[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011132374A1 - 表示装置及びその製造方法 - Google Patents

表示装置及びその製造方法 Download PDF

Info

Publication number
WO2011132374A1
WO2011132374A1 PCT/JP2011/002045 JP2011002045W WO2011132374A1 WO 2011132374 A1 WO2011132374 A1 WO 2011132374A1 JP 2011002045 W JP2011002045 W JP 2011002045W WO 2011132374 A1 WO2011132374 A1 WO 2011132374A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
substrate
region
display device
protruding rib
Prior art date
Application number
PCT/JP2011/002045
Other languages
English (en)
French (fr)
Inventor
森脇弘幸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180012800XA priority Critical patent/CN102792217A/zh
Priority to BR112012025141A priority patent/BR112012025141A2/pt
Priority to US13/636,230 priority patent/US20130010240A1/en
Priority to RU2012141311/28A priority patent/RU2521223C1/ru
Priority to JP2012511526A priority patent/JP5285809B2/ja
Priority to KR1020127024434A priority patent/KR101364346B1/ko
Priority to EP11771718.1A priority patent/EP2562591A4/en
Publication of WO2011132374A1 publication Critical patent/WO2011132374A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • the present invention relates to a display device such as a liquid crystal display device having a configuration in which two substrates are bonded to each other via a sealing material arranged in a frame shape on the outer peripheral edge of a display region.
  • the present invention also relates to a method for manufacturing the display device.
  • the liquid crystal display device can be reduced in thickness and has low power consumption, it is widely used as a display for OA devices such as TVs and personal computers, and portable information devices such as mobile phones and PDAs (Personal Digital Assistants).
  • OA devices such as TVs and personal computers
  • portable information devices such as mobile phones and PDAs (Personal Digital Assistants).
  • the liquid crystal display device includes a liquid crystal display panel and a backlight unit attached to the back side of the liquid crystal display panel.
  • the liquid crystal display panel has a configuration in which an array substrate provided with switching elements such as thin film transistors and a counter substrate arranged to face the array substrate are bonded together by a sealing material, and a space formed between the two substrates Liquid crystal material is enclosed in the.
  • As the counter substrate a substrate that is slightly smaller than the array substrate is employed, and a drive circuit is mounted on the terminal region of the array substrate exposed by this.
  • the liquid crystal display panel is composed of a display area for displaying an image and a non-display area surrounding the display area in a frame shape.
  • An alignment film is formed on the surface of the array substrate in contact with the liquid crystal layer so as to cover at least the display region.
  • an alignment film is formed on the surface of the counter substrate in contact with the liquid crystal so as to cover at least the display region.
  • the alignment film has a function of controlling the alignment of the liquid crystal molecules in the liquid crystal layer when there is no potential difference between the electrode provided on the array substrate and the electrode provided on the counter substrate.
  • the alignment film has a function of controlling the alignment and tilt of liquid crystal molecules when a potential difference is generated between both electrodes.
  • the alignment film can be formed, for example, by rubbing the surface of a resin film such as polyimide.
  • a resin film such as polyimide.
  • a flexographic printing method or an ink jet method is used for forming the resin film.
  • the inkjet method is superior in that it can be drawn directly on a substrate, it is a low-contamination because of a non-contact process, the amount of solution consumption is small, and the working time can be shortened. Is preferably used.
  • the resin film of the alignment film is formed by the ink jet method
  • a material having a lower viscosity than that of the flexo method is used as the material of the resin film. Leakage spreads easily. If the non-display area around the display area is small and the distance between the display area and the seal material area cannot be secured sufficiently, the resin film flows and reaches the seal material area. In this case, since the adhesiveness between the sealing material and the alignment film is insufficient, the liquid crystal material of the liquid crystal layer leaks without being completely sealed.
  • Patent Document 1 discloses a groove extending long in the direction along the outer periphery of the display area in a substantially annular area outside the display area and inside the area where the sealing material is disposed.
  • Patent Document 2 discloses a liquid crystal display device having a configuration in which unevenness is provided in a region outside a display region and inside a region where a sealing material is disposed. According to this configuration, it is described that even in a liquid crystal display device with a narrow frame, the spread of the alignment film can be suppressed and a sealing failure can be suppressed.
  • the sealing material 140 is mixed with a crushed glass fiber 142 as a spacer for keeping the distance between the substrates constant.
  • the glass fiber pulverized product 142 is set so that the fiber diameter R corresponds to the inter-substrate distance W in the region SL11 without the convex portion 136.
  • the convex portion 136 is provided as in the liquid crystal display device having the configuration of Patent Document 2, if the glass fiber pulverized material 142 has run on the convex portion 136 in the region SL12 corresponding to the convex portion 136, the convex portion 136 is provided.
  • the distance between the two substrates 120 and 130 excluding the above is the total length of the fiber diameter R of the glass fiber pulverized product 142 and the height H of the convex portion 136, and the target inter-substrate distance W is controlled. Becomes difficult. Therefore, suppression of the approach to the area
  • the sealing material 140 is electrically connected to the common electrode 133 provided so as to cover the entire surface of the counter substrate 130 and the wiring provided in the non-display area of the array substrate 120, for example.
  • Conductive beads 143 are mixed as a transfer material to be taken. However, when this conductive bead 143 enters the display area side beyond the convex portion 136 (the right conductive bead 143 in FIG. 24), for example, the electrode 126 on the array substrate 120 side and the common electrode 133 on the counter substrate 130 side. May be conducted and display characteristics may be deteriorated due to the occurrence of an undesired leak. Therefore, suppression of the inflow of the conductive beads 143 to the display area side is desired.
  • a sealing material in which a sealing material mixture including at least one of glass fiber pulverized material and conductive beads is mixed is disposed in a frame shape on the outer peripheral edge between the first substrate and the second substrate, and the first substrate
  • a display device in which projecting ribs project toward the second substrate side so as to be along the sealing material and have a gap with the second substrate in the middle portion in the width direction of the sealing material Control of the cell thickness of the display device becomes difficult due to the crushed material running on the protruding ribs, and undesired leakage occurs between the substrates due to the conductive beads flowing into the display area.
  • the purpose is to suppress.
  • a sealing material mixed with a sealing material mixture including at least one of glass fiber pulverized material and conductive beads is arranged in a frame shape on the outer peripheral edge between the first substrate and the second substrate.
  • a display area is formed inside the sealing material, and the first substrate has a gap between the first substrate and the second substrate so that the protruding ribs follow the sealing material in the middle of the sealing material in the width direction.
  • the distribution density of the sealing material contamination in the sealing material in the region corresponding to the protruding rib is such that the seal in the sealing material in the region outside the substrate is higher than the protruding rib. It is characterized by being set so that the sealing material is not mixed in the sealing material in the region corresponding to the projecting rib or lower than the distribution density of the material contamination.
  • the sealing material contamination includes glass fiber pulverized material and conductive beads
  • the distribution density of the glass fiber pulverized material in the sealing material in the region corresponding to the protruding rib is the protruding shape. It is lower than the distribution density of the crushed glass fiber in the sealing material in the area outside the substrate than the rib, or the crushed glass fiber is not mixed in the sealing material in the area corresponding to the protruding rib.
  • the distribution density of the conductive beads in the sealing material in the region corresponding to the protruding rib and the region closer to the display region than the protruding rib is defined as the conductive density in the sealing material in the region outside the substrate from the protruding rib. It is set so that the conductive beads are not mixed in the sealing material in the area corresponding to the protruding ribs and in the display area side than the distribution density of the conductive beads. It is preferred that the.
  • the distribution density of the sealing material contamination in the sealing material in the region corresponding to the protruding rib is higher than the distribution density of the sealing material contamination in the sealing material in the region outside the substrate from the protruding rib.
  • the sealing material is set so that the sealing material is not mixed in the sealing material in the region corresponding to the protruding rib, or the sealing material in the region corresponding to the protruding rib among the sealing material mixed material.
  • the distribution density of the crushed glass fiber in the inside is lower than the distribution density of the crushed glass fiber in the sealing material in the region outside the substrate than the protruding rib, or in the sealing material in the region corresponding to the protruding rib.
  • the glass fiber pulverized product is not mixed, the number of glass fiber crushed products that run on the protruding ribs is reduced, or the glass fiber crushed product does not run on the protruding ribs. , It is possible to prevent the not control the cell thickness.
  • the distribution density of the conductive beads in the sealing material in the region corresponding to the protruding rib and the region on the display region side is higher than that in the region outside the substrate than the protruding rib. Since the conductive beads in the material are lower than the distribution density of the conductive beads in the material, or the conductive material is not mixed in the sealing material in the region corresponding to the protruding rib and the region closer to the display region, both substrates It is possible to suppress the occurrence of an unintended leak between the two.
  • the distribution density of the pulverized glass fiber in the sealing material in the region corresponding to the protruding rib is a distribution of the pulverized glass fiber in the sealing material in the region outside the substrate from the protruding rib.
  • the density is preferably not more than a quarter of the density.
  • the distribution density of the crushed glass fiber in the sealing material in the region corresponding to the protruding rib is preferably as low as possible.
  • the diameter of the conductive beads is preferably larger than the fiber diameter of the crushed glass fiber.
  • the first substrate may have a rectangular shape, and the protruding rib may be formed so as to extend along two opposing sides constituting the first substrate in the outer peripheral edge of the substrate. .
  • region is made into a narrow frame in the said 2 opposing sides formed so that a protruding rib may extend, a cell fiber crushed material runs on a protruding rib. It is possible to prevent the thickness from being controlled, and the conductive bead is mixed in the sealing material in the region corresponding to the protruding rib and in the region closer to the display region. It is possible to suppress the occurrence of leaks that do not occur.
  • the source terminal region is used for correcting the source wiring. Since the spare wiring needs a wider space than the gate terminal region for arrangement, it is desired to narrow the frame only on two sides along the gate terminal region. In such a case, the above configuration can be suitably used.
  • the projecting rib may be formed in a frame shape so as to surround the display area on the outer peripheral edge of the substrate.
  • the cell thickness cannot be controlled by the glass fiber crushed material running on the protruding rib.
  • the glass fiber crushed material running on the protruding rib.
  • a liquid crystal layer may be provided between the first substrate and the second substrate.
  • the display device is a liquid crystal display device.
  • the first substrate is a counter substrate provided with a color filter layer
  • the protruding rib has a configuration in which a color filter layer, a transparent conductive film, and a transparent resin are laminated. Also good.
  • the liquid crystal display device may further include a liquid crystal alignment regulating rib made of a transparent resin protruding from the first substrate toward the second substrate in the display area.
  • the display device is a liquid crystal display device, and the protruding ribs are formed on the counter substrate provided with the color filter layer. Therefore, the protruding ribs are the color filter layer, the transparent conductive film, and With the configuration in which the transparent resin is laminated, the color filter layer portion of the protruding rib can be formed simultaneously with the color filter layer of the counter substrate, and the manufacturing process of the protruding rib can be simplified.
  • the transparent resin of the protruding rib and the transparent resin of the liquid crystal alignment regulating rib are simultaneously applied. It can be formed, and the manufacturing process of the projecting rib can be simplified.
  • the sealing material mixed with the sealing material mixture including at least one of the glass fiber pulverized material and the conductive beads is formed in a frame shape on the outer peripheral edge between the first substrate and the second substrate.
  • the first substrate and the second substrate are overlapped and pressed so as to sandwich the sealing material raw material, thereby causing the adhesive to flow into an area inside the projecting rib.
  • the sealing material contamination is inside
  • the distribution density of the sealing material contamination in the seal material in the region corresponding to the projecting rib is higher than the projecting rib. Is set to be lower than the distribution density of the sealing material contamination in the sealing material in the region outside the substrate, or so that the sealing material contamination is not mixed in the sealing material in the region corresponding to the protruding rib.
  • the sealing material formed is formed into a frame shape, and a display device in which a display region is formed inside the sealing material is obtained.
  • the sealing material mixture includes a crushed glass fiber and conductive beads
  • the sealing material raw material is applied to the sealing material raw material application region
  • the adhesive is caused to flow into a region inside the projecting rib, and the pulverized glass fiber and the conductive beads are in contact with the second substrate.
  • the distribution density of the glass fiber crushed material in the seal material in the region corresponding to the projecting rib is projected by regulating the projecting rib to flow into the inner region and then curing the adhesive.
  • the distribution density of the pulverized glass fiber in the sealing material in the area outside the substrate relative to the ribs is lower, or the pulverized glass fiber is mixed in the sealing material in the area corresponding to the protruding rib.
  • the distribution density of the conductive beads in the sealing material in the region corresponding to the protruding rib and the region on the display region side is higher than the conductive rib in the sealing material in the region outside the protruding rib.
  • the sealing material is set so that the conductive beads are not mixed in the sealing material in a region lower than the distribution density of the conductive beads or in a region corresponding to the protruding rib and a region closer to the display region Is preferably formed.
  • the region outside the protruding rib on the first substrate is used as the sealing material raw material application region, and the sealing material raw material in which the sealing material contamination is mixed into the fluid adhesive is applied. Therefore, even if the first substrate and the second substrate are overlapped and pressed so as to sandwich the raw material of the sealing material, the adhesive is allowed to flow into a region inside the protruding rib, so that the sealing material It is possible to restrict the contaminants from flowing into the region inside the protruding rib with the protruding rib. Therefore, when glass fiber pulverized material is mixed in the sealing material as a sealing material mixture, the sealing material obtained by subsequently curing the adhesive is glass in the sealing material in the region corresponding to the protruding rib.
  • the distribution density of the pulverized fiber is lower than the distribution density of the pulverized glass fiber in the sealing material in the region outside the substrate than the protruding rib, or the glass fiber is contained in the sealing material in the region corresponding to the protruding rib. It may be set so that the pulverized material is not mixed. Therefore, the number of pulverized glass fibers that run on the protruding ribs is reduced, and it is possible to prevent the cell thickness from being controlled by the crushed glass fibers that have run on the protruding ribs.
  • the sealing material obtained by subsequently curing the adhesive has a region corresponding to the protruding rib and the display region side than that.
  • the distribution density of the conductive beads in the sealing material in the region of the substrate is lower than the distribution density of the conductive beads in the sealing material in the region outside the substrate than the protruding rib, or the region corresponding to the protruding rib and the In the area closer to the display area, the sealing material may be set so that conductive beads are not mixed therein. Therefore, it is possible to suppress the occurrence of an undesired leak between the two substrates.
  • the conductive beads preferably have a diameter larger than the fiber diameter of the crushed glass fiber.
  • the distance between the sealing material raw material application region and the region where the protruding ribs are provided is 100 to 300 ⁇ m.
  • the adhesive is spread and spread by pressing the material so as to sandwich the raw material, but since the distance between the sealing material raw material application region and the region where the protruding ribs are protruded is 100 ⁇ m or more, the adhesive is The distance from the tip of the protruding rib to the surface of the second substrate is made smaller than the fiber diameter of the glass fiber pulverized product when reaching the region where the protruding rib is pushed and spread toward the display area side. Becomes easy.
  • the distance from the tip of the projecting rib to the surface of the substrate on which the projecting rib is not provided is larger than the fiber diameter of the crushed glass fiber. Since it is small, the crushed glass fiber can be dammed up by the protruding rib, and the crushed glass fiber can be prevented from climbing on the protruding rib or flowing into the display area beyond the protruding rib. . In addition, when conductive beads are further mixed into the adhesive of the sealing material, the protruding rib is provided from the tip of the protruding rib even if the adhesive is spread to the display area side of the protruding rib.
  • the distance to the surface of the uncoated substrate is smaller than the diameter of the conductive bead, the conductive bead is blocked by the protruding rib, and the conductive bead runs on the protruding rib or exceeds the protruding rib. Inflowing to the display area side can be suppressed. Furthermore, since the distance between the sealing material raw material application region and the region where the protruding ribs are provided is 300 ⁇ m or less, it is possible to suppress the outer peripheral edge of the display region from becoming a large area.
  • the first substrate has a rectangular shape, and the protruding ribs may be provided so as to extend along two opposing sides constituting the first substrate in the outer peripheral edge of the substrate. Good.
  • the cell fiber crushed material runs on the protruding ribs, thereby It is possible to prevent the thickness from being controlled, and the conductive bead is mixed in the sealing material in the region corresponding to the protruding rib and in the region closer to the display region. It is possible to suppress the occurrence of leaks that do not occur.
  • the protruding ribs may be provided in a frame shape so as to surround the display region at the outer peripheral edge of the substrate.
  • the cell thickness cannot be controlled by the glass fiber crushed material running on the protruding rib.
  • the glass fiber crushed material running on the protruding rib.
  • a liquid crystal material may be introduced into a region surrounded by the sealing material to form a liquid crystal layer, or the sealing material raw material may be applied. Then, before bonding the first substrate and the second substrate, a liquid crystal material is introduced into the region surrounded by the sealing material, and the liquid crystal is bonded after bonding the first substrate and the second substrate. A layer may be formed.
  • the manufactured display device is a liquid crystal display device.
  • the first substrate is a counter substrate provided with a color filter layer
  • the protruding rib includes a color filter layer, a transparent conductive film, and a transparent resin.
  • the color filter layer having the structure in which the protruding ribs are formed may be formed simultaneously with the color filter layer provided on the counter substrate.
  • the liquid crystal display device further includes a liquid crystal alignment regulating rib made of a transparent resin protruding from the first substrate toward the second substrate in the display area, and the transparent resin of the protruding rib.
  • the liquid crystal alignment regulating rib may be formed simultaneously.
  • the display device is a liquid crystal display device, and the protruding ribs are formed on the counter substrate provided with the color filter layer. Therefore, the protruding ribs are the color filter layer, the transparent conductive film, and With the configuration in which the transparent resin is laminated, the color filter layer portion of the protruding rib can be formed simultaneously with the color filter layer of the counter substrate, and the manufacturing process of the protruding rib can be simplified.
  • the projecting rib transparent resin and the liquid crystal alignment regulating rib transparent resin are simultaneously formed. Therefore, the manufacturing process of the protruding rib can be simplified.
  • the distribution density of the sealing material contamination in the sealing material in the region corresponding to the protruding rib is lower than the distribution density of the sealing material contamination in the sealing material in the region outside the substrate than the protruding rib.
  • a sealing material set so that the sealing material is not mixed in the sealing material in the region corresponding to the protruding rib it is possible to suppress the control of the cell thickness of the display device from being difficult due to the glass fiber pulverized product riding on the protruding rib.
  • the sealing material contamination contains conductive beads, it is possible to suppress the occurrence of an undesired leak between the two substrates. As a result, excellent display quality can be obtained by obtaining excellent optical characteristics.
  • FIG. 1 is a plan view of a liquid crystal display device according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a top view of an array substrate.
  • FIG. 4 is an enlarged plan view showing a wiring switching part in a region IV of FIG. 3.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4. It is a top view which expands and shows the modification of a wiring switching part.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 6. It is a top view of a counter substrate. It is sectional drawing in the IX-IX line of FIG.
  • FIG. 6 It is a top view which expands and shows the non-display area
  • It is sectional drawing in the XI-XI line of FIG. 6 is a cross-sectional view of the vicinity of a non-display area of a liquid crystal display device according to a modification of Embodiment 1.
  • 3 is a flowchart of a manufacturing method of the liquid crystal display device of Embodiment 1. In the manufacturing process of the liquid crystal display device of Embodiment 1, it is a top view which shows the state which apply
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 14.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 14.
  • FIG. 5 is an explanatory diagram showing a cross section in a state where an array substrate is superimposed on a counter substrate in the manufacturing process of the liquid crystal display device of Embodiment 1.
  • it is explanatory drawing which shows the cross section of the state in the middle of bonding of a counter substrate and an array substrate.
  • it is explanatory drawing which shows the cross section of the state in the middle of bonding of a counter substrate and an array substrate.
  • FIG. 6 is an explanatory view showing a cross section in a state where the bonding of the counter substrate and the array substrate is completed in the manufacturing process of the liquid crystal display device of Embodiment 1.
  • FIG. 6 is a plan view of a liquid crystal display device according to Embodiment 2.
  • FIG. 6 is a plan view of an array substrate according to Embodiment 2.
  • FIG. 6 is a plan view of a counter substrate according to Embodiment 2.
  • FIG. 10 is a plan view of a counter substrate according to a modification of Embodiment 2.
  • FIG. It is sectional drawing which expands and shows the non-display area
  • an active matrix driving type liquid crystal display device 10 including a thin film transistor (TFT) for each pixel will be described as an example of the display device.
  • TFT thin film transistor
  • the present invention is not limited to these embodiments, and may have other configurations.
  • Embodiment 1 1 and 2 show a liquid crystal display device 10 according to the first embodiment.
  • the liquid crystal display device 10 includes an array substrate 20 (second substrate) and a counter substrate 30 (first substrate) disposed to face each other. Both the substrates 20 and 30 are bonded to each other by a sealing material 40 arranged in a frame shape with the outer peripheral edge portion as a sealing region SL.
  • a liquid crystal layer 50 is provided as a display layer in the space surrounded by the sealing material 40 between the substrates 20 and 30.
  • the liquid crystal display device 10 includes a display area D formed inside the sealing material 40 and having a plurality of pixels arranged in a matrix, and a non-display area N arranged around the display area D. Yes.
  • a part of the non-display area N is a terminal area T for attaching an external connection terminal such as a mounted component.
  • at least one edge of the liquid crystal display device 10 is formed so that the array substrate 20 protrudes from the counter substrate 30 as shown in FIG.
  • the array substrate 20 has, for example, a Ti film (thickness of about 50 nm), an Al film (thickness of about 300 nm), and a Ti film (thickness) so as to extend in parallel with each other on the substrate body 21.
  • a plurality of gate lines (first wirings) 22 are provided, and a gate insulating film 23 (see FIG. 5) made of SiN having a thickness of, for example, 400 nm is provided so as to cover the gate lines 22. Is provided.
  • Source line (second wiring) 24 is provided on the gate insulating film 23 .
  • a semiconductor layer is provided at each intersection of the gate line 22 and the source line 24 to constitute a TFT (not shown). Further, a passivation film (not shown) made of SiN having a thickness of, for example, 250 nm is provided so as to cover these, and an interlayer made of photosensitive acrylic resin having a thickness of, for example, 2.5 ⁇ m is further provided so as to cover the passivation film.
  • An insulating film 25 is provided. Further, contact holes (not shown) that lead from the surface of the interlayer insulating film 25 to each TFT are formed so as to correspond to each pixel, and a pixel electrode (for example, ITO) (for example, ITO) is formed corresponding to each contact hole. Not shown).
  • An alignment film (not shown) is formed on the pixel electrode so as to cover the display region D.
  • the source line 24 is electrically connected to a lead line 22a provided in the same layer as the gate line 22, as shown in FIGS.
  • the source line end portion 24t is positioned so as to overlap with the upper layer of the lead line end portion 22at in plan view, and a contact hole 27c that leads to both the source line 24 and the lead line 22a is formed, and the surface of the contact hole 27c is formed.
  • the wiring switching part 27 is configured by providing the wiring switching electrode 26 so as to cover the wiring.
  • the wiring switching electrode 26 is provided in the same layer as the pixel electrode in the display area D.
  • the wiring switching unit 27 is provided so that the lead-out line end 22at and the source line end 24t do not overlap in plan view, for example, as shown in FIGS.
  • a contact hole 27d reaching the lead line end 22at from the substrate surface and a contact hole 27e reaching the source line end 24t from the substrate surface may be formed separately.
  • FIG. 8 is a plan view of the counter substrate 30, and FIG. 9 is a cross-sectional view of a region including the non-display region N of the counter substrate 30.
  • the counter substrate 30 is provided with a color filter layer 32 having a thickness of, for example, 2 ⁇ m in the display region D on the substrate body 31.
  • the color filter layer 32 includes a colored layer 32a in which one of red, green, and blue is disposed so as to correspond to each pixel electrode of the array substrate 20, and a black matrix provided between the colored layers 32a. 32b.
  • a common electrode 33 made of, for example, ITO having a thickness of 100 nm is provided on the entire surface of the color filter layer 32, and an alignment film 34 made of, for example, a transparent organic resin such as polyimide is provided so as to cover the common electrode 33. Is provided.
  • the counter substrate 30 is provided with a liquid crystal alignment regulating rib 35 for regulating the alignment direction of the liquid crystal molecules in the display region D.
  • the liquid crystal alignment regulating rib 35 protrudes from the surface of the counter substrate 30 toward the array substrate 20 side.
  • the liquid crystal alignment regulating rib 35 has, for example, a triangular cross section.
  • the liquid crystal alignment regulating rib 35 substantially regulates the alignment direction of individual liquid crystal molecules to the protruding direction of the ribs, and the tilted liquid crystal molecules interact with each other so that the twist angle of the liquid crystal molecules is the liquid crystal layer 50. Therefore, high quality display with a high contrast ratio is possible.
  • the liquid crystal alignment regulating rib 35 is formed of, for example, a transparent organic resin material or a transparent inorganic material.
  • the liquid crystal alignment regulating rib 35 may have an insulating property or a dielectric property.
  • the protruding rib 36 projects in the middle in the width direction of the seal region SL where the seal material 40 is formed so as to extend along the direction of the seal region SL and toward the array substrate 20. ing.
  • the protruding rib 36 is provided in a frame shape so as to surround the display area D.
  • the protruding ribs 36 are provided so that, for example, a plurality of rows (two rows in FIGS. 8 and 9) are arranged in the width direction.
  • the protruding rib 36 is formed, for example, by laminating a color filter layer 36a, a transparent conductive film 36b, and a transparent resin 36c.
  • the color filter layer 36a has a thickness of 1 to 3 ⁇ m, for example.
  • the transparent conductive film 36 b is, for example, an ITO film having a thickness of about 100 nm, and is provided as a common electrode that covers the entire surface of the counter substrate 30.
  • the transparent resin 36c is, for example, a photosensitive acrylic resin having a thickness of 1.5 ⁇ m.
  • the projecting ribs 36 have a function of suppressing the alignment film from flowing out of the projecting ribs 36 when the alignment film 34 is formed. Further, the protruding ribs 36 suppress the crushed glass fiber 42 and the conductive beads 43 mixed in the sealing material 40 from climbing on the protruding ribs 36 or flowing into the region SL3 inside thereof. It has the function to do.
  • Each of the protruding ribs 36 has a width of about 50 ⁇ m and a height of 3 to 6 ⁇ m, for example, and is formed to have a substantially trapezoidal cross section in the width direction.
  • the protruding ribs 36 are provided so as to have a gap with the array substrate 20, that is, with a height shorter than the distance between the array substrate 20 and the counter substrate 30.
  • the protruding ribs 36 that are adjacent to each other in the width direction are provided with an interval of about 25 ⁇ m, for example.
  • the position where the protruding rib 36 is provided in the seal region SL is preferably a position closer to the inside (display region D side) in the middle of the seal region SL in the width direction.
  • Protruding ribs 36 are formed in a region of about 100 ⁇ m from the inner end of the seal region SL.
  • the counter substrate 30 is provided with the liquid crystal alignment regulating ribs 35, but the liquid crystal alignment regulating ribs 35 may not be provided.
  • the seal material 40 is arranged in a frame shape so as to continuously extend to the seal area SL along the periphery of the counter substrate 30, and bonds the array substrate 20 and the counter substrate 30 to each other.
  • 10 is a plan view of the vicinity of the non-display area N of the liquid crystal display device 10
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • the sealing material 40 is obtained by curing a sealing material raw material 41 mainly composed of an adhesive such as a fluid thermosetting resin or an ultraviolet curable resin by heating or irradiation with ultraviolet rays.
  • a sealing material raw material 41 mainly composed of an adhesive such as a fluid thermosetting resin or an ultraviolet curable resin by heating or irradiation with ultraviolet rays.
  • at least one 43 of the glass fiber pulverized material 42 and conductive beads is mixed as a sealing material mixture.
  • the glass fiber pulverized product 42 is obtained, for example, by pulverizing glass fibers having a diameter of about 5 ⁇ m so as to have a length of about 20 ⁇ m.
  • the fiber diameter of the glass fiber pulverized product 42 is set to a length corresponding to the distance between the substrate of the array substrate 20 and the counter substrate 30, so that the glass fiber pulverized product 42 functions as a spacer between the two substrates. Have.
  • the distribution density in the sealing material 40 of the pulverized glass fiber 42 varies depending on the location in the sealing region SL. Specifically, the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL2 corresponding to the protruding rib 36 is lower than the distribution density in the region SL1 outside the substrate from the protruding rib 36.
  • the glass fiber pulverized material 42 is distributed.
  • the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL1 outside the substrate with respect to the protruding ribs 36 is about 1 to 2 per unit area of 400 ⁇ m square, and corresponds to the protruding ribs 36.
  • the distribution density of the pulverized glass fibers 42 in the sealing material 40 in the region SL2 is about 1 to 2 per unit area of 800 ⁇ m square.
  • the glass fiber pulverized product 142 is present in the region corresponding to the protruding rib 136, that is, the glass fiber pulverized product 142 is formed on the protruding rib 136.
  • the distance from the tips of the protruding ribs 136 to the surface of the array substrate 120 is the size of the fiber diameter of the crushed glass fiber 142.
  • the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL2 corresponding to the projecting rib 36 is in the region SL1 outside the substrate from the projecting rib 36. Since the glass fiber pulverized product 42 is mixed so as to be lower than the distribution density of the glass fiber pulverized product 42 in the sealing material 40, the number of the glass fiber pulverized products 42 riding on the protruding ribs 36 is reduced. It is possible to prevent the cell thickness from being controlled by the glass fiber crushed material 42 riding on the ribs 36.
  • the distribution density of the pulverized glass fibers 42 in the sealing material 40 in the region SL2 corresponding to the protruding ribs 36 is preferably 1 ⁇ 4 or less of the distribution density in the region SL1 outside the protruding ribs 36.
  • the distribution density of the pulverized glass fibers 42 in the sealing material 40 in the region SL2 corresponding to the protruding ribs 36 is 1 ⁇ 4 or less of the distribution density in the region SL1 outside the substrate from the protruding ribs 36.
  • the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in each of the regions SL1 and SL2 was measured using the optical microscope, and the region corresponding to the protruding ribs 36 was used.
  • SL2 it is about 1/4 of the region SL1 outside the substrate with respect to the projecting rib 36, and in this prototype, the efficiency is higher than that of a comparative sample configured so that the distribution density is uniform in the entire region. This is because a good cell thickness control effect was observed.
  • the glass fiber pulverized material 42 may not be mixed in the sealing material 40.
  • the conductive beads 43 are, for example, gold deposited on the outer surface of polymer beads.
  • the conductive beads 43 have an outer diameter of 6 to 7 ⁇ m, for example.
  • the conductive beads 43 have a function as a transfer material for electrically connecting the common electrode 33 of the counter substrate 30 and the wiring (not shown) provided in the frame region of the array substrate 20.
  • the outer diameter of the conductive beads 43 is preferably equal to or larger than the fiber diameter of the pulverized glass fiber 42, that is, the distance between the two substrates. More preferably, it is larger than the fiber diameter of the pulverized glass fiber 42.
  • the conductive bead 43 When the diameter of the conductive bead 43 is larger than the distance between the two substrates, the conductive bead 43 is deformed by being sandwiched between the substrates, and the common electrode 33 is electrically connected to the wiring in an elliptical sphere shape, for example. Will be allowed to.
  • the distribution density of the conductive beads 43 in the sealing material 40 varies depending on the location in the sealing region SL. Specifically, the distribution density of the conductive beads 43 in the sealing material 40 in the region SL2 corresponding to the projecting rib 36 and the region SL3 on the display region D side is higher than the projecting rib 36 in the region outside the substrate.
  • the conductive beads 43 are distributed so as to be lower than the distribution density in SL1.
  • the common electrode 33 of the counter substrate 30 and the pixel electrodes and the wiring switching electrodes 26 provided on the array substrate 20 are conductive.
  • the beads 43 are electrically connected, and there is a risk that unintended leakage occurs.
  • the distribution density of the conductive beads 43 in the sealing material 40 in the region SL2 in which the conductive beads 43 correspond to the protruding ribs 36 and in the region SL3 on the display region D side is more on the outside of the substrate than the protruding ribs 36. Since it is mixed so as to be lower than the distribution density in the region SL1, it is possible to suppress the occurrence of an undesired leak between the two substrates. Moreover, since the diameter of the conductive bead is larger than the glass fiber diameter, it is controlled by the cell thickness of the glass fiber, so that the mixing of the conductive bead into the SL3 region can be suppressed.
  • the conductive beads 43 may not be mixed in the sealing material 40 in the region SL2 corresponding to the projecting rib 36 and the region SL3 on the display region D side.
  • the liquid crystal layer 50 is made of a nematic liquid crystal material having electro-optical characteristics.
  • liquid crystal display device 10 configured as described above, one pixel is formed for each pixel electrode, and when the gate signal is sent from the gate line 22 and the TFT is turned on in each pixel, the source line 24 is turned on. A source signal is sent from the source electrode and a predetermined charge is written to the pixel electrode via the source electrode and the drain electrode, and a potential difference is generated between the pixel electrode and the common electrode 33 of the counter substrate 30. A predetermined voltage is applied to the liquid crystal capacitor consisting of In the liquid crystal display device 10, an image is displayed by adjusting the transmittance of light incident from the outside using the fact that the alignment state of the liquid crystal molecules changes according to the magnitude of the applied voltage.
  • all the protruding ribs 26 are provided in the middle in the width direction of the seal region SL.
  • at least the outermost protruding ribs 36 have the width of the seal region SL.
  • the protruding ribs 36 may be formed further on the display area D side than the seal area SL as long as it is provided in the middle of the direction.
  • the protruding ribs 36 are provided in parallel in a plurality of rows in the seal region SL, only one row may be provided. However, from the viewpoint of suppressing the alignment film 34 from flowing out of the protruding rib 36 during the formation of the alignment film 34, the glass fiber pulverized product 42 and the conductive beads 43 run on the protruding rib 36, Two or more rows are preferably provided from the viewpoint of suppressing the flow into the inner region SL3, and from the viewpoint of narrowing the frame, it is preferably three or less.
  • the protruding ribs 36 are continuously provided in a frame shape along the sealing material 40 provided in a frame shape so as to surround the display region D, for example, even if provided intermittently Alternatively, it may be provided in a meandering shape, or may be provided in other layouts according to individual shapes. However, from the viewpoint of suppressing the alignment film 34 from flowing out of the protruding rib 36 during the formation of the alignment film 34, the glass fiber pulverized product 42 and the conductive beads 43 run on the protruding rib 36, From the viewpoint of suppressing the flow into the inner region SL ⁇ b> 3, it is preferable that the protruding ribs 36 are continuously provided in a frame shape along the sealing material 40.
  • Embodiment 1 a method for manufacturing the liquid crystal display device 10 of Embodiment 1 will be described with reference to the flowchart of FIG.
  • the manufacturing method of Embodiment 1 corresponds to the array substrate manufacturing process corresponding to steps S11 to S19 in FIG. 13, the counter substrate manufacturing process corresponding to steps S21 to S25 in FIG. 13, and the steps S3 to S7 in FIG. And a liquid crystal display panel manufacturing process.
  • a gate line 22 (including a lead line 22a when the wiring switching unit 27 is formed), a gate electrode, and a gate insulating film, which are first wirings, are formed on the substrate body 21 by a known method.
  • the semiconductor layer, the source line 24 as the second wiring, the source electrode, and the drain electrode are formed in this order, and in step S15, the channel portion is patterned in the semiconductor layer to form a TFT.
  • steps S16 and S17 a passivation film and an interlayer insulating film 25 are sequentially formed by a known method, and in step S18, a pixel electrode is formed so as to correspond to the contact hole of the interlayer insulating film 25.
  • step S19 an alignment film is formed by a known method, and the array substrate 20 is completed.
  • step S21 a black matrix is formed on the substrate body 31 by a known method.
  • step S22 the color filter layers 32 and 36a are formed by a known method.
  • the color filter layer 32 corresponding to each pixel is formed, and in the non-display area N, patterning is performed so as to have a layout along the outer peripheral edge of the counter substrate 30.
  • the color filter layer 36 a protruding from the outer peripheral edge so as to surround the display area D is a part constituting the protruding rib 36.
  • a common electrode 33 is formed by forming a transparent conductive film so as to cover the entire substrate by a known method. At this time, in the non-display region N, the common electrode 33 becomes a transparent conductive film 36b provided so as to cover the color filter layer 36a provided for forming the protruding rib 36.
  • step S24 for example, an organic resin film made of a transparent material such as a photosensitive acrylic resin having a thickness of about 1.5 ⁇ m is formed using a spin coating method or the like.
  • the display area D patterning is performed so that the liquid crystal alignment regulating ribs 35 are formed in a predetermined area.
  • the transparent conductive film 36b is covered in the area where the protruding ribs 36 are formed.
  • patterning is performed to form a transparent resin 36c, and the liquid crystal alignment regulating ribs 35 and the protruding ribs 36 are formed simultaneously.
  • the liquid crystal alignment regulating ribs 35 and the projecting ribs 36 are formed simultaneously, but each may be formed as a separate process.
  • the organic resin may be patterned so as to cover the liquid crystal alignment regulating rib 35, and then different types of organic resin may be patterned so as to cover the color filter layer 36a of the protruding rib 36.
  • the protruding ribs 36 may be formed before the liquid crystal alignment regulating ribs 35.
  • step S25 an alignment film 34 is formed by performing a rubbing alignment process after applying a polyimide resin or the like by inkjet.
  • the projecting ribs 36 are formed in the non-display area N on the outer peripheral edge of the display area D so as to correspond to the seal area SL in Step S24, It is possible to prevent the display area N from flowing outward from the portion where the protruding ribs 36 are provided.
  • the substrate surface is rubbed to form the alignment film 34 for horizontal alignment, but the substrate surface may be rubbed to form a vertical alignment film.
  • the color filter layer 36a is also formed in a pattern in the non-display area N, and a transparent conductive film 36b and a transparent resin 36c are stacked thereon to form the protruding rib 36.
  • a transparent conductive film 36b and a transparent resin 36c are stacked thereon.
  • step S3 First, in step S3, as shown in FIGS. 14 and 15, for example, by using a dispenser, a screen printing method, or the like, a sealing material raw material 41 is provided around the display region D so as to surround the outer edge of the counter substrate 30 in a frame shape. Apply.
  • a region where the sealing material raw material 41 is applied is a region outside the substrate (region included in the region SL1) with respect to the protruding rib 36, and the protruding rib 36 is The sealing material 41 is not applied to the formed region SL2 or the region SL3 inside thereof.
  • the distance (the length of P1 in FIG. 15) between the sealing material raw material application area SA and the area where the protruding ribs 36 are provided is preferably 100 to 300 ⁇ m. Further, the difference (the length of Q1 in FIG. 15) between the coating thickness when applying the sealing material 41 to the sealing material application area SA and the height of the protruding rib 36 is preferably 5 to 10 ⁇ m.
  • step S4 a liquid crystal material is dropped on the substrate in a region surrounded by the sealing material 40 using a dispenser method or the like, for example, to form a liquid crystal layer. .
  • step S5 the array substrate 20 and the counter substrate 30 are aligned so that the display areas D correspond to each other. Then, when the substrates 20 and 30 are overlapped and pressed so as to sandwich the sealing material 41, the adhesive flows and spreads, and as shown in FIG. To reach.
  • the distance Q2 from the tip of the protruding rib 36 to the surface of the array substrate 20 is the fiber diameter of the pulverized glass fiber 42 or the conductivity.
  • the diameter is set to be smaller than the diameter of the conductive bead 43.
  • the distance Q2 to the surface is smaller than the diameter of the glass fiber pulverized product 42 and the conductive beads 43, entry to the protruding rib 36 side is restricted, and the glass fiber pulverized product 42 and the conductive beads 43 are moved to the display region D side. Is suppressed from flowing in. Accordingly, the distribution density in the region SL2 of the protruding rib 36 to the region SL3 inside the protruding rib 36 is lower than the distribution density in the region SL1 outside the protruding rib 36.
  • the length of P1 is set to 100 to 300 ⁇ m and the length of Q1 is set to 5 to 10 ⁇ m, as shown in FIG. It is possible to realize a state in which the distance Q2 from the tip to the surface of the array substrate 20 is smaller than the fiber diameter of the crushed glass fiber 42 and the diameter of the conductive beads 43.
  • the glass fiber crushed material 42 is sandwiched between the two substrates as a spacer, and the substrates 20 and 30 can be brought closer to each other. Disappear. At this time, a region where the sealing material 41 is expanded becomes a sealing region SL of the liquid crystal display device 10.
  • step S6 the sealing material 41 is cured by irradiating the sealing material 41 with UV and / or heating.
  • the liquid crystal display panel is manufactured as described above (step S7), and the liquid crystal display device 10 of Embodiment 1 can be manufactured.
  • the array material 20 is applied by applying the sealing material raw material 41 using the region outside the substrate of the protruding rib 36 as the sealing material raw material application region SA. Since the counter substrate 30 is bonded, the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL2 corresponding to the protruding rib 36 has a distribution density in the sealing material 40 in the region outside the protruding rib 36.
  • the sealing material 40 is provided so as to be lower than the distribution density of the pulverized glass fiber 42.
  • the problem that it becomes difficult to control the cell thickness of the liquid crystal display device 10 due to the glass fiber pulverized material 42 present in the region SL2 corresponding to the protruding rib 36 can be suppressed. And by controlling cell thickness efficiently, the outstanding optical characteristic can be acquired and it can be set as the liquid crystal display device 10 of the desired display quality.
  • the sealing material raw material 41 is applied to the array substrate 20 and the area opposite the substrate of the protruding rib 36 as the sealing material raw material application region SA. Since the substrates 30 are bonded together, the distribution density of the conductive beads 43 in the sealing material 40 in the region SL2 corresponding to the protruding ribs 36 and in the region SL3 on the display region D side is higher than that of the protruding ribs 36.
  • the sealing material 40 is provided so as to be lower than the distribution density of the conductive beads 43 in the sealing material 40 in the outer region SL1.
  • the common electrode 33 of the counter substrate 30 and the pixel electrode of the array substrate 20 are electrically connected to each other by the conductive beads 43 existing in the region SL3 inside the protruding rib 36, and an undesired leak occurs. Can be suppressed.
  • the configuration in which the protruding ribs 36 are formed on the counter substrate 30 is illustrated, but the protruding ribs 36 may be provided in the non-display area N of the array substrate 20.
  • the seal material raw material 41 is applied to the array substrate 20 in the region SL1 outside the protruding ribs 36 as the seal material raw material application region SA.
  • the protruding ribs 36 may be provided on both the array substrate 20 and the counter substrate 30.
  • Embodiment 2 the liquid crystal display device 10 of Embodiment 2 will be described.
  • FIG. 20 is an overall schematic diagram of the liquid crystal display device 10 according to the second embodiment.
  • 21 and 22 are plan views of the array substrate 20 and the counter substrate 30, respectively. Note that the same or corresponding components as those in the first embodiment will be described using the same reference numerals as those in the first embodiment.
  • the array substrate 20 and the counter substrate 30 are arranged to face each other, and are bonded by a seal material 40 arranged in a seal region SL on the outer peripheral edge portion thereof, and in a space surrounded by the seal material 40.
  • the liquid crystal layer 50 is provided as a display layer.
  • a region where the liquid crystal layer 50 is provided constitutes a display region D, and the periphery thereof is a frame-like non-display region N.
  • a part of one side in the long side direction of the liquid crystal display device 10 is a source terminal region Ts, and a part of two sides in the short side direction is a gate terminal region Tg.
  • the seal region SL has a distance (the length of “a” in FIG. 27) between the display region D and the seal region SL in the long side direction of the liquid crystal display device 10 such that the display region D and the seal region SL in the short side direction. The distance between them (the length of “b” in FIG. 27) is longer.
  • the array substrate 20 has, for example, a Ti film (thickness of about 50 nm), an Al film (thickness of about 300 nm), and a Ti film (thickness) so as to extend in parallel with each other on the substrate body 21.
  • a plurality of gate lines (first wirings) 22 are provided, and a gate insulating film 23 (see FIG. 5) made of SiN having a thickness of, for example, 400 nm is provided so as to cover the gate lines 22. Is provided.
  • Source line (second wiring) 24 is provided on the gate insulating film 23 .
  • a semiconductor layer is provided at each intersection of the gate line 22 and the source line 24 to constitute a TFT (not shown). Further, a passivation film (not shown) made of SiN having a thickness of, for example, 250 nm is provided so as to cover these, and an interlayer made of photosensitive acrylic resin having a thickness of, for example, 2.5 ⁇ m is further provided so as to cover the passivation film.
  • An insulating film 25 is provided. Further, contact holes (not shown) that lead from the surface of the interlayer insulating film 25 to each TFT are formed so as to correspond to each pixel, and a pixel electrode (for example, ITO) (for example, ITO) is formed corresponding to each contact hole. Not shown).
  • An alignment film (not shown) is formed on the pixel electrode so as to cover the display region D.
  • the source line 24 is electrically connected to a lead line 22 a provided in the same layer as the gate line 22 in the non-display area N.
  • the source line end portion 24t is positioned so as to overlap with the upper layer of the lead line end portion 22at in plan view, and a contact hole 27c that leads to both the source line 24 and the lead line 22a is formed, and the surface of the contact hole 27c is formed.
  • the wiring switching part 27 is configured by providing the wiring switching electrode 26 so as to cover the wiring.
  • the wiring switching electrode 26 is provided in the same layer as the pixel electrode in the display area D.
  • the enlarged plan view of the wiring switching unit 27 (the portion indicated by the region IV in FIG. 21) and the cross-sectional view thereof are the same as FIGS. 4 and 5 described for the first embodiment.
  • FIG. 22 is a plan view of the counter substrate 30. A cross-sectional view taken along line IX-IX in FIG. 22 is the same as FIG. 9 described for the first embodiment.
  • the counter substrate 30 is provided with a color filter layer 32 having a thickness of, for example, 2 ⁇ m in the display region D on the substrate body 31.
  • the color filter layer 32 includes a colored layer 32a in which one of red, green, and blue is disposed so as to correspond to each pixel electrode of the array substrate 20, and a black matrix provided between the colored layers 32a. 32b.
  • a common electrode 33 made of, for example, ITO having a thickness of 100 nm is provided on the entire surface of the color filter layer 32, and an alignment film 34 made of, for example, a transparent organic resin such as polyimide is provided so as to cover the common electrode 33. Is provided.
  • the counter substrate 30 is provided with a liquid crystal alignment regulating rib 35 for regulating the alignment direction of the liquid crystal molecules in the display region D.
  • the liquid crystal alignment regulating rib 35 protrudes from the surface of the counter substrate 30 toward the array substrate 20 side.
  • the liquid crystal alignment regulating rib 35 has, for example, a triangular cross section.
  • the liquid crystal alignment regulating rib 35 substantially regulates the alignment direction of individual liquid crystal molecules to the protruding direction of the ribs, and the tilted liquid crystal molecules interact with each other so that the twist angle of the liquid crystal molecules is the liquid crystal layer 50. Therefore, high quality display with a high contrast ratio is possible.
  • the liquid crystal alignment regulating rib 35 is formed of, for example, a transparent organic resin material or a transparent inorganic material.
  • the liquid crystal alignment regulating rib 35 may have an insulating property or a dielectric property.
  • projecting ribs 36 project in the middle in the width direction of the seal region SL where the seal material 40 is formed so as to extend along the direction of the seal region SL and toward the array substrate 20. ing.
  • the protruding ribs 36 are provided so as to extend along two opposing sides along the gate terminal region Tg in the outer peripheral edge of the substrate.
  • the protruding ribs 36 are provided so that, for example, a plurality of rows (two rows in FIG. 22) are arranged in the width direction in each of the regions along the gate terminal region Tg.
  • the protruding rib 36 is formed, for example, by laminating a color filter layer 36a, a transparent conductive film 36b, and a transparent resin 36c.
  • the color filter layer 36a has a thickness of 1 to 3 ⁇ m, for example.
  • the transparent conductive film 36 b is, for example, an ITO film having a thickness of about 100 nm, and is provided as a common electrode that covers the entire surface of the counter substrate 30.
  • the transparent resin 36c is, for example, a photosensitive acrylic resin having a thickness of 1.5 ⁇ m.
  • the protruding ribs 36 have a function of preventing the alignment film from flowing out to the outside of the protruding ribs 36 when the alignment film 34 is formed on the two opposing sides along the gate terminal region Tg. Further, the protruding ribs 36 suppress the crushed glass fiber 42 and the conductive beads 43 mixed in the sealing material 40 from climbing on the protruding ribs 36 or flowing into the region SL3 inside thereof. Has the function of
  • Each of the protruding ribs 36 has a width of about 50 ⁇ m and a height of 3 to 6 ⁇ m, for example, and is formed to have a substantially trapezoidal cross section in the width direction.
  • the protruding ribs 36 are provided so as to have a gap with the array substrate 20, that is, with a height shorter than the distance between the array substrate 20 and the counter substrate 30.
  • the protruding ribs 36 that are adjacent to each other in the width direction are provided with an interval of about 25 ⁇ m, for example.
  • the position where the protruding rib 36 is provided in the seal region SL is preferably a position closer to the inside (display region D side) in the middle of the seal region SL in the width direction.
  • Protruding ribs 36 are formed in a region of about 100 ⁇ m from the inner end of the seal region SL.
  • the counter substrate 30 is provided with the liquid crystal alignment regulating ribs 35, but the liquid crystal alignment regulating ribs 35 may not be provided.
  • the seal material 40 is arranged in a frame shape so as to continuously extend to the seal area SL along the periphery of the counter substrate 30, and bonds the array substrate 20 and the counter substrate 30 to each other.
  • the sealing material 40 is obtained by curing a sealing material raw material 41 mainly composed of an adhesive such as a fluid thermosetting resin or an ultraviolet curable resin by heating or irradiation with ultraviolet rays.
  • a sealing material raw material 41 mainly composed of an adhesive such as a fluid thermosetting resin or an ultraviolet curable resin by heating or irradiation with ultraviolet rays.
  • at least one 43 of the glass fiber pulverized material 42 and conductive beads is mixed as a sealing material mixture.
  • the glass fiber pulverized product 42 is obtained, for example, by pulverizing glass fibers having a diameter of about 5 ⁇ m so as to have a length of about 20 ⁇ m.
  • the fiber diameter of the glass fiber pulverized product 42 is set to a length corresponding to the distance between the substrate of the array substrate 20 and the counter substrate 30, so that the glass fiber pulverized product 42 functions as a spacer between the two substrates. Have.
  • the distribution density in the sealing material 40 of the pulverized glass fiber 42 varies depending on the location in the sealing region SL. Specifically, the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL2 corresponding to the protruding rib 36 is lower than the distribution density in the region SL1 outside the substrate from the protruding rib 36.
  • the glass fiber pulverized material 42 is distributed.
  • the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL1 outside the substrate with respect to the protruding ribs 36 is about 1 to 2 per unit area of 400 ⁇ m square, and corresponds to the protruding ribs 36.
  • the distribution density of the pulverized glass fibers 42 in the sealing material 40 in the region SL2 is about 1 to 2 per unit area of 800 ⁇ m square.
  • the glass fiber pulverized product 142 is present in the region corresponding to the protruding rib 136, that is, the glass fiber pulverized product 142 is formed on the protruding rib 136.
  • the distance from the tips of the protruding ribs 136 to the surface of the array substrate 120 is the size of the fiber diameter of the crushed glass fiber 142.
  • the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL2 corresponding to the projecting rib 36 is in the region SL1 outside the substrate from the projecting rib 36. Since the glass fiber pulverized product 42 is mixed so as to be lower than the distribution density of the glass fiber pulverized product 42 in the sealing material 40, the number of the glass fiber pulverized products 42 riding on the protruding ribs 36 is reduced. It is possible to prevent the cell thickness from being controlled by the glass fiber crushed material 42 riding on the ribs 36.
  • the distribution density of the pulverized glass fibers 42 in the sealing material 40 in the region SL2 corresponding to the protruding ribs 36 is preferably 1 ⁇ 4 or less of the distribution density in the region SL1 outside the protruding ribs 36.
  • the distribution density of the pulverized glass fibers 42 in the sealing material 40 in the region SL2 corresponding to the protruding ribs 36 is 1 ⁇ 4 or less of the distribution density in the region SL1 outside the substrate from the protruding ribs 36.
  • the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in each of the regions SL1 and SL2 was measured using the optical microscope, and the region corresponding to the protruding ribs 36 was used.
  • SL2 it is about 1/4 of the region SL1 outside the substrate with respect to the projecting rib 36, and in this prototype, the efficiency is higher than that of a comparative sample configured so that the distribution density is uniform in the entire region. This is because a good cell thickness control effect was observed.
  • the glass fiber pulverized material 42 may not be mixed in the sealing material 40.
  • the conductive beads 43 are, for example, gold deposited on the outer surface of polymer beads.
  • the conductive beads 43 have an outer diameter of 6 to 7 ⁇ m, for example.
  • the conductive beads 43 have a function as a transfer material for electrically connecting the common electrode 33 of the counter substrate 30 and the wiring (not shown) provided in the frame region of the array substrate 20.
  • the outer diameter of the conductive beads 43 is preferably equal to or larger than the fiber diameter of the pulverized glass fiber 42, that is, the distance between the two substrates. More preferably, it is larger than the fiber diameter of the pulverized glass fiber 42.
  • the conductive bead 43 When the diameter of the conductive bead 43 is larger than the distance between the two substrates, the conductive bead 43 is deformed by being sandwiched between the substrates, and the common electrode 33 is electrically connected to the wiring in an elliptical sphere shape, for example. Will be allowed to.
  • the distribution density of the conductive beads 43 in the sealing material 40 varies depending on the location in the sealing region SL. Specifically, the distribution density of the conductive beads 43 in the sealing material 40 in the region SL2 corresponding to the projecting rib 36 and the region SL3 on the display region D side is higher than the projecting rib 36 in the region outside the substrate.
  • the conductive beads 43 are distributed so as to be lower than the distribution density in SL1.
  • the common electrode 33 of the counter substrate 30 and the pixel electrodes and the wiring switching electrodes 26 provided on the array substrate 20 are conductive.
  • the beads 43 are electrically connected, and there is a risk that unintended leakage occurs.
  • the distribution density of the conductive beads 43 in the sealing material 40 in the region SL2 in which the conductive beads 43 correspond to the protruding ribs 36 and in the region SL3 on the display region D side is more on the outside of the substrate than the protruding ribs 36. Since it is mixed so as to be lower than the distribution density in the region SL1, it is possible to suppress the occurrence of an undesired leak between the two substrates. Moreover, since the diameter of the conductive bead is larger than the glass fiber diameter, it is controlled by the cell thickness of the glass fiber, so that the mixing of the conductive bead into the SL3 region can be suppressed.
  • the conductive beads 43 may not be mixed in the sealing material 40 in the region SL2 corresponding to the projecting rib 36 and the region SL3 on the display region D side.
  • the liquid crystal layer 50 is made of a nematic liquid crystal material having electro-optical characteristics.
  • liquid crystal display device 10 configured as described above, one pixel is formed for each pixel electrode, and when the gate signal is sent from the gate line 22 and the TFT is turned on in each pixel, the source line 24 is turned on. A source signal is sent from the source electrode and a predetermined charge is written to the pixel electrode via the source electrode and the drain electrode, and a potential difference is generated between the pixel electrode and the common electrode 33 of the counter substrate 30. A predetermined voltage is applied to the liquid crystal capacitor consisting of In the liquid crystal display device 10, an image is displayed by adjusting the transmittance of light incident from the outside using the fact that the alignment state of the liquid crystal molecules changes according to the magnitude of the applied voltage.
  • all the protruding ribs 26 are provided in the middle in the width direction of the seal region SL.
  • at least the outermost protruding ribs 36 have the width of the seal region SL.
  • the protruding ribs 36 may be formed further on the display area D side than the seal area SL as long as it is provided in the middle of the direction.
  • the protruding ribs 36 are provided in parallel in a plurality of rows in the seal region SL, only one row may be provided. However, from the viewpoint of suppressing the alignment film 34 from flowing out of the protruding rib 36 during the formation of the alignment film 34, the glass fiber pulverized product 42 and the conductive beads 43 run on the protruding rib 36, Two or more rows are preferably provided from the viewpoint of suppressing the flow into the inner region SL3, and from the viewpoint of narrowing the frame, it is preferably three or less.
  • the protruding ribs 36 are continuously provided in a frame shape along the sealing material 40 provided in a frame shape so as to surround the display region D, for example, even if provided intermittently Alternatively, it may be provided in a meandering shape, or may be provided in other layouts according to individual shapes. However, from the viewpoint of suppressing the alignment film 34 from flowing out of the protruding rib 36 during the formation of the alignment film 34, the glass fiber pulverized product 42 and the conductive beads 43 run on the protruding rib 36, From the viewpoint of suppressing the flow into the inner region SL ⁇ b> 3, it is preferable that the protruding ribs 36 are continuously provided in a frame shape along the sealing material 40.
  • the liquid crystal display device 10 according to the second embodiment having the above-described configuration is similar to that of the first embodiment except that the sealing material 41 is disposed along two opposing sides along the gate terminal region Tg. It can be created according to a flowchart.
  • the sealing material raw material 41 is applied to the area outside the substrate of the protruding rib 36 as the sealing material raw material application region SA, and the array substrate 20 and Since the counter substrate 30 is bonded, the distribution density of the glass fiber pulverized material 42 in the sealing material 40 in the region SL2 corresponding to the protruding rib 36 has a distribution density in the sealing material 40 in the region outside the protruding rib 36.
  • the sealing material 40 is provided so as to be lower than the distribution density of the pulverized glass fiber 42.
  • the problem that it becomes difficult to control the cell thickness of the liquid crystal display device 10 due to the glass fiber pulverized material 42 present in the region SL2 corresponding to the protruding rib 36 can be suppressed. And by controlling cell thickness efficiently, the outstanding optical characteristic can be acquired and it can be set as the liquid crystal display device 10 of the desired display quality.
  • the sealing material raw material application area SA to apply the sealing material raw material 41 and face the array substrate 20. Since the substrates 30 are bonded together, the distribution density of the conductive beads 43 in the sealing material 40 in the region SL2 corresponding to the protruding ribs 36 and in the region SL3 on the display region D side is higher than that of the protruding ribs 36.
  • the sealing material 40 is provided so as to be lower than the distribution density of the conductive beads 43 in the sealing material 40 in the outer region SL1.
  • the common electrode 33 of the counter substrate 30 and the pixel electrode of the array substrate 20 are electrically connected to each other by the conductive beads 43 existing in the region SL3 inside the protruding rib 36, and an undesired leak occurs. Can be suppressed.
  • the configuration in which the protruding ribs 36 are formed on the counter substrate 30 is illustrated, but the protruding ribs 36 may be provided in the non-display area N of the array substrate 20.
  • the seal material raw material 41 is applied to the array substrate 20 in the region SL1 outside the protruding ribs 36 as the seal material raw material application region SA.
  • the protruding ribs 36 may be provided on both the array substrate 20 and the counter substrate 30.
  • the display device related to the liquid crystal display device 10 including a liquid crystal display panel is exemplified, but the present invention is applicable to a plasma display (PD), a plasma addressed liquid crystal display (PALC), and an organic electroluminescence.
  • the present invention can also be applied to display devices such as (organic EL) displays, inorganic electroluminescence (inorganic EL) displays, field emission displays (FED), and surface electric field displays (SED).
  • the present invention is useful for a display device having a structure in which two substrates are bonded to face each other with a sealant therebetween, and a manufacturing method thereof.
  • First substrate (counter substrate) 32
  • 36a Color filter layer 33
  • 36b Transparent conductive film (common electrode) 35
  • Liquid crystal alignment regulating rib (transparent resin) 36c Transparent resin
  • Sealing material 41 Sealing material raw material 42 Glass fiber crushed material (sealing material mixture) 43 Conductive beads (sealing material contamination) 50 Liquid crystal layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

ガラス繊維粉砕物(42)及び導電性ビーズ(43)の少なくとも一方を含むシール材混入物が混入されたシール材(40)を第1基板(30)及び第2基板(20)間の外周縁部に枠状に配置してシール材(40)の内側に表示領域が形成された表示装置は、第1基板(30)には、シール材(40)の幅方向中途部において、突状リブ(36)がシール材(40)に沿うように、且つ、第2基板(20)と隙間を有するように第2基板(20)側に向かって突設されている。突状リブ(36)に対応する領域(SL2)におけるシール材(40)中のシール材混入物の分布密度は、突状リブ(36)よりも基板外側の領域(SL1)におけるシール材(40)中のシール材混入物の分布密度よりも低いか、もしくは、突状リブ(36)に対応する領域(SL2)ではシール材(40)中にシール材混入物が混入されていないように設定されている。

Description

表示装置及びその製造方法
 本発明は、表示領域の外周縁部に枠状に配置されたシール材を介して2枚の基板が対向するように貼り合わされた構成を備えた、例えば液晶表示装置等の表示装置に関する。また、その表示装置の製造方法に関する。
 液晶表示装置は、薄型化が可能で低消費電力であるため、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA(Personal Digital Assistant)等の携帯情報機器のディスプレイとして広く用いられている。
 液晶表示装置は、液晶表示パネルと、液晶表示パネルの背面側に取り付けられたバックライトユニットとを備えている。液晶表示パネルは、薄膜トランジスタ等のスイッチング素子を備えたアレイ基板と、アレイ基板に対向して配された対向基板と、がシール材により貼り合わされた構成を有し、両基板間に構成される空間には液晶材料が封入されている。対向基板はアレイ基板よりも一回り小さい基板が採用されており、これによって露出したアレイ基板の端子領域上に、駆動回路が実装されている。
 液晶表示パネルは、画像表示を行う表示領域と、表示領域を額縁状に囲う非表示領域とで構成されている。
 アレイ基板の液晶層に接する表面には、少なくとも表示領域を覆って、配向膜が形成されている。同様に、対向基板の液晶に接する表面には、少なくとも表示領域を覆って、配向膜が形成されている。配向膜は、アレイ基板に設けられた電極と対向基板に設けられた電極との間に電位差がないときには、液晶層の液晶分子の配向を制御する機能を有する。また、配向膜は、両電極間に電位差が生じたときには、液晶分子の配列や傾きを制御する機能を有する。
 配向膜は、例えば、ポリイミド等の樹脂膜の表面にラビング処理を行って形成することができる。樹脂膜の形成には、例えば、フレキソ印刷法やインクジェット法等が用いられる。これらの方法のうち、基板上に直接描画ができる点、非接触プロセスのため低汚染である点、溶液の消費量が少ない点、作業時間が短縮できる点等で優れていることから、インクジェット法が好ましく用いられている。
 ところで、インクジェット法で配向膜の樹脂膜を形成すると、樹脂膜の材料としてフレキソ法よりも粘度が低いものを用いるので、印刷しようとする領域(表示領域)の周辺の領域に樹脂膜の材料が漏れ広がりやすい。表示領域の周囲の非表示領域が小さく、表示領域とシール材の領域との間隔が大きく確保できないと、シール材の領域にまで樹脂膜が流れて到達してしまうこととなる。そして、この場合には、シール材と配向膜との接着性が不十分であることから、完全にシールすることができずに液晶層の液晶材料が漏れる原因となる。
 上記の問題を解決するため、特許文献1には、表示領域の外側、且つ、シール材が配置される領域の内側となる概略環状の領域に、表示領域の外周に沿った方向に長く延びる溝部を有する構成の液晶表示装置が開示されている。そして、この構成によれば、インクジェット法により塗布した液状の樹脂材料が表示領域の外側に広がっても、溝部において樹脂材料の広がりを止めることができ、配向膜の表示領域の外側での濡れ広がりを抑制することができると記載されている。
 特許文献2には、表示領域の外側、且つ、シール材が配置される領域の内側となる領域に、凹凸を設けた構成の液晶表示装置が開示されている。そして、この構成によれば、狭額縁の液晶表示装置においても配向膜の広がりを抑制してシール不良を抑制することができると記載されている。
特開2007-322627号公報 特開2008-145461号公報
 近年の液晶表示装置のデザイン性の要求により、さらなる狭額縁化が行われるようになってきた。これに伴い、例えば図24に示すように、配向膜のシール領域への広がりを抑制するために表示領域の外側に凸部(突状リブ)136を設ける場合にでも、凸部136とシール領域間のマージンを十分に確保することができず、凸部136が設けられた領域へのシール材140の進入が避けられなくなってきた。
 ところで、シール材140には、基板間の距離を一定に保つスペーサとして、ガラス繊維粉砕物142が混合されている。ガラス繊維粉砕物142は、繊維径Rが凸部136のない領域SL11における基板間距離Wに対応するように設定されている。ところが、特許文献2の構成の液晶表示装置のように凸部136を設けると、凸部136に対応する領域SL12において凸部136上にガラス繊維粉砕物142が乗り上げてしまった場合、凸部136を除いた両基板120,130間の距離がガラス繊維粉砕物142の繊維径Rと凸部136の高さHとの合計長さになってしまい、目的とする基板間距離Wに制御することが困難になる。従って、シール材140に含まれるガラス繊維粉砕物142の凸部136の領域SL12への進入の抑制が望まれる。
 また、シール材140には、例えば、対向基板130の全面を覆うように設けられた共通電極133と、アレイ基板120の非表示領域に設けられた配線とを導通させるために、上下の導通を取るトランスファ材として、導電性のビーズ143が混合されている。ところが、この導電性ビーズ143が凸部136を越えて表示領域側に進入した場合(図24における右側の導電性ビーズ143)、例えばアレイ基板120側の電極126と対向基板130側の共通電極133が導通し、目的としないリークの発生により表示特性が低下する虞がある。従って、導電性ビーズ143の表示領域側への流入の抑制が望まれる。
 本発明は、ガラス繊維粉砕物及び導電性ビーズの少なくとも一方を含むシール材混入物が混入されたシール材が第1基板及び第2基板間の外周縁部に枠状に配置され、第1基板のシール材の幅方向中途部には、シール材に沿うように、且つ、第2基板と隙間を有するように突状リブが第2基板側に向かって突設された表示装置において、ガラス繊維粉砕物が突状リブ上に乗り上げることにより表示装置のセル厚の制御が困難になったり、導電性ビーズが表示領域側へ流入することにより基板間で目的としないリークが発生したりするのを抑制することを目的とする。
 本発明の表示装置は、ガラス繊維粉砕物及び導電性ビーズの少なくとも一方を含むシール材混入物が混入されたシール材を第1基板及び第2基板間の外周縁部に枠状に配置して該シール材の内側に表示領域が形成されたものであって、第1基板には、シール材の幅方向中途部において、突状リブがシール材に沿うように、且つ、第2基板と隙間を有するように第2基板側に向かって突設され、突状リブに対応する領域におけるシール材中のシール材混入物の分布密度は突状リブよりも基板外側の領域におけるシール材中のシール材混入物の分布密度よりも低いか、もしくは、突状リブに対応する領域ではシール材中にシール材混入物が混入されていないように設定されていることを特徴とする。
 そして、本発明の表示装置は、シール材混入物がガラス繊維粉砕物及び導電性ビーズを含み、上記突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度は、該突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度よりも低いか、もしくは、該突状リブに対応する領域では該シール材中にガラス繊維粉砕物が混入されていないように設定され、上記突状リブに対応する領域及びそれよりも表示領域側の領域におけるシール材中の導電性ビーズの分布密度は、該突状リブよりも基板外側の領域におけるシール材中の導電性ビーズの分布密度よりも低いか、もしくは、該突状リブに対応する領域及びそれよりも表示領域側の領域では上記シール材中に導電性ビーズが混入されていないように設定されていることが好ましい。
 上記の構成によれば、突状リブに対応する領域におけるシール材中のシール材混入物の分布密度は突状リブよりも基板外側の領域におけるシール材中のシール材混入物の分布密度よりも低いか、もしくは、突状リブに対応する領域ではシール材中にシール材混入物が混入されていないように設定されており、シール材混入物の中でも、突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度は突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度よりも低いか、もしくは、突状リブに対応する領域ではシール材中にガラス繊維粉砕物が混入されていないので、突状リブ上に乗り上げるガラス繊維粉砕物の数が少なくなるか、或いは突状リブ上にはガラス繊維粉砕物が乗り上げることがなくなり、セル厚の制御ができなくなるのを抑制することができる。
 また、上記の構成によれば、上記突状リブに対応する領域及びそれよりも表示領域側の領域におけるシール材中の導電性ビーズの分布密度は該突状リブよりも基板外側の領域におけるシール材中の導電性ビーズの分布密度よりも低いか、もしくは、突状リブに対応する領域及びそれよりも表示領域側の領域では上記シール材中に導電性ビーズが混入されていないので、両基板間での目的としないリークの発生を抑制することができる。
 本発明の表示装置は、上記突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度が、該突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度の4分の1以下であることが好ましい。なお、突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度は、低ければ低いほど好ましい。
 本発明の表示装置は、導電性ビーズは、その径が上記ガラス繊維粉砕物の繊維径よりも大きいことが好ましい。
 本発明の表示装置は、第1基板が矩形形状を有し、突状リブは、基板外周縁部のうち第1基板を構成する対向する2辺に沿って延びるように形成されていてもよい。
 上記の構成によれば、突状リブが延びるように形成された上記対向する2辺において、非表示領域が狭額縁化されていても、ガラス繊維粉砕物が突状リブ上に乗り上げることによりセル厚の制御ができなくなるのを抑制することができると共に、突状リブに対応する領域及びそれよりも表示領域側の領域でシール材中に導電性ビーズが混入することにより両基板間で目的としないリークが発生するのを抑制することができる。例えば、基板の端子領域のうち1辺に沿ってソース端子領域が、ソース端子領域を挟む対向する2辺においてゲート端子領域が形成されたアクティブマトリクス基板では、ソース端子領域においてはソース配線の修正用予備配線を配置のためにゲート端子領域によりも幅広のスペースを必要とするので、ゲート端子領域に沿った2辺においてのみ狭額縁化することが望まれる。このような場合、上記の構成を好適に用いることができる。
 本発明の表示装置は、突状リブは、基板外周縁部に表示領域を囲むように枠状に形成されていてもよい。
 上記の構成によれば、基板外周縁部の全周において、非表示領域が狭額縁化されていても、ガラス繊維粉砕物が突状リブ上に乗り上げることによりセル厚の制御ができなくなるのを抑制することができると共に、突状リブに対応する領域及びそれよりも表示領域側の領域でシール材中に導電性ビーズが混入することにより両基板間で目的としないリークが発生するのを抑制することができる。
 本発明の表示装置は、上記第1基板及び第2基板間に液晶層が設けられていてもよく、この場合、表示装置は液晶表示装置となる。
 表示装置が液晶表示装置である場合、上記第1基板はカラーフィルタ層を備えた対向基板であり、突状リブは、カラーフィルタ層、透明導電膜、及び透明樹脂が積層された構成であってもよい。
 この場合、液晶表示装置は、上記第1基板には上記表示領域において上記第2基板側に向かって突設された透明樹脂からなる液晶配向規制用リブをさらに備えていてもよい。
 上記の構成によれば、表示装置が液晶表示装置であって、カラーフィルタ層を備えた対向基板上に突状リブが形成されているので、突状リブがカラーフィルタ層、透明導電膜、及び透明樹脂が積層された構成とすることにより、突状リブのカラーフィルタ層の部分を対向基板のカラーフィルタ層と同時に形成することができ、突状リブの製造工程を簡素化することができる。
 さらに、第1基板の表示領域において、液晶配向規制用リブが第2基板側に向かって突設されている場合には、突状リブの透明樹脂と液晶配向規制用リブの透明樹脂とを同時に形成することができ、突状リブの製造工程を簡素化することができる。
 本発明の表示装置の製造方法は、ガラス繊維粉砕物及び導電性ビーズの少なくとも一方を含むシール材混入物が混入されたシール材を第1基板及び第2基板間の外周縁部に枠状に配置して該シール材の内側に表示領域が形成された表示装置を製造するものであって、上記第1基板の外周縁部に上記表示領域を囲うように突状リブを突設し、次いで、上記第1基板上の上記突状リブよりも基板外側の領域をシール材原料塗布領域として、該シール材原料塗布領域に流動性を有する接着剤にシール材混入物が混入されたシール材原料を塗布し、続いて、上記第1基板と第2基板とを上記シール材原料を挟むように重ね合わせて押圧することにより、上記接着剤を上記突状リブよりも内側の領域に流動させると共に上記シール材混入物が当該内側の領域に流入するのを該突状リブで規制して、その後、上記接着剤を硬化させることにより、突状リブに対応する領域におけるシール材中のシール材混入物の分布密度が突状リブよりも基板外側の領域におけるシール材中のシール材混入物の分布密度よりも低いか、もしくは、該突状リブに対応する領域では上記シール材中にシール材混入物が混入されていないように設定されたシール材を枠状に形成し、該シール材の内側に表示領域が形成された表示装置を得ることを特徴とする。
 そして、本発明の表示装置の製造方法は、上記シール材混入物はガラス繊維粉砕物及び導電性ビーズを含み、上記シール材原料を上記シール材原料塗布領域に塗布した後、上記第1基板と第2基板とを該シール材原料を挟むように重ね合わせて押圧することにより、上記接着剤を上記突状リブよりも内側の領域に流動させると共に上記ガラス繊維粉砕物及び上記導電性ビーズが当該内側の領域に流入するのを該突状リブで規制して、その後、上記接着剤を硬化させることにより、突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度が突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度よりも低いか、もしくは、該突状リブに対応する領域では該シール材にガラス繊維粉砕物が混入されていないように、且つ、上記突状リブに対応する領域及びそれよりも表示領域側の領域におけるシール材中の導電性ビーズの分布密度が突状リブよりも基板外側の領域におけるシール材中の導電性ビーズの分布密度よりも低いか、もしくは、該突状リブに対応する領域及びそれよりも表示領域側の領域では上記シール材中に導電性ビーズが混入されていないように設定されたシール材を形成することが好ましい。
 上記の方法によれば、第1基板上の上記突状リブよりも基板外側の領域をシール材原料塗布領域として、流動性を有する接着剤にシール材混入物が混入されたシール材原料を塗布するので、上記第1基板と第2基板とを上記シール材原料を挟むように重ね合わせて押圧することにより、上記接着剤を上記突状リブよりも内側の領域に流動させても、シール材混入物が突状リブよりも内側の領域に流入するのを突状リブで規制することができる。そのため、シール材混入物としてガラス繊維粉砕物がシール材に混入されている場合には、その後接着剤を硬化させることにより得られるシール材が、突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度が突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度よりも低いか、もしくは、突状リブに対応する領域では上記シール材中にガラス繊維粉砕物が混入されていないように設定されたものとすることができる。従って、突状リブ上に乗り上げるガラス繊維粉砕物の数が少なくなり、突状リブ上に乗り上げたガラス繊維粉砕物によってセル厚の制御ができなくなるのを抑制することができる。
 また、シール材混入物として導電性ビーズがシール材に混入されている場合には、その後接着剤を硬化させることにより得られるシール材が、突状リブに対応する領域及びそれよりも表示領域側の領域におけるシール材中の導電性ビーズの分布密度が突状リブよりも基板外側の領域におけるシール材中の導電性ビーズの分布密度よりも低いか、もしくは、突状リブに対応する領域及びそれよりも表示領域側の領域では上記シール材中に導電性ビーズが混入されていないように設定されたものとすることができる。従って、両基板間での目的としないリークの発生を抑制することができる。
 本発明の表示装置の製造方法は、上記導電性ビーズは、その径が上記ガラス繊維粉砕物の繊維径よりも大きいことが好ましい。
 本発明の表示装置の製造方法は、シール材原料塗布領域と突状リブが突設された領域との間の距離が100~300μmであることが好ましい。
 上記の方法によれば、シール材原料塗布領域と突状リブが突設された領域との間の距離が100μm以上であるので、シール材原料を塗布した後、基板同士を近づけて、シール材原料を挟むように重ね合わせて押圧することにより接着剤が押し広げられるが、シール材原料塗布領域と突状リブが突設された領域との間の距離が100μm以上であるので、接着剤が表示領域側に押し広げられて突状リブが突設された領域にまで到達する時点において、突状リブの先端から第2基板表面までの距離がガラス繊維粉砕物の繊維径よりも小さくすることが容易となる。そのため、突状リブよりも表示領域側に接着剤を押し広げても、突状リブの先端から突状リブが設けられていない方の基板表面までの距離がガラス繊維粉砕物の繊維径よりも小さいのでガラス繊維粉砕物が突状リブで堰き止められ、ガラス繊維粉砕物が突状リブの上に乗り上げたり、突状リブを越えて表示領域側に流入したりするのを抑制することができる。また、シール材原料の接着剤に導電性ビーズがさらに混入されている場合には、突状リブよりも表示領域側に接着剤を押し広げても、突状リブの先端から突状リブが設けられていない方の基板表面までの距離が導電性ビーズの径よりも小さいので導電性ビーズが突状リブで堰き止められ、導電性ビーズが突状リブの上に乗り上げたり、突状リブを越えて表示領域側に流入したりするのを抑制することができる。さらに、シール材原料塗布領域と突状リブが突設された領域との間の距離が300μm以下であるので、徒に表示領域の外周縁部が広面積になるのを抑制できる。
 本発明の表示装置の製造方法は、第1基板が矩形形状を有し、突状リブを、基板外周縁部のうち第1基板を構成する対向する2辺に沿って延びるように設けてもよい。
 上記の方法によれば、突状リブが延びるように形成された上記対向する2辺において、非表示領域が狭額縁化されていても、ガラス繊維粉砕物が突状リブ上に乗り上げることによりセル厚の制御ができなくなるのを抑制することができると共に、突状リブに対応する領域及びそれよりも表示領域側の領域でシール材中に導電性ビーズが混入することにより両基板間で目的としないリークが発生するのを抑制することができる。
 本発明の表示装置の製造方法は、突状リブを、基板外周縁部に表示領域を囲むように枠状に設けてもよい。
 上記の方法によれば、基板外周縁部の全周において、非表示領域が狭額縁化されていても、ガラス繊維粉砕物が突状リブ上に乗り上げることによりセル厚の制御ができなくなるのを抑制することができると共に、突状リブに対応する領域及びそれよりも表示領域側の領域でシール材中に導電性ビーズが混入することにより両基板間で目的としないリークが発生するのを抑制することができる。
 本発明の表示装置の製造方法は、上記シール材を形成した後に、該シール材で囲われた領域に液晶材料を導入して液晶層を形成してもよく、また、上記シール材原料を塗布した後、且つ、上記第1基板及び上記第2基板を貼り合わせる前に、該シール材原料で囲われた領域に液晶材料を導入し、該第1基板及び第2基板を貼り合わせた後に液晶層を形成してもよい。この場合、作製される表示装置は液晶表示装置となる。
 本発明の表示装置の製造方法が液晶表示装置の製造方法である場合、第1基板をカラーフィルタ層を備えた対向基板とし、上記突状リブは、カラーフィルタ層、透明導電膜、及び透明樹脂が積層された構成を有し、上記突状リブを構成するカラーフィルタ層は、上記対向基板に設けられたカラーフィルタ層と同時に形成してもよい。
 この場合、液晶表示装置は、上記第1基板には上記表示領域において上記第2基板側に向かって突設された透明樹脂からなる液晶配向規制用リブをさらに備え、上記突状リブの透明樹脂と上記液晶配向規制用リブとを同時に形成してもよい。
 上記の構成によれば、表示装置が液晶表示装置であって、カラーフィルタ層を備えた対向基板上に突状リブが形成されているので、突状リブがカラーフィルタ層、透明導電膜、及び透明樹脂が積層された構成とすることにより、突状リブのカラーフィルタ層の部分を対向基板のカラーフィルタ層と同時に形成することができ、突状リブの製造工程を簡素化することができる。
 さらに、第1基板の表示領域において液晶配向規制用リブが第2基板側に向かって突設されている場合には、突状リブの透明樹脂と液晶配向規制用リブの透明樹脂とを同時に形成することができるので、突状リブの製造工程を簡素化することができる。
 本発明によれば、突状リブに対応する領域におけるシール材中のシール材混入物の分布密度が突状リブよりも基板外側の領域におけるシール材中のシール材混入物の分布密度よりも低いか、もしくは、突状リブに対応する領域では上記シール材中にシール材混入物が混入されていないように設定されたシール材を形成した表示装置を得ることができる。そのため、シール材混入物がガラス繊維粉砕物を含む場合には、ガラス繊維粉砕物が突状リブ上に乗り上げることにより表示装置のセル厚の制御が困難になるのを抑制することができる。また、シール材混入物が導電性ビーズを含む場合には、両基板間での目的としないリークの発生を抑制することができる。そして、それらの結果として、優れた光学的特性を得ることにより優れた表示品位を得ることができる。
実施形態1に係る液晶表示装置の平面図である。 図1のII-II線における断面図である。 アレイ基板の平面図である。 図3の領域IVにおける配線切り替え部を拡大して示す平面図である。 図4のV-V線における断面図である。 配線切り替え部の変形例を拡大して示す平面図である。 図6のVII-VII線における断面図である。 対向基板の平面図である。 図8のIX-IX線における断面図である。 図1の領域Xにおける非表示領域付近を拡大して示す平面図である。 図10のXI-XI線における断面図である。 実施形態1の変形例に係る液晶表示装置の非表示領域付近の断面図である。 実施形態1の液晶表示装置の製造方法のフローチャートである。 実施形態1の液晶表示装置の製造工程において、シール材原料を対向基板に塗布した状態を示す平面図である。 図14のXV-XV線における断面図である。 実施形態1の液晶表示装置の製造工程において、対向基板にアレイ基板を重ね合わせた状態の断面を示す説明図である。 実施形態1の液晶表示装置の製造工程において、対向基板とアレイ基板の貼り合わせ途中の状態の断面を示す説明図である。 実施形態1の液晶表示装置の製造工程において、対向基板とアレイ基板の貼り合わせ途中の状態の断面を示す説明図である。 実施形態1の液晶表示装置の製造工程において、対向基板とアレイ基板の貼り合わせが完了した状態の断面を示す説明図である。 実施形態2に係る液晶表示装置の平面図である。 実施形態2に係るアレイ基板の平面図である。 実施形態2に係る対向基板の平面図である。 実施形態2の変形例に係る対向基板の平面図である。 従来の液晶表示装置において非表示領域付近を拡大して示す断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。実施形態1及び2では、表示装置として、画素毎に薄膜トランジスタ(TFT)を備えたアクティブマトリクス駆動型の液晶表示装置10を例に説明する。但し、本発明はこれらの実施形態に限定されるものではなく、他の構成であってもよい。
  《実施形態1》
 図1及び2は、実施形態1に係る液晶表示装置10を示している。液晶表示装置10は、互いに対向して配置されたアレイ基板20(第2基板)及び対向基板30(第1基板)を備えている。両基板20及び30は、それらの外周縁部をシール領域SLとして枠状に配置されたシール材40により接着されている。そして、両基板20及び30の間のシール材40に包囲された空間には、表示層として液晶層50が設けられている。
 また、液晶表示装置10は、シール材40の内側に形成されて複数の画素がマトリクス状に配置された表示領域Dと、表示領域Dの周囲に配置された非表示領域Nとを有している。そして、非表示領域Nの一部は、実装部品などの外部接続端子を取り付けるための端子領域Tとなっている。すなわち、液晶表示装置10の少なくとも1つの端縁は、図1に示すように、アレイ基板20が対向基板30よりも突出して形成され、その突出した部分が端子領域Tとなっている。
  (アレイ基板)
 アレイ基板20には、図3に示すように、基板本体21上に、互いに平行に延びるように、例えばTi膜(厚さ50nm程度)、Al膜(厚さ300nm程度)及びTi膜(厚さ50nm程度)が積層されてなる複数のゲート線(第1配線)22が設けられており、ゲート線22を覆うように、例えば厚さ400nmのSiNからなるゲート絶縁膜23(図5参照)が設けられている。そして、ゲート絶縁膜23上には、各ゲート線22と直交する方向に互いに平行に延びるように、例えばAl膜(厚さ300nm程度)及びTi膜(厚さ50nm程度)が積層されてなる複数のソース線(第2配線)24が設けられている。
 表示領域Dにおいては、ゲート線22及びソース線24の各交差部分には半導体層が設けられており、TFT(図示せず)を構成している。また、これらを覆うように、例えば厚さ250nmのSiNからなるパッシベーション膜(図示せず)が設けられ、さらに、パッシベーション膜を覆うように、例えば厚さ2.5μmの感光性アクリル樹脂からなる層間絶縁膜25が設けられている。さらに、各画素に対応するように層間絶縁膜25表面から各TFTまで通じるコンタクトホール(図示せず)がそれぞれ形成されており、その各コンタクトホールに対応して、例えばITO等の画素電極(図示せず)が設けられている。そして、画素電極の上層には表示領域Dを覆うように配向膜(図示せず)が形成されている。
 ソース線24は、非表示領域Nにおいて、図4及び5に示すように、ゲート線22と同一層に設けられた引き出し線22aと電気的に接続されている。ソース線端部24tは、平面視で引き出し線端部22atの上層に重なり合うように位置付けられており、ソース線24及び引き出し線22aの両方に通じるコンタクトホール27cが形成され、コンタクトホール27cの表面を覆うように配線切り替え電極26が設けられることにより、配線切り替え部27が構成されている。なお、配線切り替え電極26は、表示領域Dにおける画素電極と同一層に設けられたものである。
 なお、上記の構成の他、配線切り替え部27は、例えば、図6及び7に示すように、引き出し線端部22atとソース線端部24tとが平面視で重ならないように設けられており、基板表面から引き出し線端部22atに到達するコンタクトホール27dと、基板表面からソース線端部24tに到達するコンタクトホール27eと、がそれぞれ別に形成されて構成されていてもよい。
  (対向基板)
 図8は対向基板30の平面図を、図9は対向基板30の非表示領域Nを含む領域の断面図を示す。対向基板30には、基板本体31上の表示領域Dに、例えば厚さが2μmのカラーフィルタ層32が設けられている。カラーフィルタ層32は、アレイ基板20の各画素電極に対応するように赤、緑及び青のうちの1色が配設された着色層32aと、各着色層32aの間に設けられたブラックマトリクス32bとを備えている。カラーフィルタ層32の上層には、基板全面に例えば厚さが100nmのITOからなる共通電極33が設けられ、さらに、共通電極33を覆うように、例えばポリイミド等の透明有機樹脂からなる配向膜34が設けられている。
 対向基板30には、垂直配向の液晶表示装置10の場合には、表示領域D内に、液晶分子の配向方向を規制するための液晶配向規制用リブ35が設けられている。液晶配向規制用リブ35は、対向基板30表面からアレイ基板20側に向かって突設されている。液晶配向規制用リブ35は、例えば、断面形状が三角形である。液晶配向規制用リブ35は、駆動状態において、個々の液晶分子の配向方向をリブの突出方向に実質的に規制し、倒れた液晶分子同士が相互作用して液晶分子のツイスト角が液晶層50の面内において変化するのを抑制するので、コントラスト比の高い高品質の表示が可能になる。液晶配向規制用リブ35は、例えば、透明な有機樹脂材料や透明な無機材料等で形成されている。液晶配向規制用リブ35は、絶縁性を有していても誘電性を有していてもよい。
 対向基板30には、シール材40が形成されたシール領域SLの幅方向中途部に、シール領域SLの方向に沿って延びると共にアレイ基板20側に向かうように、突状リブ36が突設されている。突状リブ36は、表示領域Dを囲うように枠状に設けられている。突状リブ36は、例えば、幅方向に複数列(図8及び9では、2列)が並ぶように設けられている。突状リブ36は、例えば、カラーフィルタ層36a、透明導電膜36b、及び透明樹脂36cが積層されて形成されている。カラーフィルタ層36aは、例えば、厚さが1~3μmである。透明導電膜36bは、例えば厚さが100nm程度のITO膜等であり、対向基板30の全面を覆う共通電極として設けられるものである。また、透明樹脂36cは、例えば厚さが1.5μmの感光性アクリル樹脂等である。突状リブ36は、配向膜34の形成時に配向膜が突状リブ36の外側まで流出してしまうのを抑制する機能を有する。また、突状リブ36は、シール材40中に混入されたガラス繊維粉砕物42や導電性ビーズ43が突状リブ36の上に乗り上げたり、それよりも内側の領域SL3に流入するのを抑制する機能を有する。
 突状リブ36のそれぞれは、例えば、幅が50μm程度、及び高さが3~6μmであり、幅方向の断面が略台形となるように形成されている。なお、突状リブ36は、アレイ基板20と隙間を有するように、つまり、高さがアレイ基板20と対向基板30間の距離より短くなるように設けられている。幅方向に並んで隣接する突状リブ36同士は、例えば、25μm程度の間隔をあけて設けられている。シール領域SLにおける突状リブ36が設けられる位置は、シール領域SLの幅方向中途部において、内側(表示領域D側)寄りの位置であることが好ましく、例えば、シール領域SLの幅方向において、シール領域SLの内側の端から100μm程度の領域に突状リブ36が形成されている。
 なお、上記説明では対向基板30には液晶配向規制用リブ35が設けられているとしたが、液晶配向規制用リブ35が設けられていなくてもよい。
  (シール材)
 シール材40は、非表示領域Nにおいて、対向基板30の周囲に沿ったシール領域SLに連続して延びるように枠状に配置され、アレイ基板20及び対向基板30を互いに接着している。図10は、液晶表示装置10の非表示領域N付近の平面図であり、図11は、図10のXI-XI線における断面図である。
 シール材40は、流動性を有する熱硬化性樹脂や紫外線硬化樹脂等の接着剤を主成分とするシール材原料41が、加熱や紫外線の照射により硬化されたものである。シール材40には、シール材混入物として、ガラス繊維粉砕物42や導電性ビーズの少なくとも一方43が混入されている。
 ガラス繊維粉砕物42は、例えば径が5μm程度のガラス繊維を粉砕して20μm程度の長さにしたものである。ガラス繊維粉砕物42の繊維径はアレイ基板20と対向基板30の基板間の距離に対応する長さに設定されており、これにより、ガラス繊維粉砕物42は両基板間のスペーサとしての機能を有する。
 ガラス繊維粉砕物42は、シール領域SL内において、そのシール材40中の分布密度が場所により異なっている。具体的には、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は、突状リブ36よりも基板外側の領域SL1における分布密度よりも低くなるようにガラス繊維粉砕物42が分布している。例えば、突状リブ36よりも基板外側の領域SL1におけるシール材40中のガラス繊維粉砕物42の分布密度は、400μm四方の単位面積あたり1~2本程度であり、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は、800μm四方の単位面積あたり1~2本程度である。従来の構成の液晶表示装置によれば、図24に示すように、突状リブ136に対応する領域にガラス繊維粉砕物142が存在する場合、すなわち、ガラス繊維粉砕物142が突状リブ136の上に乗り上げられた状態で突状リブ136とアレイ基板120とに挟まれている場合、突状リブ136の先端からアレイ基板120表面までの距離がガラス繊維粉砕物142の繊維径の大きさに対応することとなり、アレイ基板120と対向基板130間の距離を目的とする距離にすることが難しく、セル厚の制御が困難になる。しかしながら、実施形態1の液晶表示装置10によれば、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は突状リブ36よりも基板外側の領域SL1におけるシール材40中のガラス繊維粉砕物42の分布密度よりも低くなるようにガラス繊維粉砕物42が混入されているので、突状リブ36上に乗り上げるガラス繊維粉砕物42の数が少なくなり、突状リブ36上に乗り上げたガラス繊維粉砕物42によってセル厚の制御ができなくなるのを抑制することができる。
 突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は、突状リブ36よりも基板外側の領域SL1における分布密度の1/4以下であることが好ましい。ここで、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度が突状リブ36よりも基板外側の領域SL1における分布密度の1/4以下であることが好ましいとしたのは、実施形態1の試作品において光学顕微鏡を用いて各領域SL1,SL2におけるシール材40中のガラス繊維粉砕物42の分布密度を測定したところ、突状リブ36に対応する領域SL2においては突状リブ36よりも基板外側の領域SL1の1/4程度であり、且つ、この試作品において、分布密度が全領域において均一になるように構成した比較サンプルと比較して、効率のよいセル厚制御の効果が認められたためである。
 なお、突状リブ36に対応する領域SL2においては、シール材40中にガラス繊維粉砕物42が混入されていなくてもよい。
 導電性ビーズ43は、例えば、ポリマービーズの外面に金を蒸着したものである。導電性ビーズ43は、例えば、外径が6~7μmである。導電性ビーズ43は、対向基板30の共通電極33とアレイ基板20の額縁領域に設けられた配線(図示せず)とを電気的に接続させるためのトランスファ材としての機能を有する。このとき、共通電極33と駆動回路との導通を確実に行うために、導電性ビーズ43の外径は、ガラス繊維粉砕物42の繊維径、すなわち、両基板間の距離以上であることが好ましく、ガラス繊維粉砕物42の繊維径よりも大きいことがより好ましい。なお、導電性ビーズ43の径が両基板間の距離よりも大きい場合には、導電性ビーズ43は基板で挟まれることにより変形し、例えば楕円球形となった状態で共通電極33と配線を導通させることとなる。
 導電性ビーズ43は、シール領域SL内において、そのシール材40中の分布密度が場所により異なっている。具体的には、突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3におけるシール材40中の導電性ビーズ43の分布密度は、突状リブ36よりも基板外側の領域SL1における分布密度よりも、低くなるように導電性ビーズ43が分布している。導電性ビーズ43が突状リブ36よりも表示領域D側の領域に存在している場合、対向基板30の共通電極33とアレイ基板20に設けられた画素電極や配線切り替え電極26とが導電性ビーズ43により電気的に接続されてしまい、目的としないリークが発生する虞がある。しかしながら、導電性ビーズ43が突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3におけるシール材40中の導電性ビーズ43の分布密度は突状リブ36よりも基板外側の領域SL1における分布密度よりも低くなるように混入されているので、両基板間での目的としないリークの発生を抑制することができる。また、導電性ビーズの径が、ガラスファイバ径より大きいので、ガラスファイバのセル厚に支配されるため、SL3領域へ導電性ビーズが混入することを抑制できる。
 なお、突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3においては、シール材40中に導電性ビーズ43が混入されていなくてもよい。
  (液晶層)
 液晶層50は、電気光学特性を有するネマチック液晶材料などにより構成されている。
 上記構成の液晶表示装置10は、各画素電極毎に1つの画素が構成されており、各画素において、ゲート線22からゲート信号が送られてTFTがオン状態になったときに、ソース線24からソース信号が送られてソース電極及びドレイン電極を介して、画素電極に所定の電荷を書き込まれ、画素電極と対向基板30の共通電極33との間で電位差が生じることになり、液晶層50からなる液晶容量に所定の電圧が印加されるように構成されている。そして、液晶表示装置10では、その印加電圧の大きさに応じて液晶分子の配向状態が変わることを利用して、外部から入射する光の透過率を調整することにより、画像が表示される。
 なお、ここでは突状リブ26の全てがシール領域SLの幅方向中途部に設けられているとして説明したが、図12に示すように、少なくとも最外周の突状リブ36がシール領域SLの幅方向中途部に設けられていればよく、シール領域SLよりも表示領域D側にさらに突状リブ36が形成されていてもよい。
 また、突状リブ36がシール領域SLに複数列並行して設けられているとしたが、1列だけが設けられていてもよい。但し、配向膜34の形成時に配向膜34が突状リブ36の外側まで流出してしまうのを抑制する観点やガラス繊維粉砕物42や導電性ビーズ43が突状リブ36の上に乗り上げたり、それよりも内側の領域SL3に流入したりするのを抑制する観点からは、2列以上設けられていることが好ましく、狭額縁化の観点からは、3列以下であることが好ましい。
 さらに、突状リブ36が、表示領域Dを囲うように枠状に設けられたシール材40に沿って連続的に枠状に設けられているとしたが、例えば断続的に設けられていてもよく、蛇行した形状に設けられていてもよく、個々の形状に応じてその他のレイアウトとなるように設けられていてもよい。但し、配向膜34の形成時に配向膜34が突状リブ36の外側まで流出してしまうのを抑制する観点やガラス繊維粉砕物42や導電性ビーズ43が突状リブ36の上に乗り上げたり、それよりも内側の領域SL3に流入するのを抑制する観点からは、突状リブ36はシール材40に沿って連続的に枠状に設けられていることが好ましい。
  <液晶表示装置の製造方法>
 次に、図13のフローチャートを参照し、実施形態1の液晶表示装置10を製造する方法について説明する。実施形態1の製造方法は、図13のステップS11~S19に対応するアレイ基板作製工程と、図13のステップS21~S25に対応する対向基板作製工程と、図13のステップS3~S7に対応する液晶表示パネル作製工程とを備えている。
  (アレイ基板作製工程)
 まず、ステップS11~S14において、公知の方法により、基板本体21上に第1配線であるゲート線22(配線切り替え部27を形成する場合は引き出し線22aを含む。)及びゲート電極、ゲート絶縁膜23、半導体層、並びに、第2配線であるソース線24、ソース電極及びドレイン電極を順に形成し、ステップS15において、半導体層にチャネル部をパターニングすることにより、TFTを形成する。
 次に、ステップS16及びS17において、公知の方法により、パッシベーション膜及び層間絶縁膜25を順に形成し、ステップS18において、層間絶縁膜25のコンタクトホールに対応するようにして画素電極を形成する。
 最後に、ステップS19において、公知の方法により配向膜を形成して、アレイ基板20が完成する。
  (対向基板作製工程)
 まず、ステップS21において、公知の方法により、基板本体31上にブラックマトリクスを形成する。
 次に、ステップS22において、公知の方法により、カラーフィルタ層32,36aを形成する。このとき、表示領域Dにおいては、各画素に対応するカラーフィルタ層32を構成すると共に、非表示領域Nにおいては、対向基板30の外周縁部に沿うようなレイアウトとなるようにパターニングを行う。外周縁部に表示領域Dを囲うように突設されたカラーフィルタ層36aは、突状リブ36を構成する部分である。
 そして、ステップS23において、公知の方法により、基板全体を覆うように透明導電膜を成膜して共通電極33を形成する。このとき、共通電極33は、非表示領域Nにおいては、突状リブ36を構成するために設けたカラーフィルタ層36aを覆うように設けられた透明導電膜36bとなる。
 次に、ステップS24において、例えば、厚さが1.5μm程度の感光性アクリル樹脂等の透明材料からなる有機樹脂膜をスピン塗布法等を用いて成膜する。そして、表示領域Dにおいては所定の領域に液晶配向規制用リブ35を形成するようにパターニングを行うと同時に、非表示領域Nにおいては、突状リブ36を形成する領域において透明導電膜36bを覆うようにしてパターニングを行って透明樹脂36cとし、液晶配向規制用リブ35と突状リブ36とを同時に形成する。
 なお、ここでは液晶配向規制用リブ35と突状リブ36を同時に形成するとしたが、それぞれを別工程として形成してもよい。例えば、液晶配向規制用リブ35を覆うように有機樹脂をパターニングして形成した後に突状リブ36のカラーフィルタ層36aを覆うように異なる種類の有機樹脂をパターニングして形成してもよい。また、突状リブ36を液晶配向規制用リブ35より先に形成してもよい。
 最後に、ステップS25において、ポリイミド樹脂等をインクジェット塗布した後ラビング配向処理することにより、配向膜34を形成する。このとき、ステップS24において非表示領域Nに表示領域Dの外周縁部に、シール領域SLに対応するように突状リブ36を形成したので、配向膜34をインクジェット塗布により形成しても、非表示領域Nの突状リブ36が設けられた部分より外側へ流れ出るのを抑制することができる。
 なお、ここでは基板表面にラビング処理を施して水平配向用の配向膜34を形成するとしたが、基板表面にラビング処理を施さないで垂直配向用の配向膜を形成してもよい。
 このようにして、対向基板30が完成する。
 なお、上記対向基板作製工程においては、カラーフィルタ層36aを非表示領域Nにもパターン形成して、その上に透明導電膜36b及び透明樹脂36cを積層形成することにより突状リブ36を形成するとしたが、特にこれに限られない。例えば、表示領域Dにおけるカラーフィルタ層32の形成とは別工程においてカラーフィルタ層32とは異なる材料を非表示領域Nにパターン形成した後、その上に透明導電膜36b及び透明樹脂36cを積層形成することにより突状リブ36を形成してもよい。
  (液晶表示パネル作製工程)
 まず、ステップS3において、図14及び15に示すように、例えばディスペンサやスクリーン印刷法等を用いて、対向基板30の外縁部を枠状に囲むように、表示領域Dの周りにシール材原料41の塗布を行う。
 このとき、シール材原料41を塗布する領域(以下、シール材原料塗布領域SAとする)は、突状リブ36よりも基板外側の領域(領域SL1に含まれる領域)とし、突状リブ36が形成された領域SL2やそれよりも内側の領域SL3にはシール材原料41を塗布しないようにする。なお、シール材原料塗布領域SAと突状リブ36が突設された領域との間の距離(図15におけるP1の長さ)は、100~300μmであることが好ましい。また、シール材原料41をシール材原料塗布領域SAに塗布するときの塗布厚さと突状リブ36の高さとの差(図15におけるQ1の長さ)は、5~10μmであることが好ましい。
 次に、ステップS4において、シール材原料41で囲まれた領域に、例えばディスペンサ法等を用いて、シール材40で囲まれた領域に液晶材料を基板上に滴下して、液晶層を形成する。
 続いて、ステップS5において、図16に示すようにアレイ基板20と対向基板30とを互いの表示領域Dが対応するように位置合わせを行う。そして、両基板20及び30をシール材原料41を挟むように重ね合わせて押圧すると、接着剤が流動して押し広げられ、図17に示すように接着剤の領域の端部が突状リブ36に到達する。
 接着剤の領域の端部が突状リブ36に到達した図17の状態のとき、突状リブ36の先端からアレイ基板20の表面までの距離Q2が、ガラス繊維粉砕物42の繊維径や導電性ビーズ43の径よりも小さくなるように設定しておく。こうすることにより、接着剤がこの時点よりもさらに押し広げられて図18に示すように突状リブ36が設けられた領域SL2に流入しても、突状リブ36の先端からアレイ基板20の表面までの距離Q2がガラス繊維粉砕物42や導電性ビーズ43の径より小さいので、突状リブ36側に進入するのが規制され、表示領域D側へガラス繊維粉砕物42や導電性ビーズ43が流入するのが抑制される。従って、突状リブ36の領域SL2乃至それよりも内側の領域SL3におけるそれらの分布密度が、突状リブ36よりも外側の領域SL1における分布密度よりも低くなる。なお、シール材原料41を基板上に塗布する段階において、図15に示すように、P1の長さを100~300μmとし、Q1の長さを5~10μmとすることにより、突状リブ36の先端からアレイ基板20の表面までの距離Q2が、ガラス繊維粉砕物42の繊維径や導電性ビーズ43の径よりも小さくなる状態を実現できる。
 続いて、さらに両基板を押圧することにより、図19に示すように、ガラス繊維粉砕物42がスペーサとして両基板間に挟持された状態となり、これ以上、両基板20及び30を近づけることができなくなる。このときシール材原料41が広がった領域が、液晶表示装置10のシール領域SLとなる。
 最後に、ステップS6において、シール材原料41にUV照射及び/または加熱を行うことにより、シール材原料41を硬化する。
 上記のようにして液晶表示パネルが作製され(ステップS7)、実施形態1の液晶表示装置10を製造することができる。
 上記説明した実施形態1に係る液晶表示装置10は、シール材40の形成において、突状リブ36の基板外側の領域をシール材原料塗布領域SAとしてシール材原料41を塗布してアレイ基板20及び対向基板30の貼り合わせを行うので、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度が突状リブ36よりも基板外側の領域におけるシール材40中のガラス繊維粉砕物42の分布密度よりも低くなるようにシール材40が設けられている。そのため、突状リブ36に対応する領域SL2に存在するガラス繊維粉砕物42により液晶表示装置10のセル厚の制御が困難になる問題を抑制することができる。そして、セル厚を効率よく制御することにより、優れた光学的特性を得ることができ、所望の表示品位の液晶表示装置10とすることができる。
 また、実施形態1に係る液晶表示装置10は、シール材40の形成において、突状リブ36の基板外側の領域をシール材原料塗布領域SAとしてシール材原料41を塗布してアレイ基板20及び対向基板30の貼り合わせを行うので、突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3におけるシール材40中の導電性ビーズ43の分布密度が突状リブ36よりも基板外側の領域SL1におけるシール材40中の導電性ビーズ43の分布密度よりも低くなるようにシール材40が設けられている。そのため、突状リブ36よりも内側の領域SL3に存在する導電性ビーズ43により対向基板30の共通電極33とアレイ基板20の画素電極とが電気的に接続されて目的としないリークが発生してしまうのを抑制することができる。
 実施形態1では、突状リブ36が対向基板30上に形成された構成について例示したが、突状リブ36はアレイ基板20の非表示領域Nに設けられていてもよい。この場合、シール材原料41の塗布はアレイ基板20に対して、突状リブ36よりも外側の領域SL1をシール材原料塗布領域SAとして行うこととなる。また、突状リブ36はアレイ基板20と対向基板30の双方に設けられていてもよい。
  《実施形態2》
 次に、実施形態2の液晶表示装置10について説明する。
 図20は、実施形態2にかかる液晶表示装置10の全体概略図を示す。また、図21及び22は、それぞれアレイ基板20及び対向基板30の平面図を示す。なお、実施形態1と同一または対応する構成については実施形態1と同一の参照符号を用いて説明する。
 液晶表示装置10は、アレイ基板20と対向基板30とが対向して配置され、それらの外周縁部のシール領域SLに配置されたシール材40により接着され、シール材40に包囲された空間には、表示層として液晶層50が設けられている。液晶層50が設けられた領域は表示領域Dを構成し、その周囲が枠状の非表示領域Nとなっている。非表示領域Nは、液晶表示装置10の長辺方向の1辺の一部がソース端子領域Ts、及び短辺方向の2辺の一部がゲート端子領域Tgとなっている。シール領域SLは、液晶表示装置10の長辺方向における表示領域Dとシール領域SLの間の距離(図27中の「a」の長さ)が、短辺方向における表示領域Dとシール領域SLの間の距離(図27中の「b」の長さ)がよりも長くなるように配置されている。
  (アレイ基板)
 アレイ基板20には、図21に示すように、基板本体21上に、互いに平行に延びるように、例えばTi膜(厚さ50nm程度)、Al膜(厚さ300nm程度)及びTi膜(厚さ50nm程度)が積層されてなる複数のゲート線(第1配線)22が設けられており、ゲート線22を覆うように、例えば厚さ400nmのSiNからなるゲート絶縁膜23(図5参照)が設けられている。そして、ゲート絶縁膜23上には、各ゲート線22と直交する方向に互いに平行に延びるように、例えばAl膜(厚さ300nm程度)及びTi膜(厚さ50nm程度)が積層されてなる複数のソース線(第2配線)24が設けられている。
 表示領域Dにおいては、ゲート線22及びソース線24の各交差部分には半導体層が設けられており、TFT(図示せず)を構成している。また、これらを覆うように、例えば厚さ250nmのSiNからなるパッシベーション膜(図示せず)が設けられ、さらに、パッシベーション膜を覆うように、例えば厚さ2.5μmの感光性アクリル樹脂からなる層間絶縁膜25が設けられている。さらに、各画素に対応するように層間絶縁膜25表面から各TFTまで通じるコンタクトホール(図示せず)がそれぞれ形成されており、その各コンタクトホールに対応して、例えばITO等の画素電極(図示せず)が設けられている。そして、画素電極の上層には表示領域Dを覆うように配向膜(図示せず)が形成されている。
 ソース線24は、非表示領域Nにおいて、ゲート線22と同一層に設けられた引き出し線22aと電気的に接続されている。ソース線端部24tは、平面視で引き出し線端部22atの上層に重なり合うように位置付けられており、ソース線24及び引き出し線22aの両方に通じるコンタクトホール27cが形成され、コンタクトホール27cの表面を覆うように配線切り替え電極26が設けられることにより、配線切り替え部27が構成されている。配線切り替え電極26は、表示領域Dにおける画素電極と同一層に設けられたものである。なお、配線切り替え部27の拡大平面図(図21の領域IVで示す部分)やその断面図については、実施形態1について説明した図4及び5と同じである。
  (対向基板)
 図22は対向基板30の平面図を示す。図22のIX-IX線における断面図は、実施形態1について説明した図9と同じである。対向基板30には、基板本体31上の表示領域Dに、例えば厚さが2μmのカラーフィルタ層32が設けられている。カラーフィルタ層32は、アレイ基板20の各画素電極に対応するように赤、緑及び青のうちの1色が配設された着色層32aと、各着色層32aの間に設けられたブラックマトリクス32bとを備えている。カラーフィルタ層32の上層には、基板全面に例えば厚さが100nmのITOからなる共通電極33が設けられ、さらに、共通電極33を覆うように、例えばポリイミド等の透明有機樹脂からなる配向膜34が設けられている。
 対向基板30には、垂直配向の液晶表示装置10の場合には、表示領域D内に、液晶分子の配向方向を規制するための液晶配向規制用リブ35が設けられている。液晶配向規制用リブ35は、対向基板30表面からアレイ基板20側に向かって突設されている。液晶配向規制用リブ35は、例えば、断面形状が三角形である。液晶配向規制用リブ35は、駆動状態において、個々の液晶分子の配向方向をリブの突出方向に実質的に規制し、倒れた液晶分子同士が相互作用して液晶分子のツイスト角が液晶層50の面内において変化するのを抑制するので、コントラスト比の高い高品質の表示が可能になる。液晶配向規制用リブ35は、例えば、透明な有機樹脂材料や透明な無機材料等で形成されている。液晶配向規制用リブ35は、絶縁性を有していても誘電性を有していてもよい。
 対向基板30には、シール材40が形成されたシール領域SLの幅方向中途部に、シール領域SLの方向に沿って延びると共にアレイ基板20側に向かうように、突状リブ36が突設されている。突状リブ36は、基板外周縁部のうちゲート端子領域Tgに沿った対向する2辺に沿って延びるように設けられている。突状リブ36は、ゲート端子領域Tgに沿った領域の各々において、例えば、幅方向に複数列(図22では、2列)が並ぶように設けられている。突状リブ36は、例えば、カラーフィルタ層36a、透明導電膜36b、及び透明樹脂36cが積層されて形成されている。カラーフィルタ層36aは、例えば、厚さが1~3μmである。透明導電膜36bは、例えば厚さが100nm程度のITO膜等であり、対向基板30の全面を覆う共通電極として設けられるものである。また、透明樹脂36cは、例えば厚さが1.5μmの感光性アクリル樹脂等である。突状リブ36は、ゲート端子領域Tgに沿った対向する2辺において、配向膜34の形成時に配向膜が突状リブ36の外側まで流出してしまうのを抑制する機能を有する。また、突状リブ36は、シール材40中に混入されたガラス繊維粉砕物42や導電性ビーズ43が突状リブ36の上に乗り上げたり、それよりも内側の領域SL3に流入するのを抑制する機能を有する。
 突状リブ36のそれぞれは、例えば、幅が50μm程度、及び高さが3~6μmであり、幅方向の断面が略台形となるように形成されている。なお、突状リブ36は、アレイ基板20と隙間を有するように、つまり、高さがアレイ基板20と対向基板30間の距離より短くなるように設けられている。幅方向に並んで隣接する突状リブ36同士は、例えば、25μm程度の間隔をあけて設けられている。シール領域SLにおける突状リブ36が設けられる位置は、シール領域SLの幅方向中途部において、内側(表示領域D側)寄りの位置であることが好ましく、例えば、シール領域SLの幅方向において、シール領域SLの内側の端から100μm程度の領域に突状リブ36が形成されている。
 なお、図22には、突状リブ36がそれぞれ2列並行して設けられているとして説明したが、2列に設けられた突状リブ36の端部が、図23に示すように閉じた状態になっていてもよい。
 また、上記説明では対向基板30には液晶配向規制用リブ35が設けられているとしたが、液晶配向規制用リブ35が設けられていなくてもよい。
  (シール材)
 シール材40は、非表示領域Nにおいて、対向基板30の周囲に沿ったシール領域SLに連続して延びるように枠状に配置され、アレイ基板20及び対向基板30を互いに接着している。
 シール材40は、流動性を有する熱硬化性樹脂や紫外線硬化樹脂等の接着剤を主成分とするシール材原料41が、加熱や紫外線の照射により硬化されたものである。シール材40には、シール材混入物として、ガラス繊維粉砕物42や導電性ビーズの少なくとも一方43が混入されている。
 ガラス繊維粉砕物42は、例えば径が5μm程度のガラス繊維を粉砕して20μm程度の長さにしたものである。ガラス繊維粉砕物42の繊維径はアレイ基板20と対向基板30の基板間の距離に対応する長さに設定されており、これにより、ガラス繊維粉砕物42は両基板間のスペーサとしての機能を有する。
 ガラス繊維粉砕物42は、シール領域SL内において、そのシール材40中の分布密度が場所により異なっている。具体的には、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は、突状リブ36よりも基板外側の領域SL1における分布密度よりも低くなるようにガラス繊維粉砕物42が分布している。例えば、突状リブ36よりも基板外側の領域SL1におけるシール材40中のガラス繊維粉砕物42の分布密度は、400μm四方の単位面積あたり1~2本程度であり、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は、800μm四方の単位面積あたり1~2本程度である。従来の構成の液晶表示装置によれば、図24に示すように、突状リブ136に対応する領域にガラス繊維粉砕物142が存在する場合、すなわち、ガラス繊維粉砕物142が突状リブ136の上に乗り上げられた状態で突状リブ136とアレイ基板120とに挟まれている場合、突状リブ136の先端からアレイ基板120表面までの距離がガラス繊維粉砕物142の繊維径の大きさに対応することとなり、アレイ基板120と対向基板130間の距離を目的とする距離にすることが難しく、セル厚の制御が困難になる。しかしながら、実施形態1の液晶表示装置10によれば、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は突状リブ36よりも基板外側の領域SL1におけるシール材40中のガラス繊維粉砕物42の分布密度よりも低くなるようにガラス繊維粉砕物42が混入されているので、突状リブ36上に乗り上げるガラス繊維粉砕物42の数が少なくなり、突状リブ36上に乗り上げたガラス繊維粉砕物42によってセル厚の制御ができなくなるのを抑制することができる。
 突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度は、突状リブ36よりも基板外側の領域SL1における分布密度の1/4以下であることが好ましい。ここで、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度が突状リブ36よりも基板外側の領域SL1における分布密度の1/4以下であることが好ましいとしたのは、実施形態1の試作品において光学顕微鏡を用いて各領域SL1,SL2におけるシール材40中のガラス繊維粉砕物42の分布密度を測定したところ、突状リブ36に対応する領域SL2においては突状リブ36よりも基板外側の領域SL1の1/4程度であり、且つ、この試作品において、分布密度が全領域において均一になるように構成した比較サンプルと比較して、効率のよいセル厚制御の効果が認められたためである。
 なお、突状リブ36に対応する領域SL2においては、シール材40中にガラス繊維粉砕物42が混入されていなくてもよい。
 導電性ビーズ43は、例えば、ポリマービーズの外面に金を蒸着したものである。導電性ビーズ43は、例えば、外径が6~7μmである。導電性ビーズ43は、対向基板30の共通電極33とアレイ基板20の額縁領域に設けられた配線(図示せず)とを電気的に接続させるためのトランスファ材としての機能を有する。このとき、共通電極33と駆動回路との導通を確実に行うために、導電性ビーズ43の外径は、ガラス繊維粉砕物42の繊維径、すなわち、両基板間の距離以上であることが好ましく、ガラス繊維粉砕物42の繊維径よりも大きいことがより好ましい。なお、導電性ビーズ43の径が両基板間の距離よりも大きい場合には、導電性ビーズ43は基板で挟まれることにより変形し、例えば楕円球形となった状態で共通電極33と配線を導通させることとなる。
 導電性ビーズ43は、シール領域SL内において、そのシール材40中の分布密度が場所により異なっている。具体的には、突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3におけるシール材40中の導電性ビーズ43の分布密度は、突状リブ36よりも基板外側の領域SL1における分布密度よりも、低くなるように導電性ビーズ43が分布している。導電性ビーズ43が突状リブ36よりも表示領域D側の領域に存在している場合、対向基板30の共通電極33とアレイ基板20に設けられた画素電極や配線切り替え電極26とが導電性ビーズ43により電気的に接続されてしまい、目的としないリークが発生する虞がある。しかしながら、導電性ビーズ43が突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3におけるシール材40中の導電性ビーズ43の分布密度は突状リブ36よりも基板外側の領域SL1における分布密度よりも低くなるように混入されているので、両基板間での目的としないリークの発生を抑制することができる。また、導電性ビーズの径が、ガラスファイバ径より大きいので、ガラスファイバのセル厚に支配されるため、SL3領域へ導電性ビーズが混入することを抑制できる。
 なお、突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3においては、シール材40中に導電性ビーズ43が混入されていなくてもよい。
  (液晶層)
 液晶層50は、電気光学特性を有するネマチック液晶材料などにより構成されている。
 上記構成の液晶表示装置10は、各画素電極毎に1つの画素が構成されており、各画素において、ゲート線22からゲート信号が送られてTFTがオン状態になったときに、ソース線24からソース信号が送られてソース電極及びドレイン電極を介して、画素電極に所定の電荷を書き込まれ、画素電極と対向基板30の共通電極33との間で電位差が生じることになり、液晶層50からなる液晶容量に所定の電圧が印加されるように構成されている。そして、液晶表示装置10では、その印加電圧の大きさに応じて液晶分子の配向状態が変わることを利用して、外部から入射する光の透過率を調整することにより、画像が表示される。
 なお、ここでは突状リブ26の全てがシール領域SLの幅方向中途部に設けられているとして説明したが、図12に示すように、少なくとも最外周の突状リブ36がシール領域SLの幅方向中途部に設けられていればよく、シール領域SLよりも表示領域D側にさらに突状リブ36が形成されていてもよい。
 また、突状リブ36がシール領域SLに複数列並行して設けられているとしたが、1列だけが設けられていてもよい。但し、配向膜34の形成時に配向膜34が突状リブ36の外側まで流出してしまうのを抑制する観点やガラス繊維粉砕物42や導電性ビーズ43が突状リブ36の上に乗り上げたり、それよりも内側の領域SL3に流入したりするのを抑制する観点からは、2列以上設けられていることが好ましく、狭額縁化の観点からは、3列以下であることが好ましい。
 さらに、突状リブ36が、表示領域Dを囲うように枠状に設けられたシール材40に沿って連続的に枠状に設けられているとしたが、例えば断続的に設けられていてもよく、蛇行した形状に設けられていてもよく、個々の形状に応じてその他のレイアウトとなるように設けられていてもよい。但し、配向膜34の形成時に配向膜34が突状リブ36の外側まで流出してしまうのを抑制する観点やガラス繊維粉砕物42や導電性ビーズ43が突状リブ36の上に乗り上げたり、それよりも内側の領域SL3に流入するのを抑制する観点からは、突状リブ36はシール材40に沿って連続的に枠状に設けられていることが好ましい。
 上記説明した構成の実施形態2の液晶表示装置10は、シール材原料41をゲート端子領域Tgに沿った対向する2辺に沿って配置することを除いて、実施形態1と同様に図13のフローチャートに従って作成することができる。
 上記説明した実施形態2に係る液晶表示装置10は、シール材40の形成において、突状リブ36の基板外側の領域をシール材原料塗布領域SAとしてシール材原料41を塗布してアレイ基板20及び対向基板30の貼り合わせを行うので、突状リブ36に対応する領域SL2におけるシール材40中のガラス繊維粉砕物42の分布密度が突状リブ36よりも基板外側の領域におけるシール材40中のガラス繊維粉砕物42の分布密度よりも低くなるようにシール材40が設けられている。そのため、突状リブ36に対応する領域SL2に存在するガラス繊維粉砕物42により液晶表示装置10のセル厚の制御が困難になる問題を抑制することができる。そして、セル厚を効率よく制御することにより、優れた光学的特性を得ることができ、所望の表示品位の液晶表示装置10とすることができる。
 また、実施形態2に係る液晶表示装置10は、シール材40の形成において、突状リブ36の基板外側の領域をシール材原料塗布領域SAとしてシール材原料41を塗布してアレイ基板20及び対向基板30の貼り合わせを行うので、突状リブ36に対応する領域SL2及びそれよりも表示領域D側の領域SL3におけるシール材40中の導電性ビーズ43の分布密度が突状リブ36よりも基板外側の領域SL1におけるシール材40中の導電性ビーズ43の分布密度よりも低くなるようにシール材40が設けられている。そのため、突状リブ36よりも内側の領域SL3に存在する導電性ビーズ43により対向基板30の共通電極33とアレイ基板20の画素電極とが電気的に接続されて目的としないリークが発生してしまうのを抑制することができる。
 実施形態2では、突状リブ36が対向基板30上に形成された構成について例示したが、突状リブ36はアレイ基板20の非表示領域Nに設けられていてもよい。この場合、シール材原料41の塗布はアレイ基板20に対して、突状リブ36よりも外側の領域SL1をシール材原料塗布領域SAとして行うこととなる。また、突状リブ36はアレイ基板20と対向基板30の双方に設けられていてもよい。
 実施形態1及び2では、表示装置として、液晶表示パネルを備えた液晶表示装置10に係るものを例示したが、本発明は、プラズマディスプレイ(PD)、プラズマアドレス液晶ディスプレイ(PALC)、有機エレクトロルミネッセンス(有機EL)ディスプレイ、無機エレクトロルミネッセンス(無機EL)ディスプレイ、電界放出ディスプレイ(FED)、表面電界ディスプレイ(SED)などの表示装置にも適用することができる。
 本発明は、2枚の基板をシール材を介して対向するように貼り合わされた構成の表示装置、及びその製造方法について有用である。
     D      表示領域
     SA     シール材原料塗布領域
     SL     シール領域
     SL1    突状リブよりも基板外側の領域
     SL2    突状リブに対応する領域
     SL3    突状リブに対応する領域よりも表示領域側の領域
     10     表示装置(液晶表示装置)
     20     第2基板(アレイ基板)
     26     突状リブ
     30     第1基板(対向基板)
     32,36a カラーフィルタ層
     33,36b 透明導電膜(共通電極)
     35     液晶配向規制用リブ(透明樹脂)
     36c    透明樹脂
     40     シール材
     41     シール材原料
     42     ガラス繊維粉砕物(シール材混入物)
     43     導電性ビーズ(シール材混入物)
     50     液晶層

Claims (19)

  1.  ガラス繊維粉砕物及び導電性ビーズの少なくとも一方を含むシール材混入物が混入されたシール材を第1基板及び第2基板間の外周縁部に枠状に配置して該シール材の内側に表示領域が形成された表示装置であって、
     上記第1基板には、上記シール材の幅方向中途部において、突状リブが該シール材に沿うように、且つ、上記第2基板と隙間を有するように該第2基板側に向かって突設され、
     上記突状リブに対応する領域におけるシール材中のシール材混入物の分布密度は該突状リブよりも基板外側の領域におけるシール材中のシール材混入物の分布密度よりも低いか、もしくは、該突状リブに対応する領域では該シール材中にシール材混入物が混入されていないように設定されていることを特徴とする表示装置。
  2.  請求項1に記載された表示装置において、
     上記シール材混入物は、ガラス繊維粉砕物及び導電性ビーズを含み、
     上記突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度は、該突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度よりも低いか、もしくは、該突状リブに対応する領域では該シール材中にガラス繊維粉砕物が混入されていないように設定され、
     上記突状リブに対応する領域及びそれよりも表示領域側の領域におけるシール材中の導電性ビーズの分布密度は、該突状リブよりも基板外側の領域におけるシール材中の導電性ビーズの分布密度よりも低いか、もしくは、該突状リブに対応する領域及びそれよりも表示領域側の領域では上記シール材中に導電性ビーズが混入されていないように設定されていることを特徴とする表示装置。
  3.  請求項2に記載された表示装置において、
     上記突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度は、該突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度の4分の1以下であることを特徴とする表示装置。
  4.  請求項2または3に記載された表示装置において、
     上記導電性ビーズは、その径が上記ガラス繊維粉砕物の繊維径よりも大きいことを特徴とする表示装置。
  5.  請求項1~4のいずれかに記載された表示装置において、
     上記第1基板が矩形形状を有し、
     上記突状リブは、上記基板外周縁部のうち第1基板を構成する対向する2辺に沿って延びるように形成されていることを特徴とする表示装置。
  6.  請求項1~4のいずれかに記載された表示装置において、
     上記突状リブは、上記基板外周縁部に上記表示領域を囲むように枠状に形成されていることを特徴とする表示装置。
  7.  請求項1~6のいずれかに記載された表示装置において、
     上記第1基板及び上記第2基板間には液晶層が設けられていることを特徴とする表示装置。
  8.  請求項7に記載された表示装置において、
     上記第1基板はカラーフィルタ層を備えた対向基板であり、
     上記突状リブは、カラーフィルタ層、透明導電膜、及び透明樹脂が積層された構成を有することを特徴とする表示装置。
  9.  請求項8に記載された表示装置において、
     上記第1基板は、上記表示領域において、上記第2基板側に向かって突設された透明樹脂からなる液晶配向規制用リブをさらに備えたことを特徴とする表示装置。
  10.  ガラス繊維粉砕物及び導電性ビーズの少なくとも一方を含むシール材混入物が混入されたシール材を第1基板及び第2基板間の外周縁部に枠状に配置して該シール材の内側に表示領域が形成された表示装置の製造方法であって、
     上記第1基板の外周縁部に沿うように突状リブを突設し、
     次いで、上記第1基板上の上記突状リブよりも基板外側の領域をシール材原料塗布領域として、該シール材原料塗布領域に流動性を有する接着剤にシール材混入物が混入されたシール材原料を塗布し、
     続いて、上記第1基板と第2基板とを上記シール材原料を挟むように重ね合わせて押圧することにより、上記接着剤を上記突状リブよりも内側の領域に流動させると共に上記シール材混入物が当該内側の領域に流入するのを該突状リブで規制して、
     その後、上記接着剤を硬化させることにより、突状リブに対応する領域におけるシール材中のシール材混入物の分布密度が突状リブよりも基板外側の領域におけるシール材中のシール材混入物の分布密度よりも低いか、もしくは、該突状リブに対応する領域では上記シール材中にシール材混入物が混入されていないように設定されたシール材を枠状に形成し、該シール材の内側に表示領域が形成された表示装置を得ることを特徴とする表示装置の製造方法。
  11.  請求項10に記載された表示装置の製造方法において、
     上記シール材混入物はガラス繊維粉砕物及び導電性ビーズを含み、
     上記シール材原料を上記シール材原料塗布領域に塗布した後、上記第1基板と第2基板とを該シール材原料を挟むように重ね合わせて押圧することにより、上記接着剤を上記突状リブよりも内側の領域に流動させると共に上記ガラス繊維粉砕物及び上記導電性ビーズが当該内側の領域に流入するのを該突状リブで規制して、
     その後、上記接着剤を硬化させることにより、突状リブに対応する領域におけるシール材中のガラス繊維粉砕物の分布密度が突状リブよりも基板外側の領域におけるシール材中のガラス繊維粉砕物の分布密度よりも低いか、もしくは、該突状リブに対応する領域では該シール材にガラス繊維粉砕物が混入されていないように、且つ、上記突状リブに対応する領域及びそれよりも表示領域側の領域におけるシール材中の導電性ビーズの分布密度が突状リブよりも基板外側の領域におけるシール材中の導電性ビーズの分布密度よりも低いか、もしくは、該突状リブに対応する領域及びそれよりも表示領域側の領域では上記シール材中に導電性ビーズが混入されていないように設定されたシール材を形成することを特徴とする表示装置の製造方法。
  12.  請求項11に記載された表示装置の製造方法において、
     上記導電性ビーズは、その径が上記ガラス繊維粉砕物の繊維径よりも大きいことを特徴とする表示装置の製造方法。
  13.  請求項10~12のいずれかに記載された表示装置の製造方法において、
     上記シール材原料塗布領域と上記突状リブが突設された領域との間の距離が100~300μmであることを特徴とする表示装置の製造方法。
  14.  請求項10~13のいずれかに記載された表示装置の製造方法において、
     上記第1基板が矩形形状を有し、
     上記突状リブを、上記基板外周縁部のうち第1基板を構成する対向する2辺に沿って延びるように設けることを特徴とする表示装置の製造方法。
  15.  請求項10~13のいずれかに記載された表示装置の製造方法において、
     上記突状リブを、上記基板外周縁部に上記表示領域を囲むように枠状に設けることを特徴とする表示装置の製造方法。
  16.  請求項10~15のいずれかに記載された表示装置の製造方法において、
     上記シール材を形成した後に、該シール材で囲われた領域に液晶材料を導入して液晶層を形成することを特徴とする表示装置の製造方法。
  17.  請求項10~15のいずれかに記載された表示装置の製造方法において、
     上記シール材原料を塗布した後、且つ、上記第1基板及び上記第2基板を貼り合わせる前に、該シール材原料で囲われた領域に液晶材料を導入し、該第1基板及び第2基板を貼り合わせた後に液晶層を形成することを特徴とする表示装置の製造方法。
  18.  請求項16または17に記載された表示装置の製造方法において、
     上記第1基板はカラーフィルタ層を備えた対向基板であって、
     上記突状リブは、カラーフィルタ層、透明導電膜、及び透明樹脂が積層された構成を有し、
     上記突状リブを構成するカラーフィルタ層は、上記対向基板に設けられたカラーフィルタ層と同時に形成することを特徴とする表示装置の製造方法。
  19.  請求項18に記載された表示装置の製造方法において、
     上記第1基板は、上記表示領域において、上記第2基板側に向かって突設され透明樹脂からなる液晶配向規制用リブをさらに備え、
     上記突状リブの透明樹脂と上記液晶配向規制用リブとを同時に形成することを特徴とする表示装置の製造方法。
PCT/JP2011/002045 2010-04-19 2011-04-06 表示装置及びその製造方法 WO2011132374A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180012800XA CN102792217A (zh) 2010-04-19 2011-04-06 显示装置及其制造方法
BR112012025141A BR112012025141A2 (pt) 2010-04-19 2011-04-06 dispositivo de exibição e método para fabricar o mesmo
US13/636,230 US20130010240A1 (en) 2010-04-19 2011-04-06 Display device and method for manufacturing the same
RU2012141311/28A RU2521223C1 (ru) 2010-04-19 2011-04-06 Устройство отображения и способ его изготовления
JP2012511526A JP5285809B2 (ja) 2010-04-19 2011-04-06 表示装置及びその製造方法
KR1020127024434A KR101364346B1 (ko) 2010-04-19 2011-04-06 표시장치 및 그 제조방법
EP11771718.1A EP2562591A4 (en) 2010-04-19 2011-04-06 DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-095879 2010-04-19
JP2010095879 2010-04-19

Publications (1)

Publication Number Publication Date
WO2011132374A1 true WO2011132374A1 (ja) 2011-10-27

Family

ID=44833919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002045 WO2011132374A1 (ja) 2010-04-19 2011-04-06 表示装置及びその製造方法

Country Status (8)

Country Link
US (1) US20130010240A1 (ja)
EP (1) EP2562591A4 (ja)
JP (1) JP5285809B2 (ja)
KR (1) KR101364346B1 (ja)
CN (1) CN102792217A (ja)
BR (1) BR112012025141A2 (ja)
RU (1) RU2521223C1 (ja)
WO (1) WO2011132374A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531390A (zh) * 2011-12-30 2012-07-04 四川虹欧显示器件有限公司 用于等离子显示屏的封接材料、包含其的封接带及制备方法
JP2016009181A (ja) * 2014-06-26 2016-01-18 株式会社ジャパンディスプレイ 液晶表示装置の製造方法および液晶表示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177642B2 (ja) * 2013-09-26 2017-08-09 デクセリアルズ株式会社 接続フィルム、接続構造体、接続構造体の製造方法、接続方法
CN104965368A (zh) * 2015-07-27 2015-10-07 武汉华星光电技术有限公司 液晶面板及显示装置
US10042969B2 (en) * 2015-08-28 2018-08-07 Globalfoundries Inc. Reliability of an electronic device
CN106527580B (zh) * 2016-09-28 2020-08-04 北京小米移动软件有限公司 电子设备和显示方法
KR20180041281A (ko) * 2016-10-13 2018-04-24 삼성디스플레이 주식회사 유기 발광 표시 장치
CN107490905A (zh) * 2017-08-29 2017-12-19 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置
CN108254977A (zh) * 2018-01-29 2018-07-06 深圳市华星光电半导体显示技术有限公司 液晶盒
CN109633994A (zh) * 2019-02-22 2019-04-16 深圳市华星光电技术有限公司 液晶显示面板
US11906852B2 (en) * 2022-03-16 2024-02-20 Lumentum Operations Llc Liquid crystal on silicon panel with electrically-conductive adhesive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005005A (ja) * 1999-06-17 2001-01-12 Sony Corp 液晶表示素子およびその製造方法
JP2002196697A (ja) * 2000-12-26 2002-07-12 Casio Comput Co Ltd 表示パネル及び基板結合方法
JP2006194920A (ja) * 2005-01-11 2006-07-27 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、及び電子機器
JP2007322627A (ja) 2006-05-31 2007-12-13 Hitachi Displays Ltd 液晶表示装置
JP2008145461A (ja) 2006-12-06 2008-06-26 Hitachi Displays Ltd 液晶表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182685A (ja) * 1982-04-20 1983-10-25 セイコーエプソン株式会社 表示体パネル
US6018380A (en) * 1997-09-02 2000-01-25 Prime View International Co. LCD having trench formed on the substrate(s) to stop sealing material flowing to display areas
US6407783B1 (en) * 1998-04-07 2002-06-18 Optrex Corporation Liquid crystal display device
JP2000199915A (ja) * 1999-01-06 2000-07-18 Matsushita Electric Ind Co Ltd 液晶表示パネル
US6456354B2 (en) * 1999-08-06 2002-09-24 Rainbow Displays, Inc. Design features optimized for tiled flat-panel displays
JP2005181514A (ja) * 2003-12-17 2005-07-07 Seiko Epson Corp 液晶装置、液晶装置の製造方法、電子機器
US20060215105A1 (en) * 2005-03-28 2006-09-28 Innolux Display Corp. Liquid crystal display device with photo spacers
WO2006109585A1 (ja) * 2005-04-06 2006-10-19 Sharp Kabushiki Kaisha 導電層を備えた基板、表示装置および導電層を備えた基板の製造方法
KR20080032505A (ko) * 2006-10-10 2008-04-15 삼성전자주식회사 액정 표시 장치
TW200823573A (en) * 2006-11-17 2008-06-01 Au Optronics Corp Liquid crystal display panel and manufacture method thereof
CN201327696Y (zh) * 2008-11-27 2009-10-14 江阴标榜装饰材料有限公司 展示牌端头单元体
KR101592386B1 (ko) * 2009-01-16 2016-02-11 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005005A (ja) * 1999-06-17 2001-01-12 Sony Corp 液晶表示素子およびその製造方法
JP2002196697A (ja) * 2000-12-26 2002-07-12 Casio Comput Co Ltd 表示パネル及び基板結合方法
JP2006194920A (ja) * 2005-01-11 2006-07-27 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、及び電子機器
JP2007322627A (ja) 2006-05-31 2007-12-13 Hitachi Displays Ltd 液晶表示装置
JP2008145461A (ja) 2006-12-06 2008-06-26 Hitachi Displays Ltd 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2562591A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531390A (zh) * 2011-12-30 2012-07-04 四川虹欧显示器件有限公司 用于等离子显示屏的封接材料、包含其的封接带及制备方法
JP2016009181A (ja) * 2014-06-26 2016-01-18 株式会社ジャパンディスプレイ 液晶表示装置の製造方法および液晶表示装置
US10437108B2 (en) 2014-06-26 2019-10-08 Japan Display Inc. Method for manufacturing liquid crystal display device and liquid crystal display device

Also Published As

Publication number Publication date
EP2562591A4 (en) 2014-08-20
JPWO2011132374A1 (ja) 2013-07-18
RU2012141311A (ru) 2014-05-27
CN102792217A (zh) 2012-11-21
EP2562591A1 (en) 2013-02-27
KR20120123713A (ko) 2012-11-09
US20130010240A1 (en) 2013-01-10
RU2521223C1 (ru) 2014-06-27
BR112012025141A2 (pt) 2016-06-21
JP5285809B2 (ja) 2013-09-11
KR101364346B1 (ko) 2014-02-18

Similar Documents

Publication Publication Date Title
JP5285809B2 (ja) 表示装置及びその製造方法
JP5603931B2 (ja) 液晶表示装置
JP4945551B2 (ja) 液晶表示装置
JP4887424B2 (ja) 液晶表示装置
WO2014038159A1 (ja) 液晶表示装置
US20130128192A1 (en) Liquid crystal display device and manufacturing method for same
KR20120014507A (ko) 액정 표시 장치
US20090231523A1 (en) Color filter substrate and display device using the same
CN106990594B (zh) 液晶显示面板及其制造方法与应用的显示装置
WO2011145258A1 (ja) 表示装置及びその製造方法
JP2006017750A (ja) 電気泳動表示装置及びその製造方法
JP2008139555A (ja) 液晶表示装置及びその製造方法
JP2008015371A (ja) 液晶表示装置
US11022846B2 (en) Substrate for display device and display device
JP5292594B2 (ja) 液晶表示パネル
WO2008044364A1 (fr) Affichage à cristaux liquides
US6593993B1 (en) Method for fabricating large scale liquid crystal display device
US10754203B2 (en) Display panel
JP4876470B2 (ja) 表示素子
KR100867167B1 (ko) 액정표시장치 및 그의 제조방법
WO2008032481A1 (fr) Appareil d'affichage à cristaux liquides
KR101096715B1 (ko) 액정표시소자
JP2007072424A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
JP2009223021A (ja) 表示素子
KR20060095356A (ko) 액정표시소자 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012800.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511526

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127024434

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13636230

Country of ref document: US

Ref document number: 2011771718

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8301/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012141311

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025141

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012025141

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121002