[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012105112A1 - Dc/dcコンバータ - Google Patents

Dc/dcコンバータ Download PDF

Info

Publication number
WO2012105112A1
WO2012105112A1 PCT/JP2011/077017 JP2011077017W WO2012105112A1 WO 2012105112 A1 WO2012105112 A1 WO 2012105112A1 JP 2011077017 W JP2011077017 W JP 2011077017W WO 2012105112 A1 WO2012105112 A1 WO 2012105112A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
transformer
voltage
circuit
power
Prior art date
Application number
PCT/JP2011/077017
Other languages
English (en)
French (fr)
Inventor
村上 哲
山田 正樹
亮太 近藤
隆志 金山
和俊 粟根
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012555693A priority Critical patent/JPWO2012105112A1/ja
Priority to DE112011104839T priority patent/DE112011104839T5/de
Priority to US13/980,911 priority patent/US9065341B2/en
Priority to CN2011800665368A priority patent/CN103339844A/zh
Publication of WO2012105112A1 publication Critical patent/WO2012105112A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters

Definitions

  • the present invention relates to a DC / DC converter in which a primary side and a secondary side are insulated by a transformer, and particularly relates to suppression of a surge voltage generated during switching.
  • a conventional power converter includes an inverter, a high-frequency transformer, and a bidirectional switch, and rectifies positive and negative rectangular wave pulse trains boosted by the high-frequency transformer with a bidirectional switch to convert them into rectangular wave pulse trains of the same polarity.
  • Two or more series circuits of the power switch element AS1 and the capacitor C1 and a series circuit of the power switch element AS2 and the capacitor C2 opposite to the series circuit are connected to both ends of the output side of the high-frequency transformer, and the power switch element AS1.
  • AS2 operates in synchronization with the polarity of the output voltage of the high-frequency transformer, and the surge voltage generated in the output voltage of the transformer is clamped to the voltages of the capacitors C1 and C2 (see, for example, Patent Document 1).
  • the switching element In the conventional power converter, the switching element is operated in synchronization with the polarity of the output voltage of the transformer, and the surge current is stored in the capacitor. For this reason, switching control is required to suppress the surge voltage, and there is a limit to simplify the circuit configuration. In addition, since the discharge current from the capacitor flows to the transformer side, the use of stored surge energy is limited.
  • the present invention has been made to solve the above-described problems, and can suppress surge voltage generated on the secondary side of the transformer with an easy configuration and reliably use surge energy reliably.
  • An object is to provide a DC / DC converter.
  • a first DC / DC converter includes an inverter having a plurality of semiconductor switching elements and converting DC power into AC power, a transformer having a primary side connected to the AC output of the inverter, and a plurality of semiconductors And a rectifier circuit having an element and connected to the secondary side of the transformer, and DC / DC converts the input DC power and outputs it to the load.
  • a series circuit in which a resistor having one end connected to the positive electrode of the load and a capacitor having one end connected to the negative electrode of the load are connected in series, and an anode is connected to both ends of the secondary winding of the transformer, and a cathode Includes a snubber circuit having two diodes connected to a connection point between the resistor and the capacitor, and the snubber circuit suppresses a surge voltage generated on the secondary side of the transformer and reduces the power of the capacitor. It regenerates to the load through the resistor.
  • a second DC / DC converter includes an inverter having a plurality of semiconductor switching elements for converting DC power into AC power, a transformer having a primary side connected to the AC output of the inverter, A rectifier circuit having a semiconductor element and connected to the secondary side of the transformer, and DC / DC-converted input DC power and outputs the DC power to a load.
  • the anode is connected to both ends of the secondary winding of the transformer, the cathodes are connected to each other, and the connection point between the two diodes and the negative electrode of the load.
  • a snubber circuit having a semiconductor switching element having a diode connected in reverse parallel, a step-down chopper circuit composed of a diode and a reactor and connected between the capacitor and the load.
  • the snubber circuit suppresses a surge voltage generated on the secondary side of the transformer, and regenerates the power of the capacitor to the load via the step-down chopper circuit.
  • the surge voltage generated on the secondary side of the transformer is clamped to the voltage of the capacitor by the diode of the snubber circuit and stored in the capacitor. Therefore, the surge voltage can be suppressed with an easy circuit configuration without requiring switching control, and each element of the rectifier circuit can be protected from overvoltage. Further, since the surge energy stored in the capacitor is regenerated to the output side via a resistor, it can be used effectively without fail.
  • the surge voltage generated on the secondary side of the transformer is clamped to the voltage of the capacitor by the diode of the snubber circuit and stored in the capacitor. Therefore, the surge voltage can be suppressed with an easy circuit configuration without requiring switching control, and each element of the rectifier circuit can be protected from overvoltage. Further, since the surge energy stored in the capacitor is regenerated to the output side via the step-down chopper circuit, it can be used effectively without fail.
  • FIG. 5 is a current path diagram for explaining the operation of the DC / DC converter according to the first embodiment of the present invention.
  • FIG. 5 is a current path diagram for explaining the operation of the DC / DC converter according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a circuit configuration of a DC / DC converter according to Embodiment 1 of the present invention.
  • the DC / DC converter converts the voltage Vin of the DC power source 1 into a secondary DC voltage insulated by a transformer 3, and outputs the DC voltage Vout to a load 7 such as a battery.
  • the DC / DC converter is a semiconductor switching element Sa composed of an insulated transformer 3 and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) connected to the primary winding 3a of the transformer 3 and having a diode built in between the source and drain.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Sb, Sc, and Sd are configured as a full bridge, and are connected to a single-phase inverter 2 as an inverter that converts the DC voltage Vin of the DC power source 1 into an AC voltage, and a secondary winding 3b of the transformer 3, and a rectifier element (semiconductor And a rectifier circuit 4 having a full bridge configuration of diodes 4a to 4d as elements). Further, the output smoothing reactor 5 and the smoothing capacitor 6 are connected to the output of the rectifier circuit 4, and the DC voltage Vout is output to the load 7.
  • the DC / DC converter includes a snubber circuit 8 for suppressing a surge voltage generated on the secondary side of the transformer 3, and the snubber circuit 8 has anodes connected to both ends of the transformer secondary winding 3b.
  • Diodes 9a and 9b and a series circuit in which a capacitor 10 and a resistor 11 are connected in series are provided.
  • the cathodes of the two diodes 9 a and 9 b are connected to each other, and the connection point is connected to the connection point between the capacitor 10 and the resistor 11.
  • the other end of the resistor 11 is connected to the positive electrode of the smoothing capacitor 6 or the load 7, and the negative electrode of the capacitor 10, the smoothing capacitor 6 and the load 7 are connected to each other and connected to the anodes of the diodes 4b and 4d of the rectifier circuit 4.
  • a control circuit 20 is disposed outside the main circuit, and the input voltage Vin and the output voltage Vout are monitored and input to the control circuit 20.
  • the control circuit 20 outputs the gate signal 20a to the semiconductor switching elements Sa to Sd in the single-phase inverter 2 so that the output voltage Vout becomes the target voltage, and the semiconductor switching elements Sa to Sd are turned on (duty period).
  • the semiconductor switching elements Sa to Sd of the single-phase inverter 2 are not limited to MOSFETs but may be self-extinguishing semiconductor switching elements such as IGBTs (Insulated Gate Bipolar Transistors) in which diodes are connected in antiparallel.
  • FIG. 2 is a waveform diagram showing a gate signal to the semiconductor switching elements Sa and Sd, a gate signal to the semiconductor switching elements Sb and Sc, and a voltage generated on the transformer secondary side, which become the gate signal 20a.
  • the gate signal is High, each of the semiconductor switching elements Sa to Sd is turned on.
  • the single-phase inverter 2 alternately turns on the semiconductor switching elements Sa and Sd and turns on the semiconductor switching elements Sb and Sc at the same on duty (on period) tx alternately.
  • the power is transmitted from the secondary side to the secondary side, and voltage is generated on the secondary side of the transformer.
  • the semiconductor switching elements Sa and Sd are simultaneously turned on, a current flows through the path shown in FIG. 3, and when the semiconductor switching elements Sb and Sc are simultaneously turned on, a current flows through the path shown in FIG. 4 to transmit power to the transformer secondary side. Is done.
  • a dead time td is required to prevent an arm short circuit between the simultaneous ON of the semiconductor switching elements Sa and Sd and the simultaneous ON of the semiconductor switching elements Sb and Sc.
  • tx) is tx ⁇ T / 2 ⁇ td It becomes.
  • the output voltage Vout is expressed by the following equation using the input voltage Vin, on-duty (tx), and period T, where the winding ratio n of the transformer 3 is assumed.
  • Vout Vin ⁇ n ⁇ (2tx / T)
  • the on-duty (tx) is increased in a range of (T / 2 ⁇ td) or less, and when the output voltage Vout is decreased, the on-duty (tx) is decreased. .
  • the snubber circuit 8 is provided on the secondary side of the transformer 3 and suppresses a surge voltage generated in the transformer 3 at the time of commutation due to the leakage inductance of the transformer 3 and the inductance component of the circuit. As shown in FIG. A good waveform voltage is generated on the next side.
  • the voltage waveform when there is no surge suppression circuit such as the snubber circuit 8 is shown together as a comparative example. As shown in the figure, when there is no surge suppression circuit, the surge voltage is generated at the time when the voltage is generated in the secondary winding of the transformer 3, that is, when the transformer 3 is turned on.
  • the capacitor 10 When the DC / DC converter is activated, the capacitor 10 is initially charged through the resistor 11 with the voltage Vout smoothed by the reactor 5 and the smoothing capacitor 6. On the other hand, when the voltage of the capacitor 10 is lower than the secondary side voltage of the transformer 3, a current flows into the capacitor 10 from the transformer secondary winding 3b via the diodes 9a and 9b and is charged. When a surge voltage is generated in the secondary voltage of the transformer 3 and the voltage exceeds the voltage of the capacitor 10, a surge current flows into the capacitor 10 from the transformer secondary winding 3b via the diodes 9a and 9b. Is clamped to the voltage of the capacitor 10, and the surge current is charged to the capacitor 10. Actually, the secondary side voltage of the transformer 3 is a voltage obtained by adding the forward voltage of the diodes 9 a and 9 b to the voltage of the capacitor 10.
  • the capacitor 10 Since the capacitor 10 is initially charged from the output voltage Vout side via the resistor 11 when the DC / DC converter is activated, an excessive surge current does not flow when the transformer 3 is turned on. Further, when the voltage of the capacitor 10 rises due to charging of the surge current, the power of the capacitor 10 is regenerated to the smoothing capacitor 6 (or the load 7) via the resistor 11.
  • the secondary side of the transformer 3 includes the snubber circuit 8 including the diodes 9a and 9b, the capacitor 10, and the resistor 11, and when a surge voltage is generated, the transformer secondary A surge current flows from the winding 3b into the capacitor 10 via the diodes 9a and 9b. For this reason, the surge voltage generated on the secondary side of the transformer 3 is clamped and suppressed by the voltage of the capacitor 10, and it is possible to prevent the overvoltage from being applied to the diodes 4a to 4d of the rectifier circuit 4, thereby protecting the rectifier circuit 4. .
  • the diodes 9a and 9b are used without using a switching element as in the prior art, the surge voltage can be suppressed with an easy circuit configuration without requiring switching control, and each element of the rectifier circuit 4 can be protected. In addition, an excessive surge current does not flow in the diodes 9a and 9b, and a small-capacity element can be used. Furthermore, since the electric power stored in the capacitor 10 can be regenerated to the smoothing capacitor 6 (or the load 7) via the resistor 11, the surge energy generated by the surge voltage can be reliably regenerated to the load side and effectively used. The power conversion efficiency of the DC converter is improved. Moreover, the suppression effect of a surge voltage can be maintained in a high state by preventing the voltage rise of the capacitor 10.
  • FIG. 5 is a diagram showing a circuit configuration of a DC / DC converter according to Embodiment 2 of the present invention.
  • the snubber circuit 81 includes diodes 9a and 9b having anodes connected to both ends of the transformer secondary winding 3b, capacitors 10a and 10b, and resistors 11a and 11b in series. And two connected series circuits. The two series circuits are arranged in parallel, and the cathodes of the diodes 9a and 9b are individually connected to the connection points between the capacitors 10a and 10b and the resistors 11a and 11b.
  • the other ends of the resistors 11a and 11b are connected to the positive electrode of the smoothing capacitor 6 or the load 7.
  • the capacitors 10a and 10b, the smoothing capacitor 6 and the negative electrode of the load 7 are connected to each other, and the anodes of the diodes 4b and 4d of the rectifier circuit 4 are connected. Connected to.
  • the configuration other than the snubber circuit 81 is the same as that of the first embodiment.
  • the snubber circuit 81 is provided on the secondary side of the transformer 3 and is generated in the transformer 3 at the time of commutation due to the leakage inductance of the transformer 3 and the inductance component of the circuit. Suppresses surge voltage.
  • the surge current flowing through the diode 9a from the transformer secondary winding 3b flows into the capacitor 10a and the surge voltage is clamped to the voltage of the capacitor 10a, and the surge current flowing through the diode 9b flows into the capacitor 10b and flows into the surge voltage. Is clamped to the voltage of the capacitor 10b.
  • the surge voltage can be suppressed with an easy circuit configuration without requiring switching control, and the diodes 4a to 4d of the rectifier circuit 4 can be protected. Further, the surge energy stored in the capacitors 10a and 10b can be reliably regenerated to the load side through the resistors 11a and 11b and can be used effectively.
  • the surge energy generated on the secondary side of the transformer 3 is divided and stored by the two capacitors 10a and 10b for each half cycle, the voltage rise of each capacitor 10a and 10b is suppressed, and the surge The suppression capability can be improved, and power regeneration can be performed on the output side while suppressing loss in the resistors 11a and 11b.
  • FIG. 6 is a diagram showing a circuit configuration of a DC / DC converter according to Embodiment 3 of the present invention.
  • the snubber circuit 82 connects the connection point between the cathodes of the two diodes 9a and 9b to the connection point between the capacitor 10 and the resistor 11 via the MOSFET 12a that is a semiconductor switching element.
  • a diode 12b (in this case, a parasitic diode) is connected in antiparallel, and the drain is connected to the diodes 9a and 9b, and functions as a current blocking unit that blocks the forward current of the diodes 9a and 9b.
  • a self-extinguishing semiconductor switching element such as an IGBT may be used instead of the MOSFET 12a.
  • the voltage Va generated on the transformer secondary side is detected and input to the control circuit 20, and the control circuit 20 outputs the gate signal 20b based on the detected voltage Va to control the MOSFET 12a.
  • Other configurations are the same as those of the first embodiment.
  • the MOSFET 12a when the voltage Va generated on the secondary side of the transformer is lower than a predetermined voltage and the surge voltage is not affected by the breakdown voltage of the diodes 4a to 4d, the MOSFET 12a is turned off to turn on the diodes 9a and 9b. The current flowing through is cut off.
  • the MOSFET 12a When the surge voltage is large, the MOSFET 12a is turned on, and a surge current flows into the capacitor 10 from the transformer secondary winding 3b via the diodes 9a and 9b, and the secondary voltage of the transformer 3 is clamped to the voltage of the capacitor 10. At the same time, the surge current is charged in the capacitor 10.
  • the same effect as in the first embodiment can be obtained, and loss caused by the capacitor 10 and the resistor 11 can be reduced without causing the snubber circuit 82 to operate unnecessarily.
  • the voltage Va generated on the transformer secondary side is detected and the MOSFET 12a is controlled, there are cases where the current flowing through the secondary winding 3b is small or the input voltage Vin from the DC power source 1 is low. Even if a surge voltage is generated, the withstand voltage of the diodes 4a to 4d is not affected. Therefore, the current flowing through the secondary winding 3b and the input voltage Vin may be detected to turn off the MOSFET 12a.
  • a voltage detected for controlling the single-phase inverter 2 can be used as the input voltage Vin.
  • the MOSFET 12a is connected to the connection point between the cathodes of the two diodes 9a and 9b to cut off the current flowing through the diodes 9a and 9b.
  • the current cut-off means may have other configurations. The current may be cut off on the anode side of the diode.
  • this embodiment can also be applied to the above-described second embodiment.
  • two MOSFETs 12a each having a diode 12b connected in antiparallel are provided, and diodes 9a and 9b, capacitors 10a and 10b, and a resistor 11a are provided. , 11b.
  • FIG. 7 is a diagram showing a circuit configuration of a DC / DC converter according to Embodiment 4 of the present invention.
  • the snubber circuit 83 is a step-down chopper circuit 16 including a MOSFET 13a, a diode 14 and a reactor 15, which are semiconductor switching elements in which a diode 13b is connected in reverse parallel, instead of the resistor 11 in the first embodiment. Is provided.
  • the drain of the MOSFET 13a and the capacitor 10 are connected and connected to the connection point between the cathodes of the two diodes 9a and 9b.
  • the other end of the reactor 15 is connected to the positive electrode of the smoothing capacitor 6 or the load 7.
  • the capacitor 10, the anode of the diode 14, the negative electrode of the smoothing capacitor 6 and the load 7 are connected to each other, and the anodes of the diodes 4b and 4d of the rectifier circuit 4 are connected. Connected to.
  • the voltage Vc of the capacitor 10 and the current value i2 flowing through the reactor 15 are detected and input to the control circuit 20, and the control circuit 20 outputs the gate signal 20c based on the detected voltage Vc and current value i2 to step down the voltage.
  • the MOSFET 13a of the chopper circuit 16 is controlled.
  • a self-extinguishing semiconductor switching element such as an IGBT may be used instead of the MOSFET 12a.
  • Other configurations are the same as those of the first embodiment.
  • the voltage Vc of the capacitor 10 is controlled to the target voltage Vc * by the step-down chopper circuit 16. Control of the step-down chopper circuit 16 will be described below based on FIG.
  • a current command value i2 * is obtained by PI calculation using a difference between the preset target voltage Vc * and the detected voltage Vc of the capacitor 10 as a feedback amount 31.
  • a signal 33 obtained by PI calculation of a deviation 32 between the current command value i2 * and the detected current value i2 of the reactor 15 is determined by the determiner 34, and a gate signal 20c to the MOSFET 13a is generated by the PWM controller 35. And output.
  • the determiner 34 When the voltage Vc of the capacitor 10 is lower than the output voltage Vout, the determiner 34 turns off the MOSFET 13a, and when the voltage Vc of the capacitor 10 is equal to or higher than the output voltage Vout, the determiner 34 determines that the MOSFET 13a is PWM controlled to perform a step-down operation. .
  • the surge voltage generated on the secondary side of the transformer 3 is clamped and suppressed by the voltage of the capacitor 10, and an overvoltage is applied to the diodes 4a to 4d of the rectifier circuit 4. Can be prevented and the rectifier circuit 4 can be protected. Further, since the diodes 9a and 9b are used without using a switching element as in the prior art, the surge voltage can be suppressed with an easy circuit configuration without requiring switching control, and each element of the rectifier circuit 4 can be protected. In addition, an excessive surge current does not flow in the diodes 9a and 9b, and a small-capacity element can be used.
  • the electric power of the capacitor 10 can be regenerated to the smoothing capacitor 6 (or the load 7) via the step-down chopper circuit 16, the surge energy generated by the surge voltage can be reliably regenerated to the load side and used effectively. In this case, loss can be reduced as compared with the case where the resistor 11 is used, and effective use of surge energy can be promoted, and the power conversion efficiency of the DC / DC converter can be improved. Further, since the voltage Vc of the capacitor 10 is controlled by the step-down chopper circuit 16, the voltage increase of the capacitor 10 can be further suppressed, and the effect of suppressing the surge voltage can be enhanced.
  • FIG. 9 is a diagram showing a circuit configuration of a DC / DC converter according to Embodiment 5 of the present invention.
  • a single-phase inverter 2a which is a zero voltage switching circuit, is used as an inverter that converts a DC voltage Vin of the DC power supply 1 into an AC voltage.
  • This single-phase inverter 2a is a zero voltage switching circuit in which the voltage across the elements at the time of switching of each of the semiconductor switching elements Sa to Sd can be made substantially zero, and the capacitors 18a to 18d are connected in parallel to the respective semiconductor switching elements Sa to Sd. 18d is connected.
  • a resonant reactor 19 is connected to an AC output line between the semiconductor switching elements Sa to Sd and the transformer 3. Further, the control circuit 20 generates and outputs a gate signal 20a to the semiconductor switching elements Sa to Sd in the single-phase inverter 2a so that each of the semiconductor switching elements Sa to Sd performs zero voltage switching.
  • Other configurations are the same as those of the first embodiment.
  • a surge voltage is generated in the transformer 3 at the time of commutation due to the leakage inductance of the transformer 3 and the inductance component of the circuit.
  • the capacitors 18a to 18d and the resonant reactor 19 are provided on the primary side of the transformer.
  • the surge voltage is increased.
  • the snubber circuit 8 shown in the first embodiment is provided, the surge voltage can be suppressed with an easy circuit configuration without requiring switching control, each element of the rectifier circuit 4 can be protected, and the surge energy can be reliably ensured. It can be used effectively by regenerating to the load side.
  • the power conversion efficiency can be further improved and the reliability can be improved.
  • the one using the snubber circuit 8 of the first embodiment is shown, but the snubber circuits 81 to 83 of the second to fourth embodiments can be applied in the same manner, and the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 トランス(3)によって一次側と二次側とが絶縁されたDC/DCコンバータにおいて、トランス(3)の二次巻線両端にそれぞれアノードが接続されカソードが互いに接続された2つのダイオード(9a,9b)と、抵抗(11)とコンデンサ(10)とを直列接続した直列回路とを有し、ダイオードの(9a,9b)のカソードを、抵抗(11)とコンデンサ(10)との接続点に接続して構成されるスナバ回路(8)を備える。そして、トランス(3)の二次側に発生するサージ電圧をコンデンサ(10)の電圧でクランプし、コンデンサ(10)に蓄電されたサージエネルギを抵抗(11)を介して負荷7に回生することにより、トランス(3)の二次側に発生するサージ電圧を容易な構成で抑制すると共に、サージエネルギを確実に有効利用する。

Description

DC/DCコンバータ
 この発明は、トランスによって一次側と二次側とが絶縁されたDC/DCコンバータに関し、特にスイッチング時に発生するサージ電圧の抑制に関するものである。
 従来の電力変換装置は、インバータと、高周波トランスと、双方向スイッチとを備え、高周波トランスにより昇圧された正負の矩形波状パルス列を、双方向スイッチで整流し、同一極性の矩形波状パルス列に変換する。高周波トランスの出力側両端に、電力スイッチ素子AS1とコンデンサC1の直列回路と、該直列回路と逆向きの電力スイッチ素子AS2とコンデンサC2の直列回路と、を2つ以上接続し、電力スイッチ素子AS1、AS2が高周波トランスの出力電圧の極性に同期して動作し、トランスの出力電圧に発生するサージ電圧を、コンデンサC1、C2の電圧にクランプする(例えば、特許文献1参照)。
特開2007-215324号公報
 従来の電力変換装置では、スイッチング素子をトランスの出力電圧の極性に同期して動作させサージ電流をコンデンサに蓄電させていた。このため、サージ電圧の抑制にスイッチング制御が必要で回路構成を容易にするには限界があった。また、コンデンサからの放電電流はトランス側に流れるため、蓄電されたサージエネルギの利用も限られるものであった。
 この発明は、上記のような問題点を解消するために成されたものであって、トランスの二次側に発生するサージ電圧を容易な構成で抑制すると共に、サージエネルギを確実に有効利用できるDC/DCコンバータを提供することを目的とする。
 この発明に係る第1のDC/DCコンバータは、複数の半導体スイッチング素子を有して直流電力を交流電力に変換するインバータと、該インバータの交流出力に一次側が接続されたトランスと、複数の半導体素子を有し該トランスの二次側に接続された整流回路とを備えて、入力された直流電力をDC/DC変換して負荷に出力する。そして、一端が上記負荷の正極に接続された抵抗と一端が上記負荷の負極に接続されたコンデンサとを直列接続した直列回路、および上記トランスの二次巻線両端にそれぞれアノードが接続され、カソードが上記抵抗と上記コンデンサとの接続点に接続された2つのダイオードを有するスナバ回路を備え、上記スナバ回路は、上記トランスの二次側に発生するサージ電圧を抑制すると共に、上記コンデンサの電力を上記抵抗を介して上記負荷に回生するものである。
 またこの発明に係る第2のDC/DCコンバータは、複数の半導体スイッチング素子を有して直流電力を交流電力に変換するインバータと、該インバータの交流出力に一次側が接続されたトランスと、複数の半導体素子を有し該トランスの二次側に接続された整流回路とを備えて、入力された直流電力をDC/DC変換して負荷に出力する。このDC/DCコンバータは、上記トランスの二次巻線両端にそれぞれアノードが接続され、カソードが互いに接続された2つのダイオードと、該2つのダイオードの互いの接続点と上記負荷の負極との間に接続されたコンデンサと、ダイオードが逆並列接続された半導体スイッチング素子、ダイオードおよびリアクトルから成り上記コンデンサと上記負荷との間に接続された降圧チョッパ回路と、を有するスナバ回路を備える。そして、上記スナバ回路は、上記トランスの二次側に発生するサージ電圧を抑制すると共に、上記コンデンサの電力を上記降圧チョッパ回路を介して上記負荷に回生するものである。
 上記第1のDC/DCコンバータによると、トランスの二次側に発生するサージ電圧は、スナバ回路のダイオードによりコンデンサの電圧にクランプされ、該コンデンサに蓄電される。このため、スイッチング制御を要することなく容易な回路構成でサージ電圧を抑制し、整流回路の各素子を過電圧から保護することができる。また、コンデンサに蓄えられたサージエネルギは抵抗を介して出力側に回生されるため確実に有効利用できる。
 上記第1のDC/DCコンバータによると、トランスの二次側に発生するサージ電圧は、スナバ回路のダイオードによりコンデンサの電圧にクランプされ、該コンデンサに蓄電される。このため、スイッチング制御を要することなく容易な回路構成でサージ電圧を抑制し、整流回路の各素子を過電圧から保護することができる。また、コンデンサに蓄えられたサージエネルギは降圧チョッパ回路を介して出力側に回生されるため確実に有効利用できる。
この発明の実施の形態1によるDC/DCコンバータの構成図である。 この発明の実施の形態1によるDC/DCコンバータの動作を説明する各部の波形図である。 この発明の実施の形態1によるDC/DCコンバータの動作を説明する電流経路図である。 この発明の実施の形態1によるDC/DCコンバータの動作を説明する電流経路図である。 この発明の実施の形態2によるDC/DCコンバータの構成図である。 この発明の実施の形態3によるDC/DCコンバータの構成図である。 この発明の実施の形態4によるDC/DCコンバータの構成図である。 この発明の実施の形態4による降圧チョッパ回路の制御を示す制御ブロック図である。 この発明の実施の形態5によるDC/DCコンバータの構成図である。
実施の形態1.
 以下、この発明の実施の形態1について説明する。
 図1は、この発明の実施の形態1によるDC/DCコンバータの回路構成を示した図である。図1に示すように、DC/DCコンバータは、直流電源1の電圧Vinをトランス3で絶縁された二次側直流電圧に変換し、例えばバッテリ等の負荷7に直流電圧Voutを出力する。
 DC/DCコンバータは、絶縁されたトランス3と、トランス3の一次巻線3aに接続され、ソース・ドレイン間にダイオードが内蔵されたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)から成る半導体スイッチング素子Sa、Sb、Sc、Sdをフルブリッジ構成して、直流電源1の直流電圧Vinを交流電圧に変換するインバータとしての単相インバータ2と、トランス3の二次巻線3bに接続され、整流素子(半導体素子)としてのダイオード4a~4dをフルブリッジ構成した整流回路4とを備える。また、整流回路4の出力には出力平滑用のリアクトル5と平滑コンデンサ6が接続され、負荷7へ直流電圧Voutが出力される。
 また、DC/DCコンバータは、トランス3の二次側に発生するサージ電圧を抑制するためのスナバ回路8を備え、スナバ回路8は、トランス二次巻線3bの両端にそれぞれアノードが接続されるダイオード9a、9bと、コンデンサ10と抵抗11を直列接続した直列回路とを備える。2つのダイオード9a、9bのカソードは互いに接続され、その接続点は、コンデンサ10と抵抗11との接続点に接続される。抵抗11の他端は平滑コンデンサ6または負荷7の正極に接続され、コンデンサ10、平滑コンデンサ6および負荷7の負極は互いに接続され、整流回路4のダイオード4b、4dのアノードに接続される。
 更に、主回路の外部には制御回路20が配置され、入力電圧Vinおよび出力電圧Voutはそれぞれモニタされて制御回路20へ入力される。制御回路20は、出力電圧Voutが目標電圧になるように、単相インバータ2内の半導体スイッチング素子Sa~Sdへのゲート信号20aを出力し、半導体スイッチング素子Sa~SdのオンDuty(オン期間)を制御する。
 なお、単相インバータ2の半導体スイッチング素子Sa~Sdは、MOSFETに限らず、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)等の自己消弧型半導体スイッチング素子でもよい。
 このように構成されるDC/DCコンバータの動作について以下に説明する。
 図2は、ゲート信号20aとなる、半導体スイッチング素子Sa、Sdへのゲート信号および半導体スイッチング素子Sb、Scへのゲート信号と、トランス二次側に発生する電圧とを示す波形図である。なお、ゲート信号がHighのとき、各半導体スイッチング素子Sa~Sdはオンする。
 単相インバータ2は、半導体スイッチング素子Sa、Sdの同時オンと、半導体スイッチング素子Sb、Scの同時オンとを交互に同じオンDuty(オン期間)txで行い、この期間に、トランス3が一次側から二次側へ電力伝送しトランス二次側に電圧が発生する。半導体スイッチング素子Sa、Sdが同時オンすると、図3に示す経路で電流が流れ、半導体スイッチング素子Sb、Scが同時オンすると、図4に示す経路で電流が流れて、トランス二次側へ電力伝送される。
 半導体スイッチング素子Sa、Sdの同時オンと、半導体スイッチング素子Sb、Scの同時オンとの間には、アーム短絡を防止するためにデッドタイムtdを要するため、1周期をTとすると、オンDuty(tx)は、
 tx≦T/2―td
となる。
 また出力電圧Voutは、トランス3の巻線比nとすると、入力電圧Vin、オンDuty(tx)、周期Tを用いて次の式にて示される。
 Vout=Vin・n・(2tx/T)
 即ち、出力電圧Voutを増加させる場合はオンDuty(tx)を(T/2―td)以下の範囲で大きくし、出力電圧Voutを低下させる場合はオンDuty(tx)を小さくすることで制御できる。
 上記のように、半導体スイッチング素子Sa、Sdの同時オンと、半導体スイッチング素子Sb、Scの同時オンとを交互に繰り返すと、図3、図4に示すように電流は正負の向きが反転して流れる。スナバ回路8は、トランス3の二次側に設けられて、トランス3の漏洩インダクタンスや回路のインダクタンス成分により転流時にトランス3に発生するサージ電圧を抑制し、図2に示すように、トランス二次側には良好な波形の電圧が発生する。なお、スナバ回路8のようなサージ抑制回路のない場合の電圧波形を比較例として併せて図示した。図に示すようにサージ抑制回路のない場合は、サージ電圧はトランス3の二次巻線に電圧が発生する立ち上がり時、即ちトランス3がオンする際に発生している。
 スナバ回路8の動作の詳細について以下に説明する。
 DC/DCコンバータが起動すると、コンデンサ10は、リアクトル5と平滑コンデンサ6により平滑された電圧Voutで抵抗11を介して初期充電される。また、コンデンサ10の電圧がトランス3の二次側電圧よりも低いと、トランス二次巻線3bからダイオード9a、9bを介してコンデンサ10に電流が流入して充電される。
 トランス3の二次側電圧にサージ電圧が発生し、その電圧がコンデンサ10の電圧を超えると、トランス二次巻線3bからダイオード9a、9bを介してコンデンサ10にサージ電流が流入し、トランス3の二次側電圧はコンデンサ10の電圧にクランプされると共に、サージ電流はコンデンサ10に充電される。なお、実際にはトランス3の二次側電圧は、コンデンサ10の電圧にダイオード9a、9bの順方向電圧を加えた電圧となる。
 コンデンサ10は、DC/DCコンバータが起動すると、出力電圧Vout側から抵抗11を介して初期充電されているため、トランス3がオンする際に過大なサージ電流が流れることはない。
 また、サージ電流の充電によりコンデンサ10の電圧が上昇すると、コンデンサ10の電力は抵抗11を介して平滑コンデンサ6(または負荷7)に回生される。
 以上のように、この実施の形態では、トランス3の二次側に、ダイオード9a、9bと、コンデンサ10と、抵抗11とから成るスナバ回路8を備えて、サージ電圧が発生すると、トランス二次巻線3bからダイオード9a、9bを介してコンデンサ10にサージ電流が流入するようにした。このため、トランス3の二次側に発生するサージ電圧はコンデンサ10の電圧でクランプされて抑制され、整流回路4のダイオード4a~4dに過電圧が印加されるのが防止でき整流回路4が保護できる。また、従来のようにスイッチング素子を用いずダイオード9a、9bを用いているため、スイッチング制御を要することなく容易な回路構成でサージ電圧を抑制し、整流回路4の各素子を保護できる。またダイオード9a、9bには過大なサージ電流が流れることはなく、小容量な素子を用いることができる。
 さらに、コンデンサ10に蓄電された電力は抵抗11を介して平滑コンデンサ6(または負荷7)に回生できるため、サージ電圧により発生したサージエネルギを確実に負荷側に回生して有効利用でき、DC/DCコンバータの電力変換効率を向上させる。また、コンデンサ10の電圧上昇を防ぐことでサージ電圧の抑制効果を高い状態で持続できる。
実施の形態2.
 次に、この発明の実施の形態2について説明する。
 図5は、この発明の実施の形態2によるDC/DCコンバータの回路構成を示した図である。この実施の形態では、図5に示すように、スナバ回路81が、トランス二次巻線3bの両端にそれぞれアノードが接続されるダイオード9a、9bと、コンデンサ10a、10bと抵抗11a、11bを直列接続した2つの直列回路とを備える。2つの直列回路は並列に配置されて、コンデンサ10a、10bと抵抗11a、11bとの接続点に、各ダイオード9a、9bのカソードが個別に接続される。また、抵抗11a、11bの他端は平滑コンデンサ6または負荷7の正極に接続され、コンデンサ10a、10b、平滑コンデンサ6および負荷7の負極は互いに接続され、整流回路4のダイオード4b、4dのアノードに接続される。スナバ回路81以外の構成は、上記実施の形態1と同様である。
 この実施の形態においても、上記実施の形態1と同様に、スナバ回路81は、トランス3の二次側に設けられて、トランス3の漏洩インダクタンスや回路のインダクタンス成分により転流時にトランス3に発生するサージ電圧を抑制する。この場合、トランス二次巻線3bからダイオード9aを流れるサージ電流はコンデンサ10aに流入してサージ電圧がコンデンサ10aの電圧にクランプされ、またダイオード9bを流れるサージ電流はコンデンサ10bに流入してサージ電圧がコンデンサ10bの電圧にクランプされる。これにより上記実施の形態1と同様に、スイッチング制御を要することなく容易な回路構成でサージ電圧を抑制でき、整流回路4の各ダイオード4a~4dを保護できる。また、各コンデンサ10a、10bに蓄電されたサージエネルギは、抵抗11a、11bを介して確実に負荷側に回生して有効利用できる。
 この実施の形態では、トランス3の二次側に発生するサージエネルギを半周期分ずつ2つのコンデンサ10a、10bで分担して蓄電するため、各コンデンサ10a、10bの電圧上昇が抑えられて、サージ抑制能力を向上させることができ、また抵抗11a、11bでの損失を抑えて出力側に電力回生できる。
実施の形態3.
 次に、この発明の実施の形態3について説明する。
 図6は、この発明の実施の形態3によるDC/DCコンバータの回路構成を示した図である。図6に示すように、スナバ回路82は、2つのダイオード9a、9bのカソード同士の接続点を、半導体スイッチング素子であるMOSFET12aを介して、コンデンサ10と抵抗11との接続点に接続する。MOSFET12aは、ダイオード12b(この場合、寄生ダイオード)が逆並列接続され、ドレインがダイオード9a、9b側に接続され、ダイオード9a、9bの順方向電流を遮断する電流遮断手段として機能する。MOSFET12aの代わりにIGBT等の自己消弧型半導体スイッチング素子を用いても良い。
 また、トランス二次側に発生する電圧Vaを検出して制御回路20へ入力し、制御回路20は、検出された電圧Vaに基づいてゲート信号20bを出力しMOSFET12aを制御する。
 その他の構成は、上記実施の形態1と同様である。
 この実施の形態では、トランス二次側に発生する電圧Vaが所定電圧より低く、サージ電圧が発生してもダイオード4a~4dの耐圧に影響がない場合は、MOSFET12aをオフしてダイオード9a、9bを流れる電流を遮断する。サージ電圧が大きい場合はMOSFET12aをオンしてトランス二次巻線3bからダイオード9a、9bを介してコンデンサ10にサージ電流が流入し、トランス3の二次側電圧はコンデンサ10の電圧にクランプされると共に、サージ電流はコンデンサ10に充電される。これにより、上記実施の形態1と同様の効果が得られると共に、スナバ回路82を不要に動作させずコンデンサ10や抵抗11で生じる損失を低減できる。
 なお、トランス二次側に発生する電圧Vaを検出してMOSFET12aを制御するものを示したが、二次巻線3bを流れる電流が小さい場合や、直流電源1からの入力電圧Vinが低い場合も、サージ電圧が発生してもダイオード4a~4dの耐圧に影響がないため、二次巻線3bを流れる電流や、入力電圧Vinを検出してMOSFET12aをオフしても良い。なお、入力電圧Vinは、単相インバータ2を制御するために検出されたものを用いることができる。
 さらに、上記実施の形態では、MOSFET12aを2つのダイオード9a、9bのカソード同士の接続点に接続してダイオード9a、9bを流れる電流を遮断したが、電流遮断手段はこれ以外の構成であっても良く、ダイオードのアノード側で電流を遮断するものでも良い。
 さらにまた、この実施の形態は、上記実施の形態2にも適用でき、その場合、ダイオード12bが逆並列接続されたMOSFET12aを2個備え、それぞれダイオード9a、9bと、コンデンサ10a、10bおよび抵抗11a、11bとの間に接続する。
実施の形態4.
 次に、この発明の実施の形態4について説明する。
 図7は、この発明の実施の形態4によるDC/DCコンバータの回路構成を示した図である。図7に示すように、スナバ回路83は、上記実施の形態1における抵抗11の代わりに、ダイオード13bが逆並列接続された半導体スイッチング素子であるMOSFET13a、ダイオード14およびリアクトル15から成る降圧チョッパ回路16を備える。MOSFET13aのドレインとコンデンサ10とが接続され、2つのダイオード9a、9bのカソード同士の接続点に接続される。またリアクトル15の他端は平滑コンデンサ6または負荷7の正極に接続され、コンデンサ10、ダイオード14のアノード、平滑コンデンサ6および負荷7の負極は互いに接続され、整流回路4のダイオード4b、4dのアノードに接続される。
 また、コンデンサ10の電圧Vcおよびリアクトル15を流れる電流値i2を検出して制御回路20へ入力し、制御回路20は、検出された電圧Vc、電流値i2に基づいてゲート信号20cを出力し降圧チョッパ回路16のMOSFET13aを制御する。MOSFET12aの代わりにIGBT等の自己消弧型半導体スイッチング素子を用いても良い。
 その他の構成は、上記実施の形態1と同様である。
 この実施の形態では、上記実施の形態1と同様に、トランス3の二次側電圧にサージ電圧が発生し、その電圧がコンデンサ10の電圧を超えると、トランス二次巻線3bからダイオード9a、9bを介してコンデンサ10にサージ電流が流入し、トランス3の二次側電圧はコンデンサ10の電圧にクランプされると共に、サージ電流はコンデンサ10に充電される。
 そして、コンデンサ10の電圧Vcは、降圧チョッパ回路16により目標電圧Vcに制御される。降圧チョッパ回路16の制御について、図8に基づいて以下に説明する。
 予め設定された目標電圧Vcと検出されたコンデンサ10の電圧Vcとの差分をフィードバック量31としてPI演算して電流指令値i2を求める。この電流指令値i2と検出されたリアクトル15の電流値i2との偏差32をPI演算した信号33を、判定器34にて判定し、PWM制御器35にてMOSFET13aへのゲート信号20cを生成して出力する。
 判定器34は、コンデンサ10の電圧Vcが出力電圧Voutより低い場合は、MOSFET13aをオフさせ、コンデンサ10の電圧Vcが出力電圧Vout以上の場合にMOSFET13aをPWM制御して降圧動作するように判定する。
 この実施の形態では、上記実施の形態1と同様に、トランス3の二次側に発生するサージ電圧はコンデンサ10の電圧でクランプされて抑制され、整流回路4のダイオード4a~4dに過電圧が印加されるのが防止でき整流回路4が保護できる。また、従来のようにスイッチング素子を用いずダイオード9a、9bを用いているため、スイッチング制御を要することなく容易な回路構成でサージ電圧を抑制し、整流回路4の各素子を保護できる。またダイオード9a、9bには過大なサージ電流が流れることはなく、小容量な素子を用いることができる。
 さらに、コンデンサ10の電力は降圧チョッパ回路16を介して平滑コンデンサ6(または負荷7)に回生できるため、サージ電圧により発生したサージエネルギを確実に負荷側に回生して有効利用できる。この場合、抵抗11を用いた場合よりも損失が低減してサージエネルギの有効利用が促進でき、DC/DCコンバータの電力変換効率の向上が図れる。また、コンデンサ10の電圧Vcを降圧チョッパ回路16により制御するため、コンデンサ10の電圧上昇がより抑制でき、サージ電圧の抑制効果を高めることができる。
実施の形態5.
 次に、この発明の実施の形態5について説明する。
 図9は、この発明の実施の形態5によるDC/DCコンバータの回路構成を示した図である。図9に示すように、直流電源1の直流電圧Vinを交流電圧に変換するインバータとして、ゼロ電圧スイッチング回路である単相インバータ2aを用いる。
 この単相インバータ2aは、各半導体スイッチング素子Sa~Sdのスイッチング時の素子の両端電圧がほぼ零電圧にできるゼロ電圧スイッチング回路であり、各半導体スイッチング素子Sa~Sdにはそれぞれ並列にコンデンサ18a~18dが接続される。また、半導体スイッチング素子Sa~Sdとトランス3との間の交流出力線には共振リアクトル19が接続される。
 また、制御回路20は、単相インバータ2a内の半導体スイッチング素子Sa~Sdへのゲート信号20aを、各半導体スイッチング素子Sa~Sdがゼロ電圧スイッチングとなるように生成して出力する。その他の構成は、上記実施の形態1と同様である。
 上述したように、トランス3の漏洩インダクタンスや回路のインダクタンス成分により転流時にトランス3にサージ電圧が発生するものであり、単相インバータ2aでは、トランス一次側にコンデンサ18a~18dおよび共振リアクトル19を備え、サージ電圧が大きくなる。この場合、上記実施の形態1で示したスナバ回路8を備えたため、スイッチング制御を要することなく容易な回路構成でサージ電圧を抑制し、整流回路4の各素子を保護できると共に、サージエネルギを確実に負荷側に回生して有効利用できる。このように、スイッチング損失を殆ど0にしたゼロ電圧スイッチング回路に、スナバ回路8を用いることにより、より電力変換効率を高め、信頼性も向上できる。
 なお、この場合、上記実施の形態1のスナバ回路8を用いたものを示したが、上記実施の形態2~4のスナバ回路81~83も同様に適用でき、同様の効果が得られる。
 なお、この発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (9)

  1.  複数の半導体スイッチング素子を有して直流電力を交流電力に変換するインバータと、該インバータの交流出力に一次側が接続されたトランスと、複数の半導体素子を有し該トランスの二次側に接続された整流回路とを備えて、入力された直流電力をDC/DC変換して負荷に出力するDC/DCコンバータにおいて、
     一端が上記負荷の正極に接続された抵抗と一端が上記負荷の負極に接続されたコンデンサとを直列接続した直列回路、および上記トランスの二次巻線両端にそれぞれアノードが接続され、カソードが上記抵抗と上記コンデンサとの接続点に接続された2つのダイオードを有するスナバ回路を備え、
     上記スナバ回路は、上記トランスの二次側に発生するサージ電圧を抑制すると共に、上記コンデンサの電力を上記抵抗を介して上記負荷に回生するDC/DCコンバータ。
  2.  上記2つのダイオードのカソードが互いに接続されて、その接続点が上記抵抗と上記コンデンサとの接続点に接続された請求項1に記載のDC/DCコンバータ。
  3.  2つの上記直列回路を並列に備えて、該各直列回路が上記各ダイオードのカソードに個別に接続された請求項1に記載のDC/DCコンバータ。
  4.  上記インバータの入力電圧、上記トランスの電圧または電流のいずれか1つの値を検出する手段と、上記スナバ回路の上記各ダイオードの順方向電流を遮断する電流遮断手段とを備え、上記検出された値に基づいて上記各ダイオードの順方向電流を遮断する請求項1から請求項3のいずれか1項に記載のDC/DCコンバータ。
  5.  ダイオードが逆並列接続された半導体スイッチング素子を、上記各ダイオードのカソードと上記直列回路の上記接続点との間に接続して上記電流遮断手段を構成する請求項4に記載のDC/DCコンバータ。
  6.  上記インバータは、上記各半導体スイッチング素子にそれぞれ並列接続されたコンデンサと、交流出力線に接続されたリアクトルとを備え、上記各半導体スイッチング素子は零電圧スイッチングにて動作する請求項1から請求項5のいずれか1項に記載のDC/DCコンバータ。
  7.  複数の半導体スイッチング素子を有して直流電力を交流電力に変換するインバータと、該インバータの交流出力に一次側が接続されたトランスと、複数の半導体素子を有し該トランスの二次側に接続された整流回路とを備えて、入力された直流電力をDC/DC変換して負荷に出力するDC/DCコンバータにおいて、
      上記トランスの二次巻線両端にそれぞれアノードが接続され、カソードが互いに接続された2つのダイオードと、
      該2つのダイオードの互いの接続点と上記負荷の負極との間に接続されたコンデンサと、
      ダイオードが逆並列接続された半導体スイッチング素子、ダイオードおよびリアクトルから成り上記コンデンサと上記負荷との間に接続された降圧チョッパ回路と、
     を有するスナバ回路を備え、
     上記スナバ回路は、上記トランスの二次側に発生するサージ電圧を抑制すると共に、上記コンデンサの電力を上記降圧チョッパ回路を介して上記負荷に回生するDC/DCコンバータ。
  8.  上記コンデンサの電圧を検出する手段を有し、該コンデンサの電圧が所定の電圧になるように上記降圧チョッパ回路が動作する請求項7に記載のDC/DCコンバータ。
  9.  上記インバータは、上記各半導体スイッチング素子にそれぞれ並列接続されたコンデンサと、交流出力線に接続されたリアクトルとを備え、上記各半導体スイッチング素子は零電圧スイッチングにて動作する請求項7または請求項8に記載のDC/DCコンバータ。
PCT/JP2011/077017 2011-02-04 2011-11-24 Dc/dcコンバータ WO2012105112A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012555693A JPWO2012105112A1 (ja) 2011-02-04 2011-11-24 Dc/dcコンバータ
DE112011104839T DE112011104839T5 (de) 2011-02-04 2011-11-24 DC-DC-Wandler
US13/980,911 US9065341B2 (en) 2011-02-04 2011-11-24 DC-DC converter
CN2011800665368A CN103339844A (zh) 2011-02-04 2011-11-24 Dc/dc转换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-022270 2011-02-04
JP2011022270 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105112A1 true WO2012105112A1 (ja) 2012-08-09

Family

ID=46602344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077017 WO2012105112A1 (ja) 2011-02-04 2011-11-24 Dc/dcコンバータ

Country Status (5)

Country Link
US (1) US9065341B2 (ja)
JP (1) JPWO2012105112A1 (ja)
CN (1) CN103339844A (ja)
DE (1) DE112011104839T5 (ja)
WO (1) WO2012105112A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843038A (zh) * 2012-08-29 2012-12-26 江苏兆伏新能源有限公司 Dc/dc变换装置
JP2014138427A (ja) * 2013-01-15 2014-07-28 Mitsubishi Electric Corp Dc/dcコンバータ
JP2017042001A (ja) * 2015-08-21 2017-02-23 矢崎総業株式会社 電源装置
JP2018082527A (ja) * 2016-11-14 2018-05-24 矢崎総業株式会社 スイッチング電源装置
JP2019080472A (ja) * 2017-10-27 2019-05-23 株式会社三社電機製作所 直流電源装置
JP2022011003A (ja) * 2020-06-29 2022-01-17 シャープ株式会社 電力回生スナバ回路および電源装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461546B2 (en) 2013-02-08 2016-10-04 Advanced Charging Technologies, LLC Power device and method for delivering power to electronic devices
DE112013007233T5 (de) * 2013-07-11 2016-04-07 Mitsubishi Electric Corporation DC/DC-Umsetzer
US10277139B2 (en) * 2014-05-14 2019-04-30 Mitsubishi Electric Corporation Power conversion device which detects power shortage and switches to a power supply that is capable of supplying power
JP2016123258A (ja) * 2014-06-02 2016-07-07 パナソニックIpマネジメント株式会社 スイッチング電源、および、充電装置
JP6217655B2 (ja) * 2015-01-15 2017-10-25 トヨタ自動車株式会社 電力変換装置
US9543072B2 (en) 2015-03-18 2017-01-10 3M Innovative Properties Company Inductive power harvester with power limiting capability
EP4096085A1 (en) * 2015-03-24 2022-11-30 Mitsubishi Electric Corporation Power conversion device
KR101704181B1 (ko) * 2015-04-02 2017-02-07 현대자동차주식회사 차량용 충전기
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
DE102016200662A1 (de) * 2016-01-20 2017-07-20 Robert Bosch Gmbh Bidirektionaler DC/DC-Wandler und Verfahren zum Laden des Zwischenkreiskondensators eines DC/DC-Wandlers aus der Niedervoltbatterie
JP6218996B1 (ja) * 2016-01-29 2017-10-25 三菱電機株式会社 電力変換装置
DE112017003632T5 (de) * 2016-07-19 2019-04-11 Mitsubishi Electric Corporation Dc/dc-umrichter
JP7110194B2 (ja) * 2016-12-01 2022-08-01 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド エアロゾル送達装置用の再充電可能なリチウムイオンキャパシタ
RU2658653C1 (ru) * 2017-06-07 2018-06-22 Открытое Акционерное Общество "Российские Железные Дороги" Способ снижения коммутационных перенапряжений и использование их энергии для питания другого электрооборудования
US10277140B2 (en) 2017-08-31 2019-04-30 Google Llc High-bandwith resonant power converters
US10298138B2 (en) 2017-08-31 2019-05-21 Google Llc Programmable power adapter
JP2019187004A (ja) * 2018-04-04 2019-10-24 矢崎総業株式会社 スイッチング電源装置
JP6823634B2 (ja) 2018-11-14 2021-02-03 矢崎総業株式会社 電源装置
DE102019002098A1 (de) * 2019-03-23 2020-09-24 Leopold Kostal Gmbh & Co. Kg Spannungswandler für Gleichstrom
TWI784867B (zh) * 2022-01-13 2022-11-21 宏碁股份有限公司 抑制高頻解耦失真的全橋諧振轉換器
TWI819586B (zh) * 2022-04-29 2023-10-21 亞源科技股份有限公司 具電壓箝制之全橋相移轉換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236165A (ja) * 1991-01-11 1992-08-25 Fuji Electric Co Ltd ロスレス・スイッチングスナバ回路
JPH09224374A (ja) * 1995-12-02 1997-08-26 Korea Electrotechnol Inst 循環電流低減型の高周波ソフトスイッチング・パルス幅変調フルブリッジdc/dcコンバータ
JP2005168266A (ja) * 2003-12-05 2005-06-23 Ube Machinery Corporation Ltd 直流電力変換装置
JP2008043092A (ja) * 2006-08-08 2008-02-21 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2010088283A (ja) * 2008-09-05 2010-04-15 Fuji Electric Systems Co Ltd スナバ回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130203B2 (en) 2002-04-30 2006-10-31 Det International Holding Limited Switching power supply with a snubber circuit
JP4067367B2 (ja) * 2002-09-09 2008-03-26 シャープ株式会社 負荷制御装置
CN100369371C (zh) * 2002-09-21 2008-02-13 中兴通讯股份有限公司 一种抑制二极管反向尖峰电压的电路
JP4326264B2 (ja) * 2003-06-06 2009-09-02 新電元工業株式会社 スイッチングコンバータ
CN1222777C (zh) * 2003-08-15 2005-10-12 艾默生网络能源有限公司 电流互感采样电路及其复位方法
CN100337392C (zh) 2003-12-26 2007-09-12 台达电子工业股份有限公司 具有电压钳位电路的直流/直流变换器
JP4764980B2 (ja) * 2005-06-14 2011-09-07 富士電機株式会社 直流−直流変換装置
JP2007215324A (ja) 2006-02-09 2007-08-23 Ebara Densan Ltd サージ電圧抑制回路
TWM329290U (en) * 2007-10-09 2008-03-21 Hipro Electronics Taiwan Co Ltd Single stage power factor calibrating circuitry
CN102332835B (zh) * 2010-07-12 2013-12-04 台达电子工业股份有限公司 电源供应电路的放电回路及其有源控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236165A (ja) * 1991-01-11 1992-08-25 Fuji Electric Co Ltd ロスレス・スイッチングスナバ回路
JPH09224374A (ja) * 1995-12-02 1997-08-26 Korea Electrotechnol Inst 循環電流低減型の高周波ソフトスイッチング・パルス幅変調フルブリッジdc/dcコンバータ
JP2005168266A (ja) * 2003-12-05 2005-06-23 Ube Machinery Corporation Ltd 直流電力変換装置
JP2008043092A (ja) * 2006-08-08 2008-02-21 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2010088283A (ja) * 2008-09-05 2010-04-15 Fuji Electric Systems Co Ltd スナバ回路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843038A (zh) * 2012-08-29 2012-12-26 江苏兆伏新能源有限公司 Dc/dc变换装置
JP2014138427A (ja) * 2013-01-15 2014-07-28 Mitsubishi Electric Corp Dc/dcコンバータ
JP2017042001A (ja) * 2015-08-21 2017-02-23 矢崎総業株式会社 電源装置
JP2018082527A (ja) * 2016-11-14 2018-05-24 矢崎総業株式会社 スイッチング電源装置
JP2019080472A (ja) * 2017-10-27 2019-05-23 株式会社三社電機製作所 直流電源装置
JP2022011003A (ja) * 2020-06-29 2022-01-17 シャープ株式会社 電力回生スナバ回路および電源装置
JP7301794B2 (ja) 2020-06-29 2023-07-03 シャープ株式会社 電力回生スナバ回路および電源装置

Also Published As

Publication number Publication date
JPWO2012105112A1 (ja) 2014-07-03
US9065341B2 (en) 2015-06-23
CN103339844A (zh) 2013-10-02
DE112011104839T5 (de) 2013-11-07
US20130301304A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
WO2012105112A1 (ja) Dc/dcコンバータ
JP5590124B2 (ja) Dc−dcコンバータ
JP5538658B2 (ja) 電力変換装置
WO2015004989A1 (ja) 双方向dc/dcコンバータ
WO2012067167A1 (ja) 交流-交流変換装置
JP2008109775A (ja) Dc−dcコンバータおよびその制御方法
JP6201586B2 (ja) Dc/dcコンバータ
JP2013031307A (ja) 電流型絶縁コンバータ
JP2013074767A (ja) Dc/dcコンバータ
JP5687373B1 (ja) Dc/dcコンバータ
JP2012005265A (ja) Dcdcコンバータ
JP2013085347A (ja) 交流直流変換器
JP5554591B2 (ja) 電源装置
JP5831275B2 (ja) 電力変換装置及びその駆動方法
JP6467524B2 (ja) 電力変換装置および鉄道車両
JP2015042080A (ja) スイッチング電源装置
JP7106799B2 (ja) 溶接電源装置
JP6458235B2 (ja) スイッチング電源装置
JP2017169256A (ja) Dc−dcコンバータ装置
JP5930978B2 (ja) Dc/dcコンバータ
JP6502158B2 (ja) スイッチング電源装置
WO2011161728A1 (ja) スイッチング電源装置およびこれを用いた電源システム、電子装置
JP4764980B2 (ja) 直流−直流変換装置
JP6444204B2 (ja) 電力変換装置
JP5962717B2 (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980911

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111048394

Country of ref document: DE

Ref document number: 112011104839

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857796

Country of ref document: EP

Kind code of ref document: A1