WO2012140804A1 - カソード - Google Patents
カソード Download PDFInfo
- Publication number
- WO2012140804A1 WO2012140804A1 PCT/JP2011/076674 JP2011076674W WO2012140804A1 WO 2012140804 A1 WO2012140804 A1 WO 2012140804A1 JP 2011076674 W JP2011076674 W JP 2011076674W WO 2012140804 A1 WO2012140804 A1 WO 2012140804A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base material
- backing plate
- target
- cathode
- main surface
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3417—Arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3435—Target holders (includes backing plates and endblocks)
Definitions
- the present invention relates to a cathode used in a film forming apparatus using a sputtering method.
- a sputtering apparatus is used as an apparatus for forming various thin films.
- a sputtering cathode is provided in a chamber, and an object to be processed is arranged so as to face a target attached to the cathode at a predetermined interval in a decompressed chamber.
- an inert gas for example, argon gas
- a negative voltage is applied to the target to discharge, and the inert gas ionized by the discharge collides with the target.
- the film-forming process is performed by making the particle which jumps out of a target adhere to a to-be-processed object.
- FIG. 4A shows an example of a conventional film forming apparatus 600 using a sputtering method (see Patent Document 1).
- FIG. 4B is an enlarged view showing the target and the member C arranged in the vicinity thereof in each of the plurality of chambers 601 in FIG. 4A (see Patent Document 2).
- the target includes a backing plate 604 and a base material 605 disposed on the surface of the backing plate 604.
- the cathode body 610 for applying a sputtering voltage to the target is attached to the target using a plurality of bolt members.
- the cathode body 610 is attached to a cathode attachment flange 611 disposed in the chamber 601 using a plurality of bolt members via an insulating plate 612.
- the cathode mounting flange 611 is grounded.
- a magnetic field generation unit H that generates a leakage magnetic flux on the surface of the base material 605 is provided inside the backing plate 604.
- a circulation flow path including a flow path 608a into which cooling water is introduced and a flow path 608b from which cooling water is led out is provided in order to cool the target.
- the backing plate 604 and the cathode body 610 are covered with a ground shield 601a.
- the ground shield 601a has an opening that exposes the target to a space (deposition space) in the chamber.
- the ground shield 601a suppresses discharge generated in members other than the target among the members facing the film formation space, and is usually attached to the chamber (wall portion) 601 using a plurality of bolt members in a grounded state. It has been.
- the time required for the work to transport the object to be processed and the time required for the work (process) to exhaust the gas in the chamber in accordance with the process of carrying the object in and out of the chamber are generated.
- the time from the end of the process to the start of the next process becomes longer.
- the time required for the film forming process is shortened.
- the present invention has been made in view of such circumstances, and is a cathode used in a film forming apparatus by sputtering, and can perform two different types of sputtering processes in one chamber continuously.
- the object is to provide a possible cathode.
- the cathode of one embodiment of the present invention is a cathode used in a film forming apparatus, and includes a first main surface, a second main surface located on the opposite side of the first main surface, a first side surface, and the first main surface.
- a backing plate having a second side surface opposite to the side surface, a first base material disposed on the first main surface, a second base material disposed on the second main surface, and the first
- a rotating shaft penetrating the backing plate from a side surface toward the second side surface, a target provided in the film forming space, and the rotating shaft is rotated, and sputtering is performed on the target via the rotating shaft.
- the magnetic field generation unit is disposed at a position close to the second base material when the leakage magnetic flux is generated in the first base material, and the leakage magnetic flux is the second base material.
- the leakage magnetic flux is the second base material.
- it is preferably arranged at a position close to the first base material.
- the magnetic field generation unit retracts the magnetic field generation unit outside the rotation radius of the target when the target rotates, and the magnetic field generation unit when the rotation ends. It is preferable to provide a retracting drive unit that returns to the original position.
- the magnetic field generation unit swings the magnetic field generation unit in at least one of a direction perpendicular to the longitudinal direction of the target and a direction parallel to the longitudinal direction of the target. It is preferable to include a dynamic drive unit.
- the cathode includes a circulation channel that is provided inside the backing plate, is formed at a position close to the first main surface or the second main surface, and in which cooling water flows. .
- control unit circulates cooling water through the rotation shaft and through the circulation channel.
- the backing plate has a third side surface different from the first side surface and the second side surface, and an adhesion preventing plate is disposed on the third side surface via an insulating member. It is preferable that
- the cathode of one embodiment of the present invention includes a sputtering target in which base materials are individually arranged on two main surfaces. And it is possible to rotate a target with the rotating shaft provided so that it might penetrate the backing plate toward the 2nd side surface from the 1st side surface. By rotating the target (backing plate), the main surface (first main surface) facing the object to be processed and the main surface (second main surface) not facing the object to be processed in the same chamber. ) And can be changed (exchanged). That is, both of the two main surfaces of the backing plate can be used as the sputtering process surface, and both of the base materials arranged on the two main surfaces can be applied to the sputtering process.
- the object to be processed is subjected to the second formation using the second base material (first base material).
- first base material first base material
- second base material first base material
- FIG. 1A is a diagram illustrating a configuration of a film forming apparatus 100 including a cathode 120 according to an embodiment of the present invention.
- the film forming apparatus 100 includes a sputtering chamber 101 and a cathode 120.
- An exhaust device (exhaust portion) P for exhausting the inside of the chamber is attached to the wall portion of the chamber 101.
- the cathode 120 includes a sputtering target C, a control unit E connected to the target C, and a magnetic field generation unit H.
- the control part E has a rotation drive part, an electric power supply part, and a cooling water circulation part.
- the rotation drive unit rotates the rotation shaft provided in the target C.
- the power supply unit applies a voltage (power) used for sputtering to the target C or grounds the target C. That is, the power supply unit of the control unit E performs switching of power supply to the target C.
- the cooling water circulation unit supplies cooling water used for controlling the temperature of the target C to the cathode 120 and discharges the cooling water from the cathode 120.
- the target C is disposed in the chamber 101 at a position facing a table (support table) 103 that supports a substrate to be processed (object to be processed) 102.
- the support base 103 is grounded through the grounding portion.
- the target C includes a backing plate 104 having a flat shape, a first base material 105 disposed on a first main surface 104a (one main surface) of the backing plate 104, and a second main surface 104b (the other main surface). ) And the second base material 106 arranged.
- the material constituting the backing plate 104 is preferably a material having high conductivity, thermal conductivity, and low gas releasing property, and copper or stainless steel is mainly used.
- first base material 105 and the second base material 106 a material of a film formed on the substrate to be processed 102 such as a metal or an insulator is used.
- the first base material 105 and the second base material 106 may be made of the same material or different materials.
- the magnetic field generation unit H generates a film formation space 50 (a region where sputtering is performed) so that a leakage magnetic flux is generated on the surface (the first base material 105 or the second base material 106) of the backing plate close to the film formation space 50. ) And a position close to the surface of the backing plate 104 (on the non-sputtering surface side).
- the “non-sputtered surface” of the backing plate 104 is the first main surface 104a or the second main surface 104b and is a base material not used for sputtering (the first base material 105 or the second base surface 104b). This means the main surface on which the base material 106) is placed.
- the “sputtering surface” of the backing plate 104 is the first main surface 104a or the second main surface 104b, and a base material (first base material 105 or second base material 106) used for sputtering is placed on the backing plate 104. It means a main surface that is placed at a position close to the film formation space 50. Such “non-sputtering surface” and “sputtering surface” are switched as the backing plate 104 rotates. When the first main surface 104a is a non-sputtering surface, the second main surface 104b is sputtered.
- the second main surface 104b is a non-sputtering processing surface.
- Part of the magnetic flux generated by the magnetic field generation unit H penetrates the backing plate 104 from the non-sputtering surface to the sputtering surface, and the base material disposed on the sputtering surface of the backing plate 104 (FIG. 1A to FIG. In 1C, it leaks to the surface of the first base material 105).
- the base material is intensively sputtered by converging the plasma, so that film formation can be performed at high speed.
- the magnetic field generation unit H When the sputtering process is performed using the first base material 105, the magnetic field generation unit H is disposed at a position close to the second base material 106 and separated from the target C, and the leakage magnetic flux is transferred to the first base material 105. Generated on the surface of 105. In addition, when performing the sputtering process using the second base material 106, the magnetic field generation unit H is disposed so as to be close to the first base material 105 and to be separated from the target C, so that the leakage magnetic flux is It is generated on the surface of the base material 105.
- FIG. 1B is an enlarged perspective view showing a target C constituting the cathode 120 according to the embodiment of the present invention.
- the backing plate 104 has a rotating shaft 107 that is a rotating shaft parallel to the longitudinal direction L thereof.
- the rotating shaft 107 passes through the backing plate 104 from the first side surface 111 (one side surface) of the backing plate 104 toward the second side surface 112 (the other side surface).
- the rotating shaft 107 is electrically connected to the control unit E and rotates using the control unit E. Then, the backing plate 104 rotates in conjunction with the rotation of the rotating shaft 107. In order to achieve stable rotation, it is desirable that the rotation shaft penetrates so as to coincide with the center of gravity of the backing plate 104.
- the magnetic field generation unit H When performing the sputtering process, it is desirable that the magnetic field generation unit H is disposed at a position close to the target C. However, in order to rotate the target C, the magnetic field generation unit H and the magnetic field generation unit H are backed up so as not to prevent the rotation. It is necessary to leave a distance from the plate 104. Therefore, the magnetic field generation unit H according to the embodiment of the present invention includes a retract drive unit H1.
- the retreat drive unit H1 is a device that controls the position of the magnetic field generation unit H, and normally arranges the magnetic field generation unit H at a position close to the target C. Further, when the target C rotates, the retreat drive unit H1 retreats the magnetic field generation unit H outside the rotation radius of the target C. In addition, after the rotation of the target C is completed, the retracting drive unit H1 returns the target C to a normal position (position close to the target C, inside the rotation radius of the target C).
- the magnetic field generation unit H may be generally located outside the rotation radius of the target C. In this case, only during the sputtering process, the retracting drive unit H1 moves the magnetic field generating unit H to a position close to the target C, and after the sputtering process is completed, the retracting drive unit H1 moves the magnetic field generating unit H to the normal position. You may return to.
- the magnetic field generation unit H includes a swing drive unit H2.
- the swing drive unit H2 swings the magnetic field generation unit H in a direction parallel to the main surfaces (104a, 104b) of the backing plate 104.
- the swing driving unit H2 swings the magnetic field generating unit H in at least one of a direction perpendicular to the longitudinal direction L of the target C and a direction parallel to the longitudinal direction L of the target C.
- the magnetic flux generated by the magnetic field generation unit H can be uniformly leaked to the surface of the base material disposed at a position close to the sputtering processing surface.
- uniformly generating the leakage magnetic flux a region where the plasma converges is uniformly formed on the surface of the base material.
- FIG. 1C is a view showing the target C constituting the cathode according to the embodiment of the present invention shown in FIG. 1B, and is a cross-sectional view corresponding to a plane perpendicular to the longitudinal direction L thereof.
- a circulation channel first circulation channel and second circulation channel
- Cooling water flows through the circulation channel.
- the cooling water is introduced from one of the channels 108a and 108b and led out from the other.
- the rotation shaft 107 is connected to the control unit E.
- a sputtering voltage to be applied to the backing plate 104 is supplied from the control unit E to the backing plate 104 via a power supply line provided in the rotating shaft 107.
- the cooling water flowing through the circulation channels 108a and 108b is supplied from the control unit E to the circulation channel via a cooling water supply and discharge line provided in the rotary shaft 107.
- a deposition preventing plate 109 is provided on the third side surface 113 parallel to the longitudinal direction L of the backing plate 104.
- the deposition preventing plate 109 is grounded and prevents particles generated during the sputtering process from entering the side surface of the backing plate.
- an insulating member 109a is disposed between the deposition preventing plate 109 and the backing plate 104, and the insulating member 109a prevents the deposition preventing plate 109 from being damaged by a voltage supplied during sputtering.
- the cathode according to the embodiment of the present invention includes a sputtering target provided on each of the two main surfaces of the backing plate 104 and having a base material disposed thereon. And this cathode can rotate a target by the rotating shaft which penetrates a target toward the 2nd side 112 from the 1st side 111. By rotating the target, the main surface (first main surface) facing the object to be processed and the main surface (second main surface) not facing the object to be processed are changed in the same chamber. (Replacement). That is, both of the two main surfaces of the backing plate can be used as the sputtering process surface, and both of the base materials arranged on the two main surfaces can be applied to the sputtering process.
- the object to be processed is subjected to the second formation using the second base material (first base material).
- first base material first base material
- second base material first base material
- the magnetic field generation unit H is not provided inside the backing plate 104 but is disposed at a position separated from the backing plate 104. Therefore, the leakage magnetic flux can be generated on the surfaces of the two base materials using only one magnetic field generation unit H.
- the second base material 106 is made of the same material as the first base material 105, one target is used as compared with the case where the base material arranged only on one main surface of the backing plate is used as in the prior art.
- the per-use period can be extended. Thereby, the frequency
- each of the first base material 105 and the second base material 106 is made of a material that forms the lower layer and the upper layer of the laminated film formed on the substrate 102, only one target is used, Two film-forming processes can be performed continuously. Then, by performing two successive film formation processes in the same chamber, the gas in the chamber is exhausted between the film formation process using the first base material 105 and the film formation process using the second base material 106.
- a process (process) such as a process and a transfer of a substrate to be processed becomes unnecessary, and the time required for such a process (process) can be shortened.
- the first base material 105 is disposed so as to face the first main surface 104a of the backing plate 104, and the second base material 106 is disposed on the second main surface 104b of the backing plate 104. Arrange to face each other.
- the first base material 105 is joined to the first main surface 104a of the backing plate 104 using a first adhesive member (not shown). More specifically, the first adhesive member is applied to the first main surface 104a of the backing plate 104 forming the bonding surface, and the backing plate 104 and the first adhesive member are heated and melted at a temperature equal to or higher than the melting point. Then, the first base material 105 is disposed on the melted first adhesive member, and is cooled to room temperature in a state where the melted first adhesive member is sandwiched between the first base material 105 and the backing plate 104.
- the first adhesive member used in this step is preferably a low melting point metal, for example, indium.
- the backing plate 104 and the first base material 105 are joined in a high temperature state, and cooled to room temperature in the joined state. And the backing plate 104 is compressed with cooling.
- the first base material 105 is bonded only to the first main surface 104a, the compression rate of the backing plate 104 on the first main surface 104a and the compression rate of the backing plate 104 on the second main surface 104b are Different. Therefore, the backing plate 104 has a shape in which the first main surface 104a or the second main surface 104b is warped in a convex shape.
- FIG. 2B shows an example in which the backing plate 104 has a convex warp on the first main surface 104a.
- a convex warp may occur on the two principal surfaces 104b.
- the backing plate 104 warped by the joining of the first base material 105 and the backing plate 104 is shaped so as to have a flat shape.
- the method of shaping the backing plate 104 is not limited to a specific method, but in the present embodiment, pressure is applied to the second main surface 104b of the backing plate 104 in a direction opposite to the direction in which the warping occurs. Use mechanical correction methods.
- the second base material 106 is joined to the second main surface 104b of the backing plate 104 using a second adhesive member (not shown). More specifically, the second adhesive member is applied to the second main surface 104b of the backing plate 104 that forms the bonding surface, and the backing plate 104 and the second adhesive member are heated and melted at a temperature equal to or higher than the melting point. Then, the second base material 106 is disposed on the melted second adhesive member, and is cooled to room temperature in a state where the melted second adhesive member is sandwiched between the second base material 106 and the backing plate 104.
- the second adhesive member used in this step is preferably a low melting point metal, for example, indium.
- the backing plate 104 and the second base material 106 are bonded in a high temperature state and cooled to room temperature while being bonded. And the backing plate 104 is compressed with cooling.
- the first base material 105 is joined to the first main surface 104a and the second base material 106 is joined to the second main surface 104b
- the compression rate of the backing plate 104 on the first main surface 104a is different. Therefore, the backing plate 104 has a shape in which the first main surface 104a or the second main surface 104b is warped in a convex shape.
- the backing plate 104 warped by the joining of the second base material 106 and the backing plate 104 is shaped so as to have a flat shape.
- the method of shaping the backing plate 104 is not limited to a specific method, in the present embodiment, a method of mechanically correcting the backing plate 104 by applying pressure in a direction opposite to the direction in which the warping occurs. Is used.
- the adhesion preventing plate 109 is joined to the side surface parallel to the longitudinal direction L of the backing plate 104 by using an insulating adhesive member (insulating member) 109a.
- the target of the embodiment is formed.
- first base material 105 and the second base material 106 are joined to the backing plate 104 in this order.
- the joining order may be reversed, or the first base material 105 and the second base material 106 may be joined to both sides of the backing plate 104.
- the first base material 105 and the second base material 106 may be bonded together and then mechanically corrected.
- the target manufacturing method of the embodiment of the present invention it is not necessary to provide a fixing region in the base material as in the case where the base material is fixed to the backing plate using a fixing member such as a bolt or a clamp. Therefore, the entire region of the first base material 105 and the second base material 106 arranged on each main surface of the backing plate 104 can be used for sputtering.
- the backing plate warped by the bonding becomes a flat shape.
- Shape as follows. Therefore, it is possible to manufacture a target in which a base material having a flat surface is bonded to each of the two main surfaces of the backing plate. Accordingly, since the base material and the substrate to be processed are arranged in parallel, the sputtered particles popping out from the base material can be uniformly deposited on the processing surface of the substrate to be processed, thereby forming a film.
- 2A to 2F show, as an example, a method of joining the first base material 105 and the second base material 106 to each main surface of the backing plate 104 using an adhesive member.
- a fixing member such as a bolt or a clamp.
- FIG. 3 is a view showing a modification of the target and is a cross-sectional view corresponding to a plane perpendicular to the rotation axis.
- the backing plate 104 of the above embodiment is formed of a single plate
- the backing plate 214 of a modified example is formed of a plywood in which two plates (backing plates) 204 and 211 are overlapped.
- Inside the backing plate 214 are formed at positions close to the first main surface 214a, which is the outermost surface of the backing plate, and circulation channels 208a, 208b through which cooling water flows, and a second main surface, which is the outermost surface of the backing plate.
- the other configuration of the target is the same as the configuration of the embodiment of the present invention.
- FIG. 3 the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the cooling water circulation channels 108 a and 108 b are formed in the backing plate 104 at positions close to either the first main surface 104 a or the second main surface 104 b.
- the cooling water circulation channels 208a and 208b are formed in the backing plate 214 at positions close to both the first main surface 214a and the second main surface 214b. Therefore, according to the configuration of the modification, a target having a high cooling function for cooling both the first base material 205 and the second base material 212 can be obtained.
- a base material used for sputtering is disposed on each of two main surfaces which are the outermost surfaces of the backing plate. Therefore, in the chamber, after performing the sputtering process using the first base material 205 disposed on the first main surface 214a, the target is reversed and the second base material 212 disposed on the second main surface 214b. Can be used for sputtering.
- the second base material 212 is made of the same material as the first base material 205, one target is used as compared with the case where the base material arranged only on one main surface of the backing plate is used as in the prior art.
- the per-use period can be extended. Thereby, the frequency
- each of the first base material 205 and the second base material 212 is made of a material that forms a lower layer and an upper layer of a stacked film formed on the substrate to be processed
- the two base materials are formed using only one target.
- Two film forming processes can be performed continuously. Then, by performing two successive film forming processes in the same chamber, the gas in the chamber is exhausted between the film forming process using the first base material 205 and the film forming process using the second base material 212.
- a process (process) such as a process and a transfer of a substrate to be processed becomes unnecessary, and the time required for such a process (process) can be shortened.
- the first base material 205 is joined to the first main surface 204a of the backing plate 204 using the first adhesive member. More specifically, the first adhesive member is applied to the first main surface 204a of the backing plate 204 that forms the bonding surface, and the backing plate 204 and the first adhesive member are heated and melted at a temperature equal to or higher than the melting point. Then, the first base material 205 is disposed on the melted first adhesive member, and is cooled to room temperature in a state where the melted first adhesive member is sandwiched between the first base material 205 and the backing plate 204.
- the first adhesive member used in this step is preferably a low melting point metal, for example, indium.
- the backing plate 204 and the first base material 205 are bonded in a high temperature state and cooled to room temperature while being bonded. And the backing plate 204 is compressed with cooling.
- the first base material 205 is bonded only to the first main surface 204a, the compression rate of the backing plate 204 on the first main surface 204a and the compression rate of the backing plate 204 on the second main surface 204b are Different. Therefore, the backing plate 204 has a shape in which the first main surface 204a or the second main surface 204b is warped in a convex shape.
- the backing plate 204 warped by the joining of the first base material 205 and the backing plate 204 is shaped so as to have a flat shape.
- the method of shaping the backing plate 204 is not limited to a specific method, but in this modification, a method of mechanically correcting the backing plate 204 by applying a pressure in a direction opposite to the direction in which the warping occurs. Is used.
- the second base material 212 is joined to the first main surface 211 a of the backing plate 211 using the second adhesive member. More specifically, the second adhesive member is applied to the first main surface 211a of the backing plate 211 that forms the bonding surface, and the backing plate 211 and the second adhesive member are heated and melted at a temperature equal to or higher than the melting point. Then, the second base material 212 is disposed on the melted second adhesive member, and is cooled to room temperature in a state where the melted second adhesive member is sandwiched between the second base material 212 and the backing plate 211.
- the second adhesive member used in this step is preferably a low melting point metal, for example, indium.
- the backing plate 211 warped by the joining of the backing plate 211 and the second base material 212 is shaped so as to have a flat shape.
- the method of shaping the backing plate 211 is not limited to a specific method, but in this modification, a method of mechanically correcting the backing plate 211 by applying a pressure in a direction opposite to the direction in which the warping occurs. Is used.
- the backing plate 204 and the backing plate 211 are integrated so that the second major surface 204b of the backing plate 204 and the second major surface 211b of the backing plate 211 face each other.
- a method for integrating the two backing plates for example, a method in which an adhesive member is disposed between the main surface 204b and the main surface 211b and the two plates are joined to each other can be cited.
- a fixing member such as a bolt or a clamp in a state where the main surface 204b and the main surface 211b are overlapped.
- the adhesion preventing plate 209 is joined to the side surface (third side surface 113) parallel to the longitudinal direction of the backing plate 214 using an insulating adhesive member (insulating member) 209a. A variation of the target is formed.
- first step to the second step and the third step to the fourth step may be performed by changing the order, or may be performed simultaneously.
- the backing plate 214 is formed in advance by superimposing the two plates 204 and 211, and then the target manufacturing method described above is performed in the same manner as the backing plate 104 in the embodiment of the present invention. It is also formed by using.
- the target manufacturing method it is not necessary to provide a fixing region in the base material as in the case where the base material is fixed to the backing plate using a fixing member such as a bolt or a clamp. Therefore, the entire area of the first base material 205 and the second base material 212 arranged on the main surface of each backing plate 214 can be used for sputtering.
- the backing plate warped by the bonding is shaped to have a flat shape. To do. Therefore, it is possible to manufacture a target in which a base material having a flat surface is bonded to each of the two main surfaces of the backing plate. Accordingly, since the base material and the substrate to be processed are arranged in parallel, the sputtered particles popping out from the base material can be uniformly deposited on the processing surface of the substrate to be processed, thereby forming a film.
- the present invention can be widely applied to a case where a film forming process by sputtering is performed on an object to be processed.
- DESCRIPTION OF SYMBOLS 100 ... Film-forming apparatus, 104 ... Backing plate, 104a, 104b ... Main surface, 105 ... First base material, 106 ... Second base material, 107 ... Rotating shaft, 108a , 108b, a flow path, 109, a deposition plate, 109a, an insulating member, 120, a cathode, C, a target, E, a control unit, H, a magnetic field generation unit, L: Longitudinal direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本願は、2011年4月15日に出願された特願2011-091188号に基づき優先権を主張し、その内容をここに援用する。
一般的なスパッタリング装置では、チャンバ内にスパッタリング用のカソードが設けられ、減圧したチャンバ内において、カソードに取り付けられたターゲットと所定の間隔を空けて対向するように被処理体が配置される。
次に、チャンバ内に不活性ガス(例えば、アルゴンガス)を導入し、ターゲットに負の電圧を印加して放電させ、放電によりイオン化した不活性ガスをターゲットに衝突させる。
そして、ターゲットから飛び出す粒子を被処理体に付着させることにより、成膜処理が行われる。
図4Bは、図4Aの複数のチャンバ601の各々において、ターゲットとその近傍に配置された部材Cとを示す拡大図である(特許文献2参照)。
図4Bに示すように、ターゲットは、バッキングプレート604と、バッキングプレート604の表面に配置された母材605で構成されている。ターゲットにスパッタリング電圧を印加するカソード本体610は、複数のボルト部材を用いてターゲットに取り付けられる。
そして、カソード本体610は、チャンバ601内に配置されたカソード取付けフランジ611に、絶縁板612を介して複数のボルト部材を用いて取り付けられている。カソード取付けフランジ611は接地されている。
また、バッキングプレート604の内部には、ターゲットを冷却するために、冷却水が導入される流路608a及び冷却水が導出される流路608bで構成された循環流路が設けられている。
バッキングプレート604及びカソード本体610は、グラウンドシールド601aによって覆われている。グラウンドシールド601aには、ターゲットをチャンバ内の空間(成膜空間)に露出させる開口が形成されている。
グラウンドシールド601aは、成膜空間に面している部材のうち、ターゲット以外の部材において生じる放電を抑え、通常、接地された状態で、チャンバ(壁部)601に複数のボルト部材を用いて取り付けられている。
したがって、複数種類の成膜を連続して行う場合には、成膜の種類ごとに対応した別々のチャンバを用いる必要があり、チャンバが設置される複数のスペースを設けなければならない。
また、処理が終わるたびに、被処理体を、次の処理を行うチャンバへ搬送する必要がある。そのため、被処理体の搬送作業に要する時間、及び被処理体をチャンバ内に搬入したり搬出したりする工程に伴ってチャンバ内の気体を排気する作業(工程)に要する時間が生じ、一つの処理が終わってから次の処理が始まるまでの時間が長くなる。その結果として、成膜処理するために必要な時間が短くなる。
ターゲット(バッキングプレート)を回転させることにより、同一チャンバ内において、被処理体と対向していた主面(第1主面)と、被処理体に対向していなかった主面(第2主面)とを変更(交換)することができる。即ち、バッキングプレートの二つの主面の両方をスパッタリング処理面として用いることができ、二つの主面に配置された母材の両方をスパッタリング処理に適用することができる。
したがって、第1成膜処理(一種類目の成膜処理)が終わってから第2成膜処理(二種類目の成膜処理、次の成膜処理)が始まるまでの時間を短縮することができ、成膜処理するために必要な時間を、従来技術を用いる場合に比べて長く設けることができる。
図1Aは、本発明の実施形態に係るカソード120を備えた成膜装置100の構成について、説明する図である。
成膜装置100は、スパッタリング用のチャンバ101およびカソード120で構成されている。
チャンバ101の壁部には、チャンバ内を排気する排気装置(排気部)Pが付設されている。
カソード120は、スパッタリング用のターゲットCと、ターゲットCと接続された制御部Eと、磁場生成部Hとを有する。
制御部Eは、回転駆動部と、電力供給部と、冷却水循環部とを有する。回転駆動部は、ターゲットCに備えられた回転軸を回転させる。電力供給部は、スパッタリングに用いられる電圧(電力)をターゲットCに印加したり、ターゲットCを接地させたりする。即ち、制御部Eの電力供給部はターゲットCに対する電力供給のスイッチングを行う。冷却水循環部は、ターゲットCの温度を制御するために用いられる冷却水をカソード120に供給したり、カソード120から冷却水を排出したりする。
ターゲットCは、チャンバ101内において、被処理基板(被処理体)102を支持する台(支持台)103と対向する位置に配置される。支持台103は、接地部を通じて接地されている。
以下の説明において、バッキングプレート104の「非スパッタリング処理面」とは、第1主面104a又は第2主面104bであって、スパッタリングに用いられていない母材(第一母材105又は第二母材106)が載置されている主面を意味する。
また、バッキングプレート104の「スパッタリング処理面」とは、第1主面104a又は第2主面104bであって、スパッタリングに用いられる母材(第一母材105又は第二母材106)が載置され、成膜空間50に近い位置に配置される主面を意味する。
このような「非スパッタリング処理面」及び「スパッタリング処理面」は、バッキングプレート104の回転に伴って切り替わり、第1主面104aが非スパッタリング処理面である場合には、第2主面104bがスパッタリング処理面となり、第1主面104aがスパッタリング処理面である場合には、第2主面104bが非スパッタリング処理面となる。
磁場生成部Hにより生成される磁束の一部は、バッキングプレート104を非スパッタリング処理面からスパッタリング処理面に向けて貫通し、バッキングプレート104のスパッタリング処理面に配置された母材(図1A~図1Cでは第一母材105)の表面に漏洩する。
磁束が漏洩した領域においては、プラズマが収束することにより、集中的に母材がスパッタリングされるため、高速で成膜をすることが可能となる。
また、磁場生成部Hは、第二母材106を用いてスパッタリング処理を行う場合には、第一母材105に近い位置であってターゲットCと離間するように配置され、漏洩磁束を第二母材105の表面に生成する。
バッキングプレート104は、その長手方向Lに平行な回転軸である回転軸107を有する。回転軸107は、バッキングプレート104の第1側面111(一方の側面)から第2側面112(他方の側面)に向けてバッキングプレート104を貫通している。回転軸107は、制御部Eと電気的に接続されており、制御部Eを用いて回転する。
そして、回転軸107の回転に連動して、バッキングプレート104が回転する。安定した回転を実現するために、回転軸はバッキングプレート104の重心に一致するように貫通していることが望ましい。
そこで、本発明の実施形態に係る磁場生成部Hは、退避駆動部H1を備えている。退避駆動部H1は、磁場生成部Hの位置を制御する装置であり、通常、ターゲットCに近い位置に磁場生成部Hを配置させる。また、ターゲットCが回転する際には、退避駆動部H1は、ターゲットCの回転半径よりも外側に磁場生成部Hを退避させる。また、退避駆動部H1は、ターゲットCの回転が終了した後に、ターゲットCを通常の位置(ターゲットCに近い位置、ターゲットCの回転半径よりも内側)に戻す。
この揺動により、磁場生成部Hよって生成される磁束を、スパッタリング処理面に近い位置に配置された母材の表面に、均一に漏洩させることができる。
漏洩磁束を均一に発生させることにより、母材の表面においてプラズマが収束する領域が一様に形成される。
そのため、スパッタリング処理によって母材表面に生じるエロージョンが均一化され、ターゲットCの利用効率を向上させることができる。
そして、被処理基板102の表面に対して、面内分布の均一性を高めた成膜処理を行うことができる。
バッキングプレート104内には、第2主面104bに近い位置(近傍)に形成され、流路108a及び108bで構成された循環流路(第1循環流路及び第2循環流路)が形成されている。循環流路には、冷却水が流動する。
冷却水は、流路108aおよび108bのうち、一方から導入され、他方から導出される。循環流路108aおよび108bに冷却水(冷媒)を流すことにより、スパッタリング処理中の第一母材105および第二母材106の温度上昇を抑えることができる。
バッキングプレート104に印加するスパッタリング電圧は、制御部Eから、回転軸107内に設けられた電力供給ラインを介してバッキングプレート104に供給される。
また、循環流路108a、108bを流れる冷却水は、制御部Eから、回転軸107内に設けられた冷却水の供給及び排出用ラインを介して、循環流路に供給される。
防着板109は、接地されており、スパッタリング処理中に発生した粒子がバッキングプレートの側面に回り込むのを防ぐ。
また、防着板109とバッキングプレート104との間には絶縁部材109aが配置され、絶縁部材109aは、スパッタリング時に供給される電圧によって防着板109にダメージが発生することを防ぐ。
そして、このカソードは、第1側面111から第2側面112に向けてターゲットを貫通する回転軸により、ターゲットを回転させることが可能である。
ターゲットを回転させることにより、同一チャンバ内において、被処理体と対向していた主面(第1主面)と、被処理体に対向していなかった主面(第2主面)とを変更(交換)することができる。即ち、バッキングプレートの二つの主面の両方をスパッタリング処理面として用いることができ、二つの主面に配置された母材の両方をスパッタリング処理に適用することができる。
したがって、第1成膜処理が終わってから第2成膜処理(次の成膜処理)が始まるまでの時間を短縮することができ、成膜処理するために必要な時間を、従来技術を用いる場合に比べて長く設けることができる。
これにより、母材の交換回数を減らすことができ、交換にともなって発生する、チャンバ内の気体を排気する作業(工程)の回数を減らすことができる。
そして、連続する二つの成膜処理を同一チャンバ内で行うことにより、第一母材105による成膜工程と第二母材106による成膜工程との間に行う、チャンバ内の気体を排気する工程及び被処理基板の搬送等の作業(工程)が不要となり、このような作業(工程)に要する時間を短縮することができる。
上記本発明の実施形態の構成を備えたターゲットの製造方法について、図2A~図2Fに示す工程図を用いて説明する。
まず、図2Aに示す第一工程において、第一母材105をバッキングプレート104の第1主面104aに対向するように配置し、第二母材106をバッキングプレート104の第2主面104bに対向するように配置する。
より具体的には、接合面を形成するバッキングプレート104の第1主面104aに第一接着部材を塗布し、バッキングプレート104及び第一接着部材を融点以上の温度で加熱して融解させる。
そして、融解した第一接着部材上に第一母材105を配置し、第一母材105とバッキングプレート104との間に融解した第一接着部材が挟まれた状態で室温まで冷却する。
この工程で用いる第一接着部材としては、低融点金属であることが望ましく、例えば、インジウムが用いられる。
そして、冷却にともなって、バッキングプレート104は圧縮される。
このとき、第1主面104aにのみ第一母材105が接合されているため、第1主面104aにおけるバッキングプレート104の圧縮率と、第2主面104bにおけるバッキングプレート104の圧縮率とは異なる。
したがって、バッキングプレート104は、第1主面104aあるいは第2主面104bにおいて、凸状に反りが生じた形状を有する。
バッキングプレート104を整形する方法は、特定の方法に限定されないが、本実施形態では、バッキングプレート104の第2主面104bに対し、反りが生じている方向とは逆の方向に圧力を加えて機械的に矯正する方法を用いる。
より具体的には、接合面を形成するバッキングプレート104の第2主面104bに第二接着部材を塗布し、バッキングプレート104及び第二接着部材を融点以上の温度で加熱して融解させる。
そして、融解した第二接着部材上に第二母材106を配置し、第二母材106とバッキングプレート104との間に融解した第二接着部材が挟まれた状態で室温まで冷却する。
この工程で用いる第二接着部材としては、低融点金属であることが望ましく、例えば、インジウムが用いられる。
そして、冷却にともなって、バッキングプレート104は圧縮される。
このとき、第1主面104aには第一母材105が接合され、第2主面104bには第二母材106が接合されているため、第1主面104aにおけるバッキングプレート104の圧縮率と、第2主面104bにおけるバッキングプレート104の圧縮率とは異なる。
したがって、バッキングプレート104は、第1主面104aあるいは第2主面104bにおいて、凸状に反りが生じた形状を有する。
バッキングプレート104を整形する方法は、特定の方法に限定されないが、本実施形態では、バッキングプレート104に対し、反りが生じている方向とは逆の方向に圧力を加えて機械的に矯正する方法を用いる。
したがって、バッキングプレート104の各々の主面に配置された第一母材105及び第二母材106の全域をスパッタリングに用いることができる。
したがって、バッキングプレートの二つの主面の各々に、個別に、表面が平坦な形状を有する母材が接合されたターゲットを製造することができる。
これにより、母材と被処理基板が平行に配置されるため、母材から飛び出すスパッタ粒子を被処理基板の処理面内に均一に付着させ、成膜することができる。
したがって、上記第二工程及び第四工程に相当する工程は不要となり、より簡略化したプロセスでターゲットを製造することができる。
図3は、ターゲットの変形例を示す図であって、回転軸に垂直な面に対応する断面図である。
上記実施形態のバッキングプレート104は、単板で形成されていたのに対し、変形例のバッキングプレート214は、二枚の板(バッキングプレート)204及び211が重ね合わされた合板で構成されている。
バッキングプレート214の内部には、バッキングプレートの最外面である第1主面214aに近い位置に形成され、冷却水が流動する循環流路208a、208bと、バッキングプレートの最外面である第2主面214bに近い位置に形成され、冷却水が流動する循環流路213a、213bとが設けられている。
変形例において、ターゲットにおけるその他の構成は、本発明の実施形態の構成と同様である。図3において、上記実施形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
これに対し、変形例の構成では、冷却水の循環流路208a、208bは、バッキングプレート214内において、第1主面214a及び第2主面214bの両方に近い位置に形成されている。
したがって、変形例の構成によれば、第一母材205及び第二母材212の両方を冷却する高い冷却機能を有するターゲットを得ることができる。
そのため、チャンバ内において、第1主面214aに配置された第一母材205を用いてスパッタリング処理を行った後に、ターゲットを反転させて、第2主面214bに配置された第二母材212を用いてスパッタリング処理を行うことができる。
これにより、母材の交換回数を減らすことができ、交換にともなって発生する、チャンバ内の気体を排気する作業(工程)の回数を減らすことができる。
そして、連続する二つの成膜処理を同一チャンバ内で行うことにより、第一母材205による成膜工程と第二母材212による成膜工程との間に行う、チャンバ内の気体を排気する工程及び被処理基板の搬送等の作業(工程)が不要となり、このような作業(工程)に要する時間を短縮することができる。
上記変形例の構成を備えたターゲットの製造方法の一例について説明する。
より具体的には、接合面を形成するバッキングプレート204の第1主面204aに第一接着部材を塗布し、バッキングプレート204及び第一接着部材を融点以上の温度で加熱して融解させる。
そして、融解した第一接着部材上に第一母材205を配置し、第一母材205とバッキングプレート204との間に融解した第一接着部材が挟まれた状態で室温まで冷却する。
この工程で用いる第一接着部材としては、低融点金属であることが望ましく、例えば、インジウムが用いられる。
そして、冷却にともなって、バッキングプレート204は圧縮される。
このとき、第1主面204aにのみ第一母材205が接合されているため、第1主面204aにおけるバッキングプレート204の圧縮率と、第2主面204bにおけるバッキングプレート204の圧縮率とは異なる。
したがって、バッキングプレート204は、第1主面204aあるいは第2主面204bにおいて、凸状に反りが生じた形状を有する。
バッキングプレート204を整形する方法は、特定の方法に限定されないが、本変形例では、バッキングプレート204に対し、反りが生じている方向とは逆の方向に圧力を加えて機械的に矯正する方法を用いる。
より具体的には、接合面を形成するバッキングプレート211の第1主面211aに第二接着部材を塗布し、バッキングプレート211及び第二接着部材を融点以上の温度で加熱して融解させる。
そして、融解した第二接着部材上に第二母材212を配置し、第二母材212とバッキングプレート211との間に融解した第二接着部材が挟まれた状態で室温まで冷却する。
この工程で用いる第二接着部材としては、低融点金属であることが望ましく、例えば、インジウムが用いられる。
バッキングプレート211を整形する方法は、特定の方法に限定されないが、本変形例では、バッキングプレート211に対し、反りが生じている方向とは逆の方向に圧力を加えて機械的に矯正する方法を用いる。
2つのバッキングプレートを一体化させる方法としては、例えば、主面204bと主面211bとの間に接着部材を配置し、両プレートを接合する方法が挙げられる。或いは、主面204bと主面211bとを重ね合わせた状態で、両プレートをボルト又はクランプ等の固定用部材により固定する方法がある。
したがって、バッキングプレート214の各々の主面に配置された第一母材205及び第二母材212の全域をスパッタリングに用いることができる。
したがって、バッキングプレートの二つの主面の各々に、個別に、表面が平坦な形状を有する母材が接合されたターゲットを製造することができる。
これにより、母材と被処理基板が平行に配置されるため、母材から飛び出すスパッタ粒子を被処理基板の処理面内に均一に付着させ、成膜することができる。
Claims (7)
- 成膜装置に用いられるカソードであって、
第1主面,前記第1主面とは反対側に位置する第2主面,第1側面,及び前記第1側面とは反対側に位置する第2側面を有するバッキングプレートと、前記第1主面に配置された第一母材と、前記第2主面に配置された第二母材と、前記第1側面から前記第2側面に向けて前記バッキングプレートを貫通する回転軸とを有し、成膜空間内に設けられたターゲットと、
前記回転軸を回転させ、前記回転軸を介して前記ターゲットにスパッタリングに用いられる電力を供給する制御部と、
前記第一母材又は前記第二母材に漏洩磁束が生成されるように、前記成膜空間から離れた前記バッキングプレートの面に近い位置に設けられた磁場生成部とを含む
ことを特徴とするカソード。 - 請求項1に記載のカソードであって、
前記磁場生成部は、
漏洩磁束が前記第一母材に生成されるときは、前記第二母材に近い位置に配置され、
漏洩磁束が前記第二母材に生成されるときは、前記第一母材に近い位置に配置されている
ことを特徴とするカソード。 - 請求項1又は請求項2に記載のカソードであって、
前記磁場生成部は、
前記ターゲットが回転するときに前記ターゲットの回転半径より外側に前記磁場生成部を退避し、前記回転が終了したときに前記磁場生成部を元の位置に戻す退避駆動部を備えている
ことを特徴とするカソード。 - 請求項1から請求項3のいずれか一項に記載のカソードであって、
前記磁場生成部は、
前記ターゲットの長手方向に垂直な方向及び前記ターゲットの長手方向に平行な方向のうち少なくとも一方向に前記磁場生成部を揺動させる揺動駆動部を備えている
ことを特徴とするカソード。 - 請求項1から請求項4のいずれか一項に記載のカソードであって、
前記バッキングプレートの内部に設けられ、前記第1主面あるいは前記第2主面に近い位置に形成され、冷却水が流動する循環流路を備える
ことを特徴とするカソード。 - 請求項5に記載のカソードであって、
前記制御部は、前記回転軸を通して、前記循環流路に冷却水を循環させる
ことを特徴とするカソード。 - 請求項1から請求項6のいずれか一項に記載のカソードであって、
前記バッキングプレートは、前記第1側面及び前記第2側面とは異なる第3側面を有し、前記第3側面には絶縁部材を介して防着板が配置されている
ことを特徴とするカソード。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137019798A KR101515048B1 (ko) | 2011-04-15 | 2011-11-18 | 캐소드 |
CN201180065037.7A CN103314129B (zh) | 2011-04-15 | 2011-11-18 | 阴极 |
JP2013509737A JP5721817B2 (ja) | 2011-04-15 | 2011-11-18 | カソード |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-091188 | 2011-04-15 | ||
JP2011091188 | 2011-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012140804A1 true WO2012140804A1 (ja) | 2012-10-18 |
Family
ID=47009003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076674 WO2012140804A1 (ja) | 2011-04-15 | 2011-11-18 | カソード |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5721817B2 (ja) |
KR (1) | KR101515048B1 (ja) |
CN (1) | CN103314129B (ja) |
TW (1) | TWI518195B (ja) |
WO (1) | WO2012140804A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7362327B2 (ja) * | 2019-07-18 | 2023-10-17 | 東京エレクトロン株式会社 | ターゲット構造体及び成膜装置 |
JP7389917B2 (ja) * | 2020-09-17 | 2023-11-30 | 株式会社アルバック | スパッタ装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176266A (ja) * | 1996-12-18 | 1998-06-30 | Dainippon Printing Co Ltd | スパッタ装置 |
JPH11189868A (ja) * | 1997-12-25 | 1999-07-13 | Matsushita Electric Ind Co Ltd | スパッタリング装置及び方法 |
JP2003293130A (ja) * | 2002-03-29 | 2003-10-15 | Anelva Corp | スパッタリング装置 |
JP2006233240A (ja) * | 2005-02-22 | 2006-09-07 | Canon Inc | スパッタ用カソード及びスパッタ装置 |
-
2011
- 2011-11-18 WO PCT/JP2011/076674 patent/WO2012140804A1/ja active Application Filing
- 2011-11-18 JP JP2013509737A patent/JP5721817B2/ja active Active
- 2011-11-18 KR KR1020137019798A patent/KR101515048B1/ko active IP Right Grant
- 2011-11-18 CN CN201180065037.7A patent/CN103314129B/zh active Active
- 2011-11-22 TW TW100142792A patent/TWI518195B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176266A (ja) * | 1996-12-18 | 1998-06-30 | Dainippon Printing Co Ltd | スパッタ装置 |
JPH11189868A (ja) * | 1997-12-25 | 1999-07-13 | Matsushita Electric Ind Co Ltd | スパッタリング装置及び方法 |
JP2003293130A (ja) * | 2002-03-29 | 2003-10-15 | Anelva Corp | スパッタリング装置 |
JP2006233240A (ja) * | 2005-02-22 | 2006-09-07 | Canon Inc | スパッタ用カソード及びスパッタ装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012140804A1 (ja) | 2014-07-28 |
CN103314129A (zh) | 2013-09-18 |
TW201241212A (en) | 2012-10-16 |
KR101515048B1 (ko) | 2015-04-24 |
JP5721817B2 (ja) | 2015-05-20 |
CN103314129B (zh) | 2015-05-20 |
KR20130109218A (ko) | 2013-10-07 |
TWI518195B (zh) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5960384B2 (ja) | 静電チャック用基板及び静電チャック | |
JP6069540B2 (ja) | カソードユニット | |
JP7426773B2 (ja) | 物理的気相堆積処理システムのターゲットの冷却 | |
WO2010038271A1 (ja) | スパッタリング装置および薄膜形成方法 | |
JP6559233B2 (ja) | マグネトロンスパッタリング装置 | |
JP6579726B2 (ja) | スパッタ装置 | |
KR20120023035A (ko) | 성막 방법 및 성막 장치 | |
JP6641472B2 (ja) | 成膜方法及びスパッタリング装置 | |
JP5721817B2 (ja) | カソード | |
WO2019131010A1 (ja) | スパッタリング方法及びスパッタリング装置 | |
TW202219298A (zh) | 濺鍍裝置 | |
JP5721815B2 (ja) | ターゲット及びターゲットの製造方法 | |
KR101994343B1 (ko) | 캐소드 어셈블리 | |
JP7044887B2 (ja) | スパッタリング装置 | |
JP2007051337A (ja) | スパッタ電極及びスパッタ電極を備えたスパッタリング装置 | |
JP2010255011A (ja) | スパッタリング装置 | |
JP2019019376A (ja) | 成膜方法及びスパッタリング装置 | |
TW201437397A (zh) | 物理蒸氣沉積系統 | |
KR20130111025A (ko) | 스퍼터링 멀티 타켓 어셈블리 및 이를 채용한 스퍼터링 증착 장비 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11863650 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013509737 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137019798 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11863650 Country of ref document: EP Kind code of ref document: A1 |