[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012160781A1 - GaAs単結晶の製造方法およびGaAs単結晶ウェハ - Google Patents

GaAs単結晶の製造方法およびGaAs単結晶ウェハ Download PDF

Info

Publication number
WO2012160781A1
WO2012160781A1 PCT/JP2012/003204 JP2012003204W WO2012160781A1 WO 2012160781 A1 WO2012160781 A1 WO 2012160781A1 JP 2012003204 W JP2012003204 W JP 2012003204W WO 2012160781 A1 WO2012160781 A1 WO 2012160781A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
gaas
raw material
gaas single
concentration
Prior art date
Application number
PCT/JP2012/003204
Other languages
English (en)
French (fr)
Inventor
良一 中村
元一 村上
岳広 宮地
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to DE112012002217.3T priority Critical patent/DE112012002217B4/de
Priority to KR1020137034356A priority patent/KR101857612B1/ko
Priority to CN201280036835.1A priority patent/CN103703172B/zh
Priority to US14/122,042 priority patent/US9469916B2/en
Priority to SG2013087192A priority patent/SG195154A1/en
Publication of WO2012160781A1 publication Critical patent/WO2012160781A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/006Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Definitions

  • the present invention relates to a method for producing a GaAs single crystal by a vertical boat method and a GaAs single crystal wafer, and more particularly to a method for producing a GaAs single crystal having a high carrier concentration and high crystallinity, and a GaAs single crystal wafer. .
  • a GaAs single crystal wafer which is a material of a GaAs (gallium arsenide) device, is manufactured by cutting (slicing) a GaAs single crystal ingot onto a wafer having a thickness of several hundreds ⁇ m and performing a polishing process or the like.
  • a Si-doped n-type GaAs single crystal wafer doped with silicon (Si) as an impurity is used as a substrate for a laser such as a DVD or a substrate for a light emitting element such as a light emitting diode (LED).
  • a vertical boat method such as a vertical temperature gradient method (VGF method) or a vertical Bridgman method (VB method) is known.
  • VFG method vertical temperature gradient method
  • VB method vertical Bridgman method
  • a seed crystal is arranged at the bottom of a crucible, and a single crystal raw material melt and a sealant liquid are arranged above the seed crystal to cool the crucible from a predetermined temperature distribution.
  • the crystal grows upward from the lower part of the raw material melt.
  • the vertical temperature gradient method VVF method
  • the temperature itself is lowered
  • the vertical Bridgman method the crucible is relatively moved within a predetermined temperature distribution.
  • B 2 O 3 boron oxide
  • B 2 O 3 boron oxide
  • an oxidation-reduction reaction according to the following reaction formula occurs at the interface between the GaAs melt and liquid B 2 O 3 during crystal growth.
  • 3Si (in Melt) + 2B 2 O 3 3SiO 2 (into B 2 O 3 ) + 4B (in Melt) (1)
  • the reaction formula (1) reaches an almost equilibrium state at the start of single crystal growth, and it is considered that the concentration of Si into the GaAs melt is caused by the segregation phenomenon due to normal freezing during the single crystal growth.
  • Patent Document 1 discloses a technique for promoting crystal growth in a state where the balance of the above reaction formula (1) is set to the left side by using a sealing agent in which silicon oxide is added in advance in B 2 O 3. Are listed.
  • Patent Document 2 describes a technique of stirring a liquid sealing agent during crystal growth in order to produce a Si-doped GaAs single crystal having a uniform carrier concentration distribution.
  • the crystal is grown upward from the lower part of the raw material melt, so that impurities not taken into the crystal are concentrated in the melt.
  • the dopant Si added to the GaAs melt to increase the carrier concentration that is, Si crystal added together with the GaAs raw material
  • the equilibrium of the reaction formula (1) proceeds to the right side, and GaAs Since a large amount of boron (B) moves into the melt, generation of boron arsenide progresses as crystal growth progresses and impurity concentration progresses, and high crystallinity cannot be obtained. That is, in a GaAs single crystal, the carrier concentration and crystallinity are in a trade-off relationship.
  • n-type conductive GaAs wafers that are frequently used have a carrier concentration of 1 ⁇ 10 18 to 2 ⁇ 10 18 cm ⁇ 3 , but in recent years, carriers higher than 2 ⁇ 10 18 cm ⁇ 3 have been used. There is also a growing need for high carrier concentration GaAs wafers with high concentrations.
  • the inventors added an amount of Si necessary for obtaining a carrier concentration higher than 2 ⁇ 10 18 cm ⁇ 3 to the melt, and formed a Si-doped GaAs single crystal by the methods of Patent Document 1 and Patent Document 2.
  • Manufactured Even if a region having a carrier concentration higher than 2 ⁇ 10 18 cm ⁇ 3 is obtained in the latter half of the crystal growth, with the addition of Si, the B concentration in the ingot becomes too high, and the crystallinity deteriorates as described above.
  • the etch pit density (EPD) of a wafer having a carrier concentration higher than 2 ⁇ 10 18 cm ⁇ 3 obtained from the ingot is high. That is, it has been found that the techniques of Patent Document 1 and Patent Document 2 cannot achieve the relationship between Si concentration and boron concentration (relationship between carrier concentration and crystallinity) at the level currently required.
  • an object of the present invention is to provide a method for producing a GaAs single crystal having a high carrier concentration and high crystallinity, and a GaAs single crystal wafer.
  • Impurity hardening is also called solid solution hardening, and is a phenomenon in which the strength increases when impurity atoms are dissolved in a material as a substitution type or an interstitial type.
  • the impurity effect has an effect of lowering the dislocation by the interaction between the solid solution atom and the dislocation.
  • GaAs is known to have a large impurity hardening effect due to Si.
  • the B concentration in the GaAs single crystal is set to 1.9 ⁇ . It has been found that the amount of impurities may be controlled so as to be in the range of 10 18 to 6 ⁇ 10 18 cm ⁇ 3 .
  • the gist of the present invention is as follows. (1) It is characterized in that a GaAs single crystal is grown by performing a vertical boat method in a state where a seed crystal, an Si raw material that becomes an impurity, a GaAs raw material, solid silicon dioxide, and a boron oxide raw material are contained in a crucible. A method for producing a GaAs single crystal.
  • SiO 2 is added in advance to the boron oxide raw material,
  • the total amount of Si in SiO 2 in the boron oxide raw material and the amount of Si in the solid silicon dioxide exceeds 5% by mass with respect to the mass of the boron oxide raw material. Production method.
  • a Si-doped GaAs single crystal wafer having a carrier concentration higher than 2 ⁇ 10 18 cm ⁇ 3 and a maximum etch pit density of 500 cm ⁇ 2 or less.
  • a high carrier is obtained by placing solid silicon dioxide between a GaAs raw material and a boron oxide raw material serving as a sealing agent when the raw material is accommodated, and growing a GaAs single crystal by a vertical boat method. Also in terms of concentration, the boron (B) concentration can be kept low, and as a result, a GaAs single crystal having a high carrier concentration and high crystallinity over the entire ingot can be produced. From this GaAs single crystal, a GaAs single crystal wafer having a high carrier concentration and high crystallinity can be obtained.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a single crystal manufacturing apparatus that performs a vertical boat method.
  • Various raw materials are stored in the crucible 4 and crystal growth is performed.
  • the crucible 4 has a substantially cylindrical shape, the upper side is opened, and the lower side is formed with a tapered cross section so that the diameter gradually decreases, and the seed crystal 10 is accommodated in the small diameter portion at the lowermost end.
  • the crucible 4 is stored in a cylindrical crucible storage container 3 having a bottom.
  • the crucible storage container 3 is supported by the lower rod 1.
  • the lower rod 1 can be moved up and down and rotated by a drive mechanism (not shown) so that the crucible storage container 3 and the crucible 4 stored in the crucible storage container 3 can be driven up and down and rotated. Yes.
  • the crucible storage container 3 is installed in a cylindrical heater 9.
  • the heater 9 is composed of a plurality of heaters each capable of setting a temperature independently, and can form a desired temperature gradient and temperature distribution in the crucible storage container 3.
  • a cylindrical heat insulating material 8 is disposed outside the heater 9 and is housed in an airtight container 5.
  • a through-hole that allows the lower rod 1 to pass through is formed in the lower part of the hermetic container 5, and a seal ring 6 ⁇ / b> A is fitted into this through-hole. It can be done.
  • a through hole that allows the upper rod 2 to pass therethrough is formed in the upper portion of the airtight container 5, and a seal ring 6 ⁇ / b> B is fitted in this through hole, and the upper rod 2 rotates up and down and maintains the airtightness of the airtight container 5.
  • the upper rod 2 can be moved up and down and rotated by a driving mechanism (not shown), and a stirring plate 7 is attached to the tip of the upper rod 2.
  • the stirring plate 7 is a substantially rectangular plate body attached to a mounting portion at the tip of the upper rod 2 substantially vertically. It is preferable that the plate body of the stirring plate 7 has a horizontal width of 1/2 or more of the inner diameter of the crucible 4 and a vertical width of 1/2 or more of the thickness of the liquid sealant layer described later. Moreover, you may provide 2 or more of this board.
  • the stirring plate 7 may be of any shape in principle as long as it can stir the liquid sealant boron oxide (B 2 O 3 ) melt.
  • FIG. 1 shows a crucible state during the growth of a GaAs single crystal.
  • the lower part of the GaAs melt as the melt portion 15 is a Si-doped GaAs single crystal grown as a solidified portion 20.
  • the crucible 4 and the stirring plate 7 may be any material that has the necessary heat resistance and does not easily react with the raw material melt. For example, graphite coated with quartz and pyrolytic boron nitride (PBN). Etc. can be used.
  • this device also adjusts the temperature gradient of the heater 9 by fixing the vertical position of the crucible 4 (vertical temperature gradient method). The method can also be applied to a method of changing the vertical position of the crucible 4 while fixing the temperature gradient of the heater 9 (vertical Bridgman method).
  • a method for producing a GaAs single crystal As shown in FIG. 3, a seed crystal 10, an Si raw material 12 and an GaAs raw material 14 as impurities, solid silicon dioxide 16 such as a disk-shaped quartz plate, and a boron oxide raw material 18 are crucible 4. In this state, the vertical boat method is performed to grow the GaAs single crystal 20, and by adopting such a configuration, the B concentration can be kept low even at a high carrier concentration. As a result, a GaAs single crystal having a high carrier concentration and high crystallinity can be produced.
  • a Si-doped GaAs single crystal is manufactured as follows using the above-described single crystal manufacturing apparatus. First, as shown in FIG. 3, in the crucible 4, the seed crystal 10, the Si raw material 12 and the GaAs raw material 14 as the impurities (dopant), the quartz plate 16, and the B 2 O 3 raw material 18 as the liquid sealant raw material. Are housed in this order.
  • the crucible 4 containing these raw materials is set in the apparatus, and the vertical boat method is performed as follows. First, the inside of the airtight container 5 is evacuated and replaced with an inert gas such as argon (Ar) or nitrogen, and the inside of the container is pressurized to 3 to 9 atm. And the crucible 4 is heated with the heater 9, and each raw material except the seed crystal 10 is melted. At this time, the inside of the crucible 4 is heated to about 1200 ° C. to 1450 ° C.
  • an inert gas such as argon (Ar) or nitrogen
  • the melting point of the dopant Si raw material 12 is 1420 ° C.
  • the melting point of the GaAs raw material 14 is 1240 ° C.
  • the boron oxide raw material 18 has a softening point near 550 ° C.
  • the melting point (softening point) of silicon dioxide is 1700 ° C. . Therefore, after the start of heating, the boron oxide raw material 18 is first softened to become liquid boron oxide 19.
  • the GaAs raw material 14 melts to become a GaAs melt 15. In this process, a part of the Si raw material 12 is dissolved in the GaAs melt 15, and the other part of the Si raw material 12 is taken into the liquid boron oxide 19 as SiO 2 .
  • the quartz plate 16 is gradually dissolved into the liquid boron oxide 19. While the dissolution of the quartz plate 16 proceeds, the quartz plate 16 is located at the interface between the GaAs melt 15 and the liquid B 2 O 3 19 because of the specific gravity. It will be described later whether the quartz plate is completely melted or saturated and partially melted. The reason why the quartz plate 16 is further melted into the liquid boron oxide 19 in which Si is dissolved in advance is that the solid solution limit of Si in the boron oxide increases due to the high temperature in the crucible 4, and the Si is dissolved up to the solid solution limit. It is considered that a state that can be dissolved can be created according to the present invention.
  • the upper limit side of the GaAs seed crystal 105 is melted and blended with the GaAs melt 15, and then the GaAs melt 15 is cooled and solidified from the portion in contact with the seed crystal 10 below the crucible 4.
  • the temperature of the heater 9 is gradually lowered.
  • the lower rod 1 moves the crucible 4 relative to the heater 9 downward.
  • the GaAs single crystal 20 grows upward from the seed crystal 10.
  • the heater 9 is cooled and the crucible 4 is cooled.
  • the furnace of the single crystal manufacturing apparatus 1 is opened, the liquid sealant is removed, and the GaAs single crystal is taken out.
  • the Si-doped GaAs single crystal ingot obtained by starting the heating in the vertical boat method with the solid silicon dioxide 16 disposed between the GaAs raw material 14 and the boron oxide raw material 18 has a high carrier concentration.
  • the B concentration in the GaAs single crystal is in the range of 1.9 ⁇ 10 18 to 6 ⁇ 10 18 cm ⁇ 3 even if the carrier concentration is higher than 2 ⁇ 10 18 cm ⁇ 3.
  • the dimensions (namely, the amount of SiO 2 added) and the shape of the quartz plate 16 are not particularly limited, and can be set according to the manufacturing apparatus, the dimensions of the target ingot, the Si concentration and the B concentration in the target single crystal. However, it is preferable to set as follows.
  • the solid silicon dioxide 16 may have a spherical shape, a polygonal plate shape, a donut shape, or the like, but in order to form a high-concentration SiO 2 layer 17 under the liquid B 2 O 3 19 after melting, a circular plate shape It is preferable that Further, the addition amount of SiO 2 as the solid silicon dioxide 16 is preferably in the range of 3 to 6 ppm by mass with respect to the liquid B 2 O 3 19.
  • the difference in effect from the conventional method in which silicon oxide is added in advance to B 2 O 3 may not be sufficiently obtained. This is because saturation is assumed.
  • the ratio of the area of the quartz plate 16 to the area of the upper surface of the GaAs melt 15 at the start of crystal growth is preferably 5 to 99%, and 90 to 99%. More preferred. This is because when the quartz plate 16 having the same weight is charged, it is easier to form the high-concentration SiO 2 layer 17 in the B 2 O 3 lower layer after melting if the shape of the quartz plate is wider and thinner.
  • SiO 2 is added in advance as a Si component in the boron oxide raw material 18, and the total of the Si amount of SiO 2 in the boron oxide raw material 18 and the Si amount in the solid silicon dioxide 16 is the boron oxide raw material 18. It is preferable that it exceeds 5 mass% with respect to the mass of.
  • the ratio is more preferably in the range of more than 5% by mass and not more than 7% by mass, and still more preferably in the range of more than 5% by mass to 5.5% by mass.
  • silicon oxide is added in advance to the liquid sealant B 2 O 3 as in Patent Document 1, the maximum is 5% by mass with respect to the mass of the liquid B 2 O 3 , and 3 % by mass at normal costs.
  • the quartz plate 16 having an amount exceeding 5% by mass alone is disposed, the heating of the vertical boat method is started, and then the GaAs melt 15
  • the quartz plate 16 it is preferable to arrange the quartz plate 16 using the boron oxide raw material 18 to which Si is uniformly added in advance so that the Si amount exceeds 5 mass% with respect to the mass of the boron oxide raw material.
  • B 2 O 3 which is the liquid sealing agent 19 during a predetermined period in the growth process of the GaAs single crystal.
  • the effect of keeping the B concentration low in a desired high carrier concentration range can be more sufficiently exhibited.
  • Si in GaAs is segregated during the GaAs solidification process, so the Si concentration in the crystal formed in the final stage of solidification is 4 to 5 times the Si concentration in the crystal formed in the initial stage of solidification. Since Si acts as a carrier in GaAs, the carrier concentration is also increased 4 to 5 times.
  • the B 2 O 3 portion is stirred, and as a result, the high-concentration SiO 2 layer under the B 2 O 3 layer is also stirred, so that the Si concentration in the B 2 O 3 lower layer in contact with the GaAs melt 15 is lowered.
  • Si in the GaAs melt can be taken into B 2 O 3 and crystals with a narrower carrier concentration range can be obtained efficiently.
  • Si in GaAs has a high concentration of about 1 ⁇ 10 19 / cm 3 , it acts not only as a donor but also as an acceptor and cancels each other out. From this point of view, it is desirable to stir in the latter half of the crystal growth in which Si segregates when the carrier concentration is high.
  • solidification rate in this specification means the ratio of the weight of the solidified portion to the weight of the entire GaAs raw material. The solidification rate increases from 0 to 1 as the solidification progresses and the crystal grows.
  • the solidification rate being a specific value means that the interface where the solidified portion and the melt portion are in contact is in a specific position corresponding to the solidification rate value on a one-to-one basis. To do. The position specified by this is naturally the same even after the whole is solidified and the crystal is completed. Therefore, the position of the completed single crystal in the crystal growth direction can be specified by the solidification rate.
  • Si-doped GaAs single crystal wafer Next, a Si-doped GaAs single crystal wafer according to an embodiment of the present invention will be described.
  • This wafer can be obtained by cutting, polishing, etc. the ingot produced by the above production method.
  • the B concentration in the GaAs single crystal can be in the range of 1.9 ⁇ 10 18 to 6 ⁇ 10 18 cm ⁇ 3 .
  • the wafer of this embodiment is characterized in that even if the carrier concentration is higher than 2 ⁇ 10 18 cm ⁇ 3 , the maximum value of the etch pit density EPD is as high as 500 cm ⁇ 2 or less.
  • the maximum etch pit density EPD can be as high as 500 cm ⁇ 2 or less. . Further, the average value of the etch pit density EPD is 25 cm ⁇ 2 or less. In the present embodiment, the carrier concentration is approximately in the range of 2.2 to 3.5 ⁇ 10 18 cm ⁇ 3 .
  • the lower limit of EPD is not particularly limited, and may be zero depending on the wafer, but is generally in the range of 0 to 20 cm ⁇ 2 .
  • the carrier concentration of each wafer is obtained by hole measurement using the Van der Pauw method.
  • EDP and its measurement method will be explained briefly.
  • a GaAs single crystal wafer contains crystal defects
  • this wafer is immersed in a specific corrosive reagent, etching starts from the crystal defect portion, and pits (dents) are formed there. Therefore, the crystallinity of the wafer can be evaluated by measuring the etch pit density, that is, the number of pits formed by etching per unit area. And if EPD evaluation of the wafer produced from the predetermined location of Si dope ingot is performed, the crystallinity of the said Si dope ingot can be evaluated.
  • a pit produced by immersing a wafer in molten KOH (potassium hydroxide) at a liquid temperature of 320 ° C. for 30 minutes and etching it is observed with an optical microscope, and a measurement field of 1 mm 2 or more.
  • KOH potassium hydroxide
  • the number of measurement points varies depending on the wafer area, but it is 37 points for a 3-inch wafer.
  • the EPD maximum value means the maximum EPD value among a plurality of measurement points. In device manufacturers that currently use GaAs single crystal wafers, EPD is specified not only for the average value but also for its maximum value. A low maximum value means that any part of the wafer is high in quality, and is important from the viewpoint of yield, and is therefore a suitable index for evaluating the crystallinity of the wafer.
  • Example 1 Using a 3-inch GaAs single crystal manufacturing apparatus using a stainless steel chamber having the configuration shown in FIG. 1, a GaAs single crystal ingot was manufactured according to the following procedure.
  • the cylindrical PBN crucible was filled with the raw materials in the following order and placed at a predetermined position in the chamber.
  • 1. GaAs seed crystal GaAs polycrystal 6.0kg and Si crystal 1200mg (200ppm by mass with respect to GaAs) 3. Quartz plate (two stacked discs) 9.1g 4).
  • 360 g of B 2 O 3 raw material containing 4.0% by mass of Si previously added with SiO 2 When observed from the upper part of the crucible, the diameter of the quartz plate is 75 mm with respect to the inner diameter of the crucible of 80 mm.
  • the total amount of Si in the B 2 O 3 raw material and the Si amount in the quartz plate is 18.7 g, which corresponds to 5.2 mass% of the mass of the B 2 O 3 raw material of 360 g.
  • the inside of the apparatus was evacuated, replaced with Ar gas, and pressurized to 6 atm.
  • the pressure was increased to 8 atm to melt the upper part of the GaAs raw material, Si raw material, and seed crystal. Thereafter, 8 atm was maintained until the end of crystal growth.
  • the GaAs raw material, the Si raw material, and the upper part of the seed crystal are melted, the B 2 O 3 raw material is melted on the GaAs melt to prevent As from being scattered from the GaAs raw material melt.
  • the heater temperature was lowered from the seed crystal side, and the entire raw material melt was solidified to grow a 3-inch crystal.
  • the liquid B 2 O 3 was stirred by rotating the stirring plate at 2 rpm from the solidification rate of 0.33 until the growth was completed.
  • the heater was cooled and the crucible was cooled.
  • the furnace of the single crystal manufacturing apparatus was opened and the GaAs single crystal was taken out.
  • the sealing agent was dissolved and removed with alcohol to take out the crystals, the quartz plate did not dissolve in the sealing agent, or a lump of quartz that seems to have re-deposited after dissolution (total 1.5 g ) was discovered.
  • the wafer was cut out from three positions with solidification rates of 0.1 (Seed side), 0.45 (Middle position), and 0.8 (Tail side), respectively.
  • Concentration, B concentration, carrier concentration and EPD (average value and maximum value) were measured.
  • Measurement of Si concentration and B concentration was performed by ICP.
  • the carrier concentration and EPD were measured by the method described above.
  • Example 2 An ingot was produced in the same manner as in Example 1 except that the amount of Si crystal as a dopant added to the GaAs polycrystal was 2100 mg (350 mass ppm with respect to GaAs) and the quartz plate was 9.5 g. Then, the wafer was evaluated. The total of the Si amount in the B 2 O 3 raw material and the Si amount in the quartz plate is 18.8 g, which corresponds to 5.2 mass% of the mass of the B 2 O 3 raw material 360 g. In addition, when the sealing agent was dissolved and removed with alcohol to take out the crystals, the quartz plate was considered not to have dissolved in the sealing agent or re-deposited after dissolution (total 0.2 g) Was discovered.
  • Example 3 An ingot was prepared by the same method as in Example 1 except that liquid B 2 O 3 was not stirred and the quartz plate was 9.6 g, and the wafer was evaluated.
  • the total of the Si amount in the B 2 O 3 raw material and the Si amount in the quartz plate is 18.9 g, which corresponds to 5.2 mass% of the mass of the B 2 O 3 raw material 360 g.
  • the quartz plate was considered not to have dissolved in the sealing agent or re-deposited after dissolution (1.1 g in total) Was discovered.
  • Table 1 shows the evaluation results of the examples and comparative examples.
  • FIG. 4 shows the relationship between the Si concentration in the GaAs crystal and the B concentration in the GaAs crystal for each of the general wafers grown under the same conditions as in each of the examples / comparative examples and comparative example 1.
  • Example 1 the EPD is low in any of the wafers on the seed side, the middle position, and the tail side.
  • the carrier concentration is higher than 2 ⁇ 10 18 cm ⁇ 3 and the maximum value of EPD is 500 cm ⁇ 2 or less.
  • a wafer could be obtained.
  • Example 2 a similar wafer could be obtained with a wider area wafer (middle position and tail side).
  • Example 3 a similar wafer could be obtained at the Middle position.
  • Comparative Example 1 although the carrier concentration of the tail side wafer is higher than 2 ⁇ 10 18 cm ⁇ 3 , the EPD maximum value is 1500 cm ⁇ 2 or less, and has a high carrier concentration and good crystallinity. A wafer could not be obtained. As is apparent from FIG. 4, in Comparative Example 1, the B concentration exceeds 6 ⁇ 10 18 cm ⁇ 3 on the tail side where the Si concentration is high. For this reason, generation
  • Example 3 the maximum EPD value on the Tail side was significantly increased compared to Example 1. Therefore, it was found that when a quartz plate is used, it is preferable to stir the liquid sealant during crystal growth.
  • Example 1 As a result of charging Si crystal of 200 mass ppm of Si into GaAs, the carrier concentration was 1.1 ⁇ 10 18 cm ⁇ 3 on the seed side. In Comparative Example 2, the Si crystal of Si 280 mass ppm was charged. On the seed side, the carrier concentration is 1.2 ⁇ 10 18 cm ⁇ 3 . Although the charge amount of Comparative Example 2 is larger, there is almost no difference in carrier concentration, and on the seed side (crystal growth start stage), in Example 1, the charged Si crystal is used as a carrier than Comparative Example 2. It can be seen that the ratio of incorporation into the crystal is high.
  • Comparative Example 1 the high-concentration SiO 2 layer of the B 2 O 3 lower layer after raw material melting will be considered.
  • the Si concentration in B 2 O 3 is 1.6% by mass on average
  • Comparative Example 2 the Si concentration in B 2 O 3 is 4.0% by mass on average.
  • the comparative example 2 tends to have a slightly lower B concentration than the comparative example 1. That is, the higher the Si concentration in B 2 O 3 , the lower the B concentration in GaAs tends to be.
  • the Si concentration in B 2 O 3 is 1.6. Even if the mass percentage is increased by 2.5 times from 4.0 mass% to 4.0 mass%, the B concentration in GaAs remains slightly low. In contrast, in Example 1, the Si concentration in B 2 O 3 is 5.2% by mass, which is the value obtained by adding the amount of Si in the quartz plate, which is 3.25 times that in Comparative Example 1. As can be seen from FIG. 4, the tendency of the B concentration in GaAs to decrease is more remarkable than the difference between Comparative Example 1 and Comparative Example 2.
  • Example 1 B 2 O 3 This is a quartz plate was placed in Example 1 B 2 O 3 rather than being homogeneously dissolved in, B 2 O 3 exists as a lower layer in a high concentration layer of SiO 2 concentration higher than 5 wt% Suggests that Further, in Example 1, 1.5 g of quartz was recovered after the GaAs crystal was grown and the sealing agent was dissolved in alcohol, but at the time of melting the raw material, 1.5 g of quartz was also dissolved in B 2 O 3. The possibility of contributing to the formation of the high-concentration SiO 2 layer is high.
  • the B concentration can be kept lower than the comparative example and the conventional general wafer even if the Si concentration is high. Therefore, it seems that it became possible to produce a GaAs single crystal having a high carrier concentration and high crystallinity.
  • a GaAs single crystal having a high carrier concentration and high crystallinity can be produced. From this GaAs single crystal, a GaAs single crystal wafer having a high carrier concentration and high crystallinity can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 高いキャリア濃度を有し、かつ、高い結晶性を有するGaAs単結晶の製造方法およびGaAs単結晶ウェハを提供する。 本発明は、種結晶10、不純物となるSi原料12、GaAs原料14、固体の二酸化ケイ素16、および酸化ホウ素原料18をるつぼ4内に収容した状態で縦型ボート法を行い、GaAs単結晶20を成長させることを特徴とするGaAs単結晶の製造方法である。

Description

GaAs単結晶の製造方法およびGaAs単結晶ウェハ
 本発明は、縦型ボート法によるGaAs単結晶の製造方法およびGaAs単結晶ウェハに関し、特に、高いキャリア濃度を有し、かつ、高い結晶性を有するGaAs単結晶の製造方法およびGaAs単結晶ウェハに関する。
 GaAs(ガリウム砒素)デバイスの素材であるGaAs単結晶ウェハは、GaAs単結晶インゴットを厚さ数百μmのウェハ上に切断(スライシング)し、研磨工程などを経て製造される。シリコン(Si)を不純物として添加したSiドープn型GaAs単結晶ウェハは、DVDなどのレーザー用の基板や発光ダイオード(LED)などの発光素子用の基板として用いられている。
 ここで、GaAs単結晶インゴットの製造方法として、縦型温度傾斜法(VGF法)や縦型ブリッジマン法(VB法)といった縦型ボート法が知られている。縦型ボート法は、るつぼの底部に種結晶を配置し、その種結晶の上層に単結晶の原料融液と封止剤の液体を配置して、当該るつぼを所定の温度分布から冷却することにより、原料融液の下部から上方に向けて結晶を成長させる方法である。縦型温度傾斜法(VGF法)の場合、温度そのものを降温し、縦型ブリッジマン法(VB法)の場合、当該るつぼを所定の温度分布内で相対的に移動させる。SiドープGaAs単結晶インゴットを製造する場合には、GaAs融液中にSiを添加する。
 この方法では、揮発成分であるAsがインゴットから解離するのを防ぐ目的などのため、封止剤としてB(酸化ホウ素)を用いる。結晶成長中、GaAs融液と液体Bとの界面では、以下の反応式による酸化還元反応が起きることが知られている。
3Si(Melt中)+2B=3SiO(B中へ)+4B(Melt中)  ・・・(1)
上記反応式(1)は単結晶成長開始時にはほぼ平衡状態に達し、単結晶成長中はノーマルフリージングによる偏析現象によるSiのGaAs融液への濃縮が起こっているものと考えられる。
 ここで、上記反応式(1)が右辺側に進行すると、GaAs融液にはSiが減少する一方、液体封止剤からGaAs融液へホウ素(B)が混入することとなる。ホウ素の発生は、スカムと称される砒化ホウ素を主体とした異物の発生につながり、このスカムが原因となり、GaAsの単結晶化が妨げられたり、スリップ転位および伝播転位が発生したりして、GaAs単結晶の品質を下げる。
 特許文献1には、封止剤としてB中に予めシリコン酸化物を添加したものを用いることで、上記反応式(1)の平衡を左辺側にした状態で結晶成長を進める技術が記載されている。また、特許文献2には、均一なキャリア濃度分布を有するSiドープGaAs単結晶を製造するため、結晶成長中に液体封止剤を撹拌する技術が記載されている。
特開平3-57079号公報 特開2000-109400号公報
 縦型ボート法は原料融液の下部から上方に向けて結晶を成長させるため、結晶に取り込まれなかった不純物は融液中に濃縮される。ここで、キャリア濃度を高めるべくGaAs融液中に添加するドーパントのSi(つまり、GaAs原料とともに投入するSi結晶)を多量にすると、上記反応式(1)の平衡が右辺側に進行し、GaAs融液中にホウ素(B)が多量に移動するため、結晶成長が進み不純物の濃縮が進むにつれて砒化ホウ素の発生も進行し、高い結晶性を得ることができなくなる。つまり、GaAs単結晶ではキャリア濃度と結晶性とが二律背反の関係にある。現在多く使用されるn型導電性のGaAsウェハは、1×1018~2×1018cm-3のキャリア濃度を有するものが主流であるが、近年、2×1018cm-3より高いキャリア濃度を有する高キャリア濃度のGaAsウェハに対するニーズも高まっている。
 本発明者らは、2×1018cm-3より高いキャリア濃度を得るのに必要な量のSiを融液中に添加し、特許文献1および特許文献2の方法でSiドープGaAs単結晶を製造した。しかしながら、結晶成長の後半において2×1018cm-3より高いキャリア濃度の領域が得られたとしても、Siの添加に伴い、インゴット中のB濃度が高くなりすぎ、上記のとおり結晶性が悪化してしまう、具体的には当該インゴットから得た2×1018cm-3より高いキャリア濃度のウェハのエッチピット密度(EPD)が高いという問題があった。つまり、特許文献1および特許文献2の技術では、現在要求されているレベルでSi濃度とボロン濃度との関係(キャリア濃度と結晶性との関係)を両立できないことがわかった。
 そこで本発明は、上記課題に鑑み、高いキャリア濃度を有し、かつ、高い結晶性を有するGaAs単結晶の製造方法およびGaAs単結晶ウェハを提供することを目的とする。
 この目的を達成すべく本発明者らがさらに検討を行ったところ、GaAs単結晶の低転位化を目指す過程で、不純物としてのホウ素(B)の不純物硬化効果に着目した。不純物硬化とは固溶硬化ともよばれ、不純物原子が置換型あるいは格子間型として材料中に固溶すると、強度が増加する現象のことである。不純物効果は、固溶原子と転位との相互作用により転位を下げる効果がある。一般的にGaAsでは、Siによる不純物硬化効果が大きいことが知られている。しかし、本発明者らがさらに検討したところ、GaAsに適量のホウ素が含まれている場合も、Si程顕著ではないものの、不純物硬化効果が認められることが判明した。そして、GaAs融液における砒化ホウ素の発生を抑制しつつ、ホウ素(B)の不純物硬化効果をも得て十分に低いEPDを実現するためには、GaAs単結晶中のB濃度を1.9×1018~6×1018cm-3の範囲内となるように不純物量を制御すればよいことを見出した。そのために、上記反応式(1)の平衡に抗うように、高いSi濃度においてもB濃度を上記範囲内に収められるように結晶成長系の工夫を検討した。そして、本発明者らは、原料収容時にGaAs原料と封止剤となる酸化ホウ素原料との間に固体の二酸化ケイ素(SiO)を配置させることにより、上記の目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、上記課題に鑑み、本発明の要旨構成は以下の通りである。
 (1)種結晶、不純物となるSi原料、GaAs原料、固体の二酸化ケイ素、および酸化ホウ素原料をるつぼ内に収容した状態で縦型ボート法を行い、GaAs単結晶を成長させることを特徴とするGaAs単結晶の製造方法。
 (2)前記酸化ホウ素原料中には予めSiOが添加されており、
 前記酸化ホウ素原料中のSiOのSi量および前記固体の二酸化ケイ素中のSi量の合計が、前記酸化ホウ素原料の質量に対して5質量%を超える上記(1)に記載のGaAs単結晶の製造方法。
 (3)前記GaAs単結晶の成長過程における所定期間に、前記酸化ホウ素原料が溶融した液体酸化ホウ素の撹拌を行う上記(1)または(2)に記載のGaAs単結晶の製造方法。
 (4)キャリア濃度が2×1018cm-3より高く、エッチピット密度の最大値が500cm-2以下であることを特徴とするSiドープGaAs単結晶ウェハ。
 本発明によれば、原料収容時にGaAs原料と封止剤となる酸化ホウ素原料との間に固体の二酸化ケイ素を配置させておき、縦型ボート法によりGaAs単結晶を成長させることにより、高いキャリア濃度においてもホウ素(B)濃度を低く抑えることができ、その結果、インゴット全体に亘って高いキャリア濃度を有し、かつ、高い結晶性を有するGaAs単結晶を製造することが可能となった。そして、このGaAs単結晶から、高いキャリア濃度を有しかつ高い結晶性を有するGaAs単結晶ウェハを得ることが可能となった。
本発明に従うGaAs単結晶の製造方法に用いる単結晶製造装置の模式断面図(撹拌前)である。 本発明に従うGaAs単結晶の製造方法に用いる単結晶製造装置の模式断面図(撹拌中)である。 本発明に従うGaAs単結晶の製造方法に用いる単結晶製造装置のるつぼの模式断面図であり、結晶成長前の原料充填状態を示す図である。 実施例、比較例および従来の一般的なウェハのそれぞれについて、GaAs中のSi濃度とGaAs中のB濃度との関係を示すグラフである。
 以下、図面を参照しつつ本発明の実施形態を説明する。
 (単結晶製造装置)
 まず、本発明の実施形態によるGaAs単結晶の製造方法に用いる単結晶製造装置を、図1を用いて説明する。本実施形態の製造方法は、縦型ボート法(縦型温度傾斜法および縦型ブリッジマン法)によるものである。図1は、縦型ボート法を実施する単結晶製造装置の概略構成を示す断面図である。るつぼ4内に各種原料が収納されて結晶育成が行われる。るつぼ4は略円筒形状で、上側は開口され、下側は次第に径が小さくなるように断面テーパ状に形成されて閉じられたもので、最下端の小径部に種結晶10が収納される。
 るつぼ4は、底を有する円筒状のるつぼ収納容器3内に収納される。るつぼ収納容器3は下部ロッド1に支持されている。この下部ロッド1は、図示しない駆動機構によって上下および回転の動作ができるようになっており、るつぼ収納容器3と該るつぼ収納容器3に収納されたるつぼ4を上下および回転駆動できるようになっている。
 るつぼ収納容器3は、円筒状のヒーター9内に設置されている。このヒーター9は、それぞれ独立に温度の設定ができる複数のヒーターによって構成されており、るつぼ収納容器3に所望の温度勾配・温度分布を形成できるようになっている。ヒーター9の外側には、円筒状の断熱材8が配置され、これらは気密容器5に収納されている。
 気密容器5の下部には下部ロッド1を貫通させる貫通孔が形成され、この貫通孔にシールリング6Aが嵌め込まれており、下部ロッド1が気密容器5の気密を維持しつつ上下および回転運動ができるようになっている。また、気密容器5の上部には上部ロッド2を貫通させる貫通孔が形成され、この貫通孔にシールリング6Bが嵌め込まれており、上部ロッド2が気密容器5の気密を維持しつつ上下および回転運動ができるようになっている。
 上部ロッド2は、図示しない駆動機構によって上下および回転の動作ができるようになっており、その先端部には、撹拌板7が取り付けられている。撹拌板7は、略四角形状の1枚の板体が上部ロッド2の先端部の取り付け部に略垂直に取り付けられているものである。撹拌板7の板体は、るつぼ4の内径の1/2以上の横幅と後述する液体封止剤層の厚さの1/2以上の縦幅を有することが好ましい。また、この板体を2枚以上設けてもよい。さらには、撹拌板7は液体封止剤の酸化ホウ素(B)の融液を撹拌できるものであれば原則としてどの様な形状のものであってよい。
 図1はGaAs単結晶の成長中のるつぼ状態を示しており、融液部15であるGaAs融液の下部が、固化部20として成長したSiドープGaAs単結晶である。なお、るつぼ4や撹拌板7は、必要な耐熱性を有し、原料融液と反応しにくい材料であればよく、例えば、石英、熱分解窒化ホウ素(PBN:Pyrolytic Boron Nitride)を被覆したグラファイトなどが使用できる。本装置は、固液界面を上昇させるうえでの適切な温度勾配を得るために、るつぼ4の上下位置を固定してヒーター9の温度勾配を調整する方法(縦型温度傾斜法)にも、ヒーター9の温度勾配を固定してるつぼ4の上下位置を変える方法(縦型ブリッジマン法)にも適用することができる。
 (GaAs単結晶の製造方法)
 次に、本発明の実施形態によるGaAs単結晶の製造方法を、図1~図3を用いて説明する。この製造方法では、図3に示すように、種結晶10、不純物となるSi原料12およびGaAs原料14、例えば円板形状の石英板などの固体の二酸化ケイ素16、ならびに酸化ホウ素原料18をるつぼ4内にこの順に収容した状態で縦型ボート法を行い、GaAs単結晶20を成長させることを特徴とし、かかる構成を採用することによって、高いキャリア濃度においてもB濃度を低く抑えることができ、その結果、高いキャリア濃度を有し、かつ、高い結晶性を有するGaAs単結晶を製造することが可能となった。
 以下、具体的に説明する。本実施形態では、上述の単結晶製造装置によって、以下のようにしてSiドープGaAs単結晶を製造する。まず、図3に示すように、るつぼ4内に、種結晶10、不純物(ドーパント)となるSi原料12およびGaAs原料14、石英板16、ならびに液体封止剤原料としてのB原料18をこの順に収容する。
 次に、これら原料を収容したるつぼ4を装置内にセットし、以下のようにして縦型ボート法を行う。まず、気密容器5内を真空引きし、アルゴン(Ar)、窒素などの不活性ガスで置換して、容器内を3~9気圧に加圧した状態にする。そして、ヒーター9でるつぼ4を加熱し、種結晶10を除く各原料を溶融させていく。このとき、るつぼ4内は1200℃~1450℃程度まで加熱される。ここで、ドーパントSi原料12の融点は1420℃、GaAs原料14の融点は1240℃、酸化ホウ素原料18は550℃付近を軟化点とし、一方、二酸化ケイ素の融点(軟化点)は1700℃である。そのため、加熱開始後、まず酸化ホウ素原料18が軟化し、液体酸化ホウ素19となる。次にGaAs原料14が融解し、GaAs融液15となる。この過程でSi原料12の一部はGaAs融液15に溶解し、またSi原料12の他の一部は液体酸化ホウ素19中にSiOとして取り込まれる。一方、同時に、石英板16は液体酸化ホウ素19中へ徐々に溶解していく。石英板16の溶解が進む間は、比重の関係から、GaAs融液15と液体B19との界面に石英板16が位置する。石英板が完全に溶解するか、飽和して一部溶け残るかについては後述する。なお、予めSiが溶解している液体酸化ホウ素19中へ、さらに石英板16が溶けるのは、るつぼ4内の高温により酸化ホウ素中のSiの固溶限界が上がり、その固溶限界までSiを溶解させることができる状態を、本発明により作ることができたからと考えられる。
 次に、GaAs種結晶105の上限側を溶融し、GaAs融液15となじませ、その後、GaAs融液15をるつぼ4の下部の種結晶10に接する部分から冷却・固化させる。具体的には、縦型温度傾斜法の場合は、ヒーター9を徐々に降温させていく。縦型ブリッジマン法の場合は、下部ロッド1によりるつぼ4をヒーター9に対して下に相対移動させる。固化が次第に上方に進行していく過程で、種結晶10からGaAs単結晶20が上方に成長していく。GaAs融液15の全量が固化したら、ヒーター9を降温し、るつぼ4の冷却を行う。るつぼ4が室温付近となった段階で、単結晶製造装置1の炉を開放して、液体封止剤を除去し、GaAs単結晶を取り出す。
 このように、GaAs原料14と酸化ホウ素原料18との間に固体の二酸化ケイ素16を配置した状態で縦型ボート法の加熱を開始することにより得たSiドープGaAs単結晶インゴットは、高いキャリア濃度においてもB濃度を低く抑えることができ、キャリア濃度が2×1018cm-3より高くても、GaAs単結晶中のB濃度を1.9×1018~6×1018cm-3の範囲内とすることができるようになった。この理由は必ずしも明らかではないが、本発明者らは以下のように推定している。すなわち、本実施形態では、結晶成長終了後に封止剤をアルコール溶解したときに見つかる固体の石英の割合が初期の石英板16の量に対し非常に少ない。結晶成長中の封止剤(液体酸化ホウ素19)とGaAs融液15の界面の状態を観察することができないため、一連のGaAs単結晶の結晶成長工程に含まれる加熱~固化~冷却のどの過程での石英板16がどのような状態かを把握することは困難であるが、原料溶融時点では既にGaAs融液15と液体B19との界面近傍に、極めてSiO濃度の高い層(SiO高濃度層17)が形成されていると考えられる。これにより、原料融解時から結晶成長時にわたって、反応式(1)の平衡を著しく左辺にシフトすることが可能になり、得られたGaAs単結晶20中のキャリア濃度およびB濃度を従来では不可能だった範囲に制御することができるものと思われる。
 石英板16の寸法(すなわちSiO添加量)、形状は特に限定されず、製造装置、目的とするインゴットの寸法、目的とする単結晶中のSi濃度およびB濃度に合わせて設定することができるが、以下のように設定することが好ましい。固体の二酸化ケイ素16の形状は球状、多角形の板状、ドーナツ状などでも良いが、溶融後の液体B19下層に高濃度のSiO層17を形成するため、円形の板状であることが好ましい。また、固体の二酸化ケイ素16としてのSiO添加量は、液体B19に対して、3~6質量ppmの範囲内とすることが好ましい。3質量ppm未満の場合、B中に予めシリコン酸化物を添加する従来の方法との効果の差が十分に得られないおそれがあり、6質量ppmを超える場合、本発明の効果が飽和することが想定されるからである。また、固体の二酸化ケイ素16を石英板とした場合、結晶成長開始時におけるGaAs融液15の上面の面積に占める石英板16の面積の割合は、5~99%が好ましく、90~99%がより好ましい。同重量の石英板16をチャージする場合、石英板の形状をより広く薄くした方が溶融後のB下層に高濃度SiO層17を形成しやすいためである。
 また、酸化ホウ素原料18中にはSi成分として予めSiOが添加されており、酸化ホウ素原料18中のSiOのSi量および固体の二酸化ケイ素16中のSi量の合計が、酸化ホウ素原料18の質量に対して5質量%を超えることが好ましい。また、上記割合は5質量%超え7質量%以下の範囲がより好ましく、5質量%超え~5.5質量%以下の範囲がさらに好ましい。特許文献1のように液体封止剤であるB中にシリコン酸化物を予め添加する場合、液体Bの質量に対して最大でも5質量%、通常の費用では3質量%以下しか溶解させることができない。これは、シリコン酸化物を溶解したBを製造する過程で、高温時の濃度均一化および冷却時の均一なガラス化が困難であるためである。しかし、縦型ボート法の原料チャージ時に石英板16を用い原料融解時にB下層に高濃度のSiO層17を形成することによって、GaAs融液15の上面近傍に存在するSiO量を飛躍的に、すなわちSi量で5質量%を超える値に高めることができる。その結果、反応式(1)の平衡を大きく左側にシフトさせることができる。
 なお、全くSiが溶解していない液体酸化ホウ素19を用いた場合、単独で5質量%を超える量の石英板16を配置したとしても、縦型ボート法の加熱を開始後、GaAs融液15の上面近傍に存在する酸化ホウ素中のSi量のみが飽和して石英板16が大きく溶け残る可能性がある。そのため、酸化ホウ素19全体へSiが拡散する状態になりにくく、本発明の効果の再現性が十分に得られない可能性がある。そのため、予め均一にSiが添加された酸化ホウ素原料18を用いて、酸化ホウ素原料の質量に対して5質量%を超えるSi量となるように石英板16を配置することが好ましい。
 また、GaAs単結晶の成長過程における所定期間に、液体封止剤19であるBの撹拌を行うことが好ましい。撹拌を行うことにより、所望する高いキャリア濃度範囲で、かつB濃度を低く抑えるという効果をより十分に発揮することができる。通常、GaAs中のSiはGaAs固化過程で偏析するため、固化の最終段階でできた結晶中のSi濃度は、固化の初期段階でできた結晶中のSi濃度の4~5倍になる。SiはGaAs中でキャリアとして働くため、キャリア濃度も4~5倍になる。ここで、B部分を撹拌し、その結果としてB下層の高濃度のSiO層も撹拌されることで、GaAs融液15と接するB下層のSi濃度が下がり、GaAs融液中のSiをB中に取り込み、より狭いキャリア濃度範囲の結晶を効率良く得ることが可能となる。さらに、GaAs中のSiは、1×1019/cm程度の高濃度になると、ドナーとしてだけではなくアクセプターとしても振る舞い、互いに相殺してしまう。この観点からも高キャリア濃度の場合はSiが偏析する結晶成長後半で攪拌を行う事が望ましい。
 具体的には、結晶成長中の所定の固化率の時点で、図2に示すように、上部ロッド2を下方に移動し、撹拌板7を液体封止剤19に浸漬させ、上部ロッド2を回転駆動して撹拌板7を回転させ、液体封止剤19を撹拌する。撹拌の回転数は2~4rpmとする。また、撹拌を開始する固化率は0.05~0.4とする。撹拌を終了する固化率は0.8~1.0とする。ここで、本明細書において「固化率」とは、GaAs原料全体の重量に対して固化している部分の重量の比率を意味する。固化率は、固化が進行して結晶が成長していくにしたがって0から1まで増大していく。したがって、固化率がある特定の値であるということは、固化している部分と融液の部分とが接する界面が、固化率の値に1対1に対応した特定の位置にあることを意味する。これによって特定される位置は、全部が固化されて結晶が完成された後にも当然同じである。したがって、完成された単結晶の結晶成長方向における位置を固化率で特定することができる。
 (SiドープGaAs単結晶ウェハ)
 次に、本発明の実施形態によるSiドープGaAs単結晶ウェハを説明する。このウェハは、上記の製造方法によって製造されたインゴットを切断、研磨などして得ることができる。このインゴットは、キャリア濃度が2×1018cm-3より高くても、GaAs単結晶中のB濃度を1.9×1018~6×1018cm-3の範囲内とすることができる。このため、本実施形態のウェハは、キャリア濃度が2×1018cm-3より高くても、エッチピット密度EPDの最大値が500cm-2以下という高い結晶性を有することを特徴とする。さらにキャリア濃度が2.2×1018cm-3より高く、または3×1018cm-3より高くても、エッチピット密度EPDの最大値が500cm-2以下という高い結晶性を有することができる。さらに、エッチピット密度EPDの平均値は25cm-2以下である。なお、本実施形態でキャリア濃度は概ね2.2~3.5×1018cm-3の範囲となる。また、EPDの下限は特に限定されず、ウェハによってはゼロとなる場合もあるが、概ね0~20cm-2の範囲となる。
 ここで本発明において、各ウェハのキャリア濃度は、Van der Pauw法を用いたホール測定により求めるものとする。
 また、EDPとその測定方法について簡単に説明する。例えば、GaAs単結晶のウェハが結晶欠陥を含んでいる場合、このウェハを特定の腐食性試薬中に浸漬すると結晶欠陥部よりエッチングが始まり、そこにピット(へこみ)が形成される。そこでエッチピット密度すなわち、単位面積あたりのエッチングにより形成されたピット数を計測すれば、当該ウェハの結晶性を評価することができる。そして、Siドープインゴットの所定箇所から作製したウェハのEPD評価を行えば、当該Siドープインゴットの結晶性を評価することができる。
 本発明におけるEPDの測定方法は、あるウェハを液温320℃の溶融KOH(水酸化カリウム)に30分浸漬させてエッチングすることで生じたピットを光学顕微鏡により観察し、1mm以上の測定視野でピットの数を計測することにより得る(規格SEMI M36-0699に準拠した方法)。なお、測定点数はウェハ面積によって異なるが、3インチウェハの場合37点である。
 また、EPDの最大値とは、複数の測定点のうちの最大のEPD値を意味する。現在GaAs単結晶ウェハが使用されるデバイスメーカーにおいては、EPDは平均値だけでなく、その最大値も仕様化されている。最大値が低いことは、すなわちそのウェハのどの部分でも品質が高いということであり、歩留まりの面からも重要であるため、ウェハの結晶性の評価の好適な指標となる。
 上述したところは本発明の代表的な実施形態の例を示したものであって、本発明はこれらの実施形態に限定されるものではない。また、以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 (実施例1)
 図1に示した構成を有する、ステンレスチャンバーを用いた3インチ用GaAs単結晶の製造装置を用いて、以下の手順でGaAs単結晶インゴットを作製した。円筒形のPBN製のるつぼに、以下の順で原料を充填し、チャンバー内の所定の位置に配置した。
1.GaAs種結晶
2.GaAs原料であるGaAs多結晶6.0kgおよびSi結晶1200mg(GaAsに対して200質量ppm)
3.石英板(円板形状を2枚重ねたもの)9.1g
4.予めSiOを添加し、Siを4.0質量%含有するB原料360g
るつぼの上部から観察すると、ルツボの内径80mm対し石英板の直径は75mmである。また、B原料中のSi量および石英板中のSi量の合計は、18.7gであり、B原料の質量360gの5.2質量%に相当する。
 その後、装置内を真空引きし、Arガスで置換し、6気圧まで加圧した。ヒーターによりるつぼを加熱しながら8気圧まで加圧し、GaAs原料、Si原料、および種結晶の上部を溶融させた。以降は結晶成長終了まで8気圧を維持した。GaAs原料、Si原料、および種結晶の上部が溶融した時点で、B原料はGaAs融液の上で融解して、GaAs原料融液からAsが飛散するのを防止している。この後、種結晶側からヒーター温度を降下させ、原料融液全体を固化させて3インチの結晶を成長させた。なお、結晶成長中、偏析による融液中のSi濃度の過度の上昇を抑えるため、固化率0.33から成長完了まで撹拌板を2rpmで回転して、液体Bの撹拌を行った。GaAs融液の全量が固化したら、ヒーターを降温し、るつぼの冷却を行った。るつぼが室温付近となった段階で、単結晶製造装置の炉を開放して、GaAs単結晶を取り出した。ここで、結晶を取り出すために封止剤をアルコールにより溶解除去した際に、石英板が封止剤に溶解しなかった、または、溶解後再析出したと思われる石英の塊(合計1.5g)が発見された。
 このようにして得られた単結晶インゴットについて、固化率がそれぞれ0.1(Seed側),0.45(Middle位置),0.8(Tail側)の3箇所の位置からウェハを切り出し、Si濃度、B濃度、キャリア濃度およびEPD(平均値および最大値)の測定を行った。Si濃度およびB濃度の測定はICPにより行った。キャリア濃度およびEPDの測定は既述の方法で行った。
 (実施例2)
 GaAs多結晶中に添加するドーパントしてのSi結晶の量を2100mg(GaAsに対して350質量ppm)とし、石英板が9.5gである以外は、実施例1と同様の方法でインゴットを作製し、ウェハの評価を行った。B原料中のSi量および石英板中のSi量の合計は、18.8gであり、B原料の質量360gの5.2質量%に相当する。なお、結晶を取り出すために封止剤をアルコールにより溶解除去した際に、石英板が封止剤に溶解しなかった、または、溶解後再析出したと思われる石英の塊(合計0.2g)が発見された。
 (実施例3)
 液体Bの撹拌を行わなかったこと、石英板が9.6gであること以外は、実施例1と同様の方法でインゴットを作製し、ウェハの評価を行った。B原料中のSi量および石英板中のSi量の合計は、18.9gであり、B原料の質量360gの5.2質量%に相当する。なお、結晶を取り出すために封止剤をアルコールにより溶解除去した際に、石英板が封止剤に溶解しなかった、または、溶解後再析出したと思われる石英の塊(合計1.1g)が発見された。
 (比較例1)
 GaAs多結晶中に添加するドーパントしてのSi結晶の量を1440mg(GaAsに対して240質量ppm)とし、予めSiOを添加してSiを1.6質量%含有するB原料360gを用い、石英板を用いなかったこと以外は、実施例1と同様の方法でインゴットを作製し、ウェハの評価を行った。
 (比較例2)
 GaAs多結晶中に添加するドーパントしてのSi結晶の量を1680mg(GaAsに対して280質量ppm)とし、石英板を用いず、液体Bの撹拌を行わなかったこと以外は、実施例1と同様の方法でインゴットを作製し、ウェハの評価を行った。
 (評価結果)
 各実施例・比較例の評価結果を表1に示す。また、各実施例・比較例および比較例1と同条件で成長した一般的なウェハのそれぞれについて、GaAs結晶中のSi濃度とGaAs結晶中のB濃度との関係を図4に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1では、Seed側、Middle位置、Tail側のいずれのウェハもEPDが低く、特にTail側ではキャリア濃度が2×1018cm-3より高く、EPDの最大値が500cm-2以下であるウェハを得ることができた。また、実施例2ではより広い領域のウェハ(Middle位置およびTail側)で同様のウェハを得ることができた。実施例3でもMiddle位置で、同様のウェハを得ることができた。
 一方、比較例1では、Tail側ウェハのキャリア濃度は2×1018cm-3より高くなったものの、EPDの最大値1500cm-2以下となり、高いキャリア濃度を有し、かつ、結晶性の良いウェハを得ることはできなかった。また、図4から視覚的に明らかなように、比較例1ではSi濃度が高いTail側ではB濃度が6×1018cm-3を超えている。このため、スカムの発生を十分に抑制することができず、結晶性が悪いものと考えられる。比較例2も同様であった。
 また、実施例3ではTail側でEPDの最大値が実施例1よりも大幅に増加した。よって、石英板を用いる場合、結晶成長中に液体封止剤の撹拌を行うことが好ましいことがわかった。
 ここで、実施例1と比較例2の結果より、石英板がBに溶解するタイミングについて考察する。実施例1ではGaAs中にSi200質量ppm分のSi結晶をチャージした結果、seed側でキャリア濃度1.1×1018cm-3となり、比較例2ではSi280質量ppm分のSi結晶をチャージした結果、seed側でキャリア濃度1.2×1018cm-3となっている。比較例2の方のチャージ量が多いにも関わらずキャリア濃度の差はほとんどなく、seed側(結晶成長開始段階)において、比較例2より実施例1の方が、チャージしたSi結晶がキャリアとして結晶中に取り込まれている割合が高いことがわかる。これは、結晶成長開始段階より前、つまり加熱中にBが軟化し、その後GaAsが融解していく過程で、B中にSiOとして取り込まれたSiの量が少ないことを意味する。加熱中も反応式(1)の平衡を左辺側にシフトさせる減少が起きているということであり、固体の石英板により軟化したBとGaAs原料との接触が抑制され、その後、加熱中の段階で石英板が軟化したBに溶けてB中に高濃度SiO領域が出てきていると推測される。すなわち、加熱中の初期に一時的であれ石英板が固体として存在することで、軟化したBと未溶融のGaAs原料との不要な接触を抑制し、結晶成長開始段階のGaAs融液に含まれるSiおよびBの量をより好ましい範囲にすることできる。
 さらに、実施例1、比較例1、比較例2の結果より、原料溶融後のB下層の高濃度SiO層について考察する。比較例1ではB中のSi濃度は平均で1.6質量%であり、比較例2ではB中のSi濃度は平均で4.0質量%である。図4で同程度のGaAs融液中のSi濃度に対するGaAs融液中のB濃度を見ると、比較例1に比べて比較例2の方がややB濃度が低い傾向にある。つまり、B中のSi濃度が高いほど、GaAs中のB濃度が低くなる傾向があるが、比較例1と比較例2のように、B中のSi濃度が1.6質量%から4.0質量%と2.5倍に増えても、GaAs中のB濃度はやや低い程度にとどまる。これに対し、実施例1ではB中のSi濃度は、石英板中のSi量を加えた値で5.2質量%と比較例1に対して3.25倍であるが、図4からわかるように、GaAs中のB濃度の低下傾向は比較例1と比較例2の差以上に顕著である。これは、実施例1で投入した石英板がB中に均一に溶解しているのではなく、B下層に5質量%よりも高い濃度の高濃度SiO層として存在していることを示唆している。さらに、実施例1ではGaAs結晶成長後に、封止剤をアルコール溶解した後に1.5gの石英を回収しているが、原料溶融時点ではこの1.5gの石英もB中で溶解し、高濃度SiO層の形成に寄与していた可能性が高い。
 図4から明らかなように、実施例は比較例および従来の一般的なウェハよりも、Si濃度が高くてもB濃度を低く抑えることができている。そのため、高いキャリア濃度を有し、かつ、高い結晶性を有するGaAs単結晶を製造することが可能となったものと思われる。
 本発明によれば、高いキャリア濃度を有し、かつ、高い結晶性を有するGaAs単結晶を製造することが可能となった。そして、このGaAs単結晶から、高いキャリア濃度を有しかつ高い結晶性を有するGaAs単結晶ウェハを得ることが可能となった。
 1 下部ロッド
 2 上部ロッド
 3 るつぼ収納容器
 4 るつぼ
 5 気密容器
 6A,6B シールリング
 7 撹拌板
 8 断熱材
 9 ヒーター
 10 種結晶
 12 Si原料
 14 GaAs原料
 15 融液部(GaAs融液)
 16 石英板(固体の二酸化ケイ素)
 17 SiO高濃度層
 18 酸化ホウ素原料
 19 液体酸化ホウ素(液体封止剤)
 20 固化部(SiドープGaAs単結晶)

Claims (4)

  1.  種結晶、不純物となるSi原料、GaAs原料、固体の二酸化ケイ素、および酸化ホウ素原料をるつぼ内に収容した状態で縦型ボート法を行い、GaAs単結晶を成長させることを特徴とするGaAs単結晶の製造方法。
  2.  前記酸化ホウ素原料中には予めSiOが添加されており、
     前記酸化ホウ素原料中のSiOのSi量および前記固体の二酸化ケイ素中のSi量の合計が、前記酸化ホウ素原料の質量に対して5質量%を超える請求項1に記載のGaAs単結晶の製造方法。
  3.  前記GaAs単結晶の成長過程における所定期間に、前記酸化ホウ素原料が溶融した液体酸化ホウ素の撹拌を行う請求項1または2に記載のGaAs単結晶の製造方法。
  4.  キャリア濃度が2×1018cm-3より高く、エッチピット密度の最大値が500cm-2以下であることを特徴とするSiドープGaAs単結晶ウェハ。
     
     
PCT/JP2012/003204 2011-05-25 2012-05-16 GaAs単結晶の製造方法およびGaAs単結晶ウェハ WO2012160781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112012002217.3T DE112012002217B4 (de) 2011-05-25 2012-05-16 Verfahren zur Herstellung eines GaAs-Einkristalls und GaAs-Einkristallwafer
KR1020137034356A KR101857612B1 (ko) 2011-05-25 2012-05-16 GaAs 단결정의 제조 방법 및 GaAs 단결정 웨이퍼
CN201280036835.1A CN103703172B (zh) 2011-05-25 2012-05-16 GaAs单晶的制造方法和GaAs单晶晶片
US14/122,042 US9469916B2 (en) 2011-05-25 2012-05-16 Method of producing GaAs single crystal and GaAs single crystal wafer
SG2013087192A SG195154A1 (en) 2011-05-25 2012-05-16 Method for producing gaas single crystal and gaas single crystal wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-117420 2011-05-25
JP2011117420A JP5433632B2 (ja) 2011-05-25 2011-05-25 GaAs単結晶の製造方法およびGaAs単結晶ウェハ

Publications (1)

Publication Number Publication Date
WO2012160781A1 true WO2012160781A1 (ja) 2012-11-29

Family

ID=47216874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003204 WO2012160781A1 (ja) 2011-05-25 2012-05-16 GaAs単結晶の製造方法およびGaAs単結晶ウェハ

Country Status (8)

Country Link
US (1) US9469916B2 (ja)
JP (1) JP5433632B2 (ja)
KR (1) KR101857612B1 (ja)
CN (1) CN103703172B (ja)
DE (1) DE112012002217B4 (ja)
SG (1) SG195154A1 (ja)
TW (2) TWI582277B (ja)
WO (1) WO2012160781A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI624554B (zh) * 2015-08-21 2018-05-21 弗里松股份有限公司 蒸發源
EP4063541A1 (en) * 2017-07-04 2022-09-28 Sumitomo Electric Industries, Ltd. Gallium arsenide crystal body and gallium arsenide crystal substrate
KR101956754B1 (ko) 2017-08-01 2019-03-11 한국과학기술연구원 GaAs 단결정 성장 장치
US11319646B2 (en) * 2019-07-10 2022-05-03 Sumitomo Electric Industries, Ltd. Gallium arsenide single crystal substrate
WO2023054202A1 (ja) * 2021-09-29 2023-04-06 Dowaエレクトロニクス株式会社 GaAsウエハ、GaAsウエハ群及びGaAsインゴットの製造方法
JP7256326B1 (ja) 2021-09-29 2023-04-11 Dowaエレクトロニクス株式会社 GaAsウエハ、GaAsウエハ群及びGaAsインゴットの製造方法
WO2024062991A1 (ja) * 2022-09-21 2024-03-28 Dowaエレクトロニクス株式会社 GaAsインゴットの製造方法及びGaAsインゴット
JP7576672B2 (ja) 2022-09-21 2024-10-31 Dowaエレクトロニクス株式会社 GaAsインゴットの製造方法及びGaAsインゴット
WO2024142270A1 (ja) * 2022-12-27 2024-07-04 住友電気工業株式会社 ヒ化ガリウム単結晶基板およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151290A (ja) * 1994-09-28 1996-06-11 Sumitomo Electric Ind Ltd 化合物半導体単結晶の育成方法
JPH10259100A (ja) * 1997-03-18 1998-09-29 Japan Energy Corp GaAs単結晶の製造方法
JPH10279398A (ja) * 1997-03-31 1998-10-20 Dowa Mining Co Ltd ガリウム砒素単結晶およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166799A (ja) * 1986-12-27 1988-07-09 Dowa Mining Co Ltd Siド−プn型ガリウム砒素単結晶の製造方法
JPH06219900A (ja) 1993-01-28 1994-08-09 Dowa Mining Co Ltd Siドープn型ガリウム砒素単結晶の製造方法
US5612014A (en) * 1994-08-10 1997-03-18 Sumitomo Electric Industries, Ltd. Compound semiconductor crystal
JP3260568B2 (ja) * 1994-10-31 2002-02-25 株式会社神戸製鋼所 化合物半導体製造用るつぼ
EP0971052B1 (en) 1998-07-07 2004-02-04 Mitsubishi Chemical Corporation P-type GaAs single crystal and method for manufacturing the same
JP3797824B2 (ja) * 1998-07-07 2006-07-19 三菱化学株式会社 p型GaAs単結晶およびその製造方法
JP4168115B2 (ja) 1998-10-01 2008-10-22 Dowaエレクトロニクス株式会社 SiドープGaAs単結晶の製造方法
CA2452542C (en) * 2001-07-05 2011-04-26 Axt, Inc. Method and apparatus for growing semiconductor crystals with a rigid support with carbon doping and resistivity control and thermal gradient control
US20090098377A1 (en) * 2005-03-31 2009-04-16 Dowa Electronics Materials Co., Ltd. Si-Doped GaAs Single Crystal Ingot and Process for Producing the Same, and Si-Doped GaAs Single Crystal Wafer Produced From Si-Doped GaAs Single Crystal Ingot
US8299351B2 (en) * 2009-02-24 2012-10-30 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Epitaxial growth of III-V compounds on (111) silicon for solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151290A (ja) * 1994-09-28 1996-06-11 Sumitomo Electric Ind Ltd 化合物半導体単結晶の育成方法
JPH10259100A (ja) * 1997-03-18 1998-09-29 Japan Energy Corp GaAs単結晶の製造方法
JPH10279398A (ja) * 1997-03-31 1998-10-20 Dowa Mining Co Ltd ガリウム砒素単結晶およびその製造方法

Also Published As

Publication number Publication date
DE112012002217B4 (de) 2018-03-01
TWI572752B (zh) 2017-03-01
TW201250073A (en) 2012-12-16
KR20140044831A (ko) 2014-04-15
TW201704569A (zh) 2017-02-01
CN103703172A (zh) 2014-04-02
DE112012002217T5 (de) 2014-07-03
CN103703172B (zh) 2016-08-31
JP2012246156A (ja) 2012-12-13
US20140205527A1 (en) 2014-07-24
KR101857612B1 (ko) 2018-05-14
TWI582277B (zh) 2017-05-11
SG195154A1 (en) 2013-12-30
JP5433632B2 (ja) 2014-03-05
US9469916B2 (en) 2016-10-18

Similar Documents

Publication Publication Date Title
JP5433632B2 (ja) GaAs単結晶の製造方法およびGaAs単結晶ウェハ
EP1634981B1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
JP5216123B2 (ja) SiドープGaAs単結晶インゴットおよびその製造方法、並びに、当該SiドープGaAs単結晶インゴットから製造されたSiドープGaAs単結晶ウェハ
TWI778658B (zh) GaAs錠及GaAs錠的製造方法以及GaAs晶圓
JP2011105537A (ja) シリコン単結晶の製造方法
JP4726138B2 (ja) 石英ガラスルツボ
TW200419015A (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP3818023B2 (ja) GaAs単結晶の製造方法
TWI854838B (zh) GaAs錠的製造方法及GaAs錠
JP7576672B2 (ja) GaAsインゴットの製造方法及びGaAsインゴット
JP2010030847A (ja) 半導体単結晶の製造方法
TW202413739A (zh) GaAs錠的製造方法及GaAs錠
JP4200690B2 (ja) GaAsウェハの製造方法
JP2010030868A (ja) 半導体単結晶の製造方法
WO2017086449A1 (ja) SiC単結晶の製造方法及びSiC単結晶インゴット
JP2005350295A (ja) 半導体結晶および半導体結晶の製造方法
JP2014094853A (ja) Iii−v族化合物半導体単結晶の製造方法およびiii−v族化合物半導体単結晶基板
JP2016199416A (ja) サファイア単結晶の製造方法
JP2014047120A (ja) SiC単結晶の製造方法
JP2009208992A (ja) 化合物半導体単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012002217

Country of ref document: DE

Ref document number: 1120120022173

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137034356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122042

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12789524

Country of ref document: EP

Kind code of ref document: A1