WO2012117823A1 - ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 - Google Patents
ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 Download PDFInfo
- Publication number
- WO2012117823A1 WO2012117823A1 PCT/JP2012/052887 JP2012052887W WO2012117823A1 WO 2012117823 A1 WO2012117823 A1 WO 2012117823A1 JP 2012052887 W JP2012052887 W JP 2012052887W WO 2012117823 A1 WO2012117823 A1 WO 2012117823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymerization
- mass
- monomer
- ethylenically unsaturated
- unsaturated bond
- Prior art date
Links
- 0 Cc1cc(CCC(N*)=O)cc(C)c1O Chemical compound Cc1cc(CCC(N*)=O)cc(C)c1O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/20—Carboxylic acid amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/14—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
- B05D3/141—Plasma treatment
- B05D3/142—Pretreatment
- B05D3/144—Pretreatment of polymeric substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
- C08K5/18—Amines; Quaternary ammonium compounds with aromatically bound amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/524—Esters of phosphorous acids, e.g. of H3PO3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
Definitions
- the present invention relates to a method for producing a laminate film, and more particularly, to a method for producing a laminate film that has excellent adhesion to a base material for laminating and can reduce the amount of an anchor coat agent or an adhesive for dry lamination.
- the present invention also relates to a method for producing a resin composition for a coating member comprising a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer, and more specifically, with a coating film after plasma treatment. It is related with the manufacturing method of the resin composition for coating members which can obtain the resin composition for coating members which is excellent in adhesiveness and can suppress yellowing.
- a packaging material using a film made of a thermoplastic resin has been proposed.
- a polyester, polyamide, metal foil or the like is used as a base material for laminating, and an olefin resin film is heat-bonded (heated).
- Seals) and laminate films obtained by applying and laminating adhesives are known.
- polyethylene is particularly inexpensive and easy to process, and is widely used for food packaging materials because it is excellent in blocking water vapor.
- Patent Document 1 since the olefin resin itself is inactive and has poor adhesive strength, for example, in Patent Document 1, the surface of the base material for laminating is anchored with an anchor agent such as polyurethane or isocyanate compound, and then treated with ozone. A method of laminating a later olefin resin to form a laminate film has been proposed.
- an anchor agent such as polyurethane or isocyanate compound
- Patent Document 2 discloses a method for improving adhesion by ozone treatment of a film under specific conditions. .
- olefin resin is poor in stability to heat and light, and is easily oxidized / degraded when exposed to a high temperature environment or strong light, and a life required as a plastic product cannot be obtained.
- a stabilizer such as a phenol-based antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, a hydroxylamine compound, a hindered amine compound, an ultraviolet absorber, an acid scavenger, etc. should be added.
- phenolic antioxidants are widely used because they have a high thermal stability effect in high-temperature processing.
- the olefin resin obtained by polymerizing the olefin monomer and the stabilizer are mixed, melted and kneaded by a processing device such as an extruder, and the stabilizer is added to the olefin resin.
- a method of adding a stabilizer before or during the polymerization of the olefin monomer has a problem that a stabilizer must be added more than necessary in order to cope with poor dispersion of the stabilizer in the olefin resin.
- Patent Document 3 discloses a production method in which ⁇ -olefin is polymerized in the presence of a phosphorus-based antioxidant.
- the polymerization of ⁇ -olefin in the presence of a phosphorus antioxidant is superior to the case where it is added to a polymer obtained by polymerizing ⁇ -olefin without using a phosphorus antioxidant during polymerization. It has been shown that a stabilizing effect can be obtained.
- Patent Document 4 shows that by using a specific phosphorus-based antioxidant at the time of polymerization, a polymer in which coloring due to contact with water is suppressed without inhibiting olefin polymerization can be obtained.
- phenolic antioxidants can provide high thermal stability during high-temperature processing of olefin resins, while blending phenolic antioxidants when olefin resin moldings are immersed in a solvent such as water or alcohol. May be eluted from the molded product.
- Patent Document 5 As a polymerization method that does not reduce the catalytic activity of the polymerization catalyst by the phenolic antioxidant, for example, in Patent Document 5 and Patent Document 6, an organic aluminum compound is used before or during the polymerization of a monomer having an ethylenically unsaturated bond. It has been shown that the inhibition of the polymerization catalyst can be suppressed by adding a masked phenolic antioxidant.
- olefin resins obtained by polymerizing monomers having an ethylenically unsaturated bond are inexpensive, have low specific gravity and high rigidity, have good moldability, and can mold large molded products.
- the use is progressing by the use.
- Applications for automobiles are expanding to exterior parts such as bumpers, interior parts such as instrument panels and trims, engine room parts such as fans and cases, and structural members such as various module materials. .
- resin compositions such as those used for automobile interior and exterior products such as bumpers include olefin resins, elastomers, inorganic fillers, pigments such as carbon black, light stabilizers, ultraviolet absorbers, hindered phenols, phosphorus-based resins, Sulfur and lactone antioxidants are blended as necessary.
- additives such as antioxidants, hindered amine light stabilizers and ultraviolet absorbers are blended. Due to the strong influence of heat and sunlight, there is a problem that the additive blended in the olefin resin diffuses, migrates or bleeds out from the resin into the coating film and yellows the coating film. In particular, it is known that a phenolic antioxidant changes to quinoline after bleed-out and causes yellowing of the coating film.
- Patent Documents 7 and 8 propose a method for suppressing yellowing of the coating bumper by specifying the addition amount and the type of each of the antioxidant and the light stabilizer.
- Patent Document 9 discloses specific four types of antioxidants and, if necessary, benzoate-based light for a polypropylene resin composition containing a specific propylene / ethylene block copolymer, an elastomer, and an inorganic filler. A method of blending a stabilizer and a hindered amine light stabilizer has been proposed.
- Patent Documents 6, 10, and 11 describe a method in which a phenolic antioxidant masked with an organoaluminum compound is added before or during polymerization of a monomer having an ethylenically unsaturated bond.
- JP-A 61-283533 Japanese Unexamined Patent Publication No. 63-49423 JP-A-63-92613 JP-A-8-208731 JP 2006-52241 A JP 2006-282985 A JP-A-6-107897 Japanese Patent Laid-Open No. 7-179719 JP 2003-29270 A JP 2005-206625 A JP 2005-255953 A
- anchor coating agents used for anchor coating treatment use organic solvents such as ethyl acetate, toluene, and methyl ethyl ketone as diluents. If the adhesive was not sufficiently dried, the organic solvent remained in the laminate film, and the contents had a problem of odor adhering.
- Patent Document 2 has a problem that because the melt extrusion temperature of the processing is high, the resin and the compounding additive are decomposed, and the contents become odorous.
- Patent Documents 5 and 6 the application to the laminate film is not examined, and the adhesiveness of the laminate film and the elution property of the additive after film formation are not examined at all.
- an object of the present invention is to provide a method for producing a laminate film, which is capable of producing a laminate film that is excellent in adhesion to a substrate for laminating and has little elution of an additive with respect to a solvent.
- an object of the present invention is to provide a method for producing a resin composition for a coating member, which can obtain a resin composition for a coating member having good secondary adhesion to a coating film and good heat yellowing resistance.
- the present inventors have used a polyolefin stabilized by adding a specific phenolic antioxidant before or during polymerization of an ethylenically unsaturated monomer.
- the present inventors have found that the above problems can be solved and have completed the present invention.
- a stabilized polymer can be obtained by adding a stabilizer composition to a polymerization catalyst, a polymerization apparatus or a pipe for polymerization.
- the blending step of the stabilizer composition by melt kneading after polymerization can be omitted, it becomes easy to uniformly disperse the stabilizer in the polymer, and as a result, the blending amount of the stabilizer can be reduced. .
- the present inventors have added a specific phenolic antioxidant masked with an organoaluminum compound before or during the polymerization of a monomer having an ethylenically unsaturated bond. It became clear that the adhesion of the composition to the coating film and the heat-resistant yellowing were good.
- a phenolic antioxidant represented by the following general formula (1) is masked with an organoaluminum compound before or during polymerization of a monomer having an ethylenically unsaturated bond. And a step of adding at least one of the catalyst system, the polymerization system and the piping so that 0.001 to 0.5 parts by mass is added to 100 parts by mass of the polymer obtained by polymerization. It is characterized by this.
- R 1 and R 2 each independently represents a hydrogen atom, an optionally branched alkyl group having 1 to 5 carbon atoms, or an arylalkyl group having 7 to 9 carbon atoms
- R is an alkyl group having 1 to 30 carbon atoms which may be branched, an alkenyl group having 2 to 30 carbon atoms which may be branched, or a cyclocarbon having 3 to 12 carbon atoms which may be substituted.
- a phosphorous antioxidant is further added to 100 parts by mass of the polymer obtained by polymerization. It is preferable to include a step of adding at least one of 0.001 to 3 parts by mass, catalyst system, polymerization system and piping.
- the organoaluminum compound is preferably trialkylaluminum.
- the laminate film of the present invention is manufactured by a method for manufacturing a laminate film.
- the method for producing a resin composition for a coated member of the present invention is a method for producing a resin composition for a painted member comprising a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer, A monomer having an ethylenically unsaturated bond obtained by masking a phenolic antioxidant represented by the following general formula (1) with an organoaluminum compound before or during polymerization of a monomer having an ethylenically unsaturated bond
- the catalyst system, the polymerization system, and the polymerization system are mixed so that 0.001 to 0.5 parts by mass of the phenolic antioxidant is blended with respect to 100 parts by mass of the total of the polymer obtained by polymerizing and the thermoplastic elastomer.
- R 1 and R 2 each independently represents a hydrogen atom, an optionally branched alkyl group having 1 to 5 carbon atoms, or an arylalkyl group having 7 to 9 carbon atoms
- R is an alkyl group having 1 to 30 carbon atoms which may be branched, an alkenyl group having 2 to 30 carbon atoms which may be branched, or a cyclocarbon having 3 to 12 carbon atoms which may be substituted.
- a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer are combined with an ethylenically unsaturated bond. It is preferable to melt and knead the polymer / thermoplastic elastomer obtained by polymerizing the monomer having a weight ratio of 2/1 to 4/1.
- the thermoplastic elastomer is obtained by polymerizing a monomer having an ethylenically unsaturated bond, and has a monomer having an ethylenically unsaturated bond.
- the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is added to any one or more of the catalyst system, polymerization system and piping.
- the monomer is obtained by polymerizing the monomer.
- the manufacturing method of the resin composition for coating members of this invention is a phosphorus antioxidant with respect to a total of 100 mass parts of the polymer obtained by superposing
- phosphorus-based antioxidant is added to at least one of the catalyst system, the polymerization system, and the piping so that the blending amount is 0.001 to 3 parts by mass. It is preferable to further include a step of adding an agent.
- the organoaluminum compound is preferably trialkylaluminum.
- the method for producing a coated member of the present invention is characterized by including a step of coating a molded resin composition obtained by the method for producing a resin composition for a painted member. It is preferable to provide a step of plasma-treating the resin composition formed before the step of applying the coating.
- the coated member of the present invention is manufactured by the above-described method for manufacturing a coated member, and preferably includes a light stabilizer and a filler.
- a laminate film that has excellent adhesion to a laminate substrate, has a small amount of additive elution with respect to a solvent, reduces the amount of anchor agent used, and can be used for sanitary goods such as food and medical supplies is obtained.
- the manufacturing method of the laminate film which can be provided can be provided.
- the phenolic antioxidant used in the method for producing a laminate film of the present invention is a compound represented by the following general formula (1).
- R 1 and R 2 each independently represents a hydrogen atom, an optionally branched alkyl group having 1 to 5 carbon atoms, or an arylalkyl group having 7 to 9 carbon atoms
- R is an alkyl group having 1 to 30 carbon atoms which may be branched, an alkenyl group having 2 to 30 carbon atoms which may be branched, or a cyclocarbon having 3 to 12 carbon atoms which may be substituted.
- Examples of the alkyl group having 1 to 5 carbon atoms which may have a branch represented by R 1 and R 2 in the general formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, A butyl group, a secondary butyl group, a tertiary butyl group, a pentyl group, a secondary pentyl group, a tertiary pentyl group, and the like can be mentioned.
- the tertiary butyl group has a good stabilizing effect on a phenolic antioxidant. Since it exists, it is preferably used.
- Examples of the arylalkyl group having 7 to 9 carbon atoms represented by R 1 and R 2 in the general formula (1) include benzyl and 1-methyl-1-phenylethyl.
- alkyl group having 1 to 30 carbon atoms which may have a branch and represented by R in the general formula (1) include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, sec-butyl, t-butyl, isobutyl, pentyl, isopentyl, t-pentyl, hexyl, heptyl, n-octyl, isooctyl, t-octyl, nonyl, isononyl, decyl Group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like.
- Phenol antioxidants with fewer than 12 carbon atoms in the alkyl group may easily volatilize, and if the alkyl group has more than 24 carbon atoms, the ratio of phenol to the molecular weight of the phenolic antioxidant will decrease. Therefore, the stabilization effect may be reduced.
- alkyl groups may be interrupted by an oxygen atom, a sulfur atom, or the following aryl group, and a hydrogen atom in the alkyl group is a chain fatty acid such as a hydroxy group, a cyano group, an alkenyl group, or an alkenyloxy group.
- the alkenyl group having 2 to 30 carbon atoms which may have a branch which R can take is a group in which a carbon-carbon double bond is introduced into the above-described alkyl group.
- those having 12 to 24 carbon atoms are particularly preferred.
- Examples of the optionally substituted cycloalkyl group represented by R in the general formula (1) having 3 to 12 carbon atoms include cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclohexane
- An octyl group, a cyclononyl group, a cyclodecyl group, and the like, and a hydrogen atom in the cycloalkyl group may be substituted with an alkyl group, an alkenyl group, an alkenyloxy group, a hydroxy group, or a cyano group, It may be interrupted by an oxygen atom or a sulfur atom.
- Examples of the aryl group which may have a substituent having 6 to 18 carbon atoms and represented by R in the general formula (1) include a phenyl group, a methylphenyl group, a butylphenyl group, and an octylphenyl group. 4-hydroxyphenyl group, 3,4,5-trimethoxyphenyl group, 4-t-butylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group, anthracenyl group, phenanthryl group, benzyl, phenylethyl group, 1- And phenyl-1-methylethyl group.
- a hydrogen atom in the aryl group may be substituted with an alkyl group, an alkenyl group, an alkenyloxy group, a hydroxy group, or a cyano group, and the alkyl group may be interrupted with an oxygen atom or a sulfur atom. Good.
- the present invention is not limited by the following compounds.
- the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is added, 0.001 to 0.5 mass per 100 mass parts of the polymer obtained by polymerization. Part, preferably 0.001 to 0.3 parts by mass.
- the amount is less than 0.001 part by mass, the effect of addition may not be obtained, and addition exceeding 0.5 part by mass is possible, but the polymer is colored or the effect of the amount of addition is reduced and economical. Disadvantageous.
- the method for adding the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is not particularly limited.
- a masked phenolic antioxidant is added to one or more of the catalyst feed tank, the polymerization apparatus and the piping of the production line and mixed.
- the masking can be performed by mixing and stirring the organoaluminum compound and the phenolic antioxidant in an inert solvent.
- the hydrogen of the phenolic hydroxyl group of the phenolic antioxidant is replaced with an organoaluminum compound.
- they may be added to any one or more of the catalyst system, the polymerization system and the piping.
- the phenolic antioxidant and the organoaluminum compound are added to the catalyst system, respectively. Alternatively, it may be added and mixed in one or more of the polymerization system and the piping.
- the by-product compound does not affect the polymerization reaction or polymer of the monomer, it can be used as it is, but if the by-product compound inhibits the polymerization, the compound is reduced in pressure. It is preferable to add to any one or more of the catalyst system, the polymerization system and the piping after removing by distillation or the like.
- the masked phenolic antioxidant can regenerate phenol by reacting with a hydrogen-donating compound such as water, alcohol or acid added as a deactivation treatment of the polymerization catalyst after polymerization.
- organoaluminum compound examples include alkylaluminum and alkylaluminum hydride, and alkylaluminum is preferable, and trialkylaluminum is particularly preferable.
- examples of the trialkylaluminum include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, and the like. Mixtures can be used.
- the aluminoxane obtained by reaction of alkylaluminum or alkylaluminum hydride and water can be used similarly.
- the mass ratio of the phenolic antioxidant represented by the organoaluminum compound / the above general formula (1) 1. / 5 to 100/1 is desirable. If the organoaluminum compound is less than 1/5, excess phenolic antioxidant may adversely affect the catalytic activity. If the organoaluminum compound is more than 100/1, the aluminum compound remains in the polymer after polymerization. In some cases, the physical properties of the polymer may be reduced, or the desired ratio may not be achieved due to an influence on the component ratio of the catalyst metal.
- the inert solvent examples include aliphatic and aromatic hydrocarbon compounds.
- the aliphatic hydrocarbon compound examples include saturated hydrocarbon compounds such as n-pentane, n-hexane, n-heptane, n-octane, isooctane and purified kerosene, and cyclic saturated hydrocarbons such as cyclopentane, cyclohexane and cycloheptane.
- the aromatic hydrocarbon compound include compounds such as benzene, toluene, ethylbenzene, xylene, and gasoline fraction. Among these compounds, those which are n-hexane, n-heptane or gasoline fraction are preferably used.
- the concentration of the trialkylaluminum salt in the inert solvent is preferably in the range of 0.001 to 0.5 mol / L, particularly preferably 0.01 to 0.1 mol / L.
- a phosphorus antioxidant is further added in an amount of 0.001 to 3 masses per 100 mass parts of the polymer obtained by the polymerization. It is preferable to include a step of adding to any one or more of a part, a catalyst system, a polymerization system, and piping.
- the phosphorus antioxidant used in the present invention include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tris (2,4-ditertiary).
- Butyl-5-methylphenyl) phosphite tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phosphite, tridecyl phosphite , Octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-ditert-butylphenyl) pentaerythritol Diphosphite, bis (2,6-ditert-butyl-4-methylphenol ) Pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite, bis (2
- the amount of the phosphorus antioxidant used is 0.001 to 3 parts by mass, preferably 0 to 100 parts by mass of a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond. Add to 0.005 to 0.5 parts by mass. When the amount is less than 0.001 part by mass, the effect of addition may not be obtained, and addition of 3 parts by mass or more is possible, but the effect of the amount of addition becomes small, which is economically disadvantageous.
- the phosphorus-based antioxidant As a method for adding the phosphorus-based antioxidant, it is preferable to add the phosphorus-based antioxidant mixed with the inert solvent, but the solvent is previously inert with the phenol-based antioxidant represented by the general formula (1). In addition to the phenolic antioxidant represented by the general formula (1), it may be mixed with the inert solvent and added to the polymerization system, catalyst system or piping. Good.
- the total amount of the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound and the phosphorus antioxidant is preferably 100 mass of the polymer obtained in the polymerization step. To 0.001 to 3 parts by mass, and more preferably 0.001 to 0.5 parts by mass.
- Examples of the monomer having an ethylenically unsaturated bond include ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, Examples thereof include vinylcycloalkane, styrene, and derivatives thereof.
- the monomer having an ethylenically unsaturated bond used in the present invention may be a single type or a combination of two or more types, but a combination of ethylene or ⁇ -olefin monomers is preferred.
- ethylene alone, a combination of ethylene-propylene, a combination of ethylene-propylene-butene and the like may be mentioned, and further a combination of an ⁇ -olefin monomer and a non-conjugated diene monomer may be used.
- a method for performing a polymerization reaction of a monomer having an ethylenically unsaturated bond a commonly used method can be employed.
- aliphatic hydrocarbons such as butane, pentane, hexane, heptane, isooctane
- alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane
- aromatic hydrocarbons such as toluene, xylene, ethylbenzene, gasoline fraction
- hydrogen A method of performing polymerization in a liquid phase in the presence of an inert solvent such as a liquefied diesel fraction, a polymerization method using the liquefied monomer itself as a medium, an inert gas atmosphere such as nitrogen under a condition in which the liquid phase is substantially absent
- a method of performing polymerization in the gas phase such as in the middle, or a polymerization method in which two or more of these are combined
- the polymerization may be either a batch type or a continuous type, and may be a one-stage polymerization method or a multi-stage polymerization
- active hydrogen compounds may be included as long as polymerization is not inhibited.
- a continuous reaction tank in an existing polymerization facility may be used as it is, and the present invention is not particularly limited to conventional polymerization facilities in terms of size, shape, material, and the like.
- the polymerization catalyst is not particularly limited, and a known polymerization catalyst can be used.
- transition metals of Group 3 to 11 of the periodic table for example, titanium, zirconium, hafnium, vanadium, iron, nickel, Lead, platinum, yttrium, samarium, etc.
- typical examples are Ziegler catalysts, Ziegler-Natta catalysts consisting of titanium-containing solid transition metal components and organometallic components, nitrogen, oxygen, sulfur, phosphorus, etc.
- Brookheart catalyst which is a compound in which a heteroatom of the present invention is bonded to a transition metal of Groups 4 to 10 of the periodic table, and a transition metal compound of Groups 4 to 6 of the periodic table having at least one cyclopentadienyl skeleton.
- a metallocene catalyst composed of a catalyst component can be mentioned, but the use of an electron donating compound is preferable because a high-quality polymer can be obtained.
- titanium trichloride or titanium trichloride composition obtained by reducing titanium tetrachloride with organoaluminum or the like is treated with an electron-donating compound and further activated (for example, JP-A-47). -34478, JP-A-58-23806, JP-A-63-146906), obtained by reducing titanium tetrachloride with an organoaluminum compound and further treating with various electron donors and electron acceptors.
- a catalyst comprising the obtained titanium trichloride composition, an organoaluminum compound and an aromatic carboxylic acid ester (Japanese Patent Laid-Open Nos.
- a supported catalyst comprising magnesium halide, titanium tetrachloride and various electron donors (Japanese Patent Kokai 57-63310) JP, 58-157808, JP 58-83006, JP 58-5310, JP 61-218606, JP 63-43915, JP 63 -83116) and the like.
- metallocene catalyst examples include, for example, transition metal metallocene catalysts described in JP-A-9-12621, JP-A-5-043616, JP-A-5-295022, JP-A-5-301919, JP-A-6-239914, JP-A-6-239915, JP-A-6-239917, JP-A-7-082311, JP-A-7-228621, JP-A-7-330820, JP-A-8 -059724, JP-A-8-085707, JP-A-8-085708, JP-A-8-127613, JP-A-10-226712, JP-A-10-259143, JP-A-10-265490.
- Examples of the electron donating compound include ether compounds, ester compounds, ketone compounds, alkoxysilane compounds, and the like. A single compound may be added to the electron donor compound, or a plurality of compounds may be added as necessary.
- ether compounds include diethyl ether, dipropyl ether, diisopropyl ether, di-n-butyl ether, diethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene oxide, tetrahydrofuran, 2,2,5,5-tetramethyltetrahydrofuran, dioxane and the like. Is mentioned.
- ester compound examples include methyl acetate, ethyl acetate, acetic acid-n-propyl, isopropyl acetate, methyl propionate, ethyl propionate, propionate-n-propyl, methyl methacrylate, ethyl methacrylate, methacrylic acid- n-propyl, ethyl phenylacetate, methyl benzoate, ethyl benzoate, phenyl benzoate, methyl toluate, ethyl toluate, methyl anisate, ethyl anisate, methyl methoxybenzoate, ethyl methoxybenzoate, methyl methacrylate, Examples thereof include ethyl methacrylate, dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, diisobutyl phthalate, dihexyl phthalate, ⁇ -butyrol
- ketone compound examples include acetone, diethyl ketone, methyl ethyl ketone, acetophenone, and the like.
- alkoxysilane compounds include tetramethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltri Methoxysilane, diethyldimethoxysilane, dipropyldimethoxysilane, diisopropyldimethoxysilane, diphenyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylethyldimethoxysilane, t-butyl-n-propyldimethoxysilane, t-butylisopropyldimethoxysilane Cyclohexylmethyldimethoxysilane, tetraeth
- the carrier is not particularly limited, and examples thereof include inorganic carriers such as inorganic oxides and organic carriers such as porous polyolefins, and a plurality of them may be used in combination.
- examples of the inorganic carrier include silica, alumina, magnesium oxide, zirconium oxide, titanium oxide, iron oxide, calcium oxide, and zinc oxide.
- Other inorganic carriers include magnesium halides such as magnesium chloride and magnesium bromide, magnesium alkoxides such as magnesium ethoxide, and ion-exchangeable layered compounds.
- the ion-exchangeable layered compound has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with a weak binding force, and represents a compound in which contained ions can be exchanged.
- Specific examples of the ion exchange layered compound include, for example, kaolin, bentonite, talc, kaolinite, vermiculite, montmorillonite group, mica group, ⁇ -Zr (HAsO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ). 2 ⁇ H 2 O, ⁇ -Sn (HPO 4 ) 2 ⁇ H 2 O, ⁇ -Ti (NH 4 PO 4 ) 2 ⁇ H 2 O, and the like.
- organic carrier examples include polyethylene, polypropylene, polystyrene, ethylene-butene copolymer, ethylene-propylene copolymer, polymethacrylic acid ester, polyacrylic acid ester, polyacrylonitrile, polyamide, polycarbonate, and polyethylene terephthalate.
- examples thereof include polyester, polyvinyl chloride, and the like, and these may be crosslinked, for example, as a styrene-divinylbenzene copolymer.
- a catalyst in which a catalyst is chemically bonded to these organic supports can be used.
- the particle diameter (volume average) of these carriers is usually from 0.1 to 300 ⁇ m, preferably from 1 to 200 ⁇ m, more preferably from 10 to 100 ⁇ m. If the particle size is smaller than 1 ⁇ m, a finely powdered polymer is likely to be formed, and if it is too large, coarse particles are produced. Therefore, the particle size of the carrier should be selected according to the desired particle shape.
- the pore volume of the carrier is usually from 0.1 to 5 cm 2 / g, preferably from 0.3 to 3 cm 2 / g.
- the pore volume can be measured by, for example, the BET method or the mercury intrusion method.
- organoaluminum compound examples include the same compounds as those masking the phenolic antioxidant represented by the general formula (1).
- the above polymer may further contain other additives that are usually used for polymers obtained from monomers having an ethylenically unsaturated bond, as necessary.
- other additives can be added before or during the polymerization of the monomer having an ethylenically unsaturated bond as long as the polymerization is not inhibited.
- other additives may be mixed with the polymer in a blending amount according to the purpose, and melt kneaded with a molding processing machine such as an extruder to be granulated and molded.
- additives include, for example, phenolic antioxidants, phosphorus antioxidants, thioester antioxidants, UV absorbers, hindered amine compounds, heavy metal deactivators, nucleating agents, flame retardants, metal soaps, Hydrotalcite, fillers, lubricants, antistatic agents, pigments, dyes, plasticizers and the like can be mentioned.
- the phenolic antioxidant is different from that represented by the general formula (1).
- Examples of the phosphorus-based antioxidant as the other additive include those similar to the compounds exemplified as the phosphorus-based antioxidant added above.
- the amount of the phosphorus antioxidant used is preferably 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the polymer.
- thioester-based antioxidant examples include tetrakis [methylene-3- (laurylthio) propionate] methane, bis (methyl-4- [3-n-alkyl (C12 / C14) thiopropionyloxy] 5-t-butyl.
- Phenyl) sulfide ditridecyl-3,3′-thiodipropionate, dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipro Pionate, lauryl / stearyl thiodipropionate, 4,4'-thiobis (6-t-butyl-m-cresol), 2,2'-thiobis (6-t-butyl-p-cresol), distearyl- Disulfide is mentioned.
- the amount of the thioester antioxidant used is preferably 0.001 to 0.3 parts by mass, more preferably 0.01 to 0.3 parts by mass with respect to 100 parts by mass of the polymer.
- ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
- 2-hydroxybenzophenones such as 2-; 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 -Dicumylphenyl) benzotriazole, 2,2'-methylenebis (4-tertiary Octyl-6-benzotriazolylphenol), polyethylene glycol ester of 2- (2-hydroxy-3-tert-butyl-5-carboxyphenyl) benzotriazole, 2- [2-hydroxy-3- (2-acryloyloxy) Ethyl) -5-methylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloyloxyethyl) -5
- hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1 , 2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2, 6,6-tetramethyl-4-piperidyl) .di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4 Piperidyl) -di (tridecyl) -1,2,3,
- heavy metal deactivator examples include salicylamide 1,2,4-triazol-3-yl, bissalicylic acid hydrazide, dodecandioyl bis (2- (2-hydroxybenzoyl) hydrazide), bis (3- (3 5-di-t-butyl-4-hydroxyphenyl) propionic acid hydrazide, etc., and preferably 0.001 to 10 parts by weight, more preferably 0.05 to 5 parts by weight per 100 parts by weight of the polymer. Mass parts are used.
- nucleating agent examples include carboxylic acids such as sodium benzoate, aluminum 4-tert-butylbenzoate, sodium adipate and disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate.
- Metal salts sodium bis (4-tert-butylphenyl) phosphate, sodium-2,2′-methylenebis (4,6-ditert-butylphenyl) phosphate and lithium-2,2′-methylenebis (4,6-di) Phosphoric acid ester metal salts such as tert-butylphenyl) phosphate, polyhydric alcohol derivatives such as dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, and bis (dimethylbenzylidene) sorbitol, N, N ′, N ′′ -tris [2-methylcyclohexyl -1,2,3
- the flame retardant examples include aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
- aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
- Esters such as divinyl phenylphosphonate, diallyl phenylphosphonate and phenylphosphonic acid (1-butenyl), phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phospha Phosphinic acid esters such as phenanthrene-10-oxide derivatives, phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene, melamine phosphate, melamine pyrophosphate, Melamine phosphate, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds and phosphorus-based flame retardants such as red phosphorus, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, brominated bisphenol A type epoxy resin, bromine Phenol novolac epoxy resin, hexabromobenzene
- Examples of the filler include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, clay, Dolomite, mica, silica, alumina, potassium titanate whisker, wollastonite, fibrous magnesium oxysulfate and the like are preferable.
- these fillers those having an average particle diameter (spherical or flat) or an average fiber diameter (needle or fiber) of 5 ⁇ m or less are preferable.
- the amount of the filler used can be appropriately used as long as the present invention is not impaired.
- the above-mentioned lubricant is added for the purpose of imparting lubricity to the surface of the molded body and enhancing the effect of preventing damage.
- the lubricant include unsaturated fatty acid amides such as oleic acid amide and erucic acid amide; saturated fatty acid amides such as behenic acid amide and stearic acid amide. These may be used alone or in combination of two or more.
- the addition amount of the lubricant is in the range of 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass, with respect to 100 parts by mass of the polymer. If the amount is less than 0.03 parts by mass, the desired lubricity may not be obtained. If the amount exceeds 2 parts by mass, the lubricant component may bleed on the surface of the polymer molded product or cause a decrease in physical properties.
- the above-mentioned antistatic agent is added for the purpose of reducing the chargeability of the molded product and preventing dust adhesion due to charging.
- the antistatic agent include cationic, anionic and nonionic.
- Preferred examples include polyoxyethylene alkylamines, polyoxyethylene alkylamides or their fatty acid esters, glycerin fatty acid esters, and the like. These may be used alone or in combination of two or more.
- the addition amount of the antistatic agent is preferably 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass with respect to 100 parts by mass of the polymer. When the amount of the antistatic agent is too small, the antistatic effect is insufficient. On the other hand, when the amount is too large, bleeding to the surface and deterioration of physical properties of the polymer may be caused.
- the laminate film production method of the present invention is obtained by masking the phenolic antioxidant represented by the general formula (1) with an organoaluminum compound before or during the polymerization of a monomer having an ethylenically unsaturated bond. Is added to any one or more of the catalyst system, the polymerization system, and the piping so that 0.001 to 0.5 parts by mass is added to 100 parts by mass of the polymer obtained by polymerization. It is a feature. As a result, it is possible to obtain a sufficient stabilizing effect with a small amount of compounding, and as a result of reducing the compounding amount, it is possible to suppress the bleed out of the antioxidant and eliminate the factors that inhibit adhesion during ozone treatment. Became possible.
- the obtained polymer can be formed into a laminate film by a known method.
- the method of processing the polymer into a laminate film include a method of forming the polymer into a film and bonding the films together or manufacturing a laminate film by bonding to a laminate substrate. Moreover, it is good also as a laminated film of three or more layers as needed.
- Examples of the base material for laminating include those generally used as those bonded to a film, for example, metals such as polymers, papers, nonwoven fabrics, aluminum foils having film-forming ability. Examples thereof include metal foil films such as foil, silicon oxide film, and aluminum film, and cellophane.
- the thickness of the laminate base material is not particularly limited and can be appropriately selected according to the purpose, and is usually about 5 to 50 ⁇ m. Moreover, you may perform surface treatments, such as ozone treatment, a corona discharge treatment, and a flame treatment, as needed.
- polymers having film-forming ability used as the substrate for laminating include, for example, high density polyethylene, medium / low density polyethylene, ethylene / vinyl acetate copolymer, ethylene / acrylic acid ester copolymer, ionomer, Olefin copolymers such as polypropylene, poly-1-butene, poly-4-methyl 1-pentene, vinyl polymers such as polyvinyl chloride, polyvinylidene chloride, polystyrene, polyacrylate, polyacrylonitrile, nylon, polymethacrylate Polyamide such as silylene adipamide, polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, polyester such as polyethylene naphthalate, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polycarbonate, etc. It can gel. A film obtained by molding these polymers may be stretched uniaxially or biaxially.
- polyethylene is preferred, and in particular, linear low density polyethylene (LLDPE) is excellent in heat sealability and heat resistance, and it is against bending and stagnation when formed into a package. It is preferable because of its resistance.
- LLDPE linear low density polyethylene
- the thickness of the laminate film produced by the production method of the present invention is not particularly limited and can be appropriately selected according to the purpose, but is usually 10 to 200 ⁇ m.
- laminating the film and the base material for laminating for example, methods such as dry laminating, extrusion laminating, hot melt laminating, wet laminating, wax laminating, and thermal laminating can be employed.
- the dry laminate is a method in which an adhesive is diluted to an appropriate viscosity with an organic solvent, applied to a film, dried, and then pressure bonded to the other film.
- an adhesive an adhesive composed of a main agent and a curing agent is generally used.
- the main agent is, for example, a polyester / polyester comprising isophthalic acid, adipic acid, sebacic acid and the like and an ester compound composed of ethylene glycol, neopentyl glycol, 1,6-hexanediol and isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, etc.
- Examples include urethane diol resin, silane coupling agent, and epoxy resin.
- the curing agent examples include those composed of trimethylolpropane and isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, but the main agent and the curing agent are not limited to these, and have heat resistance and chemical resistance. It can be used appropriately depending on the purpose.
- the above extrusion laminate includes a polylamination method in which a melted polyethylene is coated on one side of the film, and a polysandrami method in which the melted polyethylene is poured between two films.
- melted polyethylene plays the role of an adhesive
- polypropylene may be used instead of polyethylene.
- an anchor coating agent is applied to the surface of the film, it can be easily laminated on paper or a thick film.
- anchor coating agent examples include epoxy resin adhesives such as carboxylic anhydride-modified polyolefin, isocyanate resin, organic titanate resin, polyethyleneimine resin, polybutadiene resin, etc., but water resistance, moisture resistance, boil resistance An isocyanate resin having excellent properties is preferably used.
- the hot melt lamination is a method in which an adhesive or the like is heated, adjusted to an appropriate viscosity, applied to a film, and pressure-bonded.
- the wet lamination is a method of laminating using a water-soluble or emulsion type adhesive.
- water-soluble or emulsion-type adhesive examples include water-soluble vinylon and vinyl acetate emulsion.
- the above thermal laminate can be bonded by applying heat to the film and only pressing. Although there is an advantage that it is not necessary to use an adhesive or a solvent, since the heat resistance is poor as a packaging material, the use application is limited.
- the use of the laminate film obtained by the production method of the present invention is not particularly limited, and can be used for all uses in which a conventional laminate film is used.
- the food packaging material include a laminate film having an olefin film having high resistance to water as an outer layer, a low density polyethylene, a medium density polyethylene, or an ethylene-vinyl acetate copolymer laminated.
- a laminate film having an olefin film having high resistance to water as an outer layer a low density polyethylene, a medium density polyethylene, or an ethylene-vinyl acetate copolymer laminated.
- stacked oxygen-impermeable films, such as aluminum foil, on the inner layer is mentioned.
- the method for producing a resin composition for a coated member of the present invention is characterized by comprising the steps (A) and (B) as described above.
- Other processes for example, a catalyst preparation process, a raw material monomer supply process, a monomer polymerization process, a polymer recovery process, etc., employ known methods for the polymerization of monomers having an ethylenically unsaturated bond. be able to.
- each process is explained in full detail.
- the coating member in this invention is what applied the coating with respect to what shape
- the phenolic antioxidant represented by the general formula (1) is masked with an organoaluminum compound.
- the phenolic antioxidant is blended in an amount of 0.001 to 0.5 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing monomers having unsaturated bonds and the thermoplastic elastomer. It is a step of adding to any one or more of the catalyst system, the polymerization system and the piping.
- the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is a total of 100 of a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer.
- the phenolic antioxidant ie, the amount of the phenolic antioxidant alone before masking
- the amount of the phenolic antioxidant alone before masking is 0.001 to 0.5 parts by mass with respect to parts by mass, 0.001 It is more preferable to add it so that it becomes 0.3 parts by mass.
- the amount is less than 0.001 part by mass, the desired stabilization effect may not be obtained.
- the amount exceeds 0.5 part by weight the phenolic antioxidant bleeds out to the surface of the molded product, and the appearance is impaired. There is.
- thermoplastic elastomer In obtaining a thermoplastic elastomer, a phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound before or during polymerization of a monomer for obtaining a thermoplastic elastomer.
- a phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound before or during polymerization of a monomer for obtaining a thermoplastic elastomer.
- the method for adding the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is not particularly limited.
- the masked phenolic antioxidant is added to and mixed with any one or more of a catalyst feed tank, a polymerization apparatus, and a production line.
- the masking can be performed by mixing and stirring the organoaluminum compound and the phenolic antioxidant in an inert solvent.
- the hydrogen of the phenolic hydroxyl group of the phenolic antioxidant is replaced with an organoaluminum compound.
- they may be added to any one or more of the catalyst system, the polymerization system and the piping.
- the phenolic antioxidant and the organoaluminum compound are added to the catalyst system, respectively. Alternatively, they may be added and mixed separately at any one of the polymerization system and the piping.
- the by-produced compound does not affect the polymerization reaction or polymer of the monomer, it can be used as it is, but if it affects, remove the compound by distillation under reduced pressure or the like.
- the catalyst system polymerization system and piping.
- the masked phenolic antioxidant can be regenerated by reacting with a hydrogen-donating compound such as water, alcohol or acid added as a deactivation treatment of the polymerization catalyst after polymerization.
- organoaluminum compound examples include those similar to the above.
- the mass ratio of the phenolic antioxidant represented by the organoaluminum compound / the general formula (1) 1. / 5 to 100/1 is preferable. If the organoaluminum compound is less than 1/5, excess phenolic antioxidant may adversely affect the catalytic activity. If it is more than 100/1, the aluminum compound remains in the polymer after polymerization, In some cases, physical properties may deteriorate or desired polymerization may not be performed due to an influence on the component ratio of the catalyst metal.
- the concentration of the organoaluminum compound in the inert solvent is preferably in the range of 0.001 to 0.5 mol / L, particularly preferably 0.01 to 0.1 mol / L.
- a phosphorus-based antioxidant is added to any one or more of the catalyst system, the polymerization system and the piping. It is preferable to further include a step of adding.
- the phenol-based antioxidant and the phosphorus-based antioxidant represented by the general formula (1) may be added separately, or may be added after mixing in advance.
- Examples of the phosphorus-based antioxidant include the same as described above.
- the amount of the phosphorus antioxidant used is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. More preferably, the amount is 0.005 to 0.5 parts by mass.
- the phosphorus-based antioxidant when adding the phosphorus-based antioxidant in the addition step, it is preferable to add it mixed with the inert solvent, but in advance together with the phenol-based antioxidant represented by the general formula (1) It may be mixed with an inert solvent, mixed in advance with the inert solvent separately from the phenolic antioxidant represented by the general formula (1), and added to the polymerization system, catalyst system or piping. It may be a thing.
- Examples of the monomer having an ethylenically unsaturated bond include those described above.
- the monomer having an ethylenically unsaturated bond used may be one kind or a combination of two or more kinds.
- a combination of these is preferred.
- ethylene alone, a combination of ethylene-propylene, propylene alone, a combination of ethylene-propylene-butene and the like may be mentioned, and a combination of an ⁇ -olefin monomer and a non-conjugated diene monomer may also be used.
- Examples of the method for carrying out the polymerization reaction of the monomer having an ethylenically unsaturated bond include those described above.
- a continuous reaction tank in an existing polymerization facility may be used as it is, and the present invention is not particularly limited to conventional polymerization facilities in terms of size, shape, material, and the like.
- the polymerization catalyst used in the above polymerization reaction may be the same as described above.
- the polymerization reaction may be carried out in the presence of an active hydrogen compound, an organoaluminum compound, an ion-exchange layered compound, an inorganic silicate, or a catalyst component other than the above polymerization catalyst, such as a carrier, as long as the polymerization is not inhibited. .
- Examples of the ion-exchangeable layered compound include those described above.
- organic carrier examples include the same ones as described above.
- the particle diameter (volume average) of these carriers is usually from 0.1 to 300 ⁇ m, preferably from 1 to 200 ⁇ m, more preferably from 10 to 100 ⁇ m. If the particle size is smaller than 1 ⁇ m, a finely divided polymer is likely to be formed, and if it is too large, coarse particles are produced. Therefore, it is preferable to select the particle size of the carrier according to the desired particle shape.
- the pore volume of the carrier is usually from 0.1 to 5 cm 2 / g, preferably from 0.3 to 3 cm 2 / g.
- the pore volume can be measured by, for example, the BET method or the mercury intrusion method.
- organoaluminum compound examples include the same compounds as those masking the phenolic antioxidant represented by the general formula (1).
- the resin composition may further contain other additives usually used in a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond.
- other additives can be added at the time of polymerization of a monomer having an ethylenically unsaturated bond as long as the polymerization is not inhibited. Examples thereof include a method of mixing with the polymer in an appropriate blending amount, and melt-kneading with a molding processing machine such as an extruder, and granulating and molding.
- Step (B) is a step of melt-kneading a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer.
- thermoplastic elastomer is a polymer material that can be plasticized (fluidized) at a high temperature and can be processed like plastic, and exhibits the properties of a rubber elastic body (elastomer) at room temperature.
- the thermoplastic elastomer is composed of a hard segment (plastic component) and a soft segment (elastic component), and a hard polymer and a block polymer type in which the hard segment and the soft segment are chemically bonded in a single polymer to form a block copolymer; And a blend type structure called “sea-island dispersion” or “polymer alloy” obtained by physically mixing the polymer constituting the polymer and the polymer constituting the soft segment.
- the block polymer type thermoplastic elastomer can be produced by performing block copolymerization.
- a blend type thermoplastic elastomer composition a soft segment or a hard segment is produced, and then the hard segment and the soft segment are physically dispersed using a kneader such as a Banbury mixer or a twin screw extruder.
- a kneader such as a Banbury mixer or a twin screw extruder.
- a blend type thermoplastic elastomer composition is obtained.
- the block copolymer is preferably a copolymer of ethylene and ⁇ -olefin.
- the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 1-decene, 3-methyl-1-pentene, and 4-methyl-1-pentene.
- ⁇ -olefins having 3 to 10 carbon atoms such as 1-octene.
- a single ⁇ -olefin may be used, or two or more ⁇ -olefins may be used in combination.
- a block polymer type thermoplastic elastomer when producing a block polymer type thermoplastic elastomer, it may contain segments derived from other monomers other than ethylene and ⁇ -olefin.
- examples of other monomers include non-conjugated dienes having 5 to 15 carbon atoms such as dicyclopentadiene, 5-ethylidene-2-norbornene, 1,4-hexadiene, 1,5-dicyclooctadiene, and vinyl acetate.
- vinyl ester compounds such as methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate and the like, and vinyl nitrile compounds such as acrylonitrile and methacrylonitrile.
- These other monomers may be used individually by 1 type, may combine 2 or more types, and may be (co) polymerized.
- thermoplastic elastomer examples include those containing an olefin resin as a hard segment and an olefin copolymer elastomer as a soft segment.
- the olefin resin as the hard segment for example, low density polyethylene, high density polyethylene, linear high density polyethylene, linear low density polyethylene, branched low density polyethylene, ethylene homopolymer, propylene homopolymer, or
- the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-heptene, and the like. Examples thereof include ⁇ -olefins having 3 to 10 carbon atoms such as octene and 1-decene.
- the olefin resin may be a single olefin resin or a combination of two or more olefin resins.
- an elastomer that is a copolymer of ethylene and ⁇ -olefin is preferably used as the soft segment.
- the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 1-decene, 3-methyl-1-pentene, and 4-methyl-1-pentene.
- An ⁇ -olefin having 3 to 10 carbon atoms such as 1-octene is usually used.
- a single ⁇ -olefin may be used, or two or more ⁇ -olefins may be used in combination.
- the soft segment may contain other elastomers in addition to the olefin copolymer elastomer as long as the effects of the present invention are not impaired.
- elastomers include, for example, styrene elastomers such as polybutadiene, hydrogenated polybutadiene and hydrogenated polyisoprene, vinyl chloride elastomers, polyester elastomers such as polyether, polyurethane elastomers, nylon elastomers, and natural rubbers.
- Elastic polymers can also be used.
- the mass ratio of the hard segment and the soft segment in the blended thermoplastic elastomer can be appropriately set according to the desired purpose.
- the catalyst used for the production of the thermoplastic elastomer of the present invention is not particularly limited, and a known polymerization catalyst can be used, and the polymerization catalyst mentioned when polymerizing a monomer having an unsaturated bond is used. Also good.
- the thermoplastic elastomer according to the present invention includes other resins and rubbers other than olefin resins and olefin copolymers, crosslinking agents, crosslinking assistants, compatibilizers, lubricants, antistatic agents, softeners, foaming agents, etc. These ingredients may be blended.
- the blending of the other components is preferably performed before the melting step of the thermoplastic elastomer and the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond, but at the same time as the melting step. Also good.
- Examples of the other resin include ethylene / vinyl acetate copolymer (EVA), ethylene / ethyl acrylate copolymer, polyamide, poly (4-methyl-1-pentene), and styrene / isoprene / styrene block copolymer.
- EVA ethylene / vinyl acetate copolymer
- ethylene / ethyl acrylate copolymer polyamide, poly (4-methyl-1-pentene)
- styrene / isoprene / styrene block copolymer Styrene-ethylenebutene-styrene block copolymer, styrene-ethylenepropylene-styrene block copolymer, styrene-butadiene-styrene block copolymer, and the like.
- the rubber is not particularly limited, and examples thereof include amorphous and random elastic copolymers containing 50% or more of high molecular weight components in the rubber containing repeating units derived from olefins.
- the elastic copolymer include those obtained by copolymerizing a combination of two or more monomers selected from the group of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms. Further, a combination of two or more monomers selected from the group consisting of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms, and a conjugated diene monomer and / or a non-conjugated diene monomer may be copolymerized. Good.
- Examples of the ⁇ -olefin having 3 to 10 carbon atoms include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 1-decene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-octene and the like can be mentioned.
- conjugated diene examples include butadiene, isoprene, chloroprene and the like.
- non-conjugated diene monomer examples include dicyclopentadiene, 1,4-hexadiene, 1,5-cyclooctadiene, 5-methylene-2-norbornene, and 5-ethylidene-2-norbornene.
- crosslinking agent examples include organic peroxides such as 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t- Butylperoxy) hexyne-3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-di (t-butylperoxy) 3,5,5-trimethylcyclohexane, 2,5-dimethyl- Examples include 2,5-di (peroxybenzoyl) hexyne-3, dicumyl peroxide and the like.
- the amount of the organic peroxide added is in the range of 0.005 to 2.0 parts by mass, preferably 0.01 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer. If the amount is less than 0.005 parts by mass, the effect of the crosslinking reaction is small.
- the organic peroxide can be mixed with a diluent and used as a liquid or powdery substance. Examples of the diluent include oil, organic solvent, inorganic filler (silica, talc, etc.) and the like.
- crosslinking aid examples include those that increase the degree of crosslinking of the crosslinking type thermoplastic elastomer and improve the physical properties of the thermoplastic elastomer composition, and those having a plurality of double bonds in the molecule are preferred.
- TETD tetraethyl thiuram disulfide
- TMTD tetramethyl thiuram disulfide
- N N'-m-phenylene bismaleimide
- toluylene bismaleimide toluylene bismaleimide
- P-quinone dioxime nitrobenzene
- diphenyl guanidine divinyl benzene
- divinyl benzene ethylene glycol di
- methacrylate polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and allyl methacrylate.
- crosslinking aids may be singular or may be used in combination.
- the amount of the crosslinking aid added is preferably 0.01 to 4.0 parts by mass, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer. If it is less than 0.01 part by mass, the effect of addition may be difficult to obtain, and if it exceeds 4 parts by mass, it may be economically disadvantageous.
- the irradiation amount of the electron beam be 1 kGray or more and 100 kGray or less. If it is less than 1 kGray, moldability may deteriorate when the thermoplastic elastomer is melted, and if it is 100 kGray or more, molecular chains may be cut or stickiness may appear.
- a compatibilizing agent may be added to the thermoplastic elastomer composition of the present invention for the purpose of improving the interfacial adhesion between the polyolefin resin and the crosslinked rubber.
- the compatibilizing agent include silane coupling agents such as silane-modified olefin resins and silane-modified olefin rubbers, and adhesive resins (polystyrene-polybutadiene-polystyrene block copolymers, polyolefin graft bodies, comb graft bodies, etc.). It is done.
- the addition amount of the lubricant is preferably in the range of 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass with respect to 100 parts by mass of the thermoplastic elastomer. If the amount is less than 0.03 parts by mass, the desired lubricity may not be obtained. If the amount exceeds 2 parts by mass, the lubricant component may bleed on the surface of the molded article of the thermoplastic elastomer composition, or may cause deterioration of physical properties. There is.
- the addition amount of the antistatic agent is preferably 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass with respect to 100 parts by mass of the thermoplastic elastomer.
- the amount of the antistatic agent is too small, the antistatic effect is insufficient.
- the amount is too large, the surface may bleed and the physical properties of the thermoplastic elastomer composition may be lowered.
- softener examples include process oil and aliphatic cyclic saturated hydrocarbon resin.
- blowing agent examples include lower aliphatic hydrocarbons such as propane, butane and pentane, lower alicyclic hydrocarbons such as cyclobutane and cyclopentane, and monochlorodifluoromethane, dichlorodifluoromethane, trichlorodifluoroethane, trichlorotrifluoroethane, Volatile foaming agents consisting of halogenated hydrocarbons such as dichlorotetrafluoroethane, methyl chloride, ethyl chloride, methylene chloride, gaseous blowing agents such as nitrogen, carbon dioxide, oxygen, air, sodium bicarbonate, ammonium bicarbonate, dinitrosopenta
- a pyrolytic foaming agent composed of methylenetetramine, toluenesulfonylhydrazide, azodicarbonamide, p, p'-oxybisbenzenesulfonylhydrazide, azo
- thermoplastic elastomer and the foaming agent are performed by kneading the thermoplastic elastomer inside the extruder or the like while the thermoplastic elastomer is melted.
- thermoplastic elastomer is extruded into the extruder.
- it Before being supplied to a thermoplastic elastomer, it may be mixed in advance with a thermoplastic elastomer or separately from a thermoplastic elastomer and supplied to an extruder or the like.
- a volatile foaming agent or a gaseous foaming agent For example, you may press-fit in the thermoplastic elastomer fuse
- thermoplastic elastomer When a foaming agent is used for the thermoplastic elastomer, the thermoplastic elastomer and the foaming agent are extruded and foamed through a die attached to the tip of the extruder.
- the shape of the obtained foam is arbitrary and not particularly limited, and examples thereof include a film shape, a sheet shape, a pipe shape, and a cylindrical shape.
- the resin composition for painted members according to the present invention can further contain other additives as required.
- other additives can be added at the time of polymerization of a monomer having an ethylenically unsaturated bond or at the time of polymerization of a thermoplastic elastomer as long as it does not inhibit polymerization.
- other additives can be blended and uniformly dispersed at the time of melt-kneading a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer in a blending amount according to the purpose.
- thermoplastic elastomer composition can be obtained by using a twin screw extruder equipped with a heating device, a Banbury mixer, a pressure kneader, a Henschel mixer, a Brabender kneader, a disper, etc. It is preferable to prepare by kneading or stirring until a uniform composition is obtained.
- Examples of other additives blended in the resin composition for a coating member according to the present invention include, for example, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, ultraviolet absorbers, hindered amine compounds, and heavy metals.
- examples include an inactivating agent, a nucleating agent, a flame retardant, a metal soap, a hydrotalcite, a filler, a lubricant, an antistatic agent, a pigment, a dye, and a plasticizer.
- phenolic antioxidant examples include those similar to those described above and the phenolic antioxidant represented by the general formula (1).
- tetrakis [methylene-3- (3 ′, 5′- Di-t-butyl-4′-hydroxyphenyl) propionate] methane is preferred because it is relatively inexpensive and has good cost performance.
- the amount of the phenolic antioxidant used as the other additive is preferably 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer, 0.001 to 0.5 parts by mass, particularly preferably 0.01 to 0.3 parts by mass.
- Examples of the phosphorus antioxidant include the same compounds as those exemplified as the phosphorus antioxidant added above.
- the amount of the phosphorus-based antioxidant used is preferably from 0.01 to 0.000 per 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. 3 parts by mass.
- sulfur-based antioxidant examples include those exemplified as the thioester-based antioxidant.
- the amount of the sulfur-based antioxidant used is preferably 0.01 to 0.3 with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. Part by mass.
- Examples of the ultraviolet absorber include the same as described above.
- the amount of the ultraviolet absorber used is 0.001 to 5 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the polymer obtained by polymerizing monomers having an ethylenically unsaturated bond and the thermoplastic elastomer. 0.005 to 0.5 parts by mass.
- the hindered amine light stabilizer examples include the same ones as described above.
- the hindered amine light stabilizer is used in an amount of 0.001 to 5 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer.
- the amount is preferably 0.005 to 0.5 parts by mass.
- nucleating agent examples include those similar to the above.
- the amount of the nucleating agent used is 0.001 to 10 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. 0.005 to 5 parts by mass.
- the flame retardant examples include the same ones as described above.
- the amount of the flame retardant used is 1 to 70 parts by mass, more preferably 10 to 10 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. 30 parts by mass.
- Examples of the lubricant include the same ones as described above.
- antistatic agent examples are the same as those described above.
- the method for molding the polymer obtained by the present invention is not particularly limited, and can be molded by a known molding method.
- methods such as extrusion molding, injection molding, hollow molding, blow molding, compression molding, etc. are adopted. can do.
- the painted member obtained by the present invention can be used without limitation of the shape such as a film, a sheet, a cylindrical shape, a box shape, and a spherical shape, and specific applications include automotive exterior parts in which the appearance of the painted surface is regarded as important. For example, it can be used for bumpers, spoilers, side guard moldings, radiator grills, and the like.
- the film was checked for peeling. Specifically, when the both sides of the laminate film were rubbed, it was evaluated that the case where it was easily displaced and the case where it was not displaced was good.
- Adhesive strength A test piece having a width of 15 mm and a length of 100 mm was prepared from the laminate film obtained by the following procedure, and the test piece was peeled by 50 mm in the length direction by hand, and then both ends were subjected to a tensile tester (Strograph APII; Toyo Seiki Seisakusho Co., Ltd.) measured the maximum strength when peeled at a pulling speed of 300 mm / min in the direction of 180 ° to obtain an adhesive strength.
- a tensile tester Strograph APII; Toyo Seiki Seisakusho Co., Ltd.
- a 130 mm ⁇ 170 mm packaging bag was prepared from the laminate film obtained by the following method, 200 ml of water was enclosed in the packaging bag as the contents, and 120 ° C. ⁇ 30 minutes of hot water / static retort sterilization treatment was performed. . After sterilization, cool to room temperature, mix water with chloroform, extract to chloroform, concentrate, and then add compound additive, compound additive oxide, compound by gas chromatograph mass spectrometer Low molecular weight substances such as additive decomposition substances were quantified, the elution amount of each additive added was determined, the ratio of the elution amount to the additive amount of each additive was calculated, and the elution amount ratio was determined.
- Heat seal strength Two test pieces having a width of 40 mm and a length of 100 mm were prepared from the laminate film obtained by the following method, and the tip in the length direction of this test piece and the tip in the length direction of the other test piece overlap each other by 15 mm. Thus, heat sealing was performed at 200 ° C., 1 kg / cm 2 , and 1 second. The tensile strength when the test piece was peeled off at a tensile speed of 300 mm / min in the direction of 180 degrees with a tensile tester was measured as the heat seal strength.
- the homogeneous solution was cooled to room temperature, and then charged dropwise into 200 ml (1.8 mol) of titanium tetrachloride maintained at ⁇ 20 ° C. over 1 hour. After completion of the insertion, the temperature was raised to 110 ° C. over 4 hours, and when it reached 110 ° C., 2.68 ml (12.5 mmol) of diisobutyl phthalate was added, and the mixture was stirred and reacted for 2 hours while maintaining 110 ° C. . After completion of the reaction, the solid part was collected by hot filtration, suspended in 200 ml of titanium tetrachloride, heated to 110 ° C., and heated for 2 hours.
- the solid Ti catalyst component obtained by the above method was stored by adding heptane as a heptane slurry to 5 mg / mL. A part of the catalyst was collected for the purpose of examining the catalyst composition, dried, and analyzed. The composition of the solid Ti catalyst component was 2.9% by mass of titanium, 56.0% by mass of chlorine, and 17.0% by mass of magnesium. And isobutyl phthalate was 20.9% by mass.
- AO-1 3- (3,5-ditert-butyl-4-hydroxyphenyl) -N-octadecylpropionamide 2) AO-2: n-octadecyl-3- (3 ′, 5′-di- t-butyl-4′-hydroxyphenyl) propionate 3) P-1: Tris (2,4-t-butylphenyl) phosphite 4)
- Addition of stabilizer during polymerization of monomer having ethylenically unsaturated bond 5) During granulation: After polymerization of the monomer having an ethylenically unsaturated bond, a stabilizer was added and mixed, and kneaded at 250 ° C. for granulation.
- Comparative Examples 1-1 to 1-9 when different from the production method of the present invention, when extruding polyethylene powder with a T-die, the torque increases with time, and the film sheet is produced stably. I could't. Compared with Comparative Examples 1-6 and 1-8, the anchor coating agent was increased to 0.15 g / m 2 to improve the adhesion to the support substrate, but the elution amount ratio was high and sanitary. There was a problem. In addition, coloring and fish eyes were confirmed on the laminate film. In Comparative Examples 1-7 and 1-9, although a film sheet was obtained, a laminate film could not be produced because it peeled off even when pressed and pressed against the ester film of the supporting substrate.
- the polyethylene film produced by the production method of the present invention has good adhesion to the ester film of the supporting substrate, and the elution amount ratio is also suppressed. It could be confirmed.
- Example 1-1 the extrusion temperature by the T-die was changed to the temperature shown in Table 2, and the support substrate was changed to an ester film (trade name: Toyobo Ester Film T4100), and the anchor coating agent was used.
- a film sheet extruded with a T-die was used, and air with an ozone concentration of 12.9 g / m 3 was blown on the surface to be pressure-bonded to the supporting substrate in an amount of 3 Nm 3 per hour.
- a laminate film was produced in the same procedure as in Example 1-1.
- Comparative Examples 2-1 to 2-5 when the production method is different from the production method of the present invention, when polyethylene powder is extruded with a T-die, the torque increases with time, and the film sheet is produced stably. I could't. Further, from Comparative Examples 2-6 to 2-9, a film sheet can be produced by adding and adding the stabilizer composition in the addition step, but it has poor adhesion, a high elution ratio, and hygiene. It was confirmed that there was a problem. Further, from Comparative Examples 2-7 and 2-9, it was confirmed that, although the adhesiveness was improved by raising the extrusion temperature to 300 ° C., the elution amount ratio was high and there was a sanitary problem. It was.
- the polyethylene film produced by the production method of the present invention has good adhesion to the ester film of the supporting substrate, and the elution amount ratio is also suppressed. It could be confirmed.
- Example 1-1 Production of laminate film
- the anchor coating agent was changed to an adhesive for dry lamination (trade name: A-515 / A-50, manufactured by Takeda Pharmaceutical Co., Ltd.).
- a laminate film was produced in the same manner as in Example 1-1 except that the extrusion temperature was changed from 250 ° C. to 280 ° C.
- the polyethylene film produced by the production method of the present invention has good adhesion to the ester film of the supporting substrate, and the elution amount ratio is also suppressed. It could be confirmed.
- the laminate film of the present invention is excellent in resistance to the contents when filled with the contents, particularly the liquid, as a packaging material, in particular, as a packaging bag, and more safe and hygienic packaging of food, medicine, etc. It can be suitably used as a material.
- the temperature of the mixed solution was raised to 110 ° C. over 4 hours, and when it reached 110 ° C., 2.68 ml (12.5 mmol) of diisobutyl phthalate was added, and then at the same temperature for 2 hours. Hold under stirring.
- the solid part was collected by hot filtration, and the solid part was resuspended in 200 ml of titanium tetrachloride, and then heated again at 110 ° C. for 2 hours.
- the solid part was again collected by hot filtration and thoroughly washed with 110 ° C. decane and hexane until no free titanium compound was detected in the washing solution to obtain a solid Ti catalyst component.
- the solid Ti catalyst component synthesized by the above production method was stored as a heptane slurry. A part of the catalyst was taken out and dried for the purpose of examining the catalyst composition.
- the composition of the solid Ti catalyst component thus obtained was 3.1% by weight of titanium, 56.0% by weight of chlorine, 17.0% by weight of magnesium and 20.9% by weight of isobutyl phthalate.
- the temperature was raised to 70 ° C., and the polymerization reaction was carried out for 1 hour while adjusting the total pressure in the autoclave to 3.82 MPa with propylene.
- 15 ml of ethanol was added to stop the polymerization reaction.
- the polymer was dried at 40 ° C. in a vacuum for 5 hours to obtain polypropylene powder A.
- the compounding quantity of the stabilizer of Table 4 is the quantity (mass part) with respect to a total of 100 mass parts of the polymer obtained from the monomer which has an ethylenically unsaturated bond, and a thermoplastic elastomer.
- the compounding quantity of Table 4 is the quantity as antioxidant alone before masking.
- the stabilizer is added also during the polymerization of the thermoplastic elastomer
- the total of the amount added during the polymerization of the polymer obtained from the monomer having an ethylenically unsaturated bond and the amount added during the polymerization of the thermoplastic elastomer is the resin. It becomes the compounding quantity in the whole composition.
- the following manufacturing examples are also the same.
- Production Example 2 Polymerization of monomer having ethylenically unsaturated bond In Production Example 1, production was carried out in the same procedure as Production Example 1 except that the phenoxide solution and phosphite solution were not added. Got.
- thermoplastic elastomer A was obtained according to the following procedures ([1] Preparation of solid catalyst, [2] Preparation of phenoxide solution, [3] polymerization).
- 500 g of high-purity ⁇ -alumina (manufactured by JGC Catalysts & Chemicals, trade name: ACP-1, average particle size of about 60 ⁇ m, specific surface area of about 300 m 2 / g, pore volume of about 0.7 mL / g) is about 95 ° C.
- ACP-1 average particle size of about 60 ⁇ m, specific surface area of about 300 m 2 / g, pore volume of about 0.7 mL / g
- Phenoxide was prepared by adding 5.0 g of triisobutylaluminum and the stabilizer (phenolic antioxidant) listed in Table 4 to 50 ml of toluene so that the molar ratio of functional groups was 2: 1 and stirring at room temperature for 30 minutes. A solution was prepared.
- thermoplastic Elastomer B was obtained by the same production procedure as in Production Example 3 except that the phenoxide solution was not added.
- the mixture was melt-kneaded under the conditions of a melting temperature of 230 ° C. and a screw speed of 50 rpm using a twin-screw extruder (Laboplast Mill Micro, manufactured by Toyo Manufacturing Co., Ltd.) to obtain pellets.
- the pellets obtained above are injection-molded under the conditions of an injection temperature of 2220 ° C. and a mold temperature of 50 ° C. with a small laboratory injection molding machine (Compounder 15, Dmoulder 12 manufactured by DSM Xplore), and 50 mm ⁇ 90 mm. A flat test piece of 2 mm was obtained. The obtained test piece was allowed to stand for 48 hours in a thermostatic bath at 23 ° C. after injection molding, and then measured by the following method. These results were evaluated by the following procedure.
- test piece was exposed to saturated vapor of 1,1,1-trichloroethane for 30 seconds to clean the surface, placed in an oven set at 90 ° C. for 10 minutes, dried, and then subjected to a microwave plasma processing apparatus ( Plasma treatment was performed using Nissin BH-10).
- the acrylic-melamine pearl mica was applied to the test piece after the plasma treatment according to the following procedure (1) ⁇ (7).
- the paint uses R320, R331, and R341 manufactured by Nippon Bee Chemical Co., Ltd., R320 (product name: manufactured by Nihon Bee Chemical Co., Ltd.) for the color base, and R331 (product name: Nippon Bee Chemical Co., Ltd.) for the mica base.
- R341 (trade name: manufactured by Nippon Bee Chemical Co., Ltd.) was used for the clear.
- the coating was cut into a grid with a cutter knife, and 100 1 mm square sections were cut. Divided into.
- the cellophane tape was affixed from above, this cellophane tape was peeled off, the number of sections that were not peeled off with the cellophane tape was measured, and the adhesion of the coating film was evaluated.
- Gas chromatography ⁇ Apparatus Gas chromatography GC2010 manufactured by Shimadzu Corporation, Column: BPX5 manufactured by SGE (30 m ⁇ 0.25 mm D ⁇ 0.25 ⁇ m), Injection temperature: 330 ° C., Detector temperature: 330 ° C., Measurement conditions: A calibration curve was prepared by dissolving the blended additive in chloroform at a heating rate of 15 ° C./min ⁇ , and quantitative analysis of the additive extracted into a 95% aqueous ethanol solution was performed. Note that. The elution amount represents the concentration per extraction solvent.
- AO-1 antioxidant: 3,5-di-t-butyl-4-hydroxyphenyl) -N-octadecylpropionamide
- AO-2 antioxidant: tetrakis [methylene -3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane
- AO-3 antioxidant: n-octadecyl-3- (3 ′, 5′-di- t-Butyl-4′-hydroxyphenyl) propionate
- P-1 phosphorus antioxidant
- a phenolic antioxidant different from the phenolic antioxidant represented by the general formula (1 ′) is added during the polymerization of polypropylene or elastomer and molded.
- the polypropylene resin and the elastomer deteriorated, and a test piece could not be prepared.
- Comparative Examples 4-3, 4-6, 4-9 and 4-10 when the blending amount of the antioxidant added during the granulation process is 0.03 parts by mass, the resin deteriorates during molding and the test piece could not be created.
- the coated member of the present invention has better coating film adhesion and heat yellowing resistance than Example 4-1, and the amount of elution is slight. From Example 4-2, it was confirmed that the heat resistance was further improved by adding a phosphorus-based antioxidant. Further, from Examples 4-3 and 4-4, it was confirmed that there was no problem even when the mass ratio of the polymer to the thermoplastic elastomer was 4/1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Polymerisation Methods In General (AREA)
- Paints Or Removers (AREA)
Abstract
Description
近年の重合技術の進展により、安定剤組成物を重合触媒、重合装置又は配管に添加して重合することにより安定化された重合物が得られる。この方法は、重合後の溶融混錬による安定剤組成物の配合工程を省略でき、重合物に対して安定剤を均一分散させることが容易になり、結果として安定剤の配合量を低減化できる。しかし、フェノール化合物は重合触媒に悪影響して、重合を損なうため、フェノール系酸化防止剤を含む安定剤組成物は重合段階において添加することができなかった。
本発明者等は、有機アルミニウム化合物でマスキングしたフェノール系酸化防止剤を用いることにより、フェノール系酸化防止剤をエチレン性不飽和結合を有するモノマーの重合前又は重合中に添加しても、重合触媒の活性を低下させることなく得られる重合物を安定化させる方法を提案している(特許文献6、10、11)。
これらの知見をもとに、本発明者等がエチレン性不飽和結合を有するモノマーの重合前または重合中に、有機アルミニウム化合物でマスキングした特定のフェノール系酸化防止剤を添加したところ、得られる樹脂組成物の塗膜との密着性、耐熱黄変性が良好であることが明らかになった。
(式中、R1及びR2は、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。)
エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、上記フェノール系酸化防止剤が0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか一カ所以上に添加する工程(A)と、
エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーを溶融混錬する工程(B)とを、備えることを特徴とするものである。
(式中、R1及びR2は、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。)
(式中、R1及びR2は、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、置換基を有してもよい炭素原子数6~18のアリール基を表す。)
本発明に用いられるリン系酸化防止剤としては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ第三ブチルフェニル)ホスファイト、トリス(2,4-ジ第三ブチル-5-メチルフェニル)ホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノール等、公知のリン系酸化防止剤を用いることができるが、トリス(2,4-ジ第三ブチルフェニル)ホスファイトのように、プロピレンモノマーの重合前に添加しても重合に悪影響を与えないリン系酸化防止剤が好ましい。
エチレン性不飽和結合を有するモノマーの重合反応を行う方法としては、通常用いられる方法を採用することができる。例えば、ブタン、ペンタン、ヘキサン、ヘプタン、イソオクタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ガソリン留分、水素化ジーゼル留分などの不活性溶媒の存在下に液相で重合を行う方法、液化したモノマー自身を媒体とする重合方法、液相が実質的に存在しない条件下、窒素等の不活性ガス雰囲気中など気相で重合を行う方法、又はこれらを2種以上組み合わせた重合方法も使用可能である。また、重合は、回分式、連続式の何れでもよく、一段重合法又は多段重合法であってもよい。
上記無機担体としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、酸化カルシウム、酸化亜鉛等が挙げられる。またこの他の無機担体としては塩化マグネシウム、臭化マグネシウム等のハロゲン化マグネシウム、マグネシウムエトキシドなどのマグネシウムアルコキシド、イオン交換性層状化合物があげられる。
上記他の添加剤としてのフェノール系酸化防止剤の使用量は、前記重合体100質量部に対して、0.001~5質量部、より好ましくは、0.001~0.5質量部である。
チオエステル系酸化防止剤の使用量は、好ましくは、前記重合体100質量部に対して、0.001~0.3質量部、より好ましくは0.01~0.3質量部である。
上記紫外線吸収剤の使用量は、前記重合体100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.005~0.5質量部である。
上記ヒンダードアミン系光安定剤の使用量は、前記重合体100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.005~0.5質量部である。
上記造核剤の使用量は、前記重合体100質量部に対して、0.001~10質量部、より好ましくは0.005~5質量部である。
上記難燃剤の使用量は、前記重合体100質量部に対して、好ましくは1~70質量部、より好ましくは、10~30質量部である。
上記滑剤の添加量は、前記重合体100質量部に対し、0.03~2質量部、より好ましくは0.04~1質量部の範囲である。0.03質量部未満では、所望の滑性が得られない場合があり、2質量部を超えると滑剤成分が重合体の成形品表面にブリードしたり、物性低下の原因となる場合がある。
上記ラミネート用基材の厚みは特に制限なく目的に応じて適宜選択でき、通常は5~50μm程度であればよい。また、必要に応じてオゾン処理、コロナ放電処理、火炎処理等の表面処理を行っても良い。
硬化剤としては、例えば、トリメチロールプロパンとイソホロンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネートからなるものなどが挙げられるが、主剤及び硬化剤はこれらに限定されるものではなく、耐熱性、耐薬品性等の目的に応じて適宜使用することができる。
例えば、食品包装材料として、水に対する耐性が高いオレフィンフィルムを外層とするラミネートフィルム、低密度ポリエチレン、中密度ポリエチレン、又は、エチレン-酢酸ビニル共重合体などを積層したものが挙げられる。また、ボイル、レトルト用袋状包装材として利用する場合は、アルミニウム箔などの酸素不透過性のフィルムを内層に積層したものが挙げられる。
0.001質量部未満では、所望の安定化効果が得られない場合があり、0.5質量部を超えると、上記フェノール系酸化防止剤が成形品の表面にブリードアウトし、外観を損ねる場合がある。
なお、熱可塑性エラストマーを得るに当たって、熱可塑性エラストマーを得る為のモノマーの重合前または重合中に、上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを添加する場合は、工程(A)での配合量と、熱可塑性エラストマーの合成時の配合量との合計が上記範囲になるように配合する。
なお、リン系酸化防止剤は、後述する熱可塑性エラストマーの重合時(モノマーの重合前または重合中)に添加してもよい。
本発明においては、ブロックポリマー型の熱可塑性エラストマーを用いる場合、ブロック共重合体としては、エチレン及びα-オレフィンの共重合体が好ましい。上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、1-デセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-オクテンなどの炭素原子数3~10のα-オレフィン等が挙げられる。上記α-オレフィンは、単一のα-オレフィンを用いてもよく、2種以上のα-オレフィンを組み合わせて用いてもよい。
本発明において好適なブレンド型の熱可塑性エラストマーとしては、例えばハードセグメントとしてオレフィン樹脂を含有し、ソフトセグメントとしてオレフィン系共重合体エラストマーを含有するものが挙げられる。
上記弾性共重合体としては、例えば、エチレン及び炭素原子数3~10のα-オレフィンの群から選択された2種類以上のモノマーの組合せを共重合して得られるものが挙げられる。また、エチレン及び炭素原子数3~10のα-オレフィンの群から選択された2種類以上のモノマーの組合せと、共役ジエンモノマー、及び/又は、非共役ジエンモノマーを共重合したものであってもよい。
希釈剤としては、例えば、オイル、有機溶媒、無機フィラー(シリカ、タルク等)等が挙げられる。
例えば、テトラエチルチウラムジスルフィド(TETD)、テトラメチルチウラムジスルフィド(TMTD)、N,N’-m-フェニレンビスマレイミド、トルイレンビスマレイミド、P-キノンジオキシム、ニトロベンゼン、ジフェニルグアニジン、ジビニルベンゼン、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレート等が挙げられる。これらの架橋助剤は単数であってもよく、複数組み合わせて使用してもよい。
上記架橋助剤の添加量は、熱可塑性エラストマー100質量部に対し、好ましくは0.01~4.0質量部、より好ましくは、0.05~2.0質量部の範囲である。0.01質量部未満では添加効果が得られにくい場合があり、4質量部を超えると経済的に不利となる場合がある。
これらの発泡剤の使用量は必要に応じて、適宜使用される。
上記他の添加剤としてのフェノール系酸化防止剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、好ましくは、0.001~0.5質量部、特に好ましくは、0.01~0.3質量部である。
上記紫外線吸収剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
上記ヒンダードアミン系光安定剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
上記造核剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.001~10質量部、より好ましくは0.005~5質量部である。
上記難燃剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、1~70質量部、より好ましくは、10~30質量部である。
ラミネートフィルムの製造後、フィルムの剥離の有無について確認した。具体的には、ラミネートフィルムの両側を擦ったときに、容易にずれてしまう場合を接着不可とし、ずれない場合を良好として評価した。
下記の手順で得られたラミネートフィルムから、幅15mm、長さ100mmの試験片を作成し、この試験片を長さ方向に50mmにわたって手で剥離した後、両端を引張試験機(ストログラフAPII;株式会社東洋精機製作所製)で180度方向に、300mm/分の引張速度で剥離したときの最大強度を測定して、接着強度とした。
下記の方法で得られたラミネートフィルムから、130mm×170mmの包装袋を作成し、内容物として水200mlを包装袋に封入し、120℃×30分間の熱水・静置式レトルト殺菌処理を行った。殺菌処理後、室温まで冷却し、内容物である水をクロロホルムと混合して、クロロホルムに抽出し、濃縮した後、ガスクロマトグラフ質量分析計にて、配合添加剤、配合添加剤の酸化物、配合添加剤の分解物質などの低分子量物質を定量し、配合された各添加剤の溶出量を求め、各添加剤の配合量に対する該溶出量の比を算出し、溶出量比を求めた。
下記の方法で得られたラミネートフィルムから、幅40mm、長さ100mmの試験片を二枚作製し、この試験片の長さ方向の先端と他方の試験片の長さ方向の先端がそれぞれ15mm重なり合うようにし、200℃、1kg/cm2、1秒の条件でヒートシールした。この試験片を引張試験機で180度方向に300mm/minの引張速度で剥離したときの引張強度をヒートシール強度として測定した。
(固体触媒の調製)
無水塩化マグネシウム4.76g(50mmol)、デカン25ml及び2-エチルヘキシルアルコール23.4ml(150mmol)を130℃で2時間加熱反応を行い均一溶液とした後、この溶液中に無水フタル酸1.11g(7.5mmol)を添加し、130℃にて更に1時間撹拌反応を行い、無水フタル酸を該均一溶液に溶解させた。該均一溶液を室温まで冷却した後、―20℃に保持した四塩化チタン200ml(1.8mol)中に1時間かけて全量滴下装入した。挿入終了後、4時間かけて110℃に昇温し、110℃に到達した時点でジイソブチルフタレート2.68ml(12.5mmol)を添加し、110℃を維持したまま2時間撹拌して反応させた。反応終了後、熱ろ過にて固体部を採取し、該固体部を200mlの四塩化チタンにて懸濁し、110℃に昇温して2時間加熱反応を行った。反応終了後、再び熱ろ過にて固体部を採取し、110℃のデカン及びヘキサンで洗浄し、洗液中に遊離チタン化合物が検出されなくなるまで充分に洗浄し、固体Ti触媒成分を得た。
上記の方法によって得られた固体Ti触媒成分は、ヘプタンスラリーとして5mg/mLとなるようにヘプタンを加えて保存した。尚、触媒組成を調べる目的で一部を採取して乾燥して、分析したところ、固体Ti触媒成分の組成は、チタン2.9質量%、塩素56.0質量%、マグネシウム17.0質量%及びイソブチルフタレート20.9質量%であった。
窒素置換したフラスコに、乾燥ヘプタン10mL、トリエチルアルミニウム54mg、及び表1~3に記載のフェノール系酸化防止剤161mgを混合・撹拌してフェノール系酸化防止剤をマスキングし、フェノール系酸化防止剤の濃度が16mg/mLのフェノキシド溶液を調製した。
窒素置換したフラスコに、表1~3記載のリン系酸化防止剤144mgを加え、ヘプタン6mLを添加して混合・撹拌して、リン系酸化防止剤の濃度が24mg/mLのホスファイト溶液を調製した。
窒素置換した1000mlのオートクレーブに乾燥ヘプタン600mlを加え、トリエチルアルミニウム0.41g(3.6mmol)、表1~3中において添加方法が重合時となっている実施例、比較例については前記フェノキシド溶液及びホスファイト溶液を表1~3に記載の安定剤組成物の配合になるように添加し、さらに、ジシクロペンタジメトキシシラン82.23mg(0.36mmol)及び固体Ti触媒成分のヘプタンスラリーをTiとして0.012mmolとなるように順次加えた。さらに、1-ヘキセン11.2gを加え、オートクレーブ内をエチレン雰囲気に置換し、エチレンで1kgf/cm2Gの圧力を加え、50℃で5分間プレ重合(600rpm)を行った。その後、エチレンをパージした後、水素分圧2kgf/cm2G、エチレン分圧7kgf/cm2G、及びエチレン混合物として、7wt%になるように1-ヘキセンをオートクレーブ内に導入した。80℃に昇温後、オートクレーブ内をプロピレンで5kgf/cm2Gの圧力を加え、80℃で2時間重合反応を行った。窒素ガスで系内を置換後、40℃のエタノール5mlを加えて重合反応を停止し、50℃で減圧・脱溶媒を行い、さらに、真空中、40℃で重合物を5時間乾燥させることにより、ポリエチレンパウダーを得た。
上記重合で得られたパウダー100質量部に対して、表1~3において添加方法が造粒時となっている実施例、比較例については表1~3に記載の安定剤組成物及びステアリン酸カルシウムを0.05質量部添加し、混合した。混合後、T-ダイで押出温度250℃、厚み60μm、幅300mmで押し出してフィルムシートに成形し、支持基材としてエステルフィルム(東洋紡株式会社製,商品名:東洋紡エステルフィルムE5100)に対して、アンカーコート剤(東洋インキ製造株式会社製,商品名:オリバインTX1439)を表1に記載の塗布量で塗布し、塗布面と、上記フィルムシートが圧着されるように、艶消しロールにて加圧接着してラミネートフィルムを製造した。
2)AO-2:n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート
3)P-1:トリス(2,4-t-ブチルフェニル)ホスファイト
4)重合時:エチレン性不飽和結合を有するモノマーの重合時に安定剤を添加
5)造粒時:エチレン性不飽和結合を有するモノマーの重合後、安定剤を添加・混合し、250℃で混練して造粒した。
比較例1-6及び比較例1-8より、アンカーコート剤を0.15g/m2に増量することにより、支持基材との接着性は改善されたものの、溶出量比が高く衛生的に問題があった。また、ラミネートフィルムに着色やフィッシュアイが確認された。
比較例1-7及び比較例1-9では、フィルムシートは得られるものの、支持基材のエステルフィルムと加圧・圧着しても剥離するため、ラミネートフィルムは製造できなかった。
前記実施例1-1において、Tダイによる押出温度を、表2に記載の温度に、支持基材をエステルフィルム(東洋紡株式会社製,商品名:東洋紡エステルフィルムT4100)に変更し、アンカーコート剤を使用せず、T-ダイで押出したフィルムシートに対して、支持基材と圧着する面にオゾン濃度12.9g/m3の空気を1時間あたり3Nm3の量で吹きつけた以外は、実施例1-1と同様の手順でラミネートフィルムを製造した。
前記実施例1-1の(ラミネートフィルムの製造)において、アンカーコート剤をドライラミネーション用接着剤(武田薬品工業株式会社製,商品名:A-515/A-50)に変更し、T-ダイによる押出温度を250℃から280℃に変更した以外は、実施例1-1と同様の手順でラミネートフィルムを製造した。
〔製造例1〕エチレン性不飽和結合を有するモノマーの重合
下記の手順([1]固体Ti触媒成分の調製、[2]フェノキシド溶液の調製、[3]ホスファイト溶液の調製、[4]プロピレンの重合)に従い、ポリプロピレンパウダーを得た。
無水塩化マグネシウム4.76g(50mmol)、デカン25ml及び2-エチルヘキシルアルコール23.4ml(150mmol)を130℃で2時間加熱反応を行い均一溶液とした後、この溶液中に無水フタル酸1.11g(7.5mmol)を添加し、130℃にて更に1時間撹拌反応を行い、無水フタル酸を該均一溶液に溶解させた。このようにして得られた均一溶液を室温に冷却した後、-20℃に保持された四塩化チタン200ml(1.8mol)中に1時間に渡って全量滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでジイソブチルフタレート2.68ml(12.5mmol)を添加し、これより2時間同温度にて撹拌下保持した。2時間の反応終了後、熱ろ過にて固体部を採取し、この固体部を200mlの四塩化チタンにて再懸濁させた後、再び110℃で2時間、加熱反応を行った。反応終了後、再び熱ろ過にて固体部を採取し、110℃デカン及びヘキサンにて、洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄して固体Ti触媒成分を得た。以上の製造方法にて合成された固体Ti触媒成分はヘプタンスラリーとして保存するが、このうち一部を取り出し、触媒組成を調べる目的で乾燥した。この様にして得られた固体Ti触媒成分の組成は、チタン3.1重量%、塩素56.0重量%、マグネシウム17.0重量%及びイソブチルフタレート20.9重量%であった。
窒素置換したフラスコに、乾燥ヘプタン10mL、トリエチルアルミニウム54mg、及び表4に記載のフェノール系酸化防止剤161mgを混合・撹拌してフェノール系酸化防止剤をマスキングし、フェノール系酸化防止剤の濃度が16mg/mLのフェノキシド溶液を調製した。
窒素置換したフラスコに、表4記載のリン系酸化防止剤144mgを加え、ヘプタン6mLを添加して混合・撹拌して、リン系酸化防止剤の濃度が24mg/mLのホスファイト溶液を調製した。
窒素置換した2Lの耐圧反応器にトリエチルアルミニウム1.26mmol、前記フェノキシド溶液及びホスファイト溶液を表4に記載の安定剤組成物の配合になるように添加し、ジシクロペンチルジメトキシシラン0.126mmol及び固体Ti触媒成分のヘプタンスラリー(Tiとして8.4μmol)を順次加えた。オートクレーブ内をプロピレン雰囲気に置換し、水素を0.12MPaで導入し、さらにプロピレンを全圧3.82MPaとなるように導入し、30℃で3分間プレ重合した。その後、エチレンを0.12g/minで導入しながら、70℃まで昇温し、オートクレーブ内の全圧を3.82MPaになるようプロピレンで調節しつつ、1時間重合反応を行った。40℃に冷却した後、エタノール15mlを加え重合反応を停止させた。プロピレンをパージした後、真空中、40℃でポリマーを5時間乾燥することにより、ポリプロピレンパウダーAを得た。
なお、表4記載の安定剤の配合量は、エチレン性不飽和結合を有するモノマーから得られる重合体と熱可塑性エラストマーの合計100質量部に対する量(質量部)である。また、表4中の配合量は、マスキングする前の酸化防止剤単独としての量である。熱可塑性エラストマーの重合時にも安定剤を添加する場合は、エチレン性不飽和結合を有するモノマーから得られる重合体の重合時に添加する分と、熱可塑性エラストマーの重合時に添加する分との合計が樹脂組成物全体中の配合量となる。以下の製造例も同様である。
上記製造例1において、フェノキシド溶液及びホスファイト溶液を添加しなかった以外は、上記製造例1と同様の手順で製造し、ポリプロピレンパウダーBを得た。
下記の手順([1]固体触媒の調製、[2]フェノキシド溶液の調製、[3]重合)に従い、熱可塑性エラストマーAを得た。
20℃、微粉状のCuSO4・5H2O 37.5g(0.15mol)をトルエン100mLに撹拌して懸濁させ、トリメチルアルミニウム50mL(0.52mol)とトルエン150mLの混合溶液を徐々に滴下した。滴下終了後さらに20℃で48時間反応を続けた。次に反応液をろ過し、固体の硫酸銅を除いた後、266.6Pa下、35℃の減圧蒸留により、トルエンおよび未反応トリメチルアルミニウムを除去し、メチルアルミノオキサン17g(0.29mol)を得た。
このアルミナ7gをn-ヘキサン50mLで懸濁させ、これにトルエン10mLに溶解させたメチルアルミノオキサン82mg(アルミニウム単位:1.4mmol)を加えた。この混合物を室温で30分間撹拌した後、トルエンに溶解させたテトラベンジルジルコニウムの0.16M溶液を9mL添加し、さらに室温で30分間撹拌を行った。液相には、ジルコニウム、アルミニウムとも検出されなかった。
このようにして調製した固体触媒はジルコニウム、アルミニウムの吸着量から計算した結果、0.2mmol/gのジルコニウムおよび0.2mmol/gのアルミニウムを含んでいた。
トルエン50mlにトリイソブチルアルミニウムと表4記載の安定剤(フェノール系酸化防止剤)を官能基のモル比で2:1となるように合計で5.0g加え室温で30分撹拌することにより、フェノキシド溶液を調製した。
100Lのステンレス製オートクレーブにおいて窒素雰囲気下、25℃で水素分圧0.059MPa、エチレン分圧0.29MPaとなるように水素及びエチレンを装入し、プロピレン25kgを装入した。昇温して50℃で均圧装置により、固体Ti触媒成分のヘプタンスラリー(ジルコニウムとして3mmol)を添加し、得られる重合体中の安定剤の添加量が表4記載の量となるように調製したフェノキシド溶液を添加した後、エチレンを供給し、温度60℃,全圧2.84MPaを維持しながら2時間共重合を行った。イソプロピルアルコール50mLを添加して重合反応を停止し、未反応プロピレンを除去して生成重合物を取り出し、白色、球状の熱可塑性エラストマーAを得た。
上記製造例3において、フェノキシド溶液を添加しなかった以外は、上記製造例3と同様の手順で製造し、熱可塑性エラストマーBを得た。
上記製造例1又は2で得られたポリプロピレンパウダー及び上記製造例3又は4で得られた熱可塑性エラストマーを2/1ないし4/1の重量比で混合した混合物100質量部に対し、ステアリン酸カルシウム0.05質量部、タルク(日本タルク株式会社製商品名:ミクロエースP-4)10質量部、光安定剤(株式会社ADEKA製商品名:アデカスタブLA-62)0.2質量部を添加し、混合した。なお、製造例2で得られたポリプロピレンパウダー又は製造例4で得られたエラストマーを使用する場合、表4に記載の安定剤組成物を添加して混合した。混合後、二軸押出機(ラボプラストミルマイクロ,株式会社東洋製作所製)を用いて、溶融温度230℃、スクリュー速度50rpmの条件で溶融混練し、ペレットを得た。
得られた試験片を1,1,1-トリクロロエタンの飽和蒸気中に30秒間、曝して表面を洗浄し、90℃に設定されたオーブン中に10分間入れて乾燥し、マイクロ波プラズマ処理装置(株式会社ニッシン製BH-10)を用いてプラズマ処理を実施した。
(1)カラーベース塗装、膜厚15μm
(2)5分間セッティング後、120℃20分乾燥
(3)マイカベース塗装、膜厚15μm
(4)3分間フラッシュ
(5)クリアー塗装、膜厚25μm
(6)5分間セッティング後、120℃20分焼き付け塗装
(7)室温で48時間放置
また、アクリル-メラミン系パールマイカ塗装をした上記の試験片に対して、90℃の恒温器に240時間静置し、加熱前後の塗膜の黄変度(Δb)を測定して耐熱黄変性を評価した。測定は分光測色計(型番:T―4、スガ試験機株式会社製)により行った。
耐圧反応器に、95%エタノール水溶液215mlを抽出溶媒として入れて密栓し、121℃及び49℃の恒温器に耐圧反応器を1日静置した。抽出溶媒の温度が121℃になったことを確認してから、上記の試験片3枚が浮かないようにガラス棒に試験片3枚を通して沈め、121℃の恒温器に戻して2時間静置した。
2時間経過後試験片を取り出し、新しい抽出溶媒で試験片の表面を洗浄してから再度、ガラス棒に試験片3枚を通し、49℃の恒温器に静置していた耐圧反応器に入れて抽出溶媒に沈めて密栓し、49℃の恒温器に戻して10日間静置した。10日間経過後、試験片を取り出して、新しい抽出溶媒で試験片の表面を洗浄した。121℃及び49℃の恒温器で抽出した溶媒及び洗浄に用いた抽出溶媒を回収して、ロータリーエバポレーターにて減圧濃縮した。
濃縮した抽出溶媒における試験片から抽出された安定剤組成物の抽出量について、下記の方法で定量分析をした。
ガスクロマトグラフィー{装置:株式会社島津製作所製ガスクロマトグラフィーGC2010、カラム:SGE社製BPX5(30m×0.25mmlD×0.25μm)、インジェクション温度:330℃、検出器温度:330℃、測定条件:昇温速度15℃/min}にて、配合した添加剤をクロロホルムで溶かしたもので検量線を作成し、95%エタノール水溶液に抽出された添加剤の定量分析をした。なお。溶出量とは、抽出溶媒あたりの濃度を表す。
2)AO-2(フェノール系酸化防止剤):テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン
3)AO-3(フェノール系酸化防止剤):n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート
4)P-1(リン系酸化防止剤):トリス(2,4-ジ第三ブチルフェニル)ホスファイト
5)添加方法:
重合時:モノマーの重合時に酸化防止剤を添加
造粒時:モノマーの重合後、酸化防止剤を添加・混合し、250℃で混練して造粒した。
6)タルク:日本タルク株式会社製商品名:ミクロエースP-4
7)LA-62:株式会社ADEKA製、光安定剤商品名(1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジルトリデシルのエステル化合物)
8)Ca-St:ステアリン酸カルシウム
9)溶出量比:比較例1の酸化防止剤の溶出量を1としたときの、各配合における酸化防止剤の溶出量の比率を表す。
また、比較例4-3、4-6、4-9及び4-10より、造粒行程時に添加する酸化防止剤の配合量が0.03質量部では、成形時に樹脂が劣化して試験片を作成することができなかった。
また、比較例4-4、4-5、4-7及び4-8より、酸化防止剤を増量することによって耐熱性は改善されるものの、成形品の着色が顕著で、溶出量比が多く衛生的に問題があり、満足できるものではなかった。
また、実施例4-3及び4-4より、重合体と熱可塑性エラストマーの比率が、質量比で4/1の場合でも問題ないことが確認できた。
Claims (13)
- エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、重合により得られる重合体100質量部に対して0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか1カ所以上に添加する工程を備えることを特徴とするラミネートフィルムの製造方法。
(式中、R1及びR2は、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。) - エチレン性不飽和結合を有するモノマーの重合前又は重合中に、さらにリン系酸化防止剤を、重合により得られる重合体100質量部に対して0.001~3質量部、触媒系、重合系および配管のいずれか1カ所以上に添加する工程を備える請求項1記載のラミネートフィルムの製造方法。
- 前記有機アルミニウム化合物がトリアルキルアルミニウムである請求項1記載のラミネートフィルムの製造方法。
- 請求項1記載のラミネートフィルムの製造方法により製造されたことを特徴とするラミネートフィルム。
- エチレン性不飽和結合を有するモノマーを重合して得られる重合体および熱可塑性エラストマーを含む塗装部材用樹脂組成物の製造方法であって、
エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、上記フェノール系酸化防止剤が0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか一カ所以上に添加する工程(A)と、
エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーを溶融混錬する工程(B)とを、備えることを特徴とする塗装部材用樹脂組成物の製造方法。
(式中、R1及びR2は、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。) - 前記工程(B)において、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体/熱可塑性エラストマー=2/1~4/1の質量比で溶融混錬する請求項5記載の塗装部材用樹脂組成物の製造方法。
- 前記熱可塑性エラストマーが、エチレン性不飽和結合を有するモノマーを重合して得られるものであって、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、前記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、触媒系、重合系および配管のいずれか1カ所以上に添加して、前記モノマーを重合することによって得られるものである請求項5記載の塗装部材用樹脂組成物の製造方法。
- エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対し、リン系酸化防止剤の配合量が0.001~3質量部となるように、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、触媒系、重合系および配管のいずれか1カ所以上にリン系酸化防止剤を添加する工程をさらに備える、請求項5記載の塗装部材用樹脂組成物の製造方法。
- 前記有機アルミニウム化合物がトリアルキルアルミニウムである請求項5記載の塗装部材用樹脂組成物の製造方法。
- 請求項5記載の塗装部材用樹脂組成物の製造方法により得られた樹脂組成物を成形したものに対して塗装を施す工程を備えることを特徴とする塗装部材の製造方法。
- 前記塗装を施す工程の前に、前記樹脂組成物を成形したものをプラズマ処理する工程を備える請求項10記載の塗装部材の製造方法。
- 請求項10記載の塗装部材の製造方法により製造されることを特徴とする塗装部材
- 光安定剤、充填剤を含むものである請求項12記載の塗装部材。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280011331.4A CN103403036B (zh) | 2011-03-02 | 2012-02-08 | 层压薄膜和涂装构件用树脂组合物的制造方法 |
JP2013502226A JPWO2012117823A1 (ja) | 2011-03-02 | 2012-02-08 | ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 |
EP12752936.0A EP2682410B1 (en) | 2011-03-02 | 2012-02-08 | Processes of producing laminate film and resin composition for coating members |
KR1020137023083A KR20140006018A (ko) | 2011-03-02 | 2012-02-08 | 라미네이트 필름 및 도장 부재용 수지 조성물의 제조 방법 |
US14/002,525 US20130331515A1 (en) | 2011-03-02 | 2012-02-08 | Process of producing laminate film and resin composition for coating members |
BR112013022263-8A BR112013022263B1 (pt) | 2011-03-02 | 2012-02-08 | processo para a produção de película laminada e composição de resina para revestimento de membros |
KR1020187018690A KR101966269B1 (ko) | 2011-03-02 | 2012-02-08 | 라미네이트 필름 및 도장 부재용 수지 조성물의 제조 방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011045552 | 2011-03-02 | ||
JP2011-045552 | 2011-03-02 | ||
JP2011090331 | 2011-04-14 | ||
JP2011-090331 | 2011-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012117823A1 true WO2012117823A1 (ja) | 2012-09-07 |
Family
ID=46757762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052887 WO2012117823A1 (ja) | 2011-03-02 | 2012-02-08 | ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130331515A1 (ja) |
EP (2) | EP2966095B1 (ja) |
JP (1) | JPWO2012117823A1 (ja) |
KR (2) | KR101966269B1 (ja) |
CN (1) | CN103403036B (ja) |
BR (1) | BR112013022263B1 (ja) |
TW (1) | TWI614271B (ja) |
WO (1) | WO2012117823A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2578606B2 (en) | 2011-10-04 | 2019-08-28 | Borealis AG | Process for the production of polyolefins wherein an antioxidant is fed to the reaction mixture during the process |
JP5734826B2 (ja) * | 2011-12-20 | 2015-06-17 | 株式会社Adeka | オレフィン樹脂組成物の製造方法 |
JP2013199551A (ja) * | 2012-03-23 | 2013-10-03 | Adeka Corp | 家電材料用及び自動車内装材料用オレフィン樹脂組成物の製造方法 |
KR102217316B1 (ko) * | 2013-10-21 | 2021-02-17 | 가부시키가이샤 아데카 | 안정화된 폴리머의 제조 방법 |
US20180003909A1 (en) * | 2016-01-01 | 2018-01-04 | Hangzhou Juli Insulation Co., Ltd | Macro-molecular leakage-free self-adhering aluminum foil and manufacturing method thereof |
CN107571556B (zh) * | 2017-09-07 | 2019-07-12 | 山东尚品家居配饰制造有限公司 | 一种阻燃装饰膜 |
CN110854225A (zh) * | 2018-07-25 | 2020-02-28 | 比亚迪股份有限公司 | 一种双玻光伏组件 |
Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4734478A (ja) | 1971-03-23 | 1972-11-21 | ||
JPS56100806A (en) | 1980-01-17 | 1981-08-13 | Chisso Corp | Preparation of alpha-olefin polymer |
JPS56120712A (en) | 1980-02-27 | 1981-09-22 | Chisso Corp | Preparation of poly alpha-olefin |
JPS5763310A (en) | 1980-08-13 | 1982-04-16 | Montedison Spa | Ingredient and catalyst for olefin polymerization |
JPS585310A (ja) | 1981-07-03 | 1983-01-12 | Mitsubishi Petrochem Co Ltd | オレフイン重合用触媒成分 |
JPS5823806A (ja) | 1981-08-04 | 1983-02-12 | Chisso Corp | α−オレフイン重合体を製造する方法 |
JPS5883006A (ja) | 1981-11-13 | 1983-05-18 | Mitsui Petrochem Ind Ltd | オレフインの重合方法 |
JPS58104907A (ja) | 1981-12-17 | 1983-06-22 | Chisso Corp | 高剛性成形品用ポリプロピレンの製造方法 |
JPS58157808A (ja) | 1982-03-16 | 1983-09-20 | Ube Ind Ltd | α−オレフインの重合方法 |
JPS61218606A (ja) | 1985-03-25 | 1986-09-29 | Sumitomo Chem Co Ltd | α−オレフイン重合体の製造法 |
JPS61283533A (ja) | 1985-06-10 | 1986-12-13 | Mitsubishi Petrochem Co Ltd | 金属蒸着積層フイルムの製造方法 |
JPS6343915A (ja) | 1986-08-11 | 1988-02-25 | Mitsubishi Petrochem Co Ltd | プロピレンブロツク共重合体の製造法 |
JPS6349423A (ja) | 1986-08-19 | 1988-03-02 | Toppan Printing Co Ltd | ラミネ−ト物の製造方法 |
JPS6383116A (ja) | 1986-09-26 | 1988-04-13 | Mitsubishi Petrochem Co Ltd | プロピレンブロツク共重合体の製造法 |
JPS6392613A (ja) | 1986-07-23 | 1988-04-23 | エニーケム・シンテシース・エセ・ピ・ア | 熱安定化α―オレフィン重合体又は共重合体の製法 |
JPS63146906A (ja) | 1986-09-26 | 1988-06-18 | ソルベイ(ソシエテ アノニム) | アルフアーオレフインの立体特異性重合に使用できる固形触媒 |
JPH0543616A (ja) | 1991-08-20 | 1993-02-23 | Mitsubishi Petrochem Co Ltd | オレフイン重合用触媒 |
JPH05295022A (ja) | 1992-04-23 | 1993-11-09 | Mitsubishi Kasei Corp | オレフィン重合用触媒およびオレフィン重合体の製造方法 |
JPH05301917A (ja) | 1991-05-01 | 1993-11-16 | Mitsubishi Kasei Corp | オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法 |
JPH06107897A (ja) | 1992-09-25 | 1994-04-19 | Ube Ind Ltd | 塗装バンパー用ポリプロピレン系樹脂組成物 |
JPH06239917A (ja) | 1993-02-19 | 1994-08-30 | Mitsubishi Petrochem Co Ltd | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH06239915A (ja) | 1993-02-19 | 1994-08-30 | Mitsubishi Petrochem Co Ltd | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH06239914A (ja) | 1993-02-19 | 1994-08-30 | Mitsubishi Petrochem Co Ltd | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH0782311A (ja) | 1993-09-10 | 1995-03-28 | Mitsubishi Chem Corp | オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法 |
JPH07179719A (ja) | 1993-12-24 | 1995-07-18 | Mitsui Petrochem Ind Ltd | 自動車塗装バンパー用プロピレン重合体組成物 |
JPH07228621A (ja) | 1994-02-21 | 1995-08-29 | Mitsubishi Chem Corp | オレフィン重合用触媒およびこれを用いたオレフィンの重合方法 |
JPH07330820A (ja) | 1994-06-10 | 1995-12-19 | Chisso Corp | 架橋型メタロセン化合物およびその製造法 |
JPH0859724A (ja) | 1994-08-17 | 1996-03-05 | Mitsubishi Chem Corp | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH0885708A (ja) | 1994-07-22 | 1996-04-02 | Mitsubishi Chem Corp | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH0885707A (ja) | 1994-07-22 | 1996-04-02 | Mitsubishi Chem Corp | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH08127613A (ja) | 1994-05-18 | 1996-05-21 | Mitsubishi Chem Corp | オレフィン重合用触媒およびオレフィンの重合方法 |
JPH08208731A (ja) | 1994-11-03 | 1996-08-13 | Ciba Geigy Ag | 安定化オレフィンポリマーの製造方法 |
JPH0912621A (ja) | 1995-06-29 | 1997-01-14 | Ciba Geigy Ag | 安定化されたオレフィンポリマーの製造方法 |
JPH10226712A (ja) | 1996-12-09 | 1998-08-25 | Mitsubishi Chem Corp | α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法 |
JPH10259143A (ja) | 1996-07-23 | 1998-09-29 | Mitsubishi Chem Corp | メタロセン化合物類の精製法及びα−オレフィンの重合方法 |
JPH10265490A (ja) | 1997-01-21 | 1998-10-06 | Mitsubishi Chem Corp | ケイ素またはゲルマニウム含有有機化合物、遷移金属錯体、α−オレフィン重合用触媒およびα−オレフィン重合体の各製造方法 |
WO1999037654A1 (fr) | 1998-01-27 | 1999-07-29 | Chisso Corporation | Composes a base de metallocene possedant un ligand bis(naphthylcyclo pentadienyl) et procede de production |
WO1999045014A1 (fr) | 1998-03-05 | 1999-09-10 | Chisso Corporation | Composes metallocenes avec ligand bis(2,5-disubstitue-3-phenylcyclopentadienyle) et son procede de production |
JPH11246582A (ja) | 1998-02-27 | 1999-09-14 | Chisso Corp | ビス置換シクロペンタジエニル配位子を有するメタロセン化合物 |
JPH11279189A (ja) | 1998-01-27 | 1999-10-12 | Chisso Corp | ビス(2−置換−4−フェニル−シクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法 |
JPH11349633A (ja) | 1998-06-08 | 1999-12-21 | Mitsubishi Chemical Corp | 新規な遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 |
WO2000008036A1 (fr) | 1998-08-03 | 2000-02-17 | Chisso Corporation | COMPLEXES ν-OXOBISMETALLOCENES, CATALYSEURS DE POLYMERISATION D'OLEFINES LES CONTENANT ET PROCEDE DE POLYMERISATION |
JP2000229990A (ja) | 1999-02-15 | 2000-08-22 | Chisso Corp | ビス(2,5−二置換−3−ナフチルシクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法 |
JP2001206914A (ja) | 2000-01-27 | 2001-07-31 | Japan Polychem Corp | プロピレン系ランダム共重合体の製造方法 |
JP2002037795A (ja) | 1999-10-22 | 2002-02-06 | Chisso Corp | インデニル配位子を有するメタロセン化合物およびこれを含むオレフィン重合用触媒 |
JP2002194015A (ja) | 2000-12-25 | 2002-07-10 | Chisso Corp | オレフィン重合体製造用触媒およびそれを用いたオレフィン重合体の製造方法 |
JP2002194016A (ja) | 2000-05-23 | 2002-07-10 | Chisso Corp | メタロセン化合物、それを含むオレフィン重合用触媒および該触媒を用いるオレフィン重合体の製造方法 |
JP2002535339A (ja) | 1999-01-25 | 2002-10-22 | チッソ株式会社 | オレフィン重合用触媒成分としてのメタロセン化合物 |
JP2003029270A (ja) | 2001-07-17 | 2003-01-29 | Toshiba Corp | 液晶表示装置及び液晶表示装置の製造方法 |
JP2004154942A (ja) * | 2002-11-01 | 2004-06-03 | Taka Plastic Navi Kk | ポリエチレンシートおよびその製造方法 |
JP2005206625A (ja) | 2004-01-20 | 2005-08-04 | Asahi Denka Kogyo Kk | 安定化されたポリマーの製造方法 |
JP2005255953A (ja) | 2004-03-15 | 2005-09-22 | Asahi Denka Kogyo Kk | 安定化されたポリマーの製造方法 |
JP2006052241A (ja) | 2004-08-09 | 2006-02-23 | Asahi Denka Kogyo Kk | 安定化ポリマーの製造方法 |
JP2006188600A (ja) * | 2005-01-06 | 2006-07-20 | Futamura Chemical Co Ltd | レトルト用ポリオレフィンフィルム |
JP2006282985A (ja) | 2005-03-11 | 2006-10-19 | Adeka Corp | 安定化されたポリマーの製造方法 |
WO2010087064A1 (ja) * | 2009-01-28 | 2010-08-05 | 株式会社Adeka | 食品・医療・水道用パイプ用途のポリオレフィン系樹脂組成物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145212A (en) | 1988-02-12 | 1992-09-08 | American Banknote Holographics, Inc. | Non-continuous holograms, methods of making them and articles incorporating them |
JPH10273544A (ja) * | 1997-01-30 | 1998-10-13 | Mitsui Chem Inc | 熱可塑性樹脂組成物塗装体およびエラストマー組成物塗装体 |
JP5501962B2 (ja) * | 2008-06-05 | 2014-05-28 | 株式会社Adeka | アルミニウムフェノキシド化合物を用いた安定化ポリマーの製造方法。 |
JP2010180390A (ja) * | 2009-02-03 | 2010-08-19 | Toyo Adl Corp | ホットメルト型接着組成物及び該ホットメルト型接着組成物を用いてなる積層体 |
-
2012
- 2012-02-08 EP EP15181294.8A patent/EP2966095B1/en not_active Not-in-force
- 2012-02-08 KR KR1020187018690A patent/KR101966269B1/ko active IP Right Grant
- 2012-02-08 BR BR112013022263-8A patent/BR112013022263B1/pt active IP Right Grant
- 2012-02-08 US US14/002,525 patent/US20130331515A1/en not_active Abandoned
- 2012-02-08 WO PCT/JP2012/052887 patent/WO2012117823A1/ja active Application Filing
- 2012-02-08 KR KR1020137023083A patent/KR20140006018A/ko not_active Application Discontinuation
- 2012-02-08 EP EP12752936.0A patent/EP2682410B1/en not_active Not-in-force
- 2012-02-08 CN CN201280011331.4A patent/CN103403036B/zh not_active Expired - Fee Related
- 2012-02-08 JP JP2013502226A patent/JPWO2012117823A1/ja active Pending
- 2012-02-24 TW TW101106277A patent/TWI614271B/zh not_active IP Right Cessation
Patent Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4734478A (ja) | 1971-03-23 | 1972-11-21 | ||
JPS56100806A (en) | 1980-01-17 | 1981-08-13 | Chisso Corp | Preparation of alpha-olefin polymer |
JPS56120712A (en) | 1980-02-27 | 1981-09-22 | Chisso Corp | Preparation of poly alpha-olefin |
JPS5763310A (en) | 1980-08-13 | 1982-04-16 | Montedison Spa | Ingredient and catalyst for olefin polymerization |
JPS585310A (ja) | 1981-07-03 | 1983-01-12 | Mitsubishi Petrochem Co Ltd | オレフイン重合用触媒成分 |
JPS5823806A (ja) | 1981-08-04 | 1983-02-12 | Chisso Corp | α−オレフイン重合体を製造する方法 |
JPS5883006A (ja) | 1981-11-13 | 1983-05-18 | Mitsui Petrochem Ind Ltd | オレフインの重合方法 |
JPS58104907A (ja) | 1981-12-17 | 1983-06-22 | Chisso Corp | 高剛性成形品用ポリプロピレンの製造方法 |
JPS58157808A (ja) | 1982-03-16 | 1983-09-20 | Ube Ind Ltd | α−オレフインの重合方法 |
JPS61218606A (ja) | 1985-03-25 | 1986-09-29 | Sumitomo Chem Co Ltd | α−オレフイン重合体の製造法 |
JPS61283533A (ja) | 1985-06-10 | 1986-12-13 | Mitsubishi Petrochem Co Ltd | 金属蒸着積層フイルムの製造方法 |
JPS6392613A (ja) | 1986-07-23 | 1988-04-23 | エニーケム・シンテシース・エセ・ピ・ア | 熱安定化α―オレフィン重合体又は共重合体の製法 |
JPS6343915A (ja) | 1986-08-11 | 1988-02-25 | Mitsubishi Petrochem Co Ltd | プロピレンブロツク共重合体の製造法 |
JPS6349423A (ja) | 1986-08-19 | 1988-03-02 | Toppan Printing Co Ltd | ラミネ−ト物の製造方法 |
JPS6383116A (ja) | 1986-09-26 | 1988-04-13 | Mitsubishi Petrochem Co Ltd | プロピレンブロツク共重合体の製造法 |
JPS63146906A (ja) | 1986-09-26 | 1988-06-18 | ソルベイ(ソシエテ アノニム) | アルフアーオレフインの立体特異性重合に使用できる固形触媒 |
JPH05301917A (ja) | 1991-05-01 | 1993-11-16 | Mitsubishi Kasei Corp | オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法 |
JPH0543616A (ja) | 1991-08-20 | 1993-02-23 | Mitsubishi Petrochem Co Ltd | オレフイン重合用触媒 |
JPH05295022A (ja) | 1992-04-23 | 1993-11-09 | Mitsubishi Kasei Corp | オレフィン重合用触媒およびオレフィン重合体の製造方法 |
JPH06107897A (ja) | 1992-09-25 | 1994-04-19 | Ube Ind Ltd | 塗装バンパー用ポリプロピレン系樹脂組成物 |
JPH06239917A (ja) | 1993-02-19 | 1994-08-30 | Mitsubishi Petrochem Co Ltd | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH06239915A (ja) | 1993-02-19 | 1994-08-30 | Mitsubishi Petrochem Co Ltd | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH06239914A (ja) | 1993-02-19 | 1994-08-30 | Mitsubishi Petrochem Co Ltd | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH0782311A (ja) | 1993-09-10 | 1995-03-28 | Mitsubishi Chem Corp | オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法 |
JPH07179719A (ja) | 1993-12-24 | 1995-07-18 | Mitsui Petrochem Ind Ltd | 自動車塗装バンパー用プロピレン重合体組成物 |
JPH07228621A (ja) | 1994-02-21 | 1995-08-29 | Mitsubishi Chem Corp | オレフィン重合用触媒およびこれを用いたオレフィンの重合方法 |
JPH08127613A (ja) | 1994-05-18 | 1996-05-21 | Mitsubishi Chem Corp | オレフィン重合用触媒およびオレフィンの重合方法 |
JPH07330820A (ja) | 1994-06-10 | 1995-12-19 | Chisso Corp | 架橋型メタロセン化合物およびその製造法 |
JPH0885707A (ja) | 1994-07-22 | 1996-04-02 | Mitsubishi Chem Corp | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH0885708A (ja) | 1994-07-22 | 1996-04-02 | Mitsubishi Chem Corp | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH0859724A (ja) | 1994-08-17 | 1996-03-05 | Mitsubishi Chem Corp | α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法 |
JPH08208731A (ja) | 1994-11-03 | 1996-08-13 | Ciba Geigy Ag | 安定化オレフィンポリマーの製造方法 |
JPH0912621A (ja) | 1995-06-29 | 1997-01-14 | Ciba Geigy Ag | 安定化されたオレフィンポリマーの製造方法 |
JPH10259143A (ja) | 1996-07-23 | 1998-09-29 | Mitsubishi Chem Corp | メタロセン化合物類の精製法及びα−オレフィンの重合方法 |
JPH10226712A (ja) | 1996-12-09 | 1998-08-25 | Mitsubishi Chem Corp | α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法 |
JPH10265490A (ja) | 1997-01-21 | 1998-10-06 | Mitsubishi Chem Corp | ケイ素またはゲルマニウム含有有機化合物、遷移金属錯体、α−オレフィン重合用触媒およびα−オレフィン重合体の各製造方法 |
WO1999037654A1 (fr) | 1998-01-27 | 1999-07-29 | Chisso Corporation | Composes a base de metallocene possedant un ligand bis(naphthylcyclo pentadienyl) et procede de production |
JPH11279189A (ja) | 1998-01-27 | 1999-10-12 | Chisso Corp | ビス(2−置換−4−フェニル−シクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法 |
JPH11246582A (ja) | 1998-02-27 | 1999-09-14 | Chisso Corp | ビス置換シクロペンタジエニル配位子を有するメタロセン化合物 |
WO1999045014A1 (fr) | 1998-03-05 | 1999-09-10 | Chisso Corporation | Composes metallocenes avec ligand bis(2,5-disubstitue-3-phenylcyclopentadienyle) et son procede de production |
JPH11349633A (ja) | 1998-06-08 | 1999-12-21 | Mitsubishi Chemical Corp | 新規な遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 |
WO2000008036A1 (fr) | 1998-08-03 | 2000-02-17 | Chisso Corporation | COMPLEXES ν-OXOBISMETALLOCENES, CATALYSEURS DE POLYMERISATION D'OLEFINES LES CONTENANT ET PROCEDE DE POLYMERISATION |
JP2002535339A (ja) | 1999-01-25 | 2002-10-22 | チッソ株式会社 | オレフィン重合用触媒成分としてのメタロセン化合物 |
JP2000229990A (ja) | 1999-02-15 | 2000-08-22 | Chisso Corp | ビス(2,5−二置換−3−ナフチルシクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法 |
JP2002037795A (ja) | 1999-10-22 | 2002-02-06 | Chisso Corp | インデニル配位子を有するメタロセン化合物およびこれを含むオレフィン重合用触媒 |
JP2001206914A (ja) | 2000-01-27 | 2001-07-31 | Japan Polychem Corp | プロピレン系ランダム共重合体の製造方法 |
JP2002194016A (ja) | 2000-05-23 | 2002-07-10 | Chisso Corp | メタロセン化合物、それを含むオレフィン重合用触媒および該触媒を用いるオレフィン重合体の製造方法 |
JP2002194015A (ja) | 2000-12-25 | 2002-07-10 | Chisso Corp | オレフィン重合体製造用触媒およびそれを用いたオレフィン重合体の製造方法 |
JP2003029270A (ja) | 2001-07-17 | 2003-01-29 | Toshiba Corp | 液晶表示装置及び液晶表示装置の製造方法 |
JP2004154942A (ja) * | 2002-11-01 | 2004-06-03 | Taka Plastic Navi Kk | ポリエチレンシートおよびその製造方法 |
JP2005206625A (ja) | 2004-01-20 | 2005-08-04 | Asahi Denka Kogyo Kk | 安定化されたポリマーの製造方法 |
JP2005255953A (ja) | 2004-03-15 | 2005-09-22 | Asahi Denka Kogyo Kk | 安定化されたポリマーの製造方法 |
JP2006052241A (ja) | 2004-08-09 | 2006-02-23 | Asahi Denka Kogyo Kk | 安定化ポリマーの製造方法 |
JP2006188600A (ja) * | 2005-01-06 | 2006-07-20 | Futamura Chemical Co Ltd | レトルト用ポリオレフィンフィルム |
JP2006282985A (ja) | 2005-03-11 | 2006-10-19 | Adeka Corp | 安定化されたポリマーの製造方法 |
WO2010087064A1 (ja) * | 2009-01-28 | 2010-08-05 | 株式会社Adeka | 食品・医療・水道用パイプ用途のポリオレフィン系樹脂組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2682410A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20130331515A1 (en) | 2013-12-12 |
BR112013022263A2 (pt) | 2016-12-06 |
EP2682410A4 (en) | 2014-08-27 |
EP2966095A1 (en) | 2016-01-13 |
BR112013022263B1 (pt) | 2020-12-08 |
TW201247714A (en) | 2012-12-01 |
TWI614271B (zh) | 2018-02-11 |
KR20140006018A (ko) | 2014-01-15 |
KR101966269B1 (ko) | 2019-04-05 |
EP2682410A1 (en) | 2014-01-08 |
EP2966095B1 (en) | 2017-05-03 |
KR20180080351A (ko) | 2018-07-11 |
EP2682410B1 (en) | 2015-10-07 |
CN103403036B (zh) | 2015-11-25 |
JPWO2012117823A1 (ja) | 2014-07-07 |
CN103403036A (zh) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012117823A1 (ja) | ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 | |
KR102055223B1 (ko) | 폴리머의 장기 안정화 방법 및 부직포, 일래스터머 조성물의 제조 방법 | |
EP2796477B1 (en) | Method for producing stabilized polymer | |
EP2862883B1 (en) | Method for producing nucleator masterbatch | |
KR102564751B1 (ko) | 광안정제 마스터 배치 및 그의 제조 방법 | |
JP6952445B2 (ja) | ポリオレフィン系樹脂組成物およびそれを用いた自動車内外装材 | |
JP2012107106A (ja) | 熱可塑性エラストマー組成物の製造方法 | |
WO2013140905A1 (ja) | 家電材料用及び自動車内装材料用オレフィン樹脂組成物の製造方法 | |
JP5808906B2 (ja) | ポリマーの製造方法 | |
JP6905820B2 (ja) | 安定剤組成物および安定化された重合体の製造方法 | |
JP2022017798A (ja) | ポリオレフィン系樹脂組成物の製造方法、ポリオレフィン系樹脂組成物およびその成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12752936 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013502226 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012752936 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137023083 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14002525 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013022263 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013022263 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130830 |