WO2012086393A1 - ボールジョイント - Google Patents
ボールジョイント Download PDFInfo
- Publication number
- WO2012086393A1 WO2012086393A1 PCT/JP2011/078045 JP2011078045W WO2012086393A1 WO 2012086393 A1 WO2012086393 A1 WO 2012086393A1 JP 2011078045 W JP2011078045 W JP 2011078045W WO 2012086393 A1 WO2012086393 A1 WO 2012086393A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ball joint
- dlc film
- ball
- hardness
- hard carbon
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
- F16C11/0604—Construction of the male part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
- F16C11/0604—Construction of the male part
- F16C11/0609—Construction of the male part made from two or more parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
- F16C11/0619—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
- F16C11/0623—Construction or details of the socket member
- F16C11/0628—Construction or details of the socket member with linings
- F16C11/0633—Construction or details of the socket member with linings the linings being made of plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/043—Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2202/00—Solid materials defined by their properties
- F16C2202/02—Mechanical properties
- F16C2202/04—Hardness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2206/00—Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
- F16C2206/02—Carbon based material
- F16C2206/04—Diamond like carbon [DLC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/20—Thermoplastic resins
- F16C2208/66—Acetals, e.g. polyoxymethylene [POM]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/54—Surface roughness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/01—Parts of vehicles in general
- F16C2326/05—Vehicle suspensions, e.g. bearings, pivots or connecting rods used therein
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/20—Land vehicles
- F16C2326/24—Steering systems, e.g. steering rods or columns
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/32—Articulated members
- Y10T403/32606—Pivoted
- Y10T403/32631—Universal ball and socket
- Y10T403/32681—Composite ball
- Y10T403/32696—Nonmetallic part
Definitions
- the present invention relates to a ball joint that rotatably holds a ball stud having a spherical portion.
- the ball joint 801 includes a ball stud 810 having a spherical portion 811 and a resin sheet 820 having a curved surface portion 821 having a shape (curvature) along the spherical portion 811.
- the ball joint 801 having such a configuration allows the spherical surface portion 811 held by the curved surface portion 821 of the resin sheet 820 to freely rotate, and can freely change the angle at which the two materials are joined. Since it is useful, it is widely used for automobile chassis parts, that is, suspensions, arms, tie rods, steering mechanisms, link mechanisms, stabilizers, and the like.
- Ball joints have been researched and developed for a long time to improve motor performance, ride comfort, steering feel, safety and durability. For example, a technique for forming an Fe 2-3 NC phase by carburizing and nitriding an iron member is widely performed.
- Patent Documents 1 and 2 a technique for improving a lubricant composition, and as described in Patent Documents 3 and 4, it relates to the material and structure of a sheet (shell).
- a technique of providing an amorphous hard carbon film (DLC film) on at least one of a dust seal and a shaft member with which the dust seal abuts has been proposed.
- Non-Patent Document 1 a technique for providing a Fe 3 O 4 iron oxide (magnetite) layer on the spherical surface of a ball stud has been proposed.
- JP 2003-20492 A Japanese Patent No. 4199109 Special table 2004-538431 gazette JP 2005-535854 A JP 2006-300204 A JP 2005-83400 A
- Non-Patent Document 1 In the case of the technique of providing a magnetite layer on the spherical surface of the ball stud described in Non-Patent Document 1, good wear resistance and corrosion resistance can be obtained by the magnetite layer, but the sliding behavior of the joint portion is not good. There is a problem that a stick-slip phenomenon is likely to occur, which becomes stable and repeats sliding or sliding due to friction.
- the present invention has been made in view of the above problems, and an object thereof is to provide a ball joint excellent in wear resistance, corrosion resistance and stability of sliding characteristics.
- the present invention provides a ball joint having a ball stud having a spherical portion and a resin sheet that rotatably holds the spherical portion, and the surface of the spherical portion has a hardness.
- An amorphous hard carbon film of 6 to 39 GPa is provided.
- the hardness of the amorphous hard carbon film is in such a specific range, so the hardness of the amorphous hard carbon film is not excessively high, so the resin sheet is made of the amorphous hard carbon film during sliding. Wear resistance (also called opponent attack) can be suppressed, and wear resistance can be improved. Further, since the hardness of the amorphous hard carbon film is not excessively low, it is possible to suppress the disappearance of the amorphous hard carbon film due to wear. Furthermore, since an amorphous hard carbon film is provided, it is excellent in lubricity and corrosion resistance. As a result, a ball joint having excellent wear resistance, corrosion resistance, and stability of sliding characteristics in the amorphous hard carbon film and the resin sheet can be obtained.
- the root mean square roughness of the amorphous hard carbon film is 60 nm or less. In this way, since the surface roughness of the amorphous hard carbon film does not become excessively high, the wear resistance, corrosion resistance and lubricity of the amorphous hard carbon film and the resin sheet are made more difficult to be impaired. Can do. Therefore, more stable sliding characteristics can be obtained.
- the resin sheet is preferably polyacetal, nylon, polyamide, polytetrafluoroethylene, polyetheretherketone, elastomer, or a fiber-reinforced composite material thereof. In this way, it is possible to obtain a more stable and stable sliding characteristic in combination with the elasticity characteristic and the shock absorption characteristic of these resin sheets.
- the hardness of the amorphous hard carbon film is in a specific range, it is possible to provide a ball joint excellent in wear resistance, corrosion resistance and sliding property stability.
- the horizontal axis indicates time [second], and the vertical axis indicates torque [Nm]. It is a graph which shows the result of the sliding behavior test using high-viscosity general purpose grease. In the figure, the horizontal axis indicates time [second], and the vertical axis indicates torque [Nm]. It is a partial sectional view explaining the conventional ball joint.
- the gist of the present invention is to provide an amorphous hard carbon film with a specific hardness on the spherical surface of the ball stud to smoothly stabilize the sliding behavior (torque behavior) during sliding and stabilize the sliding characteristics. It is to let you.
- a ball joint 1 includes a ball stud 10 having a spherical surface portion 11 and a resin sheet 20 that rotatably holds the spherical surface portion 11.
- the resin sheet 20 has a curved surface portion 21 having a shape (curvature) along the spherical surface portion 11 of the ball stud 10, and is combined so that the curved surface portion 21 and the spherical surface portion 11 of the ball stud 10 come into contact with each other. ing.
- the ball stud 10 and the resin sheet 20 combined as described above have the shaft member 12 of the ball stud 10 of the cylindrical housing 30. It is provided so as to protrude from one opening 31.
- the opening 31 has a bent portion 32 formed by bending inside.
- the ball stud 10 and the resin sheet 20 inserted from the other opening 33 of the housing 30 stop at the position where the resin sheet 20 hits the inside of the bent portion 32, and the other opening 33 is plugged by the plug 40. It is fixed by closing.
- the housing 30 is fixed to automobile chassis parts such as a suspension, an arm, a tie rod, a steering mechanism, a link mechanism, and a stabilizer (not shown). Therefore, the ball joint 1 according to the present embodiment includes a housing 30 (resin sheet 20) that is fixed to a vehicle chassis component by sliding the curved surface portion 21 of the resin sheet 20 and the spherical surface portion 11 of the ball stud 10. ) To rotate freely.
- a flange portion 35 is provided on the outer peripheral surface of the housing 30, and a boot 50 is provided so as to cover from the flange portion 35 to an arbitrary position of the shaft member 12 of the ball stud 10.
- the boot 50 is formed of an elastomer such as rubber or synthetic rubber so as not to hinder the operation of the ball stud 10, and grease 60 is filled inside the boot 50.
- a curved surface portion 34 having a curved surface corresponding to the spherical surface portion 11 is formed on the entire circumference of the bent portion 32 with a slight gap that does not directly contact the spherical surface portion 11.
- the grease 60 is supplied between the spherical portion 11 of the ball stud 10 and the curved portion 21 of the resin sheet 20 from between the spherical portion 11 and the curved portion 34. These sliding operations are performed more smoothly.
- the grease 60 can be used without particular limitation as long as it is generally used for the ball joint 1.
- an amorphous hard carbon film (hereinafter, simply referred to as “DLC film”) 13 having a hardness of 6 to 39 GPa is provided on the surface of the spherical portion 11 of the ball stud 10. ing.
- DLC film 13 having such a hardness, it is possible to suppress the wear aggressiveness of the DLC film 13 to the resin sheet 20 during sliding, and to suppress the disappearance of the DLC film 13 due to wear. Can do. That is, the wear resistance as the ball joint 1 is excellent, and the lubricity and corrosion resistance of the DLC film 13 are not impaired, so that the sliding characteristics can be excellent.
- the hardness of the DLC film 13 is 6 to 39 GPa.
- the hardness of the DLC film 13 is preferably 9 to 29 GPa, more preferably 9 to 21 GPa.
- the hardness of the DLC film 13 has a good correlation with the hydrogen content in the DLC film 13. That is, when the hydrogen content in the DLC film 13 is large, the hardness of the DLC film 13 tends to decrease, and when the hydrogen content in the DLC film 13 is small, the hardness of the DLC film 13 tends to increase.
- the hardness of the DLC film 13 is in the range of 6 to 39 GPa as described above, the hydrogen in the DLC film 13 varies slightly depending on the film forming conditions such as the raw material, pressure, film forming time, bias voltage, and plasma intensity.
- the content may be about 17 to 43 at% (atomic%).
- Examples of raw materials for the DLC film 13 include methane (CH 4 ), acetylene (C 2 H 2 ), toluene (C 7 H 8 ), benzene (C 6 H 6 ), and tetramethylsilane (Si (CH 3 ) 4. Hydrocarbon gas such as TMS).
- a method for forming the DLC film 13 plasma CVD (Chemical Vapor Deposition) using these raw materials can be preferably used.
- the DLC film 13 can be formed by a film forming method other than plasma CVD as long as it has the above-described hardness. The method and conditions for providing the DLC film 13 can be appropriately selected according to the desired hardness.
- the DLC film 13 may contain Si (silicon), Ti (titanium), W (tungsten), Cr (chromium), or the like. When these elements are contained, the mechanical properties such as hardness and Young's modulus of the DLC film 13 and the nano-level surface structure can be controlled, and additional components such as a wax component contained in the grease 60 can be controlled. Adsorbability can be controlled.
- the hardness and Young's modulus of the DLC film 13 can be measured by a nanoindentation method (nanoindenter) based on ISO 14577, and can be calculated with high accuracy.
- the hydrogen content in the DLC film 13 can be measured by, for example, Rutherford Backscattering Spectrometry (RBS).
- the surface roughness of the DLC film 13 is preferably 60 nm or less in terms of root mean square roughness (Rq). If the root mean square roughness is 60 nm or less, the roughness of the surface of the DLC film 13 is not excessively high, so that the wear attack of the DLC film 13 on the resin sheet 20 can be more reliably suppressed. Therefore, it is possible to obtain the ball joint 1 having more excellent wear resistance.
- the root mean square roughness (Rq) of the DLC film 13 is measured using an atomic force microscope (AFM), and can be calculated based on the obtained result in accordance with JIS B0601: 2001.
- the film physical properties such as hardness, Young's modulus, hydrogen content and surface roughness (root mean square roughness) of the DLC film 13 depend on the combination of apparatus conditions such as the type of source gas used, bias voltage to be applied, and the film formation time. Can be controlled. For example, when CH 4 , C 2 H 2 , C 6 H 6 , C 7 H 8 , TMS, or the like is used as the source gas, the pressure is 0.1 to 9.0 Pa and the bias voltage of the spherical portion 11 is 400 to 2000 V. The plasma output is set to 20 to 200 W and the film formation time is set to 15 to 240 min.
- the resin sheet 20 can be suitably made of polyacetal, nylon, polyamide, polytetrafluoroethylene, polyetheretherketone, elastomer, or a fiber reinforced composite material thereof. If it is a resin-made sheet made of a material selected from these, it is possible to obtain excellent elasticity characteristics and shock absorption. In addition, the resin-made sheet
- seat 20 can also use what was produced with resin and fiber reinforced composite materials other than these, if the desired effect of this invention can be show
- the constituent members such as the ball stud 10, the housing 30, and the plug 40 are preferably steel materials including ordinary steel and special steel, but may be nonferrous metal members or ceramic members.
- Common steel includes rolled steel for general structure (SS material), rolled steel for welded structure (SM material), boiler and pressure vessel steel (SB material), and high-pressure gas container.
- SS material rolled steel for general structure
- SM material rolled steel for welded structure
- SB material boiler and pressure vessel steel
- high-pressure gas container steel plate and steel strip
- SG material hot rolled steel material and steel strip
- SPHT material hot rolled carbon steel strip for steel pipes
- SAPH material automotive structural hot rolled steel plate and steel strip
- SPC materials cold rolled steel sheets and steel strips
- high carbon chrome bearing steel (SUJ2 material), chrome steel (SCr material), chrome molybdenum steel material (SCM material) and nickel chrome molybdenum steel (SNCM) are preferable.
- SC material carbon tool steel material
- SK material alloy tool steel material for cutting tool
- SKD material alloy tool steel material for cold die
- SKT material high-speed tool steel
- SUS material stainless steel
- SUS material heat-resistant steel
- SLA materials carbon steel materials for containers
- SLA materials magnetic core steels and magnet steels
- SF materials forged steel products
- SC materials cast steel products
- FC materials cast iron products
- non-ferrous metal examples include aluminum, magnesium, titanium, or an alloy mainly composed of any one selected from these.
- Al—Si—Cu—Mg—Ni Al—Si alloy 4000 series
- Al—Mg alloy 5000 series
- Al—Mg—Si alloy 6000 series
- Al—Zn—Mg— Cu Al—Zn—Mg alloy
- Al—Cu alloy AC1A
- Al—Cu—Mg alloy AC1B
- Al—Cu—Mg—Ni alloy AC5A
- Al—Si alloy AC3A
- ADC1 Al—Cu—Si alloys (AC2A, AC2B), Al—Si—Cu alloys (AC4B, ADC10, ADC12), Al—Si—Mg alloys (AC4C, AC4C) , ADC3)
- Al-Si-Cu-Mg-Ni alloy AC8A, AC8B
- magnesium or magnesium alloy examples include 1 to 7 types specified by JIS.
- examples of titanium or titanium alloy examples include 1 to 4 types specified by JIS.
- the ball stud 10, the housing 30, and the plug 40 may be formed by appropriately selecting from the materials described above according to the application. That is, the ball stud 10, the housing 30, and the plug 40 may be formed of the same material selected from the above, or may be formed of different materials.
- DLC films were formed on the surface of a ball member made of SUJ2 and having a diameter of ⁇ 6 mm under the conditions shown in Table 1, and Examples 1 to 8 and Comparative Examples 1 to 4 were produced. In Comparative Example 1, no DLC film was formed.
- Table 1 C 2 H 2 represents acetylene, C 6 H 6 represents benzene, C 7 H 8 represents toluene, and TMS represents tetramethylsilane.
- the ball-on-disk friction and wear test shown in FIG. 2 was performed. As shown in FIG. 2, in the ball-on-disk friction and wear test, grease is applied to the surface of a disc material 201 made of polyacetal, the load on the ball material 202 having a diameter of 6 mm: 5 N, the sliding speed: 1 mm / second, and the temperature: The test was performed at 25 ° C. and 5000 cycles.
- the hydrogen content shown in Table 2 was measured by Rutherford Backscattering Spectrometry (RBS).
- RBS Rutherford Backscattering Spectrometry
- the sample was irradiated with helium (He) ions, and particularly the hydrogen content was calculated from the results of detecting hydrogen recoiled and scattered forward.
- the root mean square roughness was calculated based on JIS B0601: 2001 from the results obtained by measuring a region having a side of 20 ⁇ m or more and 50 ⁇ m or less using an atomic force microscope (AFM). Young's modulus and hardness were measured using a nanoindenter according to ISO 14577.
- the wear ratio was determined by measuring the depth of sliding scratches formed in the ball-on-disk friction wear test on the surface of the disk material 201 (see FIG. 2) with a surface roughness meter. The ratio in this case was shown as the wear ratio. Further, the surface of the ball member 202 (see FIG. 2) was observed with an optical microscope, and it was confirmed that the
- sliding behavior was measured using a ball stud having a DLC film formed on the spherical surface under the conditions of Examples 1 to 8.
- ball studs in which a DLC film is formed on the spherical surface under the conditions of Examples 1 to 8 are referred to as Examples 1 to 8.
- the housing 530 of the manufactured ball joint 501 for the sliding behavior test is sandwiched and fixed between a plate material 570 illustrated by a broken line and a plate material 580 illustrated by a solid line.
- the plate member 570 indicated by the broken line is provided with a hole (not shown) through which the shaft member 512 of the ball stud 501 protrudes, and the shaft member 512 of the ball stud 501 is protruded from this hole portion.
- a torque wrench 590 was attached to the shaft member 512 protruding from the plate member 570, and the torque behavior was measured by rotating the torque wrench 590. The measurement was performed at an ambient temperature of 25 ° C. with a rotational speed of the torque wrench 590 of 5 degrees / second and rotated for 25 to 30 seconds.
- Examples 1, 2, 5, 7, and 8 having different DLC film hardnesses were selected, and high viscosity general-purpose grease was used in the same manner as the sliding behavior test using low-viscosity general-purpose grease.
- the sliding behavior test using was performed. The result is shown in FIG.
- a general-purpose grease having a high viscosity Lipanoc Deluxe 2 manufactured by Nippon Oil Corporation was used.
- FIG. 7 the torque behavior of Examples 1, 2, 5, 7, and 8 in which the hardness of the DLC film was in the range of 6 to 39 GPa was stable throughout the sliding test.
- an amorphous material having a hardness of 6 to 39 GPa on the surface of the spherical portion.
- the ball joint has excellent corrosion resistance, low wear ratio, and excellent sliding behavior (torque behavior), that is, excellent wear resistance and sliding property stability. It was found that a ball joint can be realized. Further, it was found that if the root mean square roughness of the amorphous hard carbon film is 60 nm or less, the above-described ball joint excellent in wear resistance, corrosion resistance and stability of sliding characteristics can be realized more reliably.
- a disk material made of polyacetal is used as the resin sheet, but it is equivalent to that made of polyacetal, and is generally used under the same conditions as nylon, polyamide, polytetrafluoroethylene, poly It is strongly suggested that a sheet made of ether ether ketone, an elastomer, or a fiber reinforced composite material thereof has substantially the same effect.
- Ball Joint 10 Ball Stud 11 Spherical Surface 12 Shaft Material 13 Amorphous Hard Carbon Film (DLC Film) 20 resin sheet 21 curved surface portion 30 housing 31 opening portion 32 bent portion 33 opening portion 34 curved surface portion 35 flange portion 40 plug 50 boot 60 grease
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Pivots And Pivotal Connections (AREA)
Abstract
Description
例えば、鉄部材への浸炭処理と窒化処理によりFe2-3NC相を形成させる技術は広く一般的に行われている。
また、非特許文献1に記載されているように、ボールスタッドの球面部にFe3O4酸化鉄(マグネタイト)層を設ける技術が提案されている。
図1に示すように、本発明の一実施形態に係るボールジョイント1は、球面部11を有するボールスタッド10と、この球面部11を回動自在に保持する樹脂製シート20と、を有している。つまり、樹脂製シート20は、ボールスタッド10の球面部11に沿った形状(曲率)の曲面部21を有し、当該曲面部21とボールスタッド10の球面部11とが当接するように組み合わされている。
このような硬さのDLC膜13を設けることにより、摺動時のDLC膜13による樹脂製シート20への摩耗攻撃性を抑制することができるとともに、摩耗によるDLC膜13の消失を抑制することができる。つまり、ボールジョイント1としての耐摩耗性に優れるとともに、DLC膜13の潤滑性と耐食性が損なわれないので、摺動特性に優れたものとすることができる。
一方で、DLC膜13の硬さが39GPaを超えると、DLC膜13の硬さが高すぎるため摩耗攻撃性が高くなり、相手材となる樹脂製シート20の摩耗量が増大する。
よって、DLC膜13の硬さは6~39GPaとする。DLC膜13の硬さは9~29GPaとするのが好ましく、9~21GPaとするのがより好ましい。
また、DLC膜13中の水素含有量は、例えば、ラザフォード後方散乱分光法(Rutherford Backscattering Spectrometry;RBS)で測定することができる。
チタンまたはチタン合金としては、JISで規格されている1~4種を挙げることができる。
まず、SUJ2材からなる直径φ6mmのボール材の表面に、表1に示す条件でDLC膜を成膜し、実施例1~8および比較例1~4を作製した。なお、比較例1にはDLC膜を成膜しなかった。表1中のC2H2はアセチレン、C6H6はベンゼン、C7H8はトルエン、TMSはテトラメチルシランをそれぞれ表す。
図2に示すように、ボールオンディスク摩擦摩耗試験は、ポリアセタール製のディスク材201の表面にグリースを塗布し、φ6mmのボール材202への荷重:5N、摺動速度:1mm/秒、温度:25℃、5000サイクルという条件で行った。
二乗平均平方根粗さは、原子間力顕微鏡(AFM)を用いて、一辺が20μm以上50μm以下の領域を測定し、得られた結果からJIS B0601:2001に準拠して算出した。
ヤング率および硬さは、ISO 14577に準拠したナノインデンターを用いて測定した。
摩耗比率は、表面粗さ計でディスク材201(図2参照)の表面におけるボールオンディスク摩擦摩耗試験で形成された摺動傷の深さを測り、比較例1の摩耗量を1.00とした場合における比率を摩耗比率として示した。また、ボール材202(図2参照)の表面を光学顕微鏡で観察し、DLC膜が摩耗により消失していないか確認した。
表2および図4を参照するとわかるように、DLC膜の硬さ40~50GPa(つまり、比較例3、4)を境界として摩耗比率が急激に増大することがわかる。
比較例2は、ディスク材201の摩耗比率が比較例1と同程度であり良好であったが、DLC膜の硬さが低すぎるため、ボールオンディスク摩擦摩耗試験によりボール材202の表面に成膜したDLC膜が消失した。
実施例1~8および比較例2~4の結果から、DLC膜の硬さが本発明の要件である6~39GPaとする必要があることがわかった。
また、実施例4から、DLC膜の二乗平均平方根粗さが60nm程度以下であれば良好な摩耗比率を確実に得ることができることがわかった。
板材570から突出している軸材512にトルクレンチ590を取り付け、トルクレンチ590を回転させてトルク挙動を測定した。なお、測定は、25℃の環境温度下、トルクレンチ590の回転速度を5度/秒とし、25~30秒間回転させた。
図7に示すように、DLC膜の硬さが6~39GPaの範囲にある実施例1、2、5、7、8はいずれも摺動試験の間、終始トルク挙動が安定していた。
また、非晶質硬質炭素膜の二乗平均平方根粗さが60nm以下であれば前記した耐摩耗性、耐食性と摺動特性の安定性に優れたボールジョイントをより確実に具現できることがわかった。
さらに、前記した実施例では樹脂製シートとしてポリアセタール製のディスク材を使用したが、ポリアセタール製のものと同等品であり、一般に同様の条件で使用されているナイロン、ポリアミド、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、エラストマーまたはこれらの繊維強化複合材で作製されたシートについても、略同じ効果を奏することが強く示唆される。
10 ボールスタッド
11 球面部
12 軸材
13 非晶質硬質炭素膜(DLC膜)
20 樹脂製シート
21 曲面部
30 ハウジング
31 開口部
32 曲折部
33 開口部
34 曲面部
35 フランジ部
40 プラグ
50 ブーツ
60 グリース
Claims (3)
- 球面部を有するボールスタッドと、前記球面部を回動自在に保持する樹脂製シートと、を有するボールジョイントにおいて、
前記球面部の表面に、硬さが6~39GPaの非晶質硬質炭素膜を設けた
ことを特徴とするボールジョイント。 - 前記非晶質硬質炭素膜の二乗平均平方根粗さが60nm以下であることを特徴とする請求の範囲第1項に記載のボールジョイント。
- 前記樹脂製シートが、ポリアセタール、ナイロン、ポリアミド、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、エラストマーまたはこれらの繊維強化複合材である
ことを特徴とする請求の範囲第1項または請求の範囲第2項に記載のボールジョイント。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11850833.2A EP2657551A4 (en) | 2010-12-24 | 2011-12-05 | KUGELGELENK |
CN2011800609387A CN103261712A (zh) | 2010-12-24 | 2011-12-05 | 球窝接头 |
US13/997,553 US20130272776A1 (en) | 2010-12-24 | 2011-12-05 | Ball joint |
JP2012549710A JPWO2012086393A1 (ja) | 2010-12-24 | 2011-12-05 | ボールジョイント |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010288150 | 2010-12-24 | ||
JP2010-288150 | 2010-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012086393A1 true WO2012086393A1 (ja) | 2012-06-28 |
Family
ID=46313673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078045 WO2012086393A1 (ja) | 2010-12-24 | 2011-12-05 | ボールジョイント |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130272776A1 (ja) |
EP (1) | EP2657551A4 (ja) |
JP (1) | JPWO2012086393A1 (ja) |
CN (1) | CN103261712A (ja) |
WO (1) | WO2012086393A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171199A1 (ja) * | 2013-04-18 | 2014-10-23 | 日本アイ・ティ・エフ株式会社 | ボールジョイントとその製造方法 |
JP2016164430A (ja) * | 2015-03-06 | 2016-09-08 | 株式会社クラレ | ボールジョイント用ボールシートおよびこれを有するボールジョイント |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2893492A1 (en) * | 2014-05-30 | 2015-11-30 | Dab Pumps S.P.A. | Motor casing for pumps, particularly centrifugal pumps and peripheral centrifugal pumps |
DE102015103207B4 (de) * | 2015-03-05 | 2021-02-04 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Pleuelstange mit einer Exzenter-Verstelleinrichtung und Verbrennungsmotor mit einstellbarem Verdichtungsverhältnis |
CN106640942B (zh) * | 2015-11-04 | 2020-10-30 | 江苏淮海新能源车辆有限公司 | 一种便捷固定式万向节 |
CN109737050A (zh) * | 2018-12-31 | 2019-05-10 | 武汉钜威天数字化机械制造有限公司 | 一种不等壁厚包球连杆及其间隙调整方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205277A (ja) * | 1999-01-19 | 2000-07-25 | Koyo Seiko Co Ltd | 転がり軸受 |
JP2003013960A (ja) * | 2001-06-27 | 2003-01-15 | Nsk Ltd | 高速回転用転がり軸受 |
JP2003020492A (ja) | 2001-07-09 | 2003-01-24 | Musashi Seimitsu Ind Co Ltd | ボールジョイント用潤滑剤組成物及びボールジョイント |
JP2004538431A (ja) | 2001-07-25 | 2004-12-24 | ツェットエフ レムフェルダー メタルヴァーレン アクチエンゲゼルシャフト | ボールジョイント |
JP2005083400A (ja) | 2003-09-04 | 2005-03-31 | Koyo Seiko Co Ltd | トリポード型等速自在継手 |
JP2005535854A (ja) | 2002-08-10 | 2005-11-24 | ツェットエフ レムフェルダー メタルヴァーレン アクチエンゲゼルシャフト | ボールジョイント用の軸受シェル並びに軸受シェルを製造する方法 |
JP2006300204A (ja) | 2005-04-20 | 2006-11-02 | Otics Corp | ボールジョイント |
JP4199109B2 (ja) | 2001-07-09 | 2008-12-17 | 新日本石油株式会社 | ボールジョイント用潤滑剤組成物及びボールジョイント |
WO2009099226A1 (ja) * | 2008-02-06 | 2009-08-13 | Kanagawa Prefecture | Dlc被覆摺動部材及びその製造方法 |
JP2010126419A (ja) * | 2008-11-28 | 2010-06-10 | Kanagawa Prefecture | Dlc膜、dlcコーティング部材及びその製造方法 |
JP2010523910A (ja) * | 2007-04-04 | 2010-07-15 | サン−ゴバン パフォーマンス プラスチックス パンプス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 球面滑り軸受け |
JP2010222655A (ja) * | 2009-03-24 | 2010-10-07 | Kobe Steel Ltd | 積層皮膜および積層皮膜被覆部材 |
JP2010249306A (ja) * | 2008-07-02 | 2010-11-04 | Kobe Steel Ltd | 摺動部材および摺動方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4643608A (en) * | 1984-07-16 | 1987-02-17 | The Goodyear Tire & Rubber Company | Steering linkage arm assemblies |
GB0120037D0 (en) * | 2001-08-16 | 2001-10-10 | Diamanx Products Ltd | Bearing or wear-resistant surfaces |
DE10160988C2 (de) * | 2001-12-10 | 2003-12-04 | Sachsenring Fahrzeugtechnik Gm | Kugelgelenk und Verfahren zu dessen Herstellung |
DE10223844B4 (de) * | 2002-05-28 | 2013-04-04 | Danfoss A/S | Wasserhydraulische Maschine |
JP2006194284A (ja) * | 2005-01-11 | 2006-07-27 | Nissan Motor Co Ltd | 継手構造 |
EP2082145A2 (en) * | 2006-11-08 | 2009-07-29 | Abb Ab | A joint for industrial robots |
JP4803841B2 (ja) * | 2008-04-14 | 2011-10-26 | 村田機械株式会社 | パラレルメカニズム |
WO2009147155A1 (en) * | 2008-06-03 | 2009-12-10 | Abb Technology Ab | A method for manufacturing a joint and a joint obtainable by the method |
-
2011
- 2011-12-05 CN CN2011800609387A patent/CN103261712A/zh active Pending
- 2011-12-05 US US13/997,553 patent/US20130272776A1/en not_active Abandoned
- 2011-12-05 WO PCT/JP2011/078045 patent/WO2012086393A1/ja active Application Filing
- 2011-12-05 JP JP2012549710A patent/JPWO2012086393A1/ja active Pending
- 2011-12-05 EP EP11850833.2A patent/EP2657551A4/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205277A (ja) * | 1999-01-19 | 2000-07-25 | Koyo Seiko Co Ltd | 転がり軸受 |
JP2003013960A (ja) * | 2001-06-27 | 2003-01-15 | Nsk Ltd | 高速回転用転がり軸受 |
JP4199109B2 (ja) | 2001-07-09 | 2008-12-17 | 新日本石油株式会社 | ボールジョイント用潤滑剤組成物及びボールジョイント |
JP2003020492A (ja) | 2001-07-09 | 2003-01-24 | Musashi Seimitsu Ind Co Ltd | ボールジョイント用潤滑剤組成物及びボールジョイント |
JP2004538431A (ja) | 2001-07-25 | 2004-12-24 | ツェットエフ レムフェルダー メタルヴァーレン アクチエンゲゼルシャフト | ボールジョイント |
JP2005535854A (ja) | 2002-08-10 | 2005-11-24 | ツェットエフ レムフェルダー メタルヴァーレン アクチエンゲゼルシャフト | ボールジョイント用の軸受シェル並びに軸受シェルを製造する方法 |
JP2005083400A (ja) | 2003-09-04 | 2005-03-31 | Koyo Seiko Co Ltd | トリポード型等速自在継手 |
JP2006300204A (ja) | 2005-04-20 | 2006-11-02 | Otics Corp | ボールジョイント |
JP2010523910A (ja) * | 2007-04-04 | 2010-07-15 | サン−ゴバン パフォーマンス プラスチックス パンプス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 球面滑り軸受け |
WO2009099226A1 (ja) * | 2008-02-06 | 2009-08-13 | Kanagawa Prefecture | Dlc被覆摺動部材及びその製造方法 |
JP2010249306A (ja) * | 2008-07-02 | 2010-11-04 | Kobe Steel Ltd | 摺動部材および摺動方法 |
JP2010126419A (ja) * | 2008-11-28 | 2010-06-10 | Kanagawa Prefecture | Dlc膜、dlcコーティング部材及びその製造方法 |
JP2010222655A (ja) * | 2009-03-24 | 2010-10-07 | Kobe Steel Ltd | 積層皮膜および積層皮膜被覆部材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2657551A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171199A1 (ja) * | 2013-04-18 | 2014-10-23 | 日本アイ・ティ・エフ株式会社 | ボールジョイントとその製造方法 |
JP2014211190A (ja) * | 2013-04-18 | 2014-11-13 | 日本アイ・ティ・エフ株式会社 | ボールジョイントとその製造方法 |
CN105229317A (zh) * | 2013-04-18 | 2016-01-06 | 本田技研工业株式会社 | 球节及其制造方法 |
US9765810B2 (en) | 2013-04-18 | 2017-09-19 | Honda Motor Co., Ltd. | Ball joint and method for manufacturing same |
CN105229317B (zh) * | 2013-04-18 | 2018-06-08 | 本田技研工业株式会社 | 球节及其制造方法 |
JP2016164430A (ja) * | 2015-03-06 | 2016-09-08 | 株式会社クラレ | ボールジョイント用ボールシートおよびこれを有するボールジョイント |
Also Published As
Publication number | Publication date |
---|---|
US20130272776A1 (en) | 2013-10-17 |
EP2657551A1 (en) | 2013-10-30 |
EP2657551A4 (en) | 2014-06-04 |
JPWO2012086393A1 (ja) | 2014-05-22 |
CN103261712A (zh) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012086393A1 (ja) | ボールジョイント | |
RU2231695C2 (ru) | Подшипник качения с покрытием (варианты) | |
JP5113737B2 (ja) | ピストンリング | |
JP5030439B2 (ja) | 摺動部材 | |
JP5452734B2 (ja) | コーティングを有するスライド要素、特に、ピストンリング、およびスライド要素を製造するプロセス | |
JP2008081522A (ja) | 摺動部材 | |
WO2011122662A1 (ja) | 転がり軸受 | |
WO2013042765A1 (ja) | 硬質膜、硬質膜形成体、および転がり軸受 | |
JP2010150641A (ja) | 摺動部材 | |
JP5222650B2 (ja) | ピストンリング | |
JP6422495B2 (ja) | ピストンリング | |
KR20040081079A (ko) | 알루미늄 전신재 합금 | |
JP2013002559A (ja) | 排気ターボ過給機のスラスト軸受装置 | |
JP5080505B2 (ja) | 摺動部材 | |
RU2743353C9 (ru) | Коррозионностойкий элемент конструкции | |
JP4692462B2 (ja) | 摺動構造体及び皮膜形成方法 | |
JP2007153141A (ja) | ラックアンドピニオン式ステアリング装置 | |
JP2006300294A (ja) | 転がり軸受用保持器 | |
JP2007155022A (ja) | 転動装置 | |
JP4772737B2 (ja) | ピストンリング | |
JP2008115447A (ja) | 摺動部材 | |
Huynh et al. | Effect of Counter Material on Tribological Properties of CoCrMoSi Alloy | |
BR112019012811B1 (pt) | Elemento resistente à corrosão | |
JP4862571B2 (ja) | 真空用摺動部材 | |
JP2008051182A (ja) | クラッチレリーズ軸受装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11850833 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012549710 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13997553 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011850833 Country of ref document: EP |