[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013031284A1 - 車両用燃料電池冷却装置及び燃料電池車両 - Google Patents

車両用燃料電池冷却装置及び燃料電池車両 Download PDF

Info

Publication number
WO2013031284A1
WO2013031284A1 PCT/JP2012/060169 JP2012060169W WO2013031284A1 WO 2013031284 A1 WO2013031284 A1 WO 2013031284A1 JP 2012060169 W JP2012060169 W JP 2012060169W WO 2013031284 A1 WO2013031284 A1 WO 2013031284A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
air
supply path
blower
vehicle
Prior art date
Application number
PCT/JP2012/060169
Other languages
English (en)
French (fr)
Inventor
俊英 橘
太田 徹
謙吾 池谷
善全 松本
龍司 大塚
善文 高井
貴紀 村上
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to CN201280036444.XA priority Critical patent/CN103702854B/zh
Priority to DE112012003641.7T priority patent/DE112012003641T8/de
Priority to US14/233,952 priority patent/US9312549B2/en
Priority to GB1400754.6A priority patent/GB2507889B/en
Publication of WO2013031284A1 publication Critical patent/WO2013031284A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K8/00Arrangement or mounting of propulsion units not provided for in one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a vehicle fuel cell cooling device and a fuel cell vehicle equipped with a fuel cell.
  • Patent Document 1 discloses a vehicle equipped with an air-cooled fuel cell.
  • the fuel cell is cooled using the traveling wind of the vehicle.
  • another pressure source such as an aerator, is provided for cooling the fuel cell.
  • the vehicle speed is detected, and when the vehicle speed is low, the ventilator is activated to cool the fuel cell. Also, when the external temperature is high, the ventilator is operated to cool the fuel cell.
  • Patent Document 1 has a problem that there is no means for adjusting the traveling wind, and the fuel cell cannot be appropriately cooled by the traveling wind according to the situation.
  • An object of the present invention is to perform appropriate cooling of the fuel cell with traveling wind according to the situation.
  • a first air intake port provided in a front portion of a vehicle and air taken from the first air intake port are supplied to a fuel cell that supplies electric power to a drive motor.
  • An air supply path, an adjustment member that is provided in the air supply path and adjusts the amount of air supplied from the air supply path to the fuel cell, a blower that blows air to the fuel cell, the adjustment member, and the blower And a control unit that controls and adjusts the amount of air supplied to the fuel cell by the air supply path and the blower.
  • the vehicle further includes a vehicle speed detection unit that detects a vehicle speed, and the control unit obtains a required air flow rate of the fuel cell from an output of the fuel cell.
  • the amount of air supplied from the air supply path to the fuel cell is adjusted by controlling the adjustment member based on the required air flow rate and the vehicle speed.
  • the required air flow rate is adjusted by the adjustment member to the air.
  • the blower is further controlled in addition to the control of the adjusting member, and the shortage of air is covered by the air blown by the blower.
  • the vehicle further includes a vehicle speed detection unit that detects a vehicle speed, and a temperature detection unit that detects the temperature of the fuel cell.
  • the amount of air supplied from the air supply path to the fuel cell is adjusted by obtaining the required air flow rate of the fuel cell from the output of the fuel cell and controlling the adjusting member based on the required air flow rate and the vehicle speed.
  • the fan is further controlled to blow air from the fan.
  • the control of the adjustment member and the control of the blower are performed so as not to cover the shortage of air amount due to the above, and to eliminate the difference between the target temperature of the fuel cell and the temperature detected by the temperature detection unit Is performed.
  • a second air intake port that takes air into the air supply path from the vehicle lower side, and an opening / closing member that opens and closes the second air intake port
  • a rain detection unit for detecting rain, and when the rain is detected by the rain detection unit, the control unit stops supply of air from the air supply path to the fuel cell by the adjusting member.
  • the second air intake is opened by the opening / closing member.
  • control unit causes the adjustment member to supply air from the air supply path to the fuel cell when the fuel cell is shut down. It will stop.
  • the apparatus further includes a temperature detection unit that detects the temperature of the fuel cell, and the control unit presets the temperature detected by the temperature detection unit. When the temperature is lower than the temperature, the adjustment member stops the supply of air from the air supply path to the fuel cell.
  • One aspect of the present invention includes a driving motor, a fuel cell that supplies electric power to the motor, a first air intake port provided in a front portion of the vehicle, and the first air intake port.
  • An air supply path for supplying the taken-in air to the fuel cell; an adjustment member provided in the air supply path for adjusting the amount of air supplied from the air supply path to the fuel cell; and a blower for blowing air to the fuel cell
  • a control unit that controls the adjustment member and the blower to adjust the amount of air supplied to the fuel cell by the air supply path and the blower.
  • the vehicle further includes a vehicle speed detection unit that detects a vehicle speed, and the control unit obtains a required air flow rate of the fuel cell from an output of the fuel cell.
  • the amount of air supplied from the air supply path to the fuel cell is adjusted by controlling the adjustment member based on the required air flow rate and the vehicle speed.
  • the required air flow rate is adjusted by the adjustment member to the air.
  • the blower is further controlled in addition to the control of the adjusting member, and the shortage of air is covered by the air blown by the blower.
  • the vehicle further includes a vehicle speed detection unit that detects a vehicle speed, and a temperature detection unit that detects the temperature of the fuel cell,
  • the amount of air supplied from the air supply path to the fuel cell is adjusted by obtaining the required air flow rate of the fuel cell from the output of the fuel cell and controlling the adjusting member based on the required air flow rate and the vehicle speed.
  • the fan is further controlled to blow air from the fan.
  • the control of the adjusting member and the control of the blower are performed so as to eliminate the difference between the target temperature of the fuel cell and the temperature detected by the temperature detector. And it performs.
  • a second air intake port for taking air into the air supply path from the vehicle lower side, and an opening / closing member that opens and closes the second air intake port
  • a rain detection unit for detecting rain, and when the rain is detected by the rain detection unit, the control unit stops supply of air from the air supply path to the fuel cell by the adjusting member.
  • the second air intake is opened by the opening / closing member.
  • control unit causes the adjustment member to supply air from the air supply path to the fuel cell when the fuel cell is shut down. It will stop.
  • the apparatus further includes a temperature detection unit that detects the temperature of the fuel cell, and the control unit presets the temperature detected by the temperature detection unit. When the temperature is lower than the temperature, the adjustment member stops the supply of air from the air supply path to the fuel cell.
  • the amount of traveling wind supplied to the fuel cell can be adjusted by the adjusting member according to the situation.
  • the amount of air necessary for the fuel cell can be provided without using a blower as much as possible, so that power consumption can be suppressed.
  • the fuel cell can be maintained at a temperature suitable for power generation.
  • raindrops can be prevented from being applied to the fuel cell.
  • the aspects (5) and (11) it is possible to prevent water and foreign matter from entering the fuel cell after the shutdown.
  • the fuel cell can be quickly warmed up.
  • FIG. 1 is a block diagram of a fuel cell vehicle system according to an embodiment of the present invention. It is a longitudinal cross-sectional view of the front part of the fuel cell vehicle which is one Embodiment of this invention. It is a block diagram which shows arrangement
  • FIG. 6 is a flowchart for explaining the proper use of a grill shutter opening command and a blower speed command in a fuel cell vehicle according to an embodiment of the present invention. It is a graph which shows the relationship between the request
  • FIG. 1 is an explanatory diagram for explaining the configuration and operation of a fuel cell mounted on the fuel cell vehicle 1 (see FIGS. 2 to 4).
  • the hydrogen fuel cell 11 is formed by stacking a large number of minimum structural units called cells.
  • the configuration shown in FIG. 1 also shows one of the cells.
  • each cell has a diffusion layer 14 sandwiched between an anode 12 and a cathode 13 for supplying hydrogen and air (oxygen), respectively, and a reaction activity sandwiched between the diffusion layers 14.
  • the hydrogen molecules supplied to the anode electrode 12 become active hydrogen atoms in the catalyst layer 15 on the electrolyte surface of the anode electrode 12, and further become hydrogen ions to release electrons.
  • This reaction represented by “1” in FIG. 1 is represented by the following formula (1). H 2 ⁇ 2H + + 2e ⁇ (1)
  • the hydrogen ions generated by the equation (1) move in the electrolyte membrane 16 from the anode electrode 12 side to the cathode electrode 13 side along with moisture contained in the electrolyte membrane, and electrons move to the cathode electrode 13 through an external circuit.
  • Oxygen molecules in the air supplied to one cathode electrode 13 receive electrons supplied from an external circuit in the catalyst layer 15 to become oxygen ions, and combine with hydrogen ions that have moved through the electrolyte membrane 16 to form water and water.
  • This reaction indicated by “2” in FIG. 1 is represented by the following equation (2). 1 / 2O 2 + 2H + + 2e ⁇ ⁇ H 2 O (2)
  • a part of the generated moisture moves from the cathode electrode 13 to the anode electrode 12 by concentration diffusion.
  • a resistance overvoltage caused by the electric resistance of the electrolyte membrane 16 and the electrode an activation overvoltage for causing an electrochemical reaction between hydrogen and oxygen, and hydrogen or oxygen in the diffusion layer 14
  • FIG. 2 is a block diagram of the system of the fuel cell vehicle 1 of the present embodiment.
  • This system of the fuel cell vehicle 1 cools exhaust heat generated by the fuel cell by air cooling. That is, the hydrogen fuel cell 11 is supplied with air by the blower 22 through the filter 21. This supplied air not only serves for the power generation reaction in the hydrogen fuel cell 11 but also takes away the waste heat of the hydrogen fuel cell 11 and cools it. It will be described later that air is supplied to the hydrogen fuel cell 11 also by traveling wind.
  • the hydrogen in the hydrogen tank 23 is supplied to the hydrogen fuel cell 11 after being reduced in pressure by the pressure reducing valve 24.
  • the anode exhaust is connected to the cathode exhaust via the purge valve 25. In order to perform the purge on the anode side, the exhaust hydrogen gas is diluted to below the flammable lower limit concentration by the cathode side exhaust and discharged to the outside air.
  • FIG. 3 is a longitudinal sectional view of the front portion of the fuel cell vehicle 1 of the present embodiment.
  • the front grill 31 formed at the front end portion of the front portion of the vehicle serves as a first air intake, and takes the traveling wind from the front of the vehicle.
  • the traveling wind is guided toward the rear side of the vehicle via an intake duct 32 serving as an air supply path, and is supplied to the hydrogen fuel cell 11 in the fuel cell case 33 disposed at the rear stage of the intake duct 32.
  • a blower 22 serving as a blower for blowing air to the hydrogen fuel cell 11 is provided at the rear part of the hydrogen fuel cell 11.
  • the blower 22 can change the rotation speed and output by PWM control or the like.
  • the hydrogen fuel cell 11 is shown in two upper and lower stages, and the blower 22 that blows air to the upper hydrogen fuel cell 11 is hidden in the cover 34 in FIG. 3.
  • a grill shutter 36 serving as an adjustment member is disposed between the front grill 31 and the intake duct 32. The grill shutter 36 can open and close the shutter member 37, and the opening degree can be adjusted when the shutter member 37 is opened. Thereby, the amount of air taken in from the front grill 31 can be adjusted.
  • FIG. 4 is a block diagram showing the arrangement of each part centering on the control system of the fuel cell vehicle 1 of the present embodiment.
  • a drive motor 43 and a transmission gear box 44 are disposed on the axle 42 of the front wheel 41 serving as a drive wheel.
  • the aforementioned hydrogen fuel cell 11 is mounted on the front portion of the vehicle. Further, the hydrogen tank 23 described above is disposed in the vicinity of the axle 46 of the rear wheel 45.
  • the control device 51 serving as a control unit is configured mainly with a microcomputer, and controls each part of the fuel cell vehicle 1 in a centralized manner.
  • a vehicle speed sensor 52 that serves as a vehicle speed detection unit that detects the vehicle speed
  • a temperature sensor 53 that serves as a temperature detection unit that detects the temperature of the hydrogen fuel cell 11
  • a rain detection unit 54 that detects rainfall.
  • the rain detection unit 54 can be realized by a wiper switch that operates a wiper (not shown) of the vehicle, a rain drop sensor that detects rain drops, or the like. That is, when the wiper switch is turned on, it is considered that it is currently raining.
  • an actuator 55 that opens and closes the shutter member 37 of the grille shutter 36 and an actuator 56 that opens and closes the flap 39 are connected to the control device 51.
  • the opening degree of the shutter member 37 of the grill shutter 36 by adjusting the opening degree of the shutter member 37 of the grill shutter 36, the supply amount of the traveling wind introduced from the front grill 31 to the hydrogen fuel cell 11 varies depending on the situation. Can be adjusted. Below, the content of the control which the control apparatus 51 performs with the fuel cell vehicle 1 of this embodiment is demonstrated.
  • FIG. 5 is a block diagram for explaining feedforward control of the grill shutter 36.
  • the control device 51 obtains the required air flow rate of the hydrogen fuel cell 11 from the output of the hydrogen fuel cell 11 by using a conversion map prepared in advance.
  • a grill shutter opening command and a blower speed command are generated based on the required air flow rate of the hydrogen fuel cell 11 and the vehicle speed detected by the vehicle speed sensor 52 by using a conversion map prepared in advance.
  • the opening degree command is given to the grill shutter 36, and the blower speed command is given to the blower 22.
  • the grill shutter opening command is a control signal for instructing the opening degree of the shutter member 37 of the grill shutter 36
  • the blower speed command is a control signal for instructing the air flow rate of the blower 22.
  • the conversion map used here is obtained in advance by experiments.
  • FIG. 6 is a flowchart for explaining the proper use of the grill shutter opening command and the blower speed command in the control of FIG.
  • the control device 51 determines whether or not the maximum supply air flow rate due to traveling wind is larger than the required air flow rate of the hydrogen fuel cell 11 (step S1).
  • the maximum supply air flow rate by the traveling wind is the air flow rate supplied from the front grill 31 to the hydrogen fuel cell 11 when the shutter member 37 of the grill shutter 36 is fully opened, and can be calculated from the vehicle speed.
  • the maximum supply air flow rate by the traveling wind is larger than the required air flow rate of the hydrogen fuel cell 11 (Y in step S1), all the air flow to be supplied to the hydrogen fuel cell 11 can be covered by the traveling wind taken from the front grill 31.
  • step S2 Only the opening / closing control of the shutter member 37 of the grille shutter 36 by the grille shutter opening command does not cover the required air flow rate of the hydrogen fuel cell 11, and the blower 22 is not operated (step S2).
  • the maximum supply air flow rate due to the traveling wind is equal to or less than the required air flow rate of the hydrogen fuel cell 11 (N in Step S1)
  • the shutter member 37 of the grille shutter 36 is fully opened by the grille shutter opening command and taken in from the front grille 31.
  • the running air is set to the maximum amount, and the air for the shortage of the required air flow rate of the hydrogen fuel cell 11 is operated by the blower speed command (step S3).
  • FIG. 7 is a graph showing the relationship between the required air flow rate of the hydrogen fuel cell 11, the grill shutter opening command, and the blower speed command.
  • the horizontal axis represents the required air flow rate
  • the vertical axis represents the grill shutter opening command and blower speed command.
  • the higher the grill shutter opening command the larger the opening of the shutter member 37 of the grill shutter 36, and the higher the blower speed command, the larger the air volume of the blower 22.
  • the required air flow rate is small, all of the running wind taken in from the front grill 31 can be used. Therefore, only the adjustment of the opening degree of the shutter member 37 of the grille shutter 36 by the grille shutter opening degree command is used.
  • the air volume of the blower 22 is adjusted according to the increase in the required air flow rate by the blower speed command while maintaining the fully open state. And expand.
  • FIG. 8 is a block diagram illustrating feedback control of the grill shutter 36 and the blower 22.
  • the control device 51 compares the measured temperature of the hydrogen fuel cell 11 by the temperature sensor 53 with the target temperature of the hydrogen fuel cell 11 prepared in advance, and the grill shutter opening command and the blower speed command are grilled so as to eliminate the difference.
  • the amount of running air taken in via the grill shutter 36 and the air amount of the blower 22 are adjusted so that the temperature of the hydrogen fuel cell 11 becomes the target temperature.
  • FIG. 9 is a graph showing the relationship between the required air flow rate of the hydrogen fuel cell 11 and the grill shutter opening command and blower speed command in this case.
  • the horizontal axis represents the required air flow rate
  • the vertical axis represents the grill shutter opening command and blower speed command.
  • the higher the grill shutter opening command the larger the opening of the shutter member 37 of the grill shutter 36, and the higher the blower speed command, the larger the air volume of the blower 22. Even in this control, as long as the required air flow rate is small, all of the running wind taken in from the front grill 31 can be covered. Therefore, only the opening degree adjustment of the shutter member 37 of the grille shutter 36 by the grille shutter opening degree command is dealt with. After the required air flow rate increases and the opening degree of the shutter member 37 of the grille shutter 36 is fully opened, the air volume of the blower 22 is adjusted according to the increase in the required air flow rate by the blower speed command while maintaining the fully open state. And expand.
  • the hydrogen fuel cell 11 can be maintained at a temperature suitable for power generation.
  • the desired control state may be removed only by the feedforward control, and the control may be delayed only by the feedback control. Therefore, the response is made by combining the feedforward control and the feedback control as described above. Realizes good control.
  • FIG. 10 is a flowchart illustrating control based on the detection result of the rain detection unit 54.
  • the control device 51 closes the grill shutter 36 by driving the shutter member 37, and stops the supply of traveling wind to the hydrogen fuel cell 11, Further, the opening 38 is opened by the operation of the flap 39 (step S12).
  • the opening / closing control control described above with reference to FIGS. 5 to 9 by driving the shutter member 37 of the grille shutter 36 is started, The opening 38 is closed by the operation of the flap 39 (step S13).
  • FIG. 11 is a flowchart for explaining control when the hydrogen fuel cell 11 is shut down.
  • the control unit 51 shuts down the hydrogen fuel cell 11 (the chemical reaction of the hydrogen fuel cell 11 is stopped and the power supply from the hydrogen fuel cell 11 is stopped) (Y in step S21)
  • the control unit 51 opens the grill shutter 36. It is closed by driving the shutter member 37 (step S22).
  • FIG. 12 is a flowchart for describing control based on the detection result of the temperature sensor 53.
  • the control device 51 closes the grill shutter 36 by driving the shutter member 37 and supplies the traveling wind to the hydrogen fuel cell 11. Is stopped (step S32).
  • opening / closing control by driving the shutter member 37 of the grille shutter 36 (see FIGS. 5 to 9). The control described above is started (step S33).
  • the hydrogen fuel cell 11 can be quickly warmed up, for example, at the beginning of the operation of the fuel cell vehicle 1.
  • the matters described above do not limit the present invention.
  • the present invention may be applied to a two-wheel vehicle.
  • the present invention can also be applied to cooling of secondary batteries and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

 フロントグリル(31)と吸気ダクト(32)との間にはグリルシャッター(36)が配置されている。このグリルシャッター(36)はシャッター部材(37)を開閉でき、また、開くときにはシャッター部材(37)の開度を調整することができる。走行風による最大供給空気流量が水素燃料電池(11)の要求空気流量より大きいときは、グリルシャッター開度指令によるシャッター部材(37)の開閉制御のみで水素燃料電池(11)の要求空気流量をまかなう。そうでないときは、グリルシャッター開度指令によりグリルシャッター部材(37)を全開にして、フロントグリル(31)から取り込む走行風を最大量にし、また、水素燃料電池(11)の要求空気流量の不足分の空気はブロア速度指令によりブロア(22)を動作させてまかなう。

Description

車両用燃料電池冷却装置及び燃料電池車両
 本発明は、燃料電池を搭載した車両用燃料電池冷却装置及び燃料電池車両に関する。
 特許文献1には、空冷式燃料電池を搭載した車両について開示されている。この技術では、車両の走行風を用いて燃料電池を冷却している。また、通風機のような別の圧力源が燃料電池の冷却のために準備されている。そして、車速を検出し、車速が低速の際には通風機が作動して燃料電池の冷却を行なう。また、外部温度が高い場合も通風機を作動させて燃料電池の冷却を行う。
特表2000‐514745
 しかしながら、特許文献1に開示の技術では、走行風を調節するための手段がなく、燃料電池に対し状況に応じた走行風による適切な冷却を行うことができないという不具合がある。
 本発明の目的は、燃料電池に対し状況に応じた走行風による適切な冷却を行うことである。
 (1)本発明の一態様は、車両前部に設けられた第1の空気取入口と、前記第1の空気取入口から取り入れた空気を駆動用のモータに電力を供給する燃料電池に供給する空気供給路と、前記空気供給路に設けられ当該空気供給路から前記燃料電池に供給する空気の量を調節する調節部材と、前記燃料電池に送風する送風機と、前記調節部材及び前記送風機を制御して前記空気供給路及び前記送風機により前記燃料電池に供給する空気量を調節する制御部と、を備えている車両用燃料電池冷却装置である。
 (2)本発明の別の態様は、(1)の態様において、車速を検出する車速検出部をさらに備え、前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかなうものである。
 (3)本発明の別の態様は、(1)の態様において、車速を検出する車速検出部と、前記燃料電池の温度を検出する温度検出部と、をさらに備え、前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかない、また、前記燃料電池の目標温度と前記温度検出部の検出した温度との差を解消するように前記調節部材の制御及び前記送風機の制御を行うものである。
 (4)本発明の別の態様は、(1)の態様において、車両下部側から前記空気供給路に空気を取り入れる第2の空気取入口と、前記第2の空気取入口を開閉する開閉部材と、降雨を検出する降雨検出部と、をさらに備え、前記制御部は、前記降雨検出部で降雨を検出したときは前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止し、かつ、前記開閉部材で前記第2の空気取入口を開くものである。
 (5)本発明の別の態様は、(1)の態様において、前記制御部は、前記燃料電池のシャットダウンの際には前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止するものである。
 (6)本発明の別の態様は、(1)の態様において、前記燃料電池の温度を検出する温度検出部をさらに備え、前記制御部は、前記温度検出部の検出した温度があらかじめ設定した温度より低いときには前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止するものである。
 (7)本発明の一態様は、駆動用のモータと、前記モータに電力を供給する燃料電池と、車両前部に設けられた第1の空気取入口と、前記第1の空気取入口から取り入れた空気を前記燃料電池に供給する空気供給路と、前記空気供給路に設けられ当該空気供給路から前記燃料電池に供給する空気の量を調節する調節部材と、前記燃料電池に送風する送風機と、前記調節部材及び前記送風機を制御して前記空気供給路及び前記送風機により前記燃料電池に供給する空気量を調節する制御部と、を備えている燃料電池車両である。
 (8)本発明の別の態様は、(7)の態様において、車速を検出する車速検出部をさらに備え、前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかなうものである。
 (9)本発明の別の態様は、(7)の態様において、車速を検出する車速検出部と、前記燃料電池の温度を検出する温度検出部と、をさらに備え、前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかない、さらに、前記燃料電池の目標温度と前記温度検出部の検出した温度との差を解消するように前記調節部材の制御及び前記送風機の制御を行うものである。
 (10)本発明の別の態様は、(7)の態様において、車両下部側から前記空気供給路に空気を取り入れる第2の空気取入口と、前記第2の空気取入口を開閉する開閉部材と、降雨を検出する降雨検出部と、をさらに備え、前記制御部は、前記降雨検出部で降雨を検出したときは前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止し、かつ、前記開閉部材で前記第2の空気取入口を開くものである。
 (11)本発明の別の態様は、(7)の態様において、前記制御部は、前記燃料電池のシャットダウンの際には前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止するものである。
 (12)本発明の別の態様は、(7)の態様において、前記燃料電池の温度を検出する温度検出部をさらに備え、前記制御部は、前記温度検出部の検出した温度があらかじめ設定した温度より低いときには前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止するものである。
 (1)及び(7)の態様によれば、燃料電池に供給する走行風の量を状況に応じ調節部材により調節することができる。
 (2)及び(8)の態様によれば、燃料電池に必要な空気量を、送風機を極力使用することなくまかなうことができるので、消費電力を抑制することができる。
 (3)及び(9)の態様によれば、燃料電池を発電に適した温度に保つことができる。
 (4)及び(10)の態様によれば、雨滴が燃料電池にかからないようにすることができる。
 (5)及び(11)の態様によれば、シャットダウン後は水や異物が燃料電池に侵入することを防止することができる。
 (6)及び(12)の態様によれば、燃料電池を速やかに暖機することができる。
本発明の一実施形態である燃料電池車両に搭載された燃料電池の構成、動作について説明する説明図である。 本発明の一実施形態である燃料電池車両のシステムのブロック図である。 本発明の一実施形態である燃料電池車両の前部の縦断面図である。 本発明の一実施形態である燃料電池車両の制御系を中心とした各部の配置を示すブロック図である。 本発明の一実施形態である燃料電池車両のグリルシャッターのフィードフォワード制御について説明するブロック図である。 本発明の一実施形態である燃料電池車両においてグリルシャッター開度指令とブロア速度指令との使い分けについて説明するフローチャートである。 本発明の一実施形態である燃料電池車両において水素燃料電池の要求空気流量と、グリルシャッター開度指令及びブロア速度指令との関係を示すグラフである。 本発明の一実施形態である燃料電池車両においてグリルシャッター及びブロアのフィードバック制御について説明するブロック図である。 本発明の一実施形態である燃料電池車両において水素燃料電池の要求空気流量と、グリルシャッター開度指令及びブロア速度指令との関係を示すグラフである。 本発明の一実施形態である燃料電池車両における降雨検出部の検出結果に基づく制御について説明するフローチャートである。 本発明の一実施形態である燃料電池車両における水素燃料電池をシャットダウンする場合の制御について説明するフローチャートである。 本発明の一実施形態である燃料電池車両における温度センサの検出結果に基づく制御について説明するフローチャートである。
 以下、本発明の一実施の形態について説明する。
 本実施の形態にかかる燃料電池車両は、車両を駆動するためのモータと、このモータに電力を供給する燃料電池とを搭載している。
 図1は、この燃料電池車両1(図2~図4参照)に搭載された燃料電池の構成、動作について説明する説明図である。最初に、この水素燃料電池11の電気化学反応と、それに付随して発生する水の生成について説明する。水素燃料電池11は、セルと呼ばれる最小構成単位を多数積層してスタックを構成している。図1図示の構成もセルの一つを示すものである。通常の固体高分子型燃料電池において、各セルは、水素及び空気(酸素)をそれぞれ供給するアノード極12とカソード極13とに挟まれた拡散層14と、拡散層14に挟まれた反応活性化のための触媒層15と、触媒層15に挟まれていて水素イオンを選択的に透過させる電界質膜16とを備えている。
 アノード極12に供給された水素分子は、アノード極12の電解質表面にある触媒層15において活性な水素原子となり、さらに水素イオンになって電子を放出する。図1において“1”で示されるこの反応は、以下の(1)式で表わされる。
 H → 2H + 2e      ……(1)
 (1)式により発生した水素イオンは、電解質膜に含まれる水分を伴ってアノード極12側からカソード極13側への電解質膜16中を移動し、また、電子は外部回路を通じてカソード極13に移動する。一方のカソード極13に供給された空気中の酸素分子は、触媒層15において外部回路から供給された電子を受け取って酸素イオンとなり、電界質膜16を移動してきた水素イオンと結合して水となる。図1において“2”で示されるこの反応は、以下の(2)式で表わされる。
 1/2O + 2H + 2e → HO      ……(2)
 このようにして生成された水分の一部は濃度拡散によりカソード極13からアノード極12へと移動する。
 このような化学反応において、燃料電池内部では、電界質膜16や電極の電気抵抗に起因する抵抗過電圧、水素と酸素が電気化学反応を起こすための活性化過電圧、拡散層14中を水素や酸素が移動するための拡散過電圧などの様々な損失が発生する。そして、それにより発生した廃熱は冷却する必要がある。
 図2は、本実施形態の燃料電池車両1のシステムのブロック図である。この燃料電池車両1のシステムは、燃料電池の発生する排熱を空冷式で冷却する。すなわち水素燃料電池11はフィルタ21を介してブロア22により空気の供給を受ける。この供給された空気は、水素燃料電池11における発電反応に供するのみでなく、水素燃料電池11の廃熱を奪い、冷却する役割も担う。なお、水素燃料電池11への空気の供給は走行風によっても行うことは後述する。また、水素タンク23内の水素は減圧弁24により降圧した後に水素燃料電池11に供給される。アノード排気はパージ弁25を介してカソード排気に連結している。アノード側のパージを行うには排気水素ガスをカソード側排気により可燃下限濃度以下に希釈して外気に放出する。
 図3は、本実施形態の燃料電池車両1の前部の縦断面図である。車両前部の先端部分に形成されたフロントグリル31は第1の空気取入口となるもので、走行風を車両前方から採り入れる。この走行風は空気供給路となる吸気ダクト32を介して車両後方側に向かって導かれ、吸気ダクト32の後段に配置された燃料電池ケース33内の水素燃料電池11に供給される。また、水素燃料電池11の後部には水素燃料電池11に送風する送風機となるブロア22が設けられている。ブロア22はPWM制御などで回転数、出力を変えることができる。なお、図3では水素燃料電池11が上下2段示されていて、上段の水素燃料電池11に送風するブロア22は、図3においてはカバー34に隠れている。フロントグリル31と吸気ダクト32との間には調節部材となるグリルシャッター36が配置されている。このグリルシャッター36はシャッター部材37を開閉でき、また、シャッター部材37を開くときにはその開度を調整することができる。これにより、フロントグリル31から取り込む空気の量を調節することができる。
 また、吸気ダクト32の下部には、車両下部から空気を取り入れる第2の空気取入口となる開口部38と、この開口部38を開閉する開閉部材となるフラップ39とが設けられている。なお、図3の各部における空気の流れを矢印により示している。
 図4は、本実施形態の燃料電池車両1の制御系を中心とした各部の配置を示すブロック図である。駆動輪となる前輪41の車軸42には駆動用のモータ43、変速機のギヤボックス44が配置されている。車両の前方部には前述の水素燃料電池11が搭載されている。また、後輪45の車軸46近傍には前述の水素タンク23が配置されている。
 制御部となる制御装置51は、マイクロコンピュータを中心に構成され、燃料電池車両1の各部を集中的に制御する。制御装置51には、車速を検出する車速検出部となる車速センサ52、水素燃料電池11の温度を検出する温度検出部となる温度センサ53、及び降雨を検出する降雨検出部54がそれぞれ接続されている。降雨検出部54は、車両のワイパ(図示せず)を作動させるワイパスイッチや、雨滴を検出する雨滴センサなどにより実現することができる。すなわち、ワイパスイッチがONになった場合は、現在降雨中であると考えられるから、ワイパスイッチのON、OFF信号により間接的に降雨を検出することができる。また、雨滴センサは直接的に降雨を検出することができる。
 また、制御装置51には、グリルシャッター36のシャッター部材37を開閉動作するアクチュエータ55と、フラップ39を開閉動作するアクチュエータ56とが接続されている。
 以上の構成の燃料電池車両1においては、グリルシャッター36のシャッター部材37の開度を調整することにより、フロントグリル31から採り入れる走行風の水素燃料電池11への供給量を状況に応じてさまざまに調節することができる。
 以下では、本実施形態の燃料電池車両1で制御装置51が実行する制御の内容について説明する。
 図5は、グリルシャッター36のフィードフォワード制御について説明するブロック図である。制御装置51は、まず、予め用意された変換マップにより、水素燃料電池11の出力から水素燃料電池11の要求空気流量を求める。次に、予め用意された変換マップにより、水素燃料電池11の要求空気流量と、車速センサ52で検出した車速とに基づいて、グリルシャッター開度指令と、ブロア速度指令とが生成され、グリルシャッター開度指令はグリルシャッター36に与えられ、ブロア速度指令はブロア22に与えられる。グリルシャッター開度指令はグリルシャッター36のシャッター部材37の開度を指示する制御信号であり、ブロア速度指令はブロア22の送風量を指示する制御信号である。ここで使用される変換マップは予め実験により求めておく。
 図6は、図5の制御において、グリルシャッター開度指令とブロア速度指令との使い分けについて説明するフローチャートである。まず、制御装置51は、走行風による最大供給空気流量が水素燃料電池11の要求空気流量より大きいか否かを判断する(ステップS1)。走行風による最大供給空気流量は、グリルシャッター36のシャッター部材37を全開にしたときにフロントグリル31から水素燃料電池11に供給される空気流量であり、車速から計算することができる。走行風による最大供給空気流量が水素燃料電池11の要求空気流量より大きいときは(ステップS1のY)、水素燃料電池11に供給すべき空気流量はフロントグリル31から取り込む走行風で全てまかなえるので、グリルシャッター開度指令によるグリルシャッター36のシャッター部材37の開閉制御のみで水素燃料電池11の要求空気流量をまかない、ブロア22は動作させない(ステップS2)。走行風による最大供給空気流量が水素燃料電池11の要求空気流量以下のときは(ステップS1のN)、グリルシャッター開度指令によりグリルシャッター36のシャッター部材37を全開にして、フロントグリル31から取り込む走行風を最大量にし、また、水素燃料電池11の要求空気流量の不足分の空気はブロア速度指令によりブロア22を動作させてまかなう(ステップS3)。
 図7は、水素燃料電池11の要求空気流量と、グリルシャッター開度指令及びブロア速度指令との関係を示すグラフである。横軸には要求空気流量をとり、縦軸にはグリルシャッター開度指令及びブロア速度指令をとっている。グリルシャッター開度指令は高くなるほどグリルシャッター36のシャッター部材37の開度が大きくなり、ブロア速度指令は高くなるほどブロア22の風量が大きくなる。要求空気流量が小さいうちはフロントグリル31から取り込む走行風ですべてまかなえるので、グリルシャッター開度指令によるグリルシャッター36のシャッター部材37の開度調節のみで対処する。そして、要求空気流量が増大してグリルシャッター36のシャッター部材37の開度が全開になって以後は、その全開状態を維持したままブロア速度指令によりブロア22の風量を要求空気流量の増大に応じて拡大していく。
 このように、まずはグリルシャッター36の調節によりフロントグリル31からの走行風で水素燃料電池11の要求空気流量をまかない、これで足りない場合にのみブロア22を駆動するようにしているので、消費電力を抑制することができる。
 図8は、グリルシャッター36及びブロア22のフィードバック制御について説明するブロック図である。制御装置51は、温度センサ53による水素燃料電池11の測定温度を予め用意された水素燃料電池11の目標温度と比較し、その差分を解消するようにグリルシャッター開度指令、ブロア速度指令をグリルシャッター36及びブロア22に出力することによって、グリルシャッター36を介して取り込む走行風の量やブロア22の風量を調節し、水素燃料電池11の温度が目標温度になるようにする。
 図9は、この場合の水素燃料電池11の要求空気流量と、グリルシャッター開度指令及びブロア速度指令との関係を示すグラフである。横軸には要求空気流量をとり、縦軸にはグリルシャッター開度指令及びブロア速度指令をとっている。グリルシャッター開度指令は高くなるほどグリルシャッター36のシャッター部材37の開度が大きくなり、ブロア速度指令は高くなるほどブロア22の風量が大きくなる。この制御の場合も要求空気流量が小さいうちはフロントグリル31から取り込む走行風ですべてまかなえるので、グリルシャッター開度指令によるグリルシャッター36のシャッター部材37の開度調節のみで対処する。そして、要求空気流量が増大してグリルシャッター36のシャッター部材37の開度が全開になって以後は、その全開状態を維持したままブロア速度指令によりブロア22の風量を要求空気流量の増大に応じて拡大していく。
 このようなフィードバック制御をおこなうことにより、水素燃料電池11を発電に適した温度に保つことができる。
 本実施形態では、フィードフォワード制御のみでは望む制御の状態が外れることがあり、また、フィードバック制御のみでは制御が遅れることがあるため、前述のとおりのフィードフォワード制御とフィードバック制御とを組み合わせて、応答性の良い制御を実現している。
 図10は、降雨検出部54の検出結果に基づく制御について説明するフローチャートである。制御装置51は、降雨検出部54で降雨を検出したときは(ステップS11のY)、グリルシャッター36をシャッター部材37の駆動により閉じて、走行風の水素燃料電池11への供給を停止し、また、開口部38をフラップ39の動作により開く(ステップS12)。そして、その後、降雨を検出しなくなったときは(ステップS11のN)、グリルシャッター36のシャッター部材37の駆動による開閉制御(図5~図9を参照して前述した制御)を開始し、また、開口部38をフラップ39の動作により閉じる(ステップS13)。
 かかる制御により、雨滴が水素燃料電池11にかからないようにすることができる。また、シャッター部材37を閉じても開口部38を開くことで車両の下部から空気を取り入れることはできる。
 図11は、水素燃料電池11をシャットダウンする場合の制御について説明するフローチャートである。制御装置51は、水素燃料電池11をシャットダウン(水素燃料電池11の化学反応を停止し、水素燃料電池11からの電力供給を停止した状態)したときは(ステップS21のY)、グリルシャッター36をシャッター部材37の駆動により閉じる(ステップS22)。
 このような制御により、水素燃料電池11のシャットダウン後には、水や異物が水素燃料電池11に侵入することを防止することができる。
 図12は、温度センサ53の検出結果に基づく制御について説明するフローチャートである。制御装置51は、温度センサ53の検出温度が予め設定された温度より低いときには(ステップS31のY)、グリルシャッター36をシャッター部材37の駆動により閉じて、走行風の水素燃料電池11への供給を停止する(ステップS32)。そして、その後、温度センサ53の検出温度が予め設定された温度以上となったときは(ステップS31のN)、グリルシャッター36のシャッター部材37の駆動による開閉制御(図5~図9を参照して前述した制御)を開始する(ステップS33)。
 かかる制御により、燃料電池車両1の運転開始初期の場合などに、水素燃料電池11を速やかに暖機することができる。
 なお、以上説明した事項が本発明を限定するものではないことは言うまでもない。例えば、前述の説明は4輪車両の例で説明したが、本発明を2輪車両に適用してもよい。
 また、二次電池等の冷却に対しても本発明を適用することができる。
 11  水素燃料電池
 22  ブロア
 31  フロントグリル
 32  吸気ダクト
 36  グリルシャッター
 38  開口部
 39  フラップ
 51  制御装置

Claims (12)

  1.  車両前部に設けられた第1の空気取入口と、
     前記第1の空気取入口から取り入れた空気を駆動用のモータに電力を供給する燃料電池に供給する空気供給路と、
     前記空気供給路に設けられ当該空気供給路から前記燃料電池に供給する空気の量を調節する調節部材と、
     前記燃料電池に送風する送風機と、
     前記調節部材及び前記送風機を制御して前記空気供給路及び前記送風機により前記燃料電池に供給する空気量を調節する制御部と、
    を備えている車両用燃料電池冷却装置。
  2.  車速を検出する車速検出部をさらに備え、
     前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかなう、
    請求項1に記載の車両用燃料電池冷却装置。
  3.  車速を検出する車速検出部と、
     前記燃料電池の温度を検出する温度検出部と、
    をさらに備え、
     前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかない、また、前記燃料電池の目標温度と前記温度検出部の検出した温度との差を解消するように前記調節部材の制御及び前記送風機の制御を行う、
    請求項1に記載の車両用燃料電池冷却装置。
  4.  車両下部側から前記空気供給路に空気を取り入れる第2の空気取入口と、
     前記第2の空気取入口を開閉する開閉部材と、
     降雨を検出する降雨検出部と、
    をさらに備え、
     前記制御部は、前記降雨検出部で降雨を検出したときは前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止し、かつ、前記開閉部材で前記第2の空気取入口を開く、
    請求項1に記載の車両用燃料電池冷却装置。
  5.  前記制御部は、前記燃料電池のシャットダウンの際には前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止する、請求項1に記載の車両用燃料電池冷却装置。
  6.  前記燃料電池の温度を検出する温度検出部をさらに備え、
     前記制御部は、前記温度検出部の検出した温度があらかじめ設定した温度より低いときには前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止する、
    請求項1に記載の車両用燃料電池冷却装置。
  7.  駆動用のモータと、
     前記モータに電力を供給する燃料電池と、
     車両前部に設けられた第1の空気取入口と、
     前記第1の空気取入口から取り入れた空気を前記燃料電池に供給する空気供給路と、
     前記空気供給路に設けられ当該空気供給路から前記燃料電池に供給する空気の量を調節する調節部材と、
     前記燃料電池に送風する送風機と、
     前記調節部材及び前記送風機を制御して前記空気供給路及び前記送風機により前記燃料電池に供給する空気量を調節する制御部と、
    を備えている燃料電池車両。
  8.  車速を検出する車速検出部をさらに備え、
     前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかなう、
    請求項7に記載の燃料電池車両。
  9.  車速を検出する車速検出部と、
     前記燃料電池の温度を検出する温度検出部と、
    をさらに備え、
     前記制御部は、前記燃料電池の出力から当該燃料電池の要求空気流量を求めて当該要求空気流量及び前記車速に基づいて前記調節部材を制御することにより前記空気供給路から前記燃料電池に供給する空気の量を調節し、この場合に前記要求空気流量が前記調節部材により前記空気供給路から前記燃料電池に供給できる最大空気量より多い場合は前記調節部材の制御に加えてさらに前記送風機を制御して当該送風機による送風により不足分の空気量をまかない、また、前記燃料電池の目標温度と前記温度検出部の検出した温度との差を解消するように前記調節部材の制御及び前記送風機の制御を行う、
    請求項7に記載の燃料電池車両。
  10.  車両下部側から前記空気供給路に空気を取り入れる第2の空気取入口と、
     前記第2の空気取入口を開閉する開閉部材と、
     降雨を検出する降雨検出部と、
    をさらに備え、
     前記制御部は、前記降雨検出部で降雨を検出したときは前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止し、かつ、前記開閉部材で前記第2の空気取入口を開く、
    請求項7に記載の燃料電池車両。
  11.  前記制御部は、前記燃料電池のシャットダウンの際には前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止する、請求項7に記載の燃料電池車両。
  12.  前記燃料電池の温度を検出する温度検出部をさらに備え、
     前記制御部は、前記温度検出部の検出した温度があらかじめ設定した温度より低いときには前記調節部材で前記空気供給路から前記燃料電池への空気の供給を停止する、
    請求項7に記載の燃料電池車両。
PCT/JP2012/060169 2011-08-31 2012-04-13 車両用燃料電池冷却装置及び燃料電池車両 WO2013031284A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280036444.XA CN103702854B (zh) 2011-08-31 2012-04-13 车辆用燃料电池冷却装置以及燃料电池车辆
DE112012003641.7T DE112012003641T8 (de) 2011-08-31 2012-04-13 Brennstoffzellen-Kühlsystem für ein Fahrzeug und brennstoffzellenbetriebenes Fahrzeug
US14/233,952 US9312549B2 (en) 2011-08-31 2012-04-13 Fuel cell cooling system for vehicle and fuel cell-powered vehicle
GB1400754.6A GB2507889B (en) 2011-08-31 2012-04-13 Fuel cell cooling system for vehicle and fuel cell-powered vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-188237 2011-08-31
JP2011188237A JP5810753B2 (ja) 2011-08-31 2011-08-31 燃料電池車両

Publications (1)

Publication Number Publication Date
WO2013031284A1 true WO2013031284A1 (ja) 2013-03-07

Family

ID=47755803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060169 WO2013031284A1 (ja) 2011-08-31 2012-04-13 車両用燃料電池冷却装置及び燃料電池車両

Country Status (6)

Country Link
US (1) US9312549B2 (ja)
JP (1) JP5810753B2 (ja)
CN (1) CN103702854B (ja)
DE (1) DE112012003641T8 (ja)
GB (1) GB2507889B (ja)
WO (1) WO2013031284A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619870A (zh) * 2022-03-18 2022-06-14 东风汽车集团股份有限公司 一种格栅控制方法、装置、设备和介质

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153797B2 (ja) * 2013-07-17 2017-06-28 本田技研工業株式会社 燃料電池車両
JP5910598B2 (ja) 2013-10-07 2016-04-27 トヨタ自動車株式会社 燃料電池を搭載する移動体
JP6104864B2 (ja) * 2014-09-02 2017-03-29 本田技研工業株式会社 燃料電池スタック及び燃料電池車両
DE102014221242A1 (de) * 2014-10-20 2016-04-21 Volkswagen Aktiengesellschaft Fahrzeug
CN105584351B (zh) * 2015-05-06 2017-03-01 徐工集团工程机械股份有限公司 车辆及其温度调节系统和温度调节方法
US9827846B2 (en) * 2015-06-10 2017-11-28 Ford Global Technologies, Llc Traction battery cooling system
JP6319356B2 (ja) * 2016-04-18 2018-05-09 トヨタ自動車株式会社 空冷式燃料電池車
KR101866020B1 (ko) * 2016-04-26 2018-06-08 현대자동차주식회사 연료전지 차량의 시동 제어방법
JP6311744B2 (ja) 2016-06-06 2018-04-18 トヨタ自動車株式会社 空冷式燃料電池車
WO2018029829A1 (ja) * 2016-08-10 2018-02-15 日産自動車株式会社 燃料電池システム、及び、燃料電池システムの制御方法
US11260749B2 (en) * 2016-09-26 2022-03-01 Transportation Ip Holdings, Llc Cooling control systems
DE102016219485A1 (de) * 2016-10-07 2018-04-12 Audi Ag Kraftfahrzeug und Energiespeichereinrichtung
US10563564B2 (en) * 2017-01-24 2020-02-18 Ford Global Technologies, Llc Cooling fan and active grille shutter control
US10871519B2 (en) 2017-11-07 2020-12-22 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell stack prediction utilizing IHOS
US10714773B2 (en) 2017-11-28 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling system dT/dt based control
US10720655B2 (en) 2017-11-28 2020-07-21 Toyota Motor Engineering & Manufacturing North America, Inc. Partial derivative based feedback controls for pid
US11094950B2 (en) 2017-11-28 2021-08-17 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based state estimator for cooling system controller
US10777831B2 (en) 2017-11-28 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based cooling system control strategy/method
US10714767B2 (en) 2017-12-07 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell air system safe operating region
US10665875B2 (en) 2017-12-08 2020-05-26 Toyota Motor Engineering & Manufacturing North America, Inc. Path control concept
US11482719B2 (en) 2017-12-08 2022-10-25 Toyota Jidosha Kabushiki Kaisha Equation based state estimate for air system controller
US10971748B2 (en) 2017-12-08 2021-04-06 Toyota Motor Engineering & Manufacturing North America, Inc. Implementation of feedforward and feedback control in state mediator
US10590942B2 (en) 2017-12-08 2020-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Interpolation of homotopic operating states
DE102018203184A1 (de) * 2018-03-02 2019-09-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Brennstoffzellensystems eines Kraftfahrzeugs sowie Kraftfahrzeug
US10985391B2 (en) 2018-03-06 2021-04-20 Toyota Motor Engineering & Manufacturing North America, Inc. Real time iterative solution using recursive calculation
US10547070B2 (en) 2018-03-09 2020-01-28 Toyota Motor Engineering & Manufacturing North America, Inc. STL actuation-path planning
JP7020239B2 (ja) 2018-03-29 2022-02-16 トヨタ自動車株式会社 燃料電池車両
CN110435411B (zh) * 2018-05-04 2021-10-19 长城汽车股份有限公司 一种汽车格栅、汽车格栅控制方法及汽车
CN112848879B (zh) * 2021-02-05 2022-07-05 长城汽车股份有限公司 车辆散热方法、存储介质以及车辆
CN116605135B (zh) * 2023-06-30 2024-03-19 宁波四维尔工业有限责任公司 一种汽车格栅控制方法、系统、存储介质及智能终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628257U (ja) * 1992-09-09 1994-04-15 日産ディーゼル工業株式会社 車両の導風装置
JP2004175281A (ja) * 2002-11-28 2004-06-24 Honda Motor Co Ltd 燃料電池車両のファンケース構造、及び換気装置
JP2008517195A (ja) * 2004-10-15 2008-05-22 ベール ゲーエムベーハー ウント コー カーゲー 自動車用ファンシステム
JP2009126452A (ja) * 2007-11-27 2009-06-11 Honda Motor Co Ltd 燃料電池電源システムが搭載された車両
JP2011068233A (ja) * 2009-09-25 2011-04-07 Honda Motor Co Ltd 燃料電池車両

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326962A (ja) * 1985-08-22 1988-02-04 Tech Res & Dev Inst Of Japan Def Agency 燃料電池の停止保存法
DE19629084C2 (de) 1996-07-18 1998-07-16 Siemens Ag Brennstoffzellenanlage als Antriebsbatterie für ein Elektrofahrzeug sowie Verfahren zum Betreiben einer solchen Brennstoffzellenanlage
JP2001351653A (ja) * 2000-06-02 2001-12-21 Yamaha Motor Co Ltd 燃料電池システム
CN101080559A (zh) * 2004-10-15 2007-11-28 贝洱两合公司 用于汽车的风扇系统
JP4770208B2 (ja) 2005-03-10 2011-09-14 トヨタ自動車株式会社 空冷式燃料電池システム
US7851097B2 (en) * 2006-08-09 2010-12-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628257U (ja) * 1992-09-09 1994-04-15 日産ディーゼル工業株式会社 車両の導風装置
JP2004175281A (ja) * 2002-11-28 2004-06-24 Honda Motor Co Ltd 燃料電池車両のファンケース構造、及び換気装置
JP2008517195A (ja) * 2004-10-15 2008-05-22 ベール ゲーエムベーハー ウント コー カーゲー 自動車用ファンシステム
JP2009126452A (ja) * 2007-11-27 2009-06-11 Honda Motor Co Ltd 燃料電池電源システムが搭載された車両
JP2011068233A (ja) * 2009-09-25 2011-04-07 Honda Motor Co Ltd 燃料電池車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619870A (zh) * 2022-03-18 2022-06-14 东风汽车集团股份有限公司 一种格栅控制方法、装置、设备和介质

Also Published As

Publication number Publication date
GB201400754D0 (en) 2014-03-05
JP5810753B2 (ja) 2015-11-11
CN103702854B (zh) 2016-07-06
JP2013049350A (ja) 2013-03-14
DE112012003641T5 (de) 2014-05-15
DE112012003641T8 (de) 2014-08-07
GB2507889B (en) 2018-08-08
CN103702854A (zh) 2014-04-02
GB2507889A (en) 2014-05-14
US9312549B2 (en) 2016-04-12
US20140186732A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2013031284A1 (ja) 車両用燃料電池冷却装置及び燃料電池車両
JP5812379B2 (ja) 燃料電池車両の暖房装置
US7556110B2 (en) Vehicle mounted with electric storage apparatus
US8875531B2 (en) Fuel cell vehicle
JP5743792B2 (ja) 燃料電池システム
JP6258379B2 (ja) 燃料電池システムの制御方法
KR101567644B1 (ko) 연료 전지 스택 및 그 제어 방법
JP2015209043A (ja) 車両の排気構造
JP2013030346A (ja) 燃料電池の湿潤状態制御装置
JP6222047B2 (ja) 燃料電池の運転制御方法
EP1598889B1 (en) Exhaust gas processing device for fuel cell
JP5772968B2 (ja) 燃料電池システム及びその始動方法
JP5665684B2 (ja) 燃料電池システム
JP2010218803A (ja) 燃料電池システム
JP2014151682A (ja) 燃料電池搭載車両及びその運転方法
JP2003132916A (ja) 燃料電池ボックス換気装置
JP2004186029A (ja) 燃料電池システム
US20120028147A1 (en) Fuel cell vehicle and method for controlling operation of the same
JP2008103189A (ja) 燃料電池システム
JP5057203B2 (ja) 燃料電池システム及び移動体
JP2014076717A (ja) 電力供給システム
JP5273436B2 (ja) 燃料電池システム
JP5956832B2 (ja) 燃料電池システムおよび燃料電池付産業車両
JP2012205330A (ja) 燃料電池システム
JP2005268178A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1400754

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120413

WWE Wipo information: entry into national phase

Ref document number: 1400754.6

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14233952

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120036417

Country of ref document: DE

Ref document number: 112012003641

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829081

Country of ref document: EP

Kind code of ref document: A1