WO2012111425A1 - 電池電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池 - Google Patents
電池電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2012111425A1 WO2012111425A1 PCT/JP2012/052156 JP2012052156W WO2012111425A1 WO 2012111425 A1 WO2012111425 A1 WO 2012111425A1 JP 2012052156 W JP2012052156 W JP 2012052156W WO 2012111425 A1 WO2012111425 A1 WO 2012111425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion secondary
- lithium ion
- secondary battery
- slurry
- binder
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention is a lithium ion secondary battery electrode slurry obtained by using a battery electrode binder and an active material, wherein the slurry has a pH of 3.0 to 6.0.
- the present invention relates to a slurry for secondary battery electrodes, an electrode for lithium ion secondary batteries using these slurries, and a lithium ion secondary battery using these electrodes.
- the lithium ion secondary battery market is expanding with the spread of notebook computers, mobile phones, power tools, and electronic / communication equipment. Furthermore, recently, from the viewpoint of environmental problems, the demand for lithium ion secondary batteries for electric vehicles and hybrid vehicles has increased, and in particular, these include lithium ion secondary batteries with higher output, higher capacity, and higher energy density. Is needed.
- a lithium ion secondary battery includes a positive electrode using a metal oxide such as lithium cobaltate as an active material, a negative electrode using a carbon material such as graphite as an active material, a separator made of a porous sheet such as polypropylene or polyethylene, and a 6
- the electrolyte is composed of an electrolyte solution in which an electrolyte such as lithium phosphate (LiPF 6 ) is dissolved in a carbonate-based solvent.
- the positive electrode slurry is formed on a positive electrode layer by applying slurry for a lithium ion secondary battery positive electrode comprising a metal oxide and a binder to an aluminum foil, and the negative electrode is a lithium ion secondary battery comprising graphite and a binder.
- the negative electrode slurry is applied to a copper foil or the like to form a negative electrode layer.
- an organic solvent-based N is used as a binder for the lithium secondary battery electrode slurry.
- PVDF Polyvinylidene fluoride
- NMP methylolpyrrolidone
- SBR styrene-butadiene rubber
- CMC carboxymethyl cellulose
- a PVDF-based binder used as a binder for a lithium secondary battery electrode slurry has a low binding property between active materials and between an active material and a current collector, and is actually used.
- SBR binders have been used in a wide range of applications as binders for aqueous lithium ion secondary battery electrodes because active materials and active materials and current collectors can be bound well (see, for example, Patent Document 2). .
- the slurry in which the amount of the binder used is reduced cannot satisfactorily bind the active materials and the active material and the current collector, and charging / discharging of the lithium ion secondary battery The problem is that the cycle characteristics deteriorate.
- the present invention provides a slurry for lithium ion secondary battery electrodes having good binding properties between active materials and between an active material and a current collector, electrodes using these slurries, high initial discharge capacity using these electrodes, and excellent It aims at providing the lithium ion secondary battery which has charging / discharging high temperature cycling characteristics.
- the present inventors can adhere the active materials to each other and the active material and the current collector satisfactorily by using the slurry for lithium ion secondary battery electrodes in a specific pH range. Further, the inventors have found that a lithium ion secondary battery having both a high initial discharge capacity and excellent charge / discharge high temperature cycle characteristics can be obtained by using the slurry, and the present invention has been completed.
- the present invention relates to a slurry for a lithium ion secondary battery electrode obtained using a battery electrode binder and an active material and having a pH of 3.0 to 6.0.
- the lithium ion secondary battery electrode slurry of the present invention preferably contains 0.2 to 4.0% by mass of the battery electrode binder with respect to the active material.
- the battery electrode binder is preferably obtained by polymerizing an ethylenically unsaturated monomer.
- the battery electrode binder is preferably obtained by emulsion polymerization of an ethylenically unsaturated monomer.
- the battery electrode binder is obtained by polymerizing styrene, ethylenically unsaturated carboxylic acid ester and ethylenically unsaturated carboxylic acid, and preferably further contains a crosslinking agent.
- the acid value of the battery electrode binder is preferably 5.0 to 30.0 mgKOH / g.
- the battery electrode binder preferably has a pH of 2.0 to 5.0 when dissolved or dispersed in a liquid containing water.
- the slurry for a lithium ion secondary battery electrode further contains carboxymethyl cellulose.
- the present invention relates to an electrode for a lithium ion secondary battery obtained using a slurry for a lithium ion secondary battery electrode.
- the present invention relates to a lithium ion secondary battery obtained using an electrode for a lithium ion secondary battery.
- the present invention adjusts the pH of a lithium ion secondary battery electrode slurry obtained by using a battery electrode binder and an active material to 3.0 to 6.0, and provides the obtained lithium ion secondary battery electrode slurry.
- the manufacturing method of the electrode for lithium ion secondary batteries which uses and manufactures the electrode for lithium ion secondary batteries.
- the present invention relates to a method for manufacturing a lithium ion secondary battery in which a lithium ion secondary battery is manufactured using an electrode for a lithium ion secondary battery.
- the active materials and the active material and the current collector can be bound well, Further, by using the slurry, a lithium ion secondary battery having both a high initial discharge capacity and excellent charge / discharge high temperature cycle characteristics can be provided.
- the pH of the battery electrode slurry is preferably adjusted to 3.5 to 5.5, and more preferably adjusted to 4.0 to 5.5. If the pH of the battery electrode slurry is less than 3.0, it is difficult to produce the slurry, and if it exceeds 6.0, the binding between the active materials and between the active material and the current collector tends to be low.
- the slurry for lithium ion secondary battery electrodes used in the present invention is obtained by dispersing or dissolving a binder for lithium ion secondary battery electrodes and an active material in water or a mixture of water and a highly hydrophilic solvent. is there.
- Examples of the preparation of the slurry include a method in which a binder for a lithium ion secondary battery electrode is dispersed, dissolved or kneaded in a solvent, then other additives and an active material are added, and further dispersed, dissolved or kneaded. .
- the lithium ion secondary battery electrode slurry used in the present invention can be mixed with a thickener or a viscosity improver as long as the effects of the present invention are not impaired.
- the thickener or viscosity improver is preferably blended in an amount of 0.2 to 3.0% by weight, more preferably 0.5 to 2.0% by weight, in the slurry for lithium ion secondary battery electrodes. .
- thickeners and viscosity improvers to be blended in the slurry for lithium ion secondary battery electrodes include cellulose derivatives such as carboxymethyl cellulose, carboxyethyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, carboxyethyl methyl cellulose (these Including salts such as ammonium salts and alkali metal salts), and it is preferable to add carboxymethylcellulose to impart an appropriate viscosity to the slurry.
- the lithium ion secondary battery electrode slurry used in the present invention may contain a water-soluble polymer, a surfactant, or the like for the purpose of increasing the stability of the slurry.
- a water-soluble polymer examples include polyethylene oxide, ethylene glycol, and polycarboxylic acid.
- the compound for adjusting the pH of the lithium ion secondary battery electrode slurry used in the present invention is a battery electrode slurry adjusted by one or more compounds from the group consisting of organic acids, inorganic acids, organic bases and inorganic bases. Is preferred.
- the organic acid which is a compound for adjusting the pH of the lithium ion secondary battery electrode slurry used in the present invention is, for example, acrylic acid, methacrylic acid, itaconic acid, formic acid, acetic acid, oxalic acid, malonic acid, succinic acid, glutar
- examples include acids, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, fumaric acid, citric acid, and 1,2,3,4-butanetetracarboxylic acid.
- inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, carbonic acid, perchloric acid, and sulfamic acid.
- Examples of the organic base include primary amine R 1 NH 2 , secondary amine R 1 R 2 NH, tertiary amine R 1 R 2 R 3 N, and quaternary ammonium salt R 1 R 2 R 3 R 4 N + .
- R 1 , R 2 , R 3 and R 4 represent an alkyl group having 1 to 10 carbon atoms which may be the same or different from each other, a phenyl group, a hexyl group, and a group obtained by combining them.
- R 1 , R 2 , R 3 and R 4 may further have a substituent.
- Examples of the inorganic base include ammonia, lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide and the like.
- these compounds may be used alone or in combination of two or more.
- the pH adjusting compound for lowering the pH of the slurry for the lithium ion secondary battery electrode formic acid is preferable from the viewpoint that the binding property between the current collector, the active material and the current collector can be further improved.
- the regulator for increasing the amount of ammonia ammonia is preferable from the viewpoint that the base hardly remains on the electrode after drying.
- the binder for the battery electrode is preferably 0.2 to 4.0% by mass with respect to the active material.
- the electrode binder By setting the electrode binder to 0.2 to 3.0% by mass with respect to the active material, the slurry for the lithium ion secondary battery electrode having good binding properties between the active materials and between the active material and the current collector, and A lithium ion secondary battery having a high initial discharge capacity and excellent charge / discharge high temperature cycle characteristics can be provided.
- the binder for the battery electrode is more preferably 0.2 to 3.0% by mass, and further preferably 0.5 to 2.5% by mass with respect to the active material. When the amount of the binder used is less than 0.2% by mass, the binding property between the active material and the current collector tends to be low, and when it exceeds 3.0% by mass, the initial discharge capacity of the lithium ion secondary battery is low. Tend to be.
- a known polymer such as styrene-butadiene rubber can be used in addition to a polymer obtained by polymerizing an ethylenically unsaturated monomer.
- One or more types of monomers selected from the group consisting of ethylenically unsaturated monomers are not particularly limited.
- (meth) acrylic acid having a linear, branched or cyclic alkyl chain Esters aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, hydroxyalkyl (meth) acrylates, alkylamino (meth) acrylates, vinyl esters represented by vinyl acetate and vinyl alkanoates, monoolefins (ethylene, Propylene, butylene, isobutylene, etc.), diolefins (allene, methylallene, butadiene), ⁇ , ⁇ -unsaturated mono- or dicarboxylic acids (acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, etc.), Carbonyl group-containing ethylenically unsaturated monomers such as diacetone acrylamide, p Sulfonic acid group-containing ethylenically unsaturated monomers such as toluenesulfonic acid.
- ethylenically unsaturated monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
- lithium ion secondary battery electrode binders obtained using these ethylenically unsaturated monomers are styrene in terms of further improving the elution resistance to the electrolyte for the purpose of improving battery characteristics.
- -A (meth) acrylic acid ester copolymer or a (meth) acrylic acid ester copolymer is preferred. In particular, it is preferably obtained by copolymerizing styrene, ethylenically unsaturated carboxylic acid ester, and ethylenically unsaturated carboxylic acid.
- the content of styrene units in the battery electrode binder is 15 to 70% by mass. It is preferably 30 to 60% by mass.
- the content of the styrene unit in the binder for battery electrodes is less than 15% by mass, the binding between the active materials tends to be inferior, and the adhesion between the active material and the current collector tends to decrease. Cracks tend to occur in the electrode obtained from application of the slurry containing the substance.
- the content of ethylenically unsaturated carboxylic acid ester in the binder for battery electrodes is 25. It is preferably ⁇ 85% by mass, and more preferably 30 ⁇ 80% by mass.
- the content of the ethylenically unsaturated monomer unit in the binder for battery electrodes is less than 25% by mass, the flexibility and heat resistance of the obtained electrode tend to decrease, and when the content exceeds 85% by mass, the active materials and The binding property between the active material and the current collector tends to decrease.
- the content of ethylenically unsaturated carboxylic acid in the battery electrode binder is 1 to The content is preferably 10% by mass, and more preferably 1 to 5% by mass.
- the emulsion polymerization stability or mechanical stability tends to decrease. There is a tendency that the binding property between the battery and the current collector decreases.
- hydrolyzable alkoxy such as epoxy group-containing ⁇ , ⁇ -ethylenically unsaturated compounds such as glycidyl (meth) acrylate, vinyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, etc.
- Monomers are introduced into a copolymer used as a binder for battery electrodes, and are crosslinked by themselves or in combination with an ethylenically unsaturated compound component having an active hydrogen group, or carbonyl group-containing ⁇ , ⁇ - Ethylenically unsaturated compounds (especially containing keto groups) Etc.) into a copolymer and crosslinked in combination with a polyhydrazine compound (particularly a compound having two or more hydrazide groups; oxalic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, polyacrylic acid hydrazide, etc.)
- the amount of the crosslinking agent added to the battery electrode binder is preferably 0.1 to 5% by mass and more preferably 0.1 to 3% by mass with respect to the battery electrode binder. If the amount of the crosslinking agent added to the battery electrode binder is less than 0.1% by mass with respect to the battery electrode binder, the swelling resistance of the dry film to the electrolytic solution tends to decrease, and the amount is less than 5% by mass. If the amount is large, the emulsion polymerization stability tends to decrease, and the adhesion between the active material and the current collector tends to decrease.
- a conventionally known method can be used, but an emulsion polymerization method is preferably used.
- a normal anionic surfactant or nonionic surfactant is used as the surfactant used in the emulsion polymerization.
- the anionic surfactant include alkyl benzene sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, fatty acid salt, and the like.
- Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, Examples thereof include oxyethylene alkyl phenyl ether, polyoxyethylene polycyclic finyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid aster. These may be used individually by 1 type and may be used in combination of 2 or more type.
- the amount of the surfactant used is preferably 0.3 to 3% by mass with respect to the total ethylenically unsaturated monomer. If the amount of the surfactant used is less than 0.3% by mass, the emulsion polymerization may be difficult, and even if emulsion polymerization is possible, the polymerization stability tends to decrease. The particle size of the emulsion becomes large, and the resin emulsion tends to settle. Moreover, when the usage-amount of surfactant exceeds 3 mass%, it exists in the tendency for the adhesive force of an active material and a collector to fall.
- the radical polymerization initiator used in the emulsion polymerization may be any known and conventional one, and examples thereof include ammonium persulfate, potassium persulfate, hydrogen peroxide, and t-butyl hydroperoxide. If necessary, these polymerization initiators may be used in combination with a reducing agent such as sodium bisulfite, Rongalite, and ascorbic acid for redox polymerization.
- a reducing agent such as sodium bisulfite, Rongalite, and ascorbic acid for redox polymerization.
- the emulsion polymerization method of the aqueous emulsion of the present invention a polymerization method charged in a batch, a method of polymerization while continuously supplying each component, and the like are applied.
- the polymerization is usually carried out at a temperature of 30 to 90 ° C. with stirring.
- the ethylenically unsaturated carboxylic acid copolymerized during the polymerization or after the completion of the polymerization is adjusted by adding a basic substance to adjust the pH so that the polymerization stability, mechanical stability, and chemical stability during emulsion polymerization are achieved. Can be improved.
- ammonia triethylamine, ethanolamine, caustic soda and the like can be used. These may be used individually by 1 type and may be used in combination of 2 or more type.
- the pH in a state where the binder for a battery electrode is dissolved or dispersed in a liquid containing water such as an aqueous emulsion obtained by emulsion polymerization of an ethylenically unsaturated monomer, or a styrene-butadiene rubber latex is 2 It is preferably 0.0 to 5.0.
- a liquid containing water such as an aqueous emulsion obtained by emulsion polymerization of an ethylenically unsaturated monomer, or a styrene-butadiene rubber latex.
- the acid value of the battery electrode binder is preferably 5.0 to 30.0 mgKOH / g, and more preferably 5.0 to 25.0 mgKOH / g.
- the acid value of the composition is a value measured according to JIS K0070. For example, measurement is performed as follows.
- the slurry for lithium ion secondary battery electrodes of the present invention can be used for both positive and negative electrodes of lithium ion secondary batteries.
- the positive electrode active material is not particularly limited as long as it is a positive electrode active material that can be used in a lithium ion secondary battery.
- chalcogen compounds such as lithium, TiS 2 , MnO 2 , MoO 3 , and V 2 O 5 are used in combination.
- the negative electrode active material may be any carbonaceous material that intercalates lithium ions.
- coke such as graphite, carbon fiber, coke, petroleum coke, pitch coke, coal coke, polymer charcoal, carbon fiber, acetylene Carbon black such as black and ketjen black, pyrolytic carbons, glassy carbon, organic polymer material sintered body obtained by sintering organic polymer material in vacuum or inert gas at 500 ° C. or higher, carbon fiber Etc. are used in combination.
- the electrode of the present invention is manufactured by applying a slurry for a lithium ion secondary battery electrode onto a current collector and drying it.
- the slurry application method of the present invention may be a general method such as reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method. Law and squeeze method.
- the application of the lithium ion secondary battery electrode slurry to the current collector may be performed on one side of the current collector, or may be performed on both sides. You may apply
- the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery.
- a general method can be used as the method for drying the slurry of the present invention.
- the drying temperature is preferably in the range of 80 to 350 ° C, particularly preferably in the range of 100 to 250 ° C.
- the current collector used for producing the electrode of the present invention is not particularly limited as long as it is metallic such as iron, copper, aluminum, nickel, and stainless steel. Further, the shape of the current collector is not particularly limited, but it is usually preferable to use a sheet having a thickness of 0.001 to 0.5 mm.
- the electrode of the present invention can be pressed as necessary. As a pressing method, a general method can be used, but a mold pressing method and a calendar pressing method are particularly preferable.
- the pressing pressure is not particularly limited, but is preferably 0.2 to 10 t / cm 2 .
- the battery of the present invention is manufactured according to a known method using the positive electrode and / or the negative electrode of the present invention and components such as an electrolytic solution and a separator.
- As the electrode a laminate or a wound body can be used.
- As the exterior body a metal exterior body or an aluminum laminate exterior body can be used as appropriate.
- the shape of the battery may be any shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
- any known lithium salt may be used as the electrolyte in the battery electrolyte, and may be selected according to the type of active material.
- the solvent for dissolving the electrolyte is not particularly limited as long as it is usually used as a liquid for dissolving the electrolyte.
- Ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), etc. can be used.
- a cyclic carbonate and a chain carbonate are used in combination. These may be used individually by 1 type and may be used in combination of 2 or more type.
- the pH of the lithium ion secondary battery electrode slurry was measured using a pH meter (product name: HM-30G, manufactured by Toa DKK Co., Ltd.) at 1 atm and 23 ° C.
- the negative electrode slurry obtained below was applied to a copper foil as a current collector by wet at 150 ⁇ m / m 2, dried by heating at 50 ° C. for 5 minutes, and then heated and dried at 110 ° C. for 5 minutes, then 23 ° C. The test piece was left for 24 hours under 50% RH.
- the peel strength test the test piece coating surface and the SUS plate were bonded using a double-sided tape, and a 180 ° peel strength test was performed (peel width 25 mm, peel rate 100 mm / min).
- the unit of peel strength is mN / mm, and a peel strength of 50 mN / mm or more is good.
- the peel strength was measured using RTA-100 manufactured by ORIENTEC.
- the initial charge / discharge efficiency is CC-CV charge under the condition of 25 ° C. (CV time (1.5 hours) elapses after charging at a constant current (0.2 A) until the upper limit voltage (4.2 V) is reached) Until a constant voltage (4.2V) is charged and CC discharge (discharged at a constant current (0.2A) until the lower limit voltage (2.5V) is reached). Calculated in (2).
- the discharge charge capacity was measured using VMP3 manufactured by BIOLOGIC.
- the initial charge / discharge efficiency is 90% or more.
- the battery charge / discharge high-temperature cycle test was conducted under the condition of 60 ° C under CC-CV charge (charged with a constant current (1A) until the upper limit voltage (4.2V) was reached, then CV time (1.5 hours) The battery was charged by a constant voltage (4.2 V) until it passed and CC discharge (discharged by a constant current (1 A) until the lower limit voltage (3.0 V) was reached).
- the charge / discharge high-temperature cycle characteristics of the battery were measured using the capacity maintenance ratio, that is, the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle.
- the discharge capacity was measured using VMP3 manufactured by BIOLOGIC. A battery having a capacity retention rate of 70% or more is assumed to have good charge / discharge cycle characteristics.
- Example 1 The production of the positive electrode will be described. N-methylpyrrolidone was added to and mixed with 90% by mass of LiCoO 2 , 5% by mass of acetylene black as a conductive auxiliary agent, and 5% by mass of polyvinylidene fluoride as a binder to prepare a positive electrode slurry. This was applied to a 20 ⁇ m-thick aluminum foil serving as a current collector so that the thickness after roll press treatment was 160 ⁇ m, dried at 120 ° C. for 5 minutes, and a positive electrode was obtained through a pressing process.
- CMC carboxymethyl cellulose
- a negative electrode slurry 0.04 mL of formic acid (85%) and 50 mL of water were added and mixed to prepare a negative electrode slurry.
- the resulting slurry had a pH of 3.2. This was applied to a Cu foil having a thickness of 10 ⁇ m serving as a current collector so that the thickness after the roll press treatment was 120 ⁇ m, dried at 100 ° C. for 5 minutes, and a negative electrode was obtained through a pressing process.
- LiPF 6 was dissolved to a concentration of 1.0 mol / L in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:70 to prepare an electrolytic solution.
- EC ethylene carbonate
- DEC diethyl carbonate
- Conductive tabs were attached to the positive electrode and negative electrode, and a laminate type battery was obtained using a separator made of these and a polyolefin-based porous film, and an electrolytic solution.
- Table 1 shows the evaluation results of the binder, slurry, and lithium ion secondary battery produced using these.
- Example 2 A slurry for a lithium ion secondary battery electrode was obtained in the same manner as in Example 1 except that the pH of the slurry was adjusted to the value shown in Table 1 by changing the amount of formic acid which is a pH adjusting compound. The evaluation results are shown in Table 1.
- Example 3 In the negative electrode, the amount of the binder with respect to the amount of the active material was changed, and the pH of the slurry was adjusted to the value shown in Table 1 by changing the amount of formic acid as the pH adjusting compound. A slurry for an ion secondary battery electrode was obtained. The evaluation results are shown in Table 1.
- Example 5 In the negative electrode, the binder composition and the binder amount relative to the amount of the active material were changed, and the pH of the slurry was adjusted to the value shown in Table 1 by changing the amount of formic acid which is a pH adjusting compound. The slurry for lithium ion secondary battery electrodes was obtained. The evaluation results are shown in Table 1.
- emulsion polymer comprising a styrene-acrylic acid ester copolymer
- Example 6 For the lithium ion secondary battery electrode, except that the pH of the slurry was adjusted to the values shown in Table 1 by changing the binder acid value and the amount of formic acid as the pH adjusting compound in the negative electrode. A slurry was obtained. The evaluation results are shown in Table 1.
- emulsion polymer composed of a styrene-acrylate copolymer
- Example 7 Implementation was carried out except that the pH of the slurry was adjusted to the values shown in Table 1 by changing the binder pH, the binder acid value, the amount of the active material, and the amount of formic acid as the pH adjusting compound in the negative electrode. It carried out like Example 1 and obtained the slurry for lithium ion secondary battery electrodes. The evaluation results are shown in Table 1.
- emulsion polymer composed of a styrene-acrylate copolymer
- Example 8 The same procedure as in Example 1 was performed except that the binder pH and the binder amount relative to the amount of active material in the negative electrode were changed, and the formic acid that was a pH adjusting compound was not used, to obtain a slurry for a lithium ion secondary battery electrode. It was. The evaluation results are shown in Table 1.
- emulsion polymer composed of a styrene-acrylic acid ester copolymer
- Example 9 The same procedure as in Example 1 was performed except that the binder pH and the binder amount relative to the amount of active material in the negative electrode were changed, and the formic acid that was a pH adjusting compound was not used, to obtain a slurry for a lithium ion secondary battery electrode. It was. The evaluation results are shown in Table 1.
- emulsion polymer composed of a styrene-acrylate copolymer
- Example 10 In the negative electrode, the binder amount with respect to the binder composition and the amount of active material was changed, and the pH of the slurry was adjusted to the value shown in Table 1 by changing the amount of formic acid, which is a pH adjusting compound. This was performed to obtain a slurry for a lithium ion secondary battery electrode. The evaluation results are shown in Table 1.
- emulsion polymer comprising a methacrylic ester copolymer
- Example 11 In the negative electrode, the binder amount with respect to the binder composition and the amount of active material was changed, and the pH of the slurry was adjusted to the value shown in Table 1 by changing the amount of formic acid, which is a pH adjusting compound. This was performed to obtain a slurry for a lithium ion secondary battery electrode. The evaluation results are shown in Table 1.
- the emulsion polymer composed of a styrene-butadiene copolymer used here has a non-volatile content of 40.0%, a viscosity of 30 mPa ⁇ s, a pH of 7.7, a Tg of ⁇ 12 ° C., an MFT of 0 ° C., and an acid value of 20 mgKOH / g. .
- Example 4 A slurry for a lithium ion secondary battery electrode was obtained in the same manner as in Example 1 except that the binder composition, the binder amount relative to the amount of the active material, and formic acid as a pH adjusting compound were not used.
- the evaluation results are shown in Table 1.
- the emulsion polymer composed of a styrene-butadiene copolymer used here has a non-volatile content of 40.0%, a viscosity of 30 mPa ⁇ s, a pH of 7.7, a Tg of ⁇ 12 ° C., an MFT of 0 ° C., and an acid value of 20 mgKOH / g. .
- the conductive binder for lithium ion secondary battery electrodes of the present invention is excellent in current collector peel strength. It turns out that the lithium ion secondary battery excellent in charging / discharging high temperature cycling characteristics is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
f:0.1N水酸化カリウム-エタノール溶液のファクター
S:試料の採取量(g)
リチウムイオン二次電池電極用スラリーのpHは、1気圧、23℃の条件下、pHメーター(東亜DKK株式会社製、製品名:HM-30G)を用いて測定をした。
集電体である銅箔に下記で得られた負極の電極用スラリーをWetで150μm/m2塗布し、50℃、5分加熱乾燥後、続いて110℃、5分加熱乾燥後、23℃、50%RH下で24時間放置した物を試験片とした。剥離強度試験は、試験片塗装面とSUS板とを両面テープを用いて貼り合わせ、180°剥離強度試験を実施した(剥離幅25mm、剥離速度100mm/min)。剥離強度の単位はmN/mmとし、剥離強度50mN/mm以上を良好なものとする。剥離強度の測定はORIENTEC社製のRTA-100を用いて行った。
初期充放電効率は、25℃条件下、CC-CV充電(上限電圧(4.2V)になるまで一定の電流(0.2A)で充電した後に、CV時間(1.5時間)が経過するまで、一定の電圧(4.2V)で充電した)及びCC放電(下限電圧(2.5V)になるまで一定の電流(0.2A)で放電)を行い、放電容量と充電容量より下記式(2)にて算出した。放電充電容量はBIOLOGIC社製のVMP3を用いて測定した。初期充放電効率が90%以上を良好なものとする。
電池の充放電高温サイクル試験は、60℃の条件下、CC-CV充電(上限電圧(4.2V)になるまで一定の電流(1A)で充電した後に、CV時間(1.5時間)が経過するまで、一定の電圧(4.2V)で充電した)及びCC放電(下限電圧(3.0V)になるまで一定の電流(1A)で放電)を繰り返すことで行った。電池の充放電高温サイクル特性は、容量維持率、つまり1サイクル目の放電容量に対する500サイクル目の放電容量の割合を指標とした。放電容量はBIOLOGIC社製のVMP3を用いて測定した。容量維持率が70%以上の電池を充放電サイクル特性が良好なものとする。
正極の作製について説明する。LiCoO2を90質量%、導電補助剤としてアセチレンブラックを5質量%、バインダーとしてポリフッ化ビニリデン5質量%とを混合したものに、N-メチルピロリドンを加えてさらに混合して正極スラリーを作製した。これを集電体となる厚さ20μmのアルミニウム箔にロールプレス処理後の厚さが160μmになるように塗布し、120℃で5分乾燥、プレス工程を経て正極を得た。
pH調整化合物である蟻酸の量を変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。
負極における、活物質量に対するバインダー量を変更し、pH調整化合物である蟻酸の量を変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。
負極における、バインダー組成、活物質量に対するバインダー量を変更し、およびpH調整化合物である蟻酸の量を変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで、スチレン-アクリル酸エステル共重合体からなる乳化重合体としては、昭和電工株式会社製、OLZ-6833-2(スチレン/アクリル酸エステル=50/50(質量比),バインダーに対し架橋剤ジビニルベンゼンを0.5質量%使用、不揮発分40.0%、粘度22mPa・s、pH7.0、Tg16℃、MFT21℃、酸価25mgKOH/g)を使用した。
負極における、バインダー酸価及びpH調整化合物である蟻酸の量を変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで、スチレン-アクリル酸エステル共重合体からなる乳化重合体としては、昭和電工株式会社製、OLZ-6833-3(スチレン/アクリル酸エステル=50/50(質量比)、不揮発分40.0%、粘度15mPa・s、pH7.0、Tg13℃、MFT18℃、酸価6mgKOH/g)を使用した。
負極における、バインダーpH、バインダー酸価、活物質量に対するバインダー量を変更し、およびpH調整化合物である蟻酸の量を変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで、スチレン-アクリル酸エステル共重合体からなる乳化重合体としては、昭和電工株式会社製、OLZ-6833-4(スチレン/アクリル酸エステル=50/50(質量比)、不揮発分40.0%、粘度15mPa・s、pH2.2、Tg15℃、MFT20℃、酸価6mgKOH/g)を使用した。
負極における、バインダーpH、活物質量に対するバインダー量を変更し、およびpH調整化合物である蟻酸を使用しなかった以外は実施例1と同様の操作を行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで、スチレン-アクリル酸エステル共重合体からなる乳化重合体としては、昭和電工株式会社製、OLZ-6833-5(スチレン/アクリル酸エステル=50/50(質量比)、不揮発分40.0%、粘度17mPa・s、pH2.2、Tg15℃、MFT20℃、酸価25mgKOH/g)を使用した。
負極における、バインダーpH、活物質量に対するバインダー量を変更し、およびpH調整化合物である蟻酸を使用しなかった以外は実施例1と同様の操作を行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで、スチレン-アクリル酸エステル共重合体からなる乳化重合体としては、昭和電工株式会社製、OLZ-6833-6(スチレン/アクリル酸エステル=50/50(質量比)、不揮発分40.0%、粘度19mPa・s、pH4.8、Tg15℃、MFT20℃、酸価25mgKOH/g)を使用した。
負極における、バインダー組成及び活物質量に対するバインダー量を変更し、pH調整化合物である蟻酸の量を変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで、メタクリル酸エステル共重合体からなる乳化重合体としては、昭和電工株式会社製、TLX-1108-1(アクリル酸エステル=100(質量比)、不揮発分40.0%、粘度60mPa・s、pH7.0、Tg15℃、MFT20℃、酸価25mgKOH/g)を使用した。
負極における、バインダー組成及び活物質量に対するバインダー量を変更し、pH調整化合物である蟻酸の量を変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで使用した、スチレン-ブタジエン共重合体からなる乳化重合体は、不揮発分40.0%、粘度30mPa・s、pH7.7、Tgが-12℃、MFT0℃、酸価20mgKOH/gである。
負極における、活物質量に対するバインダー量を変更し、およびpH調整化合物である蟻酸を使用しなかった以外は実施例1と同様の操作を行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。
負極における、活物質量に対するバインダー量を変更し、pH調整化合物である蟻酸の添加量も変更することでスラリーのpHを表1に示した値に調整した以外は実施例1と同様に行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。
負極における、バインダー組成、活物質量に対するバインダー量およびpH調整化合物である蟻酸を使用しなかった以外は実施例1と同様の操作を行い、リチウムイオン二次電池電極用スラリーを得た。評価結果を表1に示した。ここで使用した、スチレン-ブタジエン共重合体からなる乳化重合体は、不揮発分40.0%、粘度30mPa・s、pH7.7、Tgが-12℃、MFT0℃、酸価20mgKOH/gである。
Claims (12)
- 電池電極用バインダーと活物質を用いて得られ、pHが3.0~6.0であるリチウムイオン二次電池電極用スラリー。
- 電池電極用バインダーを活物質に対して0.2~4.0質量%含有することを特徴とする請求項1に記載のリチウムイオン二次電池電極用スラリー。
- 電池電極用バインダーがエチレン性不飽和単量体を重合することによって得られる請求項1又は2に記載のリチウムイオン二次電池電極用スラリー。
- 電池電極用バインダーがエチレン性不飽和単量体を乳化重合することで得られる請求項3に記載のリチウムイオン二次電池電極用スラリー。
- 電池電極用バインダーが、スチレン、エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸を重合することによって得られ、さらに、架橋剤を含有する請求項3又は4に記載のリチウムイオン二次電池電極用スラリー。
- 電池電極用バインダーの酸価が5.0~30.0mgKOH/gである請求項1~5のいずれかに記載のリチウムイオン二次電池電極用スラリー。
- 電池電極用バインダーの、水を含む液体に溶解又は分散した状態におけるpHが2.0~5.0である請求項1~6のいずれかに記載のリチウムイオン二次電池電極用スラリー。
- さらに、カルボキシメチルセルロースを含む請求項1~7のいずれかに記載のリチウムイオン二次電池電極用スラリー。
- 請求項1~8のいずれかに記載のリチウムイオン二次電池電極用スラリーを用いて得られるリチウムイオン二次電池用電極。
- 請求項9に記載のリチウムイオン二次電池用電極を用いて得られるリチウムイオン二次電池。
- 電池電極用バインダーと活物質を用いて得られるリチウムイオン二次電池電極用スラリーのpHを3.0~6.0に調整し、得られたリチウムイオン二次電池電極用スラリーを用いてリチウムイオン二次電池用電極を製造するリチウムイオン二次電池用電極の製造方法。
- 請求項11に記載の製造方法によって得られたリチウムイオン二次電池用電極を用いてリチウムイオン二次電池を製造するリチウムイオン二次電池の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12746560.7A EP2677573A1 (en) | 2011-02-14 | 2012-01-31 | Slurries obtained using binder for cell electrodes, electrodes obtained using slurries, and lithium-ion secondary cell obtained using electrodes |
JP2012557871A JPWO2012111425A1 (ja) | 2011-02-14 | 2012-01-31 | 電池電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池 |
CN2012800088257A CN103370816A (zh) | 2011-02-14 | 2012-01-31 | 使用电池电极用粘结剂获得的浆料、使用该浆料获得的电极和使用该电极获得的锂离子二次电池 |
KR1020137024125A KR20130130830A (ko) | 2011-02-14 | 2012-01-31 | 전지 전극용 바인더를 사용해서 얻어지는 슬러리, 이들 슬러리를 사용해서 얻어지는 전극 및 이들 전극을 사용해서 얻어지는 리튬 이온 이차 전지 |
US13/985,094 US20140054496A1 (en) | 2011-02-14 | 2012-01-31 | Slurry obtained using binder for battery electrodes, electrode obtained using the slurry, and lithium ion secondary battery obtained using the electrode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-028216 | 2011-02-14 | ||
JP2011028216 | 2011-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012111425A1 true WO2012111425A1 (ja) | 2012-08-23 |
Family
ID=46672360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052156 WO2012111425A1 (ja) | 2011-02-14 | 2012-01-31 | 電池電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140054496A1 (ja) |
EP (1) | EP2677573A1 (ja) |
JP (1) | JPWO2012111425A1 (ja) |
KR (1) | KR20130130830A (ja) |
CN (1) | CN103370816A (ja) |
TW (1) | TW201251182A (ja) |
WO (1) | WO2012111425A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014112618A1 (ja) * | 2013-01-21 | 2014-07-24 | 昭和電工株式会社 | リチウムイオン二次電池電極用バインダー、スラリー、電極、及びリチウムイオン二次電池 |
JP2015049984A (ja) * | 2013-08-30 | 2015-03-16 | 株式会社カネカ | 非水電解質二次電池の電極作製用スラリー、それを用いて作製した電極、及びその電極を用いた非水電解質二次電池 |
US20150125747A1 (en) * | 2013-06-18 | 2015-05-07 | Lg Chem, Ltd. | Binder solution for anode, active material slurry for anode comprising the binder solution, anode using the slurry and electrochemical device comprising the anode |
WO2015062985A1 (de) * | 2013-10-28 | 2015-05-07 | Westfälische Wilhelms-Universität Münster | Verfahren zur herstellung einer elektrode für eine lithium-ionen-batterie |
JP2015106470A (ja) * | 2013-11-29 | 2015-06-08 | Tdk株式会社 | 正極活物質、正極及びリチウムイオン二次電池 |
JP2015118919A (ja) * | 2013-11-12 | 2015-06-25 | 太陽インキ製造株式会社 | スラリー組成物、電極、非水電解質二次電池および非水電解質二次電極の製造方法 |
JP2015118920A (ja) * | 2013-11-12 | 2015-06-25 | 太陽インキ製造株式会社 | スラリー組成物、電極、非水電解質二次電池および非水電解質二次電極の製造方法 |
WO2015119084A1 (ja) * | 2014-02-07 | 2015-08-13 | 昭和電工株式会社 | リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池、並びにリチウムイオン二次電池電極形成用組成物の製造方法 |
JPWO2015146649A1 (ja) * | 2014-03-24 | 2017-04-13 | 昭和電工株式会社 | リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法 |
JPWO2019131710A1 (ja) * | 2017-12-26 | 2020-12-24 | 昭和電工株式会社 | 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102283287B1 (ko) * | 2013-12-25 | 2021-07-28 | 제온 코포레이션 | 리튬 이온 이차 전지용 바인더 조성물, 리튬 이온 이차 전지용 슬러리 조성물, 이차 전지용 전극의 제조 방법, 및 리튬 이온 이차 전지 |
PL3108526T3 (pl) * | 2014-02-21 | 2019-05-31 | Hercules Llc | Środek wiążący z modyfikowaną gumą guar do akumulatorów litowo-jonowych |
CN103956460B (zh) * | 2014-04-15 | 2016-03-16 | 洛阳月星新能源科技有限公司 | 一种用于提高磷酸铁锂电池循环使用寿命的方法 |
US20180108913A1 (en) * | 2015-03-11 | 2018-04-19 | Navitas Systems, Llc | Crosslinked polymeric battery materials |
US9928970B2 (en) | 2015-04-23 | 2018-03-27 | Jtekt Corporation | Lithium ion capacitor |
WO2017026345A1 (ja) | 2015-08-11 | 2017-02-16 | 昭和電工株式会社 | リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法 |
CN108352485B (zh) * | 2015-11-11 | 2020-06-05 | 帝人株式会社 | 非水系二次电池用隔膜及非水系二次电池 |
CN108346804B (zh) * | 2017-01-22 | 2021-02-12 | 北京好风光储能技术有限公司 | 一种多格电极片及含有该电极片的锂浆料电池 |
KR20180124849A (ko) * | 2016-03-10 | 2018-11-21 | 니폰 제온 가부시키가이샤 | 비수계 2차 전지 전극용 바인더, 비수계 2차 전지 전극용 슬러리, 비수계 2차 전지용 전극, 및 비수계 2차 전지 |
WO2018174299A1 (ja) | 2017-03-24 | 2018-09-27 | 日産自動車株式会社 | 非水電解質二次電池用負極およびこれを用いた非水電解質二次電池 |
EP3605674B1 (en) * | 2017-03-24 | 2022-03-09 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using non-aqueous electrolyte secondary battery negative electrode material |
KR102290957B1 (ko) * | 2017-03-31 | 2021-08-20 | 주식회사 엘지에너지솔루션 | 이차전지용 바인더 조성물, 이를 포함하는 이차전지용 전극 및 리튬 이차전지 |
JP7220215B2 (ja) * | 2018-07-10 | 2023-02-09 | 株式会社Eneosマテリアル | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
WO2020067003A1 (ja) * | 2018-09-28 | 2020-04-02 | 富士フイルム株式会社 | 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート若しくは全固体二次電池の製造方法 |
WO2020248188A1 (en) * | 2019-06-13 | 2020-12-17 | Greenovelty Energy Co. Limited | Method of preparing cathode for secondary battery |
CN111082057A (zh) * | 2019-12-03 | 2020-04-28 | 松山湖材料实验室 | 锂离子电池浆料pH调节剂及其浆料、制备方法和应用 |
CN111769287B (zh) * | 2020-07-20 | 2021-11-05 | 珠海鹏辉能源有限公司 | 电池用水性粘合剂及应用、锂离子电池正极材料、锂离子电池正极片和锂离子电池 |
CN113054198B (zh) * | 2021-03-09 | 2022-12-13 | 湖北亿纬动力有限公司 | 一种涂碳铝箔及其制备方法和用途 |
DE102022212170A1 (de) | 2022-11-16 | 2024-05-16 | Volkswagen Aktiengesellschaft | Verfahren zur Herstellung einer Slurry für eine Kathode sowie eine Batteriezelle |
SE546429C2 (en) * | 2022-12-05 | 2024-10-29 | Northvolt Ab | Aqueous slurry composition comprising polyacrylate and alginic acid for cell cathode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09199135A (ja) * | 1996-01-22 | 1997-07-31 | Nippon Zeon Co Ltd | 電池用バインダー組成物、電極、および電池 |
JPH11149929A (ja) * | 1997-11-14 | 1999-06-02 | Nippon Zeon Co Ltd | 電池用バインダー組成物、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池 |
JP2000011997A (ja) * | 1998-06-19 | 2000-01-14 | Fuji Photo Film Co Ltd | 非水二次電池とその製造方法 |
JP3562197B2 (ja) | 1997-02-26 | 2004-09-08 | Jsr株式会社 | 水素吸蔵電極用バインダー |
JP2004349079A (ja) * | 2003-05-21 | 2004-12-09 | Canon Inc | リチウム二次電池用の電極構造体及びその製造方法、及び前記電極構造体を有する二次電池及びその製造方法 |
JP3966570B2 (ja) | 1997-03-14 | 2007-08-29 | 株式会社クレハ | 電池用バインダー溶液およびその製造方法 |
-
2012
- 2012-01-31 CN CN2012800088257A patent/CN103370816A/zh active Pending
- 2012-01-31 US US13/985,094 patent/US20140054496A1/en not_active Abandoned
- 2012-01-31 KR KR1020137024125A patent/KR20130130830A/ko not_active Application Discontinuation
- 2012-01-31 JP JP2012557871A patent/JPWO2012111425A1/ja active Pending
- 2012-01-31 WO PCT/JP2012/052156 patent/WO2012111425A1/ja active Application Filing
- 2012-01-31 EP EP12746560.7A patent/EP2677573A1/en not_active Withdrawn
- 2012-02-13 TW TW101104520A patent/TW201251182A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09199135A (ja) * | 1996-01-22 | 1997-07-31 | Nippon Zeon Co Ltd | 電池用バインダー組成物、電極、および電池 |
JP3562197B2 (ja) | 1997-02-26 | 2004-09-08 | Jsr株式会社 | 水素吸蔵電極用バインダー |
JP3966570B2 (ja) | 1997-03-14 | 2007-08-29 | 株式会社クレハ | 電池用バインダー溶液およびその製造方法 |
JPH11149929A (ja) * | 1997-11-14 | 1999-06-02 | Nippon Zeon Co Ltd | 電池用バインダー組成物、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池 |
JP2000011997A (ja) * | 1998-06-19 | 2000-01-14 | Fuji Photo Film Co Ltd | 非水二次電池とその製造方法 |
JP2004349079A (ja) * | 2003-05-21 | 2004-12-09 | Canon Inc | リチウム二次電池用の電極構造体及びその製造方法、及び前記電極構造体を有する二次電池及びその製造方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014112618A1 (ja) * | 2013-01-21 | 2014-07-24 | 昭和電工株式会社 | リチウムイオン二次電池電極用バインダー、スラリー、電極、及びリチウムイオン二次電池 |
JPWO2014112618A1 (ja) * | 2013-01-21 | 2017-01-19 | 昭和電工株式会社 | リチウムイオン二次電池電極用バインダー、スラリー、電極、及びリチウムイオン二次電池 |
JP6007263B2 (ja) * | 2013-01-21 | 2016-10-12 | 昭和電工株式会社 | リチウムイオン二次電池電極用バインダー、スラリー、電極、及びリチウムイオン二次電池 |
US9515321B2 (en) * | 2013-06-18 | 2016-12-06 | Lg Chem, Ltd. | Binder solution for anode, active material slurry for anode comprising the binder solution, anode using the slurry and electrochemical device comprising the anode |
US20150125747A1 (en) * | 2013-06-18 | 2015-05-07 | Lg Chem, Ltd. | Binder solution for anode, active material slurry for anode comprising the binder solution, anode using the slurry and electrochemical device comprising the anode |
CN105308780A (zh) * | 2013-06-18 | 2016-02-03 | 株式会社Lg化学 | 用于负极的粘合剂溶液、含有其的用于负极的活性材料浆料、使用该活性材料浆料的负极以及含有其的电化学器件 |
JP2015049984A (ja) * | 2013-08-30 | 2015-03-16 | 株式会社カネカ | 非水電解質二次電池の電極作製用スラリー、それを用いて作製した電極、及びその電極を用いた非水電解質二次電池 |
WO2015062985A1 (de) * | 2013-10-28 | 2015-05-07 | Westfälische Wilhelms-Universität Münster | Verfahren zur herstellung einer elektrode für eine lithium-ionen-batterie |
JP2015118919A (ja) * | 2013-11-12 | 2015-06-25 | 太陽インキ製造株式会社 | スラリー組成物、電極、非水電解質二次電池および非水電解質二次電極の製造方法 |
JP2015118920A (ja) * | 2013-11-12 | 2015-06-25 | 太陽インキ製造株式会社 | スラリー組成物、電極、非水電解質二次電池および非水電解質二次電極の製造方法 |
JP2015106470A (ja) * | 2013-11-29 | 2015-06-08 | Tdk株式会社 | 正極活物質、正極及びリチウムイオン二次電池 |
WO2015119084A1 (ja) * | 2014-02-07 | 2015-08-13 | 昭和電工株式会社 | リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池、並びにリチウムイオン二次電池電極形成用組成物の製造方法 |
JPWO2015119084A1 (ja) * | 2014-02-07 | 2017-03-23 | 昭和電工株式会社 | リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池、並びにリチウムイオン二次電池電極形成用組成物の製造方法 |
JPWO2015146649A1 (ja) * | 2014-03-24 | 2017-04-13 | 昭和電工株式会社 | リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法 |
JPWO2019131710A1 (ja) * | 2017-12-26 | 2020-12-24 | 昭和電工株式会社 | 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池 |
JP7243968B2 (ja) | 2017-12-26 | 2023-03-22 | 株式会社レゾナック | 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池 |
US11764359B2 (en) | 2017-12-26 | 2023-09-19 | Resonac Corporation | Binder including copolymer of styrene, (meth)acrylate, and surfactant having unsaturated bond, slurry having the same, nonaqueous battery electrode using the same, and nonaqueous battery using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012111425A1 (ja) | 2014-07-03 |
KR20130130830A (ko) | 2013-12-02 |
EP2677573A1 (en) | 2013-12-25 |
TW201251182A (en) | 2012-12-16 |
CN103370816A (zh) | 2013-10-23 |
US20140054496A1 (en) | 2014-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012111425A1 (ja) | 電池電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池 | |
TWI683470B (zh) | 鋰離子蓄電池之正極用糊料、使用該糊料而得之正極及其製造方法、使用該正極而成之鋰離子蓄電池及其製造方法 | |
JP5701519B2 (ja) | リチウムイオン二次電池電極用バインダー、これら電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池 | |
JP7444206B2 (ja) | 非水系電池セパレータ用スラリーおよび非水系電池セパレータ | |
US9947929B2 (en) | Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery | |
CN108475786B (zh) | 二次电池电极用水系粘合剂组合物、二次电池电极用浆料、粘合剂、二次电池电极及二次电池 | |
JP2013023654A (ja) | カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池 | |
JP2016042408A (ja) | リチウム二次電池電極用バインダーの製造方法及びリチウム二次電池電極用バインダー | |
TWI710160B (zh) | 非水系電池電極用黏合劑、非水系電池電極用漿料、非水系電池電極及非水系電池 | |
WO2015146648A1 (ja) | リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、並びにこの正極を用いてなるリチウムイオン二次電池及びその製造方法 | |
JP6462125B2 (ja) | 非水系電池電極用バインダー用組成物、非水系電池電極用バインダー、非水系電池電極用組成物、非水系電池電極、及び非水系電池 | |
TWI712633B (zh) | 非水系電池電極用漿液之製造方法 | |
WO2020017442A1 (ja) | 非水系電池電極用バインダー用共重合体、および非水系電池電極製造用スラリー | |
KR20230003133A (ko) | 비수계 이차 전지 전극용 바인더 및 비수계 이차 전지 전극용 슬러리 | |
JP6679142B2 (ja) | リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池、並びにリチウムイオン二次電池電極形成用組成物の製造方法 | |
JP7384223B2 (ja) | 電極バインダー用共重合体、電極バインダー樹脂組成物、及び非水系二次電池電極 | |
JP2023529520A (ja) | 二次電池用バインダー組成物 | |
WO2024034574A1 (ja) | 非水系二次電池用バインダー重合体、非水系二次電池用バインダー組成物および非水系二次電池電極 | |
WO2023127300A1 (ja) | 非水系二次電池用バインダー重合体、非水系二次電池用バインダー組成物および非水系二次電池電極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12746560 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012557871 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012746560 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012746560 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137024125 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13985094 Country of ref document: US |