48近傍を拡大して示した模式斜視図であり、図7(b)は、図7(a)の一点鎖線A-Aの模式断面図である。 
 接続手段48は、発光部20のリフレクタ22に固定され、リフレクタ22の下方と側方とにそれぞれ延出している。リフレクタ22の下方において、接続手段48は、光半導体実装基板10に形成された電極(図示しない)と接続されている。リフレクタ22の側方において、接続手段48は制御基板50に形成された電極(図示しない)と接続されている。接続手段48は、例えば、リフレクタ22を樹脂により形成し、その中にインサート成形することにより、リフレクタ22と一体的に形成して固定することができる。あるいは、接続手段48は、リフレクタ22に嵌合させたり、打ち込みにより固定してもよい。
 本実施形態によれば、部品点数を減らせるとともに、組立工程も簡略化でき、構造的にも小型でシンプルで、機械的な強度や信頼性なども向上させることが可能となる。車両用照明装置100に適用した場合、振動や温度変化などに対して耐久性のある接続手段を提供でき、小型で信頼性の高い車両用照明装置を実現することができる。
 図8(a)、図8(b)、図9(a)、及び、図9(b)は、本実施形態に係る光半導体光源の他の具体例をそれぞれ表す模式斜視図及び側面図である。 
 図8(a)、図8(b)、図9(a)、及び、図9(b)に表した光半導体光源180および190においても、光半導体実装基板10の上に発光部20が実装されている。
 そして、発光部20のリフレクタ22には、接続手段48が固定されている。接続手段48は、光半導体実装基板10と制御基板50とを接続している。すなわち、接続手段48は、半導体発光素子18や光半導体実装基板10の上に形成された電極パターンや電流制限抵抗(図示しない)などと適宜接続されている。そして、接続手段48は、光半導体実装基板10の外側に向けて延出し、制御基板50に形成された電極と接続されている。
 図8(a)、図8(b)、図9(a)、及び図9(b)に表した具体例においても、部品点数を減らせるとともに、組立工程も簡略化でき、構造的にも小型でシンプルで、機械的な強度や信頼性なども向上させることが可能となる。 
 本具体例における接続手段48の材料は、導電性があり、所定の機械的な強度を有するものであればよい。
 図8(a)及び図8(b)に表したように、光半導体実装基板10と制御基板50とを略同一な平面上に配置し、接続手段48を水平方向に延在させて制御基板50と接続してもよい。 
 あるいは、図9(a)及び図9(b)に表したように、光半導体実装基板10と制御基板50とを上下に配置し、接続手段48を下方に延在させて制御基板50と接続してもよい。
 本具体例を車両用照明装置に適用した場合、振動や温度変化などに対して耐久性のある接続手段を提供でき、小型で信頼性の高い車両用照明装置を実現することができる。
 (第3の実施形態)
 図10(a)~図10(c)は、第3の実施形態に係る光半導体光源を示す模式図である。これらの図は、第1のヒートシンク300を表す。図10(a)は第1のヒートシンク300の模式平面図であり、図10(b)は第1のヒートシンク300の模式側面図である。図10(c)は、図10(a)の一点鎖線B-Bにおける模式断面図である。図10(a)~図10(c)に表した第1のヒートシンク300は、図1、図2(a)及び図2(b)に関して前述した第1のヒートシンク300に対応する。 
 図10(a)~図10(c)に表したように、第1のヒートシンク300は、その上面に、光半導体実装基板10を搭載する第1の搭載面320と、制御基板50を搭載する第2の搭載面330と、を有する。第1の搭載面320を介して、第2の搭載面330の反対側には、光半導体実装基板10や制御基板50が搭載されない非搭載面340を有する。
 図10(a)~図10(c)に表した具体例においては、光半導体実装基板10と接触する第1のヒートシンク300の上面は、制御基板50と接触する第1のヒートシンク300の上面よりも、高くしている。つまり、第1のヒートシンク300の上面のうちで、光半導体実装基板10を搭載する第1の搭載面320は、制御基板50を搭載する第2の搭載面330よりも高く、これら搭載面のあいだには、段差がある。つまり、光半導体実装基板10を、制御基板50の放熱経路から遠ざけている。こうすることにより、制御基板50から放出された熱が、光半導体実装基板10に流入することを抑制できる。換言すると、光半導体実装基板10が、制御基板50からの放熱の影響を受けにくくなる。
 光半導体実装基板10を制御基板50よりも高く配置しているため、制御基板50の位置にとらわれず光半導体実装基板10の位置を任意に設定することができるため、光源デザインの自由度が増す。
 図10(c)に表したように、非搭載面340は、第1の搭載面320と略同じか、第1の搭載面320よりも高く設定することが望ましい。このような構成とすることにより、光半導体実装基板10で発生した熱が第1の搭載面320に伝導され、さらに、非搭載面340の方向に伝導しやすくなるため、光半導体実装基板10からの熱伝導を促進することができる。
 (第4の実施形態)
 図11(a)~図11(b)は、第4の実施形態に係る光半導体光源を示す模式図である。これらの図は、第1のヒートシンク300の変形例を表す。図11(a)は第1のヒートシンク300の模式平面図であり、図11(b)は第1のヒートシンク300の模式側面図である。図11(c)は、図11(a)の一点鎖線C-Cにおける模式断面図である。図11(d)は、図11(a)の一点鎖線C-Cにおける別の例の模式断面図である。図11(a)~図11(c)に表した第1のヒートシンク300は、図1、図2(a)及び図2(b)に関して前述した第1のヒートシンク300に対応する。 
 第1の搭載面320と第2の搭載面330とのあいだには、光半導体実装基板10と制御基板50とをそれぞれ所定の位置に導くためのガイド350が設けられている。ガイド350は、例えば凸状に形成することができる。凸状のガイド350が、光半導体実装基板10あるいは制御基板50の側面に当接することにより、光半導体実装基板10と制御基板50の位置を決めることができる。
 ただし、本実施形態は、これに限定されるものではなく、例えば、図11(c)に表したように、第1の搭載面320は光半導体実装基板10が当接する部分のみでなく、例えば非搭載面340の高さを、第2の搭載面320と略同じ高さか、第1の搭載面320よりも高く設定することが望ましい。このような構成とすることにより、第3の実施形態の構成と同じように、光半導体実装基板10からの熱伝導を促進することができる。
 図11(d)に表したように、第1のヒートシンク300の上面のうちの、光半導体実装基板10を搭載する第1の搭載面320と、制御基板50を搭載する第2の搭載面330と、は、前者が後者よりも低くてもよい。この場合、第1の搭載面320に直交する面がガイド350の役割を果たす。こうすることで、光半導体実装基板10が制御基板50よりも低くされており、制御基板50の位置にとらわれず光半導体実装基板10の位置を任意に設定することができるため、光源デザインの自由度が増す。
 (第5の実施形態)
 図12は、第5の実施形態に係る車両用照明装置の斜視組立図である。 
 本実施形態においても、車両用照明装置100は、光半導体光源151と、これを覆うカバー700と、を備える。 
 本実施形態に係る光半導体光源151は、例えば、図1、図2(a)、図2(b)、図3(a)、図3(b)、図4(a)、図4(b)及び図4(c)を参照して光半導体光源150に関して説明した構成を有することができる。すなわち、本実施形態に係る光半導体光源151は、図12に例示したように、光半導体実装基板10と、光半導体実装基板10の上に設けられた複数の半導体発光素子18と、光半導体実装基板10の上に設けられ複数の半導体発光素子18を囲むリフレクタ22と、を含む。この例においても、発光部20は、半導体発光素子18及びリフレクタ22を含む。
 以下、本実施形態の光半導体光源の発光部20の例について、詳しく説明する。 
 図13(a)及び図13(b)は、第5の実施形態に係る光半導体光源の発光部を例示する模式図である。図13(a)は光半導体光源171の模式平面図であり、図13(b)はその等価回路図である。
 本実施形態においては、発光部20は、リフレクタ22と、その中に設けられたLEDなどの複数の半導体発光素子18と、を有する。半導体発光素子18が実装されている主面は、リフレクタ22の一部でもよく、あるいは、光半導体実装基板10の表面でもよい。発光部20は、光半導体実装基板10の上に実装され、ヒートシンク300の上に適宜搭載されている。
 リフレクタ22により囲まれた空間の底部に、電極14と、その先端を取り囲む形状の電極12と、が設けられている。そして、電極12の上に、4つの半導体発光素子18が実装されている。半導体発光素子18のそれぞれから、電極14の先端にワイヤ200が接続されている。図13(b)から分かるように、4つの半導体発光素子18は、並列に接続されている。
 そして、本実施形態においては、リフレクタ22により囲まれた空間の中心から複数の半導体発光素子18のそれぞれまでの距離は、複数の半導体発光素子18のそれぞれからリフレクタ22までの距離よりも大きい。つまり、複数の半導体発光素子18は、リフレクタ22により囲まれた空間のなかで、中央寄りではなく、リフレクタ22の方に寄って配置されている。
 複数の半導体発光素子をリフレクタ22により囲まれた空間のなかに配置する場合、通常は、その空間の中心に近づけて配置する。これに対して、本実施形態においては、逆に、半導体発光素子18をリフレクタ22に接近させて配置する。 
 図14は、第5の実施形態に係る光半導体光源の半導体発光素子の配置を表す模式平面図である。 
 本実施形態においては、複数の半導体発光素子18は、リフレクタ22から等距離(図14において、距離d2)に配置されている。そして、リフレクタ22により囲まれた空間の中心Cから半導体発光素子18のそれぞれまでの距離d1は、半導体発光素子18のそれぞれからリフレクタ22までの距離d2よりも大きい。
 こうすることにより、リフレクタ22の中の限られた領域に配置される複数の半導体発光素子18どうしを遠ざけることができる。つまり、限られたスペースの中で複数の半導体発光素子を分散して配置することにより、それぞれの半導体発光素子18が放出する熱の影響を互いに受けにくくすることができる。さらに、それぞれの半導体発光素子18を遠ざけることにより、熱源を分散させて、熱の集中を防ぎ、それぞれの半導体発光素子18から第1のヒートシンク300への放熱を促進させることができる。
 さらに、半導体発光素子18をリフレクタ22に接近させることにより、半導体発光素子18から放出された光をリフレクタ22で効率よく反射させ、外部に取り出すことができる。つまり、半導体発光素子18から放出された光のうちで、リフレクタ22により反射される光の割合を高めることができる。リフレクタ22の光反射率は、通常、半導体発光素子18の実装面(リフレクタ22により囲まれた空間の底面)における光反射率よりも高い。したがって、リフレクタ22により反射される光の割合を高くすれば、それだけ光の取り出し効率を上げることが可能となる。
 図15及び図16は、第5の実施形態における半導体発光素子の配置の他の具体例を表す模式平面図である。 
 図15に表した具体例においては、リフレクタ22の平面形状は、楕円形あるいは偏平円形である。このような場合には、楕円形あるいは偏平円形の長軸と短軸との交点を、リフレクタ22により囲まれた空間の中心Cとすることができる。そして、長軸の方向にみても、短軸の方向にみても、リフレクタ22により囲まれた空間の中心Cから半導体発光素子18のそれぞれまでの距離d1は、半導体発光素子18のそれぞれからリフレクタ22までの距離d2よりも大きい。
 図16に表した具体例においては、リフレクタ22の平面形状は、正方形である。このように多角形の場合には、対角線の交点を、リフレクタ22により囲まれた空間の中心Cとすることができる。そして、正方形の4辺に対して平行な方向にみても、対角線の方向にみても、リフレクタ22により囲まれた空間の中心Cから半導体発光素子18のそれぞれまでの距離d1は、半導体発光素子18のそれぞれからリフレクタ22までの距離d2よりも大きい。
 こうすることにより、図13(a)及び図13(b)に関して前述したように、リフレクタ22の中の限られたスペースの中で複数の半導体発光素子を分散して配置し、熱源を分散させて、熱の集中を防ぎ、それぞれの半導体発光素子18から第1のヒートシンク300への放熱を促進させることができる。
 図13(a)及び図13(b)に表した具体例の場合、半導体発光素子18に接続されたワイヤ200は、半導体発光素子18からみてリフレクタ22の側ではなく、リフレクタ22により囲まれた空間の中心の方向に配線されている。 
 こうすることにより、ワイヤ200をボンディングする領域を効率的に使用することができる。例えば図13(a)及び図13(b)に表した具体例の場合、周囲に設けられた4つの半導体発光素子18から、中央に設けられたひとつの電極14に対して、ワイヤ200をそれぞれ接続できる。つまり、4つの半導体発光素子18に対して、4つの電極パッドを形成する必要がなく、ひとつの電極14に対してワイヤ200を接続できるので、ワイヤボンディングのための領域を余計に確保する必要がなくなる。
 さらに、半導体発光素子18からみてリフレクタ22の側ではなく、リフレクタ22により囲まれた空間の中心の方向にワイヤ200を配線することにより、半導体発光素子18から近接するリフレクタ22に放出される光に対して、ワイヤ200による遮光や散乱を解消し、リフレクタ22による効率的な反射をさらに促進できる。つまり、それぞれの半導体発光素子18が近接したリフレクタ22に向けて放出する光の経路にワイヤ200を設けないことにより、この経路上での光の遮光や散乱を防ぐことができる。
 (第6の実施形態)
 図17(a)及び図17(b)は、第6の本実施形態に係る半導体光源を表す模式図である。図17(a)は光半導体光源181の模式平面図であり、図17(b)はその等価回路図である。 
 本実施形態の光半導体光源181も、リフレクタ22と、その中に設けられたLEDなどの複数の半導体発光素子18A、18Bと、を有する発光部20を有する。発光部20は、光半導体実装基板10の上に実装され、ヒートシンク300の上に適宜搭載されている。
 リフレクタ22により囲まれた空間には、リフレクタ22の側に設けられた第1の領域と、第1の領域よりもリフレクタ22により囲まれた空間の中心側に設けられた第2の領域と、が設けられている。そして、半導体発光素子18Aは、第1の領域、すなわちリフレクタ22により囲まれた空間において、その中心よりもリフレクタ22の方に接近して配置されている。一方、半導体発光素子18Bは、第2の領域、すなわちリフレクタ22により囲まれた空間の中央付近に配置されている。第2の領域に配置される半導体発光素子18Bの個数は、複数の例を記載しているが、個数には限定されず、例えば、個数を1個として、リフレクタ22により囲まれた空間の中心に配置しても良い。
 リフレクタ22により囲まれた空間の中心から第1の領域に配置された半導体発光素子18Aまでの距離は、半導体発光素子18Aのそれぞれからリフレクタ22までの距離よりも大きい。これは、図13(a)~図16に関して前述した距離d1と距離d2との関係と同様である。 
 半導体発光素子18Aを第1の領域すなわち周囲に分散配置することにより、熱の集中を抑制できるときは、図17(a)に表したように、第2の領域すなわち中央付近に半導体発光素子18Bを配置することも可能となる。
 半導体発光素子18Aと、それに隣接する半導体発光素子18Bと、がワイヤ200で接続されている。つまり、隣接する半導体発光素子18Aと半導体発光素子18Bとが、直列に接続されている。これは例えば、半導体発光素子18Aの上面にアノード電極、下面にカソード電極を設け、半導体発光素子18Bの上面にカソード電極、下面にアノード電極を設けることにより、可能となる。
 このように半導体発光素子18Aと半導体発光素子18Bとをワイヤ200で接続することにより、ワイヤ200の本数を減らして、コンパクトな配置と効率的な電気接続を実現できる。
 図18は、第6の本実施形態における半導体発光素子の配置の他の具体例を表す模式平面図である。 
 本具体例においては、リフレクタ22の中に、4つの半導体発光素子18Aと、4つの半導体発光素子18Bと、が実装されている。半導体発光素子18Aは、Nアップ型すなわちn形半導体が上側にあるLEDである。半導体発光素子18Bは、Pアップ型すなわちp形半導体が上側にあるLEDである。すなわち、半導体発光素子18Aは上側電極がカソード電極であり、半導体発光素子18Bは上側電極がアノード電極である。 
 このように極性の異なる半導体発光素子を混在させることにより、半導体発光素子どうしを直列接続することが容易となる。隣接する半導体発光素子18Aの上側電極と、半導体発光素子18Bの上側電極と、をワイヤ200で接続する。すると、半導体発光素子18Aの下側電極と、半導体発光素子18Bの下側電極と、を両端とした直列回路を形成することができる。
 図19(a)~図19(c)は、第6の本実施形態に係る光半導体光源を示す模式図である。これらの図は、このように半導体発光素子どうしを直列接続する具体例を表す。図19(a)は光半導体光源の模式平面図であり、図19(b)はその一部拡大図であり、図19(c)はその等価回路図である。 
 本実施形態の光半導体光源185も、リフレクタ22と、その中に設けられたLEDなどの複数の半導体発光素子18A、18B、18Cと、を有する発光部20を有する。発光部20は、光半導体実装基板10の上に実装され、ヒートシンク300の上に適宜搭載されている。
 発光部20に配置された4つの半導体発光素子18Aと4つの半導体発光素子18Bは、リフレクタ22により囲まれた空間において、その中心よりもリフレクタ22の方に接近して配置されている。4つの半導体発光素子18Cは、リフレクタ22により囲まれた空間の中央付近に配置されている。
 半導体発光素子18A、18Bを周囲に分散配置することにより、熱の集中を抑制でき、中央付近に半導体発光素子18Cを配置しても、放熱が確保される。 
 半導体発光素子18Aは、電極15の上に実装されている。すなわち、半導体発光素子18Aの下側電極は、電極15に接続されている。半導体発光素子18Bは、電極16の上に実装されている。すなわち、半導体発光素子18Bの下側電極は、電極16に接続されている。半導体発光素子18Cは、電極17の上に実装されている。すなわち、半導体発光素子18Cの下側電極は、電極17に接続されている。 
 そして4つの半導体発光素子18Aの上側電極と、隣接する電極17と、がワイヤ200で接続されている。半導体発光素子18Cの上側電極と、半導体発光素子18Bの上側電極と、がそれぞれワイヤ200で接続されている。
 この等価回路は、図19(c)に表した如くである。すなわち、4つの半導体発光素子18Aは、並列に接続されている。半導体発光素子18Bと半導体発光素子18Cとは、ひとつずつ直列に接続され、4つの直列回路が並列に接続されている。
 このような接続関係は、例えば、半導体発光素子18Aと半導体発光素子18CとしてPアップ型すなわちp形半導体が上側にあるLEDを用い、半導体発光素子18BとしてNアップ型すなわちn形半導体が上側にあるLEDを用いることにより実現できる。すなわち、半導体発光素子18Aと半導体発光素子18Cは上側電極がアノード電極であり、半導体発光素子18Cは上側電極がカソード電極である。 
 このように、n形半導体とp形半導体の積層構造が逆転した半導体発光素子を組み合わせることにより、半導体発光素子どうしを直接接続して直列接続を形成することが可能となる。
 本実施形態によれば、半導体発光素子どうしを直接接続することにより、ワイヤ200の本数を減らすとともに、ワイヤを接続する電極パターンが不要となり、限られた領域に複数の半導体発光素子を効率的に配置できる。 
 図19(a)~図19(c)に表した具体例の場合、合計で12個の半導体発光素子を直径4ミリメータ程度の領域に収容できる。本実施形態の光半導体光源185を車両のテールランプに用いる場合、尾灯(テールライト)と制御灯(ストップライト)とは、駆動電流を切り替えることにより表示可能である。すなわち、尾灯のときは小さい電流で点灯させ、制御灯のときは大きな電流で点灯させればよい。すなわち、尾灯と制御灯とを同じ半導体発光素子を用いて点灯させることができ、別々の半導体発光素子や点灯回路を設けなくて済む点で、有利となる。
 本実施形態によれば、半導体発光素子どうしを接続して直列接続を形成しつつ、リフレクタ22のなかの限られた空間で、熱を分散させつつ効率のよい半導体発光素子の配置が可能となる。
 図20は、第6の実施形態における半導体発光素子の配置の他の具体例を表す模式平面図である。 
 本具体例においては、リフレクタ22の中に、4つの半導体発光素子18Aと、4つの半導体発光素子18Bと、が実装されている。半導体発光素子18Aと、半導体発光素子18Bは、極性が同一の半導体素子である。つまり、半導体発光素子18Aと半導体発光素子18Bは、すべてNアップ型であるか、すべてPアップ型である。
 そして、隣接する半導体発光素子18Aの上側電極と、半導体発光素子18Bの上側電極と、がワイヤ200で接続され、さらに隣接する電極17にワイヤ200で接続されている。すると、隣接する半導体発光素子18Aの下側電極と半導体発光素子18Bの下側電極と、を共通接続することにより、並列回路を形成することができる。つまり、隣接する半導体発光素子18Aと半導体発光素子18Bとを並列に接続できる。
 本具体例によれば、半導体発光素子どうしを直接接続することにより、ワイヤ200の本数を減らすとともに、ワイヤを接続する電極パターンが不要となり、限られた領域に複数の半導体発光素子を効率的に配置できる。 
 (第7の実施形態)
 図21(a)~図21(c)は、第7の実施形態に係る光半導体光源を例示する模式図である。図21(a)は光半導体光源の模式平面図であり、図21(b)はその模式断面図であり、図21(c)はその一部拡大断面図である。 
 本実施形態の光半導体光源191も、リフレクタ22と、その中に設けられたLEDなどの複数の半導体発光素子18と、を有する発光部20を有する。半導体発光素子18は、リフレクタ22により囲まれた空間の中心よりもリフレクタ22の方に接近して配置されている。そして、発光部20は、光半導体実装基板10の上に実装され、第1のヒートシンク300に搭載されている。
 本実施形態においても、複数の半導体発光素子18は、リフレクタ22により囲まれた空間のなかで、中央寄りではなく、リフレクタ22の方に寄って配置されている。すなわち、図21(b)に表したように、半導体発光素子18の中心とリフレクタ22の下端との距離d2は、リフレクタ22により囲まれた空間の中心Cと半導体発光素子18の中心との距離d1よりも小さい。ここで、リフレクタ22の下端は、半導体発光素子18の実装面における位置とする。
 そして、複数の半導体発光素子18のそれぞれは、樹脂25により個別にドーム状に封止されている。半導体発光素子18が実装されている主面は、リフレクタ22の一部でもよく、あるいは、光半導体実装基板10の表面でもよい。
 本実施形態によれば、複数の半導体発光素子18のそれぞれを、樹脂25により個別に封止することにより、光の取り出し効率を上げることができる。 
 図22(a)~図22(c)は、第7の実施形態に係る比較例としての光半導体光源を例示する模式図である。図22(a)は光半導体光源の平面図であり、図22(b)はその断面図であり、図22(c)はその一部拡大断面図である。 
 本比較例においては、半導体発光素子18は樹脂25により個別に封止されていない。すなわち、リフレクタ22の内側において、複数の半導体発光素子18は樹脂25により一体的に封止されている。
 このように複数の半導体発光素子18を樹脂25により一体的に封止すると、光の取り出し効率が低下する。すなわち、半導体発光素子18から放出された光の一部は、矢印Tで表したように、樹脂25(例えば封止樹脂)から外部に取り出される。しかし、半導体発光素子18から放出された光の他の一部は、樹脂25の表面において、入射角度θが小さいために、矢印Rで表したように全反射され、樹脂25の中に戻ってしまう。その結果として、光の取り出し効率が低下する。ただし、図22(a)~図22(c)に表した比較例も、半導体発光素子18がリフレクタ22に接近して配置され、半導体発光素子18に接続されたワイヤ200は、半導体発光素子18からリフレクタ22の側ではなくリフレクタ22により囲まれた空間の中心軸Cの方向に配線されている点で、本実施形態の範囲に包含される。
 これに対して、実施形態の場合、半導体発光素子18から放出された光のうちで、中心軸Cの方向に放出された光は、図22(b)及び図22(c)に矢印Rで表したように、樹脂25の表面に対して、浅い角度で入射する。このように浅い角度で樹脂25の表面に入射すると、反射されて外部に取り出されない場合もある。
 これに対して、複数の半導体発光素子18のそれぞれを、樹脂25により個別にドーム状に封止することにより、半導体発光素子18から放出された光の樹脂25の表面における入射角度θを大きくすることができる。その結果として、矢印Tで表したように、樹脂25から外部に取り出され、光の取り出し効率を上げることができる。
 本実施形態において、複数の半導体発光素子18をそれぞれ封止する樹脂25は、その一部が互いにつながっていてもよい。例えば、隣接するふたつの半導体発光素子18が樹脂25によりそれぞれ封止されているとき、これらのふたつの半導体発光素子18のあいだに、樹脂25が薄く延在し、それぞれの半導体発光素子18を封止する樹脂25とつながっていてもよい。ふたつの半導体発光素子18のあいだに延在する薄い樹脂25の層の上面が、半導体発光素子18に含まれる発光層(あるいは活性層)の位置よりも低ければ、半導体発光素子18から横方向に放出される光が薄い樹脂25の層のなかに侵入して光の取り出し効率が低下するという影響は少ないからである。従って、このように、隣接する半導体発光素子18のあいだに薄い樹脂25の層が延在し、その上面が半導体発光素子18に含まれる発光層(あるいは活性層)の位置よりも低い場合には、「樹脂により個別に封止」されたものに含まれると本願明細書では定義する。
 一方、本実施形態のおいても、半導体発光素子18に接続されたワイヤ200は、半導体発光素子18からリフレクタ22の側ではなく、リフレクタ22により囲まれた空間の中心軸Cの方向に配線されている。
 半導体発光素子18をリフレクタ22に接近させて配置することにより、リフレクタ22により囲まれた空間の中央にワイヤ200を接続する領域を形成できる。 
 それぞれの半導体発光素子18が近接したリフレクタ22に向けて放出する光の経路にワイヤ200が設けられない。こうすることにより、ワイヤ200による遮光や散乱を解消し、リフレクタ22による効率的な反射をさらに促進できる。
 このように光の取り出し効率を上げることができれば、半導体発光素子18の数を減らすことができる。その結果として、光半導体光源を小型化できる。さらに、光の取り出し効率を上げることができれば、半導体発光素子18に供給する駆動電流を下げることができる。その結果として、消費電力を低減できるとともに、半導体発光素子18の発熱を抑制し、さらなる発光効率の向上や長寿命化が可能となる。
 樹脂25に、例えば、蛍光体を分散させることにより、所望の波長の光を取り出すようにしてもよい。
 (第8の実施形態)
 図23(a)及び図23(b)は、第8の実施の形態に係る車両用照明装置100を示す図である。図23(a)は、本実施形態に係る車両用照明装置を正面側からみた模式斜視図であり、図23(b)は、裏面側からみた模式図である。
 本実施形態においては、第1のヒートシンク300の外側に、第1のヒートシンク300と係合する第2のヒートシンク(第2の放熱部材)310が設けられている。第2のヒートシンク310の材料として、第1のヒートシンク300よりも熱放射率の高い材料を用いることにより、第1のヒートシンク300からの放熱を促進できる。 
 例えば、第1のヒートシンク300をアルミニウムにより形成し、第2のヒートシンク310をPBT(Poly Buthylene Terephthalete)などの樹脂により形成した場合、発光部などから放出された熱は、第1のヒートシンク300から第2のヒートシンク310へ効率よく伝わり、第2のヒートシンク310から外部に効率よく放出される。また、第2のヒートシンクは、PBTなどの樹脂に熱伝導性を高めるフィラーを混合した樹脂であってもよい。第2のヒートシンク310は、第1のヒートシンク300の表面に熱放射率の高い物質を形成することにより構成されていてもよい。例えば、第2のヒートシンク310は、アルミニウムで形成された第1のヒートシンク300の表面を酸化処理することにより形成された酸化アルミニウム層であっても良い。例えば、第2のヒートシンク310は、アルミニウムで形成された第1のヒートシンク300の表面を陽極酸化処理することにより形成されたアルマイト(商標)層であってもよい。
 第1のヒートシンク300及び第2のヒートシンク310のフィン形状は、特定の形状には限定されない。例えば、図23(a)及び図23(b)に表したように、第1のヒートシンク300及び第2のヒートシンク310のフィンは、それぞれ、光半導体光源150の形状に沿って、放射円状に形成されていてもよい。 
 本実施形態において、第1~第7の実施形態に関して説明した任意の光半導体光源を用いることができる。

 図24は、第8の実施形態の車両用照明装置100を搭載した灯具の模式断面図である。 
 灯具600は、リフレクタ620とレンズ650とを有する。そして、リフレクタ620、レンズ650と対向する位置に設けられた開口640に本実施形態の車両用照明装置100が挿入されている。車両用照明装置100から放出された光は、直接か、リフレクタ620により反射され、レンズ650を介して外部に放出される。この灯具600は、例えば、自動車のテールライト部に設けることができる。
 この灯具600において、第1のヒートシンク300に形成されたフランジ部304よりも前方の部分は、リフレクタ620およびレンズ650により取り囲まれた状態となる。車両用照明装置100とリフレクタ620とは、水密に係合させることができる。必要に応じて、ゴムやシリコーンなどの材料からなるシール660を、車両用照明装置100とリフレクタ620との間に設けてもよい。
 車両用照明装置100には、例えば図23(a)に示すような灯具係合凸部360を有し、図24に示すようにして灯具600との係合をより強固としてもよい。灯具係合凸部360に対応する係合凹部(図示しない)を灯具600に設けてもよい。また、灯具600に例えば弾性体で構成された係合手段(図示しない)を設けてもよい。車両用照明装置100および灯具600との係合をより強固とするための手段を設けることができる。 
 本実施形態において、第1~第7の実施形態に関して説明した任意の光半導体光源を用いることができる。
 (第9の実施形態)
 本実施形態においては、例えば、放熱を促進できる光半導体光源及び車両用照明装置100が提供できる。 
 図25は、第9の実施形態に係る車両用照明装置の斜視組立図である。 
 図26(a)は、本実施形態に係る車両用照明装置を正面側からみた模式斜視図であり、図26(b)は、裏面側からみた模式図である。 
 本実施形態においても、車両用照明装置100は、光半導体光源152と、これを覆うカバー700と、を備える。 
 本実施形態に係る光半導体光源152は、例えば、光半導体光源150に関して既に説明した構成を有することができる。すなわち、本実施形態に係る光半導体光源152は、図25に例示したように、光半導体実装基板10と、光半導体実装基板10の上に設けられた複数の半導体発光素子18と、光半導体実装基板10の上に設けられ複数の半導体発光素子18を囲むリフレクタ22と、を含む。この例においても、発光部20は、半導体発光素子18及びリフレクタ22を含む。 
 光半導体光源152は、第1のヒートシンク(第1の放熱部材)300と、この上に搭載された光半導体実装基板10と、制御基板50と、を有する。
 この例でも、第1のヒートシンク300には、カバー700と係合する係合凸部302、フランジ部304、複数の放熱フィン403、コネクタ挿入部404が設けられている。
 制御基板50には、給電端子72、74、76が設けられている。給電端子72、74、76は、第1のヒートシンク300に設けられたコネクタ挿入部404のなかに延在し、第1のヒートシンク300の後方から挿入されるコネクタ720に接続され、外部から給電される。
 給電端子72、74、76はこの例に限定されず、例えば給電端子が2つで構成されていてもよい。光半導体光源152が所望の特性を有するように給電端子が設けられていれば、給電端子の数量は限定されない。
 カバー700は、第1のヒートシンク300に設けられた係合凸部302と係合する係合開口702を有する。係合開口702と係合凸部302とを係合させた状態において、カバー700は、第1のヒートシンク300と係合する。
 次に、本発明の実施形態に係る光半導体光源の放熱部材について、さらに詳しく説明する。 
 図27(a)は、第1のヒートシンク300と光半導体実装基板10と制御基板50の関係を例示する模式斜視図であり、(b)は、その断面斜視図である。 
 図28(a)は、図27(a)に対応する模式平面図であり、図28(b)は、制御基板50を取り外した状態を表す模式平面図であり、図28(c)は、図28(b)に対応する模式斜視図である。 
 第1のヒートシンク300は、その上面に、光半導体実装基板10を搭載する搭載面405と、制御基板50を搭載する搭載面406と、を有する。
 第1のヒートシンク300の裏面側には、放熱フィン403が形成されている。例えば、第1のヒートシンク300をアルミニウムで形成することにより、光半導体実装基板10から放出された熱を第1のヒートシンク300を介して効率的に伝導させ、放熱フィン403を介して外部に効率的に放出させることができる。
 図27(a)、図27(b)、図28(a)、図28(b)及び図28(c)に表した具体例の場合、制御基板50は、その一部が第1のヒートシンク300の上に接触し、他の部分は第1のヒートシンク300の外側にはみ出して、第1のヒートシンク300に形成されたコネクタ挿入部404の上を覆っている。
 制御基板50の上に設けられる回路素子は、光半導体実装基板10に搭載される半導体発光素子18の駆動回路を構成する抵抗、ダイオード、キャパシタ、トランジスタなどであり、いずれも放熱量は小さく、温度の上昇に対して特性の変動も小さい。このため、制御基板50を第1のヒートシンク300の上からはみ出させて配置しても、制御基板50の上に設けられる回路素子の動作に悪影響を及ぼすことはない。
 制御基板50を第1のヒートシンク300からはみ出させて、第1のヒートシンク300のコネクタ挿入部404を覆うように設け、コネクタ挿入部404の中に給電端子72、74、76を延出させることにより、第1のヒートシンク300の裏面側からコネクタ720を挿入して接続することができる。
 コネクタ挿入部404の周囲において、コネクタ720を防水コネクタとすれば、コネクタ挿入部404から内部への水分の侵入も阻止できる。つまり、裏面側(第1のヒートシンク300の側)において、防水構造を有する車両用照明装置100を提供できる。
 図29(a)~図29(d)は、第9の実施形態の車両用照明装置のその他の具体例を表す模式図である。 
 図29(a)は、第1のヒートシンク300の模式斜視図である。図29(b)、図29(c)及び図29(d)は、放熱フィン403の具体例を表す模式斜視図であり、第1のヒートシンク300を裏面側から眺めた模式図である。 
 図29(a)に表したように、本具体例においても、第1のヒートシンク300にコネクタ挿入部404が設けられ、制御基板50の給電端子72、74、76が挿入される。
 放熱フィン403の形状は、図29(b)に表したように、第1のヒートシンク300の中心から複数の方向に広がっている熱伝導部403Aを有する。このような構成とすることにより、光半導体実装基板10が第1のヒートシンク300の中心と略対向する位置に当接されると、光半導体実装基板10から発生する熱が第1のヒートシンク300の放熱フィン403、具体的には熱伝導部403Aにすばやく複数の方向に熱を伝導させることができる。その結果、第1のヒートシンク300から周囲雰囲気への放熱が促進できる。
 図29(c)に表したように、図29(b)の放熱フィン403に設けられた熱伝導部403Aより分岐した、複数の熱放射部403Bを設けてもよい。このような構成とすることで、図29(b)の構成よりも更に第1のヒートシンク300の表面積を拡大することができるため、第1のヒートシンク300から周辺雰囲気への放熱が更に促進できる。熱放射部403Bは、図29(c)に表したように、それぞれが連結しているものに限定されない。例えば、図29(d)に表したように、熱放射部403Bが断片的に構成されていてもよく、熱放射部403Bは熱伝導部403Aより分岐して形成されていればその形式は限定されない。
 (第10の実施形態)
 次に、本発明第10の実施形態に係る光半導体光源の放熱部材について説明する。 
 図30(a)は、第1のヒートシンク300の外側に第2のヒートシンク(第2の放熱部材)310を設けた具体例を表す模式斜視図であり、図30(b)及び図30(c)はそれぞれ、第2のヒートシンク310を第1のヒートシンク300が収容される側から眺めた模式図である。
 第2のヒートシンク310は、第1のヒートシンク300を収容する挿入孔417を有する。第1のヒートシンク300を収容した状態において、第1のヒートシンク300と第2のヒートシンク310とは、密接し、熱接触が良好な状態とされている。 
 第2のヒートシンク310は、第1のヒートシンク300と同様に、コネクタ挿入部414を有する。本構成とすることで、制御基板50に設けられた給電端子72、74、76は、第1のヒートシンク300に設けられたコネクタ挿入部404および第2のヒートシンク310に設けられたコネクタ挿入部414のなかに延在し、第2のヒートシンク310の後方から挿入されるコネクタ720に接続され、外部から給電される。あるいは、第2のヒートシンク310にのみコネクタ挿入部414を設けて、第1のヒートシンク300には給電端子72、74、76のみが貫通するようにしてもよい。
 第2のヒートシンク310の材料として、第1のヒートシンク300よりも放射率の高い材料を用いることにより、第1のヒートシンク300からの放熱を促進できる。例えば、第1のヒートシンク300をアルミニウムにより形成し、第2のヒートシンク310をPBT(Poly Buthylene Terephthalete)などの樹脂や、熱伝導性を高めるフィラーを混合した樹脂により形成した場合、発光部などから放出された熱は、第1のヒートシンク300から第2のヒートシンク310へ効率よく伝わり、外部に放出される。
 具体的には、アルミニウムの熱放射率は、鏡面の場合には0.05程度と非常に低く、粗面の場合でも0.3~0.4程度に過ぎない。これに対して、PBTなどの樹脂の熱放射率は0.9~0.95と非常に高い。従って、第1のヒートシンク300をアルミニウムなどの金属で形成し、第2のヒートシンク310をPBTなどの樹脂で形成することにより、光半導体実装基板10や制御基板50からの熱を第1のヒートシンク300に効率的に伝導させ、さらに第2のヒートシンク310から周囲の雰囲気に効率的に放出させることができる。
 一方、第2のヒートシンク310には、これら放熱フィン403を収容する挿入孔417を設ける。つまり、第1のヒートシンク300の放熱フィン403は、第2のヒートシンク310に埋め込まれる。防水の観点からは、挿入孔417は、第2のヒートシンク310を貫通せず、第2のヒートシンク310の裏面側において終端させることが望ましい。
 こうすることにより、第1のヒートシンク300と第2のヒートシンク310との接触面積が拡大し、第1のヒートシンク300から第2のヒートシンク310への熱伝導を促進できる。その結果として、第2のヒートシンク310から周囲雰囲気への放熱にも促進できる。
 図31(a)は、第2のヒートシンク310の表面積を増加させた具体例を表す模式斜視図であり、図31(b)は、その断面斜視図、図31(c)は第2のヒートシンク310の裏側からみた図、図31(d)は図31(a)の一点鎖線A-Aにおける断面図である。 
 本具体例においては、第1のヒートシンク300に放熱フィン403を同心円状に有する。第2のヒートシンク310には、第2のヒートシンク310の中心より複数の方向に広がっている熱伝導部413Aと、熱伝導部413Aより分岐した、複数の熱放射部403Bを有していてもよい。すなわち、図31(a)の一点鎖線A-Aでの断面図である図31(d)に表したように、熱放射部413Bの周囲に第1のヒートシンク300の放熱フィン403および第2のヒートシンク310の熱伝導部413Aが交互に存在する。このようにすれば、光半導体実装基板10から放出された熱は、放射方向にも、同心円方向にも、伝達され、第2のヒートシンク310を介した外部への放熱を促進できる。
 図32(a)は、第1のヒートシンク300の体積を増加させた具体例を表す模式斜視図であり、図32(b)は、その断面斜視図である。 
 本具体例においても、第1のヒートシンク300の裏面側に埋め込まれる第2のヒートシンク310は、間接的に第1のヒートシンク300の放射率を増加させることができる。その結果として、第2のヒートシンク310の壁面から外部に効率的に放出できる。このように、第1のヒートシンク300が単純なブロック構成でも、放熱性を高めることができる。
 図33(a)は、第1のヒートシンク300と第2のヒートシンク310の表面積を増加させた具体例を表す模式斜視図であり、図33(b)は、その断面斜視図である。 
 本具体例では、放熱フィン403のそれぞれを覆いつつ、隣接する放熱フィン403どうしの間にトレンチ418が形成されている。 
 このようなトレンチ418を形成することにより、第2のヒートシンク310の表面積を増加させることができる。その結果として、放熱フィン403を介して伝達された熱をトレンチ418の壁面から外部に効率的に放出できる。
 第2のヒートシンク310は、第1のヒートシンク300の表面に熱放射率の高い物質を形成することにより構成されてもよい。第2のヒートシンク310は、例えば、アルミニウムで形成された第1のヒートシンク300の表面を酸化処理することにより形成されてもよい。
 (第11の実施形態)
 第11の実施形態に係る光半導体光源の放熱フィンとコネクタとの関係について、さらに詳しく説明する。 
 図34(a)は、本発明の実施形態に係る車両用照明装置を裏面側からみた模式図であり、図34(b)は、本発明の実施形態に係る比較例の車両用照明装置を裏面側からみた模式図である。
 図26(b)にも表したように、車両用照明装置100の裏面側には、複数の放熱フィン403が形成されている。これら放熱フィン403は、一方向(図34(a)において上下方向)に延在して形成されている。
 一方、コネクタ720(図25参照)を挿入するコネクタ挿入部404は、コネクタ挿入孔404Aとコネクタ挿入孔404Aの周縁に設けられたコネクタ挿入壁404Bで構成され、コネクタ挿入孔404Aおよびコネクタ挿入壁404Bはそれぞれ長方形の形状を有する。つまり、コネクタ挿入部404に挿入されるコネクタ720(図25参照)も、その断面形状は長方形とされている。あるいは、コネクタ挿入部404は、正方形や偏平円形や長円形などでもよい。コネクタ挿入部404、およびコネクタ720の形状は、特定のものには限定されない。
 そして、図34(a)に表した具体例の場合、放熱フィン403の延在方向と、コネクタ挿入部404すなわちコネクタ720の長辺の方向と、は、平行である。コネクタ挿入部404すなわちコネクタ720の長辺の方向は、放熱フィン403の延在方向に沿う。すなわち、放熱フィン403の延在方向と、コネクタ挿入部404(コネクタ720)の長辺の方向と、は、いずれも図34(a)において上下方向である。
 一方、図34(b)に表した比較例の場合、放熱フィン403の延在方向と、コネクタ挿入部404すなわちコネクタ720の長辺の方向と、は、略垂直である。すなわち、放熱フィン403の延在方向は、図34(a)において上下方向であり、コネクタ挿入部404(コネクタ720)の長辺の方向は、図34(a)において左右方向である。
 図34(a)に表したように、放熱フィン403の延在方向が鉛直方向と平行となるように配置すると、矢印403Cで表したように、隣接する放熱フィン403の間隙において上方への空気の流れが生じやすくなる。つまり、放熱フィン403から放出された熱により暖められて軽くなった空気が放熱フィン403の間隙を鉛直上方に上昇する気流が形成されやすくなる。その結果として、放熱フィン403からの放熱を促進できる。
 そして、図34(a)に表したように、コネクタ挿入部404の長辺が放熱フィン403の延在方向と平行となるように配置すると、矢印403Cで表した空気の流れが、コネクタ挿入壁404Bやコネクタ720(図25参照)により妨げられることがない。つまり、放熱フィン403からの放熱をさらに促進できる。 
 ただし、図34(b)に表したようにコネクタ挿入部404、すなわち、コネクタ挿入孔404Aおよびコネクタ挿入壁404Bを放熱フィン403の延在方向に対して垂直に形成すると、矢印403Cで表した空気の流れが、コネクタ挿入壁404Bやコネクタ720により妨げられることになるので、放熱フィン403からの放熱が阻害される。よって、図34(a)に表したように、コネクタ挿入部404の長辺は、放熱フィン403の延在方向と平行となることがより好ましい。
 コネクタ挿入部404がコネクタ挿入孔404Aのみで構成される場合も、コネクタ挿入孔404Aを放熱フィン403の延在方向に対して垂直に形成すると、矢印403Cで表した空気の流れが、コネクタ720により妨げられることになるので、放熱フィン403からの放熱を阻害する。よって、コネクタ挿入部404がコネクタ挿入孔404Aとコネクタ挿入壁404Bで構成されるときと同様に、コネクタ挿入部404がコネクタ挿入孔404Aのみで構成される場合も、コネクタ挿入孔404Aの長辺も、放熱フィン403の延在方向と平行となることがより好ましい。
 (第12の実施形態)
 図35(a)は、第12の実施形態に係る車両用照明装置を裏面側からみた模式図であり、図35(b)は、向かって右側からみた模式図である。 
 図35(a)に表したように、コネクタ挿入部404に挿入されるコネクタ720からは、電気配線としてのケーブル722が延在している。図35(a)及び図35(b)に表した具体例の場合、ケーブル722は、コネクタ720の長辺方向すなわち図35(a)における上方に延在するように、コネクタ720に接続されている。このようにケーブル722が接続されることにより、放熱フィン403の間隙を流れる空気の流れを妨げることがない。
 図35(a)及び図35(b)に表した具体例の他にも、例えば、ケーブル722がコネクタ挿入部404の貫通方向、すなわち図35(a)において紙面に対して垂直な方向に延在するように、コネクタ720に接続してもよい。あるいは、ケーブル722が、放熱フィン403の延在方向とは垂直な方向、すなわち図35(a)において右方向に延在するようにコネクタ720に接続してもよい。これらいずれの場合も、ケーブル722が放熱フィン403の間隙を流れる空気の流れを妨げることがない。
 (第13の実施形態)
 図36(a)は、第13の実施形態に係る車両用照明装置100を裏面側からみた模式図であり、図36(b)は、向かって右側からみた模式図である。 
 本具体例においては、コネクタ720は、車両用照明装置100の裏面ではなく、側面に接続されている。つまり、コネクタ挿入部404(図26参照)は、車両用照明装置100の裏面ではなく、側面に形成され、このコネクタ挿入部404にコネクタ720が挿入されている。
 こうすると、車両用照明装置100の裏面側には、ほぼ全面に放熱フィン403を形成することが可能となり、放熱をさらに促進できる。コネクタ720やケーブル722が車両用照明装置100の裏面側に設けられないので、放熱フィン403の周囲で生ずる空気の流れを妨げることもない。
 図36(a)及び図36(b)に表した具体例の他にも、例えば、ケーブル722がコネクタ挿入部404の延在方向とは垂直な方向、すなわち図36(a)において紙面に対して垂直な方向に延在するように、コネクタ720に接続してもよい。あるいは、ケーブル722が、放熱フィン403の延在方向とは垂直な方向、すなわち図36(a)において右方向に延在するようにコネクタ720に接続してもよい。これらいずれの場合も、ケーブル722が放熱フィン403の間隙を流れる空気の流れを妨げることがない。
 第9~第13の実施形態に係る車両用照明装置100も、図24に関して説明した灯具に応用できる。
 第1~第13の実施形態において、光半導体実装基板10と、制御基板50とを分離した構成について記載したが、その他に、光半導体実装基板10と制御基板50とを一体的に形成する構成、例えば、1枚の基板に発光部20や駆動回路51などを実装した構成としても良い。
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、光半導体光源及び車両用照明装置100に含まれる各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 
 各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
 その他、本発明の実施の形態として上述した光半導体光源及び車両用照明装置を基にして、当業者が適宜設計変更して実施し得る全ての光半導体光源及び車両用照明装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (20)

  1.  光半導体実装基板と、
     前記光半導体実装基板の上に設けられた複数の半導体発光素子と、
     前記光半導体実装基板の上に設けられ前記複数の半導体発光素子を囲むリフレクタと、
     を備え、
     前記複数の半導体発光素子は、前記リフレクタから等距離に配置され、
     前記リフレクタにより囲まれた空間の中心から前記複数の半導体発光素子のそれぞれまでの距離は、前記複数の半導体発光素子のそれぞれから前記リフレクタまでの距離よりも大きいことを特徴とする光半導体光源。
  2.  前記複数の半導体発光素子のそれぞれに接続されたワイヤをさらに備え、
     前記ワイヤは、前記半導体発光素子のそれぞれから近接するリフレクタとは反対の側に延在してなることを特徴とする請求項1記載の光半導体光源。
  3.  前記複数の半導体発光素子のいずれかは、上面に形成されたアノード電極を有し、
     前記複数の半導体発光素子の他のいずれかは、上面に形成されたカソード電極を有し、
     前記アノード電極と前記カソード電極とが、ワイヤで接続されたことを特徴とする請求項1記載の光半導体光源。
  4.  前記光半導体実装基板よりも熱伝導率が低い制御基板と、
     前記制御基板の上に設けられ前記半導体発光素子の駆動回路に含まれる回路素子と、
     前記光半導体実装基板と前記制御基板とを電気的に接続する接続手段と、
     前記光半導体実装基板の裏面に当接し前記半導体発光素子から放出される熱を外部に伝達させる第1の放熱部材と、
     をさらに備えた請求項2記載の光半導体光源。
  5.  前記光半導体実装基板の上に設けられた電流制御抵抗をさらに備え、
     前記電流制御抵抗は、前記複数の半導体発光素子と直列接続される請求項4記載の光半導体光源。
  6.  前記光半導体実装基板の裏面に当接し前記半導体発光素子から放出される熱を外部に伝達させる第1の放熱部材と、
     前記第1の放熱部材よりも外側に形成され、前記第1の放熱部材よりも熱放射率の高い第2の放熱部材と、
     をさらに備えたことを特徴とする請求項1記載の光半導体光源。
  7.  前記第1の放熱部材及び前記第2の放熱部材の少なくとも一方に取り付けられた、前記光半導体素子へ給電するためのコネクタ部と、
     前記コネクタ部と同一面に設けられた放熱フィンと、
     をさらに備え、
     前記コネクタ部の長辺方向は、前記放熱フィンの延在方向に沿っていることを特徴とする請求項6記載の光半導体光源。
  8.  前記第1の放熱部材は、前記制御基板の裏面に当接し、
     前記光半導体実装基板の裏面と当接する前記第1の放熱部材の第1の搭載面と、
     前記制御基板の裏面と当接する前記第1の放熱部材の第2の搭載面と、の高さが異なり、前記第1の搭載面は、前記第2搭載面に対して高いことを特徴とする請求項6記載の光半導体光源。
  9.  光半導体実装基板と、
     前記光半導体実装基板の上に設けられた複数の半導体発光素子と、
     前記光半導体実装基板の上に設けられ前記複数の半導体発光素子を囲むリフレクタと、
     を備え、
     前記リフレクタにより囲まれた空間において、前記リフレクタ側に設けられた第1の領域と、
     前記第1の領域よりも、前記リフレクタにより囲まれた空間の中心側に設けられた第2の領域と、
     を有し、
     前記複数の半導体発光素子は、前記第1の領域および前記第2の領域に配置され、
     前記リフレクタにより囲まれた空間の中心から前記第1の領域に配置された前記複数の半導体発光素子のそれぞれまでの距離は、前記複数の半導体発光素子のそれぞれから前記リフレクタまでの距離よりも大きいことを特徴とする光半導体光源。
  10.  前記第1の領域に設けられた前記複数の半導体発光素子のそれぞれに接続されたワイヤをさらに備え、
     前記ワイヤは、前記第1の領域に配置された前記半導体発光素子のそれぞれから前記リフレクタにより囲まれた空間の中心側に延在してなることを特徴とする請求項9記載の光半導体光源。
  11.  前記複数の半導体発光素子のいずれかは、上面に形成されたアノード電極を有し、
     前記複数の半導体発光素子の他のいずれかは、上面に形成されたカソード電極を有し、
     前記アノード電極と前記カソード電極とが、ワイヤで接続されたことを特徴とする請求項9記載の光半導体光源。
  12.  前記光半導体実装基板よりも熱伝導率が低い制御基板と、
     前記制御基板の上に設けられ前記半導体発光素子の駆動回路に含まれる回路素子と、
     前記光半導体実装基板と前記制御基板とを電気的に接続する接続手段と、
     前記光半導体実装基板の裏面に当接し前記半導体発光素子から放出される熱を外部に伝達させる第1の放熱部材と、
     をさらに備えた請求項10記載の光半導体光源。
  13.  前記光半導体実装基板の上に設けられた電流制御抵抗をさらに備え、
     前記電流制御抵抗は、前記複数の半導体発光素子と直列接続される請求項12記載の光半導体光源。
  14.  前記光半導体実装基板の裏面に当接し前記半導体発光素子から放出される熱を外部に伝達させる第1の放熱部材と、
     前記第1の放熱部材よりも外側に形成され、前記第1の放熱部材よりも熱放射率の高い第2の放熱部材と、
     をさらに備えたことを特徴とする請求項9記載の光半導体光源。
  15.  前記第1の放熱部材及び前記第2の放熱部材の少なくとも一方に取り付けられた、前記光半導体素子へ給電するためのコネクタ部と、
     前記コネクタ部と同一面に設けられた放熱フィンと、
     をさらに備え、
     前記コネクタ部の長辺方向は、前記放熱フィンの延在方向に沿っていることを特徴とする請求項14記載の光半導体光源。
  16.  前記第1の放熱部材は、前記制御基板の裏面に当接し、
     前記光半導体実装基板の裏面と当接する前記第1の放熱部材の第1の搭載面と、
     前記制御基板の裏面と当接する前記第1の放熱部材の第2の搭載面と、の高さが異なり、前記第1の搭載面は、前記第2搭載面に対して高いことを特徴とする請求項14記載の光半導体光源。
  17.  請求項6に記載の光半導体光源を備えた車両用照明装置。
  18.  請求項7に記載の光半導体光源を備えた車両用照明装置。
  19.  請求項14に記載の光半導体光源を備えた車両用照明装置。
  20.  請求項15に記載の光半導体光源を備えた車両用照明装置。
PCT/JP2013/058446 2012-04-11 2013-03-22 光半導体光源及び車両用照明装置 WO2013153938A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-090617 2012-04-11
JP2012090619A JP5988135B2 (ja) 2012-04-11 2012-04-11 光半導体光源及び車両用照明装置
JP2012090617A JP2013219289A (ja) 2012-04-11 2012-04-11 光半導体光源及び車両用照明装置
JP2012090618 2012-04-11
JP2012-090619 2012-04-11
JP2012-090618 2012-04-11
JP2012-100438 2012-04-25
JP2012100438A JP6052573B2 (ja) 2012-04-11 2012-04-25 光半導体光源及び車両用照明装置

Publications (1)

Publication Number Publication Date
WO2013153938A1 true WO2013153938A1 (ja) 2013-10-17

Family

ID=49327509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058446 WO2013153938A1 (ja) 2012-04-11 2013-03-22 光半導体光源及び車両用照明装置

Country Status (1)

Country Link
WO (1) WO2013153938A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106560652A (zh) * 2015-10-02 2017-04-12 东芝照明技术株式会社 车辆用照明装置及车辆用灯具
EP3285002A1 (en) * 2016-08-19 2018-02-21 Toshiba Lighting & Technology Corporation Lighting device for vehicle and lighting tool for vehicle
EP3502555A1 (en) * 2017-12-21 2019-06-26 Stanley Electric Co., Ltd. Light source unit for vehicle headlight and vehicle headlight
EP3581849A1 (en) * 2018-06-14 2019-12-18 Valeo Iluminacion Cooling device for an automotive lighting device and an automotive lighting device
CN112066335A (zh) * 2019-06-11 2020-12-11 东芝照明技术株式会社 车辆用照明装置及车辆用灯具
WO2021156207A1 (en) * 2020-02-07 2021-08-12 Signify Holding B.V. Led-based device
EP3059490B1 (en) * 2015-02-23 2023-08-16 Toshiba Lighting & Technology Corporation Vehicle lighting device and vehicle lamp
EP4290132A4 (en) * 2021-02-08 2024-06-05 Ichikoh Industries, Ltd. VEHICLE LAMP
EP4224059A4 (en) * 2020-09-30 2024-08-21 Ichikoh Industries Ltd VEHICLE LIGHTING DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292488A (ja) * 1985-10-18 1987-04-27 Takiron Co Ltd 発光ダイオ−ドチツプを用いた発光表示体
WO2008038708A1 (fr) * 2006-09-29 2008-04-03 Rohm Co., Ltd. Dispositif d'émission de lumière à semiconducteur
JP2008131011A (ja) * 2006-11-24 2008-06-05 Sumitomo Metal Electronics Devices Inc 発光素子収納用パッケージとその製造方法
JP2008270609A (ja) * 2007-04-23 2008-11-06 Harison Toshiba Lighting Corp 電子部品の放熱装置
JP2008270733A (ja) * 2007-04-23 2008-11-06 Augux Co Ltd 高熱伝導効率ledのパッケージング方法とその構造
JP2011228253A (ja) * 2010-04-19 2011-11-10 Ind Technol Res Inst ランプアセンブリー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292488A (ja) * 1985-10-18 1987-04-27 Takiron Co Ltd 発光ダイオ−ドチツプを用いた発光表示体
WO2008038708A1 (fr) * 2006-09-29 2008-04-03 Rohm Co., Ltd. Dispositif d'émission de lumière à semiconducteur
JP2008131011A (ja) * 2006-11-24 2008-06-05 Sumitomo Metal Electronics Devices Inc 発光素子収納用パッケージとその製造方法
JP2008270609A (ja) * 2007-04-23 2008-11-06 Harison Toshiba Lighting Corp 電子部品の放熱装置
JP2008270733A (ja) * 2007-04-23 2008-11-06 Augux Co Ltd 高熱伝導効率ledのパッケージング方法とその構造
JP2011228253A (ja) * 2010-04-19 2011-11-10 Ind Technol Res Inst ランプアセンブリー

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059490B1 (en) * 2015-02-23 2023-08-16 Toshiba Lighting & Technology Corporation Vehicle lighting device and vehicle lamp
CN106560652A (zh) * 2015-10-02 2017-04-12 东芝照明技术株式会社 车辆用照明装置及车辆用灯具
CN106560652B (zh) * 2015-10-02 2020-09-04 东芝照明技术株式会社 车辆用灯具
EP3285002A1 (en) * 2016-08-19 2018-02-21 Toshiba Lighting & Technology Corporation Lighting device for vehicle and lighting tool for vehicle
US10309609B2 (en) 2016-08-19 2019-06-04 Toshiba Lighting & Technology Corporation Lighting device for vehicle and lighting tool for vehicle
US10663137B2 (en) 2017-12-21 2020-05-26 Stanley Electric Co., Ltd. Light source unit for vehicle headlight and vehicle headlight
CN109945128A (zh) * 2017-12-21 2019-06-28 斯坦雷电气株式会社 车辆用灯具用光源单元以及车辆用灯具
CN109945128B (zh) * 2017-12-21 2022-05-03 斯坦雷电气株式会社 车辆用灯具用光源单元以及车辆用灯具
EP3502555A1 (en) * 2017-12-21 2019-06-26 Stanley Electric Co., Ltd. Light source unit for vehicle headlight and vehicle headlight
EP3581849A1 (en) * 2018-06-14 2019-12-18 Valeo Iluminacion Cooling device for an automotive lighting device and an automotive lighting device
CN112066335A (zh) * 2019-06-11 2020-12-11 东芝照明技术株式会社 车辆用照明装置及车辆用灯具
WO2021156207A1 (en) * 2020-02-07 2021-08-12 Signify Holding B.V. Led-based device
EP4224059A4 (en) * 2020-09-30 2024-08-21 Ichikoh Industries Ltd VEHICLE LIGHTING DEVICE
EP4290132A4 (en) * 2021-02-08 2024-06-05 Ichikoh Industries, Ltd. VEHICLE LAMP
US12123564B2 (en) 2021-02-08 2024-10-22 Ichikoh Industries, Ltd. Vehicle lamp with light emitting portion-side terminal

Similar Documents

Publication Publication Date Title
WO2013153938A1 (ja) 光半導体光源及び車両用照明装置
JP6052573B2 (ja) 光半導体光源及び車両用照明装置
EP3121511B1 (en) Lighting device for vehicle
JP6919403B2 (ja) 車両用照明装置および車両用灯具
EP2990725B1 (en) Socket and lighting device
EP2845765B1 (en) Lighting device
JP2013219289A (ja) 光半導体光源及び車両用照明装置
JP5853689B2 (ja) 車両用灯具の半導体型光源、車両用灯具の半導体型光源ユニット、車両用灯具
JP2019207785A (ja) 車両用照明装置、および車両用灯具
JP2021128944A (ja) 車両用照明装置および車両用灯具
JP6880507B2 (ja) 車両用照明装置、および車両用灯具
US20230280021A1 (en) Lighting device and a method of manufacturing a lighting device
JP5988135B2 (ja) 光半導体光源及び車両用照明装置
JP6593587B2 (ja) 車両用照明装置、および車両用灯具
US11158777B2 (en) LED light source
JP6652210B2 (ja) 車両用照明装置、および車両用灯具
JP6930332B2 (ja) 車両用照明装置、および車両用灯具
JP2018037197A (ja) 車両用照明装置、および車両用灯具
JP2016126936A (ja) 照明装置
JP6390951B2 (ja) 車両用照明装置および車両用灯具
CN219550323U (zh) 车辆用照明装置以及车辆用灯具
JP6390899B2 (ja) 車両用照明装置および車両用灯具
JP2020053166A (ja) 車両用照明装置、および車両用灯具
JP7556759B2 (ja) 車両用灯具用光源ユニット及び車両用灯具
CN112577018B (zh) 光源单元以及车辆用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775959

Country of ref document: EP

Kind code of ref document: A1