TWI738640B - 半導體結構 - Google Patents
半導體結構 Download PDFInfo
- Publication number
- TWI738640B TWI738640B TW105106975A TW105106975A TWI738640B TW I738640 B TWI738640 B TW I738640B TW 105106975 A TW105106975 A TW 105106975A TW 105106975 A TW105106975 A TW 105106975A TW I738640 B TWI738640 B TW I738640B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- hole providing
- providing layer
- hole
- aluminum
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 141
- 229910052782 aluminium Inorganic materials 0.000 claims description 112
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 112
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 37
- 229910002601 GaN Inorganic materials 0.000 claims description 35
- 239000011777 magnesium Substances 0.000 claims description 33
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 29
- 229910052749 magnesium Inorganic materials 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 229910052738 indium Inorganic materials 0.000 claims description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 abstract description 50
- 239000002019 doping agent Substances 0.000 description 46
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 16
- 238000010586 diagram Methods 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/025—Physical imperfections, e.g. particular concentration or distribution of impurities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
- H01L33/325—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
一種半導體結構,包括一第一型半導體層、一第二型半導體層、一發光層以及一電洞提供層。發光層配置於第一型半導體層與第二型半導體層之間。電洞提供層配置於發光層與第二型半導體層之間,且電洞提供層包括一第一電洞提供層以及一第二電洞提供層。第一電洞提供層配置於發光層與第二電洞提供層之間,且第一電洞提供層的化學通式為Alx1
Iny1
Ga1-x1-y1
N,其中0≦x1<0.4,且0≦y1<0.4。第二電洞提供層配置於第一電洞提供層與第二型半導體層之間,且第二電洞提供層的化學通式為Alx2
Iny2
Ga1-x2-y2
N,其中0≦x2<0.4,0≦y2<0.4,且x1>x2。
Description
本發明是有關於一種半導體結構,且特別是有關於一種具有電洞提供層的半導體結構。
在一般的發光二極體晶片中,為了增加電子電洞結合的機率以及提高電子阻障,會在發光層與P型半導體層之間設置一高鋁含量的氮化鋁銦鎵(AlxInyGa1-x-yN)的四元半導體層,且此半導體層中可能會添加有高濃度的鎂或碳。然而,雖然高鋁含量的氮化鋁銦鎵可有效提高電子阻障的效果,但伴隨而來的是驅動電壓高的問題。
本發明提供一種半導體結構,其具有電洞提供層,透過調整電洞提供層中的鋁含量,來提高電子阻障效能,並可以避免驅動電壓升高的問題產生。
本發明的半導體結構,其包括一第一型半導體層、一第二型半導體層、一發光層以及一電洞提供層。發光層配置於第一型半
導體層與第二型半導體層之間。電洞提供層配置於發光層與第二型半導體層之間,且電洞提供層包括一第一電洞提供層以及一第二電洞提供層。第一電洞提供層配置於發光層與第二電洞提供層之間,且第一電洞提供層的化學通式為Alx1Iny1Ga1-x1-y1N,其中0≦x1<0.4,且0≦y1<0.4。第二電洞提供層配置於第一電洞提供層與第二型半導體層之間,且第二電洞提供層的化學通式為Alx2Iny2Ga1-x2-y2N,其中0≦x2<0.4,0≦y2<0.4,且x1>x2。
在本發明的一實施例中,上述的電洞提供層更包括一第三電洞提供層,配置於第二電洞提供層與第二型半導體層之間,第三電洞提供層的化學通式為Alx3Iny3Ga1-x3-y3N,其中0≦x3<0.4,0≦y3<0.4,其中x3>x2。
在本發明的一實施例中,上述的第一電洞提供層的厚度大於等於2奈米且小於等於50奈米。
在本發明的一實施例中,上述的第二電洞提供層的厚度大於等於2奈米且小於等於50奈米。
在本發明的一實施例中,上述的第一電洞提供層摻雜有濃度大於等於3x1017atom/cm3的一第一摻質,而第一摻質為碳。
在本發明的一實施例中,上述的第一電洞提供層摻雜有濃度大於等於1x1019atom/cm3的一第二摻質,而第二摻質為鎂。
在本發明的一實施例中,上述的第二電洞提供層摻雜有濃度大於等於3x1017atom/cm3的一第一摻質,而第一摻質為碳。
在本發明的一實施例中,上述的第二電洞提供層摻雜有
濃度大於等於1x1019atom/cm3的一第二摻質,而第二摻質為鎂。
在本發明的一實施例中,上述的第一電洞提供層與第二電洞提供層的化學通式中的x1值與x2值分別為一定值。
在本發明的一實施例中,上述的第一電洞提供層與第二電洞提供層的化學通式中的x1值與x2值分別隨著第一電洞提供層的厚度與第二電洞提供層的厚度呈一漸變分佈。
在本發明的一實施例中,上述的第一電洞提供層與第二電洞提供層的化學通式中的x1值與x2值分別隨著第一電洞提供層的厚度與第二電洞提供層的厚度呈一階梯式分佈。
在本發明的一實施例中,上述的第一電洞提供層與第二電洞提供層分別為一超晶格電洞提供層。
在本發明的一實施例中,上述的第一電洞提供層包括至少一第一子電洞提供層以及至少一第二子電洞提供層。第一子電洞提供層的化學通式為Alx1aIny1aGa1-x1a-y1aN,其中0≦x1a<0.4,且0≦y1a<0.4。第二子電洞提供層的化學通式為Alx1bIny1bGa1-x1b-y1bN,其中0≦x1b<0.4,且0≦y1b<0.4。第一子電洞提供層的厚度與第二子電洞提供層的厚度分別大於1奈米且小30奈米。
在本發明的一實施例中,上述的第二電洞提供層包括至少一第三子電洞提供層以及至少一第四子電洞提供層。第三子電洞提供層的化學通式為Alx2aIny2aGa1-x2a-y2aN,其中0≦x2a<0.4,且0≦y2a<0.4。第四子電洞提供層的化學通式為Alx2bIny2bGa1-x2b-y2bN,其中0≦x2b<0.4,且0≦y2b<0.4。第三子電洞提供層的厚度與第
四子電洞提供層的厚度分別大於1奈米且小30奈米。
本發明還提供一種半導體結構,其包括一第一型半導體層、一第二型半導體層、一發光層以及一電洞提供層。發光層配置於第一型半導體層與第二型半導體層之間。電洞提供層配置於發光層與第二型半導體層之間,且電洞提供層的化學通式為AlxInyGa1-x-yN,其中0≦x<0.4,且0≦y<0.4,且電洞提供層的化學通式中的x值在靠近發光層處大於在靠近第二型半導體層處。
本發明還提供一種半導體結構,其包括一第一型半導體層、一第二型半導體層、一發光層、一第一氮化鋁銦鎵層以及一第二氮化鋁銦鎵層。發光層配置於第一型半導體層與第二型半導體層之間。第一氮化鋁銦鎵層配置於發光層與第二型半導體層之間。第二氮化鋁銦鎵層配置於第一氮化鋁銦鎵與第二型半導體層之間,其中第一氮化鋁銦鎵層中的鋁含量大於第二氮化鋁銦鎵層中的鋁含量。
在本發明的一實施例中,上述的半導體結構更包括一第三氮化鋁銦鎵層,配置於第二氮化鋁銦鎵層與第二型半導體層之間,其中第三氮化鋁銦鎵層中的鋁含量大於第二氮化鋁銦鎵層中的鋁含量。
在本發明的一實施例中,上述的第一電洞提供層摻雜有濃度大於等於3x 1017atom/cm3的一第一摻質,而第一摻質為碳。
在本發明的一實施例中,上述的第一電洞提供層摻雜有濃度大於等於1x1019atom/cm3的一第二摻質,而第二摻質為鎂。
在本發明的一實施例中,上述的第二電洞提供層摻雜有濃度大於等於3x1017atom/cm3的一第一摻質,而第一摻質為碳。
在本發明的一實施例中,上述的第二電洞提供層摻雜有濃度大於等於1x1019atom/cm3的一第二摻質,而第二摻質為鎂。
基於上述,由於本發明的半導體結構具有電洞提供層,因此可提供更多的電洞進入發光層內,可增加電子電洞結合的情況。再者,本發明的電洞提供層的材質為氮化鋁銦鎵(AlxInyGa1-x-yN),透過調整電洞提供層中鋁的含量,除了可以有效地將電子電洞侷限於發光層內,以有效提高電子阻障效能之外,亦可有效避免電壓升高的問題產生。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
10:發光元件
100a、100b、100c、100d:半導體結構
110:第一型半導體層
120:第二型半導體層
130:發光層
140、140’、140A、140B:電洞提供層
140a、140a’、140a”:第一電洞提供層
140a1:第一子電洞提供層
140a2:第二子電洞提供層
140b、140b’、140b”:第二電洞提供層
140b1:第三子電洞提供層
140b2:第四子電洞提供層
140c、140c’、140c”:第三電洞提供層
140c1:第五子電洞提供層
140c2:第六子電洞提供層
150:基板
160:第一電極
170:第二電極
T1、T2、T3、T4、T5、T6、T7:厚度
圖1A繪示為本發明的一實施例的一種半導體結構的剖面示意圖。
圖1B至圖1D繪示為圖1A的第一電洞提供層與第二電洞提供層中鋁含量與厚度的多種形態的關係示意圖。
圖2A繪示為本發明的另一實施例的一種半導體結構的剖面示意圖。
圖2B繪示為圖2A的第一電洞提供層、與第二電洞提供層與
第三電洞提供層中鋁含量、鎂含量、碳含量以及銦含量的二次離子質譜量測圖。
圖2C至圖2E繪示為2A的第一電洞提供層、第二電洞提供層與第三電洞提供層中鋁含量與厚度的多種形態的關係示意圖。
圖3A繪示為本發明的另一實施例的一種半導體結構的剖面示意圖。
圖3B繪示為圖3A中的第一電洞提供層另一種型態的示意圖。
圖3C繪示為圖3A中的第二電洞提供層另一種型態的示意圖。
圖3D繪示為圖3B與圖3C的第一電洞提供層與第二電洞提供層中鋁含量與厚度的關係示意圖。
圖4A繪示為本發明的另一實施例的一種半導體結構的剖面示意圖。
圖4B繪示為圖4A中的第一電洞提供層另一種型態的示意圖。
圖4C繪示為圖4A中的第二電洞提供層另一種型態的示意圖。
圖4D繪示為圖4A中的第三電洞提供層另一種型態的示意圖。
圖4E繪示為圖4B、圖4C與圖4D中的第一電洞提供層、第二電洞提供層與第三電洞提供層中鋁含量與厚度的關係示意圖。
圖5A至圖5C繪示為本發明的第一電洞提供層、第二電洞提供層與第三電洞提供層中鋁含量與厚度的多種形態的關係示意圖。
圖6繪示為本發明的一實施例的一種發光元件的剖面示意圖。
圖1A繪示為本發明的一實施例的一種半導體結構的剖面示意圖。請參考圖1A,在本實施例中,半導體結構100a包括一第一型半導體層110、一第二型半導體層120、一發光層130以及一電洞提供層140。發光層130配置於第一型半導體層110與第二型半導體層120之間。電洞提供層140配置於發光層130與第二型半導體層120之間,且電洞提供層140包括一第一電洞提供層140a以及一第二電洞提供層140b。第一電洞提供層140a配置於發光層130與第二電洞提供層140b之間,且第一電洞提供層140a的化學通式為Alx1Iny1Ga1-x1-y1N,其中0≦x1<0.4,且0≦y1<0.4。第二電洞提供層140b配置於第一電洞提供層140a與第二型半導體層120之間,且第二電洞提供層140b的化學通式為Alx2Iny2Ga1-x2-y2N,其中0≦x2<0.4,0≦y2<0.4,且x1>x2。
詳細來說,本實施例的第一型半導體層110與第二型半導體層120的材質分別例如為氮化鎵(GAN),其中第一型半導體層110例如是N型半導體層,第二型半導體層120例如是P型半導體層,而發光層130例如為一多重量子井結構。第一電洞提供層140a的化學通式中的x1值大於第二電洞提供層140b的化學通式中的x2值,也就是說,第一電洞提供層140a中的鋁(Al)含量大於第二電洞提供層140b中的鋁(Al)含量,較佳地,是x1值與x2值介於0.05至0.25之間;或者在另一實施例中第一電洞提供層140a中鋁濃度可為3x1020atom/cm3,第二電洞提供層140b中鋁濃度可為9x1019atom/cm3。若x1值與x2值太大,則易造成
磊晶品質下降或材料阻值增加;若x1值與x2值太小,則易造成電子阻障效果不佳。
再者,本實施例的第一電洞提供層140a的厚度T1,例如是大於等於2奈米且小於等於50奈米。第二電洞提供層140b的厚度T2,例如是大於等於2奈米且小於等於50奈米。較佳地,第一電洞提供層140a的厚度T1與第二電洞提供層140b的厚度T2,較佳地,介於5奈米至20奈米之間。若第一電洞提供層140a的厚度T1與第二電洞提供層140b的厚度T2太大,則易造成磊晶品質下降或材料阻值增加;若第一電洞提供層140a的厚度T1與第二電洞提供層140b的厚度T2太小,則易造成電子阻障效果不佳。第一電洞提供層140a的厚度T1可大於、等於或小於第二電洞提供層140b的厚度T2,於此並不加以限制。
圖1B至圖1E繪示為圖1A的第一電洞提供層與第二電洞提供層中鋁含量與厚度的多種形態的關係示意圖。在本實施例中,電洞提供層140的第一電洞提供層140a中的鋁(Al)含量大於第二電洞提供層140b中的鋁(Al)含量。也就是說,電洞提供層140中的鋁(Al)含量是可調變的,且在靠近發光層130處的鋁(Al)含量大於在靠近第二型半導體層120處的(Al)含量。特別是,請參考圖1B,第一電洞提供層140a中的鋁(Al)含量並不會隨著第一電洞提供層140a的磊晶厚度的改變而變動,意即第一電洞提供層140a的化學通式中的x1值為一定值。另一方面,第二電洞提供層140b中的鋁(Al)含量也並不會隨了第二電洞提供
層140b的磊晶厚度的改變而變動,意即第二電洞提供層140b的化學通式中的x2值也為一定值,且x1>x2。
或者是,請同時參考圖1A與圖1C,第一電洞提供層140a中的鋁(Al)含量與第二電洞提供層140b中的鋁(Al)含量隨著第一電洞提供層140a的磊晶厚度與第二電洞提供層140b的磊晶厚度呈一漸變分佈。也就是說,第一電洞提供層140a與第二電洞提供層140b的化學通式中的x1值與x2值分別隨著第一電洞提供層140a的厚度T1與第二電洞提供層140b的厚度T2呈一連續漸變分佈,且x1>x2。透過連續漸變式的第一電洞提供層140a與第二電洞提供層140b的設計,可有效降低晶格差排在厚度方向上的延伸現象,進而提升整體半導體結構100a的品質。
或者是,請同時參考圖1A與圖1D,第一電洞提供層140a中的鋁(Al)含量與第二電洞提供層140b中的鋁(Al)含量隨著第一電洞提供層140a的磊晶厚度與第二電洞提供層140b的磊晶厚度呈一階梯式分佈。也就是說,第一電洞提供層140a與第二電洞提供層140b的化學通式中的x1值與x2值分別隨著第一電洞提供層140a的厚度T1與第二電洞提供層140b的厚度T2呈一階梯式分佈,且x1>x2,可有效降低晶格差排在厚度方向上的延伸現象,進而提升整體半導體結構100a的品質。
簡言之,由於本實施例的半導體結構100a具有電洞提供層140,因此可提供更多的電洞進入發光層130內,可增加電子電洞結合的情況。此外,本實施例的電洞提供層140的材質為氮化
鋁銦鎵(AlxInyGa1-x-yN),透過調整電洞提供層140中鋁的含量,除了可以有效地將電子電洞侷限於發光層130內,以有效提高電子阻障效能之外,亦可有效避免電壓升高的問題產生。
在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。
圖2A繪示為本發明的另一實施例的一種半導體結構的剖面示意圖。請參考圖2A,本實施例的半導體結構100b與圖1A的半導體結構100a相似,惟二者主要差異之處在於:電洞提供層140’更包括一第三電洞提供層140c,其中第三電洞提供層140c配置於第二電洞提供層140b與第二型半導體層120之間,且第三電洞提供層140c的化學通式為Alx3Iny3Ga1-x3-y3N,其中0≦x3<0.4,0≦y3<0.4,且x3>x2。在另一實施例中,第三電洞提供層140c中鋁濃度可為1.5x1020atom/cm3。
圖2B繪示為圖2A的第一電洞提供層、與第二電洞提供層與第三電洞提供層中鋁含量、鎂含量、碳含量以及銦含量的二次離子質譜量測圖。請參考圖2B,為了增加電洞的濃度,本實施例的第一電洞提供層140a亦可摻雜有濃度例如是大於等於3x 1017atom/cm3的一第一摻質,其中第一摻質為碳(C)。當然,第一電洞提供層140a亦可再摻雜有濃度例如是大於等於1019atom/cm3的一第二摻質,其中第二摻質為鎂(Mg)。透過摻雜第一摻質(碳)與
第二摻質(鎂),可使得第一電洞提供層140a可具有高電洞濃度,藉此提供更多的電洞進入發光層130,進而增加電子電洞結合之情況。同理,本實施例的第二電洞提供層140b亦可摻雜有濃度例如是大於等於3x1017atom/cm3的一第一摻質,其中第一摻質為碳(C)。當然,第二電洞提供層140b亦可再摻雜有濃度例如是大於等於1019atom/cm3的一第二摻質,其中第二摻質為鎂(Mg)。透過摻雜第一摻質(碳)與第二摻質(鎂),可使得第二電洞提供層140b可具有高電洞濃度,藉此提供更多的電洞進入發光層130,進而增加電子電洞結合之情況。同理,本實施例的第三電洞提供層140c亦可摻雜有濃度例如是大於等於3x1017atom/cm3的一第一摻質,其中第一摻質為碳(C)。當然,第三電洞提供層140c亦可再摻雜有濃度例如是大於等於1019atom/cm3的一第二摻質,其中第二摻質為鎂(Mg)。在另一實施例中,第三電洞提供層140c可為僅摻雜第二摻質的第二型半導體層,例如是p-AlGaN。較佳地,在第一電洞提供層140a中的鋁含量大於在第二電洞提供層140b中的鋁含量,且在第三電洞提供層140c中的鋁含量大於在第二電洞提供層140b中的鋁含量。例如,第一電洞提供層140a中的鋁濃度可為3x1020atom/cm3,第二電洞提供層140b中的鋁濃度可為9x1019atom/cm3,第三電洞提供層140c中的鋁濃度可為1.5x1020atom/cm3。如圖2B所示,電洞提供層140’中的鎂的濃度曲綫具有位於鋁濃度曲綫的第一高峰與第二高峰之間的第三高峰。
圖2C至圖2E繪示為2A的第一電洞提供層、第二電洞
提供層與第三電洞提供層中鋁含量與厚度的多種形態的關係示意圖。在本實施例中,電洞提供層140’的第一電洞提供層140a中的鋁(Al)含量大於第二電洞提供層140b中的鋁(Al)含量,而電洞提供層140’的第三電洞提供層140c中的鋁(Al)含量大於第二電洞提供層140b中的鋁(Al)含量。也就是說,電洞提供層140’中的鋁(Al)含量是可調變的,且在靠近發光層130處的鋁(Al)含量與在靠近第二型半導體層120處的(Al)含量最高。特別是,請參考圖2C,第一電洞提供層140a中的鋁(Al)含量並不會隨著第一電洞提供層140a的磊晶厚度的改變而變動,意即第一電洞提供層140a的化學通式中的x1值為一定值。另一方面,第二電洞提供層140b中的鋁(Al)含量也並不會隨了第二電洞提供層140b的磊晶厚度的改變而變動,意即第二電洞提供層140b的化學通式中的x2值也為一定值,且x1>x2。第三電洞提供層140c中的鋁(Al)含量也並不會隨了第三電洞提供層140c的磊晶厚度的改變而變動,意即第三電洞提供層140c的化學通式中的x3值也為一定值,且x3>x2。
或者是,請同時參考圖2A與圖2D,電洞提供層140’的第一電洞提供層140a中的鋁(Al)含量、第二電洞提供層140b中的鋁(Al)含量與第三電洞提供層140c中的鋁(Al)含量分別隨著第一電洞提供層140a的磊晶厚度、第二電洞提供層140b的磊晶厚度與第三電洞提供層140c的磊晶厚度呈一連續漸變分佈。也就是說,第一電洞提供層140a、第二電洞提供層140b與第三電洞
提供層140c的化學通式中的x1值、x2值與x3值分別隨著第一電洞提供層140a的厚度T1、第二電洞提供層140b的厚度T2與第三電洞提供層140c的厚度T3呈一連續漸變分佈,其中x1>x2,而x3>x2。透過漸變式的第一電洞提供層140a、第二電洞提供層140b與第三電洞提供層140c的設計,可有效降低晶格差排在厚度方向上的延伸現象,進而提升整體半導體結構100b的品質。
或者是,請同時參考圖2A與圖2E,電洞提供層140’的第一電洞提供層140a中的鋁(Al)含量、第二電洞提供層140b中的鋁(Al)含量與第三電洞提供層140c中的鋁(Al)含量分別隨著第一電洞提供層140a的磊晶厚度、第二電洞提供層140b的磊晶厚度及第三電洞提供層140c的磊晶厚度呈一階梯式分佈。也就是說,第一電洞提供層140a、第二電洞提供層140b與第三電洞提供層140c的化學通式中的x1值、x2值與x3值分別隨著第一電洞提供層140a的厚度T1、第二電洞提供層140b的厚度T2與第三電洞提供層140b的厚度T3呈一階梯式分佈,其中x1>x2,且x3>x2。透過階梯式分佈鋁(Al)含量變化的第一電洞提供層140a、第二電洞提供層140b與第三電洞提供層140c的設計,可有效降低晶格差排在厚度方向上的延伸現象,進而提升整體半導體結構100b的品質。
簡言之,由於本實施例的半導體結構100b具有電洞提供層140’,因此可提供更多的電洞進入發光層130內,可增加電子電洞結合的情況。此外,本實施例的電洞提供層140’的材質為氮
化鋁銦鎵(AlxInyGa1-x-yN),透過調整電洞提供層140’中鋁的含量,除了可以有效地將電子電洞侷限於發光層130內,以有效提高電子阻障效能之外,亦可有效避免電壓升高的問題產生。
圖3A繪示為本發明的另一實施例的一種半導體結構的剖面示意圖。請參考圖3A,本實施例之半導體結構100c與圖1A之半導體結構100a相似,其不同之處在於:本實施例的電洞提供層140A的第一電洞提供層140a’包括至少一第一子電洞提供層140a1(圖3A中僅示意地繪示一個)以及至少一第二子電洞提供層140a2(圖3A中僅示意地繪示一個)。第一子電洞提供層140a1的化學通式為Alx1aIny1aGa1-x1a-y1aN,其中0≦x1a<0.4,且0≦y1a<0.4。第二子電洞提供層140a2的化學通式為Alx1bIny1bGa1-x1b-y1bN,其中0≦x1b<0.4,且0≦y1b<0.4。第一子電洞提供層140a1的厚度T4與第二子電洞提供層140a2的厚度T5分別例如是大於1奈米且小30奈米。
另一方面,電洞提供層140A的第二電洞提供層140b’包括至少一第三子電洞提供層140b1(圖3A中僅示意地繪示一個)以及至少一第四子電洞提供層140b2(圖3A中僅示意地繪示一個)。第三子電洞提供層140b1的化學通式為Alx2aIny2aGa1-x2a-y2aN,其中0≦x2a<0.4,且0≦y2a<0.4。第四子電洞提供層140b2的化學通式為Alx2bIny2bGa1-x2b-y2bN,其中0≦x2b<0.4,且0≦y2b<0.4。第三子電洞提供層140b1的厚度T6與第四子電洞提供層140b2的厚度T7分別例如是大於1奈米且小30奈米。
當然,於其他實施例中,請參考圖3B,第一電洞提供層140a”亦可包括多個第一子電洞提供層140a1以及多個第二子電洞提供層140a2,其中第一子電洞提供層140a1與第二子電洞提供層140a2呈交替堆疊。將一個第一子電洞提供層140a1與一個第二子電洞提供層140a2定義為一對子電洞提供層,較佳地,第一電洞提供層140a”至少包括一對子電洞提供層,而至多至200對子電洞提供層。同理,請參考圖3C,第二電洞提供層140b”亦可包括多個第三子電洞提供層140b1以及多個第四子電洞提供層140b2,其中第三子電洞提供層140b1與第四子電洞提供層140b2呈交替堆疊。將一個第三子電洞提供層140b1與一個第四子電洞提供層140b2定義為一對子電洞提供層,較佳地,第二電洞提供層140b”至少包括一對子電洞提供層,而至多至200對子電洞提供層。
圖3D繪示為圖3B與圖3C的第一電洞提供層與第二電洞提供層中鋁含量與厚度的關係示意圖。由圖3D中可清楚得知,圖3B與圖3C中的第一電洞提供層140a”與第二電洞提供層140b”具體化分別為一超晶格電洞提供層。由於第一電洞提供層140a”與第二電洞提供層140b”中的鋁(Al)含量具有高低變化,因鋁含量越高,則晶格常數越不匹配,容易造成磊晶品質下降。因此,以此超晶格方式成長,除了可提高平均摻雜濃度及磊晶品質,亦可有效提高電子阻障效果及防止晶格缺陷產生。
圖4A繪示為本發明的另一實施例的一種半導體結構的剖面示意圖。請參考圖4A,本實施例之半導體結構100d與圖3A
之半導體結構100a相似,其不同之處在於:本實施例的電洞提供層140B的第三電洞提供層140c’包括至少一第五子電洞提供層140c1(圖4A中僅示意地繪示一個)以及至少一第六子電洞提供層140c2(圖4A中僅示意地繪示一個)。第五子電洞提供層140c1的化學通式為Alx3aIny3aGa1-x3a-y3aN,其中0≦x3a<0.4,且0≦y3a<0.4。第六子電洞提供層140c2的化學通式為Alx3bIny3bGa1-x3b-y3bN,其中0≦x3b<0.4,且0≦y3b<0.4。第五子電洞提供層140c1的厚度T8與第六子電洞提供層140c2的厚度T9分別例如是大於1奈米且小30奈米。
當然,於其他實施例中,請參考圖4B,第一電洞提供層140a”亦可包括多個第一子電洞提供層140a1以及多個第二子電洞提供層140a2,其中第一子電洞提供層140a1與第二子電洞提供層140a2呈交替堆疊。將一個第一子電洞提供層140a1與一個第二子電洞提供層140a2定義為一對子電洞提供層,較佳地,第一電洞提供層140a”至少包括一對子電洞提供層,而至多至200對子電洞提供層。同理,請參考圖4C,第二電洞提供層140b”亦可包括多個第三子電洞提供層140b1以及多個第四子電洞提供層140b2,其中第三子電洞提供層140b1與第四子電洞提供層140b2呈交替堆疊。將一個第三子電洞提供層140b1與一個第四子電洞提供層140b2定義為一對子電洞提供層,較佳地,第二電洞提供層140b”至少包括一對子電洞提供層,而至多至200對子電洞提供層。同理,請參考圖4D,第三電洞提供層140c”亦可包括多個第五子電
洞提供層140c1以及多個第六子電洞提供層140c2,其中第五子電洞提供層140c1與第六子電洞提供層140c2呈交替堆疊。將一個第五子電洞提供層140c1與一個第六子電洞提供層140c2定義為一對子電洞提供層,較佳地,第三電洞提供層140c”至少包括一對子電洞提供層,而至多至200對子電洞提供層。
圖4E繪示為圖4B、圖4C與圖4D中的第一電洞提供層、第二電洞提供層與第三電洞提供層中鋁含量與厚度的關係示意圖。由圖4E中可清楚得知,圖4B、圖4C與圖4D中的第一電洞提供層140a”、第二電洞提供層140b”與第三電洞提供層140c”具體化分別為一超晶格電洞提供層。由於第一電洞提供層140a”、第二電洞提供層140b”與第三電洞提供層140c”中的鋁(Al)含量具有高低變化,因鋁含量越高,則晶格常數越不匹配,容易造成磊晶品質下降。因此,以此超晶格方式成長,除了可提高平均摻雜濃度及磊晶品質,亦可有效提高電子阻障效果及防止晶格缺陷產生。
值得一提的是,本發明僅限制第一電洞提供層140a的化學通式中的x1值要大於第二電洞提供層140b的化學通式中的x2值,且第三電動提供層140c的化學通式中的x3值要大於第二電洞提供層140b的化學通式中的x2。但,本發明並不限定第一電洞提供層140a、第二電洞提供層140b與第三電洞提供層140c中鋁含量與厚度的形態關係圖。圖5A至圖5C繪示為本發明的第一電洞提供層、第二電洞提供層與第三電洞提供層中鋁含量與厚度的多種形態的關係示意圖。請同時參考圖2A與圖5A,電洞提供層
140’的第一電洞提供層140a中的鋁(Al)含量並不會隨著第一電洞提供層140a的磊晶厚度的改變而變動,意即第一電洞提供層140a的化學通式中的x1值為一定值。另一方面,電洞提供層140’的第二電洞提供層140b中的鋁(Al)含量也並不會隨了第二電洞提供層140b的磊晶厚度的改變而變動,意即第二電洞提供層140b的化學通式中的x2值也為一定值,且x1>x2。電洞提供層140’的第三電洞提供層140c具體化為一超晶格電洞提供層,且第三電動提供層140c的化學通式中的x3值大於第二電洞提供層140b的化學通式中的x2值,即x3>x2。
或者是,請同時參考圖2A與圖5B,電洞提供層140’的第一電洞提供層140a中的鋁(Al)含量與第二電洞提供層140b中的鋁(Al)含量分別隨著第一電洞提供層140a的磊晶厚度與第二電洞提供層140b的磊晶厚度呈一連續漸變分佈。也就是說,第一電洞提供層140a與第二電洞提供層140b的化學通式中的x1值與x2值分別隨著第一電洞提供層140a的厚度T1與第二電洞提供層140b的厚度T2呈一連續漸變分佈,其中x1>x2。第三電洞提供層140c具體化為一超晶格電洞提供層,且第三電動提供層140c的化學通式中的x3值大於第二電洞提供層140b的化學通式中的x2值,即x3>x2。
或者是,請同時參考圖2A與圖5C,電洞提供層140’的第一電洞提供層140a中的鋁(Al)含量與第二電洞提供層140b中的鋁(Al)含量分別隨著第一電洞提供層140a的磊晶厚度與第二
電洞提供層140b的磊晶厚度呈一階梯式分佈。也就是說,第一電洞提供層140a與第二電洞提供層140b的化學通式中的x1值與x2值分別隨著第一電洞提供層140a的厚度T1與第二電洞提供層140b的厚度T2呈一階梯式分佈,其中x1>x2。第三電洞提供層140c具體化為一超晶格電洞提供層,且第三電動提供層140c的化學通式中的x3值大於第二電洞提供層140b的化學通式中的x2值,即x3>x2。
此外,於其他未繪示的實施例中,第一電洞提供層140a與/或第二電洞提供層140b亦可為超晶格電洞提供層,而第三電洞提供層140c亦可以為非超晶格電洞提供層。本領域的技術人員當可參照前述實施例的說明,依據實際需求,而選用前述構件,以達到所需的技術效果。只要是第一電洞提供層140a中鋁(Al)含量的平均濃度大於第二電洞提供層140b中鋁(Al)含量的平均濃度及即可達到本發明所需的技術效果。
圖6繪示為本發明的一實施例的一種發光元件的剖面示意圖。請參考圖6,本實施例的發光元件10包括一基板150、上述的半導體結構100a、一第一電極160以及一第二電極170。半導體結構100a包括第一型半導體層110、第二型半導體層120、發光層130以及電洞提供層140。發光層130配置於第一型半導體層110與第二型半導體層120之間。電洞提供層140配置於發光層130與第二型半導體層120之間,且電洞提供層140包括一第一電洞提供層140a以及一第二電洞提供層140b。第一電洞提供層
140a配置於發光層130與第二電洞提供層140b之間,且第一電洞提供層140a的化學通式為Alx1Iny1Ga1-x1-y1N,其中0≦x1<0.4,0≦y1<0.4。第二電洞提供層140b配置於第一電洞提供層140a與第二型半導體層120之間,且第二電洞提供層140b的化學通式為Alx2Iny2Ga1-x2-y2N,其中0≦x2<0.4,0≦y2<0.4,且x1>x2。第一電極160配置於半導體結構100a的第一型半導體層110上。第二電極170配置於半導體結構100a的第二型半導體層120上。
如圖6所示,本實施例的發光元件10例如是覆晶式發光二極體,其中發光層130具體化為多重量子井結構。第一電洞提供層140a中可摻雜有濃度例如是大於等於3x 1017atom/cm3的一第一摻質,而第一摻質為碳(C)。第一電洞提供層140a亦可再摻雜有濃度例如是大於等於1019atom/cm3的一第二摻質,而第二摻質為鎂(Mg)。於第一電洞提供層140a中摻雜第一摻質與第二摻質的目的在於使第一電洞提供層140a具有較高電洞濃度,藉此提供更多的電洞進入發光層130,進而增加電子電洞結合之情況。同理,第二電洞提供層140b可摻雜有濃度例如是大於等於3x1017atom/cm3的一第一摻質,而第一摻質為碳。第二電洞提供層140b中亦可摻雜有濃度大於例如是等於1x1019atom/cm3的一第二摻質,而第二摻質為鎂。於第二電洞提供層140b中摻雜第一摻質與第二摻質的目的在於使第二電洞提供層140b具有較高電洞濃度,藉此提供更多的電洞進入發光層130,進而增加電子電洞結合之情況。
此外,於其他未繪示的實施例中,發光元件亦可選用於如
前述實施例所提及半導體結構100b、100c、100d,本領域的技術人員當可參照前述實施例的說明,依據實際需求,而選用前述構件,以達到所需的技術效果。
綜上所述,由於本發明的半導體結構具有電洞提供層,因此可提供更多的電洞進入發光層內,可增加電子電洞結合的情況。再者,本發明的電洞提供層的材質為氮化鋁銦鎵(AlxInyGa1-x-yN),透過調整電洞提供層中鋁的含量,除了可以有效地將電子電洞侷限於發光層內,亦可有效避免電壓升高的問題產生。此外,採用本發明的半導體結構的發光元件則可因此獲得良好的發光效率。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100a‧‧‧半導體結構
110‧‧‧第一型半導體層
120‧‧‧第二型半導體層
130‧‧‧發光層
140‧‧‧電洞提供層
140a‧‧‧第一電洞提供層
140b‧‧‧第二電洞提供層
T1、T2‧‧‧厚度
Claims (17)
- 一種半導體結構,包括:一第一型半導體層;一第二型半導體層;一發光層,配置於該第一型半導體層與該第二型半導體層之間;以及一電洞提供層,其為摻雜碳的AlInGaN基礎層,配置於該發光層與該第二型半導體層之間,其中該電洞提供層包括一第一電洞提供層、一第二電洞提供層以及一第三電洞提供層,該第一電洞提供層配置於該發光層與該第二電洞提供層之間,該第二電洞提供層配置於該第一電洞提供層與該第二型半導體層之間,且該第三電洞提供層配置於該第二電洞提供層與該第二型半導體層之間,其中相較於該第二電洞提供層中的鋁含量,該第一電洞提供層中的鋁含量具有就鋁濃度曲綫而言的一第一高峰,且相較於該第二電洞提供層中的鋁含量,該第三電洞提供層中的鋁含量具有就鋁濃度曲綫而言的一第二高峰,且就鋁濃度曲綫而言,在該第二電洞提供層中具有相對於該第一高峰及該第二高峰的一波谷,其中該第一電洞提供層、該第二電洞提供層以及該第三電洞提供層摻雜有濃度大於或等於3x1017atom/cm3的碳。
- 如申請專利範圍第1項所述的半導體結構,其中該第一電洞提供層、該第二電洞提供層與該第三電洞提供層分別為一超晶格電洞提供層。
- 如申請專利範圍第1項所述的半導體結構,其中鋁濃度曲綫的該第一高峰的值大於鋁濃度曲綫的該第二高峰的值。
- 如申請專利範圍第1項所述半導體結構,其中該第一電洞提供層、該第二電洞提供層以及該第三電洞提供層摻雜有濃度大於或等於1019atom/cm3的鎂。
- 如申請專利範圍第4項所述半導體結構,其中相較於該第一電洞提供層與該第三電洞提供層中的鎂含量,該第二電洞提供層中的鎂含量具有就鎂的濃度曲綫而言的一第三高峰。
- 一種半導體結構,包括:一第一型半導體層;一第二型半導體層;一發光層,配置於該第一型半導體層與該第二型半導體層之間;以及一電洞提供層,配置於該發光層與該第二型半導體層之間,該電洞提供層為摻雜碳的AlInGaN基礎層,其中在該電洞提供層中的鋁濃度曲綫具有兩個相鄰的高峰包括一第一高峰在靠近該發光層處以及一第二高峰在靠近該第二型半導體層處,其中就鋁濃度曲綫而言,在該電洞提供層中具有相對於該第一高峰及該第二高峰的一波谷,其中該電洞提供層摻雜有濃度大於或等於1019atom/cm3的鎂,且該電洞提供層中的鎂的濃度曲綫具有位於鋁濃度曲綫的該第一高峰與該第二高峰之間的一第三高峰。
- 如申請專利範圍第6項所述的半導體結構,其中鋁濃度曲綫的該第一高峰的值大於鋁濃度曲綫的該第二高峰的值。
- 如申請專利範圍第6項所述的半導體結構,其中該電洞提供層摻雜有濃度大於或等於3x 1017atom/cm3的碳。
- 一種半導體結構,包括:一第一型半導體層;一第二型半導體層;一發光層,配置於該第一型半導體層與該第二型半導體層之間;一第一氮化鎵(GaN)基礎層,包含鋁與銦,且配置於該發光層與該第二型半導體層之間;一第二GaN基礎層,包括鋁與銦,且配置於該第一GaN基礎層與該第二型半導體層之間;以及一第三GaN基礎層,包括鋁與銦,且配置於該第二GaN基礎層與該第二型半導體層之間,其中相較於該第二GaN基礎層中的鋁含量,該第一GaN基礎層中的鋁含量具有就鋁濃度曲綫而言的一第一高峰,且相較於該第二GaN基礎層中的鋁含量,該第三GaN基礎層中的鋁含量具有就鋁濃度曲綫而言的一第二高峰,且就鋁濃度曲綫而言,在該第二GaN基礎層中具有相對於該第一高峰及該第二高峰的一波谷,其中該第一GaN基礎層、該第二GaN基礎層以及該第三GaN基礎層摻雜有濃度大於或等於1019atom/cm3的鎂,且該第一GaN 基礎層摻雜有濃度大於或等於3x 1017atom/cm3的碳。
- 如申請專利範圍第9項所述的半導體結構,其中該第二GaN基礎層摻雜有濃度大於或等於3x 1017atom/cm3的碳。
- 如申請專利範圍第9項所述的半導體結構,其中該第二GaN基礎層與該第三GaN基礎層摻雜有濃度大於或等於3x 1017atom/cm3的碳。
- 如申請專利範圍第9項所述的半導體結構,其中鋁濃度曲綫的該第一高峰的值大於鋁濃度曲綫的該第二高峰的值。
- 如申請專利範圍第9項所述的半導體結構,其中相較於該第一GaN基礎層與該第三GaN基礎層中的鎂含量,該第二GaN基礎層中的鎂含量,具有就鎂的濃度曲綫而言的一第三高峰。
- 一種半導體結構,包括:一第一型半導體層;一第二型半導體層;一發光層,配置於該第一型半導體層與該第二型半導體層之間;以及一電洞提供層,其為摻雜碳的AlInGaN基礎層,配置於該發光層與該第二型半導體層之間,其中該電洞提供層包括一第一電洞提供層、一第二電洞提供層以及一第三電洞提供層,該第一電洞提供層配置於該發光層與該第二電洞提供層之間,該第二電洞提供層配置於該第一電洞提供層與該第二型半導體層之間,且該第三電洞提供層配置於該第二電洞提供層與該第二型半導體層之間, 其中相較於該第二電洞提供層中的鋁含量,該第一電洞提供層中的鋁含量具有就鋁濃度曲綫而言的一第一高峰,且相較於該第二電洞提供層中的鋁含量,該第三電洞提供層中的鋁含量具有就鋁濃度曲綫而言的一第二高峰,且就鋁濃度曲綫而言,在該第二電洞提供層中具有相對於該第一高峰及該第二高峰的一波谷,其中該第一電洞提供層、該第二電洞提供層以及該第三電洞提供層摻雜有濃度大於或等於1019atom/cm3的鎂。
- 如申請專利範圍第14項所述的半導體結構,其中該第一電洞提供層、該第二電洞提供層與該第三電洞提供層分別為一超晶格電洞提供層。
- 如申請專利範圍第14項所述的半導體結構,其中相較於該第一電洞提供層與該第三電洞提供層中的鎂含量,該第二電洞提供層中的鎂含量具有就鎂的濃度曲綫而言的一第三高峰。
- 如申請專利範圍第14項所述的半導體結構,其中鋁濃度曲綫的該第一高峰的值大於鋁濃度曲綫的該第二高峰的值。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105106975A TWI738640B (zh) | 2016-03-08 | 2016-03-08 | 半導體結構 |
CN201710136037.0A CN107170863B (zh) | 2016-03-08 | 2017-03-08 | 半导体结构 |
US15/453,873 US10319879B2 (en) | 2016-03-08 | 2017-03-08 | Semiconductor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105106975A TWI738640B (zh) | 2016-03-08 | 2016-03-08 | 半導體結構 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201733154A TW201733154A (zh) | 2017-09-16 |
TWI738640B true TWI738640B (zh) | 2021-09-11 |
Family
ID=59787195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105106975A TWI738640B (zh) | 2016-03-08 | 2016-03-08 | 半導體結構 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10319879B2 (zh) |
CN (1) | CN107170863B (zh) |
TW (1) | TWI738640B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10276746B1 (en) * | 2017-10-18 | 2019-04-30 | Bolb Inc. | Polarization electric field assisted hole supplier and p-type contact structure, light emitting device and photodetector using the same |
JP6891865B2 (ja) | 2018-10-25 | 2021-06-18 | 日亜化学工業株式会社 | 発光素子 |
CN110854246B (zh) * | 2019-11-15 | 2021-07-30 | 芜湖德豪润达光电科技有限公司 | 发光二极管和发光二极管制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009152448A (ja) * | 2007-12-21 | 2009-07-09 | Dowa Electronics Materials Co Ltd | 窒化物半導体素子およびその製造方法 |
CN102623599A (zh) * | 2012-04-25 | 2012-08-01 | 华灿光电股份有限公司 | 渐变电子阻挡层的紫外光氮化镓半导体发光二极管 |
TW201417341A (zh) * | 2012-10-22 | 2014-05-01 | Iljin Led Co Ltd | 亮度及靜電放電保護特性優異的氮化物半導體發光裝置 |
CN104659171A (zh) * | 2015-01-21 | 2015-05-27 | 西安神光皓瑞光电科技有限公司 | 一种光电器件的电子阻挡层结构 |
CN104733582A (zh) * | 2013-12-24 | 2015-06-24 | 夏普株式会社 | 具有双分级电子阻挡层的氮化物led结构 |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3561105B2 (ja) | 1996-03-26 | 2004-09-02 | 株式会社東芝 | p型半導体膜および半導体素子 |
JPH09326508A (ja) | 1996-06-05 | 1997-12-16 | Hitachi Ltd | 半導体光素子 |
JP3688843B2 (ja) | 1996-09-06 | 2005-08-31 | 株式会社東芝 | 窒化物系半導体素子の製造方法 |
US6657300B2 (en) * | 1998-06-05 | 2003-12-02 | Lumileds Lighting U.S., Llc | Formation of ohmic contacts in III-nitride light emitting devices |
US6319742B1 (en) | 1998-07-29 | 2001-11-20 | Sanyo Electric Co., Ltd. | Method of forming nitride based semiconductor layer |
JP2000058904A (ja) | 1998-08-05 | 2000-02-25 | Hitachi Cable Ltd | エピタキシャルウェハ及びその製造方法並びに発光ダイオード |
JP2000196143A (ja) | 1998-12-25 | 2000-07-14 | Sharp Corp | 半導体発光素子 |
JP3567790B2 (ja) * | 1999-03-31 | 2004-09-22 | 豊田合成株式会社 | Iii族窒化物系化合物半導体発光素子 |
JP2001015437A (ja) | 1999-06-29 | 2001-01-19 | Nec Corp | Iii族窒化物結晶成長法 |
JP4032636B2 (ja) | 1999-12-13 | 2008-01-16 | 日亜化学工業株式会社 | 発光素子 |
JP2002084000A (ja) * | 2000-07-03 | 2002-03-22 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体発光素子 |
TW451504B (en) | 2000-07-28 | 2001-08-21 | Opto Tech Corp | Compound semiconductor device and method for making the same |
US6958497B2 (en) | 2001-05-30 | 2005-10-25 | Cree, Inc. | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
US6833564B2 (en) | 2001-11-02 | 2004-12-21 | Lumileds Lighting U.S., Llc | Indium gallium nitride separate confinement heterostructure light emitting devices |
US6954478B2 (en) | 2002-02-04 | 2005-10-11 | Sanyo Electric Co., Ltd. | Nitride-based semiconductor laser device |
TWI373894B (en) | 2003-06-27 | 2012-10-01 | Nichia Corp | Nitride semiconductor laser device having current blocking layer and method of manufacturing the same |
US7138648B2 (en) | 2003-12-17 | 2006-11-21 | Palo Alto Research Center Incorporated | Ultraviolet group III-nitride-based quantum well laser diodes |
KR100541104B1 (ko) | 2004-02-18 | 2006-01-11 | 삼성전기주식회사 | 질화물계 반도체 발광소자 |
US7326963B2 (en) | 2004-12-06 | 2008-02-05 | Sensor Electronic Technology, Inc. | Nitride-based light emitting heterostructure |
KR100580752B1 (ko) | 2004-12-23 | 2006-05-15 | 엘지이노텍 주식회사 | 질화물 반도체 발광소자 및 그 제조방법 |
US7755101B2 (en) | 2005-04-11 | 2010-07-13 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor light emitting device |
WO2007013257A1 (ja) | 2005-07-29 | 2007-02-01 | Matsushita Electric Industrial Co., Ltd. | 窒化物系半導体素子 |
US20070045638A1 (en) * | 2005-08-24 | 2007-03-01 | Lumileds Lighting U.S., Llc | III-nitride light emitting device with double heterostructure light emitting region |
US7462884B2 (en) | 2005-10-31 | 2008-12-09 | Nichia Corporation | Nitride semiconductor device |
US7619238B2 (en) * | 2006-02-04 | 2009-11-17 | Sensor Electronic Technology, Inc. | Heterostructure including light generating structure contained in potential well |
DE102006025964A1 (de) | 2006-06-02 | 2007-12-06 | Osram Opto Semiconductors Gmbh | Mehrfachquantentopfstruktur, strahlungsemittierender Halbleiterkörper und strahlungsemittierendes Bauelement |
JP2008034658A (ja) | 2006-07-28 | 2008-02-14 | Rohm Co Ltd | 窒化物半導体素子 |
JP4948134B2 (ja) | 2006-11-22 | 2012-06-06 | シャープ株式会社 | 窒化物半導体発光素子 |
KR100835116B1 (ko) * | 2007-04-16 | 2008-06-05 | 삼성전기주식회사 | 질화물 반도체 발광 소자 |
KR20100023960A (ko) | 2007-06-15 | 2010-03-04 | 로무 가부시키가이샤 | 질화물 반도체 발광 소자 및 질화물 반도체의 제조 방법 |
JP4341702B2 (ja) | 2007-06-21 | 2009-10-07 | 住友電気工業株式会社 | Iii族窒化物系半導体発光素子 |
JP4234180B2 (ja) * | 2007-07-02 | 2009-03-04 | 三菱電機株式会社 | 窒化物系半導体積層構造の製造方法および半導体光素子の製造方法 |
JP2009016467A (ja) | 2007-07-03 | 2009-01-22 | Sony Corp | 窒化ガリウム系半導体素子及びこれを用いた光学装置並びにこれを用いた画像表示装置 |
TWI364119B (en) | 2007-08-17 | 2012-05-11 | Epistar Corp | Light emitting diode device and manufacturing method therof |
TWI466314B (zh) * | 2008-03-05 | 2014-12-21 | Advanced Optoelectronic Tech | 三族氮化合物半導體發光二極體 |
CN101527341B (zh) | 2008-03-07 | 2013-04-24 | 展晶科技(深圳)有限公司 | 三族氮化合物半导体发光二极管 |
JP4572963B2 (ja) | 2008-07-09 | 2010-11-04 | 住友電気工業株式会社 | Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ |
CN101494265B (zh) | 2008-07-17 | 2011-03-23 | 厦门市三安光电科技有限公司 | 具有p型限制发射层的氮化物发光二极管 |
JP5169972B2 (ja) | 2008-09-24 | 2013-03-27 | 三菱電機株式会社 | 窒化物半導体装置の製造方法 |
CN101540364B (zh) | 2009-04-23 | 2011-05-11 | 厦门大学 | 一种氮化物发光器件及其制备方法 |
JP2010263140A (ja) | 2009-05-11 | 2010-11-18 | Mitsubishi Electric Corp | 窒化物半導体装置の製造方法 |
CN101645480B (zh) | 2009-06-22 | 2012-05-30 | 华灿光电股份有限公司 | 一种提高氮化镓基发光二极管抗静电能力的方法 |
US20110001126A1 (en) | 2009-07-02 | 2011-01-06 | Sharp Kabushiki Kaisha | Nitride semiconductor chip, method of fabrication thereof, and semiconductor device |
JP5635246B2 (ja) * | 2009-07-15 | 2014-12-03 | 住友電気工業株式会社 | Iii族窒化物半導体光素子及びエピタキシャル基板 |
CN102005513A (zh) | 2009-08-28 | 2011-04-06 | 上海蓝宝光电材料有限公司 | 具有低温p型GaN层的氮化镓系发光二极管 |
CN101740691A (zh) | 2009-12-22 | 2010-06-16 | 苏州纳晶光电有限公司 | 一种新型结构的大功率氮化镓基led |
JP2011151074A (ja) | 2010-01-19 | 2011-08-04 | Mitsubishi Electric Corp | 窒化物半導体装置の製造方法 |
US8575592B2 (en) * | 2010-02-03 | 2013-11-05 | Cree, Inc. | Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses |
EP2538459B1 (en) | 2010-02-19 | 2019-09-25 | Sharp Kabushiki Kaisha | Nitride semiconductor light-emitting element and method for producing same |
KR101766719B1 (ko) | 2010-03-25 | 2017-08-09 | 엘지이노텍 주식회사 | 발광 다이오드 및 이를 포함하는 발광 소자 패키지 |
US8897329B2 (en) * | 2010-09-20 | 2014-11-25 | Corning Incorporated | Group III nitride-based green-laser diodes and waveguide structures thereof |
US8748919B2 (en) * | 2011-04-28 | 2014-06-10 | Palo Alto Research Center Incorporated | Ultraviolet light emitting device incorporating optically absorbing layers |
CN102157646A (zh) | 2011-05-03 | 2011-08-17 | 映瑞光电科技(上海)有限公司 | 一种氮化物led结构及其制备方法 |
CN102185056B (zh) | 2011-05-05 | 2012-10-03 | 中国科学院半导体研究所 | 提高电子注入效率的氮化镓基发光二极管 |
CN102214753A (zh) | 2011-06-02 | 2011-10-12 | 中国科学院半导体研究所 | 应用石墨烯薄膜电流扩展层的氮化镓基垂直结构led |
CN102820394B (zh) * | 2011-06-07 | 2015-04-01 | 山东华光光电子有限公司 | 一种采用铝组分渐变电子阻挡层的led结构 |
JP5996846B2 (ja) * | 2011-06-30 | 2016-09-21 | シャープ株式会社 | 窒化物半導体発光素子およびその製造方法 |
CN102881784B (zh) * | 2011-07-14 | 2016-02-03 | 比亚迪股份有限公司 | Cδ掺杂的p型GaN/AlGaN结构、LED外延片结构及制备方法 |
US20140191192A1 (en) * | 2011-07-29 | 2014-07-10 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
JP5874593B2 (ja) | 2011-12-23 | 2016-03-02 | 豊田合成株式会社 | Iii族窒化物半導体発光素子とその製造方法 |
US9705030B2 (en) * | 2012-04-18 | 2017-07-11 | Technische Universität Berlin | UV LED with tunnel-injection layer |
CN102856449B (zh) | 2012-09-20 | 2014-12-10 | 江苏威纳德照明科技有限公司 | 一种GaN基半导体发光二极管及其制造方法 |
KR101936312B1 (ko) * | 2012-10-09 | 2019-01-08 | 엘지이노텍 주식회사 | 발광소자 |
TWI511325B (zh) | 2012-11-19 | 2015-12-01 | Genesis Photonics Inc | 氮化物半導體結構及半導體發光元件 |
CN103137807A (zh) | 2013-02-22 | 2013-06-05 | 中国科学院半导体研究所 | 具有应力释放层的绿光led外延结构及制作方法 |
US9647168B2 (en) * | 2013-09-03 | 2017-05-09 | Sensor Electronic Technology, Inc. | Optoelectronic device with modulation doping |
US9673352B2 (en) * | 2015-04-30 | 2017-06-06 | National Chiao Tung University | Semiconductor light emitting device |
US10693035B2 (en) * | 2015-10-23 | 2020-06-23 | Sensor Electronic Technology, Inc. | Optoelectronic device with a nanowire semiconductor layer |
-
2016
- 2016-03-08 TW TW105106975A patent/TWI738640B/zh active
-
2017
- 2017-03-08 CN CN201710136037.0A patent/CN107170863B/zh active Active
- 2017-03-08 US US15/453,873 patent/US10319879B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009152448A (ja) * | 2007-12-21 | 2009-07-09 | Dowa Electronics Materials Co Ltd | 窒化物半導体素子およびその製造方法 |
CN102623599A (zh) * | 2012-04-25 | 2012-08-01 | 华灿光电股份有限公司 | 渐变电子阻挡层的紫外光氮化镓半导体发光二极管 |
TW201417341A (zh) * | 2012-10-22 | 2014-05-01 | Iljin Led Co Ltd | 亮度及靜電放電保護特性優異的氮化物半導體發光裝置 |
CN104733582A (zh) * | 2013-12-24 | 2015-06-24 | 夏普株式会社 | 具有双分级电子阻挡层的氮化物led结构 |
CN104659171A (zh) * | 2015-01-21 | 2015-05-27 | 西安神光皓瑞光电科技有限公司 | 一种光电器件的电子阻挡层结构 |
Also Published As
Publication number | Publication date |
---|---|
TW201733154A (zh) | 2017-09-16 |
CN107170863A (zh) | 2017-09-15 |
US10319879B2 (en) | 2019-06-11 |
US20170263814A1 (en) | 2017-09-14 |
CN107170863B (zh) | 2020-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI820014B (zh) | 半導體元件 | |
TW201327904A (zh) | 利用應變緩衝層實現優秀的發光效率的氮化物類發光器件 | |
US20230144521A1 (en) | Semiconductor device comprising electron blocking layer | |
US12125943B2 (en) | Semiconductor device | |
TWI738640B (zh) | 半導體結構 | |
TW201841227A (zh) | 半導體元件 | |
TW201429001A (zh) | 包含分離區之具有改進的電流擴散性以及高亮度的半導體發光二極體 | |
US8704268B2 (en) | Semiconductor light emitting device | |
TWI801454B (zh) | 半導體元件 | |
KR100988193B1 (ko) | 발광 소자 | |
JP5764184B2 (ja) | 半導体発光素子 | |
TW202306197A (zh) | 半導體元件 | |
JP2012186410A (ja) | 半導体素子 | |
JP2013016873A (ja) | 半導体発光素子 | |
KR20130126369A (ko) | 정공 전달 효율을 향상시킨 구조를 지닌 반도체 발광 소자 | |
JP2013172125A (ja) | 半導体素子 |