[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017026345A1 - リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法 - Google Patents

リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法 Download PDF

Info

Publication number
WO2017026345A1
WO2017026345A1 PCT/JP2016/072780 JP2016072780W WO2017026345A1 WO 2017026345 A1 WO2017026345 A1 WO 2017026345A1 JP 2016072780 W JP2016072780 W JP 2016072780W WO 2017026345 A1 WO2017026345 A1 WO 2017026345A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
ion secondary
lithium ion
slurry
Prior art date
Application number
PCT/JP2016/072780
Other languages
English (en)
French (fr)
Inventor
優介 青木
充 花崎
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020187003175A priority Critical patent/KR102049679B1/ko
Priority to US15/750,860 priority patent/US10811686B2/en
Priority to CN201680045963.0A priority patent/CN107851802B/zh
Priority to JP2017534384A priority patent/JP6774415B2/ja
Priority to EP16835042.9A priority patent/EP3336940B1/en
Publication of WO2017026345A1 publication Critical patent/WO2017026345A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/06Homopolymers or copolymers of esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode slurry for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery obtained by using a positive electrode slurry for a lithium ion secondary battery, a method for producing the same, and a positive electrode for a lithium ion secondary battery.
  • the present invention relates to a provided lithium ion secondary battery and a method for manufacturing the same.
  • Lithium ion secondary batteries are widely used as a power source for portable devices such as mobile phones and laptop computers, and as a drive power source for industrial devices that require long life such as power storage and electric vehicles.
  • consumer devices will be required to be lighter and smaller, and batteries with higher energy density will be required.
  • industrial equipment is required to have high output, high capacity, and long life performance compatible with large-sized batteries as electric vehicles and stationary power storage facilities become more widespread.
  • a method of increasing the battery operating capacity by increasing the operating voltage of the positive electrode has attracted attention.
  • a positive electrode active material such as a lithium-containing transition metal oxide represented by LiMO 2 (M is a transition metal) capable of stably storing and releasing lithium and electrons at a high voltage of 4.3 V or higher with respect to lithium. Material development is underway.
  • the positive electrode used for the lithium ion secondary battery usually has a structure in which a positive electrode active material layer is laminated on an aluminum current collector.
  • the positive electrode active material layer includes a binder for binding the positive electrode active materials to each other and the positive electrode active material and the current collector. In order to realize a high capacity and long life of the lithium ion secondary battery, a smaller amount of a material having a high binding force is required as a binder.
  • an organic solvent-based N-methyl-2-pyrrolidone (hereinafter, referred to as an organic solvent) is used as a binder for the positive electrode slurry.
  • PVDF Polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the PVDF-based binder cannot bind the positive electrode active materials to each other and the positive electrode active material and the current collector satisfactorily. Therefore, there is a problem that the charge / discharge cycle characteristics of the lithium ion secondary battery are deteriorated.
  • a large amount of PVDF-based binder is required to ensure sufficient binding properties between the positive electrode active materials and between the positive electrode active material and the current collector. As a result, the capacity of the lithium ion secondary battery is reduced.
  • the production of PVDF-based binders has a high environmental impact because NMP solvents are mutagenic, and attention has been paid to the development of new binders that use water as a solvent.
  • the SBR binder has a low oxidation resistance as a feature of its structure.
  • the SBR binder is used in the positive electrode of a lithium ion secondary battery that requires oxidation resistance because charging and discharging are repeated under high voltage conditions, the long life characteristics of the lithium ion secondary battery may be deteriorated.
  • a fluorine resin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (hereinafter also referred to as “PTFE”) as a binder and a water-soluble polymer as a thickening dispersant are used in combination.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the polarity of the fluorine-based resin binder is very low, and there is room for further improvement in that the positive electrode active materials and the positive electrode active material and the current collector are well bound.
  • a large amount of other binder is required to ensure sufficient binding between the positive electrode active materials and between the positive electrode active material and the current collector. There was a high possibility of incurring a decline.
  • the present invention has been made to solve the above-mentioned problems, and improves the dispersibility of the positive electrode active material, improves the coating property of the positive electrode slurry on the current collector, and has a low initial resistance value.
  • a positive electrode slurry for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery obtained using the positive electrode slurry for a lithium ion secondary battery, a method for producing the same, and lithium It aims at providing the lithium ion secondary battery provided with the positive electrode for ion secondary batteries, and its manufacturing method.
  • a positive electrode slurry for a lithium ion secondary battery comprising a polyalkylene oxide having a group.
  • n, m and l represent the molar ratio of the monomers.
  • a method for producing a positive electrode comprising: a positive electrode current collector; and a positive electrode active material layer formed on the positive electrode current collector and including a positive electrode active material, wherein [1] ]
  • a method for producing a positive electrode for a lithium ion secondary battery comprising the step of applying the positive electrode slurry for the lithium ion secondary battery according to any one of [4] to [4] to form the positive electrode active material layer. .
  • a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to [5].
  • [8] The step of preparing the positive electrode slurry for the lithium ion secondary battery according to any one of [1] to [4], and applying the positive electrode slurry for the lithium ion secondary battery on the positive electrode current collector Forming a positive electrode active material layer to produce a positive electrode for a lithium ion secondary battery, and assembling a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery.
  • a lithium ion secondary battery having a high positive electrode active material dispersibility and a low initial resistance value can be obtained.
  • coated to a collector can be provided.
  • a positive electrode for a lithium ion secondary battery obtained by using the positive electrode slurry of the lithium ion secondary battery and a method for producing the same, and a lithium ion secondary battery provided with the positive electrode for the lithium ion secondary battery and the production thereof A method can be provided.
  • a positive electrode slurry for a lithium ion secondary battery according to the present invention a positive electrode for a lithium ion secondary battery obtained using the positive electrode slurry for a lithium ion secondary battery, a method for producing the same, and a positive electrode for a lithium ion secondary battery
  • Embodiments of the lithium ion secondary battery and the manufacturing method thereof will be described. Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
  • the positive electrode slurry of the lithium ion secondary battery of the present invention comprises a positive electrode active material (A), a conductive auxiliary agent (B), a resin binder (C), a thickening dispersant (D), and water (E).
  • the resin binder (C) is a copolymer of monomers containing at least one ethylenically unsaturated carboxylic acid ester and ethylenically unsaturated carboxylic acid and an aromatic vinyl compound, and a thickening dispersant.
  • (D) includes a polyalkylene oxide having a phenyl group in the side chain.
  • the positive electrode slurry of the lithium ion secondary battery may be referred to as a positive electrode slurry.
  • the positive electrode active material is not particularly limited as long as the positive electrode active material which can be used for the lithium ion secondary battery, for example, lithium cobalt oxide (LiCoO 2), lithium spinel manganate (LiMn 2 O 4), olivine-type Nickel-containing lithium complex compounds such as lithium iron phosphate (LiFePO 4 ), Ni—Mn—Co, Ni—Mn—Al, and Ni—Co—Al, LiTiS 2 , LiMnO 2 , LiMoO 3 , LiV 2 O And 5 chalcogen compounds.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • ⁇ Conductive aid (B)> Although it will not specifically limit as a conductive support agent if it has electroconductivity, Usually, it is preferable to use a carbon material. Although it will not specifically limit as a carbon material if it is a carbon material which has electroconductivity, A graphite, carbon black, carbon fiber, etc. are mentioned. A carbon material may be used individually by 1 type, and may be used in combination of 2 or more type. Examples of carbon black include acetylene black, ketjen black, furnace black, channel black, and thermal black. Among these, acetylene black and ketjen black are preferable.
  • the content of the conductive additive (B) with respect to 100 parts by mass of the positive electrode active material (A) is preferably 1 part by mass or more and 10 parts by mass or less. It is more preferably 2 parts by mass or more and 8 parts by mass or less, and further preferably 4 parts by mass or more and 6 parts by mass or less. If the content of the conductive auxiliary is within the above range, the lithium ion secondary battery including the positive electrode for the lithium ion secondary battery produced using the positive electrode slurry of the lithium ion secondary battery has a capacity balance per volume. And durability (cycle characteristics) is excellent.
  • the resin binder (C) is a copolymer of monomers containing at least one of an ethylenically unsaturated carboxylic acid ester and an ethylenically unsaturated carboxylic acid and an aromatic vinyl compound.
  • the aromatic vinyl compound which is a raw material monomer of the copolymer is a compound having an ethylenic carbon-carbon double bond and an aromatic ring.
  • the aromatic vinyl compound include styrene, ⁇ -methylstyrene, styrene sulfonic acid and the like. Among these, styrene is preferable.
  • Examples of the ethylenically unsaturated carboxylic acid ester include alkyl esters of ⁇ , ⁇ -unsaturated monocarboxylic acid or dicarboxylic acid (acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, etc.).
  • the alkyl chain of the ester is preferably a linear, branched or cyclic alkyl chain having 1 to 18 carbon atoms, more preferably a linear, branched or cyclic alkyl chain having 2 to 12 carbon atoms, more preferably A linear, branched or cyclic alkyl chain having 2 to 8 carbon atoms.
  • (meth) acrylic acid ester having a linear, branched or cyclic alkyl chain having 2 to 8 carbon atoms is preferable.
  • (meth) acrylic acid is methacrylic acid or acrylic acid.
  • At least one of an ethylenically unsaturated carboxylic acid ester and an ethylenically unsaturated carboxylic acid and an aromatic Copolymers with aromatic vinyl compounds include hydroxyalkyl (meth) acrylate, aminoalkyl (meth) acrylate, vinyl esters typified by vinyl acetate and vinyl alkanoate, monoolefins (ethylene, propylene, butylene, isobutylene) Etc.), diolefins (allene, methylallene, butadiene), carbonyl-containing ethylenically unsaturated monomers such as diacetone acrylamide, and sulfonic acid-containing ethylenically unsaturated monomers may be copolymerized. These monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the resin binder (C) is a styrene- (meth) acrylic acid ester copolymer, a styrene- (meth) acrylic acid copolymer, or A styrene- (meth) acrylic acid ester- (meth) acrylic acid copolymer and a styrene- (meth) acrylic acid ester-acrylic acid-sodium styrenesulfonate copolymer are preferred.
  • a styrene- (meth) acrylic acid ester-acrylic acid-sodium styrenesulfonate copolymer is more preferable from
  • Content of ethylenically unsaturated carboxylic acid ester unit with respect to 100 mol part of copolymer constituent unit of monomer containing at least one kind of ethylenically unsaturated carboxylic acid ester and ethylenically unsaturated carboxylic acid and aromatic vinyl compound Is preferably 25 mol parts or more and 85 mol parts or less, more preferably 30 mol parts or more and 80 mol parts or less. If the content of the ethylenically unsaturated carboxylic acid ester unit is within the above range, the flexibility and heat resistance of the obtained positive electrode are improved, and the binding properties between the positive electrode active materials and between the positive electrode active material and the current collector are also improved. improves.
  • the content of the ethylenically unsaturated carboxylic acid unit with respect to 100 mol parts of the copolymer constituent unit of the monomer containing at least one of ethylenically unsaturated carboxylic acid ester and ethylenically unsaturated carboxylic acid and an aromatic vinyl compound is: The amount is preferably 1 mol part or more and 10 mol part or less, more preferably 1 mol part or more and 5 mol part or less.
  • the content of the ethylenically unsaturated carboxylic monomer unit is within the above range, the emulsion polymerization stability or mechanical stability of the copolymer of the aromatic vinyl compound and the ethylenically unsaturated carboxylic acid is maintained, and the positive electrode The binding properties between the active materials and between the positive electrode active material and the current collector are improved.
  • the resin binder (C) in particular, an ethylenically unsaturated carboxylic acid ester or a copolymer of an ethylenically unsaturated carboxylic acid and an aromatic vinyl compound may be used, if necessary, such as glycidyl (meth) acrylate as a crosslinking agent Epoxy group-containing ⁇ , ⁇ -ethylenically unsaturated compounds, hydrolyzable alkoxysilyl group-containing ⁇ , ⁇ -ethylenically unsaturated compounds such as vinyltriethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane, ethylene glycol di Introduce monomers such as polyfunctional vinyl compounds such as (meth) acrylate, trimethylolpropane tri (meth) acrylate, allyl (meth) acrylate, divinylbenzene, diallyl phthalate, etc., or crosslink themselves or active hydrogen groups In combination with an ethylenically unsatur
  • a carbonyl group-containing ⁇ , ⁇ -ethylenically unsaturated compound or the like is introduced into the copolymer, and two or more polyhydrazine compounds, particularly oxalic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, polyacrylic acid dihydrazide, etc. You may bridge
  • a polymerization method for obtaining a resin binder (C), in particular, an ethylenically unsaturated carboxylic acid ester or a copolymer of an ethylenically unsaturated carboxylic acid and an aromatic vinyl compound conventionally known methods can be used. .
  • the surfactant used for emulsion polymerization include ordinary anionic surfactants and nonionic surfactants.
  • the anionic surfactant include alkyl benzene sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, fatty acid salt and the like.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene sulfitan fatty acid ester and the like. Can be mentioned. These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the surfactant used in the emulsion polymerization is preferably 0.1 parts by mass or more and 3 parts by mass or less, based on 100 parts by mass of all monomers, and is 0.1 parts by mass or more and 1.0 part by mass. It is more preferable that the amount is not more than parts. If the amount of the surfactant used is within the above range, the particle size of the obtained aqueous emulsion becomes a desired particle size, stable emulsion polymerization can be performed, and the adhesion between the positive electrode active material and the current collector is reduced. It is suppressed.
  • radical polymerization initiator used in the emulsion polymerization a known and commonly used radical polymerization initiator can be used.
  • ammonium persulfate, potassium persulfate, hydrogen peroxide, t-butyl hydroperoxide and the like can be mentioned.
  • Examples of the emulsion polymerization method for obtaining the resin binder (C) include a polymerization method in which the resin binder is charged in a batch, a method in which polymerization is performed while continuously supplying each component, and the like.
  • the polymerization is usually carried out with stirring within a temperature range of 30 ° C. or higher and 90 ° C. or lower.
  • the ethylenically unsaturated carboxylic acid used for copolymerization shifts the system to acidity, so that during or after the polymerization, by adding a basic substance and adjusting the pH, polymerization stability during emulsion polymerization, Mechanical stability and chemical stability can be improved.
  • Examples of the basic substance used at that time include ammonia, triethylamine, ethanolamine, and caustic soda.
  • a basic substance may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the resin binder (C) with respect to 100 parts by mass of the positive electrode active material (A) is 0.2 parts by mass or more and 5.0 parts by mass or less. It is more preferable that it is 0.2 parts by mass or more and 3.0 parts by mass or less. If the content of the resin binder (C) is within the above range, the positive electrode slurry and the lithium ion secondary for the positive electrode active materials and the positive electrode active material and the current collector having good binding properties A positive electrode for a battery can be provided. Furthermore, by using the positive electrode, it is possible to provide a lithium ion secondary battery having a high initial discharge capacity and excellent high-temperature charge / discharge cycle characteristics.
  • the thickening dispersant (D) increases the binding property between the positive electrode active materials contained in the positive electrode slurry and between the positive electrode active material and the current collector, and increases the dispersibility of the positive electrode active material in the positive electrode slurry. Used to increase the stability of the slurry.
  • the thickening dispersant (D) since the thickening dispersant (D) can further enhance the dispersibility of the positive electrode active material in the positive electrode slurry, it contains a polyalkylene oxide having a phenyl group in the side chain.
  • the thickening dispersant (D) may further contain a water-soluble polymer.
  • Examples of other water-soluble polymers that can improve the dispersibility of the positive electrode active material in the positive electrode slurry include cellulose derivatives such as carboxymethyl cellulose (CMC), polyalkylene oxide derivatives, polyvinyl alcohol derivatives, and polycarboxylic acids. Derivatives (including these salts), polycarboxylic acid ester derivatives, polyvinylamide derivatives, and copolymers of ethylenically unsaturated carboxylic acids and vinylamides.
  • the thickening dispersant (D) may be a polyalkylene oxide having a phenyl group in the side chain.
  • the thickening dispersant (D) may be a polyalkylene oxide having a phenyl group in the side chain and carboxymethyl cellulose (CMC).
  • the polyalkylene oxide having a phenyl group in the side chain is preferably a compound represented by the following formula (1).
  • Phenyl group abundance ratio is defined as in the following formula, it is preferably 1 to 10%. Phenyl group abundance ratio (%): 1 / (n + m + 1) ⁇ 100
  • n, m, and l indicate the molar ratio of the monomer, and do not indicate that each monomer unit is continuously connected by n, m, and l. Nor is it a block copolymerization.
  • the molecular weight of the water-soluble polymer used for the thickening dispersant is not particularly limited, but it is preferable to set the molecular weight according to the viscosity of the aqueous solution of the thickening dispersant used during the production of the positive electrode slurry.
  • the weight average molecular weight (MW) is not particularly limited, but is preferably 10,000 to 1,000,000, More preferably, it is from 000 to 500,000.
  • the weight average molecular weight of the compound represented by the above formula (1) is within the above range, the dispersibility of the conductive additive is excellent and the initial direct current resistance is low.
  • the “weight average molecular weight” is measured under the following conditions using gel permeation chromatography (trade name: Shodex (registered trademark) GPC-101, manufactured by Showa Denko KK). It means a value obtained using a pullulan calibration curve.
  • Analytical column (1) OHpak SB-803HQ, (2) OHpak SB-804HQ, manufactured by Showa Denko KK Reference column: OHpak SB-800RL, manufactured by Showa Denko KK Column temperature: 40 ° C Sample: Measurement sample concentration is 0.1% by mass Flow rate: 1 mL / min Eluent: 0.1 M aqueous sodium nitrate detector: RI-71S
  • Examples of the compound represented by the above formula (1) include Alcox CP-B (trade name) manufactured by Meisei Chemical Industry Co., Ltd.
  • water-soluble polymers may be used alone or in combination of two or more. It is also preferable to use a copolymer of each water-soluble polymer monomer.
  • the thickening dispersant (D) is a rotary viscometer (trade name: TVB-25L, Toki Sangyo Co., Ltd.) at 23 ° C. in an aqueous solution of 1% by weight thickening dispersant.
  • the viscosity (mPa ⁇ s) at 60 revolutions per minute using the product is preferably 1 mPa ⁇ s to 10000 mPa ⁇ s, and more preferably 10 mPa ⁇ s to 2000 mPa ⁇ s.
  • the viscosity of the aqueous solution of the thickening dispersant is maintained at a desired viscosity, and the positive electrode active material (A), conductive auxiliary agent (B), and resin in the positive electrode slurry.
  • the dispersibility of the binder (C) and the thickening dispersant (D), and the binding properties of the positive electrode active materials to each other and between the positive electrode active material and the current collector are improved, and the slurry is excellently applied to the current collector.
  • the content of the thickening dispersant (D) with respect to 100 parts by mass of the positive electrode active material (A) is 0.2 parts by mass or more and 5.0 parts by mass or less. It is preferable that it is 0.2 mass part or more and 3.0 mass part or less. If the content of the thickening dispersant (D) is within the above range, the dispersibility of the positive electrode active material is further increased, so that the positive electrode active material is uniformly dispersed and has a viscosity suitable for application to the current collector. A positive electrode slurry is obtained.
  • the thickening dispersant (D) additionally contains a water-soluble polymer (for example, CMC) in order to fully exhibit the effects of the present invention
  • a water-soluble polymer for example, CMC
  • the content of the polyalkylene oxide having a phenyl group in the side chain is preferably 5 parts by mass or more, The amount is more preferably 10 parts by mass or more, and further preferably 30 parts by mass or more.
  • water used as a dispersion medium includes water treated with an ion exchange resin (ion exchange water) and water treated with a reverse osmosis membrane water purification system (ultra pure). Water) and the like are preferable.
  • the content of water (E) with respect to 100 parts by mass of the positive electrode active material (A) is preferably 20 parts by mass or more and 100 parts by mass or less, and 30 parts by mass. More preferably, it is more than 90 parts by mass and more preferably not less than 40 parts by mass and not more than 80 parts by mass. If the water content is 20 parts by mass or more, a high-concentration slurry can be produced, and the drying process at the time of electrode preparation becomes easy.
  • the positive electrode active material is highly dispersible and has a low initial resistance value. A battery is obtained. In addition, it can be applied uniformly to the current collector.
  • the slurry for the positive electrode of the lithium ion secondary battery of the present invention is a mixture containing the positive electrode active material (A), the conductive additive (B), the resin binder (C), and the thickening dispersant (D). , Dispersed or dissolved in water (E).
  • the positive electrode slurry is preferably an aqueous dispersion.
  • the positive electrode slurry may contain water and a highly hydrophilic solvent as long as the environmental load is not affected.
  • these components are used. Is not particularly limited as long as it can uniformly disperse or dissolve, and examples thereof include a method using a planetary mixer, a disper, and a ball mill.
  • Examples of the method for preparing the positive electrode slurry include the following methods.
  • the resin binder (C) and the thickening dispersant (D) are dispersed or dissolved in water (E) (or a solvent having a high affinity for water).
  • the positive electrode active material (A) and the conductive additive (B) are added to the dispersion or solution, and additives such as a pH adjuster, a wetting agent, and an antifoaming agent are added as necessary. Disperse, dissolve or knead.
  • the positive electrode for a lithium ion secondary battery of the present invention comprises a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and containing a positive electrode active material. Formed from a slurry for a positive electrode of a lithium ion secondary battery.
  • the positive electrode current collector is not particularly limited as long as it is made of metal such as a current collector made of aluminum. Further, the shape of the positive electrode current collector is not particularly limited, but it is preferable to use a sheet-shaped material having a thickness of 0.001 mm or more and 0.5 mm or less as the positive electrode current collector.
  • the positive electrode for a lithium ion secondary battery of the present invention includes a positive electrode active material layer formed from the positive electrode slurry of the lithium ion secondary battery of the present invention, the positive electrode active material layer and the current collector are excellent. Has binding properties. Therefore, the lithium ion secondary battery provided with the positive electrode for the lithium ion secondary battery of the present invention is unlikely to cause a decrease in capacity.
  • the method for producing a positive electrode for a lithium ion secondary battery of the present invention comprises a step of applying a slurry for a positive electrode of the lithium ion secondary battery of the present invention on a positive electrode current collector and drying to form a positive electrode active material layer.
  • a general method is used, for example, a reverse roll method, a direct roll method, a doctor blade method, a knife method, an extrusion method, a curtain method, a gravure method, Examples include a bar method, a dip method, and a squeeze method.
  • Application of the positive electrode slurry to the positive electrode current collector can be performed on one side and both sides of the positive electrode current collector.
  • coating to both surfaces of a positive electrode electrical power collector you may apply
  • the thickness, length and width of the positive electrode slurry coating layer are appropriately set according to the size of the lithium ion secondary battery.
  • a general method can be used.
  • a drying method using hot air, vacuum, infrared rays, far infrared rays, electron beam, or low temperature air can be used. These drying methods may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the drying temperature is preferably 50 ° C. or higher and 350 ° C. or lower, and more preferably 50 ° C. or higher and 200 ° C. or lower.
  • the positive electrode for a lithium ion secondary battery can be molded by pressing as necessary.
  • a pressing method a general method can be used, but a die pressing method and a calendar pressing method are preferable.
  • the pressing pressure is not particularly limited, 0.1 t / cm 2 or more, preferably 10t / cm 2 or less, 0.5 t / cm 2 or more, and more preferably 5.0T / cm 2 or less.
  • the lithium ion secondary battery of this invention is equipped with the positive electrode for lithium ion secondary batteries of this invention.
  • the lithium ion secondary battery include the following two non-aqueous secondary batteries.
  • the negative electrode and the positive electrode for a lithium ion secondary battery of the present invention are arranged via a lithium ion permeable separator (for example, a polyethylene or polypropylene porous film), and impregnated with a nonaqueous electrolyte solution.
  • a lithium ion permeable separator for example, a polyethylene or polypropylene porous film
  • a laminate comprising a positive electrode / separator for a lithium ion secondary battery of the present invention in which a negative electrode / separator / positive electrode current collector is formed on both sides of a negative electrode current collector and a positive electrode active material layer formed on both sides of the negative electrode current collector.
  • a cylindrical non-aqueous secondary battery in which a wound body wound in a roll shape (spiral shape) is housed in a bottomed metal casing together with an electrolytic solution.
  • a negative electrode used for the lithium ion secondary battery of the present invention for example, a known negative electrode in which a negative electrode active material layer including a negative electrode active material and a binder is formed on a negative electrode current collector can be used.
  • a known negative electrode active material such as a negative electrode active material containing an element capable of inserting and extracting lithium ions and a carbon material can be used.
  • an element capable of inserting and extracting lithium ions an element that can be alloyed with lithium can be given. Examples include silicon, germanium, tin, lead, aluminum, indium and zinc.
  • the negative electrode active material containing an element capable of occluding and releasing lithium ions include metal compounds, metal oxides, lithium metal compounds, lithium metal oxides (including lithium-transition metal composite oxides), etc. Is mentioned.
  • Examples of the negative electrode active material in the form of a metal compound include LiAl, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, and the like.
  • Examples of the negative electrode active material in the form of a metal oxide include SnO, SnO 2 , GeO, GeO 2 , In 2 O, In 2 O 3 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , SiO, ZnO etc. are mentioned.
  • Examples of the carbon material include carbon materials such as graphite, amorphous carbon, carbon fiber, coke, activated carbon, carbon nanotube, carbon nanofiber, and fullerene. These negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the binder used for the negative electrode is not particularly limited, but a known negative electrode binder resin can be used.
  • the material of the negative electrode current collector is not particularly limited as long as it is a substance having conductivity, but a metal is used.
  • the metal is preferably a metal that hardly forms an alloy with lithium, and specifically includes copper, nickel, iron, titanium, vanadium, chromium, manganese, or an alloy thereof.
  • Examples of the shape of the negative electrode current collector include a thin film shape, a net shape, and a fiber shape. Among these, a thin film is preferable.
  • the thickness of the negative electrode current collector is preferably 5 ⁇ m to 30 ⁇ m, and more preferably 8 ⁇ m to 25 ⁇ m.
  • an electrolytic solution in which a lithium salt as an electrolyte is dissolved in a non-aqueous organic solvent at a concentration of about 1 mol / L is used.
  • the lithium salt LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4,
  • Examples include LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li [(CO 2 ) 2 ] 2 B, and the like.
  • Non-aqueous organic solvents include, for example, carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; lactones such as ⁇ -butyrolactone; trimethoxymethane, 1,2-dimethoxyethane Ethers such as diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; acetonitrile, nitromethane Nitrogens such as NMP; methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester; diglyme, trigly , Glymes such as tetraglyme;
  • the lithium ion secondary battery of the present invention includes the positive electrode for a lithium ion secondary battery of the present invention, the capacity retention rate is high.
  • the method for producing a lithium ion secondary battery of the present invention includes a step of preparing a positive electrode slurry of the lithium ion secondary battery of the present invention, and a positive electrode slurry of the lithium ion secondary battery is applied on the positive electrode current collector. Forming a positive electrode active material layer to produce a positive electrode for a lithium ion secondary battery, and assembling a lithium ion secondary battery including the positive electrode for a lithium ion secondary battery.
  • the process of assembling the lithium ion secondary battery is not particularly limited as long as the positive electrode for a lithium ion secondary battery of the present invention is used as the positive electrode.
  • the positive electrode and the negative electrode are disposed through a permeable separator, and this is impregnated with a non-aqueous electrolyte.
  • the negative electrode is connected to the negative electrode terminal, and the positive electrode is connected to the positive electrode terminal to obtain a lithium ion secondary battery.
  • a lithium ion secondary battery is cylindrical, it is obtained as follows. First, the negative electrode / separator having a negative electrode active material layer formed on both surfaces of the negative electrode current collector / the positive electrode / separator for a lithium ion secondary battery of the present invention having a positive electrode active material layer formed on both surfaces of the current collector.
  • the laminate is wound into a roll (spiral shape) to form a wound body.
  • the obtained wound body is accommodated in a metal casing (battery can), and the negative electrode is connected to the negative electrode terminal and the positive electrode is connected to the positive electrode terminal.
  • the metal casing is sealed to obtain a cylindrical lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention can be obtained by a simple process.
  • Resin (i) emulsion had a viscosity of 500 mPa ⁇ s and a pH of 7.0 at 10 revolutions per minute using a rotational viscometer (trade name: TVB-25L, manufactured by Toki Sangyo Co., Ltd.) at 23 ° C. It was.
  • the negative electrode slurry was applied to a copper foil having a thickness of 10 ⁇ m serving as a current collector so that the thickness after the roll press treatment was 60 ⁇ m, dried on a hot plate at 50 ° C. for 5 minutes, and then heated to 110 ° C. And dried for 5 minutes. Then, it pressed with the press pressure of 2.5 t / cm ⁇ 2 > using the metal mold press machine, and the negative electrode was obtained by attaching a current collection tab.
  • LiPF 6 was dissolved to a concentration of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 2: 3 to prepare an electrolytic solution.
  • the lithium ion secondary battery was evaluated using a charge / discharge test apparatus manufactured by Nippon Steel Elex. First, after aging treatment was performed on a lithium ion secondary battery, CC-CV (constant current-constant voltage) charge (upper limit voltage (LiCo 1/3 Ni 1/3 Mn 1 / 3 O 2 (hereinafter also referred to as “NMC”), LiCo 1.5 / 10 Ni 7/10 Mn 1.5 / 10 O 2 (hereinafter also referred to as “Hi-Ni NMC”), LiCoO 2 (hereinafter referred to as “NMC”).
  • CC-CV constant current-constant voltage
  • NMC upper limit voltage
  • Hi-Ni NMC LiCo 1.5 / 10 Ni 7/10 Mn 1.5 / 10 O 2
  • NMC LiCoO 2
  • LCO LiFePO 4
  • LFP LiFePO 4
  • CC discharge lower limit voltage (2 when LFP is used as the positive electrode active material. 0V, others 2.75V
  • the average of the capacities during two CC discharges was determined as the initial capacity of the lithium ion secondary battery.
  • the capacity corresponding to 60% of the initial capacity was charged at 0.2 C under 25 ° C., and then CC discharge was performed at 0.2 C for 1 minute, and the discharge current and voltage after 1 second were measured. .
  • the same CC discharge is performed at 0.5C, 1.0C, and 2.0C, the discharge current and voltage after 1 second are measured, the measured values are plotted, and the slope of the approximate line is the initial DC resistance of the battery. It was determined.
  • Example 1 In preparation of the positive electrode slurry, 1.25 g (resin binder (C): 0.5 g (2.5 parts by mass) of the resin (i) emulsion (solid content: 40.0%) synthesized as the resin binder (C). )), A Ph-PEO aqueous solution (Ph) in which a compound represented by the following formula (1) (hereinafter also referred to as “Ph-PEO”, manufactured by Meisei Chemical Co., Ltd.) is dissolved in water as the thickening dispersant (D).
  • Ph-PEO a compound represented by the following formula (1)
  • NM as a positive electrode active material 20 g
  • a planetary mixer trade name: A slurry for positive electrode was prepared by kneading using Hibismix 2P-03 type (manufactured by Primics).
  • Example 2 In the production of the positive electrode slurry, the positive electrode slurry of Example 2 was produced in the same manner as in Example 1 except that the weight average molecular weight of Ph-PEO was 200,000.
  • Example 6 In the production of the positive electrode slurry, the positive electrode slurry of Example 6 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to Hi-Ni NMC.
  • Example 7 In the production of the positive electrode slurry, the positive electrode slurry of Example 7 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to LCO.
  • Example 8 In the production of the positive electrode slurry, the positive electrode slurry of Example 8 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to LFP.
  • Comparative Example 1 In the production of the slurry for the positive electrode, polyethylene oxide (L8 (manufactured by Meisei Chemical Co., Ltd.) as a thickening dispersant, a skeleton having no side chain in the above formula (1), hereinafter also referred to as “PEO”. Molecular weight 80,000.
  • the positive electrode slurry of Comparative Example 1 was produced in the same manner as in Example 1 except that the above was used.
  • Comparative Example 2 was prepared in the same manner as in Example 1 except that PEO (R-400 (manufactured by Meisei Chemical Industry Co., Ltd.), weight average molecular weight 200,000) was used as the thickening dispersant in the preparation of the positive electrode slurry. A positive electrode slurry was prepared.
  • PEO R-400 (manufactured by Meisei Chemical Industry Co., Ltd.), weight average molecular weight 200,000) was used as the thickening dispersant in the preparation of the positive electrode slurry.
  • a positive electrode slurry was prepared.
  • Comparative Example 3 In the production of the positive electrode slurry, the positive electrode of Comparative Example 3 was used in the same manner as in Example 4 except that PEO (L8 (manufactured by Meisei Chemical Industry Co., Ltd.), weight average molecular weight 80,000) was used as the thickening dispersant. A slurry was prepared.
  • Comparative Example 4 In the production of the positive electrode slurry, the positive electrode of Comparative Example 4 was used in the same manner as in Example 5 except that PEO (L8 (manufactured by Meisei Chemical Industry Co., Ltd.), weight average molecular weight 80,000) was used as the thickening dispersant. A slurry was prepared.
  • Comparative Example 5 In the preparation of the positive electrode slurry, the electrode for Comparative Example 5 was used in the same manner as in Example 6 except that PEO (L8 (manufactured by Meisei Chemical Co., Ltd.), weight average molecular weight 80,000) was used as the thickening dispersant. A slurry was prepared.
  • the positive electrode for Comparative Example 6 was prepared in the same manner as in Example 7 except that PEO (L8 (manufactured by Meisei Chemical Co., Ltd.), weight average molecular weight 80,000) was used as the thickening dispersant. A slurry was prepared.
  • Comparative Example 7 In the production of the positive electrode slurry, the positive electrode of Comparative Example 7 was used in the same manner as in Example 8 except that PEO (L8 (manufactured by Meisei Chemical Industry Co., Ltd.), weight average molecular weight 80,000) was used as the thickening dispersant. A slurry was prepared.
  • Example 1 and Comparative Example 1 the use of Ph-PEO as the thickening dispersant improves the dispersibility of the conductive additive and reduces the initial DC resistance of the battery. It was confirmed. Further, when Example 2 and Comparative Example 2 are compared, even when Ph-PEO having a high molecular weight is used as the thickening dispersant, the dispersibility of the conductive auxiliary agent is improved and the initial DC resistance of the battery is reduced. confirmed. Further, when Examples 4 and 5 are compared with Comparative Examples 3 and 4, even when Ph-PEO and CMC are used in combination as the thickening dispersant, the dispersibility of the conductive auxiliary agent is improved, and the initial battery It was confirmed that the DC resistance was reduced.
  • the present invention relates to a positive electrode slurry for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery obtained by using a positive electrode slurry for a lithium ion secondary battery, which can reduce the initial DC resistance of the battery, and Provided are a manufacturing method, a lithium ion secondary battery including a positive electrode for a lithium ion secondary battery, and a manufacturing method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正極活物質の分散性を向上させ、正極用スラリーの集電体への塗工性を改善し、低い初期抵抗値を有するリチウムイオン二次電池が得られる、リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法を提供する。正極活物質(A)と、導電助剤(B)と、樹脂バインダー(C)と、増粘分散剤(D)と、水(E)と、を含み、増粘分散剤(D)がが、側鎖にフェニル基を有するポリアルキレンオキシドを含むことを特徴とするリチウムイオン二次電池の正極用スラリー。

Description

リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法
 本発明は、リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法に関する。
 本願は、2015年8月11日に、日本に出願された特願2015-158831号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池は、携帯電話やノート型パソコン等のポータブル機器の電源や、電力貯蔵用や電気自動車等の高寿命が要求される産業用装置の駆動電源として広く使われている。今後、民生用機器では軽量化や小型化が求められ、さらなる高エネルギー密度を有する電池が求められる。また、産業用機器では、さらなる電気自動車や定置型蓄電設備の普及に伴い、大型電池に対応した高出力、高容量、長寿命性能が求められる。
 リチウムイオン二次電池の高エネルギー密度化、高出力、高容量、長寿命化を実現する手段として、正極の作動電圧を上げ電池の高容量化を実現する方法が注目されている。例えば、リチウム基準で4.3V以上の高電圧でリチウムと電子を安定的に貯蔵、放出することができる、LiMO(Mは遷移金属)で表されるリチウム含有遷移金属酸化物等の正極活物質の開発が進められている。
 また、リチウムイオン二次電池に用いられる正極は、通常、正極活物質層がアルミニウム集電体に積層された構造を有している。正極活物質層には、正極活物質の他に、正極活物質同士および正極活物質と集電体とを結着させるためのバインダーが含まれる。リチウムイオン二次電池の高容量、長寿命化を実現するためには、バインダーとしては、より少量で結着力の高い材料が求められている。
 一般的に、リチウムイオン二次電池の正極用スラリーを集電体に塗工し、正極を製造する場合、正極用スラリーのバインダーには、有機溶剤系のN-メチル-2-ピロリドン(以下、「NMP」とも言う。)を溶剤としたポリフッ化ビニリデン(以下、「PVDF」とも言う。)が用いられている(例えば、特許文献1参照)。
 しかし、PVDF系バインダーは、正極活物質同士および正極活物質と集電体とを良好に結着させることができない。そのため、リチウムイオン二次電池の充放電サイクル特性が低下する課題がある。実際に使用するには、正極活物質同士および正極活物質と集電体に対して、十分な結着性を確保するために、多量のPVDF系バインダーを必要とする。
 その結果、リチウムイオン二次電池の容量が低下してしまう。さらに、PVDF系バインダーの製造は、NMP溶剤に変異原性がある等の理由で環境負荷が高く、溶剤に水を利用する新たなバインダーの開発が着目されている。
 一方、正極用水系バインダーの開発において、負極用水系バインダーとして汎用されているスチレン-ブタジエンゴム(以下、「SBR」とも言う。)が注目されている。また、水溶媒中で増粘分散剤としてカルボキシメチルセルロース(以下、「CMC」とも言う。)を併用することにより、環境負荷の低い製造が可能である。また、正極活物質同士および正極活物質と集電体に対する良好な結着性を実現している(例えば、特許文献2参照)。
 しかし、SBRバインダーは、その構造の特徴として、耐酸化性が低いことが挙げられる。高電圧条件下で充放電を繰り返すことから、耐酸化性が求められるリチウムイオン二次電池の正極において、SBRバインダーを用いると、リチウムイオン二次電池の長寿命特性を低下させることがある。
 さらに、水系溶媒下にて、バインダーとしてポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(以下、「PTFE」とも言う。)等のフッ素系樹脂と、増粘分散剤として水溶性高分子とを併用することで、耐酸化性の高い正極用水系スラリーを作製し、リチウムイオン二次電池の長寿命特性を改善させることができる(例えば、特許文献3参照)。
 しかし、フッ素系樹脂バインダーの極性は非常に低く、正極活物質同士および正極活物質と集電体を良好に結着させる点で、さらなる改良の余地があった。実際に使用するには、正極活物質同士および正極活物質と集電体に対し十分な結着性を確保するために、多量の他のバインダーを必要とするため、リチウムイオン二次電池の容量の低下を招く可能性が高かった。
特開平10-255808号公報 特開平10-241693号公報 特開2007-234277号公報
 本発明は、上記のような課題を解決するためになされたものであり、正極活物質の分散性を向上させ、正極用スラリーの集電体への塗工性を改善し、低い初期抵抗値を有するリチウムイオン二次電池が得られる、リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法を提供することを目的とする。
 本発明者等は、上記のような課題を解決すべく鋭意検討した結果、特定の樹脂バインダーと特定の増粘分散剤を併用することにより、上記課題を解決し得ることを見出し、本発明に至った。
 すなわち、本発明は、以下[1]~[8]で示される。
[1]正極活物質(A)と、導電助剤(B)と、樹脂バインダー(C)と、増粘分散剤(D)と、水(E)と、を含み、前記樹脂バインダー(C)が、エチレン性不飽和カルボン酸エステルおよびエチレン性不飽和カルボン酸の少なくとも1種と芳香族ビニル化合物とを含むモノマーの共重合体であり、前記増粘分散剤(D)が、側鎖にフェニル基を有するポリアルキレンオキシドを含むことを特徴とするリチウムイオン二次電池の正極用スラリー。
[2]前記側鎖にフェニル基を有するポリアルキレンオキシドが、下記式(1)で表される化合物である[1]に記載のリチウムイオン二次電池の正極用スラリー。
Figure JPOXMLDOC01-appb-C000002
(但し、式中、n、mおよびlはモノマーのモル比を示す。また、n、mおよびlは整数を表し、n+m+l=100、n+m≦98、l≧2を示す。)
[3]前記正極活物質(A)100質量部に対する前記樹脂バインダー(C)の含有量が0.2質量部以上、5.0質量部以下である[1]または[2]に記載のリチウムイオン二次電池の正極用スラリー。
[4]前記正極活物質(A)100質量部に対する前記増粘分散剤(D)の含有量が0.2質量部以上、5.0質量部以下である[1]~[3]のいずれかに記載のリチウムイオン二次電池の正極用スラリー。
[5]正極集電体と、前記正極集電体上に形成され、正極活物質を含む正極活物質層と、を備え、前記正極活物質層は、[1]~[4]のいずれかに記載のリチウムイオン二次電池の正極用スラリーから形成されたことを特徴とするリチウムイオン二次電池用正極。
[6]正極集電体と、前記正極集電体上に形成され、正極活物質を含む正極活物質層と、を備える正極の製造方法であって、前記正極集電体上に、[1]~[4]のいずれかに記載のリチウムイオン二次電池の正極用スラリーを塗布して前記正極活物質層を形成する工程を有することを特徴とするリチウムイオン二次電池用正極の製造方法。
[7][5]に記載のリチウムイオン二次電池用正極を備えたことを特徴とするリチウムイオン二次電池。
[8][1]~[4]のいずれかに記載のリチウムイオン二次電池の正極用スラリーを調製する工程と、正極集電体上に、前記リチウムイオン二次電池の正極用スラリーを塗布して正極活物質層を形成し、リチウムイオン二次電池用正極を作製する工程と、前記リチウムイオン二次電池用正極を備えるリチウムイオン二次電池を組み立てる工程と、を有することを特徴とするリチウムイオン二次電池の製造方法。
 本発明によれば、特定の樹脂バインダーと特定の増粘分散剤を併用することにより、正極活物質の分散性が高く、低い初期抵抗値を有するリチウムイオン二次電池が得られる。かつ集電体に均一に塗工可能なリチウムイオン二次電池の正極用スラリーを提供することができる。さらに、このリチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、このリチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法を提供することができる。
 本発明のリチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[リチウムイオン二次電池の正極用スラリー]
 本発明のリチウムイオン二次電池の正極用スラリーは、正極活物質(A)と、導電助剤(B)と、樹脂バインダー(C)と、増粘分散剤(D)と、水(E)と、を含み、樹脂バインダー(C)が、エチレン性不飽和カルボン酸エステルおよびエチレン性不飽和カルボン酸の少なくとも1種と芳香族ビニル化合物とを含むモノマーの共重合体であり、増粘分散剤(D)が、側鎖にフェニル基を有するポリアルキレンオキシドを含む。
 以下、リチウムイオン二次電池の正極用スラリーを、正極用スラリーと言うこともある。
<正極活物質(A)>
 正極活物質としては、リチウムイオン二次電池に用いることができる正極活物質であれば特に限定されないが、例えば、コバルト酸リチウム(LiCoO)、スピネルマンガン酸リチウム(LiMn)、オリビン型リン酸鉄リチウム(LiFePO)、Ni-Mn-Co系、Ni-Mn-Al系、およびNi-Co-Al系等の含ニッケルリチウム複合化合物、LiTiS、LiMnO、LiMoO、LiV等のカルコゲン化合物等が挙げられる。正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<導電助剤(B)>
 導電助剤としては、導電性を有するものであれば特に限定されないが、通常、炭素材料を用いることが好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されないが、グラファイト、カーボンブラック、カーボンファイバー等が挙げられる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラックおよびサーマルブラックが挙げられる。これらの中でも、アセチレンブラック、ケッチェンブラックが好ましい。
 本発明のリチウムイオン二次電池の正極用スラリーでは、正極活物質(A)100質量部に対する導電助剤(B)の含有量が、1質量部以上、10質量部以下であることが好ましく、2質量部以上、8質量部以下であることがより好ましく、4質量部以上、6質量部以下であることがさらに好ましい。
 導電助剤の含有量が上記範囲内であれば、このリチウムイオン二次電池の正極用スラリーを用いて作製したリチウムイオン二次電池用正極を備えるリチウムイオン二次電池は、体積当たりの容量バランスが優れ、耐久性(サイクル特性)が優れる。
<樹脂バインダー(C)>
 樹脂バインダー(C)は、エチレン性不飽和カルボン酸エステルおよびエチレン性不飽和カルボン酸の少なくとも1種と芳香族ビニル化合物とを含むモノマーの共重合体である。
 前記共重合体の原料モノマーである芳香族ビニル化合物は、エチレン性炭素-炭素二重結合と芳香環を有する化合物である。
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、スチレンスルホン酸等が挙げられる。これらの中でも、スチレンが好ましい。
 エチレン性不飽和カルボン酸エステルとしては、例えば、α,β-不飽和モノカルボン酸もしくはジカルボン酸(アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等)のアルキルエステルが挙げられる。エステルのアルキル鎖は、好ましくは炭素数1~18の直鎖状、分岐状または環状のアルキル鎖、より好ましくは炭素数2~12の直鎖状、分岐状または環状のアルキル鎖、さらに好ましくは炭素数2~8の直鎖状、分岐状または環状のアルキル鎖である。
 エチレン性不飽和カルボン酸エステルとしては、炭素数2~8の直鎖状、分岐状または環状のアルキル鎖を有する(メタ)アクリル酸エステルが好ましい。
 なお、(メタ)アクリル酸とは、メタクリル酸またはアクリル酸のことである。
 さらに、正極活物質同士および正極活物質と集電体との結着性を損なわない限り、樹脂バインダー(C)として、エチレン性不飽和カルボン酸エステルおよびエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体には、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、酢酸ビニルやアルカン酸ビニルに代表されるビニルエステル類、モノオレフィン類(エチレン、プロピレン、ブチレン、イソブチレン等)、ジオレフィン(アレン、メチルアレン、ブタジエン)、ジアセトンアクリルアミド等の含カルボニル基エチレン性不飽和単量体、含スルホン酸エチレン性不飽和単量体が共重合されていてもよい。これらの単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上述した樹脂バインダー(C)の中でも、リチウムイオン二次電池の正極用スラリー中の正極活物質の分散性を向上させる観点、並びに、リチウムイオン二次電池の特性を向上させる目的で、電解液への耐溶出性および正極における耐酸化性をより向上させるという観点から、樹脂バインダー(C)は、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-(メタ)アクリル酸共重合体、または、スチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸エステル-アクリル酸-スチレンスルホン酸ナトリウム共重合体であることが好ましい。これらの中でも、工業生産上、凝集物の発生を軽減可能であるという観点から、スチレン-(メタ)アクリル酸エステル-アクリル酸-スチレンスルホン酸ナトリウム共重合体がより好ましい。
 エチレン性不飽和カルボン酸エステルおよびエチレン性不飽和カルボン酸の少なくとも1種と芳香族ビニル化合物とを含むモノマーの共重合体構成単位の100モル部に対する、エチレン性不飽和カルボン酸エステル単位の含有量は、25モル部以上、85モル部以下であることが好ましく、30モル部以上、80モル部以下であることがより好ましい。
 エチレン性不飽和カルボン酸エステル単位の含有量が上記範囲内であれば、得られる正極の柔軟性や耐熱性が向上し、正極活物質同士および正極活物質と集電体との結着性も向上する。
 エチレン性不飽和カルボン酸エステルおよびエチレン性不飽和カルボン酸の少なくとも1種と芳香族ビニル化合物とを含むモノマーの共重合体構成単位の100モル部に対する、エチレン性不飽和カルボン酸単位の含有量は、1モル部以上、10モル部以下であることが好ましく、1モル部以上、5モル部以下であることがより好ましい。
 エチレン性不飽和カルボン単量体単位の含有量が上記範囲内であれば、芳香族ビニル化合物とエチレン性不飽和カルボン酸の共重合体の乳化重合安定性または機械的安定性が維持され、正極活物質同士および正極活物質と集電体との結着性が向上する。
 また、樹脂バインダー(C)、特にエチレン性不飽和カルボン酸エステルまたはエチレン性不飽和カルボン酸と芳香族ビニル化合物との共重合体は、必要に応じて、架橋剤となるグリシジル(メタ)アクリレート等のエポキシ基含有α,β-エチレン性不飽和化合物、ビニルトリエトキシシランやγ-メタクリロキシプポピルトリメトキシシラン等の加水分解性アルコキシシリル基含有α,β-エチレン性不飽和化合物、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート等の多官能ビニル化合物等のモノマーを導入し、それ自身同士を架橋させるか、もしくは活性水素基を持つエチレン性不飽和化合物成分と組み合わせて架橋させてもよい。また、カルボニル基含有α,β-エチレン性不飽和化合物等を共重合体に導入し、ポリヒドラジン化合物、特に、シュウ酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ポリアクリル酸ジヒドラジド等の2以上のヒドラジド基を有する化合物と組み合わせて架橋させてもよい。
 樹脂バインダー(C)、特にエチレン性不飽和カルボン酸エステルまたはエチレン性不飽和カルボン酸と芳香族ビニル化合物との共重合体を得るための重合法としては、従来から公知の方法を用いることができる。公知の方法の中でも、乳化重合法を用いることが好ましい。
 乳化重合に用いられる界面活性剤としては、通常のアニオン性界面活性剤、ノニオン性界面活性剤が挙げられる。
 アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩等が挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンスルビタン脂肪酸エステル等が挙げられる。
 これらの界面活性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 乳化重合における界面活性剤の使用量は、全単量体100質量部に対して、0.1質量部以上、3質量部以下であることが好ましく、0.1質量部以上、1.0質量部以下であることがより好ましい。
 界面活性剤の使用量が上記範囲内であれば、得られた水系エマルジョンの粒子径が所望の粒子径となり、安定した乳化重合が行えるとともに、正極活物質と集電体の密着力の低下が抑制される。
 乳化重合の際に用いられるラジカル重合開始剤としては、公知慣用のラジカル重合開始剤を用いることができる。例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、t-ブチルハイドロパーオキサイド等が挙げられる。また、必要に応じて、これらの重合開始剤を、重亜硫酸ナトリウム、ロンガリット、アスコルビン酸等の還元剤と併用してレドックス重合を行ってもよい。
 樹脂バインダー(C)を得るための乳化重合法としては、一括して仕込む重合方法、各成分を連続供給しながら重合する方法等が用いられる。
 重合は、通常、30℃以上、90℃以下の温度範囲内で撹拌下に行われる。なお、共重合に用いるエチレン性不飽和カルボン酸のため、系が酸性にシフトするので、重合中もしくは重合終了後に、塩基性物質を加えてpH調整することにより、乳化重合時の重合安定性、機械的安定性、化学的安定性を向上させることができる。その際に用いられる塩基性物質としては、アンモニア、トリエチルアミン、エタノールアミン、苛性ソーダ等が挙げられる。塩基性物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明のリチウムイオン二次電池の正極用スラリーでは、正極活物質(A)100質量部に対する樹脂バインダー(C)の含有量が、0.2質量部以上、5.0質量部以下であることが好ましく、0.2質量部以上、3.0質量部以下であることがより好ましい。
 樹脂バインダー(C)の含有量が上記範囲内であれば、正極活物質同士および正極活物質と集電体との結着性が良好なリチウムイオン二次電池の正極用スラリーおよびリチウムイオン二次電池用正極を提供することができる。さらに、その正極を利用することで、高い初期放電容量と優れた高温充放電サイクル特性を有するリチウムイオン二次電池を提供することができる。
<増粘分散剤(D)>
 増粘分散剤(D)は、正極用スラリーに含まれる正極活物質同士および正極活物質と集電体に対する結着性を高め、かつ正極用スラリー中の正極活物質の分散性を上げ、正極用スラリーの安定性を高めるために用いられる。
 本発明では、増粘分散剤(D)が、正極用スラリー中の正極活物質の分散性をより高めることができることから、側鎖にフェニル基を有するポリアルキレンオキシドを含む。また、増粘分散剤(D)がその他に水溶性高分子を含んでもよい。正極用スラリー中の正極活物質の分散性を高めることができるその他の水溶性高分子としては、例えば、カルボキシメチルセルロース(CMC)等のセルロースの誘導体、ポリアルキレンオキシド誘導体、ポリビニルアルコール誘導体、ポリカルボン酸誘導体(これらの塩類を含む)、ポリカルボン酸エステル誘導体、ポリビニルアミド誘導体およびエチレン性不飽和カルボン酸とビニルアミドとの共重合体等が挙げられる。増粘分散剤(D)が、側鎖にフェニル基を有するポリアルキレンオキシドであってもよい。また、増粘分散剤(D)が、側鎖にフェニル基を有するポリアルキレンオキシドとカルボキシメチルセルロース(CMC)であってもよい。
 また、側鎖にフェニル基を有するポリアルキレンオキシドとしては、下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(但し、式中、n、mおよびlはモノマーのモル比を示す。また、n、mおよびlは整数を表し、n+m+l=100、n+m≦98、l≧1を示す)
 上記式(1)で表される化合物としては、n=50~98、m=1~10、l=1~10であるものが好ましく、n=80~98、m=1~10、l=1~10であるものがより好ましい。
 フェニル基存在比を下記式のように定義したとき、好ましくは1~10%である。
 フェニル基存在比(%):l/(n+m+l)×100  
なお、上記式(1)におけるn、m、およびlは当該モノマーのモル比を示すものであり、当該各モノマーユニットがn、m、l個連続して繋がっていることを示すものではない。また、ブロック共重合ということでもない。
 増粘分散剤に用いる水溶性高分子の分子量は特に限定されないが、正極用スラリーの製造時に用いる、増粘分散剤の水溶液の粘度に応じた分子量を設定することが好ましい。増粘分散剤として、上記式(1)で表される化合物を用いる場合、重量平均分子量(MW)は、特に限定されないが、10,000~1,000,000であることが好ましく、20,000~500,000であることがより好ましい。
 上記式(1)で表される化合物の重量平均分子量が上記範囲内であれば、導電助剤の分散性に優れ、初期直流抵抗が低くなる。
 なお、本明細書において、「重量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(商品名:Shodex(登録商標)GPC-101、昭和電工社製)を用いて、下記条件にて測定し、標準プルラン検量線を用いて求めた値のことを意味する。
 分析カラム:(1)OHpak SB-803HQ、(2)OHpak SB-804HQ、昭和電工社製
 リファレンスカラム:OHpak SB-800RL、昭和電工社製
 カラム温度:40℃
 試料:測定サンプル濃度は0.1質量%
 流量:1mL/分
 溶離液:0.1M 硝酸ナトリウム水溶液
 検出器:RI-71S
 上記式(1)で表される化合物としては、例えば、明成化学工業社製のアルコックスCP-B(商品名)が挙げられる。
 これらの水溶性高分子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、各々の水溶性高分子のモノマーを共重合させたものを用いることも好適である。
 増粘分散剤(D)は、正極用スラリーの増粘分散の観点から、1質量%増粘分散剤の水溶液の23℃における、回転式粘度計(商品名:TVB-25L、東機産業社製)を用いた毎分60回転における粘度(mPa・s)が、1mPa・s~10000mPa・sであることが好ましく、10mPa・s~2000mPa・sであることがより好ましい。上記範囲の粘度を有する増粘分散剤を用いることにより、増粘分散剤の水溶液の粘度が所望の粘度に保たれ、正極用スラリーにおける正極活物質(A)、導電助剤(B)、樹脂バインダー(C)および増粘分散剤(D)の分散性、並びに、正極活物質同士および正極活物質と集電体に対する結着性が向上し、スラリーの集電体への塗工に優れる。
 本発明のリチウムイオン二次電池の正極用スラリーでは、正極活物質(A)100質量部に対する増粘分散剤(D)の含有量が、0.2質量部以上、5.0質量部以下であることが好ましく、0.2質量部以上、3.0質量部以下であることがより好ましい。
 増粘分散剤(D)の含有量が上記範囲内であれば、正極活物質の分散性がより高まるため、正極活物質が均一に分散され、集電体への塗工に適した粘度を有する正極用スラリーが得られる。
また、本発明の効果を十分に発揮するために、増粘分散剤(D)がその他に水溶性高分子(例えば、CMC)を含む場合、本発明のリチウムイオン二次電池の正極用スラリーでは、増粘分散剤(D)100質量部において、側鎖にフェニル基を有するポリアルキレンオキシド(例えば、上記一般式(1)の化合物)の含有量が、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、30質量部以上であることが更に好ましい。
<水(E)>
 本発明のリチウムイオン二次電池の正極用スラリーにおいて、分散媒として用いる水としては、イオン交換樹脂で処理された水(イオン交換水)、および逆浸透膜浄水システムにより処理された水(超純水)等が好ましい。
 本発明のリチウムイオン二次電池の正極用スラリーでは、正極活物質(A)100質量部に対する水(E)の含有量が、20質量部以上、100質量部以下であることが好ましく、30質量部以上、90質量部以下であることがより好ましく、40質量部以上、80質量部以下であることがさらに好ましい。
 水の含有量が20質量部以上であれば、高濃度のスラリーが製造でき、電極作製時の乾燥工程が容易になる。
 本発明のリチウムイオン二次電池の正極用スラリーは、上記樹脂バインダー(C)と増粘分散剤(D)を併用したため、正極活物質の分散性が高く、低い初期抵抗値を有するリチウム二次電池が得られる。かつ集電体に均一に塗工可能である。
[リチウムイオン二次電池の正極用スラリーの製造方法]
 本発明のリチウムイオン二次電池の正極用スラリーは、正極活物質(A)と、導電助剤(B)と、樹脂バインダー(C)と、増粘分散剤(D)と、を含む混合物を、水(E)に分散または溶解させたものである。
 正極用スラリーは、水分散体が好ましい。しかし、正極用スラリーは、環境の負荷に影響のない範囲内で、水と親水性の高い溶媒を含んでいてもよい。
 水(E)に、正極活物質(A)と、導電助剤(B)と、樹脂バインダー(C)と、増粘分散剤(D)と、を分散または溶解させる方法としては、これらの成分を均一に分散または溶解できる方法であれば特に限定されず、例えば、プラネタリーミキサー、ディスパー、ボールミルを用いた方法が挙げられる。
 正極用スラリーの調製方法としては、例えば、次の方法が挙げられる。樹脂バインダー(C)と増粘分散剤(D)とを、水(E)(または水と親和性の高い溶媒)に分散または溶解させる。その後、その分散液または溶液に、正極活物質(A)と導電助剤(B)とを加え、必要に応じてpH調製剤、濡れ剤、消泡剤等の添加剤を添加し、さらに、分散、溶解または混練する。
[リチウムイオン二次電池用正極]
 本発明のリチウムイオン二次電池用正極は、正極集電体と、その正極集電体上に形成され、正極活物質を含む正極活物質層と、を備え、正極活物質層は、本発明のリチウムイオン二次電池の正極用スラリーから形成されたものである。
 正極集電体としては、アルミニウムからなる集電体を初めとして、金属製のものであれば特に限定されない。
 また、正極集電体の形状は特に限定されないが、正極集電体としては、通常、厚さが0.001mm以上、0.5mm以下のシート状のものを用いることが好ましい。
 本発明のリチウムイオン二次電池用正極は、本発明のリチウムイオン二次電池の正極用スラリーから形成された正極活物質層を備えているため、正極活物質層と集電体との良好な結着性を有する。したがって、本発明のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池は容量の低下を招く可能性が低い。
[リチウムイオン二次電池用正極の製造方法]
 本発明のリチウムイオン二次電池用正極の製造方法は、正極集電体上に、本発明のリチウムイオン二次電池の正極用スラリーを塗布、乾燥して、正極活物質層を形成する工程を有する。
 正極集電体への正極用スラリーの塗布方法としては、一般的な方法が用いられ、例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法が挙げられる。
 正極用スラリーの正極集電体への塗布は、正極集電体の片面および両面に施すことができる。正極集電体の両面に塗布する場合は、片面ずつ逐次、塗布してもよく、両面同時に塗布してもよい。また、正極集電体の表面に連続、あるいは、間欠に塗布してもよい。正極用スラリーの塗布層の厚さ、長さや幅は、リチウムイオン二次電池の大きさに応じて適宜設定する。
 正極用スラリーの乾燥方法としては、一般的な方法を用いることができる。例えば、熱風、真空、赤外線、遠赤外線、電子線、低温風を用いる乾燥方法が挙げられる。これらの乾燥方法は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 乾燥温度は、50℃以上、350℃以下であることが好ましく、50℃以上、200℃以下であることがより好ましい。
 リチウムイオン二次電池用正極は、必要に応じてプレスして成形することができる。プレスの方法としては、一般的な方法を用いることができるが、金型プレス法やカレンダープレス法が好ましい。プレス圧は特に限定されないが、0.1t/cm以上、10t/cm以下であることが好ましく、0.5t/cm以上、5.0t/cm以下であることがより好ましい。
[リチウムイオン二次電池]
 本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用正極を備える。
 リチウムイオン二次電池としては、例えば、次の2つの非水系二次電池が挙げられる。
 負極と本発明のリチウムイオン二次電池用正極とを、リチウムイオン透過性のセパレータ(例えば、ポリエチレン製またはポリプロピレン製の多孔性フィルム)を介して配置し、これに非水系の電解液を含浸させた非水系二次電池。
 負極集電体の両面に負極活物質層が形成された負極/セパレータ/正極集電体の両面に正極活物質層が形成された本発明のリチウムイオン二次電池用正極/セパレータからなる積層体をロール状(渦巻状)に巻回した巻回体が、電解液と共に有底の金属ケーシングに収容された筒状の非水系二次電池。
 本発明のリチウムイオン二次電池に用いられる負極としては、例えば、負極集電体上に負極活物質やバインダーを含む負極活物質層が形成された公知の負極を用いることができる。
 負極活物質としては、リチウムイオンの吸蔵および放出が可能な元素を含有する負極活物質や、炭素材料等、公知の負極活物質を用いることができる。
 リチウムイオンの吸蔵および放出が可能な元素としては、リチウムと合金化し得る元素が挙げられる。例えば、ケイ素、ゲルマニウム、スズ、鉛、アルミニウム、インジウムおよび亜鉛が挙げられる。このような元素を含む活物質を負極活物質として用いることにより、リチウムイオン二次電池の高容量化が可能となる。
 リチウムイオンの吸蔵および放出が可能な元素を含有する負極活物質としては、具体的に、金属化合物、金属酸化物、リチウム金属化合物、リチウム金属酸化物(リチウム-遷移金属複合酸化物を含む)等が挙げられる。
 金属化合物の形態の負極活物質としては、例えば、LiAl、LiSi、Li4.4Pb、Li4.4Sn等が挙げられる。
 金属酸化物の形態の負極活物質としては、例えば、SnO、SnO、GeO、GeO、InO、In、PbO、PbO、Pb、Pb、SiO、ZnO等が挙げられる。
 炭素材料としては、例えば、黒鉛、非晶質炭素、炭素繊維、コークス、活性炭、カーボンナノチューブ、カーボンナノファイバー、フラーレン等の炭素材料等が挙げられる。
 これらの負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、負極に用いられるバインダーとしては特に限定されないが、公知の負極用バインダー樹脂を用いることができる。
 負極集電体の材料としては、導電性を有する物質であれば特に限定されないが、金属が用いられる。金属としては、リチウムと合金を形成し難い金属が好ましく、具体的には、銅、ニッケル、鉄、チタン、バナジウム、クロム、マンガン、あるいはこれらの合金が挙げられる。
 負極集電体の形状としては、薄膜状、網状、繊維状が挙げられる。これらの中でも、薄膜状が好ましい。
 負極集電体の厚みは、5μm~30μmであることが好ましく、8μm~25μmであることがより好ましい。
 電解液としては、例えば、リチウムイオン二次電池の場合、電解質としてのリチウム塩を1mol/L程度の濃度で非水系有機溶媒に溶解したものが用いられる。
 リチウム塩としては、例えば、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li[(COB等が挙げられる。
 非水系有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ-ブチロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、NMP等の含窒素類;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらの非水系有機溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用正極を備えているため、容量の維持率が高い。
[リチウムイオン二次電池の製造方法]
 本発明のリチウムイオン二次電池の製造方法は、本発明のリチウムイオン二次電池の正極用スラリーを調製する工程と、正極集電体上に、そのリチウムイオン二次電池の正極用スラリーを塗布して正極活物質層を形成し、リチウムイオン二次電池用正極を作製する工程と、そのリチウムイオン二次電池用正極を備えるリチウムイオン二次電池を組み立てる工程と、を有する。
 リチウムイオン二次電池を組み立てる工程は、本発明のリチウムイオン二次電池用正極を正極として用いれば特に限定されない。
 リチウムイオン二次電池を組み立てる工程では、例えば、正極と負極とを、透過性のセパレータを介して配置し、これに非水系の電解液を含浸させる。次いで、負極を負極端子に、正極を正極端子に接続し、リチウムイオン二次電池とする。
 また、リチウムイオン二次電池が筒状の場合、以下のようにして得られる。まず、負極集電体の両面に負極活物質層が形成された負極/セパレータ/正極集電体の両面に正極活物質層が形成された本発明のリチウムイオン二次電池用正極/セパレータからなる積層体をロール状(渦巻状)に巻回して巻回体とする。得られた巻回体を、金属ケーシング(電池缶)に収容し、負極を負極端子に、正極を正極端子に接続する。次いで、金属ケーシングに電解液を含浸させた後、金属ケーシングを封止することにより筒状のリチウムイオン二次電池とする。
 本発明のリチウムイオン二次電池の製造方法によれば、簡便な工程により、本発明のリチウムイオン二次電池が得られる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 なお、実施例および比較例における「部」は、特に断りのない場合は質量部を示す。また、実施例および比較例における「%」は、フェニル基存在比以外で特に断りのない場合は質量%を示す。実施例で得られたリチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られるリチウムイオン二次電池用正極、および、このリチウムイオン二次電池用正極を用いて得られるリチウムイオン二次電池の性能評価試験は、以下の方法により行った。
[樹脂バインダー(C)の作製]
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、イオン交換水100質量部および反応性アニオン性乳化剤(商品名:エレミノールJS-20、有効成分40%、三洋化成工業社製)0.9質量部を仕込み、75℃に昇温した。
 次いで、上記反応性アニオン性乳化剤6.5質量部、非反応性アニオン性乳化剤(商品名:ハイテノール08E、ポリオキシエチレンアルキルエーテル硫酸エステル塩、第一工業製薬社製)1.2質量部、スチレン149質量部、アクリル酸2-エチルヘキシル131質量部、メタクリル酸2-ヒドロキシエチル5.8質量部、イタコン酸5.8質量部、パラスチレンスルホン酸ソーダ1.2質量部、ジビニルベンゼン0.1質量部およびイオン交換水271質量部を予め混合してなるモノマー乳化物を4時間かけて80℃で滴下した。
 同時に、重合開始剤として過硫酸カリウム1.3質量部をイオン交換水29質量部に溶解したものを4時間かけて80℃で滴下重合した。
 モノマー乳化物と重合開始剤の滴下終了後、80℃で2時間熟成後、反応液を室温に冷却した。その後、反応液に、25%アンモニア水6.0質量部およびイオン交換水36質量部を添加し、樹脂(i)のエマルジョン(固形分40.0%)を得た。樹脂(i)のエマルジョンは、23℃における回転式粘度計(商品名:TVB-25L、東機産業社製)を用いた毎分10回転における粘度が500mPa・s、pHが7.0であった。
[リチウムイオン二次電池の正極用スラリーの作製]
 下記の実施例および比較例に記載の含有量で、正極活物質、導電助剤としてカーボンブラック、樹脂バインダーおよび増粘分散剤を混合し、さらにその混合物に必要に応じて分散媒である水を加えて混練し、リチウムイオン二次電池の正極用スラリーを作製した。
[正極の作製]
 リチウムイオン二次電池の正極用スラリーを、集電体となる厚さ20μmのアルミニウム箔にロールプレス処理後の厚さが90μmとなるように塗布し、ホットプレートで50℃にて5分間乾燥し、次いで、110℃にて5分間乾燥し、正極を得た。
[導電助剤の分散性評価]
 得られた正極の表面を、走査型電子顕微鏡(日本電子社製)を用いて観察し、導電助剤であるカーボンブラックの分散性を目視により評価した。
 導電助剤が正極表面に万遍なく存在していた場合は「均一」、導電助剤の凝集や非局在箇所が存在していた場合は、その度合いに応じ「やや不均一」と「不均一」に分類した。
[負極スラリーの作製]
 負極活物質である人造黒鉛(商品名:SCMG(登録商標)-BR、昭和電工社製)100質量部に対して、導電助剤としてカーボンブラック(アセチレンブラック)を2質量部、バインダーとしてスチレン-アクリル酸エステル共重合体(商品名:ポリゾール(登録商標) LB-200、固形分40%、粘度2000mPa・s、pH7.0、昭和電工社製)からなる乳化重合体を4質量部、増粘分散剤としてカルボキシメチルセルロース(以下、「CMC」と言う。)(1質量%のCMC水溶液の23℃における粘度:1100mPa・s)を水に溶解させたCMC水溶液(CMC濃度が2質量%)を50質量部混合し、さらにその混合物に水を5質量部加えて混練し、負極用スラリーを作製した。
[負極の作製]
 負極用スラリーを、集電体となる厚さ10μmの銅箔にロールプレス処理後の厚さが60μmとなるように塗布し、ホットプレートで50℃にて5分間乾燥し、次いで、110℃にて5分間乾燥した。その後、金型プレス機を用いて、プレス圧2.5t/cmにてプレスし、集電タブを取り付けることで、負極を得た。
[電解液の調製]
 エチレンカーボネートとジエチルカーボネートとを、体積比で2:3で混合した溶媒に、LiPFを1.0mol/Lの濃度になるように溶解し、電解液を調製した。
[リチウムイオン二次電池の作製]
 上記の通りに作製した正極および負極を、ポリエチレン製のセパレータを挟んで対向させ、アルミラミネートの容器に収容した。その後、アルゴン雰囲気下のグローボックス中にて、正極および負極を収容した容器に上記電解液を滴下し、脱圧しながらラミネート容器を熱圧着してリチウムイオン二次電池を作製した。なお、この電池の理論容量を16.5mAhとして設計した。
[電池性能評価:初期直流抵抗]
 日鉄エレックス社製の充放電試験装置を用いて、上記リチウムイオン二次電池を評価した。
 まず、リチウムイオン二次電池にエージング処理を施した後、25℃条件下、CC-CV(定電流―定電圧)充電(上限電圧(正極活物質としてLiCo1/3Ni1/3Mn1/3(以下、「NMC」とも言う。)、LiCo1.5/10Ni7/10Mn1.5/10(以下、「Hi-Ni NMC」とも言う。)、LiCoO(以下、「LCO」とも言う。)を用いた場合は4.2V、LiFePO(以下、「LFP」とも言う。)を用いた場合は3.65V)になるまで1C(1時間で満充放電する電流)で充電し、その後CV時間(1.5時間)が経過するまで一定の電圧(4.2V)で充電した)およびCC放電(下限電圧(正極活物質としてLFPを用いた場合は2.0V、その他は2.75V)になるまで0.2Cで放電)を2サイクル行った。2回のCC放電時の容量の平均をそのリチウムイオン二次電池の初期容量と定めた。初期容量測定後、25℃条件下、初期容量の60%に相当する容量を0.2Cで充電し、その後0.2Cで1分間CC放電をし、1秒後の放電電流と電圧を測定した。同様のCC放電を0.5C、1.0C、2.0Cでも行い、各々1秒後の放電電流と電圧を測定し、各測定値をプロットし、近似直線の傾きをその電池の初期直流抵抗と定めた。
 [実施例1]
 正極用スラリーの作製において、樹脂バインダー(C)として上記合成した樹脂(i)のエマルジョン(固形分40.0%)を1.25g(樹脂バインダー(C):0.5g(2.5質量部))、増粘分散剤(D)として下記式(1)で表される化合物(以下、「Ph-PEO」とも言う。明成化学工業社製)を水に溶解させたPh-PEO水溶液(Ph-PEO濃度が10質量%、下記式(1)中、n+m+l=100、n+m=98、l=2、重量平均分子量80,000)を3g(増粘分散剤(D):0.3g(1.5質量部))、溶媒として水を8g(水(E):40質量部)加えて、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練した後、この混練物に、正極活物質としてNMCを20g(正極活物質(A):100質量部)、導電助剤としてカーボンブラック(アセチレンブラック)1g(導電助剤(B):5質量部)を添加して、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練し、正極用スラリーを作製した。
Figure JPOXMLDOC01-appb-C000004
[実施例2]
 正極用スラリーの作製において、Ph-PEOの重量平均分子量が200,000であること以外は実施例1と同様にして、実施例2の正極用スラリーを作製した。
[実施例3]
 正極用スラリーの作製において、Ph-PEOの組成がn+m+l=100、n+m=95、l=5であること以外は実施例1と同様にして、実施例3の正極用スラリーを作製した。
[実施例4]
 正極用スラリーの作製において、樹脂バインダー(C)として合成した樹脂(i)のエマルジョン(固形分40.0%)を1.25g、増粘分散剤としてPh-PEOを水に溶解させたPh-PEO水溶液(Ph-PEO濃度が10質量%、上記式(1)中、n+m+l=100、n+m=98、l=2、質量平均分子量80,000)を2g、CMC(商品名:CMCダイセル1350、ダイセル社製)を水に溶解させたCMC水溶液(CMC濃度が5質量%)を2g(増粘分散剤の質量比がPh-PEO/CMC=2/1となるように調整)、溶媒として水を7g加えて、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練した後、この混練物に、NMCを20g、導電助剤としてカーボンブラック(アセチレンブラック)1gを添加して、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練し、実施例4の正極用スラリーを作製した。
[実施例5]
 正極用スラリーの作製において、樹脂バインダー(C)として合成した樹脂(i)のエマルジョン(固形分40.0%)を1.25g、増粘分散剤としてPh-PEOを水に溶解させたPh-PEO水溶液(Ph-PEO濃度が10質量%、上記式(1)中、n+m+l=100、n+m=98、l=2、重量平均分子量80,000)を1g、CMC(商品名:CMCダイセル1350、ダイセル社製)を水に溶解させたCMC水溶液(CMC濃度が5質量%)を4g(増粘分散剤の質量比がPh-PEO/CMC=1/2となるように調整)、溶媒として水を6g加えて、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練した後、この混練物に、NMCを20g、導電助剤としてカーボンブラック(アセチレンブラック)1gを添加して、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練し、実施例5の正極用スラリーを作製した。
[実施例6]
 正極用スラリーの作製において、正極活物質をHi-Ni NMCに変更したこと以外は実施例1と同様にして、実施例6の正極用スラリーを作製した。
[実施例7]
 正極用スラリーの作製において、正極活物質をLCOに変更したこと以外は実施例1と同様にして、実施例7の正極用スラリーを作製した。
[実施例8]
 正極用スラリーの作製において、正極活物質をLFPに変更したこと以外は実施例1と同様にして、実施例8の正極用スラリーを作製した。
[比較例1]
 正極用スラリーの作製において、増粘分散剤としてポリエチレンオキシド(L8(明成化学工業社製)、上記式(1)において、側鎖を一切持たない骨格、以下「PEO」とも言う。分子量80,000)を用いたこと以外は実施例1と同様にして、比較例1の正極用スラリーを作製した。
[比較例2]
 正極用スラリーの作製において、増粘分散剤としてPEO(R-400(明成化学工業社製)、重量平均分子量200,000)を用いたこと以外は実施例1と同様にして、比較例2の正極用スラリーを作製した。
[比較例3]
 正極用スラリーの作製において、増粘分散剤としてPEO(L8(明成化学工業社製)、重量平均分子量80,000)を用いたこと以外は実施例4と同様にして、比較例3の正極用スラリーを作製した。
[比較例4]
 正極用スラリーの作製において、増粘分散剤としてPEO(L8(明成化学工業社製)、重量平均分子量80,000)を用いたこと以外は実施例5と同様にして、比較例4の正極用スラリーを作製した。
[比較例5]
 正極用スラリーの作製において、増粘分散剤としてPEO(L8(明成化学工業社製)、重量平均分子量80,000)を用いたこと以外は実施例6と同様にして、比較例5の極用スラリーを作製した。
[比較例6]
 正極用スラリーの作製において、増粘分散剤としてPEO(L8(明成化学工業社製)、重量平均分子量80,000)を用いたこと以外は実施例7と同様にして、比較例6の正極用スラリーを作製した。
[比較例7]
 正極用スラリーの作製において、増粘分散剤としてPEO(L8(明成化学工業社製)、重量平均分子量80,000)を用いたこと以外は実施例8と同様にして、比較例7の正極用スラリーを作製した。
[比較例8]
 正極用スラリーの作製において、樹脂バインダー(C)として合成した樹脂(i)のエマルジョン(固形分40.0%)を1.25g、増粘分散剤としてCMC(商品名:CMCダイセル1350、ダイセル社製)を水に溶解させたCMC水溶液(CMC濃度が5質量%)を6g、溶媒として水を5g加えて、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練した後、この混練物に、NMCを20g、導電助剤としてカーボンブラック(アセチレンブラック)1gを添加して、プラネタリーミキサー(商品名:ハイビスミックス2P-03型、プライミクス社製)を用いて混練し、比較例8の正極用スラリーを作製した。
 実施例1~8および比較例1~8について、正極における導電助剤の分散性と電池性能を評価した。結果を表1に示す。
 表1中の略語は、以下に示す通りである。
 NMC:LiCo1/3Ni1/3Mn1/3
 Hi-Ni NMC:LiCo1.5/10Ni7/10Mn1.5/10
 LCO:LiCoO
 LFP:LiFePO
 CMC:カルボキシメチルセルロース
 Ph-PEO:側鎖にフェニル基が含有されたポリエチレンオキシド(上記式(1))
 PEO:ポリエチレンオキシド
 (a)/(b):増粘分散剤(a)と増粘分散剤(b)の質量組成比
Figure JPOXMLDOC01-appb-T000005
 表1に示す結果から、実施例1と比較例1を比較すると、増粘分散剤として、Ph-PEOを用いることにより、導電助剤の分散性が向上し、電池の初期直流抵抗が低減することが確認された。
 また、実施例2と比較例2を比較すると、増粘分散剤として、分子量が高いPh-PEOを用いても、導電助剤の分散性が向上し、電池の初期直流抵抗が低減することが確認された。
 また、実施例4および5と、比較例3および4とを比較すると、増粘分散剤として、Ph-PEOとCMCを組み合わせて用いても、導電助剤の分散性が向上し、電池の初期直流抵抗が低減することが確認された。
 また、比較例8から、導電助剤の分散性の向上および電池の初期直流抵抗の低減には、増粘分散剤としてPh-PEOを用いることが有効であることが確認された。すなわち、フェニル基を有する化合物を用いることが有効であることが確認された。
 加えて、実施例6~8と比較例5~7を比較すると、増粘分散剤として、Ph-PEOを用いることにより、正極活物質の種類に関係なく、導電助剤の分散性が向上し、電池の初期直流抵抗が低減することが確認された。
 本発明は、電池の初期直流抵抗を低減することが可能な、リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法を提供する。

Claims (8)

  1.  正極活物質(A)と、導電助剤(B)と、樹脂バインダー(C)と、増粘分散剤(D)と、水(E)と、を含み、
     前記樹脂バインダー(C)が、
     エチレン性不飽和カルボン酸エステルおよびエチレン性不飽和カルボン酸の少なくとも1種と
     芳香族ビニル化合物と
    を含むモノマーの共重合体であり、かつ
     前記増粘分散剤(D)が、側鎖にフェニル基を有するポリアルキレンオキシドを含む
    ことを特徴とするリチウムイオン二次電池の正極用スラリー。
  2.  前記側鎖にフェニル基を有するポリアルキレンオキシドが、下記式(1)で表される化合物であることを特徴とする請求項1に記載のリチウムイオン二次電池の正極用スラリー。
    Figure JPOXMLDOC01-appb-C000001
    (但し、式中、n、mおよびlはモノマーのモル比を示す。また、n、mおよびlは整数を表し、n+m+l=100、n+m≦98、l≧2を示す。)
  3.  前記正極活物質(A)100質量部に対する前記樹脂バインダー(C)の含有量が0.2質量部以上、5.0質量部以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池の正極用スラリー。
  4.  前記正極活物質(A)100質量部に対する前記増粘分散剤(D)の含有量が0.2質量部以上、5.0質量部以下であることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池の正極用スラリー。
  5.  正極集電体と、前記正極集電体上に形成され、正極活物質を含む正極活物質層と、を備え、
     前記正極活物質層は、請求項1~4のいずれか1項に記載のリチウムイオン二次電池の正極用スラリーから形成されたことを特徴とするリチウムイオン二次電池用正極。
  6.  正極集電体と、前記正極集電体上に形成され、正極活物質を含む正極活物質層と、を備える正極の製造方法であって、
     前記正極集電体上に、請求項1~4のいずれか1項に記載のリチウムイオン二次電池の正極用スラリーを塗布して前記正極活物質層を形成する工程を有することを特徴とするリチウムイオン二次電池用正極の製造方法。
  7.  請求項5に記載のリチウムイオン二次電池用正極を備えたことを特徴とするリチウムイオン二次電池。
  8.  請求項1~4のいずれか1項に記載のリチウムイオン二次電池の正極用スラリーを調製する工程と、正極集電体上に、前記リチウムイオン二次電池の正極用スラリーを塗布して正極活物質層を形成し、リチウムイオン二次電池用正極を作製する工程と、前記リチウムイオン二次電池用正極を備えるリチウムイオン二次電池を組み立てる工程と、を有することを特徴とするリチウムイオン二次電池の製造方法。
PCT/JP2016/072780 2015-08-11 2016-08-03 リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法 WO2017026345A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187003175A KR102049679B1 (ko) 2015-08-11 2016-08-03 리튬 이온 이차 전지의 정극용 슬러리, 리튬 이온 이차 전지의 정극용 슬러리를 사용하여 얻어지는 리튬 이온 이차 전지용 정극 및 그 제조 방법, 및 리튬 이온 이차 전지용 정극을 구비한 리튬 이온 이차 전지 및 그 제조 방법
US15/750,860 US10811686B2 (en) 2015-08-11 2016-08-03 Slurry for positive electrode of lithium-ion secondary battery, positive electrode for lithium-ion secondary battery obtained using slurry for positive electrode of lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery provided with positive electrode for lithium-ion secondary battery and production method therefor
CN201680045963.0A CN107851802B (zh) 2015-08-11 2016-08-03 锂离子二次电池正极用浆料、正极、电池及其制造方法
JP2017534384A JP6774415B2 (ja) 2015-08-11 2016-08-03 リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法
EP16835042.9A EP3336940B1 (en) 2015-08-11 2016-08-03 Slurry for positive electrode of lithium-ion secondary battery, positive electrode for lithium-ion secondary battery obtained using slurry for positive electrode of lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery provided with positive electrode for lithium-ion secondary battery and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-158831 2015-08-11
JP2015158831 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017026345A1 true WO2017026345A1 (ja) 2017-02-16

Family

ID=57983140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072780 WO2017026345A1 (ja) 2015-08-11 2016-08-03 リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法

Country Status (6)

Country Link
US (1) US10811686B2 (ja)
EP (1) EP3336940B1 (ja)
JP (1) JP6774415B2 (ja)
KR (1) KR102049679B1 (ja)
CN (1) CN107851802B (ja)
WO (1) WO2017026345A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131710A1 (ja) * 2017-12-26 2019-07-04 昭和電工株式会社 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池
CN116741953A (zh) * 2022-03-10 2023-09-12 宁德时代新能源科技股份有限公司 正极活性材料、二次电池和用电装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7565539B2 (ja) * 2018-12-28 2024-10-11 パナソニックIpマネジメント株式会社 正極スラリー、正極、二次電池、および正極の製造方法
WO2022173819A1 (en) * 2021-02-09 2022-08-18 Zymergen Inc. Energy storage application electrolytes and electrode compositions comprising polyacrylates or polyacrylamides
FI20215233A1 (en) * 2021-03-03 2022-09-04 Kemira Oyj BINDER FORMULATION FOR A LITHIUM ION BATTERY CATHODE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134642A (en) * 1976-05-04 1977-11-11 Sumitomo Bakelite Co Ltd Material compositions for coating paper
WO2013114849A1 (ja) * 2012-02-02 2013-08-08 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
WO2014115802A1 (ja) * 2013-01-23 2014-07-31 昭和電工株式会社 リチウム二次電池電極用バインダーの製造方法及びリチウム二次電池電極用バインダー
JP2014143078A (ja) * 2013-01-24 2014-08-07 Denki Kagaku Kogyo Kk 電極用スラリー
JP2014154360A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 非水電解質二次電池および該電池用の集電体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240644A (en) * 1989-12-11 1993-08-31 Milliken Research Corporation Polyaniline dispersion and method for making same
EP0432929A3 (en) 1989-12-11 1991-08-21 Milliken Research Corporation Polyaniline dispersion and method for making same
JP3562197B2 (ja) 1997-02-26 2004-09-08 Jsr株式会社 水素吸蔵電極用バインダー
JP3966570B2 (ja) 1997-03-14 2007-08-29 株式会社クレハ 電池用バインダー溶液およびその製造方法
KR100644063B1 (ko) * 2003-06-03 2006-11-10 주식회사 엘지화학 분산제가 화학결합된 전극용 복합 바인더 중합체
JP2007234277A (ja) 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極およびその製造方法並びに非水電解質二次電池
JP5701519B2 (ja) 2010-05-19 2015-04-15 昭和電工株式会社 リチウムイオン二次電池電極用バインダー、これら電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池
JP2012012350A (ja) 2010-07-02 2012-01-19 Jsr Corp 電解質組成物
CN103370816A (zh) 2011-02-14 2013-10-23 昭和电工株式会社 使用电池电极用粘结剂获得的浆料、使用该浆料获得的电极和使用该电极获得的锂离子二次电池
JP5660112B2 (ja) 2012-04-27 2015-01-28 株式会社豊田自動織機 リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN104335400B (zh) 2012-08-10 2016-10-26 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物
CN103400990B (zh) 2013-07-31 2017-08-01 东莞新能源科技有限公司 一种锂离子电池负极材料用粘接剂及包含该粘接剂的电极的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134642A (en) * 1976-05-04 1977-11-11 Sumitomo Bakelite Co Ltd Material compositions for coating paper
WO2013114849A1 (ja) * 2012-02-02 2013-08-08 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
WO2014115802A1 (ja) * 2013-01-23 2014-07-31 昭和電工株式会社 リチウム二次電池電極用バインダーの製造方法及びリチウム二次電池電極用バインダー
JP2014143078A (ja) * 2013-01-24 2014-08-07 Denki Kagaku Kogyo Kk 電極用スラリー
JP2014154360A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 非水電解質二次電池および該電池用の集電体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131710A1 (ja) * 2017-12-26 2019-07-04 昭和電工株式会社 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池
CN111448691A (zh) * 2017-12-26 2020-07-24 昭和电工株式会社 非水系电池电极用粘合剂、非水系电池电极用浆料、非水系电池电极和非水系电池
JPWO2019131710A1 (ja) * 2017-12-26 2020-12-24 昭和電工株式会社 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池
JP7243968B2 (ja) 2017-12-26 2023-03-22 株式会社レゾナック 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池
US11764359B2 (en) 2017-12-26 2023-09-19 Resonac Corporation Binder including copolymer of styrene, (meth)acrylate, and surfactant having unsaturated bond, slurry having the same, nonaqueous battery electrode using the same, and nonaqueous battery using the same
CN116741953A (zh) * 2022-03-10 2023-09-12 宁德时代新能源科技股份有限公司 正极活性材料、二次电池和用电装置

Also Published As

Publication number Publication date
CN107851802A (zh) 2018-03-27
US10811686B2 (en) 2020-10-20
KR102049679B1 (ko) 2019-11-28
EP3336940B1 (en) 2020-02-19
JPWO2017026345A1 (ja) 2018-05-31
US20180233750A1 (en) 2018-08-16
EP3336940A1 (en) 2018-06-20
JP6774415B2 (ja) 2020-10-21
EP3336940A4 (en) 2019-03-20
CN107851802B (zh) 2020-10-30
KR20180023994A (ko) 2018-03-07

Similar Documents

Publication Publication Date Title
TWI683470B (zh) 鋰離子蓄電池之正極用糊料、使用該糊料而得之正極及其製造方法、使用該正極而成之鋰離子蓄電池及其製造方法
KR101654448B1 (ko) 이차 전지 전극용 바인더 수지 조성물, 이차 전지 전극용 슬러리, 이차 전지용 전극, 및 리튬 이온 이차 전지
US10403896B2 (en) Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
JP5967098B2 (ja) 導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
JP5381974B2 (ja) 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
JP2971451B1 (ja) リチウム二次電池
KR20140116075A (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP6398191B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP6922456B2 (ja) リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池
JP6774415B2 (ja) リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法
US10541423B2 (en) Electrode mixture layer composition for nonaqueous electrolyte secondary battery, manufacturing method thereof and use therefor
WO2016158939A1 (ja) 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
WO2017122540A1 (ja) 二次電池電極用水系バインダー組成物、二次電池電極用スラリー、バインダー、二次電池電極、および二次電池
JP2014146471A (ja) 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池
WO2015146648A1 (ja) リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、並びにこの正極を用いてなるリチウムイオン二次電池及びその製造方法
JP5899945B2 (ja) 二次電池用正極スラリーの製造方法、二次電池用正極の製造方法、およびリチウムイオン二次電池の製造方法
JP2018174150A (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
WO2018168520A1 (ja) 非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池用電極、及び非水電解質電池
WO2016199653A1 (ja) 非水系電池電極用バインダー用組成物、非水系電池電極用バインダー、非水系電池電極用組成物、非水系電池電極、及び非水系電池
JP2020077620A (ja) 電気化学素子用バインダー組成物
JP5835581B2 (ja) 蓄電デバイスの電極用バインダー組成物
WO2015119084A1 (ja) リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池、並びにリチウムイオン二次電池電極形成用組成物の製造方法
JPWO2014098233A1 (ja) エネルギーデバイス電極用バインダ樹脂材料、エネルギーデバイス電極及びエネルギーデバイス
JP2016076311A (ja) 電極用バインダー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534384

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187003175

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15750860

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE