[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012117823A1 - ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 - Google Patents

ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2012117823A1
WO2012117823A1 PCT/JP2012/052887 JP2012052887W WO2012117823A1 WO 2012117823 A1 WO2012117823 A1 WO 2012117823A1 JP 2012052887 W JP2012052887 W JP 2012052887W WO 2012117823 A1 WO2012117823 A1 WO 2012117823A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
mass
monomer
ethylenically unsaturated
unsaturated bond
Prior art date
Application number
PCT/JP2012/052887
Other languages
English (en)
French (fr)
Inventor
川本 尚史
漆原 剛
康平 岡本
哲哉 ▲瀬▼口
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN201280011331.4A priority Critical patent/CN103403036B/zh
Priority to JP2013502226A priority patent/JPWO2012117823A1/ja
Priority to EP12752936.0A priority patent/EP2682410B1/en
Priority to KR1020137023083A priority patent/KR20140006018A/ko
Priority to US14/002,525 priority patent/US20130331515A1/en
Priority to BR112013022263-8A priority patent/BR112013022263B1/pt
Priority to KR1020187018690A priority patent/KR101966269B1/ko
Publication of WO2012117823A1 publication Critical patent/WO2012117823A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • B05D3/144Pretreatment of polymeric substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Definitions

  • the present invention relates to a method for producing a laminate film, and more particularly, to a method for producing a laminate film that has excellent adhesion to a base material for laminating and can reduce the amount of an anchor coat agent or an adhesive for dry lamination.
  • the present invention also relates to a method for producing a resin composition for a coating member comprising a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer, and more specifically, with a coating film after plasma treatment. It is related with the manufacturing method of the resin composition for coating members which can obtain the resin composition for coating members which is excellent in adhesiveness and can suppress yellowing.
  • a packaging material using a film made of a thermoplastic resin has been proposed.
  • a polyester, polyamide, metal foil or the like is used as a base material for laminating, and an olefin resin film is heat-bonded (heated).
  • Seals) and laminate films obtained by applying and laminating adhesives are known.
  • polyethylene is particularly inexpensive and easy to process, and is widely used for food packaging materials because it is excellent in blocking water vapor.
  • Patent Document 1 since the olefin resin itself is inactive and has poor adhesive strength, for example, in Patent Document 1, the surface of the base material for laminating is anchored with an anchor agent such as polyurethane or isocyanate compound, and then treated with ozone. A method of laminating a later olefin resin to form a laminate film has been proposed.
  • an anchor agent such as polyurethane or isocyanate compound
  • Patent Document 2 discloses a method for improving adhesion by ozone treatment of a film under specific conditions. .
  • olefin resin is poor in stability to heat and light, and is easily oxidized / degraded when exposed to a high temperature environment or strong light, and a life required as a plastic product cannot be obtained.
  • a stabilizer such as a phenol-based antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, a hydroxylamine compound, a hindered amine compound, an ultraviolet absorber, an acid scavenger, etc. should be added.
  • phenolic antioxidants are widely used because they have a high thermal stability effect in high-temperature processing.
  • the olefin resin obtained by polymerizing the olefin monomer and the stabilizer are mixed, melted and kneaded by a processing device such as an extruder, and the stabilizer is added to the olefin resin.
  • a method of adding a stabilizer before or during the polymerization of the olefin monomer has a problem that a stabilizer must be added more than necessary in order to cope with poor dispersion of the stabilizer in the olefin resin.
  • Patent Document 3 discloses a production method in which ⁇ -olefin is polymerized in the presence of a phosphorus-based antioxidant.
  • the polymerization of ⁇ -olefin in the presence of a phosphorus antioxidant is superior to the case where it is added to a polymer obtained by polymerizing ⁇ -olefin without using a phosphorus antioxidant during polymerization. It has been shown that a stabilizing effect can be obtained.
  • Patent Document 4 shows that by using a specific phosphorus-based antioxidant at the time of polymerization, a polymer in which coloring due to contact with water is suppressed without inhibiting olefin polymerization can be obtained.
  • phenolic antioxidants can provide high thermal stability during high-temperature processing of olefin resins, while blending phenolic antioxidants when olefin resin moldings are immersed in a solvent such as water or alcohol. May be eluted from the molded product.
  • Patent Document 5 As a polymerization method that does not reduce the catalytic activity of the polymerization catalyst by the phenolic antioxidant, for example, in Patent Document 5 and Patent Document 6, an organic aluminum compound is used before or during the polymerization of a monomer having an ethylenically unsaturated bond. It has been shown that the inhibition of the polymerization catalyst can be suppressed by adding a masked phenolic antioxidant.
  • olefin resins obtained by polymerizing monomers having an ethylenically unsaturated bond are inexpensive, have low specific gravity and high rigidity, have good moldability, and can mold large molded products.
  • the use is progressing by the use.
  • Applications for automobiles are expanding to exterior parts such as bumpers, interior parts such as instrument panels and trims, engine room parts such as fans and cases, and structural members such as various module materials. .
  • resin compositions such as those used for automobile interior and exterior products such as bumpers include olefin resins, elastomers, inorganic fillers, pigments such as carbon black, light stabilizers, ultraviolet absorbers, hindered phenols, phosphorus-based resins, Sulfur and lactone antioxidants are blended as necessary.
  • additives such as antioxidants, hindered amine light stabilizers and ultraviolet absorbers are blended. Due to the strong influence of heat and sunlight, there is a problem that the additive blended in the olefin resin diffuses, migrates or bleeds out from the resin into the coating film and yellows the coating film. In particular, it is known that a phenolic antioxidant changes to quinoline after bleed-out and causes yellowing of the coating film.
  • Patent Documents 7 and 8 propose a method for suppressing yellowing of the coating bumper by specifying the addition amount and the type of each of the antioxidant and the light stabilizer.
  • Patent Document 9 discloses specific four types of antioxidants and, if necessary, benzoate-based light for a polypropylene resin composition containing a specific propylene / ethylene block copolymer, an elastomer, and an inorganic filler. A method of blending a stabilizer and a hindered amine light stabilizer has been proposed.
  • Patent Documents 6, 10, and 11 describe a method in which a phenolic antioxidant masked with an organoaluminum compound is added before or during polymerization of a monomer having an ethylenically unsaturated bond.
  • JP-A 61-283533 Japanese Unexamined Patent Publication No. 63-49423 JP-A-63-92613 JP-A-8-208731 JP 2006-52241 A JP 2006-282985 A JP-A-6-107897 Japanese Patent Laid-Open No. 7-179719 JP 2003-29270 A JP 2005-206625 A JP 2005-255953 A
  • anchor coating agents used for anchor coating treatment use organic solvents such as ethyl acetate, toluene, and methyl ethyl ketone as diluents. If the adhesive was not sufficiently dried, the organic solvent remained in the laminate film, and the contents had a problem of odor adhering.
  • Patent Document 2 has a problem that because the melt extrusion temperature of the processing is high, the resin and the compounding additive are decomposed, and the contents become odorous.
  • Patent Documents 5 and 6 the application to the laminate film is not examined, and the adhesiveness of the laminate film and the elution property of the additive after film formation are not examined at all.
  • an object of the present invention is to provide a method for producing a laminate film, which is capable of producing a laminate film that is excellent in adhesion to a substrate for laminating and has little elution of an additive with respect to a solvent.
  • an object of the present invention is to provide a method for producing a resin composition for a coating member, which can obtain a resin composition for a coating member having good secondary adhesion to a coating film and good heat yellowing resistance.
  • the present inventors have used a polyolefin stabilized by adding a specific phenolic antioxidant before or during polymerization of an ethylenically unsaturated monomer.
  • the present inventors have found that the above problems can be solved and have completed the present invention.
  • a stabilized polymer can be obtained by adding a stabilizer composition to a polymerization catalyst, a polymerization apparatus or a pipe for polymerization.
  • the blending step of the stabilizer composition by melt kneading after polymerization can be omitted, it becomes easy to uniformly disperse the stabilizer in the polymer, and as a result, the blending amount of the stabilizer can be reduced. .
  • the present inventors have added a specific phenolic antioxidant masked with an organoaluminum compound before or during the polymerization of a monomer having an ethylenically unsaturated bond. It became clear that the adhesion of the composition to the coating film and the heat-resistant yellowing were good.
  • a phenolic antioxidant represented by the following general formula (1) is masked with an organoaluminum compound before or during polymerization of a monomer having an ethylenically unsaturated bond. And a step of adding at least one of the catalyst system, the polymerization system and the piping so that 0.001 to 0.5 parts by mass is added to 100 parts by mass of the polymer obtained by polymerization. It is characterized by this.
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally branched alkyl group having 1 to 5 carbon atoms, or an arylalkyl group having 7 to 9 carbon atoms
  • R is an alkyl group having 1 to 30 carbon atoms which may be branched, an alkenyl group having 2 to 30 carbon atoms which may be branched, or a cyclocarbon having 3 to 12 carbon atoms which may be substituted.
  • a phosphorous antioxidant is further added to 100 parts by mass of the polymer obtained by polymerization. It is preferable to include a step of adding at least one of 0.001 to 3 parts by mass, catalyst system, polymerization system and piping.
  • the organoaluminum compound is preferably trialkylaluminum.
  • the laminate film of the present invention is manufactured by a method for manufacturing a laminate film.
  • the method for producing a resin composition for a coated member of the present invention is a method for producing a resin composition for a painted member comprising a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer, A monomer having an ethylenically unsaturated bond obtained by masking a phenolic antioxidant represented by the following general formula (1) with an organoaluminum compound before or during polymerization of a monomer having an ethylenically unsaturated bond
  • the catalyst system, the polymerization system, and the polymerization system are mixed so that 0.001 to 0.5 parts by mass of the phenolic antioxidant is blended with respect to 100 parts by mass of the total of the polymer obtained by polymerizing and the thermoplastic elastomer.
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally branched alkyl group having 1 to 5 carbon atoms, or an arylalkyl group having 7 to 9 carbon atoms
  • R is an alkyl group having 1 to 30 carbon atoms which may be branched, an alkenyl group having 2 to 30 carbon atoms which may be branched, or a cyclocarbon having 3 to 12 carbon atoms which may be substituted.
  • a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer are combined with an ethylenically unsaturated bond. It is preferable to melt and knead the polymer / thermoplastic elastomer obtained by polymerizing the monomer having a weight ratio of 2/1 to 4/1.
  • the thermoplastic elastomer is obtained by polymerizing a monomer having an ethylenically unsaturated bond, and has a monomer having an ethylenically unsaturated bond.
  • the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is added to any one or more of the catalyst system, polymerization system and piping.
  • the monomer is obtained by polymerizing the monomer.
  • the manufacturing method of the resin composition for coating members of this invention is a phosphorus antioxidant with respect to a total of 100 mass parts of the polymer obtained by superposing
  • phosphorus-based antioxidant is added to at least one of the catalyst system, the polymerization system, and the piping so that the blending amount is 0.001 to 3 parts by mass. It is preferable to further include a step of adding an agent.
  • the organoaluminum compound is preferably trialkylaluminum.
  • the method for producing a coated member of the present invention is characterized by including a step of coating a molded resin composition obtained by the method for producing a resin composition for a painted member. It is preferable to provide a step of plasma-treating the resin composition formed before the step of applying the coating.
  • the coated member of the present invention is manufactured by the above-described method for manufacturing a coated member, and preferably includes a light stabilizer and a filler.
  • a laminate film that has excellent adhesion to a laminate substrate, has a small amount of additive elution with respect to a solvent, reduces the amount of anchor agent used, and can be used for sanitary goods such as food and medical supplies is obtained.
  • the manufacturing method of the laminate film which can be provided can be provided.
  • the phenolic antioxidant used in the method for producing a laminate film of the present invention is a compound represented by the following general formula (1).
  • R 1 and R 2 each independently represents a hydrogen atom, an optionally branched alkyl group having 1 to 5 carbon atoms, or an arylalkyl group having 7 to 9 carbon atoms
  • R is an alkyl group having 1 to 30 carbon atoms which may be branched, an alkenyl group having 2 to 30 carbon atoms which may be branched, or a cyclocarbon having 3 to 12 carbon atoms which may be substituted.
  • Examples of the alkyl group having 1 to 5 carbon atoms which may have a branch represented by R 1 and R 2 in the general formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, A butyl group, a secondary butyl group, a tertiary butyl group, a pentyl group, a secondary pentyl group, a tertiary pentyl group, and the like can be mentioned.
  • the tertiary butyl group has a good stabilizing effect on a phenolic antioxidant. Since it exists, it is preferably used.
  • Examples of the arylalkyl group having 7 to 9 carbon atoms represented by R 1 and R 2 in the general formula (1) include benzyl and 1-methyl-1-phenylethyl.
  • alkyl group having 1 to 30 carbon atoms which may have a branch and represented by R in the general formula (1) include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, sec-butyl, t-butyl, isobutyl, pentyl, isopentyl, t-pentyl, hexyl, heptyl, n-octyl, isooctyl, t-octyl, nonyl, isononyl, decyl Group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like.
  • Phenol antioxidants with fewer than 12 carbon atoms in the alkyl group may easily volatilize, and if the alkyl group has more than 24 carbon atoms, the ratio of phenol to the molecular weight of the phenolic antioxidant will decrease. Therefore, the stabilization effect may be reduced.
  • alkyl groups may be interrupted by an oxygen atom, a sulfur atom, or the following aryl group, and a hydrogen atom in the alkyl group is a chain fatty acid such as a hydroxy group, a cyano group, an alkenyl group, or an alkenyloxy group.
  • the alkenyl group having 2 to 30 carbon atoms which may have a branch which R can take is a group in which a carbon-carbon double bond is introduced into the above-described alkyl group.
  • those having 12 to 24 carbon atoms are particularly preferred.
  • Examples of the optionally substituted cycloalkyl group represented by R in the general formula (1) having 3 to 12 carbon atoms include cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclohexane
  • An octyl group, a cyclononyl group, a cyclodecyl group, and the like, and a hydrogen atom in the cycloalkyl group may be substituted with an alkyl group, an alkenyl group, an alkenyloxy group, a hydroxy group, or a cyano group, It may be interrupted by an oxygen atom or a sulfur atom.
  • Examples of the aryl group which may have a substituent having 6 to 18 carbon atoms and represented by R in the general formula (1) include a phenyl group, a methylphenyl group, a butylphenyl group, and an octylphenyl group. 4-hydroxyphenyl group, 3,4,5-trimethoxyphenyl group, 4-t-butylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group, anthracenyl group, phenanthryl group, benzyl, phenylethyl group, 1- And phenyl-1-methylethyl group.
  • a hydrogen atom in the aryl group may be substituted with an alkyl group, an alkenyl group, an alkenyloxy group, a hydroxy group, or a cyano group, and the alkyl group may be interrupted with an oxygen atom or a sulfur atom. Good.
  • the present invention is not limited by the following compounds.
  • the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is added, 0.001 to 0.5 mass per 100 mass parts of the polymer obtained by polymerization. Part, preferably 0.001 to 0.3 parts by mass.
  • the amount is less than 0.001 part by mass, the effect of addition may not be obtained, and addition exceeding 0.5 part by mass is possible, but the polymer is colored or the effect of the amount of addition is reduced and economical. Disadvantageous.
  • the method for adding the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is not particularly limited.
  • a masked phenolic antioxidant is added to one or more of the catalyst feed tank, the polymerization apparatus and the piping of the production line and mixed.
  • the masking can be performed by mixing and stirring the organoaluminum compound and the phenolic antioxidant in an inert solvent.
  • the hydrogen of the phenolic hydroxyl group of the phenolic antioxidant is replaced with an organoaluminum compound.
  • they may be added to any one or more of the catalyst system, the polymerization system and the piping.
  • the phenolic antioxidant and the organoaluminum compound are added to the catalyst system, respectively. Alternatively, it may be added and mixed in one or more of the polymerization system and the piping.
  • the by-product compound does not affect the polymerization reaction or polymer of the monomer, it can be used as it is, but if the by-product compound inhibits the polymerization, the compound is reduced in pressure. It is preferable to add to any one or more of the catalyst system, the polymerization system and the piping after removing by distillation or the like.
  • the masked phenolic antioxidant can regenerate phenol by reacting with a hydrogen-donating compound such as water, alcohol or acid added as a deactivation treatment of the polymerization catalyst after polymerization.
  • organoaluminum compound examples include alkylaluminum and alkylaluminum hydride, and alkylaluminum is preferable, and trialkylaluminum is particularly preferable.
  • examples of the trialkylaluminum include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, and the like. Mixtures can be used.
  • the aluminoxane obtained by reaction of alkylaluminum or alkylaluminum hydride and water can be used similarly.
  • the mass ratio of the phenolic antioxidant represented by the organoaluminum compound / the above general formula (1) 1. / 5 to 100/1 is desirable. If the organoaluminum compound is less than 1/5, excess phenolic antioxidant may adversely affect the catalytic activity. If the organoaluminum compound is more than 100/1, the aluminum compound remains in the polymer after polymerization. In some cases, the physical properties of the polymer may be reduced, or the desired ratio may not be achieved due to an influence on the component ratio of the catalyst metal.
  • the inert solvent examples include aliphatic and aromatic hydrocarbon compounds.
  • the aliphatic hydrocarbon compound examples include saturated hydrocarbon compounds such as n-pentane, n-hexane, n-heptane, n-octane, isooctane and purified kerosene, and cyclic saturated hydrocarbons such as cyclopentane, cyclohexane and cycloheptane.
  • the aromatic hydrocarbon compound include compounds such as benzene, toluene, ethylbenzene, xylene, and gasoline fraction. Among these compounds, those which are n-hexane, n-heptane or gasoline fraction are preferably used.
  • the concentration of the trialkylaluminum salt in the inert solvent is preferably in the range of 0.001 to 0.5 mol / L, particularly preferably 0.01 to 0.1 mol / L.
  • a phosphorus antioxidant is further added in an amount of 0.001 to 3 masses per 100 mass parts of the polymer obtained by the polymerization. It is preferable to include a step of adding to any one or more of a part, a catalyst system, a polymerization system, and piping.
  • the phosphorus antioxidant used in the present invention include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tris (2,4-ditertiary).
  • Butyl-5-methylphenyl) phosphite tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phosphite, tridecyl phosphite , Octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-ditert-butylphenyl) pentaerythritol Diphosphite, bis (2,6-ditert-butyl-4-methylphenol ) Pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite, bis (2
  • the amount of the phosphorus antioxidant used is 0.001 to 3 parts by mass, preferably 0 to 100 parts by mass of a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond. Add to 0.005 to 0.5 parts by mass. When the amount is less than 0.001 part by mass, the effect of addition may not be obtained, and addition of 3 parts by mass or more is possible, but the effect of the amount of addition becomes small, which is economically disadvantageous.
  • the phosphorus-based antioxidant As a method for adding the phosphorus-based antioxidant, it is preferable to add the phosphorus-based antioxidant mixed with the inert solvent, but the solvent is previously inert with the phenol-based antioxidant represented by the general formula (1). In addition to the phenolic antioxidant represented by the general formula (1), it may be mixed with the inert solvent and added to the polymerization system, catalyst system or piping. Good.
  • the total amount of the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound and the phosphorus antioxidant is preferably 100 mass of the polymer obtained in the polymerization step. To 0.001 to 3 parts by mass, and more preferably 0.001 to 0.5 parts by mass.
  • Examples of the monomer having an ethylenically unsaturated bond include ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, Examples thereof include vinylcycloalkane, styrene, and derivatives thereof.
  • the monomer having an ethylenically unsaturated bond used in the present invention may be a single type or a combination of two or more types, but a combination of ethylene or ⁇ -olefin monomers is preferred.
  • ethylene alone, a combination of ethylene-propylene, a combination of ethylene-propylene-butene and the like may be mentioned, and further a combination of an ⁇ -olefin monomer and a non-conjugated diene monomer may be used.
  • a method for performing a polymerization reaction of a monomer having an ethylenically unsaturated bond a commonly used method can be employed.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane, isooctane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane
  • aromatic hydrocarbons such as toluene, xylene, ethylbenzene, gasoline fraction
  • hydrogen A method of performing polymerization in a liquid phase in the presence of an inert solvent such as a liquefied diesel fraction, a polymerization method using the liquefied monomer itself as a medium, an inert gas atmosphere such as nitrogen under a condition in which the liquid phase is substantially absent
  • a method of performing polymerization in the gas phase such as in the middle, or a polymerization method in which two or more of these are combined
  • the polymerization may be either a batch type or a continuous type, and may be a one-stage polymerization method or a multi-stage polymerization
  • active hydrogen compounds may be included as long as polymerization is not inhibited.
  • a continuous reaction tank in an existing polymerization facility may be used as it is, and the present invention is not particularly limited to conventional polymerization facilities in terms of size, shape, material, and the like.
  • the polymerization catalyst is not particularly limited, and a known polymerization catalyst can be used.
  • transition metals of Group 3 to 11 of the periodic table for example, titanium, zirconium, hafnium, vanadium, iron, nickel, Lead, platinum, yttrium, samarium, etc.
  • typical examples are Ziegler catalysts, Ziegler-Natta catalysts consisting of titanium-containing solid transition metal components and organometallic components, nitrogen, oxygen, sulfur, phosphorus, etc.
  • Brookheart catalyst which is a compound in which a heteroatom of the present invention is bonded to a transition metal of Groups 4 to 10 of the periodic table, and a transition metal compound of Groups 4 to 6 of the periodic table having at least one cyclopentadienyl skeleton.
  • a metallocene catalyst composed of a catalyst component can be mentioned, but the use of an electron donating compound is preferable because a high-quality polymer can be obtained.
  • titanium trichloride or titanium trichloride composition obtained by reducing titanium tetrachloride with organoaluminum or the like is treated with an electron-donating compound and further activated (for example, JP-A-47). -34478, JP-A-58-23806, JP-A-63-146906), obtained by reducing titanium tetrachloride with an organoaluminum compound and further treating with various electron donors and electron acceptors.
  • a catalyst comprising the obtained titanium trichloride composition, an organoaluminum compound and an aromatic carboxylic acid ester (Japanese Patent Laid-Open Nos.
  • a supported catalyst comprising magnesium halide, titanium tetrachloride and various electron donors (Japanese Patent Kokai 57-63310) JP, 58-157808, JP 58-83006, JP 58-5310, JP 61-218606, JP 63-43915, JP 63 -83116) and the like.
  • metallocene catalyst examples include, for example, transition metal metallocene catalysts described in JP-A-9-12621, JP-A-5-043616, JP-A-5-295022, JP-A-5-301919, JP-A-6-239914, JP-A-6-239915, JP-A-6-239917, JP-A-7-082311, JP-A-7-228621, JP-A-7-330820, JP-A-8 -059724, JP-A-8-085707, JP-A-8-085708, JP-A-8-127613, JP-A-10-226712, JP-A-10-259143, JP-A-10-265490.
  • Examples of the electron donating compound include ether compounds, ester compounds, ketone compounds, alkoxysilane compounds, and the like. A single compound may be added to the electron donor compound, or a plurality of compounds may be added as necessary.
  • ether compounds include diethyl ether, dipropyl ether, diisopropyl ether, di-n-butyl ether, diethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene oxide, tetrahydrofuran, 2,2,5,5-tetramethyltetrahydrofuran, dioxane and the like. Is mentioned.
  • ester compound examples include methyl acetate, ethyl acetate, acetic acid-n-propyl, isopropyl acetate, methyl propionate, ethyl propionate, propionate-n-propyl, methyl methacrylate, ethyl methacrylate, methacrylic acid- n-propyl, ethyl phenylacetate, methyl benzoate, ethyl benzoate, phenyl benzoate, methyl toluate, ethyl toluate, methyl anisate, ethyl anisate, methyl methoxybenzoate, ethyl methoxybenzoate, methyl methacrylate, Examples thereof include ethyl methacrylate, dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, diisobutyl phthalate, dihexyl phthalate, ⁇ -butyrol
  • ketone compound examples include acetone, diethyl ketone, methyl ethyl ketone, acetophenone, and the like.
  • alkoxysilane compounds include tetramethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltri Methoxysilane, diethyldimethoxysilane, dipropyldimethoxysilane, diisopropyldimethoxysilane, diphenyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylethyldimethoxysilane, t-butyl-n-propyldimethoxysilane, t-butylisopropyldimethoxysilane Cyclohexylmethyldimethoxysilane, tetraeth
  • the carrier is not particularly limited, and examples thereof include inorganic carriers such as inorganic oxides and organic carriers such as porous polyolefins, and a plurality of them may be used in combination.
  • examples of the inorganic carrier include silica, alumina, magnesium oxide, zirconium oxide, titanium oxide, iron oxide, calcium oxide, and zinc oxide.
  • Other inorganic carriers include magnesium halides such as magnesium chloride and magnesium bromide, magnesium alkoxides such as magnesium ethoxide, and ion-exchangeable layered compounds.
  • the ion-exchangeable layered compound has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with a weak binding force, and represents a compound in which contained ions can be exchanged.
  • Specific examples of the ion exchange layered compound include, for example, kaolin, bentonite, talc, kaolinite, vermiculite, montmorillonite group, mica group, ⁇ -Zr (HAsO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ). 2 ⁇ H 2 O, ⁇ -Sn (HPO 4 ) 2 ⁇ H 2 O, ⁇ -Ti (NH 4 PO 4 ) 2 ⁇ H 2 O, and the like.
  • organic carrier examples include polyethylene, polypropylene, polystyrene, ethylene-butene copolymer, ethylene-propylene copolymer, polymethacrylic acid ester, polyacrylic acid ester, polyacrylonitrile, polyamide, polycarbonate, and polyethylene terephthalate.
  • examples thereof include polyester, polyvinyl chloride, and the like, and these may be crosslinked, for example, as a styrene-divinylbenzene copolymer.
  • a catalyst in which a catalyst is chemically bonded to these organic supports can be used.
  • the particle diameter (volume average) of these carriers is usually from 0.1 to 300 ⁇ m, preferably from 1 to 200 ⁇ m, more preferably from 10 to 100 ⁇ m. If the particle size is smaller than 1 ⁇ m, a finely powdered polymer is likely to be formed, and if it is too large, coarse particles are produced. Therefore, the particle size of the carrier should be selected according to the desired particle shape.
  • the pore volume of the carrier is usually from 0.1 to 5 cm 2 / g, preferably from 0.3 to 3 cm 2 / g.
  • the pore volume can be measured by, for example, the BET method or the mercury intrusion method.
  • organoaluminum compound examples include the same compounds as those masking the phenolic antioxidant represented by the general formula (1).
  • the above polymer may further contain other additives that are usually used for polymers obtained from monomers having an ethylenically unsaturated bond, as necessary.
  • other additives can be added before or during the polymerization of the monomer having an ethylenically unsaturated bond as long as the polymerization is not inhibited.
  • other additives may be mixed with the polymer in a blending amount according to the purpose, and melt kneaded with a molding processing machine such as an extruder to be granulated and molded.
  • additives include, for example, phenolic antioxidants, phosphorus antioxidants, thioester antioxidants, UV absorbers, hindered amine compounds, heavy metal deactivators, nucleating agents, flame retardants, metal soaps, Hydrotalcite, fillers, lubricants, antistatic agents, pigments, dyes, plasticizers and the like can be mentioned.
  • the phenolic antioxidant is different from that represented by the general formula (1).
  • Examples of the phosphorus-based antioxidant as the other additive include those similar to the compounds exemplified as the phosphorus-based antioxidant added above.
  • the amount of the phosphorus antioxidant used is preferably 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the polymer.
  • thioester-based antioxidant examples include tetrakis [methylene-3- (laurylthio) propionate] methane, bis (methyl-4- [3-n-alkyl (C12 / C14) thiopropionyloxy] 5-t-butyl.
  • Phenyl) sulfide ditridecyl-3,3′-thiodipropionate, dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipro Pionate, lauryl / stearyl thiodipropionate, 4,4'-thiobis (6-t-butyl-m-cresol), 2,2'-thiobis (6-t-butyl-p-cresol), distearyl- Disulfide is mentioned.
  • the amount of the thioester antioxidant used is preferably 0.001 to 0.3 parts by mass, more preferably 0.01 to 0.3 parts by mass with respect to 100 parts by mass of the polymer.
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-hydroxybenzophenones such as 2-; 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 -Dicumylphenyl) benzotriazole, 2,2'-methylenebis (4-tertiary Octyl-6-benzotriazolylphenol), polyethylene glycol ester of 2- (2-hydroxy-3-tert-butyl-5-carboxyphenyl) benzotriazole, 2- [2-hydroxy-3- (2-acryloyloxy) Ethyl) -5-methylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloyloxyethyl) -5
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1 , 2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2, 6,6-tetramethyl-4-piperidyl) .di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4 Piperidyl) -di (tridecyl) -1,2,3,
  • heavy metal deactivator examples include salicylamide 1,2,4-triazol-3-yl, bissalicylic acid hydrazide, dodecandioyl bis (2- (2-hydroxybenzoyl) hydrazide), bis (3- (3 5-di-t-butyl-4-hydroxyphenyl) propionic acid hydrazide, etc., and preferably 0.001 to 10 parts by weight, more preferably 0.05 to 5 parts by weight per 100 parts by weight of the polymer. Mass parts are used.
  • nucleating agent examples include carboxylic acids such as sodium benzoate, aluminum 4-tert-butylbenzoate, sodium adipate and disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate.
  • Metal salts sodium bis (4-tert-butylphenyl) phosphate, sodium-2,2′-methylenebis (4,6-ditert-butylphenyl) phosphate and lithium-2,2′-methylenebis (4,6-di) Phosphoric acid ester metal salts such as tert-butylphenyl) phosphate, polyhydric alcohol derivatives such as dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, and bis (dimethylbenzylidene) sorbitol, N, N ′, N ′′ -tris [2-methylcyclohexyl -1,2,3
  • the flame retardant examples include aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
  • aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
  • Esters such as divinyl phenylphosphonate, diallyl phenylphosphonate and phenylphosphonic acid (1-butenyl), phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phospha Phosphinic acid esters such as phenanthrene-10-oxide derivatives, phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene, melamine phosphate, melamine pyrophosphate, Melamine phosphate, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds and phosphorus-based flame retardants such as red phosphorus, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, brominated bisphenol A type epoxy resin, bromine Phenol novolac epoxy resin, hexabromobenzene
  • Examples of the filler include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, clay, Dolomite, mica, silica, alumina, potassium titanate whisker, wollastonite, fibrous magnesium oxysulfate and the like are preferable.
  • these fillers those having an average particle diameter (spherical or flat) or an average fiber diameter (needle or fiber) of 5 ⁇ m or less are preferable.
  • the amount of the filler used can be appropriately used as long as the present invention is not impaired.
  • the above-mentioned lubricant is added for the purpose of imparting lubricity to the surface of the molded body and enhancing the effect of preventing damage.
  • the lubricant include unsaturated fatty acid amides such as oleic acid amide and erucic acid amide; saturated fatty acid amides such as behenic acid amide and stearic acid amide. These may be used alone or in combination of two or more.
  • the addition amount of the lubricant is in the range of 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass, with respect to 100 parts by mass of the polymer. If the amount is less than 0.03 parts by mass, the desired lubricity may not be obtained. If the amount exceeds 2 parts by mass, the lubricant component may bleed on the surface of the polymer molded product or cause a decrease in physical properties.
  • the above-mentioned antistatic agent is added for the purpose of reducing the chargeability of the molded product and preventing dust adhesion due to charging.
  • the antistatic agent include cationic, anionic and nonionic.
  • Preferred examples include polyoxyethylene alkylamines, polyoxyethylene alkylamides or their fatty acid esters, glycerin fatty acid esters, and the like. These may be used alone or in combination of two or more.
  • the addition amount of the antistatic agent is preferably 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass with respect to 100 parts by mass of the polymer. When the amount of the antistatic agent is too small, the antistatic effect is insufficient. On the other hand, when the amount is too large, bleeding to the surface and deterioration of physical properties of the polymer may be caused.
  • the laminate film production method of the present invention is obtained by masking the phenolic antioxidant represented by the general formula (1) with an organoaluminum compound before or during the polymerization of a monomer having an ethylenically unsaturated bond. Is added to any one or more of the catalyst system, the polymerization system, and the piping so that 0.001 to 0.5 parts by mass is added to 100 parts by mass of the polymer obtained by polymerization. It is a feature. As a result, it is possible to obtain a sufficient stabilizing effect with a small amount of compounding, and as a result of reducing the compounding amount, it is possible to suppress the bleed out of the antioxidant and eliminate the factors that inhibit adhesion during ozone treatment. Became possible.
  • the obtained polymer can be formed into a laminate film by a known method.
  • the method of processing the polymer into a laminate film include a method of forming the polymer into a film and bonding the films together or manufacturing a laminate film by bonding to a laminate substrate. Moreover, it is good also as a laminated film of three or more layers as needed.
  • Examples of the base material for laminating include those generally used as those bonded to a film, for example, metals such as polymers, papers, nonwoven fabrics, aluminum foils having film-forming ability. Examples thereof include metal foil films such as foil, silicon oxide film, and aluminum film, and cellophane.
  • the thickness of the laminate base material is not particularly limited and can be appropriately selected according to the purpose, and is usually about 5 to 50 ⁇ m. Moreover, you may perform surface treatments, such as ozone treatment, a corona discharge treatment, and a flame treatment, as needed.
  • polymers having film-forming ability used as the substrate for laminating include, for example, high density polyethylene, medium / low density polyethylene, ethylene / vinyl acetate copolymer, ethylene / acrylic acid ester copolymer, ionomer, Olefin copolymers such as polypropylene, poly-1-butene, poly-4-methyl 1-pentene, vinyl polymers such as polyvinyl chloride, polyvinylidene chloride, polystyrene, polyacrylate, polyacrylonitrile, nylon, polymethacrylate Polyamide such as silylene adipamide, polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, polyester such as polyethylene naphthalate, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polycarbonate, etc. It can gel. A film obtained by molding these polymers may be stretched uniaxially or biaxially.
  • polyethylene is preferred, and in particular, linear low density polyethylene (LLDPE) is excellent in heat sealability and heat resistance, and it is against bending and stagnation when formed into a package. It is preferable because of its resistance.
  • LLDPE linear low density polyethylene
  • the thickness of the laminate film produced by the production method of the present invention is not particularly limited and can be appropriately selected according to the purpose, but is usually 10 to 200 ⁇ m.
  • laminating the film and the base material for laminating for example, methods such as dry laminating, extrusion laminating, hot melt laminating, wet laminating, wax laminating, and thermal laminating can be employed.
  • the dry laminate is a method in which an adhesive is diluted to an appropriate viscosity with an organic solvent, applied to a film, dried, and then pressure bonded to the other film.
  • an adhesive an adhesive composed of a main agent and a curing agent is generally used.
  • the main agent is, for example, a polyester / polyester comprising isophthalic acid, adipic acid, sebacic acid and the like and an ester compound composed of ethylene glycol, neopentyl glycol, 1,6-hexanediol and isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, etc.
  • Examples include urethane diol resin, silane coupling agent, and epoxy resin.
  • the curing agent examples include those composed of trimethylolpropane and isophorone diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, but the main agent and the curing agent are not limited to these, and have heat resistance and chemical resistance. It can be used appropriately depending on the purpose.
  • the above extrusion laminate includes a polylamination method in which a melted polyethylene is coated on one side of the film, and a polysandrami method in which the melted polyethylene is poured between two films.
  • melted polyethylene plays the role of an adhesive
  • polypropylene may be used instead of polyethylene.
  • an anchor coating agent is applied to the surface of the film, it can be easily laminated on paper or a thick film.
  • anchor coating agent examples include epoxy resin adhesives such as carboxylic anhydride-modified polyolefin, isocyanate resin, organic titanate resin, polyethyleneimine resin, polybutadiene resin, etc., but water resistance, moisture resistance, boil resistance An isocyanate resin having excellent properties is preferably used.
  • the hot melt lamination is a method in which an adhesive or the like is heated, adjusted to an appropriate viscosity, applied to a film, and pressure-bonded.
  • the wet lamination is a method of laminating using a water-soluble or emulsion type adhesive.
  • water-soluble or emulsion-type adhesive examples include water-soluble vinylon and vinyl acetate emulsion.
  • the above thermal laminate can be bonded by applying heat to the film and only pressing. Although there is an advantage that it is not necessary to use an adhesive or a solvent, since the heat resistance is poor as a packaging material, the use application is limited.
  • the use of the laminate film obtained by the production method of the present invention is not particularly limited, and can be used for all uses in which a conventional laminate film is used.
  • the food packaging material include a laminate film having an olefin film having high resistance to water as an outer layer, a low density polyethylene, a medium density polyethylene, or an ethylene-vinyl acetate copolymer laminated.
  • a laminate film having an olefin film having high resistance to water as an outer layer a low density polyethylene, a medium density polyethylene, or an ethylene-vinyl acetate copolymer laminated.
  • stacked oxygen-impermeable films, such as aluminum foil, on the inner layer is mentioned.
  • the method for producing a resin composition for a coated member of the present invention is characterized by comprising the steps (A) and (B) as described above.
  • Other processes for example, a catalyst preparation process, a raw material monomer supply process, a monomer polymerization process, a polymer recovery process, etc., employ known methods for the polymerization of monomers having an ethylenically unsaturated bond. be able to.
  • each process is explained in full detail.
  • the coating member in this invention is what applied the coating with respect to what shape
  • the phenolic antioxidant represented by the general formula (1) is masked with an organoaluminum compound.
  • the phenolic antioxidant is blended in an amount of 0.001 to 0.5 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing monomers having unsaturated bonds and the thermoplastic elastomer. It is a step of adding to any one or more of the catalyst system, the polymerization system and the piping.
  • the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is a total of 100 of a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer.
  • the phenolic antioxidant ie, the amount of the phenolic antioxidant alone before masking
  • the amount of the phenolic antioxidant alone before masking is 0.001 to 0.5 parts by mass with respect to parts by mass, 0.001 It is more preferable to add it so that it becomes 0.3 parts by mass.
  • the amount is less than 0.001 part by mass, the desired stabilization effect may not be obtained.
  • the amount exceeds 0.5 part by weight the phenolic antioxidant bleeds out to the surface of the molded product, and the appearance is impaired. There is.
  • thermoplastic elastomer In obtaining a thermoplastic elastomer, a phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound before or during polymerization of a monomer for obtaining a thermoplastic elastomer.
  • a phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound before or during polymerization of a monomer for obtaining a thermoplastic elastomer.
  • the method for adding the phenolic antioxidant represented by the general formula (1) masked with an organoaluminum compound is not particularly limited.
  • the masked phenolic antioxidant is added to and mixed with any one or more of a catalyst feed tank, a polymerization apparatus, and a production line.
  • the masking can be performed by mixing and stirring the organoaluminum compound and the phenolic antioxidant in an inert solvent.
  • the hydrogen of the phenolic hydroxyl group of the phenolic antioxidant is replaced with an organoaluminum compound.
  • they may be added to any one or more of the catalyst system, the polymerization system and the piping.
  • the phenolic antioxidant and the organoaluminum compound are added to the catalyst system, respectively. Alternatively, they may be added and mixed separately at any one of the polymerization system and the piping.
  • the by-produced compound does not affect the polymerization reaction or polymer of the monomer, it can be used as it is, but if it affects, remove the compound by distillation under reduced pressure or the like.
  • the catalyst system polymerization system and piping.
  • the masked phenolic antioxidant can be regenerated by reacting with a hydrogen-donating compound such as water, alcohol or acid added as a deactivation treatment of the polymerization catalyst after polymerization.
  • organoaluminum compound examples include those similar to the above.
  • the mass ratio of the phenolic antioxidant represented by the organoaluminum compound / the general formula (1) 1. / 5 to 100/1 is preferable. If the organoaluminum compound is less than 1/5, excess phenolic antioxidant may adversely affect the catalytic activity. If it is more than 100/1, the aluminum compound remains in the polymer after polymerization, In some cases, physical properties may deteriorate or desired polymerization may not be performed due to an influence on the component ratio of the catalyst metal.
  • the concentration of the organoaluminum compound in the inert solvent is preferably in the range of 0.001 to 0.5 mol / L, particularly preferably 0.01 to 0.1 mol / L.
  • a phosphorus-based antioxidant is added to any one or more of the catalyst system, the polymerization system and the piping. It is preferable to further include a step of adding.
  • the phenol-based antioxidant and the phosphorus-based antioxidant represented by the general formula (1) may be added separately, or may be added after mixing in advance.
  • Examples of the phosphorus-based antioxidant include the same as described above.
  • the amount of the phosphorus antioxidant used is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. More preferably, the amount is 0.005 to 0.5 parts by mass.
  • the phosphorus-based antioxidant when adding the phosphorus-based antioxidant in the addition step, it is preferable to add it mixed with the inert solvent, but in advance together with the phenol-based antioxidant represented by the general formula (1) It may be mixed with an inert solvent, mixed in advance with the inert solvent separately from the phenolic antioxidant represented by the general formula (1), and added to the polymerization system, catalyst system or piping. It may be a thing.
  • Examples of the monomer having an ethylenically unsaturated bond include those described above.
  • the monomer having an ethylenically unsaturated bond used may be one kind or a combination of two or more kinds.
  • a combination of these is preferred.
  • ethylene alone, a combination of ethylene-propylene, propylene alone, a combination of ethylene-propylene-butene and the like may be mentioned, and a combination of an ⁇ -olefin monomer and a non-conjugated diene monomer may also be used.
  • Examples of the method for carrying out the polymerization reaction of the monomer having an ethylenically unsaturated bond include those described above.
  • a continuous reaction tank in an existing polymerization facility may be used as it is, and the present invention is not particularly limited to conventional polymerization facilities in terms of size, shape, material, and the like.
  • the polymerization catalyst used in the above polymerization reaction may be the same as described above.
  • the polymerization reaction may be carried out in the presence of an active hydrogen compound, an organoaluminum compound, an ion-exchange layered compound, an inorganic silicate, or a catalyst component other than the above polymerization catalyst, such as a carrier, as long as the polymerization is not inhibited. .
  • Examples of the ion-exchangeable layered compound include those described above.
  • organic carrier examples include the same ones as described above.
  • the particle diameter (volume average) of these carriers is usually from 0.1 to 300 ⁇ m, preferably from 1 to 200 ⁇ m, more preferably from 10 to 100 ⁇ m. If the particle size is smaller than 1 ⁇ m, a finely divided polymer is likely to be formed, and if it is too large, coarse particles are produced. Therefore, it is preferable to select the particle size of the carrier according to the desired particle shape.
  • the pore volume of the carrier is usually from 0.1 to 5 cm 2 / g, preferably from 0.3 to 3 cm 2 / g.
  • the pore volume can be measured by, for example, the BET method or the mercury intrusion method.
  • organoaluminum compound examples include the same compounds as those masking the phenolic antioxidant represented by the general formula (1).
  • the resin composition may further contain other additives usually used in a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond.
  • other additives can be added at the time of polymerization of a monomer having an ethylenically unsaturated bond as long as the polymerization is not inhibited. Examples thereof include a method of mixing with the polymer in an appropriate blending amount, and melt-kneading with a molding processing machine such as an extruder, and granulating and molding.
  • Step (B) is a step of melt-kneading a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer.
  • thermoplastic elastomer is a polymer material that can be plasticized (fluidized) at a high temperature and can be processed like plastic, and exhibits the properties of a rubber elastic body (elastomer) at room temperature.
  • the thermoplastic elastomer is composed of a hard segment (plastic component) and a soft segment (elastic component), and a hard polymer and a block polymer type in which the hard segment and the soft segment are chemically bonded in a single polymer to form a block copolymer; And a blend type structure called “sea-island dispersion” or “polymer alloy” obtained by physically mixing the polymer constituting the polymer and the polymer constituting the soft segment.
  • the block polymer type thermoplastic elastomer can be produced by performing block copolymerization.
  • a blend type thermoplastic elastomer composition a soft segment or a hard segment is produced, and then the hard segment and the soft segment are physically dispersed using a kneader such as a Banbury mixer or a twin screw extruder.
  • a kneader such as a Banbury mixer or a twin screw extruder.
  • a blend type thermoplastic elastomer composition is obtained.
  • the block copolymer is preferably a copolymer of ethylene and ⁇ -olefin.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 1-decene, 3-methyl-1-pentene, and 4-methyl-1-pentene.
  • ⁇ -olefins having 3 to 10 carbon atoms such as 1-octene.
  • a single ⁇ -olefin may be used, or two or more ⁇ -olefins may be used in combination.
  • a block polymer type thermoplastic elastomer when producing a block polymer type thermoplastic elastomer, it may contain segments derived from other monomers other than ethylene and ⁇ -olefin.
  • examples of other monomers include non-conjugated dienes having 5 to 15 carbon atoms such as dicyclopentadiene, 5-ethylidene-2-norbornene, 1,4-hexadiene, 1,5-dicyclooctadiene, and vinyl acetate.
  • vinyl ester compounds such as methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate and the like, and vinyl nitrile compounds such as acrylonitrile and methacrylonitrile.
  • These other monomers may be used individually by 1 type, may combine 2 or more types, and may be (co) polymerized.
  • thermoplastic elastomer examples include those containing an olefin resin as a hard segment and an olefin copolymer elastomer as a soft segment.
  • the olefin resin as the hard segment for example, low density polyethylene, high density polyethylene, linear high density polyethylene, linear low density polyethylene, branched low density polyethylene, ethylene homopolymer, propylene homopolymer, or
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-heptene, and the like. Examples thereof include ⁇ -olefins having 3 to 10 carbon atoms such as octene and 1-decene.
  • the olefin resin may be a single olefin resin or a combination of two or more olefin resins.
  • an elastomer that is a copolymer of ethylene and ⁇ -olefin is preferably used as the soft segment.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 1-decene, 3-methyl-1-pentene, and 4-methyl-1-pentene.
  • An ⁇ -olefin having 3 to 10 carbon atoms such as 1-octene is usually used.
  • a single ⁇ -olefin may be used, or two or more ⁇ -olefins may be used in combination.
  • the soft segment may contain other elastomers in addition to the olefin copolymer elastomer as long as the effects of the present invention are not impaired.
  • elastomers include, for example, styrene elastomers such as polybutadiene, hydrogenated polybutadiene and hydrogenated polyisoprene, vinyl chloride elastomers, polyester elastomers such as polyether, polyurethane elastomers, nylon elastomers, and natural rubbers.
  • Elastic polymers can also be used.
  • the mass ratio of the hard segment and the soft segment in the blended thermoplastic elastomer can be appropriately set according to the desired purpose.
  • the catalyst used for the production of the thermoplastic elastomer of the present invention is not particularly limited, and a known polymerization catalyst can be used, and the polymerization catalyst mentioned when polymerizing a monomer having an unsaturated bond is used. Also good.
  • the thermoplastic elastomer according to the present invention includes other resins and rubbers other than olefin resins and olefin copolymers, crosslinking agents, crosslinking assistants, compatibilizers, lubricants, antistatic agents, softeners, foaming agents, etc. These ingredients may be blended.
  • the blending of the other components is preferably performed before the melting step of the thermoplastic elastomer and the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond, but at the same time as the melting step. Also good.
  • Examples of the other resin include ethylene / vinyl acetate copolymer (EVA), ethylene / ethyl acrylate copolymer, polyamide, poly (4-methyl-1-pentene), and styrene / isoprene / styrene block copolymer.
  • EVA ethylene / vinyl acetate copolymer
  • ethylene / ethyl acrylate copolymer polyamide, poly (4-methyl-1-pentene)
  • styrene / isoprene / styrene block copolymer Styrene-ethylenebutene-styrene block copolymer, styrene-ethylenepropylene-styrene block copolymer, styrene-butadiene-styrene block copolymer, and the like.
  • the rubber is not particularly limited, and examples thereof include amorphous and random elastic copolymers containing 50% or more of high molecular weight components in the rubber containing repeating units derived from olefins.
  • the elastic copolymer include those obtained by copolymerizing a combination of two or more monomers selected from the group of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms. Further, a combination of two or more monomers selected from the group consisting of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms, and a conjugated diene monomer and / or a non-conjugated diene monomer may be copolymerized. Good.
  • Examples of the ⁇ -olefin having 3 to 10 carbon atoms include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 1-decene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-octene and the like can be mentioned.
  • conjugated diene examples include butadiene, isoprene, chloroprene and the like.
  • non-conjugated diene monomer examples include dicyclopentadiene, 1,4-hexadiene, 1,5-cyclooctadiene, 5-methylene-2-norbornene, and 5-ethylidene-2-norbornene.
  • crosslinking agent examples include organic peroxides such as 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t- Butylperoxy) hexyne-3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-di (t-butylperoxy) 3,5,5-trimethylcyclohexane, 2,5-dimethyl- Examples include 2,5-di (peroxybenzoyl) hexyne-3, dicumyl peroxide and the like.
  • the amount of the organic peroxide added is in the range of 0.005 to 2.0 parts by mass, preferably 0.01 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer. If the amount is less than 0.005 parts by mass, the effect of the crosslinking reaction is small.
  • the organic peroxide can be mixed with a diluent and used as a liquid or powdery substance. Examples of the diluent include oil, organic solvent, inorganic filler (silica, talc, etc.) and the like.
  • crosslinking aid examples include those that increase the degree of crosslinking of the crosslinking type thermoplastic elastomer and improve the physical properties of the thermoplastic elastomer composition, and those having a plurality of double bonds in the molecule are preferred.
  • TETD tetraethyl thiuram disulfide
  • TMTD tetramethyl thiuram disulfide
  • N N'-m-phenylene bismaleimide
  • toluylene bismaleimide toluylene bismaleimide
  • P-quinone dioxime nitrobenzene
  • diphenyl guanidine divinyl benzene
  • divinyl benzene ethylene glycol di
  • methacrylate polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and allyl methacrylate.
  • crosslinking aids may be singular or may be used in combination.
  • the amount of the crosslinking aid added is preferably 0.01 to 4.0 parts by mass, more preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer. If it is less than 0.01 part by mass, the effect of addition may be difficult to obtain, and if it exceeds 4 parts by mass, it may be economically disadvantageous.
  • the irradiation amount of the electron beam be 1 kGray or more and 100 kGray or less. If it is less than 1 kGray, moldability may deteriorate when the thermoplastic elastomer is melted, and if it is 100 kGray or more, molecular chains may be cut or stickiness may appear.
  • a compatibilizing agent may be added to the thermoplastic elastomer composition of the present invention for the purpose of improving the interfacial adhesion between the polyolefin resin and the crosslinked rubber.
  • the compatibilizing agent include silane coupling agents such as silane-modified olefin resins and silane-modified olefin rubbers, and adhesive resins (polystyrene-polybutadiene-polystyrene block copolymers, polyolefin graft bodies, comb graft bodies, etc.). It is done.
  • the addition amount of the lubricant is preferably in the range of 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass with respect to 100 parts by mass of the thermoplastic elastomer. If the amount is less than 0.03 parts by mass, the desired lubricity may not be obtained. If the amount exceeds 2 parts by mass, the lubricant component may bleed on the surface of the molded article of the thermoplastic elastomer composition, or may cause deterioration of physical properties. There is.
  • the addition amount of the antistatic agent is preferably 0.03 to 2 parts by mass, more preferably 0.04 to 1 part by mass with respect to 100 parts by mass of the thermoplastic elastomer.
  • the amount of the antistatic agent is too small, the antistatic effect is insufficient.
  • the amount is too large, the surface may bleed and the physical properties of the thermoplastic elastomer composition may be lowered.
  • softener examples include process oil and aliphatic cyclic saturated hydrocarbon resin.
  • blowing agent examples include lower aliphatic hydrocarbons such as propane, butane and pentane, lower alicyclic hydrocarbons such as cyclobutane and cyclopentane, and monochlorodifluoromethane, dichlorodifluoromethane, trichlorodifluoroethane, trichlorotrifluoroethane, Volatile foaming agents consisting of halogenated hydrocarbons such as dichlorotetrafluoroethane, methyl chloride, ethyl chloride, methylene chloride, gaseous blowing agents such as nitrogen, carbon dioxide, oxygen, air, sodium bicarbonate, ammonium bicarbonate, dinitrosopenta
  • a pyrolytic foaming agent composed of methylenetetramine, toluenesulfonylhydrazide, azodicarbonamide, p, p'-oxybisbenzenesulfonylhydrazide, azo
  • thermoplastic elastomer and the foaming agent are performed by kneading the thermoplastic elastomer inside the extruder or the like while the thermoplastic elastomer is melted.
  • thermoplastic elastomer is extruded into the extruder.
  • it Before being supplied to a thermoplastic elastomer, it may be mixed in advance with a thermoplastic elastomer or separately from a thermoplastic elastomer and supplied to an extruder or the like.
  • a volatile foaming agent or a gaseous foaming agent For example, you may press-fit in the thermoplastic elastomer fuse
  • thermoplastic elastomer When a foaming agent is used for the thermoplastic elastomer, the thermoplastic elastomer and the foaming agent are extruded and foamed through a die attached to the tip of the extruder.
  • the shape of the obtained foam is arbitrary and not particularly limited, and examples thereof include a film shape, a sheet shape, a pipe shape, and a cylindrical shape.
  • the resin composition for painted members according to the present invention can further contain other additives as required.
  • other additives can be added at the time of polymerization of a monomer having an ethylenically unsaturated bond or at the time of polymerization of a thermoplastic elastomer as long as it does not inhibit polymerization.
  • other additives can be blended and uniformly dispersed at the time of melt-kneading a polymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and a thermoplastic elastomer in a blending amount according to the purpose.
  • thermoplastic elastomer composition can be obtained by using a twin screw extruder equipped with a heating device, a Banbury mixer, a pressure kneader, a Henschel mixer, a Brabender kneader, a disper, etc. It is preferable to prepare by kneading or stirring until a uniform composition is obtained.
  • Examples of other additives blended in the resin composition for a coating member according to the present invention include, for example, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, ultraviolet absorbers, hindered amine compounds, and heavy metals.
  • examples include an inactivating agent, a nucleating agent, a flame retardant, a metal soap, a hydrotalcite, a filler, a lubricant, an antistatic agent, a pigment, a dye, and a plasticizer.
  • phenolic antioxidant examples include those similar to those described above and the phenolic antioxidant represented by the general formula (1).
  • tetrakis [methylene-3- (3 ′, 5′- Di-t-butyl-4′-hydroxyphenyl) propionate] methane is preferred because it is relatively inexpensive and has good cost performance.
  • the amount of the phenolic antioxidant used as the other additive is preferably 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer, 0.001 to 0.5 parts by mass, particularly preferably 0.01 to 0.3 parts by mass.
  • Examples of the phosphorus antioxidant include the same compounds as those exemplified as the phosphorus antioxidant added above.
  • the amount of the phosphorus-based antioxidant used is preferably from 0.01 to 0.000 per 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. 3 parts by mass.
  • sulfur-based antioxidant examples include those exemplified as the thioester-based antioxidant.
  • the amount of the sulfur-based antioxidant used is preferably 0.01 to 0.3 with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. Part by mass.
  • Examples of the ultraviolet absorber include the same as described above.
  • the amount of the ultraviolet absorber used is 0.001 to 5 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the polymer obtained by polymerizing monomers having an ethylenically unsaturated bond and the thermoplastic elastomer. 0.005 to 0.5 parts by mass.
  • the hindered amine light stabilizer examples include the same ones as described above.
  • the hindered amine light stabilizer is used in an amount of 0.001 to 5 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer.
  • the amount is preferably 0.005 to 0.5 parts by mass.
  • nucleating agent examples include those similar to the above.
  • the amount of the nucleating agent used is 0.001 to 10 parts by mass, more preferably 100 parts by mass with respect to a total of 100 parts by mass of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. 0.005 to 5 parts by mass.
  • the flame retardant examples include the same ones as described above.
  • the amount of the flame retardant used is 1 to 70 parts by mass, more preferably 10 to 10 parts by mass with respect to 100 parts by mass in total of the polymer obtained by polymerizing the monomer having an ethylenically unsaturated bond and the thermoplastic elastomer. 30 parts by mass.
  • Examples of the lubricant include the same ones as described above.
  • antistatic agent examples are the same as those described above.
  • the method for molding the polymer obtained by the present invention is not particularly limited, and can be molded by a known molding method.
  • methods such as extrusion molding, injection molding, hollow molding, blow molding, compression molding, etc. are adopted. can do.
  • the painted member obtained by the present invention can be used without limitation of the shape such as a film, a sheet, a cylindrical shape, a box shape, and a spherical shape, and specific applications include automotive exterior parts in which the appearance of the painted surface is regarded as important. For example, it can be used for bumpers, spoilers, side guard moldings, radiator grills, and the like.
  • the film was checked for peeling. Specifically, when the both sides of the laminate film were rubbed, it was evaluated that the case where it was easily displaced and the case where it was not displaced was good.
  • Adhesive strength A test piece having a width of 15 mm and a length of 100 mm was prepared from the laminate film obtained by the following procedure, and the test piece was peeled by 50 mm in the length direction by hand, and then both ends were subjected to a tensile tester (Strograph APII; Toyo Seiki Seisakusho Co., Ltd.) measured the maximum strength when peeled at a pulling speed of 300 mm / min in the direction of 180 ° to obtain an adhesive strength.
  • a tensile tester Strograph APII; Toyo Seiki Seisakusho Co., Ltd.
  • a 130 mm ⁇ 170 mm packaging bag was prepared from the laminate film obtained by the following method, 200 ml of water was enclosed in the packaging bag as the contents, and 120 ° C. ⁇ 30 minutes of hot water / static retort sterilization treatment was performed. . After sterilization, cool to room temperature, mix water with chloroform, extract to chloroform, concentrate, and then add compound additive, compound additive oxide, compound by gas chromatograph mass spectrometer Low molecular weight substances such as additive decomposition substances were quantified, the elution amount of each additive added was determined, the ratio of the elution amount to the additive amount of each additive was calculated, and the elution amount ratio was determined.
  • Heat seal strength Two test pieces having a width of 40 mm and a length of 100 mm were prepared from the laminate film obtained by the following method, and the tip in the length direction of this test piece and the tip in the length direction of the other test piece overlap each other by 15 mm. Thus, heat sealing was performed at 200 ° C., 1 kg / cm 2 , and 1 second. The tensile strength when the test piece was peeled off at a tensile speed of 300 mm / min in the direction of 180 degrees with a tensile tester was measured as the heat seal strength.
  • the homogeneous solution was cooled to room temperature, and then charged dropwise into 200 ml (1.8 mol) of titanium tetrachloride maintained at ⁇ 20 ° C. over 1 hour. After completion of the insertion, the temperature was raised to 110 ° C. over 4 hours, and when it reached 110 ° C., 2.68 ml (12.5 mmol) of diisobutyl phthalate was added, and the mixture was stirred and reacted for 2 hours while maintaining 110 ° C. . After completion of the reaction, the solid part was collected by hot filtration, suspended in 200 ml of titanium tetrachloride, heated to 110 ° C., and heated for 2 hours.
  • the solid Ti catalyst component obtained by the above method was stored by adding heptane as a heptane slurry to 5 mg / mL. A part of the catalyst was collected for the purpose of examining the catalyst composition, dried, and analyzed. The composition of the solid Ti catalyst component was 2.9% by mass of titanium, 56.0% by mass of chlorine, and 17.0% by mass of magnesium. And isobutyl phthalate was 20.9% by mass.
  • AO-1 3- (3,5-ditert-butyl-4-hydroxyphenyl) -N-octadecylpropionamide 2) AO-2: n-octadecyl-3- (3 ′, 5′-di- t-butyl-4′-hydroxyphenyl) propionate 3) P-1: Tris (2,4-t-butylphenyl) phosphite 4)
  • Addition of stabilizer during polymerization of monomer having ethylenically unsaturated bond 5) During granulation: After polymerization of the monomer having an ethylenically unsaturated bond, a stabilizer was added and mixed, and kneaded at 250 ° C. for granulation.
  • Comparative Examples 1-1 to 1-9 when different from the production method of the present invention, when extruding polyethylene powder with a T-die, the torque increases with time, and the film sheet is produced stably. I could't. Compared with Comparative Examples 1-6 and 1-8, the anchor coating agent was increased to 0.15 g / m 2 to improve the adhesion to the support substrate, but the elution amount ratio was high and sanitary. There was a problem. In addition, coloring and fish eyes were confirmed on the laminate film. In Comparative Examples 1-7 and 1-9, although a film sheet was obtained, a laminate film could not be produced because it peeled off even when pressed and pressed against the ester film of the supporting substrate.
  • the polyethylene film produced by the production method of the present invention has good adhesion to the ester film of the supporting substrate, and the elution amount ratio is also suppressed. It could be confirmed.
  • Example 1-1 the extrusion temperature by the T-die was changed to the temperature shown in Table 2, and the support substrate was changed to an ester film (trade name: Toyobo Ester Film T4100), and the anchor coating agent was used.
  • a film sheet extruded with a T-die was used, and air with an ozone concentration of 12.9 g / m 3 was blown on the surface to be pressure-bonded to the supporting substrate in an amount of 3 Nm 3 per hour.
  • a laminate film was produced in the same procedure as in Example 1-1.
  • Comparative Examples 2-1 to 2-5 when the production method is different from the production method of the present invention, when polyethylene powder is extruded with a T-die, the torque increases with time, and the film sheet is produced stably. I could't. Further, from Comparative Examples 2-6 to 2-9, a film sheet can be produced by adding and adding the stabilizer composition in the addition step, but it has poor adhesion, a high elution ratio, and hygiene. It was confirmed that there was a problem. Further, from Comparative Examples 2-7 and 2-9, it was confirmed that, although the adhesiveness was improved by raising the extrusion temperature to 300 ° C., the elution amount ratio was high and there was a sanitary problem. It was.
  • the polyethylene film produced by the production method of the present invention has good adhesion to the ester film of the supporting substrate, and the elution amount ratio is also suppressed. It could be confirmed.
  • Example 1-1 Production of laminate film
  • the anchor coating agent was changed to an adhesive for dry lamination (trade name: A-515 / A-50, manufactured by Takeda Pharmaceutical Co., Ltd.).
  • a laminate film was produced in the same manner as in Example 1-1 except that the extrusion temperature was changed from 250 ° C. to 280 ° C.
  • the polyethylene film produced by the production method of the present invention has good adhesion to the ester film of the supporting substrate, and the elution amount ratio is also suppressed. It could be confirmed.
  • the laminate film of the present invention is excellent in resistance to the contents when filled with the contents, particularly the liquid, as a packaging material, in particular, as a packaging bag, and more safe and hygienic packaging of food, medicine, etc. It can be suitably used as a material.
  • the temperature of the mixed solution was raised to 110 ° C. over 4 hours, and when it reached 110 ° C., 2.68 ml (12.5 mmol) of diisobutyl phthalate was added, and then at the same temperature for 2 hours. Hold under stirring.
  • the solid part was collected by hot filtration, and the solid part was resuspended in 200 ml of titanium tetrachloride, and then heated again at 110 ° C. for 2 hours.
  • the solid part was again collected by hot filtration and thoroughly washed with 110 ° C. decane and hexane until no free titanium compound was detected in the washing solution to obtain a solid Ti catalyst component.
  • the solid Ti catalyst component synthesized by the above production method was stored as a heptane slurry. A part of the catalyst was taken out and dried for the purpose of examining the catalyst composition.
  • the composition of the solid Ti catalyst component thus obtained was 3.1% by weight of titanium, 56.0% by weight of chlorine, 17.0% by weight of magnesium and 20.9% by weight of isobutyl phthalate.
  • the temperature was raised to 70 ° C., and the polymerization reaction was carried out for 1 hour while adjusting the total pressure in the autoclave to 3.82 MPa with propylene.
  • 15 ml of ethanol was added to stop the polymerization reaction.
  • the polymer was dried at 40 ° C. in a vacuum for 5 hours to obtain polypropylene powder A.
  • the compounding quantity of the stabilizer of Table 4 is the quantity (mass part) with respect to a total of 100 mass parts of the polymer obtained from the monomer which has an ethylenically unsaturated bond, and a thermoplastic elastomer.
  • the compounding quantity of Table 4 is the quantity as antioxidant alone before masking.
  • the stabilizer is added also during the polymerization of the thermoplastic elastomer
  • the total of the amount added during the polymerization of the polymer obtained from the monomer having an ethylenically unsaturated bond and the amount added during the polymerization of the thermoplastic elastomer is the resin. It becomes the compounding quantity in the whole composition.
  • the following manufacturing examples are also the same.
  • Production Example 2 Polymerization of monomer having ethylenically unsaturated bond In Production Example 1, production was carried out in the same procedure as Production Example 1 except that the phenoxide solution and phosphite solution were not added. Got.
  • thermoplastic elastomer A was obtained according to the following procedures ([1] Preparation of solid catalyst, [2] Preparation of phenoxide solution, [3] polymerization).
  • 500 g of high-purity ⁇ -alumina (manufactured by JGC Catalysts & Chemicals, trade name: ACP-1, average particle size of about 60 ⁇ m, specific surface area of about 300 m 2 / g, pore volume of about 0.7 mL / g) is about 95 ° C.
  • ACP-1 average particle size of about 60 ⁇ m, specific surface area of about 300 m 2 / g, pore volume of about 0.7 mL / g
  • Phenoxide was prepared by adding 5.0 g of triisobutylaluminum and the stabilizer (phenolic antioxidant) listed in Table 4 to 50 ml of toluene so that the molar ratio of functional groups was 2: 1 and stirring at room temperature for 30 minutes. A solution was prepared.
  • thermoplastic Elastomer B was obtained by the same production procedure as in Production Example 3 except that the phenoxide solution was not added.
  • the mixture was melt-kneaded under the conditions of a melting temperature of 230 ° C. and a screw speed of 50 rpm using a twin-screw extruder (Laboplast Mill Micro, manufactured by Toyo Manufacturing Co., Ltd.) to obtain pellets.
  • the pellets obtained above are injection-molded under the conditions of an injection temperature of 2220 ° C. and a mold temperature of 50 ° C. with a small laboratory injection molding machine (Compounder 15, Dmoulder 12 manufactured by DSM Xplore), and 50 mm ⁇ 90 mm. A flat test piece of 2 mm was obtained. The obtained test piece was allowed to stand for 48 hours in a thermostatic bath at 23 ° C. after injection molding, and then measured by the following method. These results were evaluated by the following procedure.
  • test piece was exposed to saturated vapor of 1,1,1-trichloroethane for 30 seconds to clean the surface, placed in an oven set at 90 ° C. for 10 minutes, dried, and then subjected to a microwave plasma processing apparatus ( Plasma treatment was performed using Nissin BH-10).
  • the acrylic-melamine pearl mica was applied to the test piece after the plasma treatment according to the following procedure (1) ⁇ (7).
  • the paint uses R320, R331, and R341 manufactured by Nippon Bee Chemical Co., Ltd., R320 (product name: manufactured by Nihon Bee Chemical Co., Ltd.) for the color base, and R331 (product name: Nippon Bee Chemical Co., Ltd.) for the mica base.
  • R341 (trade name: manufactured by Nippon Bee Chemical Co., Ltd.) was used for the clear.
  • the coating was cut into a grid with a cutter knife, and 100 1 mm square sections were cut. Divided into.
  • the cellophane tape was affixed from above, this cellophane tape was peeled off, the number of sections that were not peeled off with the cellophane tape was measured, and the adhesion of the coating film was evaluated.
  • Gas chromatography ⁇ Apparatus Gas chromatography GC2010 manufactured by Shimadzu Corporation, Column: BPX5 manufactured by SGE (30 m ⁇ 0.25 mm D ⁇ 0.25 ⁇ m), Injection temperature: 330 ° C., Detector temperature: 330 ° C., Measurement conditions: A calibration curve was prepared by dissolving the blended additive in chloroform at a heating rate of 15 ° C./min ⁇ , and quantitative analysis of the additive extracted into a 95% aqueous ethanol solution was performed. Note that. The elution amount represents the concentration per extraction solvent.
  • AO-1 antioxidant: 3,5-di-t-butyl-4-hydroxyphenyl) -N-octadecylpropionamide
  • AO-2 antioxidant: tetrakis [methylene -3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane
  • AO-3 antioxidant: n-octadecyl-3- (3 ′, 5′-di- t-Butyl-4′-hydroxyphenyl) propionate
  • P-1 phosphorus antioxidant
  • a phenolic antioxidant different from the phenolic antioxidant represented by the general formula (1 ′) is added during the polymerization of polypropylene or elastomer and molded.
  • the polypropylene resin and the elastomer deteriorated, and a test piece could not be prepared.
  • Comparative Examples 4-3, 4-6, 4-9 and 4-10 when the blending amount of the antioxidant added during the granulation process is 0.03 parts by mass, the resin deteriorates during molding and the test piece could not be created.
  • the coated member of the present invention has better coating film adhesion and heat yellowing resistance than Example 4-1, and the amount of elution is slight. From Example 4-2, it was confirmed that the heat resistance was further improved by adding a phosphorus-based antioxidant. Further, from Examples 4-3 and 4-4, it was confirmed that there was no problem even when the mass ratio of the polymer to the thermoplastic elastomer was 4/1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

 ラミネート用基材との接着性に優れ、溶剤に対する添加剤の溶出が少ないラミネートフィルムを製造できるラミネートフィルムの製造方法を提供する。 エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、重合により得られる重合体100質量部に対して0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか一カ所以上に添加する工程を備えることを特徴とするラミネートフィルムの製造方法。(式中、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基等を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基等を表す。)

Description

ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法
 本発明は、ラミネートフィルムの製造方法に関し、詳しくは、ラミネート用基材との接着性に優れ、アンカーコート剤又はドライラミネーション用接着剤の使用量を低減可能なラミネートフィルムの製造方法に関する。
 また、本発明は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体および熱可塑性エラストマーを含む塗装部材用樹脂組成物の製造方法に関し、詳しくは、プラズマ処理後の塗膜との密着性に優れ、黄変を抑制できる塗装部材用樹脂組成物を得ることのできる塗装部材用樹脂組成物の製造方法に関する。
 ラミネートフィルムの利用方法としては、従来から熱可塑性樹脂からなるフィルムを用いた包装材が提案されており、ポリエステル、ポリアミド、金属箔等をラミネート用基材として、オレフィン樹脂フィルムを加熱による圧着(ヒートシール)や、接着剤を塗布して積層したラミネートフィルムが知られている。オレフィン樹脂の中でも、特にポリエチレンは安価で加工しやすく、水蒸気の遮断に優れていることから、食品の包装材料用途で汎用的に利用されている。
 しかしながら、オレフィン樹脂自身は不活性で接着力が乏しいため、例えば、特許文献1において、ラミネート用基材の表面にポリウレタン、イソシアネート化合物等のアンカー剤を用いて、アンカーコート処理をした後に、オゾン処理後のオレフィン樹脂を積層してラミネートフィルムとする方法が提案されている。
 アンカーコート剤を使用せずに、ラミネートフィルムを製造する方法もいくつか提案されており、例えば、特許文献2において、特定の条件でフィルムをオゾン処理して接着性を高める方法が開示されている。
 ところで、オレフィン樹脂は熱や光に対する安定性が乏しく、高温環境や強い光に曝されると容易に酸化/劣化し、プラスチック製品として必要な寿命が得られない。この酸化/劣化を防止するために、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ヒドロキシルアミン化合物、ヒンダードアミン化合物、紫外線吸収剤、酸捕捉剤等の安定剤を添加することが一般的に行われているが、特に、フェノール系酸化防止剤は高温加工における熱安定性効果が高いため、汎用的に利用されている。
 オレフィン樹脂に安定剤を添加する方法としては、オレフィンモノマーを重合して得られたオレフィン樹脂と安定剤を混合して、押出機等の加工機器により溶融混錬して、オレフィン樹脂中に安定剤を分散させる方法と、オレフィンモノマーの重合前又は重合中に安定剤を添加する方法がある。オレフィン樹脂と安定剤を溶融混錬により配合する方法は、オレフィン樹脂中における安定剤の分散不良に対応するために、必要以上に安定剤を添加しなければならない問題がある。
 オレフィンモノマーの重合前又は重合中に安定剤を添加する方法として、例えば、特許文献3には、リン系酸化防止剤の存在下にα-オレフィンの重合を行う製法が示されている。重合時にリン系酸化防止剤を用いず、α-オレフィンを重合して得られた重合物に添加した場合と比べて、リン系酸化防止剤の存在下にα-オレフィンの重合したものの方が優れた安定化効果を得られることが示されている。
 また、特許文献4では、特定のリン系酸化防止剤を重合時に用いることでオレフィンの重合を阻害せず、水との接触による着色を抑制したポリマーが得られることが示されている。
 一方、フェノール系酸化防止剤を含む安定剤をオレフィンモノマーの重合前に添加した場合、フェノールがオレフィン重合触媒の触媒活性を低下させるため、オレフィン樹脂に着色が生じたり、所望の重合が得られない問題があった。
 また、フェノール系酸化防止剤はオレフィン樹脂の高温加工時において高い熱安定性を付与できる一方で、オレフィン樹脂の成形品を水やアルコール等の溶媒に浸漬させると、配合されたフェノール系酸化防止剤が成形品から溶出してしまうことがあった。
 フェノール系酸化防止剤による重合触媒の触媒活性を低下させない重合方法としては、例えば、特許文献5、特許文献6において、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、有機アルミニウム化合物でマスキング処理したフェノール系酸化防止剤を添加することにより、重合触媒の阻害を抑制しうることが示されている。
 また、エチレン性不飽和結合を有するモノマーを重合して得られるオレフィン樹脂は、安価で、低比重、高剛性であり、成型加工性が良好で大型成形品を成形可能であることから、様々な用途で利用が進んでいる。自動車用途としては、バンパー等の外装部品、インストルメンタルパネル、及びトリム等の内装部品、ファン・ケース類等のエンジンルーム内部品、さらには各種モジュール材等の構造部材等への用途が広がっている。
 一般に、バンパー等の自動車内外装品に用いられるような樹脂組成物は、オレフィン樹脂、エラストマー、無機充填剤、カーボンブラック等の顔料、光安定剤、紫外線吸収剤、ヒンダードフェノール系、リン系、硫黄系、ラクトン系の酸化防止剤等を必要に応じて配合して製造されている。
 従来のバンパーは、無塗装品或いは全塗装品が一般的であったが、近年、デザイン上の要求から、バンパーの一部を無塗装とすることが広く行われるようになった。このため、バンパー用の樹脂組成物には、耐候性だけでなく、塗膜との密着性が良いことに加え、熱や太陽光線等に曝されてもバンパー及びバンパーの塗膜が変色しないことが求められている。
 一般にオレフィン樹脂の成形品の耐候性や光安定性を改善するために、酸化防止剤、ヒンダードアミン系の光安定剤及び紫外線吸収剤等の種々の添加剤を配合することが行われているが、熱や太陽光線の影響を強く受けることによって、オレフィン樹脂中に配合されている添加剤が、樹脂中から塗膜へ拡散、移行またはブリードアウトして、塗膜を黄変させる問題がある。特に、フェノール系酸化防止剤はブリードアウト後にキノリンに変化し、塗膜の黄変原因となることが知られている。
 上記塗膜の黄変を防止するためには、アクリルメラミン系、二液ウレタン系、ポリエステルメラミン系、ポリエステルウレタン系などで上塗り塗装して、添加剤の拡散・移行・ブリードアウトを防止する方法が挙げられるが、上塗り塗装後も明度の高い塗装色(L値60以上)は自然環境下で塗膜に黄変が生じる場合がある。また、この方法では一部が無塗装のバンパーを得ることができない。
 一方、特許文献7、特許文献8には、酸化防止剤と光安定剤のそれぞれの添加量と種類を特定して、塗装バンパーの黄変を抑制する方法が提案されている。
 また、特許文献9には、特定のプロピレン・エチレンブロック共重合体、エラストマー、無機充填剤を含有するポリプロピレン樹脂組成物に対して、特定の4種類の酸化防止剤及び必要に応じてベンゾエート系光安定剤及びヒンダードアミン系光安定剤を配合する方法が提案されている。
 特許文献6、10、11には、有機アルミニウム化合物でマスキングしたフェノール系酸化防止剤をエチレン性不飽和結合を有するモノマーの重合前又は重合中に添加する方法が記載されている。
特開昭61-283533号公報 特開昭63-49423号公報 特開昭63-92613号公報 特開平8-208731号公報 特開2006-52241号公報 特開2006-282985号公報 特開平6-107897号公報 特開平7-179719号公報 特開2003-29270号公報 特開2005-206625号公報 特開2005-255953号公報
 しかしながら、アンカーコート処理に使用されるアンカーコート剤には、希釈剤として酢酸エチル、トルエン、メチルエチルケトン等の有機溶剤を使用するものがあり、溶剤の揮発による作業環境の悪化や防災上の問題のほか、接着剤の乾燥が不十分だと有機溶剤がラミネートフィルム内に残留して、内容物に臭いが付着する問題があった。
 また、内容物として、水、食用油、アルコール等の成分を有する液体をラミネートフィルムで充填包装した場合、液体の浸透性によってアンカーコート剤成分が溶出等でラミネートフィルムの層間の接着強度が低下し、フィルム層間が剥離する問題が指摘されていた。
 さらに、特許文献2記載の方法には、加工の溶融押出温度が高いため樹脂や配合添加剤が分解し、内容物に臭気がついてしまうという問題があった。
 なお、特許文献5および6では、ラミネートフィルムについての適用は検討されておらず、ラミネートフィルムの接着性やフィルム成形後の添加剤の溶出性については何ら検討されていない。
 そこで、本発明の目的は、ラミネート用基材との接着性に優れ、溶剤に対する添加剤の溶出が少ないラミネートフィルムを製造できるラミネートフィルムの製造方法を提供することにある。
 また、塗装部材の着色の問題については未だ改良の余地があった。また、成形品をプラズマ処理してから塗装を施した場合、上記特許文献7~9の方法では、プラズマ処理後に配合された添加剤が成形品の表面に溶出し、塗膜の密着性が損なわれる問題があった。
 そこで本発明の目的は、塗膜との二次密着性、耐熱黄変性が良好な塗装部材用樹脂組成物を得ることができる塗装部材用樹脂組成物の製造方法を提供することにある。
 本発明者等は、上記現状に鑑み検討を重ねた結果、特定のフェノール系酸化防止剤をエチレン性不飽和モノマーの重合前、又は重合中に添加することによって安定化されたポリオレフィンを用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 また、本発明者等は、特定の安定剤を、エチレン性不飽和結合を有するモノマーの重合前又は重合中に添加することにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 近年の重合技術の進展により、安定剤組成物を重合触媒、重合装置又は配管に添加して重合することにより安定化された重合物が得られる。この方法は、重合後の溶融混錬による安定剤組成物の配合工程を省略でき、重合物に対して安定剤を均一分散させることが容易になり、結果として安定剤の配合量を低減化できる。しかし、フェノール化合物は重合触媒に悪影響して、重合を損なうため、フェノール系酸化防止剤を含む安定剤組成物は重合段階において添加することができなかった。
 本発明者等は、有機アルミニウム化合物でマスキングしたフェノール系酸化防止剤を用いることにより、フェノール系酸化防止剤をエチレン性不飽和結合を有するモノマーの重合前又は重合中に添加しても、重合触媒の活性を低下させることなく得られる重合物を安定化させる方法を提案している(特許文献6、10、11)。
 これらの知見をもとに、本発明者等がエチレン性不飽和結合を有するモノマーの重合前または重合中に、有機アルミニウム化合物でマスキングした特定のフェノール系酸化防止剤を添加したところ、得られる樹脂組成物の塗膜との密着性、耐熱黄変性が良好であることが明らかになった。
 すなわち、本発明のラミネートフィルムの製造方法は、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、重合により得られる重合体100質量部に対して0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか1カ所以上に添加する工程を備えることを特徴とするものである。
Figure JPOXMLDOC01-appb-I000003
(式中、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。)
 また、本発明のラミネートフィルムの製造方法においては、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、さらにリン系酸化防止剤を、重合により得られる重合体100質量部に対して0.001~3質量部、触媒系、重合系および配管のいずれか1カ所以上に添加する工程を備えることが好ましい。
 さらに、本発明のラミネートフィルムの製造方法においては、前記有機アルミニウム化合物がトリアルキルアルミニウムであることが好ましい。
 本発明のラミネートフィルムは、ラミネートフィルムの製造方法により製造されたことを特徴とするものである。
 本発明の塗装部材用樹脂組成物の製造方法は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体および熱可塑性エラストマーを含む塗装部材用樹脂組成物の製造方法であって、
 エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、上記フェノール系酸化防止剤が0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか一カ所以上に添加する工程(A)と、
 エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーを溶融混錬する工程(B)とを、備えることを特徴とするものである。
Figure JPOXMLDOC01-appb-I000004
(式中、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。)
 本発明の塗装部材用樹脂組成物の製造方法においては、前記工程(B)において、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体/熱可塑性エラストマー=2/1~4/1の質量比で溶融混錬するが好ましい。
 また、本発明の塗装部材用樹脂組成物の製造方法においては、前記熱可塑性エラストマーが、エチレン性不飽和結合を有するモノマーを重合して得られるものであって、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、触媒系、重合系および配管のいずれか1カ所以上に添加して、前記モノマーを重合することによって得られるものであることが好ましい。
 また、本発明の塗装部材用樹脂組成物の製造方法は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対し、リン系酸化防止剤の配合量が0.001~3質量部となるように、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、触媒系、重合系および配管のいずれか1カ所以上にリン系酸化防止剤を添加する工程をさらに備えることが好ましい。
 また、本発明の塗装部材用樹脂組成物の製造方法においては、前記有機アルミニウム化合物がトリアルキルアルミニウムであることが好ましい。
 本発明の塗装部材の製造方法は、上記の塗装部材用樹脂組成物の製造方法により得られた樹脂組成物を成形したものに対して塗装を施す工程を備えることを特徴とするものである。前記塗装を施す工程の前に、前記樹脂組成物を成形したものをプラズマ処理する工程を備えることが好ましい。
 本発明の塗装部材は、上記の塗装部材の製造方法により製造されることを特徴とするものであり、光安定剤、充填剤を含むものであることが好ましい。
 本発明により、ラミネート基材との接着性に優れ、溶剤に対する添加剤の溶出量が少なく、アンカー剤の使用量を低減化し、食品や医療用品等の衛生用品にも利用可能なラミネートフィルムを得ることが可能なラミネートフィルムの製造方法を提供することができる。
 また、本発明により、塗膜との二次密着性、耐熱黄変性が良好な塗装部材用樹脂組成物を得ることができる塗装部材用樹脂施組成物の製造方法を提供することができる。
 本発明のラミネートフィルムの製造方法に用いられるフェノール系酸化防止剤とは、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-I000005
(式中、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、置換基を有してもよい炭素原子数6~18のアリール基を表す。)
 上記一般式(1)中のR及びRで表される分岐を有してもよい炭素原子数1~5のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、ペンチル基、第二ペンチル基、第三ペンチル基等が挙げられるが、特に第三ブチル基は、フェノール系酸化防止剤の安定化効果が良好であるので好ましく用いられる。
 上記一般式(1)中のR及びRで表される炭素原子数7~9のアリールアルキル基としては、例えば、ベンジル、1-メチル-1-フェニルエチル等が挙げられる。
 前記一般式(1)中のRで表される、分岐を有してもよい炭素原子数1~30のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、t-ブチル基、イソブチル基、ペンチル基、イソペンチル基、t-ペンチル基、ヘキシル基、ヘプチル基、n-オクチル基、イソオクチル基、t-オクチル基、ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が挙げられるが、本発明においては、炭素原子数が12~24であるものが特に好ましい。アルキル基の炭素原子数が12より少ないフェノール系酸化防止剤は揮散しやすくなる場合があり、アルキル基の炭素原子数が24を超えると、フェノール系酸化防止剤の分子量に対するフェノールの割合が低下して、安定化効果が低下する場合がある。
 これらアルキル基は、酸素原子、硫黄原子、又は、下記のアリール基で中断されていてもよく、アルキル基中の水素原子が、ヒドロキシ基、シアノ基、アルケニル基、アルケニルオキシ基等の鎖状脂肪族基、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、モルホリン、2H-ピラン、4H-ピラン、フェニル、ビフェニル、トリフェニル、ナフタレン、アントラセン、ピロリジン、ピリンジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、キノリン、イソキノリン、又はシクロアルキル基等の環状脂肪族基で置換されていてもよい。また、これらの中断又は置換は組み合わされていてもよい。
 上記Rがとりうる分岐を有してもよい炭素原子数2~30のアルケニル基は、上記したアルキル基に炭素―炭素2重結合が導入されたものである。上記アルキル基と同様に、炭素原子数が12~24であるものが特に好ましい。
 上記一般式(1)中のRで表される、置換されていてもよい炭素原子数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等が挙げられ、シクロアルキル基中の水素原子が、アルキル基、アルケニル基、アルケニルオキシ基、ヒドロキシ基、又はシアノ基で置換されていてもよく、該アルキル基は酸素原子、又は硫黄原子で中断されていてもよい。
 上記一般式(1)中のRで表される、炭素原子数6~18の置換基を有してもよいアリール基としては、例えば、フェニル基、メチルフェニル基、ブチルフェニル基、オクチルフェニル基、4-ヒドロキシフェニル基、3,4,5-トリメトキシフェニル基、4-t-ブチルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントラセニル基、フェナントリル基、ベンジル、フェニルエチル基、1-フェニル-1-メチルエチル基等が挙げられる。また、アリール基中の水素原子が、アルキル基、アルケニル基、アルケニルオキシ基、ヒドロキシ基、又はシアノ基で置換されていてもよく、該アルキル基は酸素原子、又は硫黄原子で中断されていてもよい。
 一般式(1)で表されるフェノール系酸化防止剤の具体的な構造としては、下記化合物No.1~No.16が挙げられる。ただし、本発明は以下の化合物により制限を受けるものではない。
Figure JPOXMLDOC01-appb-I000006
 上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキングしたものを添加する場合、重合して得られる重合体100質量部に対して、0.001~0.5質量部となるように、好ましくは、0.001~0.3質量部になるように添加する。0.001質量部より少ない場合、添加効果が得られない場合があり、0.5質量部を越えての添加は可能ではあるが、重合体が着色したり、添加量効果が小さくなり経済的に不利である。
 上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキングしたものの添加方法としては、特に限定されるものではない。好適な一形態としては、マスキングされたフェノール系酸化防止剤を、触媒フィードタンク、重合装置及び製造ラインの配管のいずれか1カ所以上へ添加して混合することが挙げられる。
 上記マスキングは、不活性な溶媒中で有機アルミニウム化合物とフェノール系酸化防止剤とを混合・撹拌することで行うことができる。混合・撹拌により、フェノール系酸化防止剤のフェノール性ヒドロキシル基の水素が有機アルミニウム化合物に置換される。上記フェノール系酸化防止剤と有機アルミニウム化合物を混合・撹拌してから触媒系、重合系および配管のいずれか1カ所以上に添加してもよく、フェノール系酸化防止剤と有機アルミニウム化合物をそれぞれ触媒系、重合系および配管のいずれか1カ所以上に添加して混合してもよい。
 フェノール系酸化防止剤のマスキング反応において、副生した化合物がモノマーの重合反応や重合物へ影響しない場合はそのまま用いることができるが、副生した化合物が重合を阻害する場合は、該化合物を減圧留去等により取り除いてから触媒系、重合系および配管のいずれか1カ所以上に添加することが好ましい。
 上記マスキングされたフェノール系酸化防止剤は、重合後に重合触媒の失活処理として加えられる水、アルコール又は酸等の水素供与性化合物と反応してフェノールが再生できることが望ましい。
 上記有機アルミニウム化合物としては、アルキルアルミニウム又はアルキルアルミニウムハイドライド等が挙げられ、アルキルアルミニウムが好ましく、特に好ましくはトリアルキルアルミニウムである。トリアルキルアルミニウムとしては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソブチルアルミニウム、トリ-n-へキシルアルミニウム、トリ-n-オクチルアルミニウム等が挙げられ、単独の化合物又はこれらの混合物を使用することができる。また、アルキルアルミニウム又はアルキルアルミニウムハイドライドと水との反応によって得られるアルミノキサンも同様に使用することができる。
 有機アルミニウム化合物及び上記一般式(1)で表されるフェノール系酸化防止剤の混合比としては、質量比で、有機アルミニウム化合物/前記一般式(1)で表されるフェノール系酸化防止剤=1/5~100/1が望ましい。1/5より有機アルミニウム化合物が少ないと、過剰なフェノール系酸化防止剤が触媒活性に悪影響を及ぼす場合があり、100/1より有機アルミニウム化合物が多いと、重合後にアルミニウム化合物が重合体に残留し、重合体の物性が低下したり、触媒金属の成分比に影響して所望の重合を行えない場合がある。
 上記不活性な溶媒としては、脂肪族及び芳香族炭化水素化合物が挙げられる。脂肪族炭化水素化合物としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタンおよび精製ケロシン等の飽和炭化水素化合物、シクロペンタン、シクロヘキサン、シクロヘプタン等の環状飽和炭化水素化合物等が挙げられ、芳香族炭化水素化合物としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン又はガソリン留分などの化合物が挙げられる。これらの化合物のうち、n-ヘキサン、n-ヘプタン又はガソリン留分であるものが好ましく用いられる。不活性な溶媒中のトリアルキルアルミニウム塩の濃度は、0.001~0.5mol/Lの範囲が好ましく、特に好ましくは、0.01~0.1mol/Lである。
 本発明の製造方法においては、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、さらにリン系酸化防止剤を、重合により得られる重合体100質量部に対して0.001~3質量部、触媒系、重合系および配管のいずれか1カ所以上に添加する工程を備えることが好ましい。
 本発明に用いられるリン系酸化防止剤としては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ第三ブチルフェニル)ホスファイト、トリス(2,4-ジ第三ブチル-5-メチルフェニル)ホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノール等、公知のリン系酸化防止剤を用いることができるが、トリス(2,4-ジ第三ブチルフェニル)ホスファイトのように、プロピレンモノマーの重合前に添加しても重合に悪影響を与えないリン系酸化防止剤が好ましい。
 上記リン系酸化防止剤を使用する場合の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体100質量部に対して、0.001~3質量部、好ましくは、0.005~0.5質量部になるように添加する。0.001質量部より少ない場合、添加効果が得られない場合があり、3質量部以上の添加は可能ではあるが、添加量効果が小さくなり経済的にも不利である。
 リン系酸化防止剤の添加方法としては、前記不活性な溶媒と混合して添加することが好ましいが、予め前記一般式(1)で表されるフェノール系酸化防止剤と一緒に不活性な溶媒と混合してもよく、前記一般式(1)で表されるフェノール系酸化防止剤とは別に前記不活性な溶媒と混合して、重合系、触媒系又は配管に添加するものであってもよい。
 上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものと、上記リン系酸化防止剤との合計配合量は、好ましくは重合工程で得られる重合体100質量部に対して、0.001~3質量部になるように、さらに好ましくは、0.001~0.5質量部になるように添加する。
 上記エチレン性不飽和結合を有するモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、ビニルシクロアルカン、スチレンあるいはこれらの誘導体等が挙げられる。
 本発明において用いられるエチレン性不飽和結合を有するモノマーは1種であってもよく、2種以上の組合せであってもよいが、エチレン又はα-オレフィンモノマーの組合せであるものが好ましい。例えば、エチレン単独、エチレン-プロピレンの組合せ、エチレン-プロピレン-ブテンの組合せ等が挙げられ、更に、αオレフィンモノマーと非共役ジエンモノマーとの組合せであってもよい。
 エチレン性不飽和結合を有するモノマーの重合反応を行う方法としては、通常用いられる方法を採用することができる。例えば、ブタン、ペンタン、ヘキサン、ヘプタン、イソオクタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ガソリン留分、水素化ジーゼル留分などの不活性溶媒の存在下に液相で重合を行う方法、液化したモノマー自身を媒体とする重合方法、液相が実質的に存在しない条件下、窒素等の不活性ガス雰囲気中など気相で重合を行う方法、又はこれらを2種以上組み合わせた重合方法も使用可能である。また、重合は、回分式、連続式の何れでもよく、一段重合法又は多段重合法であってもよい。
 また、重合を阻害しない範囲で、活性水素化合物、微粒子状担体、有機アルミニウム化合物、イオン交換性層状化合物、無機珪酸塩又は上記重合触媒以外の触媒構成成分、例えば担体等を含んでいてもよい。
 上記重合反応で用いられる重合槽としては、既存の重合設備における連続反応槽をそのまま使用すればよく、サイズ、形状、材質など本発明が従来の重合設備に対して特に限定されることはない。
 上記重合触媒は、特に限定されるものではなく、公知の重合触媒を利用可能であり、例えば、周期表第3~11族の遷移金属(例えば、チタン、ジルコニウム、ハフニウム、バナジウム、鉄、ニッケル、鉛、白金、イットリウム、サマリウム等)の化合物があり、代表的なものとしては、チーグラー触媒、チタン含有固体状遷移金属成分と有機金属成分からなるチーグラー・ナッタ触媒、窒素、酸素、硫黄、リンなどのヘテロ原子が周期表第4~第10族の遷移金属と結合した化合物であるブルックハート触媒、少なくとも一個のシクロペンタジエニル骨格を有する周期表第4族~第6族の遷移金属化合物と助触媒成分からなるメタロセン触媒が挙げられるが、電子供与化合物を使用すると高品質の重合体が得られるので好ましい。
 上記チーグラー触媒としては、例えば、四塩化チタンを有機アルミニウム等で還元して得られた三塩化チタンまたは三塩化チタン組成物を電子供与性化合物で処理し更に活性化したもの(例えば特開昭47-34478号公報、特開昭58-23806号公報、特開昭63-146906号公報)、四塩化チタンを有機アルミニウム化合物で還元し、更に各種の電子供与体及び電子受容体で処理して得られた三塩化チタン組成物と、有機アルミニウム化合物及び芳香族カルボン酸エステルとからなる触媒(特開昭56-100806号公報、特開昭56-120712号公報、特開昭58-104907号公報等参照)、及び、ハロゲン化マグネシウムに四塩化チタンと各種の電子供与体からなる担持型触媒(特開昭57-63310号公報、特開昭58-157808号公報、特開昭58-83006号公報、特開昭58-5310号公報、特開昭61-218606号公報、特開昭63-43915号公報、特開昭63-83116号公報等参照)等が挙げられる。
 上記メタロセン触媒としては、例えば、特開平9-12621号公報に記載されている遷移金属メタロセン触媒や特開平5-043616号公報、特開平5-295022号公報、特開平5-301917号公報、特開平6-239914号公報、特開平6-239915号公報、特開平6-239917号公報、特開平7-082311号公報、特開平7-228621号公報、特開平7-330820号公報、特開平8-059724号公報、特開平8-085707号公報、特開平8-085708号公報、特開平8-127613号公報、特開平10-226712号公報、特開平10-259143号公報、特開平10-265490号公報、特開平11-246582号公報、特開平11-279189号公報、特開平11-349633号公報、特開2000-229990号公報、特開2001-206914号公報、特開2002-37795号公報、特開2002-194015号公報、特開2002-194016号公報、特表2002-535339号公報、WO99/37654号公報、WO99/45014号公報およびWO00/8036号公報に記載されている主としてポリプロピレンの重合に用いられる遷移金属メタロセン触媒などが挙げられる。
 上記電子供与性化合物としては、エーテル系化合物、エステル系化合物、ケトン系化合物、アルコキシシラン系化合物等が挙げられる。上記電子供与化合物は、単独の化合物を添加してもよく、必要に応じて複数の化合物を添加してもよい。
 上記エーテル系化合物としては、例えば、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレンオキシド、テトラヒドロフラン、2,2,5,5-テトラメチルテトラヒドロフラン、ジオキサン等が挙げられる。
 上記エステル系化合物としては、例えば、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、フェニル酢酸エチル、安息香酸メチル、安息香酸エチル、安息香酸フェニル、トルイル酸メチル、トルイル酸エチル、アニス酸メチル、アニス酸エチル、メトキシ安息香酸メチル、メトキシ安息香酸エチル、メタクリル酸メチル、メタクリル酸エチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジヘキシル、γ-ブチロラクトン、エチルセロソルブ等が挙げられる。
 上記ケトン系化合物としては、例えば、アセトン、ジエチルケトン、メチルエチルケトン、アセトフェノン等が挙げられる。
 上記アルコキシシラン系化合物としては、例えば、テトラメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、t-ブチルトリメトキシシラン、i-ブチルトリメトキシシラン、フェニルトリメトキシシラン、シクロヘキシルトリメトキシシラン、ジエチルジメトキシシラン、ジプロピルジメトキシシラン、ジイソプロピルジメトキシシラン、ジフェニルジメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルエチルジメトキシシラン、t-ブチル-n-プロピルジメトキシシラン、t-ブチルイソプロピルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、テトラエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、t-ブチルトリエトキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリエトキシシラン、ジエチルジエトキシシラン、ジプロピルジエトキシシラン、ジイソプロピルジエトキシシラン、ジフェニルジエトキシシラン、t-ブチルメチルジエトキシシラン、シクロヘキシルメチルジエトキシシラン、ジシクロペンチルジメトキシラン等が挙げられる。
 上記担体としては、特に種類の制限はないが、例えば、無機酸化物等の無機担体、多孔質ポリオレフィンなどの有機担体があげられ、複数を併用したものであってもよい。
上記無機担体としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、酸化カルシウム、酸化亜鉛等が挙げられる。またこの他の無機担体としては塩化マグネシウム、臭化マグネシウム等のハロゲン化マグネシウム、マグネシウムエトキシドなどのマグネシウムアルコキシド、イオン交換性層状化合物があげられる。
 上記イオン交換性層状化合物とは、イオン結合等によって構成される面が、互いに弱い結合力で平行に積み重なった結晶構造を有するもので、含有するイオンが交換可能な化合物を表す。イオン交換性層状化合物の具体例としては、例えば、カオリン、ベントナイト、タルク、カオリナイト、バーミキュライト、モンモリロナイト群、雲母群、α-Zr(HAsO・HO、α-Zr(HPO・HO、α-Sn(HPO・HO、γ-Ti(NHPO・HOなどがあげられる。
 上記有機担体としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、エチレン-ブテン共重合体、エチレン-プロピレン共重合体、ポリメタクリル酸エステル、ポリアクリル酸エステル、ポリアクリロニトリル、ポリアミド、ポリカーボネート、ポリエチレンテレフタレートのようなポリエステル、ポリ塩化ビニル等であり、これらは例えばスチレン-ジビニルベンゼン共重合体のように架橋していてもかまわない。またこれら有機担体上に触媒が化学結合したものも使用可能である。
 これら担体の粒径(体積平均)は通常、0.1~300μmであるが、好ましくは1~200μm、更に好ましくは10~100μmの範囲である。粒径が1μmよりも小さいと微粉状の重合体となりやすく、また大きすぎると粗大粒子が生成するため、所望の粒子形状に応じて担体の粒径を選択すべきである。
 上記の担体の細孔容積は通常、0.1~5cm/gであり、好ましくは0.3~3cm/gである。細孔容積は例えばBET法や水銀圧入法などにより測定できる。
 上記有機アルミニウム化合物としては、前記一般式(1)で表されるフェノール系酸化防止剤をマスキングするものと同じものが挙げられる。
 上記重合体には、必要に応じてさらに、エチレン性不飽和結合を有するモノマーから得られる重合体に通常使用される、他の添加剤を配合することができる。他の添加剤の配合方法としては、重合を阻害するものでなければ、エチレン性不飽和結合を有するモノマーの重合前または重合時に他の添加剤を添加することができる。また、他の添加剤を目的に応じた配合量で前記重合物と混合して、押出機などの成形加工機で溶融混錬して造粒、成形してもよい。
 他の添加剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、チオエステル系酸化防止剤、紫外線吸収剤、ヒンダードアミン化合物、重金属不活性化剤、造核剤、難燃剤、金属石鹸、ハイドロタルサイト、充填剤、滑剤、帯電防止剤、顔料、染料、可塑剤等が挙げられる。
 上記フェノール系酸化防止剤は、上記一般式(1)で表されるものと異なるものである。例えば、2,6-ジ-t-ブチル-4-エチルフェノール、2-t-ブチル-4,6-ジメチルフェノール、スチレン化フェノール、2,2’メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2’-チオビス-(6-t-ブチル-4-メチルフェノール)、2,2’-チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-メチル-4,6-ビス(オクチルスルファニルメチル)フェノール、2,2’-イソブチリデンビス(4,6-ジメチルフェノール)、イソ-オクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオンアミド、2,2’-オキサミド-ビス[エチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-エチルヘキシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、2,2’-エチレンビス(4,6-ジ-t-ブチルフェノール)、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパン酸及びC13-15アルキルのエステル、2,5-ジ-t-アミルヒドロキノン、ヒンダードフェノールの重合物(アデカパルマロマール社製商品名AO.OH998)、2,2’-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチル)プロポキシ]-2,4,8,10-テトラ-t-ブチルベンズ[d,f][1,3,2]-ジオキシホスフォビン、ヘキサメチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ビス[モノエチル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネートカルシウム塩、5,7-ビス(1,1-ジメチルエチル)-3-ヒドロキシ-2(3H)-ベンゾフラノン、とo-キシレンとの反応生成物、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、DL-a-トコフェノール(ビタミンE)、2,6-ビス(α-メチルベンジル)-4-メチルフェノール、ビス[3,3-ビス-(4’-ヒドロキシ-3‘-t-ブチル-フェニル)ブタン酸]グリコールエステル、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、トリデシル-3,5-ジ-t-ブチル-4-ヒドロキシベンジルチオアセテート、チオジエチレンビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、4,4’-チオビス(6-t-ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ-t-ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、ビス[3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、4,4’-ブチリデンビス(2,6-ジ-t-ブチルフェノール)、4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス[2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル]テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、2-t-ブチル-4-メチル-6-(2-アクロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、3,9-ビス[2-(3-t-ブチル-4-ヒドロキシ-5-メチルヒドロシンナモイルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリエチレングリコールビス[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]が挙げられるが、特に、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン等が挙げられる。
 上記他の添加剤としてのフェノール系酸化防止剤の使用量は、前記重合体100質量部に対して、0.001~5質量部、より好ましくは、0.001~0.5質量部である。
 上記他の添加剤としてのリン系酸化防止剤としては、上記で添加するリン系酸化防止剤として例示した化合物と同様なものが挙げられる。上記リン系酸化防止剤の使用量は、好ましくは、上記重合体100質量部に対して、0.001~0.5質量部である。
 上記チオエステル系酸化防止剤としては、例えば、テトラキス[メチレン-3-(ラウリルチオ)プロピオネート]メタン、ビス(メチル-4-[3-n-アルキル(C12/C14)チオプロピオニルオキシ]5-t-ブチルフェニル)スルファイド、ジトリデシル-3,3’-チオジプロピオネート、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ラウリル/ステアリルチオジプロピオネート、4,4’-チオビス(6-t-ブチル-m-クレゾール)、2,2’-チオビス(6-t-ブチル-p-クレゾール)、ジステアリル-ジサルファイドが挙げられる。
 チオエステル系酸化防止剤の使用量は、好ましくは、前記重合体100質量部に対して、0.001~0.3質量部、より好ましくは0.01~0.3質量部である。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-第三オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3-第三ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-第三オクチル-6-ベンゾトリアゾリルフェノール)、2-(2-ヒドロキシ-3-第三ブチル-5-カルボキシフェニル)ベンゾトリアゾールのポリエチレングリコールエステル、2-〔2-ヒドロキシ-3-(2-アクリロイルオキシエチル)-5-メチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三ブチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三オクチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三ブチルフェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三ブチル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三アミル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三ブチル-5-(3-メタクリロイルオキシプロピル)フェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-4-(2-メタクリロイルオキシメチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシプロピル)フェニル〕ベンゾトリアゾール等の2-(2-ヒドロキシフェニル)ベンゾトリアゾール類;2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ヘキシロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-〔2-ヒドロキシ-4-(3-C12~13混合アルコキシ-2-ヒドロキシプロポキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-〔2-ヒドロキシ-4-(2-アクリロイルオキシエトキシ)フェニル〕-4,6-ビス(4-メチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシ-3-アリルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ヘキシロキシフェニル)-1,3,5-トリアジン等の2-(2-ヒドロキシフェニル)-4,6-ジアリール-1,3,5-トリアジン類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、オクチル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ドデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、テトラデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ヘキサデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、オクタデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ベヘニル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β,β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;各種の金属塩、又は金属キレート、特にニッケル、クロムの塩、又はキレート類等が挙げられる。
 上記紫外線吸収剤の使用量は、前記重合体100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス{4-(1-オクチルオキシ-2,2,6,6-テトラメチル)ピペリジル}デカンジオナート、ビス{4-(2,2,6,6-テトラメチル-1-ウンデシルオキシ)ピペリジル)カーボナート、チバ・スペシャルティ・ケミカルズ社製TINUVIN NOR 371等が挙げられる。
 上記ヒンダードアミン系光安定剤の使用量は、前記重合体100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記重金属不活性化剤としては、サリチルアミド1,2,4-トリアゾール-3-イル、ビスサリチル酸ヒドラジド、ドデカンジオイルビス(2-(2-ヒドロキシベンゾイル)ヒドラジド)、ビス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸ヒドラジド等が挙げられ、前記重合体100質量部に対して、好ましくは0.001~10質量部、より好ましくは、0.05~5質量部が用いられる。
 上記造核剤としては、例えば、安息香酸ナトリウム、4-第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム及び2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等のカルボン酸金属塩、ナトリウムビス(4-第三ブチルフェニル)ホスフェート、ナトリウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート及びリチウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート等のリン酸エステル金属塩、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、及びビス(ジメチルベンジリデン)ソルビトール等の多価アルコール誘導体、N,N’,N”-トリス[2-メチルシクロヘキシル]―1,2,3-プロパントリカルボキサミド(RIKACLEAR PC1)、N,N’,N”-トリシクロヘキシルー1,3,5-ベンゼントリカルボキサミド、N,N’-ジシクロヘキシル-ナフタレンジカルボキサミド、1,3,5-トリ(ジメチルイソプロポイルアミノ)ベンゼン等のアミド化合物等が挙げられる。
 上記造核剤の使用量は、前記重合体100質量部に対して、0.001~10質量部、より好ましくは0.005~5質量部である。
 上記難燃剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-キシレニルホスフェート及びレゾルシノールビス(ジフェニルホスフェート)等の芳香族リン酸エステル、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル及びフェニルホスホン酸(1-ブテニル)等のホスホン酸エステル、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド誘導体等のホスフィン酸エステル、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン含有ビニルベンジル化合物及び赤リン等のリン系難燃剤、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2-ジブロモ-4-(1,2-ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン及び2,4,6-トリス(トリブロモフェノキシ)-1,3,5-トリアジン、トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、及び、臭素化スチレン等の臭素系難燃剤等が挙げられる。
 上記難燃剤の使用量は、前記重合体100質量部に対して、好ましくは1~70質量部、より好ましくは、10~30質量部である。
 上記充填剤としては、例えば、タルク、マイカ、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、水酸化アルミニウム、硫酸バリウム、ガラス粉末、ガラス繊維、クレー、ドロマイト、マイカ、シリカ、アルミナ、チタン酸カリウムウィスカー、ワラステナイト、繊維状マグネシウムオキシサルフェート等が好ましい。これらの充填剤において、平均粒径(球状乃至平板状のもの)又は平均繊維径(針状乃至繊維状)が5μm以下のものが好ましい。上記充填剤の使用量は、本発明を阻害しない範囲で適宜使用できる。
 上記滑剤は、成形体表面に滑性を付与し傷つき防止効果を高める目的で加えられる。滑剤としては、例えば、オレイン酸アミド、エルカ酸アミド等の不飽和脂肪酸アミド;ベヘン酸アミド、ステアリン酸アミド等の飽和脂肪酸アミド等が挙げられる。これらは1種を用いてもよく、2種以上を併用して用いてもよい。
 上記滑剤の添加量は、前記重合体100質量部に対し、0.03~2質量部、より好ましくは0.04~1質量部の範囲である。0.03質量部未満では、所望の滑性が得られない場合があり、2質量部を超えると滑剤成分が重合体の成形品表面にブリードしたり、物性低下の原因となる場合がある。
 上記帯電防止剤は、成形品の帯電性の低減化や、帯電による埃の付着防止の目的で加えられる。帯電防止剤としては、カチオン系、アニオン系、非イオン系等が挙げられる。好ましい例としては、ポリオキシエチレンアルキルアミンやポリオキシエチレンアルキルアミドないしそれらの脂肪酸エステル、グリセリンの脂肪酸エステル等が挙げられる。これらは1種を用いてもよく、2種以上を併用して用いてもよい。また、帯電防止剤の添加量は、前記重合体100質量部に対し、好ましくは0.03~2質量部、より好ましくは0.04~1質量部である。帯電防止剤が過少の場合、帯電防止効果が不足し、一方過多であると、表面へのブリード、重合体の物性低下を引き起こす場合がある。
 本発明のラミネートフィルムの製造方法は、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、前記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、重合により得られる重合体100質量部に対して0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか一カ所以上に添加する工程を備えることを特徴とするものである。これにより、少量の配合によって十分に安定化効果を得ることができるものとなり、配合量が低減される結果、酸化防止剤のブリードアウトを抑制して、オゾン処理時の接着阻害要因を排除することが可能となった。本発明に係る特定のフェノール系酸化防止剤以外のフェノール系酸化防止剤では、重合時の添加による安定化効果が乏しいために、多量の配合が必要となる結果、酸化防止剤のブリードアウトが発生して、ラミネートフィルムの接着を阻害してしまう。得られた重合体は、公知の方法によりラミネートフィルムに成形加工することができる。上記重合体をラミネートフィルムに加工する方法として、例えば、前記重合体をフィルムに成形加工して、フィルム同士を貼り合わせたり、ラミネート用基材と貼り合わせてラミネートフィルムを製造する方法が挙げられる。また、必要に応じて三層以上のラミネートフィルムとしてもよい。
 上記ラミネート用基材としては、フィルムと接着して用いられるものとして、通常一般的に使用されるものが挙げられ、例えば、フィルム形成能を有する重合体、紙類、不織布、アルミニウム箔等の金属箔、酸化ケイ素蒸着フィルム、アルミニウム蒸着フィルム等の金属蒸着フィルム、又はセロハン等が挙げられる。
 上記ラミネート用基材の厚みは特に制限なく目的に応じて適宜選択でき、通常は5~50μm程度であればよい。また、必要に応じてオゾン処理、コロナ放電処理、火炎処理等の表面処理を行っても良い。
 上記ラミネート用基材として用いられる、フィルム形成能を有する重合体としては、例えば、高密度ポリエチレン、中・低密度ポリエチレン、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸エステル共重合体、アイオノマー、ポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル1-ペンテン等のオレフィン系共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアクリレート、ポリアクリロニトリル等のビニル系重合体、ナイロン、ポリメタキシリレンアジパミド等のポリアミド、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリカーボネート等を挙げることができる。又これらの重合体を成形加工して得られるフィルムは一軸又は二軸で延伸されていてもよい。
 本発明の製造方法により製造される重合体の中でもポリエチレンが好ましく、特に、直鎖状低密度ポリエチレン(LLDPE)が、ヒートシール性と耐熱性に優れ、包装体にしたときの折り曲げや揉みに対して耐性があるので好ましい。
 本発明の製造方法により製造されるラミネートフィルムの厚みは特に制限はなく、目的に応じて適宜選択できるが、通常は10~200μmであればよい。
 前記フィルムとラミネート用基材をラミネートする方法としては、例えば、ドライラミネート、押出ラミネート、ホットメルトラミネート、ウェットラミネート、ワックスラミネート、サーマルラミネートなどの方法を採用することができる。
 上記ドライラミネートとは、接着剤を有機溶剤で適当な粘度に希釈してフィルムに塗布し、乾燥後他方のフィルムと圧着して貼り合わせる方法である。接着剤としては、主剤と硬化剤とからなるものが一般的である。主剤としては、例えば、イソフタル酸、アジピン酸、セバシン酸等とエチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオールからなるエステル化合物とイソホロンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネートなどとからなるポリエステル・ウレタンジオールレジンとシランカップリング剤さらにエポキシレジンを含んだもの等が挙げられる。
 硬化剤としては、例えば、トリメチロールプロパンとイソホロンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネートからなるものなどが挙げられるが、主剤及び硬化剤はこれらに限定されるものではなく、耐熱性、耐薬品性等の目的に応じて適宜使用することができる。
 上記押出ラミネートとは、フィルムの片面に溶融したポリエチレンをコーティングするポリラミと、二枚のフィルムの間に溶融したポリエチレンを流し込むポリサンドラミの方法があげられる。溶融したポリエチレンが接着剤の役割を果たしているが、ポリエチレンの代わりにポリプロピレンを用いてもよい。また、フィルムの表面にアンカーコート剤を塗布した場合は、紙や厚手のフィルムにも容易にラミネートすることができる。
 上記アンカーコート剤としては、無水カルボン酸変性ポリオレフィン、イソシアネート系樹脂、有機チタネート系樹脂、ポリエチレンイミン系樹脂、ポリブタジエン系樹脂等、エポキシ樹脂用接着剤があげられるが、耐水性、耐湿性、耐ボイル性に優れるイソシアネート系樹脂が好ましく用いられる。
 上記ホットメルトラミネートとは、接着剤等を加熱して適切な粘度に調整してフィルムに塗布して圧着する方法である。乾燥工程がなく、冷却すればすぐに使用できる利点があるが、耐熱性が低く、強度が低い欠点があげられる。
 上記ウェットラミネートとは、水溶性又はエマルジョンタイプの接着剤を用いてラミネートする方法である。水溶性又はエマルジョンタイプの接着剤としては、例えば、水溶性ビニロン、酢酸ビニル系エマルジョンなどがあげられる。
 上記サーマルラミネートとは、フィルムに熱をかけて圧着のみで接着することができる。接着剤や溶剤等の使用が必要ない利点があるが、包装材料としては耐熱性が乏しいため、利用用途が限られる。
 本発明の製造方法により得られるラミネートフィルムの用途は特に限定されず、従来ラミネートフィルムが用いられる用途全般に利用することができる。
 例えば、食品包装材料として、水に対する耐性が高いオレフィンフィルムを外層とするラミネートフィルム、低密度ポリエチレン、中密度ポリエチレン、又は、エチレン-酢酸ビニル共重合体などを積層したものが挙げられる。また、ボイル、レトルト用袋状包装材として利用する場合は、アルミニウム箔などの酸素不透過性のフィルムを内層に積層したものが挙げられる。
 本発明の塗装部材用樹脂組成物の製造方法は、上記のように工程(A)、工程(B)を備えることを特徴とするものである。その他の工程、例えば、触媒の調製工程、原材料であるモノマーの供給工程、モノマーの重合工程、重合物の回収工程などは、エチレン性不飽和結合を有するモノマーの重合方法における公知の方法を採用することができる。以下、各工程について詳述する。なお、本発明における塗装部材とは、樹脂組成物を成形したものに対して塗装を施したものである。
 工程(A)は、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、上記フェノール系酸化防止剤が0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか一カ所以上に添加する工程である。
 一般式(1)で表されるフェノール系酸化防止剤の具体的な構造としては、上記化合物No.1~No.16が挙げられる。ただし、本発明は上記の化合物により制限を受けるものではない。
 上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものは、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、フェノール系酸化防止剤(即ち、マスキング前のフェノール系酸化防止剤単独の量として)が0.001~0.5質量部になるように添加するのが好ましく、0.001~0.3質量部となるように添加するのがより好ましい。
 0.001質量部未満では、所望の安定化効果が得られない場合があり、0.5質量部を超えると、上記フェノール系酸化防止剤が成形品の表面にブリードアウトし、外観を損ねる場合がある。
 なお、熱可塑性エラストマーを得るに当たって、熱可塑性エラストマーを得る為のモノマーの重合前または重合中に、上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを添加する場合は、工程(A)での配合量と、熱可塑性エラストマーの合成時の配合量との合計が上記範囲になるように配合する。
 上記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキングしたものの添加方法としては、特に限定されるものではない。好適な一形態としては、該マスキングされたフェノール系酸化防止剤を、触媒フィードタンク、重合装置又は製造ラインのいずれか1カ所以上へ添加して混合することが挙げられる。
 上記マスキングは、不活性な溶媒中で有機アルミニウム化合物とフェノール系酸化防止剤とを混合・撹拌することで行うことができる。混合・撹拌により、フェノール系酸化防止剤のフェノール性ヒドロキシル基の水素が有機アルミニウム化合物に置換される。上記フェノール系酸化防止剤と有機アルミニウム化合物を混合・撹拌してから触媒系、重合系および配管のいずれか1カ所以上に添加してもよく、フェノール系酸化防止剤と有機アルミニウム化合物をそれぞれ触媒系、重合系および配管のいずれか1カ所に別々に添加して混合してもよい。
 フェノール系酸化防止剤のマスキング反応において、副生した化合物がモノマーの重合反応や重合物へ影響しない場合はそのまま用いることができるが、影響を与える場合は、該化合物を減圧留去等により取り除いてから触媒系、重合系および配管のいずれか1カ所以上に添加することが好ましい。
 上記マスキングされたフェノール系酸化防止剤は、重合後に重合触媒の失活処理として加えられる水、アルコール又は酸等の水素供与性化合物と反応して再生できることが望ましい。
 上記有機アルミニウム化合物としては、上記と同様のものを挙げることができる。
 有機アルミニウム化合物及び前記一般式(1)で表されるフェノール系酸化防止剤の混合比としては、質量比で、有機アルミニウム化合物/前記一般式(1)で表されるフェノール系酸化防止剤=1/5~100/1が好ましい。1/5より有機アルミニウム化合物が少ないと、過剰なフェノール系酸化防止剤が触媒活性に悪影響を及ぼす場合があり、100/1より多いと、重合後にアルミニウム化合物が重合体に残留し、重合体の物性が低下したり、触媒金属の成分比に影響して所望の重合を行えなかったりする場合がある。
 上記不活性な溶媒としては、上記と同様のものを挙げることができる。不活性な溶媒中の有機アルミニウム化合物の濃度は、0.001~0.5mol/Lの範囲が好ましく、特に好ましくは、0.01~0.1mol/Lである。
 本発明の塗装部材用樹脂組成物の製造方法においては、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、触媒系、重合系および配管のいずれか1カ所以上にリン系酸化防止剤を添加する工程をさらに備えることが好ましい。上記一般式(1)で表されるフェノール系酸化防止剤及びリン系酸化防止剤は、それぞれ別々に添加してもよく、事前に混合してから添加してもよい。
 なお、リン系酸化防止剤は、後述する熱可塑性エラストマーの重合時(モノマーの重合前または重合中)に添加してもよい。
 前記リン系酸化防止剤としては、上記と同様のものが挙げられる。
 上記リン系酸化防止剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、好ましくは0.001~3質量部、より好ましくは、0.005~0.5質量部である。
 上記リン系酸化防止剤を添加工程で添加する際は、前記不活性な溶媒と混合して添加することが好ましいが、予め前記一般式(1)で表されるフェノール系酸化防止剤と一緒に不活性な溶媒と混合してもよく、予め前記一般式(1)で表されるフェノール系酸化防止剤とは別に前記不活性な溶媒と混合して、重合系、触媒系又は配管に添加するものであってもよい。
 上記エチレン性不飽和結合を有するモノマーとしては、上記と同様のものが挙げられる。
 本発明の塗装部材用樹脂組成物の製造方法において、用いられるエチレン性不飽和結合を有するモノマーは1種であっても、2種以上の組合せであってもよいが、エチレン又はα-オレフィンモノマーの組合せであるものが好ましい。例えば、エチレン単独、エチレン-プロピレンの組合せ、プロピレン単独、エチレン-プロピレン-ブテンの組合せ等が挙げられ、更にα-オレフィンモノマーと非共役ジエンモノマーとの組合せであってもよい。
 エチレン性不飽和結合を有するモノマーの重合反応を行う方法としては、上記と同様のものを挙げることができる。
 上記重合反応で用いられる重合槽としては、既存の重合設備における連続反応槽をそのまま使用すればよく、サイズ、形状、材質など本発明が従来の重合設備に対して特に限定されることはない。
 上記重合反応で用いられる重合触媒は、上記と同様のものを挙げることができる。
 また、重合を阻害しない範囲で、活性水素化合物、有機アルミニウム化合物、イオン交換性層状化合物、無機珪酸塩又は上記重合触媒以外の触媒構成成分、例えば担体等の存在下で重合反応を行ってもよい。
 上記担体としては、上記と同様のものを挙げることができる。
 上記イオン交換性層状化合物としては、上記と同様のものを挙げることができる。
 上記有機担体としては、上記と同様のものを挙げることができる。
 これら担体の粒径(体積平均)は通常、0.1~300μmであるが、好ましくは1~200μm、更に好ましくは10~100μmの範囲である。粒径が1μmよりも小さいと微粉状の重合体となりやすく、また大きすぎると粗大粒子が生成するため、所望の粒子形状に応じて担体の粒径を選択することが好ましい。
 上記の担体の細孔容積は通常、0.1~5cm/gであり、好ましくは0.3~3cm/gである。細孔容積は例えばBET法や水銀圧入法などにより測定できる。
 上記有機アルミニウム化合物としては、前記一般式(1)で表されるフェノール系酸化防止剤をマスキングするものと同じものが挙げられる。
 本発明において、樹脂組成物に、必要に応じてさらに、エチレン性不飽和結合を有するモノマーを重合して得られる重合体に通常使用される他の添加剤を配合することができる。他の添加剤の配合方法としては、重合を阻害するものでなければ、エチレン性不飽和結合を有するモノマーの重合時に他の添加剤を添加することができ、又、他の添加剤を目的に応じた配合量で前記重合体と混合して、押出機などの成形加工機で溶融混錬して造粒、成形する方法が挙げられる。
 工程(B)は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーを溶融混錬する工程である。工程(B)においては、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体/熱可塑性エラストマー=2/1~4/1の質量比で溶融混錬するが好ましい。4/1より熱可塑性エラストマーの比率が少なくなると、塗膜との密着性が悪くなる場合があり、2/1より多くなると、着色し易くなる場合がある。
 上記熱可塑性エラストマーとは、高温では可塑化(流動化)してプラスチックのような加工が可能であり、常温ではゴム弾性体(エラストマー)の性質を示す高分子材料を表す。熱可塑性エラストマーはハードセグメント(可塑性成分)及びソフトセグメント(弾性成分)からなり、単一ポリマー中にハードセグメントとソフトセグメントが化学結合して、ブロック共重合体を形成するブロックポリマー型と、ハードセグメントを構成するポリマーとソフトセグメントを構成するポリマーとを物理的に混合して得られる、「海島分散」、「ポリマーアロイ」と呼ばれるブレンド型等の構造が挙げられる。
 ブロックポリマー型の熱可塑性エラストマーは、ブロック共重合を行うことによって製造できる。ブレンド型の熱可塑性エラストマー組成物の場合は、ソフトセグメントまたはハードセグメントを製造し、その後バンバリーミキサーや2軸押し出し機などの混練機を用いて、ハードセグメントとソフトセグメントを物理的に分散させることによって、ブレンド型の熱可塑性エラストマー組成物が得られる。
(ブロックポリマー型熱可塑性エラストマー)
 本発明においては、ブロックポリマー型の熱可塑性エラストマーを用いる場合、ブロック共重合体としては、エチレン及びα-オレフィンの共重合体が好ましい。上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、1-デセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-オクテンなどの炭素原子数3~10のα-オレフィン等が挙げられる。上記α-オレフィンは、単一のα-オレフィンを用いてもよく、2種以上のα-オレフィンを組み合わせて用いてもよい。
 また、ブロックポリマー型の熱可塑性エラストマーを製造する場合、エチレン及びα-オレフィン以外の、他の単量体由来のセグメントを含有していてもよい。他の単量体としては、例えばジシクロペンタジエン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、1,5-ジシクロオクタジエン等の炭素原子数5~15の非共役ジエン、酢酸ビニルなどのビニルエステル化合物、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のエチレン性不飽和カルボン酸エステル化合物、アクリロニトリル、メタクリロニトリル等のビニルニトリル化合物等が挙げられる。これらの他の単量体は1種を単独で用いてもよく、2種以上を組み合わせてもよく、(共)重合したものでもよい。
(ブレンド型熱可塑性エラストマー)
 本発明において好適なブレンド型の熱可塑性エラストマーとしては、例えばハードセグメントとしてオレフィン樹脂を含有し、ソフトセグメントとしてオレフィン系共重合体エラストマーを含有するものが挙げられる。
 上記ハードセグメントとしてのオレフィン樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、線状高密度ポリエチレン、線状低密度ポリエチレン、分岐状低密度ポリエチレン、エチレン単独重合体、プロピレン単独重合体、あるいは、エチレンとα-オレフィンの共重合体が挙げられ、該α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン及び1-デセン等の炭素原子数3~10のα-オレフィンが挙げられる。上記オレフィン樹脂は、単一のオレフィン樹脂であってもよく、二種以上のオレフィン樹脂を組み合わせたものであってもよい。
 上記ソフトセグメントとしてのオレフィン系共重合体エラストマーとしては、エチレン及びα-オレフィンの共重合体であるエラストマーが好ましく用いられる。上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、1-デセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-オクテンなどの炭素原子数3~10のα-オレフィンが通常用いられる。上記α-オレフィンは、単一のα-オレフィンを用いてもよく、2種以上のα-オレフィンを組み合わせて用いてもよい。
 また、ブレンド型の熱可塑性エラストマーの場合、ソフトセグメントには、本発明の効果を損なわない限り、オレフィン系共重合体エラストマーとともに、他のエラストマーが含有されていてもよい。そのような他のエラストマーとしては、例えばポリブタジエン、水添ポリブタジエン、水添ポリイソプレンなどのスチレン系エラストマー、塩ビ系エラストマー、ポリエーテル等のポリエステル系エラストマー、ポリウレタン系エラストマー、ナイロン系エラストマー、天然ゴム等の弾性重合体を用いることもできる。
 上記ブレンド型の熱可塑性エラストマーにおけるハードセグメント及びソフトセグメントの質量比は、所望の目的に応じて適宜設定することができる。
 本発明の熱可塑性エラストマーの製造に使用される触媒は特に限定されるものではなく、公知の重合触媒を利用可能であり、不飽和結合を有するモノマーを重合する際に挙げた重合触媒を用いてもよい。
 重合反応を行う方法としては、エチレン性不飽和結合を有するモノマーの重合反応において挙げた方法を採用することができる。
 本発明に係る熱可塑性エラストマーには、オレフィン樹脂やオレフィン系共重合体以外の他の樹脂やゴム、架橋剤、架橋助剤、相溶化剤、滑剤、耐電防止剤、軟化剤、発泡剤等他の成分を配合してもよい。上記他の成分の配合は、熱可塑性エラストマーと上記エチレン性不飽和結合を有するモノマーを重合して得られる重合体との溶融工程の前に行うことが好ましいが、該溶融工程と同時であってもよい。
 上記他の樹脂としては、例えば、エチレン・酢酸ビニル共重合体(EVA)、エチレン・エチルアクリレート共重合体、ポリアミド、ポリ(4-メチル-1-ペンテン)、スチレン-イソプレン-スチレンブロック共重合体、スチレン-エチレンブテン-スチレンブロック共重合体、スチレン-エチレンプロピレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体等が挙げられる。
 上記ゴムとしては、特に限定されるものではないが、オレフィンから誘導される繰り返し単位をゴム中の高分子量成分の50%以上含有する無定型でランダムな弾性共重合体があげられる。
 上記弾性共重合体としては、例えば、エチレン及び炭素原子数3~10のα-オレフィンの群から選択された2種類以上のモノマーの組合せを共重合して得られるものが挙げられる。また、エチレン及び炭素原子数3~10のα-オレフィンの群から選択された2種類以上のモノマーの組合せと、共役ジエンモノマー、及び/又は、非共役ジエンモノマーを共重合したものであってもよい。
 上記炭素原子数3~10のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、1-デセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-オクテン等が挙げられる。
 上記共役ジエンとしては、例えば、ブタジエン、イソプレン、クロロプレン等が挙げられる。
 上記非共役ジエンモノマーとしては、例えば、ジシクロペンタジエン、1,4-ヘキサジエン、1,5-シクロオクタジエン、5-メチレン-2-ノルボルネン、または5-エチリデン-2-ノルボルネンなどが挙げられる。
 上記架橋剤としては、有機過酸化物が挙げられ、例えば、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、1,1-ジ(t-ブチルパーオキシ)3,5,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(パーオキシベンゾイル)ヘキシン-3、ジクミルパーオキシド等が挙げられる。
 上記有機過酸化物の添加量は熱可塑性エラストマー100質量部に対し、0.005~2.0質量部、好ましくは0.01~0.6質量部の範囲である。0.005質量部未満では架橋反応の効果が小さく、2.0質量部を超えると反応の制御が難しくなり、経済的に不利である。また、有機過酸化物は、希釈剤と混合して、液状あるいは粉状物質として用いることができる。
 希釈剤としては、例えば、オイル、有機溶媒、無機フィラー(シリカ、タルク等)等が挙げられる。
 上記架橋助剤としては、架橋タイプの熱可塑性エラストマーの架橋度を高め、熱可塑性エラストマー組成物の物性を向上させるものがあげられ、分子内に二重結合を複数有するものが好ましい。
 例えば、テトラエチルチウラムジスルフィド(TETD)、テトラメチルチウラムジスルフィド(TMTD)、N,N’-m-フェニレンビスマレイミド、トルイレンビスマレイミド、P-キノンジオキシム、ニトロベンゼン、ジフェニルグアニジン、ジビニルベンゼン、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレート等が挙げられる。これらの架橋助剤は単数であってもよく、複数組み合わせて使用してもよい。
 上記架橋助剤の添加量は、熱可塑性エラストマー100質量部に対し、好ましくは0.01~4.0質量部、より好ましくは、0.05~2.0質量部の範囲である。0.01質量部未満では添加効果が得られにくい場合があり、4質量部を超えると経済的に不利となる場合がある。
 熱可塑性エラストマーの架橋において電子線を用いて行う場合には、電子線の照射量を1kGray以上、100kGray以下にすることが望ましい。1kGray未満では熱可塑性エラストマーを溶融したときに成形性が悪くなるおそれがあり、100kGray以上では、分子鎖を切断したり、ベタツキが現れる場合がある。
 本発明の熱可塑性エラストマー組成物にはポリオレフィン樹脂と架橋ゴムとの界面接着力を向上する目的で相溶化剤を添加してもよい。相溶化剤としては、例えば、シラン変性オレフィン樹脂、シラン変性オレフィン系ゴムなどのシランカップリング剤、接着性樹脂(ポリスチレン-ポリブタジエン-ポリスチレンブロックコポリマー、ポリオレフィン系グラフト体、くし型グラフト体など)が挙げられる。
 上記滑剤としては、上記と同様のものが挙げられる。上記滑剤の添加量は、熱可塑性エラストマー100質量部に対し、好ましくは0.03~2質量部、より好ましくは0.04~1質量部の範囲である。0.03質量部未満では、所望の滑性が得られない場合があり、2質量部を超えると滑剤成分が熱可塑性エラストマー組成物の成形品表面にブリードしたり、物性低下の原因となる場合がある。
 上記帯電防止剤としては、上記と同様のものが挙げられる。また、帯電防止剤の添加量は、熱可塑性エラストマー100質量部に対し、好ましくは0.03~2質量部、より好ましくは0.04~1質量部である。帯電防止剤が過少の場合、帯電防止効果が不足し、一方過多であると、表面へのブリード、熱可塑性エラストマー組成物の物性低下を引き起こす場合がある。
 上記軟化剤としては、例えば、プロセスオイル、脂肪族系環状飽和炭化水素樹脂等が挙げられる。
 上記発泡剤としては、例えば、プロパン、ブタン、ペンタン等の低級脂肪族炭化水素、シクロブタン、シクロペンタン等の低級脂環式炭化水素及びモノクロロジフルオロメタン、ジクロロジフルオロメタン、トリクロロジフルオロエタン、トリクロロトリフルオロエタン、ジクロロテトラフルオロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素からなる揮発型発泡剤、窒素、炭酸ガス、酸素、空気等のガス状発泡剤、重炭酸ソーダ、重炭酸アンモニウム、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、アゾジカルボンアミド、p,p′-オキシビスベンゼンスルホニルヒドラジド、アゾビスイソブチロニトリル等からなる熱分解型発泡剤等が用いられる。これらの中でも、特に熱分解型発泡剤が望ましい。
 これらの発泡剤の使用量は必要に応じて、適宜使用される。
 上記熱可塑性エラストマーと発泡剤の混合は、押出機等の内部で熱可塑性エラストマーの溶融下、両者を混練することにより行われるが、熱分解型発泡剤の場合には、熱可塑性エラストマーを押出機等に供給する前に、熱可塑性エラストマーと予め混合して、あるいは熱可塑性エラストマーとは別々に、押出機等に供給してもよく、また揮発型発泡剤やガス状発泡剤の場合には、例えばベント式押出し機等のスクリュー中間部から溶融した熱可塑性エラストマー中に圧入してよい。
 熱可塑性エラストマーに対して発泡剤を利用する場合は、上記熱可塑性エラストマーと発泡剤は、押出機先端に取付けられたダイスを通して、押出発泡される。得られる発泡体の形状は任意であって特に制限されないが、例えばフィルム状、シート状、パイプ状、円筒状等が挙げられる。
 本発明にかかる塗装部材用樹脂組成物には、必要に応じてさらに他の添加剤を配合することができる。他の添加剤の配合方法としては、重合を阻害するものでなければ、エチレン性不飽和結合を有するモノマーの重合時や、熱可塑性エラストマーの重合時に添加することができる。また、目的に応じた配合量で他の添加剤をエチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの溶融混練時に配合して均一に分散させることもできる。なお、他の添加剤を添加する場合は、加温装置を具備した二軸押出機、バンバリーミキサー、加圧ニーダー、ヘンシェルミキサー、ブラベンダー型ニーダー、ディスパー等を用いて、熱可塑性エラストマー組成物が均一組成になるまで混練または撹拌して調製することが好ましい。
 上記本発明にかかる塗装部材用樹脂組成物に配合される他の添加剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、紫外線吸収剤、ヒンダードアミン化合物、重金属不活性化剤、造核剤、難燃剤、金属石鹸、ハイドロタルサイト、充填剤、滑剤、帯電防止剤、顔料、染料、可塑剤等が挙げられる。
 上記フェノール系酸化防止剤としては、上記と同様のもの及び前記一般式(1)で表されるフェノール系酸化防止剤が挙げられるが、特に、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンが比較的安価で、コストパフォーマンスが良いので好ましく用いられる。
 上記他の添加剤としてのフェノール系酸化防止剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、好ましくは、0.001~0.5質量部、特に好ましくは、0.01~0.3質量部である。
 上記リン系酸化防止剤としては、上記で添加するリン系酸化防止剤として例示した化合物と同様なものが挙げられる。上記リン系酸化防止剤の使用量は、好ましくは、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.01~0.3質量部である。
 上記硫黄系酸化防止剤としては、例えば、上記のチオエステル系酸化防止剤として例示したものが挙げられる。硫黄系酸化防止剤の使用量は、好ましくは、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.01~0.3質量部である。
 上記紫外線吸収剤としては、上記と同様のものが挙げられる。
 上記紫外線吸収剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記ヒンダードアミン系光安定剤としては、上記と同様のものが挙げられる。
 上記ヒンダードアミン系光安定剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記造核剤としては、上記と同様のものが挙げられる。
 上記造核剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、0.001~10質量部、より好ましくは0.005~5質量部である。
 上記難燃剤としては、上記と同様のものが挙げられる。
 上記難燃剤の使用量は、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、1~70質量部、より好ましくは、10~30質量部である。
 上記充填剤としては、上記と同様のものが挙げられる。
 上記滑剤は、上記したものと同様のものを挙げることができる。
 上記帯電防止剤は、上記したものと同様のものを挙げることができる。
 本発明により得られる重合体の成形方法としては、特に限定されず、公知の成形方法で成形することができ、例えば、押出成形、射出成形、中空成形、ブロー成形、圧縮成形等の方法を採用することができる。
 本発明により得られる塗装部材はフィルム、シート、筒型、箱形、球状といった形状の制限なく利用可能であり、具体的な用途としては、塗装面の外観が重要視される自動車外装部品が挙げられ、例えば、バンパー、スポイラー、サイドガードモール、ラジエータグリル等に利用可能である。
 以下、実施例及び比較例をもって本発明を更に詳しく説明するが、本発明はこれらの実施例等によって制限を受けるものではない。なお、実施例・比較例における評価は以下の方法により実施した。
(接着性)
 ラミネートフィルムの製造後、フィルムの剥離の有無について確認した。具体的には、ラミネートフィルムの両側を擦ったときに、容易にずれてしまう場合を接着不可とし、ずれない場合を良好として評価した。
(接着強度)
 下記の手順で得られたラミネートフィルムから、幅15mm、長さ100mmの試験片を作成し、この試験片を長さ方向に50mmにわたって手で剥離した後、両端を引張試験機(ストログラフAPII;株式会社東洋精機製作所製)で180度方向に、300mm/分の引張速度で剥離したときの最大強度を測定して、接着強度とした。
(溶出試験)
 下記の方法で得られたラミネートフィルムから、130mm×170mmの包装袋を作成し、内容物として水200mlを包装袋に封入し、120℃×30分間の熱水・静置式レトルト殺菌処理を行った。殺菌処理後、室温まで冷却し、内容物である水をクロロホルムと混合して、クロロホルムに抽出し、濃縮した後、ガスクロマトグラフ質量分析計にて、配合添加剤、配合添加剤の酸化物、配合添加剤の分解物質などの低分子量物質を定量し、配合された各添加剤の溶出量を求め、各添加剤の配合量に対する該溶出量の比を算出し、溶出量比を求めた。
(ヒートシール強度)
 下記の方法で得られたラミネートフィルムから、幅40mm、長さ100mmの試験片を二枚作製し、この試験片の長さ方向の先端と他方の試験片の長さ方向の先端がそれぞれ15mm重なり合うようにし、200℃、1kg/cm、1秒の条件でヒートシールした。この試験片を引張試験機で180度方向に300mm/minの引張速度で剥離したときの引張強度をヒートシール強度として測定した。
〔実施例1-1~1-3、比較例1-1~1-9〕
(固体触媒の調製)
 無水塩化マグネシウム4.76g(50mmol)、デカン25ml及び2-エチルヘキシルアルコール23.4ml(150mmol)を130℃で2時間加熱反応を行い均一溶液とした後、この溶液中に無水フタル酸1.11g(7.5mmol)を添加し、130℃にて更に1時間撹拌反応を行い、無水フタル酸を該均一溶液に溶解させた。該均一溶液を室温まで冷却した後、―20℃に保持した四塩化チタン200ml(1.8mol)中に1時間かけて全量滴下装入した。挿入終了後、4時間かけて110℃に昇温し、110℃に到達した時点でジイソブチルフタレート2.68ml(12.5mmol)を添加し、110℃を維持したまま2時間撹拌して反応させた。反応終了後、熱ろ過にて固体部を採取し、該固体部を200mlの四塩化チタンにて懸濁し、110℃に昇温して2時間加熱反応を行った。反応終了後、再び熱ろ過にて固体部を採取し、110℃のデカン及びヘキサンで洗浄し、洗液中に遊離チタン化合物が検出されなくなるまで充分に洗浄し、固体Ti触媒成分を得た。
 上記の方法によって得られた固体Ti触媒成分は、ヘプタンスラリーとして5mg/mLとなるようにヘプタンを加えて保存した。尚、触媒組成を調べる目的で一部を採取して乾燥して、分析したところ、固体Ti触媒成分の組成は、チタン2.9質量%、塩素56.0質量%、マグネシウム17.0質量%及びイソブチルフタレート20.9質量%であった。
(フェノキシド溶液の調製)
 窒素置換したフラスコに、乾燥ヘプタン10mL、トリエチルアルミニウム54mg、及び表1~3に記載のフェノール系酸化防止剤161mgを混合・撹拌してフェノール系酸化防止剤をマスキングし、フェノール系酸化防止剤の濃度が16mg/mLのフェノキシド溶液を調製した。
(ホスファイト溶液の調製)
 窒素置換したフラスコに、表1~3記載のリン系酸化防止剤144mgを加え、ヘプタン6mLを添加して混合・撹拌して、リン系酸化防止剤の濃度が24mg/mLのホスファイト溶液を調製した。
(添加、重合)
 窒素置換した1000mlのオートクレーブに乾燥ヘプタン600mlを加え、トリエチルアルミニウム0.41g(3.6mmol)、表1~3中において添加方法が重合時となっている実施例、比較例については前記フェノキシド溶液及びホスファイト溶液を表1~3に記載の安定剤組成物の配合になるように添加し、さらに、ジシクロペンタジメトキシシラン82.23mg(0.36mmol)及び固体Ti触媒成分のヘプタンスラリーをTiとして0.012mmolとなるように順次加えた。さらに、1-ヘキセン11.2gを加え、オートクレーブ内をエチレン雰囲気に置換し、エチレンで1kgf/cmGの圧力を加え、50℃で5分間プレ重合(600rpm)を行った。その後、エチレンをパージした後、水素分圧2kgf/cmG、エチレン分圧7kgf/cmG、及びエチレン混合物として、7wt%になるように1-ヘキセンをオートクレーブ内に導入した。80℃に昇温後、オートクレーブ内をプロピレンで5kgf/cmGの圧力を加え、80℃で2時間重合反応を行った。窒素ガスで系内を置換後、40℃のエタノール5mlを加えて重合反応を停止し、50℃で減圧・脱溶媒を行い、さらに、真空中、40℃で重合物を5時間乾燥させることにより、ポリエチレンパウダーを得た。
(溶融混錬、フィルム成形)
 上記重合で得られたパウダー100質量部に対して、表1~3において添加方法が造粒時となっている実施例、比較例については表1~3に記載の安定剤組成物及びステアリン酸カルシウムを0.05質量部添加し、混合した。混合後、T-ダイで押出温度250℃、厚み60μm、幅300mmで押し出してフィルムシートに成形し、支持基材としてエステルフィルム(東洋紡株式会社製,商品名:東洋紡エステルフィルムE5100)に対して、アンカーコート剤(東洋インキ製造株式会社製,商品名:オリバインTX1439)を表1に記載の塗布量で塗布し、塗布面と、上記フィルムシートが圧着されるように、艶消しロールにて加圧接着してラミネートフィルムを製造した。
Figure JPOXMLDOC01-appb-T000007
1)AO-1:3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)-N-オクタデシルプロピオンアミド
2)AO-2:n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート
3)P-1:トリス(2,4-t-ブチルフェニル)ホスファイト
4)重合時:エチレン性不飽和結合を有するモノマーの重合時に安定剤を添加
5)造粒時:エチレン性不飽和結合を有するモノマーの重合後、安定剤を添加・混合し、250℃で混練して造粒した。
 比較例1-1~1-9より、本発明の製造方法とは異なる場合、ポリエチレンパウダーをT-ダイで押出の際に、時間の経過とともにトルクが上昇し、フィルムシートを安定して製造することができなかった。
 比較例1-6及び比較例1-8より、アンカーコート剤を0.15g/mに増量することにより、支持基材との接着性は改善されたものの、溶出量比が高く衛生的に問題があった。また、ラミネートフィルムに着色やフィッシュアイが確認された。
 比較例1-7及び比較例1-9では、フィルムシートは得られるものの、支持基材のエステルフィルムと加圧・圧着しても剥離するため、ラミネートフィルムは製造できなかった。
 これらに対し、実施例1-1~1-3より、本願発明の製造方法で製造したポリエチレンフィルムは、支持基材のエステルフィルムとの接着性が良好で、溶出量比も抑制されることが確認できた。
〔実施例2-1~2-3,比較例2-1~2-9〕
 前記実施例1-1において、Tダイによる押出温度を、表2に記載の温度に、支持基材をエステルフィルム(東洋紡株式会社製,商品名:東洋紡エステルフィルムT4100)に変更し、アンカーコート剤を使用せず、T-ダイで押出したフィルムシートに対して、支持基材と圧着する面にオゾン濃度12.9g/mの空気を1時間あたり3Nmの量で吹きつけた以外は、実施例1-1と同様の手順でラミネートフィルムを製造した。
Figure JPOXMLDOC01-appb-T000008
(6)フィルムを成形できず未評価
 上記比較例2-1~2-5より、本発明の製造方法とは異なる場合、ポリエチレンパウダーをT-ダイで押出の際に、時間の経過とともにトルクが上昇し、フィルムシートを安定して製造することができなかった。また、比較例2-6~比較例2-9より、添加工程で安定剤組成物を増量して配合することにより、フィルムシートを製造できるものの、接着不良であり、溶出量比も高く、衛生的に問題があることが確認できた。また、比較例2-7及び比較例2-9より、押出温度を300℃に上昇することにより、接着性は改善されるものの、溶出量比が高く、衛生的に問題があることが確認できた。
 これらに対し、実施例2-1~2-3より、本願発明の製造方法で製造したポリエチレンフィルムは、支持基材のエステルフィルムとの接着性が良好で、溶出量比も抑制されることが確認できた。
〔実施例3-1~3-3,比較例3-1~3-9〕
前記実施例1-1の(ラミネートフィルムの製造)において、アンカーコート剤をドライラミネーション用接着剤(武田薬品工業株式会社製,商品名:A-515/A-50)に変更し、T-ダイによる押出温度を250℃から280℃に変更した以外は、実施例1-1と同様の手順でラミネートフィルムを製造した。
Figure JPOXMLDOC01-appb-T000009
 上記比較例3-1~3-5より、本発明の製造方法とは異なる場合、ポリエチレンパウダーをT-ダイで押出の際に、時間の経過とともにトルクが上昇し、フィルムシートを安定して製造することができなかった。また、比較例3-7及び比較例3-9より、添加工程で安定剤組成物を増量して配合することにより、フィルムシートを製造できるものの、接着性が乏しく、溶出量比も高く、衛生的に問題があることが確認できた。また、比較例3-6及び比較例3-8より、接着剤の塗布量を1.2g/mから2.0g/mに増量することによって、接着性は改善されるものの、溶出量比が高く、衛生的に問題があることが確認できた。
 これらに対し、実施例3-1~3-3より、本願発明の製造方法で製造したポリエチレンフィルムは、支持基材のエステルフィルムとの接着性が良好で、溶出量比も抑制されることが確認できた。
 以上より、本発明のラミネートフィルムは、包装材料、特に、包装袋として、内容物、特に液体物を充填した場合の内容物に対する耐性に優れており、食品や医薬品等のより安全衛生的な包装材として好適に利用することができる。
<実施例4-1~4-4、比較例4-1~4-10>
〔製造例1〕エチレン性不飽和結合を有するモノマーの重合
 下記の手順([1]固体Ti触媒成分の調製、[2]フェノキシド溶液の調製、[3]ホスファイト溶液の調製、[4]プロピレンの重合)に従い、ポリプロピレンパウダーを得た。
(固体Ti触媒成分の調製)
 無水塩化マグネシウム4.76g(50mmol)、デカン25ml及び2-エチルヘキシルアルコール23.4ml(150mmol)を130℃で2時間加熱反応を行い均一溶液とした後、この溶液中に無水フタル酸1.11g(7.5mmol)を添加し、130℃にて更に1時間撹拌反応を行い、無水フタル酸を該均一溶液に溶解させた。このようにして得られた均一溶液を室温に冷却した後、-20℃に保持された四塩化チタン200ml(1.8mol)中に1時間に渡って全量滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでジイソブチルフタレート2.68ml(12.5mmol)を添加し、これより2時間同温度にて撹拌下保持した。2時間の反応終了後、熱ろ過にて固体部を採取し、この固体部を200mlの四塩化チタンにて再懸濁させた後、再び110℃で2時間、加熱反応を行った。反応終了後、再び熱ろ過にて固体部を採取し、110℃デカン及びヘキサンにて、洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄して固体Ti触媒成分を得た。以上の製造方法にて合成された固体Ti触媒成分はヘプタンスラリーとして保存するが、このうち一部を取り出し、触媒組成を調べる目的で乾燥した。この様にして得られた固体Ti触媒成分の組成は、チタン3.1重量%、塩素56.0重量%、マグネシウム17.0重量%及びイソブチルフタレート20.9重量%であった。
(フェノキシド溶液の調製)
 窒素置換したフラスコに、乾燥ヘプタン10mL、トリエチルアルミニウム54mg、及び表4に記載のフェノール系酸化防止剤161mgを混合・撹拌してフェノール系酸化防止剤をマスキングし、フェノール系酸化防止剤の濃度が16mg/mLのフェノキシド溶液を調製した。
(ホスファイト溶液の調製)
 窒素置換したフラスコに、表4記載のリン系酸化防止剤144mgを加え、ヘプタン6mLを添加して混合・撹拌して、リン系酸化防止剤の濃度が24mg/mLのホスファイト溶液を調製した。
(プロピレンの重合)
 窒素置換した2Lの耐圧反応器にトリエチルアルミニウム1.26mmol、前記フェノキシド溶液及びホスファイト溶液を表4に記載の安定剤組成物の配合になるように添加し、ジシクロペンチルジメトキシシラン0.126mmol及び固体Ti触媒成分のヘプタンスラリー(Tiとして8.4μmol)を順次加えた。オートクレーブ内をプロピレン雰囲気に置換し、水素を0.12MPaで導入し、さらにプロピレンを全圧3.82MPaとなるように導入し、30℃で3分間プレ重合した。その後、エチレンを0.12g/minで導入しながら、70℃まで昇温し、オートクレーブ内の全圧を3.82MPaになるようプロピレンで調節しつつ、1時間重合反応を行った。40℃に冷却した後、エタノール15mlを加え重合反応を停止させた。プロピレンをパージした後、真空中、40℃でポリマーを5時間乾燥することにより、ポリプロピレンパウダーAを得た。
 なお、表4記載の安定剤の配合量は、エチレン性不飽和結合を有するモノマーから得られる重合体と熱可塑性エラストマーの合計100質量部に対する量(質量部)である。また、表4中の配合量は、マスキングする前の酸化防止剤単独としての量である。熱可塑性エラストマーの重合時にも安定剤を添加する場合は、エチレン性不飽和結合を有するモノマーから得られる重合体の重合時に添加する分と、熱可塑性エラストマーの重合時に添加する分との合計が樹脂組成物全体中の配合量となる。以下の製造例も同様である。
〔製造例2〕エチレン性不飽和結合を有するモノマーの重合
 上記製造例1において、フェノキシド溶液及びホスファイト溶液を添加しなかった以外は、上記製造例1と同様の手順で製造し、ポリプロピレンパウダーBを得た。
〔製造例3〕熱可塑性エラストマーの製造
 下記の手順([1]固体触媒の調製、[2]フェノキシド溶液の調製、[3]重合)に従い、熱可塑性エラストマーAを得た。
(固体触媒の調製)
 20℃、微粉状のCuSO・5HO 37.5g(0.15mol)をトルエン100mLに撹拌して懸濁させ、トリメチルアルミニウム50mL(0.52mol)とトルエン150mLの混合溶液を徐々に滴下した。滴下終了後さらに20℃で48時間反応を続けた。次に反応液をろ過し、固体の硫酸銅を除いた後、266.6Pa下、35℃の減圧蒸留により、トルエンおよび未反応トリメチルアルミニウムを除去し、メチルアルミノオキサン17g(0.29mol)を得た。
 高純度γ-アルミナ(日揮触媒化成株式会社製、商品名:ACP-1,平均粒径約60μm,比表面積約300m/g,細孔容積約0.7mL/g)500gを、約95℃の熱水2L中で、3時間撹拌した後、水を除いた。さらにこの操作を10回繰り返した後、アセトンで洗浄し、乾燥した。これを乾燥窒素気流中で、450℃で6時間加熱し、吸着水を除去した。
 このアルミナ7gをn-ヘキサン50mLで懸濁させ、これにトルエン10mLに溶解させたメチルアルミノオキサン82mg(アルミニウム単位:1.4mmol)を加えた。この混合物を室温で30分間撹拌した後、トルエンに溶解させたテトラベンジルジルコニウムの0.16M溶液を9mL添加し、さらに室温で30分間撹拌を行った。液相には、ジルコニウム、アルミニウムとも検出されなかった。
 このようにして調製した固体触媒はジルコニウム、アルミニウムの吸着量から計算した結果、0.2mmol/gのジルコニウムおよび0.2mmol/gのアルミニウムを含んでいた。
(フェノキシド溶液の調製)
 トルエン50mlにトリイソブチルアルミニウムと表4記載の安定剤(フェノール系酸化防止剤)を官能基のモル比で2:1となるように合計で5.0g加え室温で30分撹拌することにより、フェノキシド溶液を調製した。
(重合)
 100Lのステンレス製オートクレーブにおいて窒素雰囲気下、25℃で水素分圧0.059MPa、エチレン分圧0.29MPaとなるように水素及びエチレンを装入し、プロピレン25kgを装入した。昇温して50℃で均圧装置により、固体Ti触媒成分のヘプタンスラリー(ジルコニウムとして3mmol)を添加し、得られる重合体中の安定剤の添加量が表4記載の量となるように調製したフェノキシド溶液を添加した後、エチレンを供給し、温度60℃,全圧2.84MPaを維持しながら2時間共重合を行った。イソプロピルアルコール50mLを添加して重合反応を停止し、未反応プロピレンを除去して生成重合物を取り出し、白色、球状の熱可塑性エラストマーAを得た。
〔製造例4〕熱可塑性エラストマーの製造
 上記製造例3において、フェノキシド溶液を添加しなかった以外は、上記製造例3と同様の手順で製造し、熱可塑性エラストマーBを得た。
(混錬)
 上記製造例1又は2で得られたポリプロピレンパウダー及び上記製造例3又は4で得られた熱可塑性エラストマーを2/1ないし4/1の重量比で混合した混合物100質量部に対し、ステアリン酸カルシウム0.05質量部、タルク(日本タルク株式会社製商品名:ミクロエースP-4)10質量部、光安定剤(株式会社ADEKA製商品名:アデカスタブLA-62)0.2質量部を添加し、混合した。なお、製造例2で得られたポリプロピレンパウダー又は製造例4で得られたエラストマーを使用する場合、表4に記載の安定剤組成物を添加して混合した。混合後、二軸押出機(ラボプラストミルマイクロ,株式会社東洋製作所製)を用いて、溶融温度230℃、スクリュー速度50rpmの条件で溶融混練し、ペレットを得た。
 上記で得られたペレットに対して、ラボ用小型射出成形機(DSM Xplore社製Compounder15,Injection molder 12)にて、射出温度2220℃、金型温度50℃の条件で射出成形し、50mm×90mm×2mmの平板状試験片を得た。得られた試験片は射出成形後、23℃の恒温槽で48時間静置してから、下記の方法で測定した。これらの結果について、下記の手順で評価を行った。
(塗膜二次密着性)
 得られた試験片を1,1,1-トリクロロエタンの飽和蒸気中に30秒間、曝して表面を洗浄し、90℃に設定されたオーブン中に10分間入れて乾燥し、マイクロ波プラズマ処理装置(株式会社ニッシン製BH-10)を用いてプラズマ処理を実施した。
 プラズマ処理後の試験片について、下記の手順(1)→(7)に従ってアクリル-メラミン系パールマイカ塗装を行った。塗料は、商品名:日本ビーケミカル株式会社製R320、R331、及びR341を用い、カラーベースにはR320(商品名:日本ビーケミカル株式会社製)を、マイカベースにはR331(商品名:日本ビーケミカル株式会社製)を、クリアーにはR341(商品名:日本ビーケミカル株式会社製)を用いた。
〈塗装方法〉
(1)カラーベース塗装、膜厚15μm
(2)5分間セッティング後、120℃20分乾燥
(3)マイカベース塗装、膜厚15μm
(4)3分間フラッシュ
(5)クリアー塗装、膜厚25μm
(6)5分間セッティング後、120℃20分焼き付け塗装
(7)室温で48時間放置
 上記の手順により、アクリル-メラミン系パールマイカ塗装をした試験片を40℃の水に240時間浸漬した後、塗膜にカッターナイフで碁盤の目状に切り込みを入れ、100個の1mm角の区画に分けた。この上からセロハンテープを貼り付け、このセロハンテープを剥がし、セロハンテープで剥がれなかった区画の数を計測して、塗膜の密着性を評価した。
(耐熱黄変性)
 また、アクリル-メラミン系パールマイカ塗装をした上記の試験片に対して、90℃の恒温器に240時間静置し、加熱前後の塗膜の黄変度(Δb)を測定して耐熱黄変性を評価した。測定は分光測色計(型番:T―4、スガ試験機株式会社製)により行った。
(溶出試験)
 耐圧反応器に、95%エタノール水溶液215mlを抽出溶媒として入れて密栓し、121℃及び49℃の恒温器に耐圧反応器を1日静置した。抽出溶媒の温度が121℃になったことを確認してから、上記の試験片3枚が浮かないようにガラス棒に試験片3枚を通して沈め、121℃の恒温器に戻して2時間静置した。
 2時間経過後試験片を取り出し、新しい抽出溶媒で試験片の表面を洗浄してから再度、ガラス棒に試験片3枚を通し、49℃の恒温器に静置していた耐圧反応器に入れて抽出溶媒に沈めて密栓し、49℃の恒温器に戻して10日間静置した。10日間経過後、試験片を取り出して、新しい抽出溶媒で試験片の表面を洗浄した。121℃及び49℃の恒温器で抽出した溶媒及び洗浄に用いた抽出溶媒を回収して、ロータリーエバポレーターにて減圧濃縮した。
 濃縮した抽出溶媒における試験片から抽出された安定剤組成物の抽出量について、下記の方法で定量分析をした。
(定量分析)
 ガスクロマトグラフィー{装置:株式会社島津製作所製ガスクロマトグラフィーGC2010、カラム:SGE社製BPX5(30m×0.25mmlD×0.25μm)、インジェクション温度:330℃、検出器温度:330℃、測定条件:昇温速度15℃/min}にて、配合した添加剤をクロロホルムで溶かしたもので検量線を作成し、95%エタノール水溶液に抽出された添加剤の定量分析をした。なお。溶出量とは、抽出溶媒あたりの濃度を表す。
Figure JPOXMLDOC01-appb-T000010
1)AO-1(フェノール系酸化防止剤):3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-N-オクタデシルプロピオンアミド
2)AO-2(フェノール系酸化防止剤):テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン
3)AO-3(フェノール系酸化防止剤):n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート
4)P-1(リン系酸化防止剤):トリス(2,4-ジ第三ブチルフェニル)ホスファイト
5)添加方法:
重合時:モノマーの重合時に酸化防止剤を添加
造粒時:モノマーの重合後、酸化防止剤を添加・混合し、250℃で混練して造粒した。
6)タルク:日本タルク株式会社製商品名:ミクロエースP-4
7)LA-62:株式会社ADEKA製、光安定剤商品名(1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジルトリデシルのエステル化合物)
8)Ca-St:ステアリン酸カルシウム
9)溶出量比:比較例1の酸化防止剤の溶出量を1としたときの、各配合における酸化防止剤の溶出量の比率を表す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表5中の比較例4-1、4-2より、一般式(1’)で表されるフェノール系酸化防止剤とは異なるフェノール系酸化防止剤を、ポリプロピレン又はエラストマーの重合時に添加して成形加工した場合、ポリプロピレン樹脂及びエラストマーが劣化してしまい、試験片を作成することができなかった。
 また、比較例4-3、4-6、4-9及び4-10より、造粒行程時に添加する酸化防止剤の配合量が0.03質量部では、成形時に樹脂が劣化して試験片を作成することができなかった。
 また、比較例4-4、4-5、4-7及び4-8より、酸化防止剤を増量することによって耐熱性は改善されるものの、成形品の着色が顕著で、溶出量比が多く衛生的に問題があり、満足できるものではなかった。
 これらに対し、本発明の塗装部材は、実施例4-1より塗膜の密着性及び耐熱黄変性が良好であり、溶出量がわずかである。実施例4-2より、さらにリン系酸化防止剤を添加することによって、耐熱性がさらに向上することが確認できた。
 また、実施例4-3及び4-4より、重合体と熱可塑性エラストマーの比率が、質量比で4/1の場合でも問題ないことが確認できた。

Claims (13)

  1.  エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、重合により得られる重合体100質量部に対して0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか1カ所以上に添加する工程を備えることを特徴とするラミネートフィルムの製造方法。
    Figure JPOXMLDOC01-appb-I000001
    (式中、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。)
  2.  エチレン性不飽和結合を有するモノマーの重合前又は重合中に、さらにリン系酸化防止剤を、重合により得られる重合体100質量部に対して0.001~3質量部、触媒系、重合系および配管のいずれか1カ所以上に添加する工程を備える請求項1記載のラミネートフィルムの製造方法。
  3.  前記有機アルミニウム化合物がトリアルキルアルミニウムである請求項1記載のラミネートフィルムの製造方法。
  4.  請求項1記載のラミネートフィルムの製造方法により製造されたことを特徴とするラミネートフィルム。
  5.  エチレン性不飽和結合を有するモノマーを重合して得られる重合体および熱可塑性エラストマーを含む塗装部材用樹脂組成物の製造方法であって、
     エチレン性不飽和結合を有するモノマーの重合前又は重合中に、下記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対して、上記フェノール系酸化防止剤が0.001~0.5質量部配合されるように、触媒系、重合系及び配管のいずれか一カ所以上に添加する工程(A)と、
     エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーを溶融混錬する工程(B)とを、備えることを特徴とする塗装部材用樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-I000002
    (式中、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~5のアルキル基、又は炭素原子数7~9のアリールアルキル基を表し、Rは分岐を有してもよい炭素原子数1~30のアルキル基、分岐を有してもよい炭素原子数2~30のアルケニル基、置換されていてもよい炭素原子数3~12のシクロアルキル基、又は置換基を有してもよい炭素原子数6~18のアリール基を表す。)
  6.  前記工程(B)において、エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとを、エチレン性不飽和結合を有するモノマーを重合して得られる重合体/熱可塑性エラストマー=2/1~4/1の質量比で溶融混錬する請求項5記載の塗装部材用樹脂組成物の製造方法。
  7.  前記熱可塑性エラストマーが、エチレン性不飽和結合を有するモノマーを重合して得られるものであって、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、前記一般式(1)で表されるフェノール系酸化防止剤を有機アルミニウム化合物でマスキング処理したものを、触媒系、重合系および配管のいずれか1カ所以上に添加して、前記モノマーを重合することによって得られるものである請求項5記載の塗装部材用樹脂組成物の製造方法。
  8.  エチレン性不飽和結合を有するモノマーを重合して得られる重合体と熱可塑性エラストマーとの合計100質量部に対し、リン系酸化防止剤の配合量が0.001~3質量部となるように、エチレン性不飽和結合を有するモノマーの重合前又は重合中に、触媒系、重合系および配管のいずれか1カ所以上にリン系酸化防止剤を添加する工程をさらに備える、請求項5記載の塗装部材用樹脂組成物の製造方法。
  9.  前記有機アルミニウム化合物がトリアルキルアルミニウムである請求項5記載の塗装部材用樹脂組成物の製造方法。
  10.  請求項5記載の塗装部材用樹脂組成物の製造方法により得られた樹脂組成物を成形したものに対して塗装を施す工程を備えることを特徴とする塗装部材の製造方法。
  11.  前記塗装を施す工程の前に、前記樹脂組成物を成形したものをプラズマ処理する工程を備える請求項10記載の塗装部材の製造方法。
  12.  請求項10記載の塗装部材の製造方法により製造されることを特徴とする塗装部材
  13.  光安定剤、充填剤を含むものである請求項12記載の塗装部材。
PCT/JP2012/052887 2011-03-02 2012-02-08 ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法 WO2012117823A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280011331.4A CN103403036B (zh) 2011-03-02 2012-02-08 层压薄膜和涂装构件用树脂组合物的制造方法
JP2013502226A JPWO2012117823A1 (ja) 2011-03-02 2012-02-08 ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法
EP12752936.0A EP2682410B1 (en) 2011-03-02 2012-02-08 Processes of producing laminate film and resin composition for coating members
KR1020137023083A KR20140006018A (ko) 2011-03-02 2012-02-08 라미네이트 필름 및 도장 부재용 수지 조성물의 제조 방법
US14/002,525 US20130331515A1 (en) 2011-03-02 2012-02-08 Process of producing laminate film and resin composition for coating members
BR112013022263-8A BR112013022263B1 (pt) 2011-03-02 2012-02-08 processo para a produção de película laminada e composição de resina para revestimento de membros
KR1020187018690A KR101966269B1 (ko) 2011-03-02 2012-02-08 라미네이트 필름 및 도장 부재용 수지 조성물의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011045552 2011-03-02
JP2011-045552 2011-03-02
JP2011090331 2011-04-14
JP2011-090331 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012117823A1 true WO2012117823A1 (ja) 2012-09-07

Family

ID=46757762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052887 WO2012117823A1 (ja) 2011-03-02 2012-02-08 ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法

Country Status (8)

Country Link
US (1) US20130331515A1 (ja)
EP (2) EP2966095B1 (ja)
JP (1) JPWO2012117823A1 (ja)
KR (2) KR101966269B1 (ja)
CN (1) CN103403036B (ja)
BR (1) BR112013022263B1 (ja)
TW (1) TWI614271B (ja)
WO (1) WO2012117823A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2578606B2 (en) 2011-10-04 2019-08-28 Borealis AG Process for the production of polyolefins wherein an antioxidant is fed to the reaction mixture during the process
JP5734826B2 (ja) * 2011-12-20 2015-06-17 株式会社Adeka オレフィン樹脂組成物の製造方法
JP2013199551A (ja) * 2012-03-23 2013-10-03 Adeka Corp 家電材料用及び自動車内装材料用オレフィン樹脂組成物の製造方法
KR102217316B1 (ko) * 2013-10-21 2021-02-17 가부시키가이샤 아데카 안정화된 폴리머의 제조 방법
US20180003909A1 (en) * 2016-01-01 2018-01-04 Hangzhou Juli Insulation Co., Ltd Macro-molecular leakage-free self-adhering aluminum foil and manufacturing method thereof
CN107571556B (zh) * 2017-09-07 2019-07-12 山东尚品家居配饰制造有限公司 一种阻燃装饰膜
CN110854225A (zh) * 2018-07-25 2020-02-28 比亚迪股份有限公司 一种双玻光伏组件

Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734478A (ja) 1971-03-23 1972-11-21
JPS56100806A (en) 1980-01-17 1981-08-13 Chisso Corp Preparation of alpha-olefin polymer
JPS56120712A (en) 1980-02-27 1981-09-22 Chisso Corp Preparation of poly alpha-olefin
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS585310A (ja) 1981-07-03 1983-01-12 Mitsubishi Petrochem Co Ltd オレフイン重合用触媒成分
JPS5823806A (ja) 1981-08-04 1983-02-12 Chisso Corp α−オレフイン重合体を製造する方法
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS58104907A (ja) 1981-12-17 1983-06-22 Chisso Corp 高剛性成形品用ポリプロピレンの製造方法
JPS58157808A (ja) 1982-03-16 1983-09-20 Ube Ind Ltd α−オレフインの重合方法
JPS61218606A (ja) 1985-03-25 1986-09-29 Sumitomo Chem Co Ltd α−オレフイン重合体の製造法
JPS61283533A (ja) 1985-06-10 1986-12-13 Mitsubishi Petrochem Co Ltd 金属蒸着積層フイルムの製造方法
JPS6343915A (ja) 1986-08-11 1988-02-25 Mitsubishi Petrochem Co Ltd プロピレンブロツク共重合体の製造法
JPS6349423A (ja) 1986-08-19 1988-03-02 Toppan Printing Co Ltd ラミネ−ト物の製造方法
JPS6383116A (ja) 1986-09-26 1988-04-13 Mitsubishi Petrochem Co Ltd プロピレンブロツク共重合体の製造法
JPS6392613A (ja) 1986-07-23 1988-04-23 エニーケム・シンテシース・エセ・ピ・ア 熱安定化α―オレフィン重合体又は共重合体の製法
JPS63146906A (ja) 1986-09-26 1988-06-18 ソルベイ(ソシエテ アノニム) アルフアーオレフインの立体特異性重合に使用できる固形触媒
JPH0543616A (ja) 1991-08-20 1993-02-23 Mitsubishi Petrochem Co Ltd オレフイン重合用触媒
JPH05295022A (ja) 1992-04-23 1993-11-09 Mitsubishi Kasei Corp オレフィン重合用触媒およびオレフィン重合体の製造方法
JPH05301917A (ja) 1991-05-01 1993-11-16 Mitsubishi Kasei Corp オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法
JPH06107897A (ja) 1992-09-25 1994-04-19 Ube Ind Ltd 塗装バンパー用ポリプロピレン系樹脂組成物
JPH06239917A (ja) 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH06239915A (ja) 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH06239914A (ja) 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH0782311A (ja) 1993-09-10 1995-03-28 Mitsubishi Chem Corp オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法
JPH07179719A (ja) 1993-12-24 1995-07-18 Mitsui Petrochem Ind Ltd 自動車塗装バンパー用プロピレン重合体組成物
JPH07228621A (ja) 1994-02-21 1995-08-29 Mitsubishi Chem Corp オレフィン重合用触媒およびこれを用いたオレフィンの重合方法
JPH07330820A (ja) 1994-06-10 1995-12-19 Chisso Corp 架橋型メタロセン化合物およびその製造法
JPH0859724A (ja) 1994-08-17 1996-03-05 Mitsubishi Chem Corp α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH0885708A (ja) 1994-07-22 1996-04-02 Mitsubishi Chem Corp α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH0885707A (ja) 1994-07-22 1996-04-02 Mitsubishi Chem Corp α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH08127613A (ja) 1994-05-18 1996-05-21 Mitsubishi Chem Corp オレフィン重合用触媒およびオレフィンの重合方法
JPH08208731A (ja) 1994-11-03 1996-08-13 Ciba Geigy Ag 安定化オレフィンポリマーの製造方法
JPH0912621A (ja) 1995-06-29 1997-01-14 Ciba Geigy Ag 安定化されたオレフィンポリマーの製造方法
JPH10226712A (ja) 1996-12-09 1998-08-25 Mitsubishi Chem Corp α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法
JPH10259143A (ja) 1996-07-23 1998-09-29 Mitsubishi Chem Corp メタロセン化合物類の精製法及びα−オレフィンの重合方法
JPH10265490A (ja) 1997-01-21 1998-10-06 Mitsubishi Chem Corp ケイ素またはゲルマニウム含有有機化合物、遷移金属錯体、α−オレフィン重合用触媒およびα−オレフィン重合体の各製造方法
WO1999037654A1 (fr) 1998-01-27 1999-07-29 Chisso Corporation Composes a base de metallocene possedant un ligand bis(naphthylcyclo pentadienyl) et procede de production
WO1999045014A1 (fr) 1998-03-05 1999-09-10 Chisso Corporation Composes metallocenes avec ligand bis(2,5-disubstitue-3-phenylcyclopentadienyle) et son procede de production
JPH11246582A (ja) 1998-02-27 1999-09-14 Chisso Corp ビス置換シクロペンタジエニル配位子を有するメタロセン化合物
JPH11279189A (ja) 1998-01-27 1999-10-12 Chisso Corp ビス(2−置換−4−フェニル−シクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法
JPH11349633A (ja) 1998-06-08 1999-12-21 Mitsubishi Chemical Corp 新規な遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法
WO2000008036A1 (fr) 1998-08-03 2000-02-17 Chisso Corporation COMPLEXES ν-OXOBISMETALLOCENES, CATALYSEURS DE POLYMERISATION D'OLEFINES LES CONTENANT ET PROCEDE DE POLYMERISATION
JP2000229990A (ja) 1999-02-15 2000-08-22 Chisso Corp ビス(2,5−二置換−3−ナフチルシクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法
JP2001206914A (ja) 2000-01-27 2001-07-31 Japan Polychem Corp プロピレン系ランダム共重合体の製造方法
JP2002037795A (ja) 1999-10-22 2002-02-06 Chisso Corp インデニル配位子を有するメタロセン化合物およびこれを含むオレフィン重合用触媒
JP2002194015A (ja) 2000-12-25 2002-07-10 Chisso Corp オレフィン重合体製造用触媒およびそれを用いたオレフィン重合体の製造方法
JP2002194016A (ja) 2000-05-23 2002-07-10 Chisso Corp メタロセン化合物、それを含むオレフィン重合用触媒および該触媒を用いるオレフィン重合体の製造方法
JP2002535339A (ja) 1999-01-25 2002-10-22 チッソ株式会社 オレフィン重合用触媒成分としてのメタロセン化合物
JP2003029270A (ja) 2001-07-17 2003-01-29 Toshiba Corp 液晶表示装置及び液晶表示装置の製造方法
JP2004154942A (ja) * 2002-11-01 2004-06-03 Taka Plastic Navi Kk ポリエチレンシートおよびその製造方法
JP2005206625A (ja) 2004-01-20 2005-08-04 Asahi Denka Kogyo Kk 安定化されたポリマーの製造方法
JP2005255953A (ja) 2004-03-15 2005-09-22 Asahi Denka Kogyo Kk 安定化されたポリマーの製造方法
JP2006052241A (ja) 2004-08-09 2006-02-23 Asahi Denka Kogyo Kk 安定化ポリマーの製造方法
JP2006188600A (ja) * 2005-01-06 2006-07-20 Futamura Chemical Co Ltd レトルト用ポリオレフィンフィルム
JP2006282985A (ja) 2005-03-11 2006-10-19 Adeka Corp 安定化されたポリマーの製造方法
WO2010087064A1 (ja) * 2009-01-28 2010-08-05 株式会社Adeka 食品・医療・水道用パイプ用途のポリオレフィン系樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145212A (en) 1988-02-12 1992-09-08 American Banknote Holographics, Inc. Non-continuous holograms, methods of making them and articles incorporating them
JPH10273544A (ja) * 1997-01-30 1998-10-13 Mitsui Chem Inc 熱可塑性樹脂組成物塗装体およびエラストマー組成物塗装体
JP5501962B2 (ja) * 2008-06-05 2014-05-28 株式会社Adeka アルミニウムフェノキシド化合物を用いた安定化ポリマーの製造方法。
JP2010180390A (ja) * 2009-02-03 2010-08-19 Toyo Adl Corp ホットメルト型接着組成物及び該ホットメルト型接着組成物を用いてなる積層体

Patent Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734478A (ja) 1971-03-23 1972-11-21
JPS56100806A (en) 1980-01-17 1981-08-13 Chisso Corp Preparation of alpha-olefin polymer
JPS56120712A (en) 1980-02-27 1981-09-22 Chisso Corp Preparation of poly alpha-olefin
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS585310A (ja) 1981-07-03 1983-01-12 Mitsubishi Petrochem Co Ltd オレフイン重合用触媒成分
JPS5823806A (ja) 1981-08-04 1983-02-12 Chisso Corp α−オレフイン重合体を製造する方法
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS58104907A (ja) 1981-12-17 1983-06-22 Chisso Corp 高剛性成形品用ポリプロピレンの製造方法
JPS58157808A (ja) 1982-03-16 1983-09-20 Ube Ind Ltd α−オレフインの重合方法
JPS61218606A (ja) 1985-03-25 1986-09-29 Sumitomo Chem Co Ltd α−オレフイン重合体の製造法
JPS61283533A (ja) 1985-06-10 1986-12-13 Mitsubishi Petrochem Co Ltd 金属蒸着積層フイルムの製造方法
JPS6392613A (ja) 1986-07-23 1988-04-23 エニーケム・シンテシース・エセ・ピ・ア 熱安定化α―オレフィン重合体又は共重合体の製法
JPS6343915A (ja) 1986-08-11 1988-02-25 Mitsubishi Petrochem Co Ltd プロピレンブロツク共重合体の製造法
JPS6349423A (ja) 1986-08-19 1988-03-02 Toppan Printing Co Ltd ラミネ−ト物の製造方法
JPS6383116A (ja) 1986-09-26 1988-04-13 Mitsubishi Petrochem Co Ltd プロピレンブロツク共重合体の製造法
JPS63146906A (ja) 1986-09-26 1988-06-18 ソルベイ(ソシエテ アノニム) アルフアーオレフインの立体特異性重合に使用できる固形触媒
JPH05301917A (ja) 1991-05-01 1993-11-16 Mitsubishi Kasei Corp オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法
JPH0543616A (ja) 1991-08-20 1993-02-23 Mitsubishi Petrochem Co Ltd オレフイン重合用触媒
JPH05295022A (ja) 1992-04-23 1993-11-09 Mitsubishi Kasei Corp オレフィン重合用触媒およびオレフィン重合体の製造方法
JPH06107897A (ja) 1992-09-25 1994-04-19 Ube Ind Ltd 塗装バンパー用ポリプロピレン系樹脂組成物
JPH06239917A (ja) 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH06239915A (ja) 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH06239914A (ja) 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH0782311A (ja) 1993-09-10 1995-03-28 Mitsubishi Chem Corp オレフィン重合用触媒およびこれを用いたオレフィン重合体の製造方法
JPH07179719A (ja) 1993-12-24 1995-07-18 Mitsui Petrochem Ind Ltd 自動車塗装バンパー用プロピレン重合体組成物
JPH07228621A (ja) 1994-02-21 1995-08-29 Mitsubishi Chem Corp オレフィン重合用触媒およびこれを用いたオレフィンの重合方法
JPH08127613A (ja) 1994-05-18 1996-05-21 Mitsubishi Chem Corp オレフィン重合用触媒およびオレフィンの重合方法
JPH07330820A (ja) 1994-06-10 1995-12-19 Chisso Corp 架橋型メタロセン化合物およびその製造法
JPH0885707A (ja) 1994-07-22 1996-04-02 Mitsubishi Chem Corp α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH0885708A (ja) 1994-07-22 1996-04-02 Mitsubishi Chem Corp α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH0859724A (ja) 1994-08-17 1996-03-05 Mitsubishi Chem Corp α‐オレフィン重合用触媒成分およびそれを用いたα‐オレフィン重合体の製造法
JPH08208731A (ja) 1994-11-03 1996-08-13 Ciba Geigy Ag 安定化オレフィンポリマーの製造方法
JPH0912621A (ja) 1995-06-29 1997-01-14 Ciba Geigy Ag 安定化されたオレフィンポリマーの製造方法
JPH10259143A (ja) 1996-07-23 1998-09-29 Mitsubishi Chem Corp メタロセン化合物類の精製法及びα−オレフィンの重合方法
JPH10226712A (ja) 1996-12-09 1998-08-25 Mitsubishi Chem Corp α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法
JPH10265490A (ja) 1997-01-21 1998-10-06 Mitsubishi Chem Corp ケイ素またはゲルマニウム含有有機化合物、遷移金属錯体、α−オレフィン重合用触媒およびα−オレフィン重合体の各製造方法
WO1999037654A1 (fr) 1998-01-27 1999-07-29 Chisso Corporation Composes a base de metallocene possedant un ligand bis(naphthylcyclo pentadienyl) et procede de production
JPH11279189A (ja) 1998-01-27 1999-10-12 Chisso Corp ビス(2−置換−4−フェニル−シクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法
JPH11246582A (ja) 1998-02-27 1999-09-14 Chisso Corp ビス置換シクロペンタジエニル配位子を有するメタロセン化合物
WO1999045014A1 (fr) 1998-03-05 1999-09-10 Chisso Corporation Composes metallocenes avec ligand bis(2,5-disubstitue-3-phenylcyclopentadienyle) et son procede de production
JPH11349633A (ja) 1998-06-08 1999-12-21 Mitsubishi Chemical Corp 新規な遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法
WO2000008036A1 (fr) 1998-08-03 2000-02-17 Chisso Corporation COMPLEXES ν-OXOBISMETALLOCENES, CATALYSEURS DE POLYMERISATION D'OLEFINES LES CONTENANT ET PROCEDE DE POLYMERISATION
JP2002535339A (ja) 1999-01-25 2002-10-22 チッソ株式会社 オレフィン重合用触媒成分としてのメタロセン化合物
JP2000229990A (ja) 1999-02-15 2000-08-22 Chisso Corp ビス(2,5−二置換−3−ナフチルシクロペンタジエニル)配位子を有するメタロセン化合物およびその製造方法
JP2002037795A (ja) 1999-10-22 2002-02-06 Chisso Corp インデニル配位子を有するメタロセン化合物およびこれを含むオレフィン重合用触媒
JP2001206914A (ja) 2000-01-27 2001-07-31 Japan Polychem Corp プロピレン系ランダム共重合体の製造方法
JP2002194016A (ja) 2000-05-23 2002-07-10 Chisso Corp メタロセン化合物、それを含むオレフィン重合用触媒および該触媒を用いるオレフィン重合体の製造方法
JP2002194015A (ja) 2000-12-25 2002-07-10 Chisso Corp オレフィン重合体製造用触媒およびそれを用いたオレフィン重合体の製造方法
JP2003029270A (ja) 2001-07-17 2003-01-29 Toshiba Corp 液晶表示装置及び液晶表示装置の製造方法
JP2004154942A (ja) * 2002-11-01 2004-06-03 Taka Plastic Navi Kk ポリエチレンシートおよびその製造方法
JP2005206625A (ja) 2004-01-20 2005-08-04 Asahi Denka Kogyo Kk 安定化されたポリマーの製造方法
JP2005255953A (ja) 2004-03-15 2005-09-22 Asahi Denka Kogyo Kk 安定化されたポリマーの製造方法
JP2006052241A (ja) 2004-08-09 2006-02-23 Asahi Denka Kogyo Kk 安定化ポリマーの製造方法
JP2006188600A (ja) * 2005-01-06 2006-07-20 Futamura Chemical Co Ltd レトルト用ポリオレフィンフィルム
JP2006282985A (ja) 2005-03-11 2006-10-19 Adeka Corp 安定化されたポリマーの製造方法
WO2010087064A1 (ja) * 2009-01-28 2010-08-05 株式会社Adeka 食品・医療・水道用パイプ用途のポリオレフィン系樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682410A4 *

Also Published As

Publication number Publication date
US20130331515A1 (en) 2013-12-12
BR112013022263A2 (pt) 2016-12-06
EP2682410A4 (en) 2014-08-27
EP2966095A1 (en) 2016-01-13
BR112013022263B1 (pt) 2020-12-08
TW201247714A (en) 2012-12-01
TWI614271B (zh) 2018-02-11
KR20140006018A (ko) 2014-01-15
KR101966269B1 (ko) 2019-04-05
EP2682410A1 (en) 2014-01-08
EP2966095B1 (en) 2017-05-03
KR20180080351A (ko) 2018-07-11
EP2682410B1 (en) 2015-10-07
CN103403036B (zh) 2015-11-25
JPWO2012117823A1 (ja) 2014-07-07
CN103403036A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2012117823A1 (ja) ラミネートフィルムおよび塗装部材用樹脂組成物の製造方法
KR102055223B1 (ko) 폴리머의 장기 안정화 방법 및 부직포, 일래스터머 조성물의 제조 방법
EP2796477B1 (en) Method for producing stabilized polymer
EP2862883B1 (en) Method for producing nucleator masterbatch
KR102564751B1 (ko) 광안정제 마스터 배치 및 그의 제조 방법
JP6952445B2 (ja) ポリオレフィン系樹脂組成物およびそれを用いた自動車内外装材
JP2012107106A (ja) 熱可塑性エラストマー組成物の製造方法
WO2013140905A1 (ja) 家電材料用及び自動車内装材料用オレフィン樹脂組成物の製造方法
JP5808906B2 (ja) ポリマーの製造方法
JP6905820B2 (ja) 安定剤組成物および安定化された重合体の製造方法
JP2022017798A (ja) ポリオレフィン系樹脂組成物の製造方法、ポリオレフィン系樹脂組成物およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502226

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012752936

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137023083

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022263

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022263

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130830