[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012111561A1 - ケーシングの製造方法及び真空ポンプ - Google Patents

ケーシングの製造方法及び真空ポンプ Download PDF

Info

Publication number
WO2012111561A1
WO2012111561A1 PCT/JP2012/053138 JP2012053138W WO2012111561A1 WO 2012111561 A1 WO2012111561 A1 WO 2012111561A1 JP 2012053138 W JP2012053138 W JP 2012053138W WO 2012111561 A1 WO2012111561 A1 WO 2012111561A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder liner
casing
cylinder
hole
peripheral surface
Prior art date
Application number
PCT/JP2012/053138
Other languages
English (en)
French (fr)
Inventor
芳宏 三ツ橋
伸一 草▲なぎ▼
Original Assignee
ナブテスコオートモーティブ株式会社
共和ダイカスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコオートモーティブ株式会社, 共和ダイカスト株式会社 filed Critical ナブテスコオートモーティブ株式会社
Priority to US13/984,165 priority Critical patent/US9347447B2/en
Priority to CN201280008904.8A priority patent/CN103477081B/zh
Priority to EP12747506.9A priority patent/EP2677173B1/en
Publication of WO2012111561A1 publication Critical patent/WO2012111561A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/802Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum

Definitions

  • the present invention relates to a method for manufacturing a casing including a cylinder chamber in which a rotary compression element driven by a driving machine slides, and a vacuum pump including the casing.
  • a vacuum pump having a casing attached to a driving machine such as an electric motor and a rotary compression element that is rotated by the driving machine in a cylinder chamber of the casing is known.
  • a vacuum can be obtained by driving a rotary compression element in a cylinder chamber by a driving machine.
  • a vacuum is installed in an engine room of an automobile to operate a brake booster. It is used for generating (see, for example, Patent Document 1).
  • this type of vacuum pump is required to be reduced in size because the installation space cannot be made large.
  • a cylinder liner that forms a cylinder chamber in the casing body, the rotation axis direction of the casing It is envisaged that the dimensions will be reduced.
  • a cylinder liner is manufactured in which a peripheral wall is processed with an intake hole and an exhaust hole communicating with the cylinder chamber, and an inner surface of the cylinder chamber is subjected to a surface hardening process such as an electroless plating process. The liner was press-fitted into the hole in the casing body.
  • An object of the present invention is to provide a casing manufacturing method and a vacuum pump provided with the casing that are reduced in the axial direction and reduce the number of work steps.
  • the present invention provides a casing manufacturing method including a cylinder chamber in which a rotary compression element driven by a driving machine slides, wherein a cylinder liner forming the cylinder chamber is disposed in a mold, and the casing Casting using a molten metal for forming a main body, casting the cylinder liner integrally, and processing an intake hole and an exhaust hole that penetrate the cylinder liner and the casing body integrally and communicate with the cylinder chamber And.
  • the cylinder liner and the casing are processed in order to process the intake hole and the exhaust hole that penetrate the cylinder liner and the casing body and communicate with the cylinder chamber.
  • the adjustment work of the hole position with the main body and the additional work of the casing main body are not necessary, and the number of work man-hours during manufacturing can be reduced.
  • the casing can be reduced in size in the axial direction.
  • the method includes a step of coating the inner peripheral surface of the cylinder liner in which the intake hole and the exhaust hole are processed with a metal harder than the cylinder liner. According to this configuration, a sliding surface having high hardness can be easily formed even in a casing in which a cylinder liner is integrally cast in the casing body.
  • a step of forming a means for preventing rotation and removal of the cylinder liner on the outer peripheral surface of the cylinder liner prior to the step of casting the cylinder liner, there is provided a step of forming a means for preventing rotation and removal of the cylinder liner on the outer peripheral surface of the cylinder liner.
  • the means for preventing rotation and removal is formed in advance on the outer peripheral surface of the cylinder liner.
  • the cylinder liner can be prevented from rotating and coming off more easily than a press-fitted one.
  • a spiral groove is formed on the outer peripheral surface of the cylinder liner. According to this configuration, it is possible to easily create a cylinder liner that prevents rotation and disconnection.
  • the present invention also provides a vacuum pump including a casing attached to a driving machine, and a cylinder chamber in which a rotary compression element driven by the driving machine slides.
  • the casing is a cast casing body.
  • a cylinder liner that is integrally cast into the cylinder chamber and includes an intake hole and an exhaust hole that integrally penetrate the cylinder liner and the casing body and communicate with the cylinder chamber.
  • the cylinder liner and the casing are processed in order to process the intake hole and the exhaust hole that penetrate the cylinder liner and the casing body and communicate with the cylinder chamber.
  • the adjustment work of the hole position with the main body and the additional work of the casing main body are not necessary, and the number of work man-hours during manufacturing can be reduced.
  • the casing can be reduced in size in the axial direction.
  • FIG. 1 is a schematic diagram of a brake device using a vacuum pump according to the present embodiment.
  • FIG. 2 is a side partial sectional view of the vacuum pump.
  • FIG. 3 is a view of the vacuum pump as viewed from the front side.
  • FIG. 4 is a flowchart showing a manufacturing procedure of the casing.
  • FIG. 5 is a side partial sectional view of the casing showing a spiral groove formed on the outer peripheral surface of the cylinder liner to prevent rotation and slipping.
  • FIG. 1 is a schematic diagram of a brake device 100 using a vacuum pump 1 according to an embodiment of the present invention as a negative pressure source.
  • the brake device 100 includes, for example, front brakes 2A and 2B attached to left and right front wheels of a vehicle such as an automobile, and rear brakes 3A and 3B attached to left and right rear wheels.
  • Each of these brakes is connected to each other by a master cylinder 4 and a brake pipe 9, and each brake is operated by a hydraulic pressure sent from the master cylinder 4 through the brake pipe 9.
  • the brake device 100 includes a brake booster (brake booster) 6 connected to the brake pedal 5, and the vacuum tank 7 and the vacuum pump 1 are connected in series to the brake booster 6 through an air pipe 8. It is connected.
  • the brake booster 6 uses the negative pressure in the vacuum tank 7 to boost the pedaling force of the brake pedal 5, and it is sufficient to move the piston (not shown) of the master cylinder 4 with a small pedaling force.
  • the braking power can be pulled out.
  • the vacuum pump 1 is disposed in the engine room of the vehicle, discharges the air in the vacuum tank 7 to the outside of the vehicle, and puts the vacuum tank 7 in a vacuum state. Note that the range of use of the vacuum pump 1 used in an automobile or the like is, for example, ⁇ 60 kPa to ⁇ 80 kPa.
  • FIG. 2 is a side partial sectional view of the vacuum pump 1
  • FIG. 3 is a view of the vacuum pump 1 of FIG. 2 as viewed from the front side (right side in the figure).
  • FIG. 3 illustrates a state in which members such as the pump cover 24 and the side plate 26 are removed in order to show the configuration of the cylinder chamber S.
  • the directions indicated by the arrows at the top of FIGS. 2 and 3 respectively indicate the top, bottom, front, back, left and right of the vacuum pump 1.
  • the front-rear direction is also referred to as the axial direction
  • the left-right direction is also referred to as the width direction.
  • the vacuum pump 1 includes an electric motor (driving machine) 10 and a pump main body 20 that operates using the electric motor 10 as a driving source.
  • the electric motor 10 and the pump main body 20 are integrated with each other. In a connected state, it is fixedly supported on a vehicle body such as an automobile.
  • the electric motor 10 has an output shaft (rotary shaft) 12 that extends from the approximate center of one end (front end) of the case 11 formed in a substantially cylindrical shape toward the pump body 20 side (front side).
  • the output shaft 12 functions as a drive shaft that drives the pump main body 20, and rotates with reference to a rotation center X1 extending in the front-rear direction.
  • the front end portion 12A of the output shaft 12 is formed as a spline shaft, and engages with a spline groove 27D formed in a part of a shaft hole 27A penetrating in the axial direction of the rotor 27 of the pump body 20,
  • the rotor 27 is connected to the rotor 27 so as to be integrally rotatable.
  • the case 11 includes a case main body 60 formed in a bottomed cylindrical shape and a cover body 61 that closes the opening of the case main body 60.
  • the case main body 60 is formed by bending the peripheral edge portion 60A outward.
  • the cover body 61 includes a disc portion (wall surface) 61A formed with substantially the same diameter as the opening of the case body 60, and a cylindrical portion 61B that is connected to the periphery of the disc portion 61A and fits on the inner peripheral surface of the case body 60.
  • a bent portion 61C formed by bending the peripheral edge of the cylindrical portion 61B outward, the disc portion 61A and the cylindrical portion 61B enter the case body 60, and the bent portion 61C
  • the case body 60 is fixed in contact with the peripheral edge 60A.
  • one end part (front end) of the case 11 is recessed inward in the electric motor 10, and the fitting hole part 63 to which the pump main body 20 is attached by spigot fitting is formed.
  • a through hole 61D through which the output shaft 12 passes and an annular bearing holding portion 61E extending inward of the case main body 60 are formed around the through hole 61D at the approximate center of the disc part 61A.
  • the outer ring of the bearing 62 that supports the front side of the output shaft 12 is held on the inner peripheral surface 61F of the bearing holding portion 61E.
  • the pump body 20 includes a casing body 22 fitted in a fitting hole 63 formed on the front side of the case 11 of the electric motor 10, and a cylinder chamber disposed in the casing body 22.
  • the cylinder liner 23 which forms S, and the pump cover 24 which covers the said casing main body 22 from the front side are provided.
  • the casing body 22 and the cylinder liner 23 are provided, and the casing 31 of the vacuum pump 1 is configured.
  • the casing body 22 is made of, for example, a metal material having high thermal conductivity such as aluminum, and the shape seen from the front side is a substantially rectangular shape that is long in the vertical direction with the rotation center X1 as the center. Is formed.
  • a communication hole 22A communicating with the cylinder chamber S provided in the casing main body 22 is formed in the upper portion of the casing main body 22, and a suction nipple 30 is press-fitted into the communication hole 22A.
  • the suction nipple 30 is a straight pipe extending upward, and negative pressure air is supplied to one end 30A of the suction nipple 30 from an external device (for example, the vacuum tank 7 (see FIG. 1)).
  • a tube or tube for feeding is connected.
  • the casing body 22 is formed with a hole 22B based on the axial center X2 extending in the front-rear direction, and a cylinder liner 23 formed in a cylindrical shape is cast into the hole 22B. Specifically, in a state where the cylinder liner 23 is set in the mold, the casing body 22 (casing 31) in which the cylinder liner 23 is integrally cast is cast by pouring the mold into the mold.
  • the shaft center X2 is parallel to the rotation center X1 of the output shaft 12 of the electric motor 10 described above and, as shown in FIG.
  • the shaft center X2 is eccentric so that the outer peripheral surface 27B of the rotor 27 centered on the rotation center X1 is in contact with the inner peripheral surface 23A of the cylinder liner 23 formed with the shaft center X2 as a reference.
  • the cylinder liner 23 is formed of the same metal material as the rotor 27 (in this embodiment, iron), and the inner peripheral surface 23A of the cylinder liner 23 is subjected to a surface hardening process such as hard chrome plating. Thus, the hardness of the inner peripheral surface (sliding surface) 23A is increased.
  • the cylinder liner 23 since the cylinder liner 23 can be accommodated within the longitudinal range of the casing body 22 by casting the cylinder liner 23 integrally with the casing body 22, the cylinder liner 23 is used as the casing body.
  • the casing body 22 can be reduced in size.
  • the casing body 22 is formed of a material having higher thermal conductivity than the rotor 27. According to this, heat generated when the rotor 27 and the vane 28 are rotationally driven can be quickly transmitted to the casing body 22, so that the casing body 22 can sufficiently dissipate heat.
  • the cylinder liner 23 is formed with an opening (intake hole) 23B that connects the above-described communication hole (intake hole) 22A of the casing body 22 and the inside of the cylinder chamber S. Air through the suction nipple 30 is communicated with the communication hole 22A. , Are supplied into the cylinder chamber S through the opening 23B. Further, exhaust holes 22 ⁇ / b> C and 23 ⁇ / b> C that pass through the casing body 22 and the cylinder liner 23 and discharge air compressed in the cylinder chamber S are provided at the lower part of the casing body 22 and the cylinder liner 23.
  • the communication hole 22A, the opening 23B, and the exhaust holes 22C, 23C are arranged on the same axis with the cylinder chamber S interposed therebetween. It can be formed by a single drilling process.
  • a rotor 27 is disposed in the cylinder chamber S.
  • the rotor 27 has a columnar shape extending along the rotation center X1 of the electric motor 10, and has a shaft hole 27A through which the output shaft 12 that is a drive shaft of the pump body 20 is inserted, and radial direction from the shaft hole 27A.
  • a plurality of guide grooves 27C are provided at equidistant intervals around the shaft hole 27A at intervals in the circumferential direction.
  • a part of the shaft hole 27A is formed with a spline groove 27D that engages with a spline shaft provided at the distal end portion 12A of the output shaft 12, so that the rotor 27 and the output shaft 12 are spline-connected. Yes.
  • a cylindrical recess 27F having a diameter larger than that of the shaft hole 27A is formed around the shaft hole 27A on the front end surface of the rotor 27, and the tip of the output shaft 12 extends into the recess 27F.
  • a push nut 70 is attached to this, and the push nut 70 restricts the rotor 27 from moving toward the tip end side of the output shaft 12.
  • the length of the rotor 27 in the front-rear direction is set to be approximately equal to the length of the cylinder chamber S of the cylinder liner 23, that is, the distance between the inner surfaces of the two side plates 25 and 26 facing each other. And the side plates 25 and 26 are substantially closed. Further, as shown in FIG. 3, the outer diameter of the rotor 27 is such that the outer peripheral surface 27B of the rotor 27 maintains a minute clearance with the portion of the inner peripheral surface 23A of the cylinder liner 23 that is located obliquely downward to the right. Is set.
  • the inside of the cylinder chamber S partitioned by the side plates 25 and 26 has a crescent shape between the outer peripheral surface 27B of the rotor 27 and the inner peripheral surface 23A of the cylinder liner 23, as shown in FIG. A space is constructed.
  • the rotor 27 is provided with a plurality (five in this example) of vanes 28 that divide a crescent-shaped space.
  • the vane 28 is formed in a plate shape, and its length in the front-rear direction is set to be approximately equal to the distance between the mutually facing inner surfaces of the two side plates 25, 26, similar to the rotor 27. ing.
  • These vanes 28 are arranged so as to be able to protrude and retract from guide grooves 27 ⁇ / b> C provided in the rotor 27.
  • Each vane 28 protrudes outward along the guide groove 27 ⁇ / b> C by centrifugal force as the rotor 27 rotates, and a tip of the vane 28 comes into contact with the inner peripheral surface 23 ⁇ / b> A of the cylinder liner 23.
  • the crescent-shaped space described above is divided into five compression chambers P surrounded by the two adjacent vanes 28, 28, the outer peripheral surface 27B of the rotor 27, and the inner peripheral surface 23A of the cylinder liner 23. Partitioned.
  • These compression chambers P rotate in the same direction as the rotation of the output shaft 12 in the direction of the arrow R of the rotor 27.
  • the volume of the compression chamber P increases in the vicinity of the opening 23B, and decreases in the exhaust hole 23C.
  • the rotary compression element is configured by including the rotor 27 and the plurality of vanes 28.
  • the cylinder liner 23 is cast into the casing body 22 such that the axis X2 of the cylinder liner 23 is eccentrically leftward and upward with respect to the rotation center X1. For this reason, a large space can be secured in the casing body 22 in the direction opposite to the direction in which the cylinder liner 23 is eccentric.
  • the exhaust holes 23C and 22C are formed along the peripheral edge of the cylinder liner 23 in this space.
  • An expansion chamber 33 communicated with is formed.
  • the expansion chamber 33 is formed as a large closed space along the peripheral edge of the cylinder liner 23 from below the cylinder liner 23 to above the output shaft 12, and communicates with an exhaust port 24 ⁇ / b> A formed in the pump cover 24. ing.
  • the compressed air that has flowed into the expansion chamber 33 expands and disperses in the expansion chamber 33, collides with the partition walls of the expansion chamber 33, and is irregularly reflected. Thereby, since the sound energy of compressed air is attenuated, noise and vibration during exhaust can be reduced.
  • the pump cover 24 is disposed on the front side plate 26 via a wave washer 26A, and is fixed to the casing body 22 with bolts 66. As shown in FIG. 3, a seal groove 22D is formed on the front surface of the casing body 22 so as to surround the cylinder liner 23 and the expansion chamber 33, and an annular seal material 67 (FIG. 2) is disposed in the seal groove 22D. ing.
  • the pump cover 24 is provided with an exhaust port 24 ⁇ / b> A at a position corresponding to the expansion chamber 33. This exhaust port 24A is for exhausting the air that has flowed into the expansion chamber 33 to the outside of the machine (outside the vacuum pump 1), and this exhaust port 24A prevents the backflow of air from the outside of the machine into the pump.
  • a check valve 29 is attached.
  • the vacuum pump 1 is configured by connecting an electric motor 10 and a pump main body 20, and a rotor 27 and a vane 28 connected to the output shaft 12 of the electric motor 10 are disposed in a cylinder liner 23 of the pump main body 20. Slide. For this reason, it is important to assemble the pump body 20 in accordance with the rotation center X1 of the output shaft 12 of the electric motor 10. For this reason, in this embodiment, the electric motor 10 has a fitting hole 63 formed around the rotation center X1 of the output shaft 12 on one end side of the case 11. On the other hand, as shown in FIG. 2, a cylindrical fitting portion 22 ⁇ / b> F projecting rearward around the cylinder chamber S is integrally formed on the back surface of the casing body 22.
  • the fitting portion 22 ⁇ / b> F is formed concentrically with the rotation center X ⁇ b> 1 of the output shaft 12 of the electric motor 10, and has an outer diameter that fits in the fitting hole 63 of the electric motor 10. Accordingly, in this configuration, the center position can be easily adjusted by simply fitting the fitting portion 22F of the casing body 22 into the fitting hole portion 63 of the electric motor 10, and the electric motor 10 and the pump body 20 can be aligned. Assembly work can be performed easily. Further, a seal groove 22E is formed around the fitting portion 22F on the back surface of the casing body 22, and an annular seal material 35 is disposed in the seal groove 22E.
  • FIG. 4 is a flowchart showing a procedure for manufacturing the casing 31.
  • a spiral groove (means for preventing rotation and disconnection) is formed on the outer peripheral surface of the cylinder liner 23 used in the casing 31 (step S1). Specifically, as shown in FIG. 5, a plurality of grooves 23 ⁇ / b> E extending in a spiral shape are formed on the outer peripheral surface 23 ⁇ / b> D of the cylinder liner 23.
  • the groove 23E functions as an anchor when the molten metal enters the groove 23E, and prevents the cylinder liner 23 from rotating and coming off.
  • the groove 23E is preferably formed by closing the end 23F, but the pitch between the grooves 23E may be changed.
  • the spirally extending groove 23E can be easily formed by applying a cutting tool (bite) to the outer peripheral surface 23D of the cylinder liner 23 in a state where the cylinder liner 23 is held by a lathe chuck. Further, the pitch of the groove 23E can be easily changed by adjusting the feed amount of the cylinder liner 23.
  • a cutting tool bite
  • the pitch of the groove 23E can be easily changed by adjusting the feed amount of the cylinder liner 23.
  • an example in which the groove 23E that spirally extends on the outer peripheral surface 23D of the cylinder liner 23 is described is described as an example, but the present invention is not limited thereto.
  • the outer peripheral surface 23D of the cylinder liner 23 may be processed to have irregularities such as dimples.
  • the casing body 22 is cast with the cylinder liner 23 cast (step S2).
  • the cylinder liner 23 is set in a die casting mold (not shown), and molten metal (molten metal) such as aluminum is poured into the mold in this state.
  • molten metal molten metal
  • the casing body 22 in which the cylinder liner 23 is integrally cast is cast.
  • the cylinder liner 23 and the casing body 22 are integrally machined (step S3).
  • the communication hole 22A of the casing body 22 as the intake hole and the opening 23B of the cylinder liner 23 are integrally drilled, and the exhaust hole 22C of the casing body 22 and the exhaust hole 23C of the cylinder liner 23 are integrally formed.
  • the communication hole 22A, the opening 23B, and the exhaust holes 22C, 23C are arranged on the same axis with the cylinder chamber S interposed therebetween. These can be formed by drilling. In addition, after these hole processing, the deburring which arises around 22 A of communicating holes, the opening 23B, and the exhaust holes 22C and 23C is performed. Since the inner peripheral surface 23A of the cylinder liner 23 functions as a sliding surface on which the rotor 27 and the vane 28 slide, it is necessary to accurately mold the inner diameter of the cylinder liner 23.
  • the cylinder liner 23 is cast into the casing main body 22, the cylinder liner 23 is thermally expanded by contact with high-temperature molten metal in the casting process, and is thermally contracted in the cooling process.
  • the inner diameter of the cylinder liner 23 may vary from individual to individual. For this reason, by cutting the inner peripheral surface 23A of the cast cylinder liner 23, the inner diameter of the cylinder liner 23 is accurately adjusted to the specified dimension.
  • step S4 the surface treatment which coat
  • hard chrome plating is applied to the inner peripheral surface 23 ⁇ / b> A of the cylinder liner 23.
  • the entire casing main body is immersed in a chrome plating tank and hard chrome plating is applied to the inner peripheral surface 23A.
  • the inner peripheral surface 23A is buffed or the like to accurately adjust the inner diameter of the cylinder liner 23 to a specified dimension.
  • the cylinder liner 23 is masked (step S5), the surface of the casing body 22 is subjected to trivalent zinc plating (step S6), and the process ends.
  • the cylinder liner that forms the cylinder chamber S is formed. 23 is placed in a mold, cast using molten aluminum for forming the casing main body 22, and the cylinder liner 23 is integrally cast, and the cylinder liner 23 and the casing main body 22 are integrally penetrated to enter the cylinder chamber S. And the step of machining the communication hole 22A, the opening 23B, and the exhaust holes 22C and 23C.
  • the casing body 22 into which the cylinder liner 23 is integrally cast is integrally penetrated to communicate with the inside of the cylinder chamber S.
  • the communication hole 22A, the opening 23B, and the exhaust holes 22C and 23C can be processed. This eliminates the need for adjusting the hole position between the cylinder liner 23 and the casing main body 22 and the additional work of the casing main body 22 that have occurred in the process of press-fitting the cylinder liner. It is possible to reduce the man-hours for manufacturing. Further, since the cylinder liner 23 is cast into the casing body 22 and the casing 31 is manufactured, the casing 31 can be reduced in size in the axial direction.
  • a casing in which the cylinder liner 23 is integrally cast into the casing body 22 in order to perform the hard chrome plating process on the inner peripheral surface 23A of the cylinder liner 23 in which the opening 23B and the exhaust hole 23C are processed Even if it is 31, a highly rigid sliding surface can be formed easily.
  • the cylinder liner 23 prior to the step of casting the cylinder liner 23, the cylinder liner 23 is provided with a step of forming means for preventing the rotation and removal of the cylinder liner 23 on the outer peripheral surface 23 ⁇ / b> D of the cylinder liner 23. Even if metals having different coefficients of thermal expansion are employed between the casing body 22 and the casing body 22, the structure for preventing the cylinder liner 23 from rotating and coming off can be simplified as compared with the case where the cylinder liner is press-fitted.
  • the spiral groove portion 23E is formed on the outer peripheral surface 23D of the cylinder liner 23, so that the cylinder liner 23 that prevents rotation and disconnection is easily created. be able to.
  • the vacuum pump 1 including the casing 31 attached to the electric motor 10 and including the cylinder chamber S in which the rotor 27 and the vane 28 driven by the electric motor 10 slide in the casing 31.
  • the casing 31 includes a cylinder liner 23 that is integrally cast into the cast casing body 22 to form the cylinder chamber S.
  • the casing 31 integrally penetrates the cylinder liner 23 and the casing body 22 and communicates with the cylinder chamber S. Since the communication hole 22A, the opening 23B, and the exhaust holes 22C and 23C are provided, it is possible to reduce the size in the direction of the rotation axis, and to reduce the work man-hours at the time of manufacture compared to the case where the cylinder liner is press-fitted. it can.
  • Vacuum pump 10 Electric motor (driving machine) 12 Output shaft (rotary shaft) 22 Casing body 22A Communication hole (intake hole) 22B hole 22C exhaust hole 23 cylinder liner 23A inner peripheral surface 23B opening (intake hole) 23C Exhaust hole 23D Outer peripheral surface 23E Groove (helical groove) 23F End 24 Pump cover 27 Rotor (rotary compression element) 28 Vane (Rotary compression element) 31 Casing S Cylinder chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

 簡単な構成でロータ及びサイドプレートの損傷を抑制して真空ポンプの耐久性の低下を防止すること。 シリンダ室を形成するシリンダライナを金型に配置し、ケーシング本体を成形する溶湯を用いて鋳造し、シリンダライナを一体に鋳込む工程(ステップS2)と、シリンダライナ及びケーシング本体を一体に貫通し、シリンダ室内と連通する吸気孔及び排気孔を加工する工程(ステップS3)とを備えた。

Description

ケーシングの製造方法及び真空ポンプ
 本発明は、駆動機により駆動される回転圧縮要素が摺動するシリンダ室を備えるケーシングの製造方法及びこのケーシングを備えた真空ポンプに関する。
 一般に、電動モータ等の駆動機に取り付けられるケーシングと、このケーシングのシリンダ室内に駆動機により回転する回転圧縮要素とを備えた真空ポンプが知られている。この種の真空ポンプでは、駆動機により回転圧縮要素をシリンダ室内で駆動することによって真空を得ることができ、例えば、自動車のエンジンルームに搭載されて、ブレーキ倍力装置を作動させるための真空を発生させるために使用されている(例えば、特許文献1参照)。
特開2003-222090号公報
 このため、この種の真空ポンプは、設置スペースが大きく取れない事情から小型化が要請されており、例えば、ケーシング本体内にシリンダ室を形成するシリンダライナを圧入することにより、ケーシングの回転軸方向への寸法の小型化を図ることが想定される。
 しかし、この構成では、周壁にシリンダ室に連通する吸気孔及び排気孔を加工するとともに、当該シリンダ室の内面に無電解めっき処理等による表面硬化処理が施されたシリンダライナを製造し、このシリンダライナをケーシング本体の孔部に圧入していた。このため、シリンダライナの圧入後に、吸気孔または排気孔の位置をケーシング本体の所定位置に合わせるための微調整が必要となるとともに、圧入の際に吸気孔または排気孔の縁部によりケーシング本体の一部にバリが発生することがあり、このバリを取る追加工が必要となり、作業工数が多くなるといった問題があった。
 そこで、本発明は、軸方向への小型化を図るとともに、作業工数の低減を図ったケーシングの製造方法及びこのケーシングを備える真空ポンプを提供することを目的とする。
 上記目的を達成するため、本発明は、駆動機により駆動される回転圧縮要素が摺動するシリンダ室を備えるケーシングの製造方法において、前記シリンダ室を形成するシリンダライナを金型に配置し、ケーシング本体を成形する溶湯を用いて鋳造し、前記シリンダライナを一体に鋳込む工程と、前記シリンダライナ及び前記ケーシング本体を一体に貫通し、前記シリンダ室内と連通する吸気孔及び排気孔を加工する工程と、を備えたことを特徴とする。
 この構成によれば、ケーシング本体にシリンダライナを一体に鋳込んだ後に、このシリンダライナ及びケーシング本体を一体に貫通してシリンダ室内と連通する吸気孔及び排気孔を加工するため、シリンダライナとケーシング本体との孔位置の調整作業や、ケーシング本体の追加工が不要となり、製造時の作業工数の低減を図ることができる。また、シリンダライナは、ケーシング本体に鋳込まれてケーシングが製造されるため、このケーシングの軸方向への小型化を図ることができる。
 この構成において、前記吸気孔及び前記排気孔が加工された前記シリンダライナの内周面を、当該シリンダライナよりも硬い金属で皮膜する工程を備えることを特徴とする。この構成によれば、ケーシング本体にシリンダライナを一体に鋳込んだケーシングであっても、硬度の高い摺動面を簡単に形成することができる。
 また、前記シリンダライナを鋳込む工程に先だって、前記シリンダライナの外周面に当該シリンダライナの回転及び抜けを防止する手段を成形する工程を備えたことを特徴とする。この構成によれば、シリンダライナとケーシング本体とで熱膨張係数の異なる金属を採用したとしても、回転及び抜けを防止する手段が予めシリンダライナの外周面に形成されているため、当該シリンダライナを圧入するものに比べて簡単にシリンダライナの回転及び抜けを防止できる。
 また、前記回転及び抜けを防止する手段として、前記シリンダライナの外周面にらせん溝を成形することを特徴とする。この構成によれば、回転及び抜けを防止したシリンダライナを簡単に作成することができる。
 また、本発明は、駆動機に取り付けられるケーシングを備え、このケーシング内に前記駆動機より駆動される回転圧縮要素が摺動するシリンダ室を備える真空ポンプにおいて、前記ケーシングは、鋳造されたケーシング本体に一体に鋳込まれて前記シリンダ室を形成するシリンダライナを備え、前記シリンダライナ及び前記ケーシング本体を一体に貫通し、前記シリンダ室内と連通する吸気孔及び排気孔を備えることを特徴とする。
 本発明によれば、ケーシング本体にシリンダライナを一体に鋳込んだ後に、このシリンダライナ及びケーシング本体を一体に貫通してシリンダ室内と連通する吸気孔及び排気孔を加工するため、シリンダライナとケーシング本体との孔位置の調整作業や、ケーシング本体の追加工が不要となり、製造時の作業工数の低減を図ることができる。また、シリンダライナは、ケーシング本体に鋳込まれてケーシングが製造されるため、このケーシングの軸方向への小型化を図ることができる。
図1は、本実施形態に係る真空ポンプを使用したブレーキ装置の概要図である。 図2は、真空ポンプの側部部分断面図である。 図3は、真空ポンプをその前側から見た図である。 図4は、ケーシングの製造手順を示すフローチャートである。 図5は、シリンダライナ外周面の形成された回転及び抜けを防止するらせん溝を示すケーシングの側部部分断面図である。
 以下、図面を参照して、本発明に係る好適な実施の形態について説明する。
 図1は、本発明の実施の形態に係る真空ポンプ1を負圧源として使用したブレーキ装置100の概要図である。ブレーキ装置100は、例えば、自動車等の車両の左右の前輪に取り付けられたフロントブレーキ2A,2B、及び左右の後輪に取り付けられたリアブレーキ3A,3Bを備えている。これらの各ブレーキは、マスターシリンダ4とブレーキ配管9によりそれぞれ接続されており、マスターシリンダ4からブレーキ配管9を介して送られる油圧によって各ブレーキが作動する。
 また、ブレーキ装置100は、ブレーキペダル5と連結されたブレーキブースター(ブレーキ倍力装置)6を備え、このブレーキブースター6には、空気配管8を介して、真空タンク7及び真空ポンプ1が直列に接続されている。ブレーキブースター6は、真空タンク7内の負圧を利用してブレーキペダル5の踏力を倍力するものであり、小さな踏力でマスターシリンダ4のピストン(図示せず)を移動させることにより、十分なブレーキングパワーを引き出せるようになっている。
 真空ポンプ1は、車両のエンジンルーム内に配置され、真空タンク7内の空気を車両外部へ排出し、当該真空タンク7内を真空状態とする。なお、自動車等に用いる真空ポンプ1の使用範囲は、例えば、-60kPa~-80kPaである。
 図2は、真空ポンプ1の側部部分断面図であり、図3は、図2の真空ポンプ1をその前側(同図中の右側)から見た図である。ただし、図3は、シリンダ室Sの構成を示すべく、ポンプカバー24,サイドプレート26等の部材を取り外した状態を図示している。なお、以下では、説明の便宜上、図2および図3の上部にそれぞれ矢印で示す方向が、真空ポンプ1の上下前後左右を示すものとして説明する。また、前後方向については軸方向、左右方向については幅方向ともいう。
 図2に示すように、真空ポンプ1は電動モータ(駆動機)10と、この電動モータ10を駆動源として作動するポンプ本体20とを備えており、これら電動モータ10及びポンプ本体20が一体に連結された状態で自動車等の車体に固定支持されている。
 電動モータ10は、略円筒形状に形成されたケース11の一方の端部(前端)の略中心からポンプ本体20側(前側)に向かって延びる出力軸(回転軸)12を有している。出力軸12は、ポンプ本体20を駆動する駆動軸として機能するものであり、前後方向に延びる回転中心X1を基準として回転する。出力軸12の先端部12Aはスプライン軸に形成されており、ポンプ本体20のロータ27の軸方向に貫通する軸孔27Aの一部に形成されたスプライン溝27Dと係合し、出力軸12とロータ27とが一体に回転可能に連結される。
 電動モータ10は、電源(図示略)の投入により、出力軸12が、図3中の矢印R方向(反時計回り)に回転し、これによりロータ27を、回転中心X1を中心として同方向(矢印R方向)に回転させるようになっている。
 ケース11は、有底円筒形状に形成されたケース本体60と、このケース本体60の開口を塞ぐカバー体61とを備え、ケース本体60は、その周縁部60Aが外方に折り曲げて形成されている。カバー体61は、ケース本体60の開口と略同径に形成された円板部(壁面)61Aと、この円板部61Aの周縁に連なり、ケース本体60の内周面に嵌まる円筒部61Bと、この円筒部61Bの周縁を外方に折り曲げて形成した屈曲部61Cとを備えて一体に形成され、円板部61A及び円筒部61Bがケース本体60内に進入し、屈曲部61Cが、ケース本体60の周縁部60Aに当接して固定されている。これにより、電動モータ10には、ケース11の一方の端部(前端)が内側に窪み、ポンプ本体20がインロー嵌合により取り付けられる嵌合穴部63が形成される。
 また、円板部61Aの略中央には、出力軸12が貫通する貫通孔61Dと、この貫通孔61Dの周囲にケース本体60の内側に延びる円環状のベアリング保持部61Eとが形成され、このベアリング保持部61Eの内周面61Fに、上記出力軸12の前方側を軸支するベアリング62の外輪が保持される。
 ポンプ本体20は、図2に示すように、電動モータ10のケース11の前側に形成された嵌合穴部63に嵌合されるケーシング本体22と、このケーシング本体22内に配置されてシリンダ室Sを形成するシリンダライナ23と、当該ケーシング本体22を前側から覆うポンプカバー24とを備えている。本実施形態ではケーシング本体22及びシリンダライナ23を備えて、真空ポンプ1のケーシング31を構成している。
 ケーシング本体22は、例えば、アルミニウム等の熱伝導性の高い金属材料を用いて、図3に示すように、前側から見た形状が上記した回転中心X1を略中心とした上下方向に長い略矩形に形成されている。ケーシング本体22の上部には、このケーシング本体22に設けられたシリンダ室S内に連通する連通孔22Aが形成され、この連通孔22Aには吸込ニップル30が圧入されている。この吸込ニップル30は、図2に示すように、上向きに延びる直管であり、当該吸込ニップル30の一端30Aには、外部機器(例えば、真空タンク7(図1参照))から負圧空気を供給するための管またはチューブが接続される。
 ケーシング本体22には、前後方向に延びる軸心X2を基準とした孔部22Bが形成され、この孔部22Bに円筒状に形成されたシリンダライナ23が鋳込まれている。具体的には、シリンダライナ23を金型にセットした状態で、この金型に注湯することにより当該シリンダライナ23を一体に鋳込んだケーシング本体22(ケーシング31)が鋳造される。軸心X2は、上述の電動モータ10の出力軸12の回転中心X1に対して平行で、かつ、図2に示すように、回転中心X1に対して左側斜め上方に偏心している。本構成では、回転中心X1を中心とするロータ27の外周面27Bが、軸心X2を基準に形成されているシリンダライナ23の内周面23Aに接するように軸心X2が偏心されている。
 シリンダライナ23は、ロータ27と同一の金属材料(本実施形態では、鉄)で形成されており、このシリンダライナ23の内周面23Aには、例えば、硬質クロムめっき等の表面硬化処理が施され、内周面(摺動面)23Aの硬度が高められている。
 本実施形態では、ケーシング本体22にシリンダライナ23を一体に鋳込むことにより、ケーシング本体22の前後方向の長さ範囲内でシリンダライナ23を収容することができるため、このシリンダライナ23がケーシング本体22から突出することが防止され、ケーシング本体22の小型化を図ることができる。
 更に、ケーシング本体22はロータ27よりも熱伝導性の高い材料で形成されている。これによれば、ロータ27及びベーン28が回転駆動した際に発生した熱がケーシング本体22に速やかに伝達できることにより、ケーシング本体22から十分に放熱することができる。
 シリンダライナ23には、上記したケーシング本体22の連通孔(吸気孔)22Aとシリンダ室S内とを繋ぐ開口(吸気孔)23Bが形成されており、吸込ニップル30を通じた空気は、連通孔22A,開口23Bを通じてシリンダ室S内に供給される。また、ケーシング本体22及びシリンダライナ23の下部には、これらケーシング本体22及びシリンダライナ23を貫通し、シリンダ室Sで圧縮された空気が排出される排気孔22C,23Cが設けられている。本実施形態では、これら連通孔22A、開口23Bと、排気孔22C,23Cとは、シリンダ室Sを挟んで同一の軸心上に配置されており、例えば、ケーシング本体22の上面側からの1回のドリル加工により形成することができる。
 シリンダライナ23の後端および前端には、それぞれシリンダ室Sの開口を塞ぐサイドプレート25,26が配設されている。これらサイドプレート25,26は、その直径がシリンダライナ23の内周面23Aの内径よりも大きく設定されており、ウェーブワッシャー25A,26Aにより付勢されて、シリンダライナ23の前端及び後端にそれぞれ押し付けられている。これにより、シリンダライナ23の内側は、吸込ニップル30に連なる開口23B及び排気孔23C,22Cを除いて、密閉されたシリンダ室Sが形成される。なお、ウェーブワッシャー25A,26Aの替わりにシールリングを設ける構成としても良い。
 シリンダ室Sには、ロータ27が配設されている。ロータ27は、電動モータ10の回転中心X1に沿って延びる円柱形状を有し、ポンプ本体20の駆動軸である出力軸12が挿通される軸孔27Aを有すると共に、この軸孔27Aから径方向に離れた位置に、複数のガイド溝27Cが軸孔27Aを中心とする等角度間隔で周方向に間隔を空けて設けられる。上記軸孔27Aの一部には、出力軸12の先端部12Aに設けられたスプライン軸に係合するスプライン溝27Dが形成され、ロータ27と出力軸12とがスプライン連結されるようになっている。
 本実施形態では、ロータ27の前端面には、軸孔27Aの周囲に当該軸孔27Aよりも拡径した円柱状の凹部27Fが形成され、この凹部27F内に延出する出力軸12の先端にプッシュナット70が取り付けられ、このプッシュナット70により、ロータ27が出力軸12の先端側へ移動することが規制される。
 ロータ27の前後方向の長さは、シリンダライナ23のシリンダ室Sの長さ、すなわち、上述の2枚にサイドプレート25,26の相互に対向する内面間の距離と略等しく設定され、ロータ27とサイドプレート25,26との間は略閉塞されている。
 また、ロータ27の外径は、図3に示すように、ロータ27の外周面27Bが、シリンダライナ23の内周面23Aのうちの右斜め下方に位置する部分と微小なクリアランスを保つように設定されている。これにより、サイドプレート25,26により区画されたシリンダ室S内は、図3に示すように、ロータ27の外周面27Bと、シリンダライナ23の内周面23Aとの間には、三日月形状の空間が構成される。
 ロータ27には、三日月形状の空間を区画する複数(本例では5枚)のベーン28が設けられている。ベーン28は、板状に形成されていて、その前後方向の長さは、ロータ27と同様、2枚のサイドプレート25,26の相互に対向する内面間の距離と略等しくなるように設定されている。これらベーン28は、ロータ27に設けられたガイド溝27Cから出没自在に配設されている。各ベーン28は、ロータ27の回転に伴い、遠心力によってガイド溝27Cに沿って外側へ突出し、その先端をシリンダライナ23の内周面23Aに当接させる。これにより、上述の三日月形状の空間は、相互に隣接する2枚のベーン28,28と、ロータ27の外周面27Bと、シリンダライナ23の内周面23Aとによって囲まれる5つの圧縮室Pに区画される。これら圧縮室Pは、出力軸12の回転に伴うロータ27の矢印R方向の回転に伴い、同方向に回転し、その容積が、開口23B近傍で大きく、一方、排気孔23Cで小さくなる。つまり、ロータ27,ベーン28の回転により、開口23Bから1つの圧縮室Pに吸入された空気は、ロータ27の回転に伴って回転しつつ圧縮されて、排気孔23Cから排出される。本構成では、ロータ27及び複数のベーン28を備えて回転圧縮要素を構成する。
 本構成では、シリンダライナ23は、図2に示すように、このシリンダライナ23の軸心X2が回転中心X1に対して左側斜め上方に偏心してケーシング本体22に鋳込まれている。このため、ケーシング本体22内には、シリンダライナ23が偏心したのと反対の方向に大きなスペースを確保することができ、このスペースにはシリンダライナ23の周縁部に沿って、排気孔23C、22Cに連通する膨張室33が形成されている。
 膨張室33は、シリンダライナ23の下方から出力軸12の上方に至るまで、当該シリンダライナ23の周縁部に沿った大きな閉空間として形成され、ポンプカバー24に形成された排気口24Aに連通している。この膨張室33に流入した圧縮空気は、当該膨張室33内で膨張、分散して当該膨張室33の隔壁にぶつかって乱反射する。これにより、圧縮空気の音エネルギが減衰されるため、排気する際の騒音及び振動の低減を図ることができる。
 ポンプカバー24は、前側のサイドプレート26にウェーブワッシャー26Aを介して配置され、ケーシング本体22にボルト66で固定されている。ケーシング本体22の前面には、図3に示すように、シリンダライナ23や膨張室33を囲んでシール溝22Dが形成され、このシール溝22Dには環状のシール材67(図2)が配置されている。ポンプカバー24には、膨張室33に対応する位置に排気口24Aが設けてある。この排気口24Aは、膨張室33に流入した空気を機外(真空ポンプ1の外部)に排出するためのものであり、この排気口24Aは、機外からポンプ内への空気の逆流を防止するためのチェックバルブ29が取り付けられている。
 また、真空ポンプ1は、電動モータ10とポンプ本体20とを連結して構成されており、電動モータ10の出力軸12に連結されたロータ27及びベーン28がポンプ本体20のシリンダライナ23内で摺動する。このため、ポンプ本体20を電動モータ10の出力軸12の回転中心X1に合わせて組み付けることが重要である。
 このため、本実施形態では、電動モータ10は、ケース11の一端側に出力軸12の回転中心X1を中心とした嵌合穴部63が形成されている。一方、ケーシング本体22の背面には、図2に示すように、シリンダ室Sの周囲に後方へ突出した円筒状の嵌合部22Fが一体に形成されている。この嵌合部22Fは、電動モータ10の出力軸12の回転中心X1と同心に形成されており、電動モータ10の嵌合穴部63にインロー嵌合する外径に形成されている。これにより、本構成では、電動モータ10の嵌合穴部63にケーシング本体22の嵌合部22Fを嵌め込むだけで、簡単に中心位置を合わせることができ、電動モータ10とポンプ本体20との組み付け作業を容易に行うことができる。また、ケーシング本体22の背面には、嵌合部22Fの周囲にシール溝22Eが形成され、このシール溝22Eには環状のシール材35が配置されている。
 次に、上述した真空ポンプ1が備えるケーシング31の製造方法について説明する。図4は、ケーシング31の製造手順を示すフローチャートである。
 まず、ケーシング31に用いられるシリンダライナ23の外周面にらせん溝(回転及び抜けを防止する手段)を成形する(ステップS1)。具体的には、図5に示すように、シリンダライナ23の外周面23Dにらせん状に延びた溝部23Eを複数成形する。この溝部23Eは、シリンダライナ23を鋳込んだ際に溶融金属が当該溝部23E内に侵入してアンカーとして機能し、シリンダライナ23の回転及び抜けを防止するものである。溝部23Eは、端部23Fを閉じて形成するのが望ましいが、当該溝部23E間のピッチを変更しても良い。このらせん状に延びた溝部23Eは、シリンダライナ23を旋盤のチャックに保持した状態で当該シリンダライナ23の外周面23Dに刃物(バイト)を当てることにより簡単に成形できる。また、シリンダライナ23の送り量を調整することで溝部23Eのピッチを簡単に変更することができる。なお、この実施形態では、成形が簡単である観点から、シリンダライナ23の外周面23Dにらせん状に延びた溝部23Eを成形したものを一例として説明しているが、これに限るものではなく、例えば、シリンダライナ23の外周面23Dにディンプル等の凹凸を付ける加工をしても良い。
 次に、シリンダライナ23を鋳込んだ状態でケーシング本体22を鋳造する(ステップS2)。具体的には、シリンダライナ23をダイカスト用金型(不図示)内にセットし、この状態で金型内にアルミニウム等の溶融金属(溶湯)を注湯する。これにより、シリンダライナ23を一体に鋳込んだケーシング本体22が鋳造される。
 次に、シリンダライナ23とケーシング本体22とを一体に機械加工する(ステップS3)。具体的には、吸気孔としてのケーシング本体22の連通孔22A、シリンダライナ23の開口23Bを一体に孔加工するとともに、ケーシング本体22の排気孔22C、シリンダライナ23の排気孔23Cを一体に孔加工する。本実施形態では、これら連通孔22A、開口23Bと、排気孔22C,23Cとは、シリンダ室Sを挟んで同一の軸心上に配置されているため、ケーシング本体22の上面側からの1回のドリル加工によりこれらを形成することができる。なお、これら孔加工の後、連通孔22A,開口23B及び排気孔22C,23Cの周囲に生じるバリ取りを行う。
 シリンダライナ23の内周面23Aは、ロータ27及びベーン28が摺動する摺動面として機能するため、シリンダライナ23の内径を精度良く成形する必要がある。本実施形態では、シリンダライナ23をケーシング本体22に鋳込んでいるため、このシリンダライナ23は、鋳造する工程において高温の溶融金属と接触することにより熱膨張し、冷却する過程で熱収縮する。これにより、シリンダライナ23の内径が個体ごとにバラつきが生じるおそれがある。このため、鋳込まれたシリンダライナ23の内周面23Aを切削することで当該シリンダライナ23の内径を正確に規定寸法に合わせている。
 続いて、シリンダライナ23の内周面23Aをシリンダライナ23(鉄)よりも硬い金属で皮膜する表面処理を行う(ステップS4)。具体的には、シリンダライナ23の内周面23Aに硬質クロムめっきを施す。この場合、シリンダライナ23の内周面23Aを除いたケーシング本体22をマスキングした後、このケーシング本体ごと、クロムめっき槽に浸けて当該内周面23Aに硬質クロムめっきが施される。乾燥後に内周面23Aをバフ研磨等してシリンダライナ23の内径を正確に規定寸法に合わせる。
 最後に、シリンダライナ23をマスキングし(ステップS5)、ケーシング本体22の表面に3価亜鉛メッキ処理を施して(ステップS6)終了する。
 以上、説明したように、本実施形態によれば、電動モータ10により駆動されるロータ27及びベーン28が摺動するシリンダ室Sを備えるケーシング31の製造方法において、シリンダ室Sを形成するシリンダライナ23を金型に配置し、ケーシング本体22を成形するアルミニウム溶湯を用いて鋳造し、シリンダライナ23を一体に鋳込む工程と、シリンダライナ23及びケーシング本体22を一体に貫通し、シリンダ室S内と連通する連通孔22A、開口23B及び排気孔22C,23Cを加工する工程とを備えたため、シリンダライナ23を一体に鋳込んだケーシング本体22を、一体に貫通してシリンダ室S内と連通する連通孔22A、開口23B及び排気孔22C,23Cを加工できる。このため、シリンダライナを圧入する工程で生じていたシリンダライナ23とケーシング本体22との孔位置の調整作業や、ケーシング本体22の追加工が不要となるため、シリンダライナを圧入するものと比べて製造時の作業工数の低減を図ることができる。また、シリンダライナ23は、ケーシング本体22に鋳込まれてケーシング31が製造されるため、このケーシング31の軸方向への小型化を図ることができる。
 また、本実施形態によれば、開口23B及び排気孔23Cが加工されたシリンダライナ23の内周面23Aに硬質クロムめっき処理を施すため、ケーシング本体22にシリンダライナ23を一体に鋳込んだケーシング31であっても、硬度の高い摺動面を簡単に形成することができる。
 また、本実施形態によれば、シリンダライナ23を鋳込む工程に先だって、シリンダライナ23の外周面23Dに当該シリンダライナ23の回転及び抜けを防止する手段を成形する工程を備えたため、シリンダライナ23とケーシング本体22とで熱膨張係数の異なる金属を採用したとしても、シリンダライナを圧入するものに比べて、シリンダライナ23の回転及び抜けを防止する構成を簡素化できる。
 また、本実施形態によれば、回転及び抜けを防止する手段として、シリンダライナ23の外周面23Dにらせん状の溝部23Eを成形するため、回転及び抜けを防止したシリンダライナ23を簡単に作成することができる。
 また、本実施形態によれば、電動モータ10に取り付けられるケーシング31を備え、このケーシング31内に電動モータ10より駆動されるロータ27及びベーン28が摺動するシリンダ室Sを備える真空ポンプ1において、ケーシング31は、鋳造されたケーシング本体22に一体に鋳込まれてシリンダ室Sを形成するシリンダライナ23を備え、シリンダライナ23及びケーシング本体22を一体に貫通し、シリンダ室S内と連通する連通孔22A、開口23B及び排気孔22C,23Cを備えるため、回転軸方向への小型化を図ることができるとともに、シリンダライナを圧入するものと比べて製造時の作業工数の低減を図ることができる。
 以上、本発明を実施するための最良の実施の形態について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 1 真空ポンプ
 10 電動モータ(駆動機)
 12 出力軸(回転軸)
 22 ケーシング本体
 22A 連通孔(吸気孔)
 22B 孔部
 22C 排気孔
 23 シリンダライナ
 23A 内周面
 23B 開口(吸気孔)
 23C 排気孔
 23D 外周面
 23E 溝部(らせん溝)
 23F 端部
 24 ポンプカバー
 27 ロータ(回転圧縮要素)
 28 ベーン(回転圧縮要素)
 31 ケーシング
 S シリンダ室

Claims (5)

  1.  駆動機により駆動される回転圧縮要素が摺動するシリンダ室を備えるケーシングの製造方法において、
     前記シリンダ室を形成するシリンダライナを金型に配置し、ケーシング本体を成形する溶湯を用いて鋳造し、前記シリンダライナを一体に鋳込む工程と、
     前記シリンダライナ及び前記ケーシング本体を一体に貫通し、前記シリンダ室内と連通する吸気孔及び排気孔を加工する工程と、を備えたことを特徴とするケーシングの製造方法。
  2.  前記吸気孔及び前記排気孔が加工された前記シリンダライナの内周面を、当該シリンダライナよりも硬い金属で皮膜する工程を備えることを特徴とする請求項1に記載のケーシングの製造方法。
  3.  前記シリンダライナを鋳込む工程に先だって、前記シリンダライナの外周面に当該シリンダライナの回転及び抜けを防止する手段を成形する工程を備えたことを特徴とする請求項1または2に記載のケーシングの製造方法。
  4.  前記回転及び抜けを防止する手段として、前記シリンダライナの外周面にらせん溝を成形することを特徴とする請求項3に記載のケーシングの製造方法。
  5.  駆動機に取り付けられるケーシングを備え、このケーシング内に前記駆動機より駆動される回転圧縮要素が摺動するシリンダ室を備える真空ポンプにおいて、
     前記ケーシングは、鋳造されたケーシング本体に一体に鋳込まれて前記シリンダ室を形成するシリンダライナを備え、前記シリンダライナ及び前記ケーシング本体を一体に貫通し、前記シリンダ室内と連通する吸気孔及び排気孔を備えることを特徴とする真空ポンプ。
PCT/JP2012/053138 2011-02-14 2012-02-10 ケーシングの製造方法及び真空ポンプ WO2012111561A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/984,165 US9347447B2 (en) 2011-02-14 2012-02-10 Process for manufacturing casing, and vacuum pump
CN201280008904.8A CN103477081B (zh) 2011-02-14 2012-02-10 机壳的制造方法及真空泵
EP12747506.9A EP2677173B1 (en) 2011-02-14 2012-02-10 Process for manufacturing casing, and vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-028481 2011-02-14
JP2011028481A JP2012167590A (ja) 2011-02-14 2011-02-14 ケーシングの製造方法及び真空ポンプ

Publications (1)

Publication Number Publication Date
WO2012111561A1 true WO2012111561A1 (ja) 2012-08-23

Family

ID=46672486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053138 WO2012111561A1 (ja) 2011-02-14 2012-02-10 ケーシングの製造方法及び真空ポンプ

Country Status (4)

Country Link
US (1) US9347447B2 (ja)
EP (1) EP2677173B1 (ja)
JP (1) JP2012167590A (ja)
WO (1) WO2012111561A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318195A (ja) * 1986-07-10 1988-01-26 Toyota Autom Loom Works Ltd スライドベ−ン型回転圧縮機におけるシリンダブロツクの製造方法
JPH01105065U (ja) * 1987-12-29 1989-07-14
JP2001170755A (ja) * 1999-12-15 2001-06-26 Tp Kogyo Kk 鋳ぐるみ用鋳鉄部材、それを用いた鋳ぐるみ製品、及び鋳ぐるみ用鋳鉄部材の製造方法
JP2003222090A (ja) 2002-01-31 2003-08-08 Denso Corp ベーン型真空ポンプ
WO2004111460A1 (ja) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. ベーンロータリ型空気ポンプ
JP2008196346A (ja) * 2007-02-09 2008-08-28 Mazda Motor Corp 摺動部材及びその製造方法
JP2008545096A (ja) * 2005-07-07 2008-12-11 エーリコン ライボルト ヴァキューム ゲゼルシャフト ミット ベシュレンクテル ハフツング 真空ベーンポンプ
JP2009091973A (ja) * 2007-10-09 2009-04-30 Denso Corp 真空ポンプ
JP2010059909A (ja) * 2008-09-05 2010-03-18 Fuji Heavy Ind Ltd シリンダライナ、シリンダブロック及びシリンダライナの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571005A (en) * 1995-06-07 1996-11-05 Delaware Capital Formation, Inc. Hinged vane rotary pump
GB9913438D0 (en) * 1999-06-09 1999-08-11 Imperial College A rotary pump
JP4185822B2 (ja) * 2003-06-25 2008-11-26 株式会社共立 内燃エンジン用シリンダの製造方法
JP2005155600A (ja) * 2003-10-31 2005-06-16 Toyota Motor Corp 水冷式エンジン及びそのシリンダブロック
JP4241627B2 (ja) * 2005-01-14 2009-03-18 富士重工業株式会社 シリンダライナ及びシリンダブロック

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318195A (ja) * 1986-07-10 1988-01-26 Toyota Autom Loom Works Ltd スライドベ−ン型回転圧縮機におけるシリンダブロツクの製造方法
JPH01105065U (ja) * 1987-12-29 1989-07-14
JP2001170755A (ja) * 1999-12-15 2001-06-26 Tp Kogyo Kk 鋳ぐるみ用鋳鉄部材、それを用いた鋳ぐるみ製品、及び鋳ぐるみ用鋳鉄部材の製造方法
JP2003222090A (ja) 2002-01-31 2003-08-08 Denso Corp ベーン型真空ポンプ
WO2004111460A1 (ja) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. ベーンロータリ型空気ポンプ
JP2008545096A (ja) * 2005-07-07 2008-12-11 エーリコン ライボルト ヴァキューム ゲゼルシャフト ミット ベシュレンクテル ハフツング 真空ベーンポンプ
JP2008196346A (ja) * 2007-02-09 2008-08-28 Mazda Motor Corp 摺動部材及びその製造方法
JP2009091973A (ja) * 2007-10-09 2009-04-30 Denso Corp 真空ポンプ
JP2010059909A (ja) * 2008-09-05 2010-03-18 Fuji Heavy Ind Ltd シリンダライナ、シリンダブロック及びシリンダライナの製造方法

Also Published As

Publication number Publication date
US9347447B2 (en) 2016-05-24
CN103477081A (zh) 2013-12-25
EP2677173A4 (en) 2017-01-11
EP2677173B1 (en) 2020-01-15
EP2677173A1 (en) 2013-12-25
US20140044583A1 (en) 2014-02-13
JP2012167590A (ja) 2012-09-06

Similar Documents

Publication Publication Date Title
CN106050658B (zh) 真空泵
CN101311538A (zh) 用于增压器组件的壳体
WO2013137053A1 (ja) 真空ポンプ
JP2012167589A (ja) 真空ポンプ
WO2012111561A1 (ja) ケーシングの製造方法及び真空ポンプ
US20190338770A1 (en) Method for Producing a Housing of a Screw Compressor
JP4674215B2 (ja) エアー工具モーター部の構造
CN103477081B (zh) 机壳的制造方法及真空泵
JP6016390B2 (ja) 真空ポンプおよび真空ポンプの製造方法
JP2011202561A (ja) 内燃機関のバルブタイミング制御装置及びその製造方法
JP5914162B2 (ja) 真空ポンプ
JP6093116B2 (ja) 真空ポンプ
JP5719577B2 (ja) 真空ポンプ
JP6297119B2 (ja) 真空ポンプ
JP6215998B2 (ja) 真空ポンプ
JP2006022794A (ja) 車両用真空ポンプ
JP2003239871A (ja) ロータの製造方法およびロータを用いたベーンポンプ
JP2002059318A (ja) 圧縮機用ピストンの製造方法
CN205677835U (zh) 一种凸轮驱动式真空泵
JP2007100667A (ja) 真空ポンプ
JP6166671B2 (ja) ベーンポンプ
JP2004176698A (ja) 液圧ポンプと位置・推力制御回路
JP2601496Y2 (ja) ベーンポンプ
JPH0444874Y2 (ja)
US20140023477A1 (en) Combination pump assembly and method of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012747506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984165

Country of ref document: US