WO2013018937A1 - 반도체 발광소자 - Google Patents
반도체 발광소자 Download PDFInfo
- Publication number
- WO2013018937A1 WO2013018937A1 PCT/KR2011/005586 KR2011005586W WO2013018937A1 WO 2013018937 A1 WO2013018937 A1 WO 2013018937A1 KR 2011005586 W KR2011005586 W KR 2011005586W WO 2013018937 A1 WO2013018937 A1 WO 2013018937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electron blocking
- type semiconductor
- blocking layer
- energy band
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 103
- 230000000903 blocking effect Effects 0.000 claims abstract description 97
- 230000004888 barrier function Effects 0.000 claims abstract description 17
- 229910002704 AlGaN Inorganic materials 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/002—Devices characterised by their operation having heterojunctions or graded gap
- H01L33/0025—Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Definitions
- the present invention relates to a semiconductor light emitting device, and more particularly, to a semiconductor light emitting device which can improve luminous efficiency by preventing the overflow of electrons and increasing the concentration of holes entering the active layer.
- nitride semiconductors such as GaN have been spotlighted as core materials of light emitting devices such as light emitting diodes (LEDs) or laser diodes (LDs) due to their excellent physical and chemical properties.
- LEDs light emitting diodes
- LDs laser diodes
- Such a nitride semiconductor is usually made of a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), and using a nitride semiconductor material LED or LD is widely used in the light emitting device for obtaining light in the blue or green wavelength band, and is applied as a light source of various products such as keypad light emitting part of a mobile phone, an electronic board, a lighting device.
- nitride light emitting device LED
- LED nitride light emitting device
- many technological advances have been made, and the range of its use has been expanded, and thus, many studies have been conducted as general lighting and electric light sources.
- nitride light emitting devices have been mainly used as components applied to low current / low output mobile products, but recently, their application ranges have been gradually extended to high current / high power fields, and high luminance / high reliability is required.
- the electron blocking layer is formed between the active layer and the p-type semiconductor layer in a general light emitting device structure.
- the electron blocking layer is employed to improve the recombination efficiency of carriers in the active layer by preventing electrons having high mobility compared to holes from overflowing the p-type semiconductor layer.
- the electron blocking layer may function as a barrier not only for electrons but also for holes, and thus, the concentration of holes entering the active layer beyond the electron blocking layer is lowered.
- an object of the present invention is to provide a semiconductor light emitting device capable of blocking electrons overflowing to a p-type semiconductor layer and increasing the concentration of holes entering the active layer.
- an n-type semiconductor layer An active layer formed on the n-type semiconductor layer and having at least one quantum well layer and at least one quantum barrier layer alternately stacked; An electron blocking layer formed on the active layer and having at least one multilayer structure in which three layers having different energy band gaps are stacked, wherein an adjacent layer of the three active layers has an inclined energy band structure; And a p-type semiconductor layer formed on the electron blocking layer.
- the electron blocking layer is made of a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), and the electrons
- the multilayer structure of the blocking layer has different energy bands by varying the composition ratio of Al and In, and the multilayer structure of the electron blocking layer is laminated so that the energy band gap of each layer is sequentially reduced along the stacking direction.
- the electron blocking layer is a lamination structure of AlGaN / GaN / InGaN sequentially stacked, and the electron blocking layer has a structure in which the AlGaN / GaN / InGaN lamination structure is repeatedly stacked.
- the electron blocking layer is a lamination structure of AlGaN / GaN / InGaN / GaN sequentially stacked, and the electron blocking layer has a structure in which the lamination structure of AlGaN / GaN / InGaN / GaN is repeatedly stacked.
- the electron blocking layer has a superlattice structure, and each layer of the electron blocking layer has a thickness in a range of 0.5 to 20 nm.
- the layer adjacent to the active layer of the three layers constituting the multilayer structure of the electron blocking layer is the slope of the energy bandgap increases along the stacking direction, the active layer of the three layers constituting the multilayer structure of the electron blocking layer The layer adjacent to has a larger energy bandgap than the active layer, and the energy bandgap decreases along the stacking direction.
- the semiconductor light emitting device the insulating substrate formed on the lower surface of the n-type semiconductor layer; An n-type electrode formed on the n-type semiconductor layer exposed by removing portions of the active layer and the p-type semiconductor layer; And a p-type electrode formed on the p-type semiconductor layer.
- the semiconductor light emitting device includes a conductive substrate formed on the p-type semiconductor layer; And an n-type electrode formed on the n-type semiconductor layer.
- the injection efficiency of the holes entering the active layer can be improved while preventing the electron overflow phenomenon, and in particular, the luminous efficiency can be improved at a high current density.
- FIG. 1 is a side sectional view schematically showing a semiconductor light emitting device according to a first embodiment of the present invention.
- FIG. 2 is a diagram illustrating an energy band gap of the semiconductor light emitting device of FIG. 1.
- FIG. 3 is a diagram illustrating an energy band gap of another embodiment of the electron blocking layer of the semiconductor light emitting device illustrated in FIG. 1.
- FIG. 4 is a diagram illustrating an energy band gap of another embodiment of the electron blocking layer of the semiconductor light emitting device illustrated in FIG. 1.
- FIG. 5 is a side sectional view schematically showing a semiconductor light emitting device according to a second embodiment of the present invention.
- FIG. 6 is a graph showing simulation results of light emission efficiency of a semiconductor light emitting device having a semiconductor light emitting device according to the present invention and an electron blocking layer having a general superlattice structure.
- FIG. 7 to 9 are diagrams showing an energy band gap of a semiconductor light emitting device according to a third embodiment of the present invention.
- FIG. 1 is a side cross-sectional view schematically showing a semiconductor light emitting device according to a first embodiment of the present invention
- FIG. 2 is a diagram schematically showing an energy band gap of the semiconductor light emitting device shown in FIG.
- the semiconductor light emitting device 100 includes the substrate 110, the buffer layer 120, the n-type semiconductor layer 130, the active layer 140, and the electron blocking.
- a layer 150 and a p-type semiconductor layer 160 is provided.
- the n-type electrode 170 formed on the exposed surface of the n-type semiconductor layer 130 and the p-type electrode 180 formed on the upper surface of the p-type semiconductor layer 160 are provided.
- an ohmic contact layer made of a transparent electrode material may be further formed between the p-type semiconductor layer 160 and the p-type electrode 180.
- the structure of the semiconductor light emitting device having the horizontal electrode structure in which the n-type and p-type electrodes 170 and 180 are disposed to face the same direction is illustrated, but the present invention is not limited thereto and the semiconductor having the vertical electrode structure is illustrated. It may also be applied to the light emitting device, which will be described below with reference to FIG. 5.
- the substrate 110 is a growth substrate for nitride single crystal growth, and in general, a sapphire substrate may be used.
- Sapphire substrates are hexagonal-Rhombo R3c symmetry crystals with lattice constants of 13.001 ⁇ and 4.758 c in the c-axis and a-axis directions, respectively, and C (0001) plane, A (1120) plane, and R ( 1102) surface and the like.
- the C plane is mainly used as a nitride growth substrate because the C surface is relatively easy to grow and stable at high temperatures.
- the buffer layer 120 is a layer for improving the crystal quality of the nitride semiconductor single crystal grown on the substrate 110 by alleviating lattice mismatch between the substrate 110 and the n-type semiconductor layer 130, and AlN or GaN. It may be a low temperature nucleus growth layer including, and may also be grown to an undoped GaN layer. In addition, the buffer layer 120 may be omitted as necessary.
- the n-type and p-type semiconductor layers 130 and 160 may be formed of a nitride semiconductor, that is, an Al x In y Ga (1-x- y) N composition formula (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0).
- N-type and p-type impurities having ⁇ x + y ⁇ 1) and may be formed of a semiconductor material doped with GaN, AlGaN, InGaN. Si, Ge, Se, Te, etc. may be used as the n-type impurity, and Mg, Zn, Be, etc. may be used as the p-type impurity.
- the n-type and p-type semiconductor layers 130 and 160 may be grown by MOCVD, MBE, HVPE processes and the like known in the art.
- the active layer 140 emits light having a predetermined energy by light emission recombination of electrons and holes, and is formed between the n-type and p-type semiconductor layers 130 and 160.
- the active layer 140 has a structure in which at least one quantum well layer and at least one quantum barrier layer are alternately stacked on the n-type semiconductor layer 130.
- an InGaN quantum well layer and a GaN quantum barrier layer may be formed. It may be formed of a multi-quantum well structure having an alternately stacked structure.
- the active layer 140 may control the wavelength or the quantum efficiency by adjusting the height of the quantum barrier layer or the thickness, composition, and number of quantum well layers.
- the electron blocking layer 150 serves to block electrons having a higher mobility than holes through the active layer 140.
- the energy band gap is higher than that of the active layer 140.
- the electron blocking layer 150 may increase the recombination probability of electrons and holes in the active layer 140 by blocking the overflow of electrons, but may also perform a function of blocking the injection of holes. The luminous efficiency may not be improved as expected. Accordingly, the present embodiment provides a structure of the electron blocking layer 150 which can reduce the hole blocking function while blocking the overflow of electrons.
- the electron blocking layer 150 is formed on the active layer 140 and includes three layers 151, 153, and 155 having different energy band gaps. It may be a multi-layer superlattice structure.
- each layer constituting the electron blocking layer 150 has a thickness capable of tunneling the carrier, preferably, a thickness in the range of 0.5 ⁇ 20nm.
- the total thickness of the superlattice structure may have a thickness in the range of 1nm ⁇ 100nm.
- the electron blocking layer 150 may be formed to have different energy bands by appropriately adjusting the energy band gap of each layer by the content of aluminum or indium, and among the three layers 151, 153, and 155.
- the layer adjacent to the active layer 140 has an inclined energy band structure.
- the multilayer structure of the electron blocking layer 150 may be formed such that the energy band gap of each layer is sequentially reduced along the stacking direction. That is, the electron blocking layer 150 includes a first layer 151 having a larger energy band gap than a quantum barrier layer, which is the uppermost layer of the active layer 140, and a third layer 155 having a smaller energy band gap than the first layer 151. And an energy bandgap formed between the first layer 151 and the third layer 155 and between the energy bandgap of the first layer 151 and the energy bandgap of the third layer 155. It may be formed in a multi-layer structure consisting of the second layer 153.
- the first layer 151 is formed adjacent to the quantum barrier layer of the active layer 150 and has an energy bandgap structure in which the slope increases linearly along the stacking direction.
- the electron blocking layer 150 of the present invention is formed with spikes generated at the interface between the first layer 151 and the second layer 153. Notch phenomenon may be alleviated to increase the hole injection efficiency into the active layer 140. Thereby, the luminous efficiency at high current density can be improved.
- the multilayer structure of the electron blocking layer 150 may be made of a material such as In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), and examples For example, it may be formed of a stacked structure of AlGaN / GaN / InGaN sequentially stacked on the active layer 140.
- the first layer 151 is made of AlGaN
- the second layer 153 is made of GaN
- the third layer 155 may be made of InGaN
- the inclined structure of the first layer 151 is , By reducing the Al component linearly.
- the electron blocking layer 150 may have a lamination structure in which the AlGaN / GaN / InGaN lamination structure is repeated one or more times.
- the electron blocking layer 150 of the present embodiment electrons injected from the n-type semiconductor layer 130 by the first layer 151 having an energy band gap larger than that of the quantum barrier layer of the active layer 140 are active layer ( Overflowing to the p-type semiconductor layer 160 beyond the 140 can be prevented.
- the electron blocking layer 150 is formed in a multilayer structure having different energy band gaps, it is possible to obtain a spreading effect of holes due to the difference in energy band gaps of the layers of the multilayer structure.
- the probability of injecting holes into the active layer 140 from the 160 may be increased.
- the hole blocking probability may be further increased by forming the electron blocking layer 150 in a superlattice structure.
- FIG. 3 is a diagram illustrating an energy band gap of another embodiment of the electron blocking layer of the semiconductor light emitting device illustrated in FIG. 1.
- the configuration of the semiconductor light emitting device of FIG. 3 is substantially the same as the semiconductor light emitting device of FIGS. 1 and 2.
- the description of the same configuration is omitted. Only the different configurations will be described.
- the electron blocking layer 150 is formed adjacent to the active layer 140 and has a larger energy band gap than the quantum barrier layer, which is the uppermost layer of the active layer, 151 ′.
- the energy band gap of the first layer 151 ′ has a structure in which the slope increases linearly along the stacking direction.
- the first layer 151 ′ is made of AlGaN
- the second layer 153 is made of GaN
- the third layer 155 is InGaN. It is a multi-layered structure, and the inclined structure of the first layer 151 'can be formed by linearly increasing the Al component.
- FIG. 4 is a diagram illustrating an energy band gap of another embodiment of the electron blocking layer of the semiconductor light emitting device illustrated in FIG. 1.
- the configuration of the semiconductor light emitting device of FIG. 4 is substantially the same as the semiconductor light emitting device of FIGS. 1 and 2.
- the electron blocking layer 150 is formed by stacking a multi-layered structure consisting of three layers one or more times, and varying the Al content in the first layers 151 "and 151" 'of each stacked structure. Since there is a difference in adjusting the energy band gap, the description of the same configuration will be omitted and only the different configuration will be described.
- the electron blocking layer 150 is formed adjacent to the active layer 140 and has a first energy bandgap larger than the quantum barrier layer, which is the uppermost layer of the active layer 140.
- 151 ", 151" ', third layer 155 having an energy bandgap smaller than first layer 151", first layer 151 ", 151”' and third layer 155 " It is formed between the first layer 151 ", 151” 'and the third layer 155 "of the second layer 153" having an energy bandgap corresponding to the energy bandgap formed in a multi-layer structure do.
- the first layers 151 ′′ and 151 ′′ ′ are made of AlGaN
- the second layer 153 ′′ is made of GaN
- the third layer 155 " may be formed in a multilayer structure made of InGaN.
- the electron blocking layer 150 has a structure in which the multilayer structure is repeatedly stacked one or more times
- the first layers 151 ′′ and 151 ′ ′ increase the Al content to be adjacent to the p-type semiconductor layer 160. The more it can be formed into a structure having a larger energy band gap.
- the Al content of the first layers 151 ′′ and 151 ′ ′ may be reduced to form a structure having a smaller energy band gap closer to the p-type semiconductor layer 160.
- FIG. 5 is a side sectional view schematically showing a semiconductor light emitting device according to a second embodiment of the present invention.
- the semiconductor light emitting device shown in FIG. 5 is substantially the same in structure as the semiconductor light emitting device shown in FIG.
- the conductive substrate is used as the p-type electrode and the n-type electrode is formed on the n-type semiconductor layer from which the growth substrate is removed, the description of the same configuration will be omitted, and only different configurations will be described. .
- the semiconductor light emitting device 200 includes a conductive substrate 290, a p-type semiconductor layer 260, an electron blocking layer 250, an active layer 240, and an n-type.
- the semiconductor layer 230 and the n electrode 270 are provided.
- the conductive substrate 290 supports the p-type semiconductor layer 260, the electron blocking layer 250, the active layer 240, and the n-type semiconductor layer 230 in a process such as laser lift-off along with the role of the p-type electrode. Serves as a support. That is, the substrate for semiconductor single crystal growth is removed by a process such as laser lift-off, and the n-type electrode 270 is formed on the exposed surface of the n-type semiconductor layer 230 after the removal process.
- the conductive substrate 320 may be made of a material such as Si, Cu, Ni, Au, W, Ti, or an alloy of metal materials selected therefrom, and may be formed by plating or bonding bonding according to the selected material. Can be.
- the electron blocking layer 250 is formed adjacent to the active layer 240, and has a larger energy band gap than the quantum barrier layer, which is the uppermost layer of the active layer 240, and the first layer 251 and the first layer.
- the electron blocking layer 250 may have a multilayer structure in which the first layer 251 is made of AlGaN, the second layer 253 is made of GaN, and the third layer 255 is made of InGaN. It may have a stacked structure repeatedly. In this case, the repeatedly stacked structure may be a superlattice structure.
- a highly reflective ohmic contact layer (not shown) capable of performing an ohmic contact function and a light reflection function may be further formed between the p-type semiconductor layer 260 and the conductive substrate 290.
- electrons injected from the n-type semiconductor layer 230 by the first layer 251 having an energy bandgap larger than that of the quantum barrier layer of the active layer 240 are active layer ( Overflowing to the p-type semiconductor layer 260 beyond the 240 can be prevented.
- the electron blocking layer 250 is formed in a multi-layer structure having different energy band gaps, a spreading effect of holes can be obtained by the energy band gap difference of each layer of the multi-layer structure.
- the probability of injecting holes into the active layer 240 from 260 may be increased.
- the hole blocking probability may be further increased by forming the electron blocking layer 250 in a superlattice structure.
- FIG. 6 is a graph illustrating results of simulation of light emission efficiency of a semiconductor light emitting device having a semiconductor light emitting device according to the present invention and an electron blocking layer having a general superlattice structure.
- the general superlattice structure is a structure in which a stack structure of AlGaN / GaN is repeatedly stacked.
- the electron blocking layer has a stacked structure in which AlGaN / GaN / InGaN is sequentially stacked, and the first layer made of AlGaN has an inclined energy bandgap structure.
- B the case where the Al composition gradually decreases.
- a semiconductor light emitting device having an electron blocking layer having a general superlattice structure is denoted by A.
- FIGS. 7 to 9 are diagrams showing an energy band gap of a semiconductor light emitting device according to a third embodiment of the present invention.
- the configuration of the semiconductor light emitting device shown in FIGS. 7 to 9 is substantially the same as the semiconductor light emitting device shown in FIGS. 1 to 4.
- this embodiment differs in that the electron blocking layer is composed of four layers. Therefore, the description of the same configuration is omitted, and only the different configuration will be described.
- the electron blocking layer employed in FIGS. 7 to 9 may be employed in the semiconductor light emitting device having the vertical electrode structure shown in FIG. 5.
- the electron blocking layer 350 may be formed on the active layer 340, and may have a multi-layered superlattice structure including four layers 351, 353, 355, and 357.
- each layer constituting the electron blocking layer 350 has a thickness capable of tunneling the carrier, preferably, a thickness in the range of 0.5 ⁇ 20nm.
- the total thickness of the superlattice structure may have a thickness in the range of 1nm ⁇ 100nm.
- the multilayer structure of the electron blocking layer 350 may be formed such that the energy band gap of each layer is sequentially reduced along the stacking direction. That is, the electron blocking layer 350 may include a first layer 351 having a larger energy band gap than the quantum barrier layer, which is the uppermost layer of the active layer 340, and a third layer having a smaller energy band gap than the first layer 351. 355 and an energy bandgap formed between the first layer 351 and the third layer 355 and between the energy bandgap of the first layer 351 and the energy bandgap of the third layer 355.
- the second layer 353 and the fourth layer 357 having the same energy bandgap as the second layer 353 and formed on the third layer 355 may be formed in a multilayer structure.
- the electron blocking layer 350 may be formed as a laminated structure in which the above-described multilayer structure is repeated one or more times.
- the fourth layer 357 serves to mitigate strain due to lattice mismatch between the third layer 355 and the adjacent first layer 351.
- the first layer 351 is formed adjacent to the quantum barrier layer of the active layer 350 and has an energy bandgap structure in which the slope increases linearly along the stacking direction.
- the electron blocking layer 350 of the present invention may have spikes generated at the interface between the first layer 351 and the second layer 353. Notch phenomenon may be alleviated to increase the hole injection efficiency into the active layer 340. Thereby, the luminous efficiency at high current density can be improved.
- the multilayer structure of the electron blocking layer 350 may be formed of a material such as In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), for example, it may be formed of a stacked structure of AlGaN / GaN / InGaN / GaN sequentially stacked on the active layer 340.
- the first layer 351 may be made of AlGaN
- the second layer 353 may be made of GaN
- the third layer 355 may be made of InGaN
- the fourth layer 357 may be made of GaN.
- An inclined structure of) may be formed by linearly reducing the Al component.
- the electron blocking layer 350 may have a lamination structure in which the AlGaN / GaN / InGaN / GaN lamination structure is repeated one or more times.
- the fourth layer made of GaN may mitigate strain generated from the lattice constant difference between the third layer made of InGaN and the first layer made of AlGaN.
- the electron blocking layer 350 of the present embodiment electrons injected from the n-type semiconductor layer 330 by the first layer 351 having an energy band gap larger than that of the quantum barrier layer of the active layer 340 are formed in the active layer ( The overflow of the p-type semiconductor layer 360 beyond the 340 may be prevented.
- the electron blocking layer 350 is formed in a multi-layer structure having different energy band gaps, it is possible to obtain a spreading effect of holes due to the difference in energy band gaps of the layers of the multi-layer structure.
- the probability of injecting holes into the active layer 340 from 360 may be increased.
- the hole blocking probability may be further increased by forming the electron blocking layer 350 in a superlattice structure.
- FIG. 8 unlike the electron blocking layer 350 of FIG. 7, the inclination direction of the first layer 451 of the electron blocking layer 450 is illustrated in FIG. 8. There is a difference in that the first layer 351 of the electron blocking layer 350 of FIG.
- the electron blocking layer 550 repeats the multilayer structure having four layers of the electron blocking layer 550 one or more times. It is formed in a stacked structure, there is a difference in that the energy band gap is formed differently by varying the Al content in the first layer (551, 551 ') of each laminated structure. That is, in FIG. 9, the Al content of the first layers 551 and 551 ′ is increased to form a structure having a larger energy band gap closer to the p-type semiconductor layer 560. Although not shown, the Al content of the first layers 551 and 551 'may be reduced to form a structure having a smaller energy band gap closer to the p-type semiconductor layer 560.
- the present invention is illustrated only in a case where the content of Al is changed linearly so that the inclination of the first layer of the electron blocking layer is linearly increased or decreased, but the present invention is not limited thereto. It may be formed to increase or decrease two-dimensional or multi-dimensional by changing the content of the functionally.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
본 발명은 전자의 오버플로우를 방지하는 동시에 활성층 내로 진입하는 정공의 농도를 증가시켜 발광 효율을 향상시킬 수 있는 반도체 발광소자에 관한 것으로, n형 반도체층; 상기 n형 반도체층 상에 형성되며, 적어도 하나의 양자우물층과 적어도 하나의 양자장벽층이 교대로 적층되어 이루어진 활성층; 상기 활성층 상에 형성되며, 에너지 밴드갭이 서로 다른 3개의 층이 적층된 적어도 하나의 다층구조를 갖되, 상기 3개의 층 중 상기 활성층에 인접한 층이 경사진 에너지 밴드 구조를 가지는 전자차단층; 및 상기 전자차단층 상에 형성된 p형 반도체층;을 포함한다.
Description
본 발명은 반도체 발광소자에 관한 것으로, 특히, 전자의 오버플로우를 방지하는 동시에 활성층 내로 진입하는 정공의 농도를 증가시켜 발광 효율을 향상시킬 수 있는 반도체 발광소자에 관한 것이다.
최근, GaN 등의 질화물 반도체(nitride semiconductor)는, 우수한 물리적, 화학적 특성으로 인해 발광 다이오드(LED) 또는 레이저 다이오드(LD) 등의 발광 소자의 핵심 소재로 각광받고 있다. 이러한 질화물 반도체는 통상 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 이루어지며, 질화물 반도체 재료를 이용한 LED 혹은 LD는 청색 또는 녹색 파장대의 광을 얻기 위한 발광 소자에 많이 사용되고 있으며, 핸드폰의 키패드 발광부, 전광판, 조명 장치 등 각종 제품의 광원으로 응용되고 있다.
이러한 질화물 발광소자(LED)가 개발된 후에, 많은 기술적 발전을 이루어져 그 활용 범위가 확대되어 일반 조명 및 전장용 광원으로 많은 연구가 되고 있다. 특히, 종래에는 질화물 발광소자는 주로 저전류/저출력의 모바일 제품에 적용되는 부품으로 사용되었으나, 최근에는 점차 그 활용범위가 고전류/고출력 분야로 확대되고 있으며, 고휘도/고신뢰성이 요구되고 있다.
이러한 추세에 따라, 질화물 발광소자의 발광효율을 향상시키기 위한 다양한 방법이 연구되고 있다. 상기 방법 중 하나로 전자차단층을 이용하는 것이다. 이러한 전자차단층은 일반적인 발광소자 구조에서, 활성층과 및 p형 반도체층 사이에 형성된다. 상기 전자차단층은 정공에 비해서 상대적으로 이동도가 높은 전자가 p형 반도체층으로 오버플로우(overflow)되지 않도록 하여 활성층 내에서 캐리어의 재결합 효율을 향상시키기 위해 채용된 것이다. 그러나, 상기 전자차단층은 전자뿐만 아니라 정공에 대해서도 장벽으로 기능할 수 있으며, 이에 따라, 전자차단층을 넘어 활성층으로 진입하는 정공의 농도가 낮아지는 문제가 있다.
상술한 종래의 문제를 개선하기 위해서, 본 발명은 p형 반도체층으로 오버플로우되는 전자를 차단하고, 활성층 내로 진입하는 정공의 농도를 증가시킬 수 있는 반도체 발광소자를 제공하는데 그 목적이 있다.
상술한 목적을 구현하기 위해, 본 발명의 일 실시형태는, n형 반도체층; 상기 n형 반도체층 상에 형성되며, 적어도 하나의 양자우물층과 적어도 하나의 양자장벽층이 교대로 적층되어 이루어진 활성층; 상기 활성층 상에 형성되며, 에너지 밴드갭이 서로 다른 3개의 층이 적층된 적어도 하나의 다층구조를 갖되, 상기 3개의 층 중 상기 활성층에 인접한 층이 경사진 에너지 밴드 구조를 가지는 전자차단층; 및 상기 전자차단층 상에 형성된 p형 반도체층;을 포함하는 반도체 발광소자를 제공한다.
이 경우, 상기 전자차단층은 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 이루어지며, 상기 전자차단층의 다층구조는 Al과 In의 조성비를 달리하여 서로 다른 에너지 밴드를 갖는 것이며, 상기 전자차단층의 다층구조는 각 층의 에너지 밴드갭이 적층방향을 따라 순차적으로 감소하도록 적층되어 있는 것이다.
이러한 상기 전자차단층은 순차 적층된 AlGaN/GaN/InGaN의 적층구조인 것이며, 또한, 상기 전자차단층은 상기 AlGaN/GaN/InGaN의 적층구조가 반복 적층된 구조를 갖는 것이다. 또한, 상기 전자차단층은 순차 적층된 AlGaN/GaN/InGaN/GaN의 적층구조인 것이며, 또한, 상기 전자차단층은 상기 AlGaN/GaN/InGaN/GaN의 적층구조가 반복 적층된 구조를 갖는 것이다. 또한, 상기 전자차단층은 초격자 구조이며, 상기 전자차단층의 각 층은 0.5 ~ 20nm 범위의 두께를 갖는 것이다.
또한, 상기 전자차단층의 다층구조를 이루는 3개의 층 중 상기 활성층에 인접한 층은 에너지 밴드갭이 적층방향을 따라 경사가 증가하는 것이며, 상기 전자차단층의 다층구조를 이루는 3개의 층 중 상기 활성층에 인접한 층은 상기 활성층보다 큰 에너지 밴드갭을 가지며, 상기 에너지 밴드갭이 적층방향을 따라 경사가 감소하는 것이다.
또한, 상기 반도체 발광소자는, 상기 n형 반도체층의 하면에 형성된 절연성 기판; 상기 활성층 및 p형 반도체층의 일부영역이 제거되어 노출된 n형 반도체층 상에 형성된 n형 전극; 및 상기 p형 반도체층 상에 형성된 p형 전극;을 더 포함할 수 있다.
또한, 상기 반도체 발광소자는 상기 p형 반도체층의 상에 형성된 도전성 기판; 및 상기 n형 반도체층 상에 형성된 n형 전극;을 더 포함하는 것이다.
본 발명에 따르면, 전자의 오버플로우 현상을 방지하면서, 활성층 내로 진입하는 정공의 주입 효율을 향상시킬 수 있어, 특히, 고전류 밀도에서의 발광 효율을 향상시킬 수 있다.
도 1은 본 발명의 제1 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 측단면도이다.
도 2는 도 1에 도시된 반도체 발광소자의 에너지 밴드갭을 나타내는 다이어그램이다.
도 3은 도 1에 도시된 반도체 발광소자의 전자차단층의 다른 실시예에 대한 에너지 밴드갭을 나타내는 다이어그램이다.
도 4는 도 1에 도시된 반도체 발광소자의 전자차단층의 또 다른 실시예에 대한 에너지 밴드갭을 나타내는 다이어그램이다.
도 5는 본 발명의 제2 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 측단면도이다.
도 6은 본 발명에 따른 반도체 발광소자와 일반적인 초격자 구조의 전자차단층을 갖는 반도체 발광소자의 발광 효율에 대한 시뮬레이션한 결과를 나타내는 그래프이다.
도 7 내지 도 9는 본 발명의 제3 실시 형태에 따른 반도체 발광소자의 에너지 밴드갭을 나타내는 다이어그램이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면 상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
도 1은 본 발명의 제1 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 측단면도이며, 도 2는 도 1에 도시된 반도체 발광소자의 에너지 밴드갭을 모식적으로 나타내는 다이어그램이다.
우선, 도 1에 도시된 바와 같이, 본 제1 실시 형태에 따른 반도체 발광소자(100)는, 기판(110), 버퍼층(120), n형 반도체층(130), 활성층(140), 전자차단층(150) 및 p형 반도체층(160)을 구비한다. 그리고, n형 반도체층(130)의 노출면 상에 형성된 n형 전극(170)과, p형 반도체층(160) 상면에 형성된 p형 전극(180)을 구비한다. 여기서, 도시하지는 않았지만, p형 반도체층(160)과 p형 전극(180) 사이에 투명 전극 물질 등으로 이루어진 오믹컨택트층이 더 형성될 수 있다.
한편, 본 실시형태에서는 n형 및 p형 전극(170, 180)이 동일한 방향을 향하도록 배치된 수평 전극 구조의 반도체 발광소자의 구조를 예시하였으나, 본 발명은 이에 한정되지 않으며 수직 전극 구조의 반도체 발광소자에도 적용될 수 있으며, 이에 대해서는 아래에서 도 5를 참조하여 설명하도록 한다.
그리고, 기판(110)은 질화물 단결정 성장을 위한 성장용 기판으로서, 일반적으로 사파이어 기판이 사용될 수 있다. 사파이어 기판은 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a축 방향의 격자상수가 각각 13.001Å 및 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다. 물론, 형태에 따라서는 SiC, GaN, ZnO, MgAl2O4, MgO, LiAlO2 및 LiGaO2 등으로 이루어진 기판도 사용이 가능하다.
그리고, 버퍼층(120)은 기판(110)과 n형 반도체층(130) 사이의 격자부정합을 완화하여 기판(110) 상에 성장되는 질화물 반도체 단결정의 결정 품질을 향상시키기 위한 층이며, AlN 또는 GaN을 포함하는 저온핵성장층일 수 있으며, 또한, 언도프 GaN층으로 성장시킬 수도 있다. 또한, 이러한 버퍼층(120)은 필요에 따라 생략할 수도 있다.
그리고, n형 및 p형 반도체층(130, 160)은 질화물 반도체, 즉, AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 갖는 n형 불순물 및 p형 불순물이 도핑 된 반도체 물질로 이루어질 수 있으며, 대표적으로, GaN, AlGaN, InGaN이 있다. 상기 n형 불순물로 Si, Ge, Se, Te 등이 사용될 수 있으며, 상기 p형 불순물로는 Mg, Zn, Be 등이 사용될 수 있다. 이러한 n형 및 p형 반도체층(130, 160)은 당 기술 분야에서 공지된 MOCVD, MBE, HVPE 공정 등으로 성장될 수 있다.
그리고, 활성층(140)은 전자와 정공의 발광 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, n형 및 p형 반도체층(130, 160) 사이에 형성된다. 이러한 활성층(140)은 n형 반도체층(130) 상에 적어도 하나의 양자우물층과 적어도 하나의 양자장벽층이 교대로 적층된 구조이며, 예를 들어, InGaN 양자우물층과 GaN 양자장벽층이 교대로 적층된 구조를 갖는 다중양자우물(Multi-Quantum Well) 구조로 형성될 수 있다. 이러한 활성층(140)은 양자장벽층의 높이나 양자우물층의 두께, 조성 및 양자우물의 개수를 조절하여 파장이나 양자효율을 조절할 수 있다.
그리고, 전자차단층(Electron Blocking Layer, 150)은 정공에 비하여 이동도가 상대적으로 높은 전자가 상기 활성층(140)을 지나 오버플로우(overflow)되는 것을 차단하는 기능을 한다. 이를 위해, 활성층(140)보다 에너지 밴드갭이 높은 물질로 이루어진다. 다만, 이러한 전자차단층(150)은 전자의 오버플로우를 차단하여 활성층(140) 내에서 전자, 전공의 재결합 확률을 증가시킬 수 있지만, 마찬가지로, 정공의 주입을 차단하는 기능도 수행할 수 있어, 기대만큼 개선된 발광효율을 얻지 못할 수 있다. 따라서, 본 실시형태에서는 전자의 오버플로우를 차단하면서, 정공의 차단 기능을 저감시킬 수 있는 전자차단층(150)의 구조를 제공하다.
구체적으로, 도 2에 도시된 바와 같이, 본 발명에 따른 전자차단층(150)은 활성층(140) 상에 형성되며, 에너지 밴드갭이 서로 다른 3개(151, 153, 155)의 층을 포함하는 다층 구조의 초격자 구조일 수 있다. 이 경우, 전자차단층(150)을 구성하는 각 층은 캐리어의 터널링이 가능한 두께를 가지며, 바람직하게는, 0.5 ~ 20nm 범위의 두께일 수 있다. 그리고 초격자 구조의 전체 두께는 1nm ~ 100nm 범위의 두께를 가질 수 있다.
또한, 전자차단층(150)은 알루미늄 또는 인듐의 함량에 의해 각 층의 에너지 밴드갭을 적절히 조절하여 서로 다른 에너지 밴드를 갖도록 형성할 수 있으며, 상기 3개(151, 153, 155)의 층 중 활성층(140)에 인접한 층이 경사진 에너지 밴드 구조를 가진다.
그리고 전자차단층(150)의 다층구조는 각 층의 에너지 밴드갭이 적층방향을 따라 순차적으로 감소되도록 형성될 수 있다. 즉, 전자차단층(150)은 활성층(140)의 최상층인 양자장벽층보다 에너지 밴드갭이 큰 제1층(151), 상기 제1층(151)보다 에너지 밴드갭이 작은 제3층(155)과, 제1층(151) 및 제3층(155) 사이에 형성되며 제1층(151)의 에너지 밴드갭과 제3층(155)의 에너지 밴드갭 사이에 해당하는 에너지 밴드갭을 갖는 제2층(153)으로 이루어진 다층구조로 형성될 수 있다.
그리고, 제1층(151)은 활성층(150)의 양자장벽층에 인접하여 형성되며, 적층방향을 따라 경사가 선형적으로 증가하는 에너지 밴드갭 구조를 가진다. 이러한 경사진 에너지 밴드 구조를 갖는 제1층(151)을 통해, 본 발명의 전자차단층(150)은 제1층(151)과 제2층(153)의 계면에서 발생하는 스파이크(spike)와 노치(notch) 현상을 완화하여 활성층(140)으로의 홀 주입 효율을 높일 수 있다. 이로써, 고전류 밀도에서의 발광 효율을 향상시킬 수 있다.
이러한 전자차단층(150)의 다층구조는 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)와 같은 물질로 이루어질 수 있으며, 예를 들어, 활성층(140) 상에 순차 적층된 AlGaN/GaN/InGaN의 적층구조로 이루어질 수 있다. 이때, 제1층(151)은 AlGaN으로 이루어지며, 제2층(153)은 GaN으로 이루어지며, 제3층(155)은 InGaN으로 이루어질 수 있으며, 제1층(151)의 경사진 구조는, Al 성분을 선형적으로 감소하는 것에 의해 형성될 수 있다. 또한, 전자차단층(150)은 상기 AlGaN/GaN/InGaN의 적층구조가 1회 이상 반복된 적층 구조를 가질 수도 있다.
따라서, 본 실시형태의 전자차단층(150)은 활성층(140)의 양자장벽층보다 큰 에너지 밴드갭을 갖는 제1층(151)에 의해 n형 반도체층(130)으로부터 주입된 전자가 활성층(140)을 넘어 p형 반도체층(160)으로 오버플로우 되는 것을 방지할 수 있다. 또한, 전자차단층(150)은 서로 다른 에너지 밴드갭을 갖는 다층구조로 형성됨으로써, 다층구조의 각 층의 에너지 밴드갭 차이에 의한 정공의 분산(spreading) 효과를 얻을 수 있어 p형 반도체층(160)으로부터 활성층(140)으로 정공이 주입될 확률을 높일 수 있다. 또한, 전자차단층(150)을 초격자 구조로 형성함으로써 상기 정공 주입 확률을 더욱 높일 수 있다.
도 3은 도 1에 도시된 반도체 발광소자의 전자차단층의 다른 실시예에 대한 에너지 밴드갭을 나타내는 다이어그램이다. 여기서, 도 3의 반도체 발광소자의 구성은 도 1 및 도 2의 반도체 발광소자와 실질적으로 동일하다. 다만, 전자차단층(150)에서 제1층(151')의 경사 방향이 도 2에 도시된 제1층(151)의 경사 방향과 반대인 점에서 차이가 있으므로, 동일한 구성에 대한 설명은 생략하고 달라지는 구성에 대해서만 설명한다.
도 3에 도시된 바와 같이, 본 실시예에 따른 전자차단층(150)은 활성층(140)에 인접하여 형성되며, 활성층의 최상층인 양자장벽층보다 큰 에너지 밴드갭을 갖는 제1층(151'), 제1층(151')보다 작은 에너지 밴드갭을 갖는 제3층(155), 제1층(151')과 제3층(155) 사이에 형성되며, 제1층(151')과 제3층(155)의 에너지 밴드갭 사이에 해당하는 에너지 밴드갭을 갖는 제2층(153)으로 이루어진 다층구조로 형성된다. 이때, 제1층(151')의 에너지 밴드갭은 적층방향을 따라 경사가 선형적으로 증가하는 구조를 가진다.
즉, 본 실시예에 따르면, 전자차단층(150)에 있어서, 제1층(151')은 AlGaN으로 이루어지고, 제2층(153)은 GaN으로 이루어지고, 제3층(155)은 InGaN으로 이루어진 다층구조이며, 제1층(151')의 경사진 구조는, Al 성분을 선형적으로 증가시키는 것에 의해 형성될 수 있다.
도 4는 도 1에 도시된 반도체 발광소자의 전자차단층의 또 다른 실시예에 대한 에너지 밴드갭을 나타내는 다이어그램이다. 여기서, 도 4의 반도체 발광소자의 구성은 도 1 및 도 2의 반도체 발광소자와 실질적으로 동일하다. 다만, 전자차단층(150)을 3개의 층으로 이루어진 다층구조를 1회이상 반복하여 적층한 구조로 형성하고, 각 적층구조의 제1층(151", 151"')에서 Al의 함량을 달리하여 에너지 밴드갭을 조절한 점에서 차이가 있으므로, 동일한 구성에 대한 설명은 생략하고 달라지는 구성에 대해서만 설명한다.
도 4에 도시된 바와 같이, 본 실시예에 따른 전자차단층(150)은 활성층(140)에 인접하여 형성되며, 활성층(140)의 최상층인 양자장벽층보다 큰 에너지 밴드갭을 갖는 제1층(151", 151"'), 제1층(151")보다 작은 에너지 밴드갭을 갖는 제3층(155"), 제1층(151", 151"')과 제3층(155") 사이에 형성되며, 제1층(151", 151"')과 제3층(155")의 에너지 밴드갭 사이에 해당하는 에너지 밴드갭을 갖는 제2층(153")으로 이루어진 다층구조로 형성된다.
즉, 본 실시예에 따르면, 전자차단층(150)에 있어서, 제1층(151", 151"')은 AlGaN으로 이루어지고, 제2층(153")은 GaN으로 이루어지고, 제3층(155")은 InGaN으로 이루어진 다층구조로 형성될 수 있다. 전자차단층(150)이 상기 다층구조를 1회 이상 반복하여 적층한 구조를 가질 경우, 제1층(151", 151"')은 Al의 함량을 증가시켜 p형 반도체층(160)에 인접할수록 큰 에너지 밴드갭을 갖는 구조로 형성될 수 있다. 또한, 도시하지는 않았지만, 제1층(151", 151"')의 Al의 함량을 감소시켜 p형 반도체층(160)에 인접할수록 작은 에너지 밴드갭을 갖는 구조로도 형성할 수 있다.
도 5는 본 발명의 제2 실시 형태에 따른 반도체 발광소자를 개략적으로 나타내는 측단면도이다. 여기서, 도 5에 도시된 반도체 발광소자는 도 1에 도시된 반도체 발광소자와 실질적으로 그 구성이 동일하다. 다만, p형 전극으로 도전성 기판을 이용하며, 성장용 기판을 제거한 n형 반도체층 상에 n형 전극을 형성하는 점에서 차이가 있으므로, 동일한 구성에 대한 설명은 생략하고, 달라지는 구성에 대해서만 설명한다.
도 5에 도시된 바와 같이, 본 제2 실시 형태에 따른 반도체 발광소자(200)는 도전성 기판(290), p형 반도체층(260), 전자차단층(250), 활성층(240), n형 반도체층(230) 및 n 전극(270)을 구비한다.
여기서, 도전성 기판(290)은 p형 전극 역할과 함께 레이저 리프트 오프 등의 공정에서 p형 반도체층(260), 전자차단층(250), 활성층(240) 및 n형 반도체층(230)을 지지하는 지지체의 역할을 수행한다. 즉, 반도체 단결정 성장용 기판은 레이저 리프트 오프 등의 공정에 의해 제거되며, 제거 공정 후의 n형 반도체층(230)의 노출 면에는 n형 전극(270)이 형성된다. 이 경우, 도전성 기판(320)은 Si, Cu, Ni, Au, W, Ti 등의 물질 또는 이들 중 선택된 금속 물질들의 합금으로 이루어질 수 있으며, 선택된 물질에 따라, 도금 또는 본딩 접합 등의 방법으로 형성될 수 있다.
그리고, 본 실시형태에서 전자차단층(250)은 활성층(240)에 인접하여 형성되며, 활성층(240)의 최상층인 양자장벽층보다 큰 에너지 밴드갭을 갖는 제1층(251), 제1층(251)보다 작은 에너지 밴드갭을 갖는 제3층(255), 제1층(251)과 제3층(255) 사이에 형성되며, 제1층(251)의 에너지 밴드갭과 제3층(255)의 에너지 밴드갭 사이에 해당하는 에너지 밴드갭을 갖는 제2층(253)으로 이루어진 다층구조로 형성된다.
이러한 전자차단층(250)은 제1층(251)을 AlGaN으로, 제2층(253)을 GaN으로, 제3층(255)을 InGaN으로 형성한 다층구조를 가질 수 있으며, 이러한 다층구조가 반복하여 적층된 구조를 가질 수 있다. 이 경우, 반복 적층된 구조는 초격자 구조일 수 있다.
한편, 도시하지는 않았지만, p형 반도체층(260)과 도전성 기판(290) 사이에 오믹컨택 기능과 광 반사 기능을 수행할 수 있는 고반사성 오믹컨택트층(미도시)을 더 형성할 수 있다.
따라서, 본 실시형태의 전자차단층(250)은 활성층(240)의 양자장벽층보다 큰 에너지 밴드갭을 갖는 제1층(251)에 의해 n형 반도체층(230)으로부터 주입된 전자가 활성층(240)을 넘어 p형 반도체층(260)으로 오버플로우 되는 것을 방지할 수 있다. 또한, 전자차단층(250)은 서로 다른 에너지 밴드갭을 갖는 다층구조로 형성됨으로써, 다층구조의 각 층의 에너지 밴드갭 차이에 의해 정공의 분산(spreading) 효과를 얻을 수 있어 p형 반도체층(260)으로부터 활성층(240)으로 정공이 주입될 확률을 높일 수 있다. 또한, 전자차단층(250)을 초격자 구조로 형성함으로써 상기 정공 주입 확률을 더욱 높일 수 있다.
도 6은 본 발명에 따른 반도체 발광소자와 일반적인 초격자 구조의 전자차단층을 갖는 반도체 발광소자의 발광 효율을 시뮬레이션한 결과를 나타내는 그래프이다. 여기서, 일반적인 초격자 구조는 AlGaN/GaN의 적층 구조가 반복 적층된 구조이다.
그리고, 본 발명에 따른 반도체 발광소자에서 전자차단층은 AlGaN/GaN/InGaN이 순차 적층된 적층구조를 가지며, AlGaN으로 이루어진 제1층이 경사진 에너지 밴드갭 구조를 가진다. 이때, Al 조성이 점차 감소하는 경우를 B, Al 조성이 점차 증가하는 경우를 C로 표시하였다. 그리고, 일반적인 초격자 구조의 전자차단층을 갖는 반도체 발광소자의 경우를 A로 표시하였다.
따라서, 도 6에 도시된 바와 같이, 전류밀도의 증가에 따른 발광효율의 저하가 A보다 B, C의 경우가 작게 나타남을 알 수 있다. 즉, 고전류 밀도에서 B, C의 경우가 발광효율이 더 개선되며, 특히, Al 조성이 점차 증가하는 경우 발광효율이 더욱 개선됨을 알 수 있다.
도 7 내지 도 9는 본 발명의 제3 실시 형태에 따른 반도체 발광소자의 에너지 밴드갭을 나타내는 다이어그램이다. 여기서, 도 7 내지 도 9에 도시된 반도체 발광소자는 그 구성이 도 1 내지 도 4에 도시된 반도체 발광소자와 실질적으로 동일하다. 다만, 본 실시형태는 전자차단층이 4개의 층으로 이루어진 점에서 차이가 있으므로, 동일한 구성에 대한 설명은 생략하고, 달라지는 구성에 대해서만 설명한다. 또한, 도 7 내지 도 9에 채용된 전자차단층은 도 5에 도시된 수직 전극 구조의 반도체 발광소자에도 채용될 수 있다.
먼저, 도 7을 참조하면, 전자차단층(350)은 활성층(340) 상에 형성되며, 4개(351, 353, 355, 357)의 층을 포함하는 다층 구조의 초격자 구조일 수 있다. 이 경우, 전자차단층(350)을 구성하는 각 층은 캐리어의 터널링이 가능한 두께를 가지며, 바람직하게는, 0.5 ~ 20nm 범위의 두께일 수 있다. 그리고 초격자 구조의 전체 두께는 1nm ~ 100nm 범위의 두께를 가질 수 있다.
그리고 전자차단층(350)의 다층 구조는 각 층의 에너지 밴드갭이 적층방향을 따라 순차적으로 감소되도록 형성될 수 있다. 즉, 전자차단층(350)은 활성층(340)의 최상층인 양자장벽층보다 에너지 밴드갭이 큰 제1층(351)과, 상기 제1층(351)보다 에너지 밴드갭이 작은 제3층(355)과, 제1층(351) 및 제3층(355) 사이에 형성되며 제1층(351)의 에너지 밴드갭과 제3층(355)의 에너지 밴드갭 사이에 해당하는 에너지 밴드갭을 갖는 제2층(353)과, 상기 제2층(353)과 동일한 에너지 밴드갭을 가지며 제3층(355) 상에 형성되는 제4층(357)으로 이루어진 다층 구조로 형성될 수 있다. 또한, 전자차단층(350)은 상술한 다층 구조가 1회 이상 반복된 적층 구조로 형성될 수도 있다. 이때, 제4층(357)은 다층 구조가 반복될 때, 제3층(355)과 인접하는 제1층(351) 간의 격자부정합에 따른 스트레인을 완화하는 역할을 수행한다.
그리고, 제1층(351)은 활성층(350)의 양자장벽층에 인접하여 형성되며, 적층방향을 따라 경사가 선형적으로 증가하는 에너지 밴드갭 구조를 가진다. 이러한 경사진 에너지 밴드 구조를 갖는 제1층(351)을 통해, 본 발명의 전자차단층(350)은 제1층(351)과 제2층(353)의 계면에서 발생하는 스파이크(spike)와 노치(notch) 현상을 완화하여 활성층(340)으로의 홀 주입 효율을 높일 수 있다. 이로써, 고전류 밀도에서의 발광 효율을 향상시킬 수 있다.
이러한 전자차단층(350)의 다층구조는 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)와 같은 물질로 이루어질 수 있으며, 예를 들어, 활성층(340) 상에 순차 적층된 AlGaN/GaN/InGaN/GaN의 적층구조로 이루어질 수 있다. 이때, 제1층(351)은 AlGaN으로, 제2층(353)은 GaN으로, 제3층(355)은 InGaN으로, 제4층(357)은 GaN으로 이루어질 수 있으며, 제1층(351)의 경사진 구조는, Al 성분을 선형적으로 감소하는 것에 의해 형성될 수 있다. 또한, 전자차단층(350)은 상기 AlGaN/GaN/InGaN/GaN의 적층구조가 1회 이상 반복된 적층 구조를 가질 수도 있다. 이때, GaN으로 이루어진 제4층은 InGaN으로 이루어진 제3층과 AlGaN으로 이루어진 제1층간의 격자상수 차이로부터 발생하는 스트레인을 완화할 수 있다.
따라서, 본 실시형태의 전자차단층(350)은 활성층(340)의 양자장벽층보다 큰 에너지 밴드갭을 갖는 제1층(351)에 의해 n형 반도체층(330)으로부터 주입된 전자가 활성층(340)을 넘어 p형 반도체층(360)으로 오버플로우 되는 것을 방지할 수 있다. 또한, 전자차단층(350)은 서로 다른 에너지 밴드갭을 갖는 다층구조로 형성됨으로써, 다층구조의 각 층의 에너지 밴드갭 차이에 의한 정공의 분산(spreading) 효과를 얻을 수 있어 p형 반도체층(360)으로부터 활성층(340)으로 정공이 주입될 확률을 높일 수 있다. 또한, 전자차단층(350)을 초격자 구조로 형성함으로써 상기 정공 주입 확률을 더욱 높일 수 있다.
도 8을 참조하면, 본 실시예에 따른 전자차단층(450)은 도 7에 도시된 전자차단층(350)과 달리, 전자차단층(450)의 제1층(451)의 경사 방향이 도 7의 전자차단층(350)의 제1층(351)의 경사 방향과 반대로 형성한 점에서 차이가 있다.
도 9을 참조하면, 본 실시예에 따른 전자차단층(550)은 도 7에 도시된 전자차단층(350)과 달리, 전자차단층(550)을 4개의 층으로 이루어진 다층구조를 1회이상 반복하여 적층한 구조로 형성하고, 각 적층구조의 제1층(551, 551')에서 Al의 함량을 달리하여 에너지 밴드갭을 다르게 형성한 점에서 차이가 있다. 즉, 도 9에서는 제1층(551, 551')의 Al 함량을 증가시켜 p형 반도체층(560)에 인접할수록 큰 에너지 밴드갭을 갖는 구조로 형성하고 있다. 또한, 도시하지는 않았지만, 제1층(551, 551')의 Al 함량을 감소시켜 p형 반도체층(560)에 인접할수록 작은 에너지 밴드갭을 갖는 구조로도 형성할 수 있다.
한편, 본 발명에서는 Al의 함량을 선형적으로 변화시켜 전자차단층의 제1층의 경사가 선형적으로 증가 또는 감소하도록 형성한 경우에 대해서만 도시하였지만, 이에 한정되는 것은 아니며 상기 제1층은 Al의 함량을 함수적으로 변화시켜 2차원 또는 다차원적으로 증가 또는 감소하도록 형성할 수도 있다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.
Claims (13)
- n형 반도체층;상기 n형 반도체층 상에 형성되며, 적어도 하나의 양자우물층과 적어도 하나의 양자장벽층이 교대로 적층되어 이루어진 활성층;상기 활성층 상에 형성되며, 에너지 밴드갭이 서로 다른 3개의 층이 적층된 적어도 하나의 다층구조를 갖되, 상기 3개의 층 중 상기 활성층에 인접한 층이 경사진 에너지 밴드 구조를 가지는 전자차단층; 및상기 전자차단층 상에 형성된 p형 반도체층;을 포함하는 반도체 발광소자.
- 제1항에 있어서,상기 전자차단층은 InxAlyGa1-x-yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 이루어지며, 상기 전자차단층의 다층구조의 각 층은 Al과 In의 조성비를 달리하여 서로 다른 에너지 밴드갭을 갖는 것을 특징으로 하는 반도체 발광소자.
- 제2항에 있어서,상기 전자차단층의 다층구조는 각 층의 에너지 밴드갭이 적층방향을 따라 순차적으로 감소하도록 적층되어 있는 것을 특징으로 하는 반도체 발광소자.
- 제3항에 있어서,상기 전자차단층은 순차 적층된 AlGaN/GaN/InGaN의 적층구조인 것을 특징으로 하는 반도체 발광소자.
- 제4항에 있어서,상기 전자차단층은 상기 AlGaN/GaN/InGaN의 적층구조가 반복 적층된 구조를 갖는 것을 특징으로 하는 반도체 발광소자.
- 제3항에 있어서,상기 전자차단층은 순차 적층된 AlGaN/GaN/InGaN/GaN의 적층구조인 것을 특징으로 하는 반도체 발광소자.
- 제6항에 있어서,상기 전자차단층은 상기 AlGaN/GaN/InGaN/GaN의 적층구조가 반복 적층된 구조를 갖는 것을 특징으로 하는 반도체 발광소자.
- 제1항에 있어서,상기 전자차단층은 초격자 구조인 것을 특징으로 하는 반도체 발광소자.
- 제8항에 있어서,상기 전자차단층의 각 층은 0.5 ~ 20nm 범위의 두께를 갖는 것을 특징으로 하는 반도체 발광소자.
- 제1항에 있어서,상기 전자차단층의 다층구조를 이루는 3개의 층 중 상기 활성층에 인접한 층은 에너지 밴드갭이 적층방향을 따라 경사가 증가하는 것을 특징으로 하는 반도체 발광소자.
- 제1항에 있어서,상기 전자차단층의 다층구조를 이루는 3개의 층 중 상기 활성층에 인접한 층은 상기 활성층보다 큰 에너지 밴드갭을 가지며, 상기 에너지 밴드갭이 적층방향을 따라 경사가 감소하는 것을 특징으로 하는 반도체 발광소자.
- 제1항에 있어서,상기 n형 반도체층의 하면에 형성된 절연성 기판;상기 활성층 및 p형 반도체층의 일부영역이 제거되어 노출된 n형 반도체층 상에 형성된 n형 전극; 및상기 p형 반도체층 상에 형성된 p형 전극;을 더 포함하는 것을 특징으로 하는 반도체 발광소자.
- 제1항에 있어서,상기 p형 반도체층 상에 형성된 도전성 기판; 및상기 n형 반도체층 상에 형성된 n형 전극;을 더 포함하는 것을 특징으로 하는 반도체 발광소자.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/235,705 US20140191192A1 (en) | 2011-07-29 | 2011-07-29 | Semiconductor light-emitting device |
PCT/KR2011/005586 WO2013018937A1 (ko) | 2011-07-29 | 2011-07-29 | 반도체 발광소자 |
CN201180072081.0A CN103650173A (zh) | 2011-07-29 | 2011-07-29 | 半导体发光器件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2011/005586 WO2013018937A1 (ko) | 2011-07-29 | 2011-07-29 | 반도체 발광소자 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018937A1 true WO2013018937A1 (ko) | 2013-02-07 |
Family
ID=47629440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/005586 WO2013018937A1 (ko) | 2011-07-29 | 2011-07-29 | 반도체 발광소자 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140191192A1 (ko) |
CN (1) | CN103650173A (ko) |
WO (1) | WO2013018937A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2814069A1 (en) * | 2013-06-11 | 2014-12-17 | LG Innotek Co., Ltd. | Multiple quantum well semiconductor light emitting device and corresponding lighting system |
KR20170134222A (ko) * | 2016-05-26 | 2017-12-06 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
KR20220013435A (ko) * | 2016-05-26 | 2022-02-04 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9401452B2 (en) * | 2012-09-14 | 2016-07-26 | Palo Alto Research Center Incorporated | P-side layers for short wavelength light emitters |
US20150243845A1 (en) * | 2014-02-26 | 2015-08-27 | Epistar Corporation | Light-emitting device |
CN104022198B (zh) * | 2014-05-30 | 2017-02-15 | 华灿光电(苏州)有限公司 | GaN基发光二极管的外延片及其制作方法 |
KR102320790B1 (ko) * | 2014-07-25 | 2021-11-03 | 서울바이오시스 주식회사 | 자외선 발광 다이오드 및 그 제조 방법 |
CN105470355A (zh) * | 2014-07-31 | 2016-04-06 | 比亚迪股份有限公司 | GaN基LED结构及其形成方法 |
KR102212561B1 (ko) * | 2014-08-11 | 2021-02-08 | 삼성전자주식회사 | 반도체 발광 소자 및 반도체 발광 소자 패키지 |
DE102015113670A1 (de) * | 2014-08-19 | 2016-02-25 | Seoul Viosys Co., Ltd | Leuchtvorrichtung und Verfahren zu deren Herstellung |
CN105355725B (zh) * | 2014-08-20 | 2017-12-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | 具有倾斜量子垒结构的氮化镓半导体发光二极管及其制法 |
DE112016004375T5 (de) * | 2015-09-28 | 2018-06-21 | Nichia Corporation | Lichtemittierendes nitrid-halbleiter-element |
TWI738640B (zh) * | 2016-03-08 | 2021-09-11 | 新世紀光電股份有限公司 | 半導體結構 |
CN105655455B (zh) * | 2016-04-08 | 2018-01-30 | 湘能华磊光电股份有限公司 | 一种提升led光效的外延生长方法 |
CN105742425B (zh) * | 2016-04-22 | 2018-03-27 | 河北工业大学 | 具有空穴能量调节层的发光二极管外延结构 |
WO2017195502A1 (ja) * | 2016-05-13 | 2017-11-16 | パナソニックIpマネジメント株式会社 | 窒化物系発光素子 |
DE102016111929A1 (de) * | 2016-06-29 | 2018-01-04 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterkörper und Leuchtdiode |
DE102016112294A1 (de) | 2016-07-05 | 2018-01-11 | Osram Opto Semiconductors Gmbh | Halbleiterschichtenfolge |
TWI717386B (zh) | 2016-09-19 | 2021-02-01 | 新世紀光電股份有限公司 | 含氮半導體元件 |
CN107195746B (zh) * | 2017-05-16 | 2019-03-29 | 东南大学 | 一种具有共振隧穿结构电子阻挡层的发光二极管 |
CN108470808A (zh) * | 2018-03-29 | 2018-08-31 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制造方法 |
CN109860358B (zh) * | 2018-11-26 | 2021-10-08 | 华灿光电(浙江)有限公司 | 一种氮化镓基发光二极管外延片及其制备方法 |
JP7338166B2 (ja) | 2019-02-25 | 2023-09-05 | 日本電信電話株式会社 | 半導体装置 |
CN111640829A (zh) * | 2020-05-25 | 2020-09-08 | 安徽三安光电有限公司 | 一种具有复合电子阻挡层的发光二极管及其制备方法 |
CN111883623B (zh) * | 2020-06-11 | 2022-03-18 | 华灿光电(浙江)有限公司 | 近紫外发光二极管外延片及其制备方法 |
CN114038961B (zh) * | 2021-10-26 | 2023-06-16 | 重庆康佳光电技术研究院有限公司 | 发光二极管及显示面板 |
WO2023233778A1 (ja) * | 2022-05-31 | 2023-12-07 | パナソニックホールディングス株式会社 | 窒化物発光素子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030064629A (ko) * | 2002-01-24 | 2003-08-02 | 소니 가부시끼 가이샤 | 반도체 발광 소자 및 그 제조 방법 |
KR20080045943A (ko) * | 2006-11-21 | 2008-05-26 | 삼성전기주식회사 | 질화물 반도체 발광소자 |
KR20090084583A (ko) * | 2008-02-01 | 2009-08-05 | 삼성전기주식회사 | 질화물 반도체 발광소자 |
KR20100051474A (ko) * | 2008-11-07 | 2010-05-17 | 삼성엘이디 주식회사 | 질화물 반도체 소자 |
KR20100066807A (ko) * | 2008-12-10 | 2010-06-18 | 삼성엘이디 주식회사 | 질화물 반도체 발광소자 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100664985B1 (ko) * | 2004-10-26 | 2007-01-09 | 삼성전기주식회사 | 질화물계 반도체 소자 |
KR100835116B1 (ko) * | 2007-04-16 | 2008-06-05 | 삼성전기주식회사 | 질화물 반도체 발광 소자 |
KR101781435B1 (ko) * | 2011-04-13 | 2017-09-25 | 삼성전자주식회사 | 질화물 반도체 발광소자 |
-
2011
- 2011-07-29 US US14/235,705 patent/US20140191192A1/en not_active Abandoned
- 2011-07-29 WO PCT/KR2011/005586 patent/WO2013018937A1/ko active Application Filing
- 2011-07-29 CN CN201180072081.0A patent/CN103650173A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030064629A (ko) * | 2002-01-24 | 2003-08-02 | 소니 가부시끼 가이샤 | 반도체 발광 소자 및 그 제조 방법 |
KR20080045943A (ko) * | 2006-11-21 | 2008-05-26 | 삼성전기주식회사 | 질화물 반도체 발광소자 |
KR20090084583A (ko) * | 2008-02-01 | 2009-08-05 | 삼성전기주식회사 | 질화물 반도체 발광소자 |
KR20100051474A (ko) * | 2008-11-07 | 2010-05-17 | 삼성엘이디 주식회사 | 질화물 반도체 소자 |
KR20100066807A (ko) * | 2008-12-10 | 2010-06-18 | 삼성엘이디 주식회사 | 질화물 반도체 발광소자 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2814069A1 (en) * | 2013-06-11 | 2014-12-17 | LG Innotek Co., Ltd. | Multiple quantum well semiconductor light emitting device and corresponding lighting system |
CN104241469A (zh) * | 2013-06-11 | 2014-12-24 | Lg伊诺特有限公司 | 发光器件及照明系统 |
US9087961B2 (en) | 2013-06-11 | 2015-07-21 | Lg Innotek Co., Ltd. | Light emitting device and lighting system |
KR20170134222A (ko) * | 2016-05-26 | 2017-12-06 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
KR102354508B1 (ko) * | 2016-05-26 | 2022-01-24 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
KR20220013435A (ko) * | 2016-05-26 | 2022-02-04 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
KR102459379B1 (ko) * | 2016-05-26 | 2022-10-28 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
KR20220150846A (ko) * | 2016-05-26 | 2022-11-11 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
KR102544358B1 (ko) * | 2016-05-26 | 2023-06-20 | 서울바이오시스 주식회사 | 고효율 장파장 발광 소자 |
Also Published As
Publication number | Publication date |
---|---|
CN103650173A (zh) | 2014-03-19 |
US20140191192A1 (en) | 2014-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013018937A1 (ko) | 반도체 발광소자 | |
KR101766719B1 (ko) | 발광 다이오드 및 이를 포함하는 발광 소자 패키지 | |
WO2011083940A2 (ko) | 발광 다이오드 및 그것을 제조하는 방법 | |
WO2014168339A1 (ko) | 자외선 발광 소자 | |
WO2013015472A1 (ko) | 반도체 발광소자 및 그 제조방법 | |
WO2021158016A1 (ko) | 단일칩 복수 대역 발광 다이오드 | |
WO2013191406A1 (en) | Light emitting device having electron blocking layer | |
KR20110090118A (ko) | 반도체 발광소자 | |
WO2013147552A1 (en) | Near uv light emitting device | |
WO2013165127A1 (ko) | 발광 다이오드 소자 및 그의 제조 방법 | |
JP2015511776A (ja) | 発光素子 | |
WO2014003402A1 (en) | Near uv light emitting device | |
WO2017116048A1 (ko) | 발광소자 및 이를 포함하는 발광소자 패키지 | |
WO2021210919A1 (ko) | 단일칩 복수 대역 발광 다이오드 | |
WO2016018010A1 (ko) | 발광소자 및 조명시스템 | |
WO2022240179A1 (ko) | 복수 대역 발광 다이오드 | |
KR20110084683A (ko) | 양자우물 구조의 활성 영역을 갖는 발광 소자 | |
KR20100049451A (ko) | 질화물 반도체 소자 | |
WO2016072661A1 (ko) | 자외선 발광소자 및 조명시스템 | |
WO2023277608A1 (ko) | 복수 대역 발광 다이오드 | |
WO2015016507A1 (ko) | 발광 소자 제조용 템플릿 및 자외선 발광 소자 제조 방법 | |
KR101043345B1 (ko) | 질화물 반도체 소자 | |
KR20100027407A (ko) | 질화물 반도체 발광소자 | |
WO2016195342A1 (ko) | 자외선 발광소자 | |
WO2016163595A1 (ko) | 질화물계 반도체 발광소자 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11870287 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14235705 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11870287 Country of ref document: EP Kind code of ref document: A1 |