[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011052546A1 - 有機光電変換素子及びその製造方法 - Google Patents

有機光電変換素子及びその製造方法 Download PDF

Info

Publication number
WO2011052546A1
WO2011052546A1 PCT/JP2010/068878 JP2010068878W WO2011052546A1 WO 2011052546 A1 WO2011052546 A1 WO 2011052546A1 JP 2010068878 W JP2010068878 W JP 2010068878W WO 2011052546 A1 WO2011052546 A1 WO 2011052546A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal salt
electrode
photoelectric conversion
conversion element
organic photoelectric
Prior art date
Application number
PCT/JP2010/068878
Other languages
English (en)
French (fr)
Inventor
崇広 清家
大西 敏博
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2010800457727A priority Critical patent/CN102576804A/zh
Priority to US13/502,577 priority patent/US20120211075A1/en
Publication of WO2011052546A1 publication Critical patent/WO2011052546A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic photoelectric conversion element and a manufacturing method thereof.
  • the organic photoelectric conversion element generally includes (1) a step of preparing a substrate, (2) a step of forming a first electrode on the substrate, and (3) a first charge transport layer on the first electrode. A step of forming, (4) a step of forming an active layer on the first charge transport layer, (5) a step of forming a second charge transport layer on the active layer, and (6) a second charge. And a step of forming a second electrode on the transport layer.
  • the active layer contains an organic compound such as an electron-accepting compound or an electron-donating compound
  • the active layer is vulnerable to a high temperature and is used in a subsequent charge transport layer forming process, for example, a vapor deposition process in an electrode forming process such as an aluminum electrode. Due to the high temperature process, the electrical characteristics may be deteriorated, or the organic compound may be decomposed to lose its function.
  • the organic photoelectric conversion element that requires the conventional film formation step at a high temperature, an organic compound contained in a functional layer such as an active layer may be decomposed by heat. As a result, the organic photoelectric conversion element may malfunction. Further, when film formation by vapor deposition or the like is performed, a large-scale and expensive facility such as a vacuum facility is required. Therefore, the manufacturing process becomes complicated, and the manufacturing cost may increase.
  • the inventors of the present invention have made extensive studies on an organic photoelectric conversion element and a manufacturing method thereof, and have completed the present invention.
  • any one of the pair of electrodes includes: An organic photoelectric conversion element comprising an alkali metal salt or alkaline earth metal salt and a conductor.
  • any one of the pair of electrodes includes: An organic photoelectric conversion comprising a metal salt layer containing an alkali metal salt or an alkaline earth metal salt and a conductor layer containing a conductor, and the metal salt layer being bonded to the active layer element.
  • An organic photoelectric conversion comprising a metal salt layer containing an alkali metal salt or an alkaline earth metal salt and a conductor layer containing a conductor, and the metal salt layer being bonded to the active layer element.
  • the conductor is one or more metals selected from the group consisting of Al, Ag, Au, Cu, Sn, and Zn.
  • the alkali metal salt is a metal salt of Li, Na, K, or Cs.
  • the alkaline earth metal salt is a metal salt of any one metal selected from the group consisting of Ca, Mg, Sr, and Ba. Photoelectric conversion element.
  • the alkali metal salt and alkaline earth metal salt are any one selected from the group consisting of chloride, fluoride, bromide, acetate, oxalate and carbonate, [1] to [7] Organic photoelectric conversion element as described in any one of these. [9] The organic photoelectric conversion device according to any one of [1] to [8], wherein the alkali metal salt and the alkaline earth metal salt are salts having a particle diameter of 100 nm or less. [10] The organic photoelectric conversion device according to any one of [1] to [9], wherein the active layer contains a fullerene derivative.
  • an alkali metal salt or an alkali is provided on the active layer.
  • the manufacturing method of an organic photoelectric conversion element including the process of apply
  • an alkali metal salt or an alkali is provided on the active layer. Applying a coating solution containing an earth metal salt and a solvent to form a metal salt layer, and forming a conductor layer containing a conductor and a solvent on the metal salt layer; The manufacturing method of an organic photoelectric conversion element.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the organic photoelectric conversion element of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the organic photoelectric conversion element of the second embodiment.
  • Organic photoelectric conversion element 20 Substrate 32: First electrode 34: Second electrode 34a: Metal salt layer 34b: Conductor layer 40: Active layer
  • the organic photoelectric conversion element according to the first embodiment includes a pair of electrodes including a first electrode and a second electrode, and an active layer sandwiched between the pair of electrodes, and one of the pair of electrodes.
  • the electrode includes an alkali metal salt or an alkaline earth metal salt and a conductor.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the organic photoelectric conversion element of the first embodiment.
  • the organic photoelectric conversion element 10 includes a pair of electrodes including a first electrode 32 and a second electrode 34, and an active layer 40 sandwiched between the pair of electrodes.
  • the first electrode 32, the active layer 40, and the second electrode 34 are provided on the substrate 20.
  • At least the electrode on which light is incident that is, at least one of the electrodes is a transparent or translucent electrode capable of transmitting incident light (sunlight) having a wavelength necessary for power generation.
  • the organic photoelectric conversion element includes a pair of electrodes including a first electrode 32 and a second electrode 34, and an active layer 40 sandwiched between the pair of electrodes.
  • the polarities of the first electrode 32 and the second electrode 34 may be any suitable polarity corresponding to the element structure.
  • An example in which the first electrode 32 is an anode and the second electrode 34 is a cathode will be described below.
  • the first electrode 32 may be a cathode and the second electrode 34 may be an anode.
  • the first electrode 32 or the second electrode 34 of the first embodiment is configured as an electrode including an alkali metal salt or an alkaline earth metal salt and a conductor as materials.
  • the second electrode 34 which is a cathode is an electrode including an alkali metal salt or alkaline earth metal salt and a conductor as materials.
  • the conductor as the electrode material is preferably one or more selected from the group consisting of aluminum (Al), silver (Ag), gold (Au), copper (Cu), tin (Sn), and zinc (Zn). These metals are mentioned.
  • This conductor is preferably a nanoparticle having a diameter of 100 nm or less.
  • the nanoparticle means a particle having a diameter of 100 nm or less.
  • the nanoparticles preferably have a diameter of 50 nm or less from the viewpoint of lowering the sintering temperature.
  • a diameter is 5 nm or more from a viewpoint of stability of the nanoparticle in the non-heating process at the time of a storage or an application
  • the conductor is preferably fibrous particles.
  • the fibrous particle means a particle having an aspect ratio of 10 or more and 100,000 or less formed by a ratio of a fiber diameter and a fiber length.
  • the fibrous particles preferably have an aspect ratio of 100 or more from the viewpoint of conductivity. Since the fibrous particles have many gaps (voids) inside the aggregate, the fibrous particles can be uniformly mixed with the alkali metal salt or the alkaline earth metal salt.
  • the fibrous particles preferably have a fiber diameter of 100 nm or less from the viewpoint of allowing sintering to proceed at a lower temperature.
  • the conductor is preferably a mixture of the nanoparticles and the fibrous particles. Furthermore, the conductor can be nanoparticles and fibrous particles.
  • the alkali metal salt contained in this electrode is preferably a metal salt of lithium (Li), sodium (Na), potassium (K) or cesium (Cs).
  • the alkaline earth metal salt contained in this electrode is preferably any one selected from the group consisting of calcium (Ca), magnesium (Mg), strontium (Sr), and barium (Ba).
  • the alkali metal salt and alkaline earth metal salt contained in this electrode are preferably any one selected from the group consisting of chloride, fluoride, bromide, acetate, oxalate and carbonate.
  • the alkali metal salt and alkaline earth metal salt are preferably salts having a particle diameter of 100 nm or less.
  • the other electrode facing the electrode of the first embodiment including the above-described alkali metal salt or alkaline earth metal salt and a conductor will be described.
  • the transparent or translucent electrode examples include a conductive metal oxide film and a translucent metal thin film.
  • a conductive material made of indium tin oxide, zinc oxide, tin oxide, indium tin oxide (sometimes referred to as ITO), indium zinc oxide, or the like, which is a composite thereof, is used as the electrode.
  • Films such as NESA, gold, platinum, silver, copper, etc. are used, and ITO, indium zinc oxide, and tin oxide films are preferred.
  • the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • electrode material for the opaque electrode a metal, a conductive polymer, or the like can be used.
  • electrode materials for opaque electrodes include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium Selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin, and a metal such as ytterbium, and two or more alloys thereof, or one or more of these metals And alloys with one or more metals, graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.
  • the organic photoelectric conversion element is usually formed on a substrate. That is, the stacked structure including the first electrode 32, the active layer 40 provided on the first electrode 32, and the second electrode 34 provided on the active layer 40 is provided on the main surface of the substrate 20.
  • the material of the substrate 20 may be any material that does not change chemically when forming an electrode and forming a layer containing an organic substance.
  • Examples of the material of the substrate 20 include glass, plastic, polymer film, silicon and the like.
  • the second electrode 34 (electrode far from the substrate 20) provided on the side opposite to the substrate side facing the first electrode 32 is transparent. It is preferable that it is translucent or can transmit required incident light.
  • the active layer 40 is sandwiched between the first electrode 32 and the second electrode 34.
  • the active layer 40 is a bulk hetero type organic layer in which an electron accepting compound (n-type semiconductor) and an electron donating compound (p-type semiconductor) are mixed and contained.
  • the active layer 40 is a layer having an essential function for the photoelectric conversion function, which can generate charges (holes and electrons) using the energy of incident light.
  • the active layer 40 included in the organic photoelectric conversion element 10 includes an electron donating compound and an electron accepting compound.
  • the electron-donating compound and the electron-accepting compound are determined relatively from the energy levels of these compounds, and one compound can be either an electron-donating compound or an electron-accepting compound.
  • electron donating compounds include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, aromatic amines in the side chain or main chain And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and the like.
  • electron accepting compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60 fullerene, bathocuproine And phenanthrene derivatives such as titanium oxide, metal oxides such as titanium oxide, and carbon nanotubes.
  • titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and fullerene derivatives are particularly prefer
  • fullerene examples include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, such as C 84 fullerene, and the like.
  • Examples of the fullerene derivatives C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene derivatives of each. Examples of the specific structure of the fullerene derivative include the following structures.
  • fullerene derivatives include [6,6] phenyl-C 61 butyric acid methyl ester (C 60 PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), and [6,6] phenyl-C 71 butyric acid.
  • Methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), and the like [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester).
  • the ratio of the fullerene derivative is preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound, and 20 parts by weight to 500 parts by weight. It is more preferable that
  • the thickness of the active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, more preferably 20 nm to 200 nm.
  • an additional layer (in addition to the active layer) is provided as a means for improving the photoelectric conversion efficiency between at least one of the first electrode 32 and the second electrode 34 and the active layer 40.
  • An intermediate layer may be provided.
  • halides of alkali metals and alkaline earth metals such as lithium fluoride, oxides of alkali metals and alkaline earth metals, and the like can be used.
  • the material include fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly-3,4-ethylenedioxythiophene), and the like.
  • Examples of the additional layer include a charge transport layer (hole transport layer, electron transport layer) that transports holes or electrons.
  • any suitable material can be used as the material constituting the charge transport layer.
  • the charge transport layer is an electron transport layer
  • an example of the material is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • PEDOT PEDOT
  • the additional intermediate layer that may be provided between the first electrode 32 and the second electrode 34 and the active layer 40 may be a buffer layer.
  • a material used as the buffer layer include lithium fluoride and the like.
  • oxides such as titanium oxide, and the like.
  • an inorganic semiconductor it can be used in the form of fine particles.
  • the active layer 40 is described as a single layer active layer in which the active layer 40 is a bulk hetero type in which an electron accepting compound and an electron donating compound are mixed.
  • the active layer 40 may be composed of a plurality of layers.
  • a heterojunction type in which an electron accepting layer containing an electron accepting compound such as a fullerene derivative and an electron donating layer containing an electron donating compound such as P3HT may be joined.
  • an example of the layer structure which the organic photoelectric conversion element of this Embodiment can take is shown below.
  • a) Anode / active layer / cathode b) Anode / hole transport layer / active layer / cathode c) Anode / active layer / electron transport layer / cathode d) Anode / hole transport layer / active layer / electron transport layer / cathode e) Anode / electron supply layer / electron acceptor layer / cathode f) Anode / hole transport layer / electron supply layer / electron acceptor layer / cathode g) Anode / electron supply layer / electron acceptor layer / electron Transport layer / cathode h) anode / hole transport layer / electron supply layer / electron-accepting layer / electron transport layer / cathode (where the symbol “/” is adjacent to the layer sandwiching the symbol “/”) Indicates that they are stacked.)
  • the layer configuration may be any of a form in which the anode is provided on the side closer to the substrate and a form in which the cathode is provided on the side closer to the substrate.
  • Each of the above layers may be formed as a single layer or a laminate of two or more layers.
  • the ratio of the electron accepting compound in the bulk hetero type active layer containing the electron accepting compound and the electron donating compound is 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound. It is preferably 50 parts by weight to 500 parts by weight.
  • the manufacturing method of an organic photoelectric conversion element is a method of forming an active layer in a manufacturing method of an organic photoelectric conversion element including a pair of electrodes including a first electrode and a second electrode, and an active layer sandwiched between the pair of electrodes. And a step of applying, on the active layer, a coating solution containing an alkali metal salt or alkaline earth metal salt, a conductor and a solvent to form one of the pair of electrodes. .
  • the substrate 20 is prepared.
  • the substrate 20 is a flat substrate having two main surfaces facing each other.
  • a substrate in which a thin film of a conductive material that can be an electrode material such as indium tin oxide is provided on one main surface of the substrate 20 in advance may be prepared.
  • a thin film of conductive material is formed on one main surface of the substrate 20 by any suitable method.
  • the conductive material thin film is then patterned.
  • the first electrode 32 is formed by patterning a thin film of a conductive material by any suitable method such as a photolithography process and an etching process.
  • the active layer 40 is formed on the entire surface of the substrate 10 on which the first electrode 32 is formed according to a conventional method.
  • the active layer 40 can be formed by a coating method such as a spin coating method, in which a coating liquid in which a solvent and any suitable active layer material are mixed is applied.
  • the second electrode 34 is formed on the active layer 40.
  • the second electrode 34 is formed by a film forming method using a coating liquid, that is, a solution.
  • Film formation methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, and gravure printing.
  • Application methods such as flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method, spin coating method, flexographic printing method, gravure printing method, inkjet printing method, Dispenser printing is preferred.
  • the solvent used in the film forming method using these solutions is not particularly limited as long as it is a solvent that dissolves the material of the second electrode 34 described above, that is, the alkali metal salt or alkaline earth metal salt already described and the conductor. Absent.
  • solvents examples include methanol, ethanol, 1-propanol, isopropyl alcohol, tert-butanol, ethylene glycol, propylene glycol, ⁇ -terpineol, ethyl carbitol acetate, butyl carbitol acetate, ethyl cellosolve, butyl cellulosolve.
  • alcohol solvents such as n-octane, n-decane, n-undecane, n-dodecane, n-tetradecane and other alkanes.
  • the second electrode 34 is completed by drying the coated and formed layer under any suitable atmosphere such as a nitrogen gas atmosphere under conditions suitable for the material and the solvent.
  • the organic photoelectric conversion element according to the second embodiment includes a pair of electrodes including a first electrode and a second electrode, and an active layer sandwiched between the pair of electrodes, and any one of the pair of electrodes.
  • the electrode is formed by laminating a metal salt layer containing an alkali metal salt or an alkaline earth metal salt and a conductor layer containing a conductor, and the metal salt layer is joined to the active layer It is said.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the organic photoelectric conversion element of the second embodiment.
  • the organic photoelectric conversion element 10 includes a pair of electrodes including a first electrode 32 and a second electrode 34, and an active layer 40 sandwiched between the pair of electrodes.
  • the first electrode 32, the active layer 40, and the second electrode 34 are provided on the substrate 20.
  • At least one of the electrodes on which light is incident that is, at least one of the electrodes is a transparent or translucent electrode capable of transmitting incident light (sunlight) having a wavelength necessary for power generation.
  • the organic photoelectric conversion element includes a pair of electrodes including a first electrode 32 and a second electrode 34, and an active layer 40 sandwiched between the pair of electrodes.
  • the polarities of the first electrode 32 and the second electrode 34 may be any suitable polarity corresponding to the element structure, and the first electrode 32 may be a cathode and the second electrode 34 may be an anode.
  • a metal salt layer 34a containing an alkali metal salt or an alkaline earth metal salt as a material and a conductor layer containing a conductor as a material are laminated. Configured as an electrode.
  • the second electrode 34 which is a cathode is an electrode in which a metal salt layer 34a containing an alkali metal salt or an alkaline earth metal salt as a material and a conductor layer 34b containing a conductor as a material are stacked. Yes. Further, the metal salt layer 34 a is joined to the active layer 40.
  • the configuration of the substrate 20, the other electrode, the active layer 40, and the additional layer is the same as the configuration of the first embodiment already described, and thus detailed description thereof is omitted.
  • An example of a conductor that is a material of the conductor layer 34b is preferably a group consisting of aluminum (Al), silver (Ag), gold (Au), copper (Cu), tin (Sn), and zinc (Zn).
  • Al aluminum
  • Au gold
  • Cu copper
  • Sn tin
  • Zn zinc
  • This conductor is preferably a nanoparticle having a diameter of 100 nm or less.
  • the conductor is preferably fibrous particles. Furthermore, the conductor is preferably a mixture of these nanoparticles and fibrous particles.
  • the alkali metal salt contained in the metal salt layer 34a is preferably a metal salt of lithium (Li), sodium (Na), potassium (K), or cesium (Cs).
  • the alkaline earth metal salt contained in the metal salt layer 34a is preferably any one selected from the group consisting of calcium (Ca), magnesium (Mg), strontium (Sr), and barium (Ba).
  • All of the alkali metal salt and alkaline earth metal salt contained in the metal salt layer 34a are preferably any one selected from the group consisting of chloride, fluoride, bromide, acetate, oxalate and carbonate. is there.
  • the alkali metal salt and alkaline earth metal salt are preferably salts having a particle diameter of 100 nm or less.
  • a method for producing an organic photoelectric conversion element includes a step of forming a metal salt layer on an active layer by applying a coating solution containing an alkali metal salt or an alkaline earth metal salt and a solvent as materials, Forming a conductor layer containing a conductor and a solvent.
  • the substrate 20 is prepared.
  • the substrate 20 is a flat substrate having two main surfaces facing each other.
  • a substrate in which a thin film of a conductive material that can be an electrode material such as indium tin oxide is provided on one main surface of the substrate 20 in advance may be prepared.
  • the first electrode 32 is formed as described in the first embodiment.
  • the active layer 40 is formed on the entire surface of the substrate 10 on which the first electrode 32 is formed according to a conventional method.
  • the active layer 40 is coated with a coating liquid in which a solvent and any suitable active layer material are mixed, and the formed layer is suitable for the material and the solvent in any suitable atmosphere such as a nitrogen gas atmosphere. It can be formed by a coating method such as a spin coating method, which is dried under various conditions.
  • the second electrode 34 is formed on the active layer 40.
  • the second electrode 34 is formed by the same film forming method as that of the above-described active layer 40 using a coating liquid, that is, a solution.
  • Film formation methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, and gravure printing.
  • Application methods such as flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method, spin coating method, flexographic printing method, gravure printing method, inkjet printing method, Dispenser printing is preferred.
  • the solvent used in the film forming method using these solutions is not particularly limited as long as it is a solvent that dissolves the material of the second electrode 34 described above, that is, the alkali metal salt or alkaline earth metal salt already described and the conductor. Absent.
  • solvents examples include methanol, ethanol, 1-propanol, isopropyl alcohol, tert-butanol, ethylene glycol, propylene glycol, ⁇ -terpineol, ethyl carbitol acetate, butyl carbitol acetate, ethyl cellosolve, butyl cellulosolve.
  • alcohol solvents such as n-octane, n-decane, n-undecane, n-dodecane, and alkanes such as n-tetradecane.
  • the metal salt layer 34a is formed on the formed active layer 40 by the coating method already described. Specifically, a coating liquid obtained by mixing (dissolving) a selected alkali metal salt or alkaline earth metal salt and a corresponding suitable solvent is applied onto the active layer 40.
  • the metal salt layer 34a is formed by drying the coated layer in any suitable atmosphere such as a nitrogen gas atmosphere under conditions suitable for the material and the solvent.
  • the conductor layer 34b is formed on the formed metal salt layer 34a by the coating method already described. Specifically, a coating solution obtained by mixing (dissolving) a selected conductor and a corresponding suitable solvent is applied onto the metal salt layer 34a. The conductor layer 34b is formed by drying the coated layer in any suitable atmosphere such as a nitrogen gas atmosphere under conditions suitable for the material and the solvent. Thus, the electrode second electrode 34 in which the metal salt layer 34a and the conductor layer 34b are laminated is completed. By implementing the above process, the organic photoelectric conversion element of 2nd Embodiment can be manufactured.
  • the electrode is formed by a coating method that does not require heating at a high temperature. For this reason, an electrode (layer) can be formed by an extremely simple process without deteriorating a functional layer containing an organic compound such as an active layer or losing its function. Moreover, since the organic photoelectric conversion element manufactured by this method includes an electrode containing an alkali metal or alkaline earth metal salt and a conductor, an electrical barrier at the interface between the electrode and the active layer joined to the electrode Therefore, it has excellent electrical characteristics.
  • the organic photoelectric conversion element manufactured by the manufacturing method of the present invention irradiates light such as sunlight from the first electrode and / or the second electrode, which are transparent or translucent electrodes, so that the photovoltaic power is generated between the electrodes. Is generated and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the organic photoelectric conversion element manufactured by the manufacturing method of the present invention transmits a transparent or translucent electrode in a state where a voltage is applied between the first electrode and the second electrode, or in a state where no voltage is applied. A photocurrent flows when light enters the element. Therefore, the organic photoelectric conversion element manufactured by the manufacturing method of the present invention can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • Example 1 A glass substrate (first substrate) on which an ITO film having a thickness of 150 nm is formed by sputtering is washed with acetone, and then an ultraviolet ozone irradiation apparatus equipped with a low-pressure mercury lamp (manufactured by Technovision, model: UV-312) was used for UV ozone cleaning treatment for 15 minutes to form an ITO electrode (first electrode) having a clean surface.
  • a PEDOT trade name Baytron P AI4083, lot. HCD07O109
  • first charge transport layer was formed on the glass substrate provided with the ITO electrode by spin coating. Thereafter, drying was performed at 150 ° C. in the air for 30 minutes.
  • P3HT Poly (3-hexylthiophene) (trade name licicon SP001, lot. EF431002) manufactured by Merck as a conjugated polymer compound, and PCBM (trade name E100, lot. 7B0168-A manufactured by Frontier Carbon Co., Ltd.) as a fullerene derivative.
  • PCBM trade name E100, lot. 7B0168-A manufactured by Frontier Carbon Co., Ltd.
  • the coating liquid was prepared.
  • a coating solution was applied onto the PEDOT layer by a spin coating method. Thereafter, heat treatment is performed at 150 ° C. for 3 minutes in a nitrogen gas atmosphere. The thickness of the active layer after the heat treatment is about 100 nm.
  • the electrode forming coating solution 1 was prepared by dissolving cesium carbonate.
  • An electrode layer (second electrode) was formed on the active layer by spin coating. Thereafter, heat treatment was performed at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • the shape of the organic thin film solar cell which is an organic photoelectric conversion element is a square of 2 mm ⁇ 2 mm.
  • a cesium carbonate layer was formed by spin coating using the electrode forming coating solution 2. Thereafter, heat treatment was performed at 130 ° C. for 10 minutes in a nitrogen gas atmosphere. Next, a silver layer was formed using the silver nanoparticle dispersion, and then heat-treated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • the present invention is useful because it provides an organic photoelectric conversion element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 電気的な特性に優れた有機光電素子を提供する。有機光電変換素子(10)は、第1電極(32)及び第2電極(34)からなる一対の電極、及び前記一対の電極間に挟持される活性層(40)を備える有機光電変換素子において、前記一対の電極のうちのいずれか一方の電極が、アルカリ金属塩又はアルカリ土類金属塩と導電体とを含む。

Description

有機光電変換素子及びその製造方法
 本発明は、有機光電変換素子及びその製造方法に関する。
 有機光電変換素子は、通常、(1)基板を準備する工程と、(2)基板上に第1の電極を形成する工程と、(3)第1の電極上に第1の電荷輸送層を形成する工程と、(4)第1の電荷輸送層上に活性層を形成する工程と、(5)活性層上に第2の電荷輸送層を形成する工程と、(6)第2の電荷輸送層上に第2の電極を形成する工程とを含む製造方法により製造される。
 特に活性層は、電子受容性化合物、電子供与性化合物のような有機化合物を含有するため、高温に弱く、後続の電荷輸送層形成工程、例えばアルミニウム電極のような電極形成工程における蒸着工程のような高温プロセスにより、電気的特性が劣化したり、有機化合物が分解して機能を喪失する場合がある。
 有機化合物を含有する活性層とこの活性層上に設けられたアルミニウム電極とを備える有機光電変換素子の材料にかかる化学的な劣化、機能的な劣化については種々の研究がなされている(非特許文献1参照。)。
Solar Energy Materials and Solar Cells 92 (2008) 686
 しかしながら、上記従来の高温での成膜工程が必要な有機光電変換素子の場合には、活性層のような機能層が含有する有機化合物が熱により分解する場合がある。結果として有機光電変換素子が動作不良を起こす場合がある。
 また蒸着等による成膜が行われる場合には、真空系の設備のような大規模かつ高価な設備が必要となる。よって製造工程が煩雑となり、製造コストが増大する場合がある。
 本発明者らは、有機光電変換素子及びその製造方法について鋭意研究を進め、本発明を完成させるに至った。
 すなわち本発明は、下記の有機光電変換素子及びその製造方法を提供する。
〔1〕 第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子において、前記一対の電極のうちのいずれか一方の電極が、アルカリ金属塩又はアルカリ土類金属塩と導電体とを含む、有機光電変換素子。
〔2〕 第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子において、前記一対の電極のうちのいずれか一方の電極が、アルカリ金属塩又はアルカリ土類金属塩を含む金属塩層と導電体を含む導電体層とが積層されて構成されており、かつ該金属塩層が前記活性層と接合している、有機光電変換素子。
〔3〕 導電体がAl、Ag、Au、Cu、Sn及びZnからなる群から選ばれる1種以上の金属である、〔1〕又は〔2〕に記載の有機光電変換素子。
〔4〕 導電体が直径100nm以下のナノ粒子である、〔1〕~〔3〕のいずれか一項に記載の有機光電変換素子。
〔5〕 導電体が繊維状粒子である、〔1〕~〔3〕のいずれか一項に記載の有機光電変換素子。
〔6〕 アルカリ金属塩が、Li、Na、K又はCsの金属塩である、〔1〕~〔5〕のいずれか一項に記載の有機光電変換素子。
〔7〕 アルカリ土類金属塩が、Ca、Mg、Sr、Baからなる群から選ばれるいずれかひとつの金属の金属塩である、〔1〕~〔5〕のいずれか一項に記載の有機光電変換素子。
〔8〕 アルカリ金属塩及びアルカリ土類金属塩が、塩化物、フッ化物、臭化物、酢酸塩、シュウ酸塩及び炭酸塩からなる群から選ばれるいずれかひとつである、〔1〕~〔7〕のいずれか一項に記載の有機光電変換素子。
〔9〕 アルカリ金属塩及びアルカリ土類金属塩が、粒子直径100nm以下の塩である、〔1〕~〔8〕のいずれか一項に記載の有機光電変換素子。
〔10〕 活性層がフラーレン誘導体を含む、〔1〕~〔9〕のいずれか一項に記載の有機光電変換素子。
〔11〕 第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子の製造方法において、前記活性層上に、アルカリ金属塩又はアルカリ土類金属塩と導電体と溶媒とを含む塗工液を塗布して、前記電極のうちのいずれか一方の電極を形成する工程を含む、有機光電変換素子の製造方法。
〔12〕 第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子の製造方法において、前記活性層上に、アルカリ金属塩又はアルカリ土類金属塩と溶媒とを含む塗工液を塗布して金属塩層を形成する工程と、前記金属塩層上に、導電体と溶媒とを含む導電体層を形成する工程とを含む、有機光電変換素子の製造方法。
図1は、第1の実施形態の有機光電変換素子の構成を示す概略的な断面図である。 図2は、第2の実施形態の有機光電変換素子の構成を示す概略的な断面図である。
 10:有機光電変換素子
 20:基板
 32:第1電極
 34:第2電極
 34a:金属塩層
 34b:導電体層
 40:活性層
 以下、図面を参照して本発明を詳細に説明する。なお以下の説明において、各図は発明が理解できる程度に構成要素の形状、大きさ及び配置が概略的に示されているに過ぎず、これにより本発明が特に限定されるものではない。また各図において、同様の構成成分については同一の符号を付して示し、その重複する説明を省略する場合がある。
(第1の実施形態)
<有機光電変換素子>
 第1の実施形態の有機光電変換素子は、第1電極及び第2電極からなる一対の電極、及び一対の電極間に挟持される活性層を備え、これら一対の電極のうちのいずれか一方の電極が、アルカリ金属塩又はアルカリ土類金属塩と導電体とを含むことを特徴としている。
 まず、有機光電変換素子の構成について、図1を参照して説明する。
 図1は、第1の実施形態の有機光電変換素子の構成を示す概略的な断面図である。
 図1に示すように、有機光電変換素子10は、第1電極32及び第2電極34からなる一対の電極、及び一対の電極間に挟持される活性層40を備えている。これら第1電極32、活性層40、第2電極34は基板20上に設けられている。
 この一対の電極のうち、少なくとも光が入射する側の電極、すなわち少なくとも一方の電極は、発電に必要な波長の入射光(太陽光)を透過させることができる透明又は半透明の電極とされる。
 有機光電変換素子は、第1電極32及び第2電極34からなる一対の電極と、この一対の電極間に挟持された活性層40とを備えている。第1電極32及び第2電極34の極性は素子構造に対応した任意好適な極性とすればよく、第1電極32を陽極とし、かつ第2電極34を陰極とする例を以下に説明するが、第1電極32を陰極とし、かつ第2電極34を陽極としてもよい。
 第1の実施形態の第1電極32又は第2電極34は、アルカリ金属塩又はアルカリ土類金属塩と導電体とを材料として含む電極として構成される。
 この例では陰極である第2電極34を、アルカリ金属塩又はアルカリ土類金属塩と導電体とを材料として含む電極としている。
 電極の材料である導電体としては、好ましくはアルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)、錫(Sn)及び亜鉛(Zn)からなる群から選ばれる1種以上の金属が挙げられる。
 この導電体は、好ましくは直径100nm以下のナノ粒子である。ここでナノ粒子とは、直径が100nm以下である粒子を意味する。ナノ粒子としては、焼結温度をより低温化する観点から、直径が50nm以下であることが好ましい。またナノ粒子としては、保管時や塗布工程時の非加熱工程中におけるナノ粒子の安定性の観点から、直径が5nm以上であることが好ましい。
 また導電体は、好ましくは繊維状粒子である。ここで繊維状粒子とは、繊維直径と繊維長さとの比からなるアスペクト比が10以上100000以下である粒子を意味する。繊維状粒子は、導電性の観点から、アスペクト比が100以上であることが好ましい。繊維状粒子は、その凝集体の内部に多くの間隙(空隙)を有するため、アルカリ金属塩又はアルカリ土類金属塩と均一に混合することができる。繊維状粒子は、より低温で焼結を進行させる観点から、繊維直径が100nm以下であることが好ましい。
 さらに導電体は、好ましくは前記ナノ粒子と前記繊維状粒子との混合物である。さらにまた導電体は、ナノ粒子でありかつ繊維状粒子である場合もあり得る。
 この電極に含まれるアルカリ金属塩は、好ましくはリチウム(Li)、ナトリウム(Na)、カリウム(K)又はセシウム(Cs)の金属塩である。
 またこの電極に含まれるアルカリ土類金属塩は、好ましくはカルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)からなる群から選ばれるいずれかひとつである。
 この電極に含まれるアルカリ金属塩及びアルカリ土類金属塩はいずれもが、好ましくは塩化物、フッ化物、臭化物、酢酸塩、シュウ酸塩及び炭酸塩からなる群から選ばれるいずれかひとつである。
 アルカリ金属塩及びアルカリ土類金属塩は、好ましくは粒子直径100nm以下の塩である。
 上述したアルカリ金属塩又はアルカリ土類金属塩と導電体とを材料として含む第1実施形態の電極と対向する他方の電極について説明する。
 透明又は半透明である電極としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。電極としては、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウムスズ酸化物(ITOという場合がある。)、インジウム亜鉛酸化物等からなる導電性材料を用いて作製された膜、NESA等、金、白金、銀、銅等の膜が用いられ、ITO、インジウム亜鉛酸化物、酸化スズの膜が好ましい。電極の作製方法の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 不透明である電極の電極材料としては、金属、導電性高分子等を用いることができる。不透明である電極の電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 有機光電変換素子は、通常、基板上に形成される。すなわち第1電極32、第1電極32上に設けられる活性層40、及び活性層40上に設けられる第2電極34を含む積層構造は、基板20の主面上に設けられている。
 この基板20の材料は、電極を形成し、有機物を含有する層を形成する際に化学的に変化しないものであればよい。基板20の材料の例としては、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。
 基板20が入射光を不透過とする不透明である場合には、第1電極32と対向する、基板側とは反対側に設けられる第2電極34(基板20から遠い方の電極)が透明であるか、又は所要の入射光を透過できる半透明であることが好ましい。
 活性層40は、第1電極32と第2電極34とに挟持されている。活性層40は、電子受容性化合物(n型半導体)と電子供与性化合物(p型半導体)とが混合されて含有される、この例ではバルクヘテロ型の有機層である。活性層40は、入射光のエネルギーを利用して電荷(正孔及び電子)を生成することができる、光電変換機能にとって本質的な機能を有する層である。
 有機光電変換素子10に含まれる活性層40は、上述の通り、電子供与性化合物と電子受容性化合物とを含む。
 なお、電子供与性化合物と電子受容性化合物とは、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定され、1つの化合物が電子供与性化合物、電子受容性化合物のいずれともなり得る。
 電子供与性化合物の例としては、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等が挙げられる。
 電子受容性化合物の例としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60フラーレン等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブ等が挙げられる。電子受容性化合物としては、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。
 フラーレン誘導体の例としてはC60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンそれぞれの誘導体が挙げられる。フラーレン誘導体の具体的構造の例としては、下記のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 またフラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)などが挙げられる。
 電子受容性化合物としてフラーレン誘導体を用いる場合には、フラーレン誘導体の割合が、電子供与性化合物100重量部に対して、10重量部~1000重量部であることが好ましく、20重量部~500重量部であることがより好ましい。
 活性層の厚さは、通常、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、より好ましくは20nm~200nmである。
 有機光電変換素子には、第1電極32及び第2電極34のうちの少なくとも一方の電極と活性層40との間に光電変換効率を向上させるための手段として活性層以外の付加的な層(中間層)を設けてもよい。付加的な中間層として用いられる材料としては、フッ化リチウム等のアルカリ金属及びアルカリ土類金属のハロゲン化物、アルカリ金属及びアルカリ土類金属の酸化物等を用いることができる。また、材料の例としては、酸化チタン等無機半導体の微粒子、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)などが挙げられる。
 付加的な層の例としては、正孔又は電子を輸送する電荷輸送層(正孔輸送層、電子輸送層)が挙げられる。
 上述の電荷輸送層を構成する材料としては、任意好適な材料を用いることができる。電荷輸送層が電子輸送層である場合には、材料の例として2,9-ジメチル-4,7-ジフェニル-1,10-フェナンスロリン(BCP)が挙げられる。電荷輸送層が正孔輸送層である場合には、材料の例としてPEDOTが挙げられる。
 第1電極32及び第2電極34と、活性層40との間に設けてもよい付加的な中間層は、バッファ層であってもよく、バッファ層として用いられる材料としては、フッ化リチウム等のアルカリ金属及びアルカリ土類金属のハロゲン化物、酸化チタン等の酸化物等が挙げられる。また、無機半導体を用いる場合には、微粒子の形態で用いることもできる。
 上記の例では、活性層40を電子受容性化合物と電子供与性化合物とが混合されたバルクヘテロ型とする単層の活性層について説明したが、活性層40は複数層により構成されていてもよく、例えばフラーレン誘導体のような電子受容性化合物を含有する電子受容性層と、P3HTのような電子供与性化合物を含有する電子供与性層とが接合されたヘテロジャンクション型としてもよい。
 ここで本実施の形態の有機光電変換素子のとりうる層構成の一例を以下に示す。
a)陽極/活性層/陰極
b)陽極/正孔輸送層/活性層/陰極
c)陽極/活性層/電子輸送層/陰極
d)陽極/正孔輸送層/活性層/電子輸送層/陰極
e)陽極/電子供給性層/電子受容性層/陰極
f)陽極/正孔輸送層/電子供給性層/電子受容性層/陰極
g)陽極/電子供給性層/電子受容性層/電子輸送層/陰極
h)陽極/正孔輸送層/電子供給性層/電子受容性層/電子輸送層/陰極
(ここで、記号「/」は、記号「/」を挟む層同士が隣接して積層されていることを示す。)
 上記層構成は、陽極が基板により近い側に設けられる形態、及び陰極が基板により近い側に設けられる形態のいずれであってもよい。
 上記各層は、単層で構成されるのみならず、2層以上の積層体として構成されていてもよい。
 有機光電変換素子において、電子受容性化合物及び電子供与性化合物を含有するバルクヘテロ型の活性層における電子受容性化合物の割合は、電子供与性化合物100重量部に対して、10重量部~1000重量部とすることが好ましく、50重量部~500重量部とすることがより好ましい。
<製造方法>
 次に第1の実施形態の有機光電変換素子の製造方法について、図1を参照して説明する。
 有機光電変換素子の製造方法は、第1電極及び第2電極からなる一対の電極、及び一対の電極間に挟持される活性層を備える有機光電変換素子の製造方法において、活性層を形成する工程と、活性層上に、アルカリ金属塩又はアルカリ土類金属塩と導電体と溶媒とを含む塗工液を塗布して、一対の電極のうちのいずれか一方の電極を形成する工程とを含む。
 有機光電変換素子10の製造にあたり、まず基板20を準備する。基板20は対向する2面の主面を有する平板状の基板である。基板20を準備するにあたり、基板20の一方の主面には例えばインジウムスズ酸化物のような電極の材料となり得る導電性材料の薄膜が予め設けられている基板を準備してもよい。
 基板20に導電性材料の薄膜が設けられていない場合には、基板20の一方の主面に導電性材料の薄膜を任意好適な方法により形成する。次いで導電性材料の薄膜をパターニングする。導電性材料の薄膜をフォトリソグラフィ工程及びエッチング工程のような任意好適な方法によりパターニングして、第1電極32を形成する。
 次に、第1電極32が形成された基板10上全面に、常法に従って活性層40を形成する。活性層40は、溶媒と任意好適な活性層の材料とを混合した塗工液を塗布する、例えばスピンコート法のような塗布法により形成することができる。
 次に活性層40上に第2電極34を形成する。第2電極34は、この例では塗工液、すなわち溶液を用いる成膜方法により形成する。
 成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 これらの溶液を用いる成膜方法に用いられる溶媒は、上述した第2電極34の材料、すなわち既に説明したアルカリ金属塩又はアルカリ土類金属塩と導電体とを溶解させる溶媒であれば特に制限はない。
 このような溶媒の例としては、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、tert-ブタノール、エチレングリコール、プロピレングリコール、α-テルピネオール、エチルカルビトールアセテート、ブチルカルビトールアセテート、エチルセロソルブ、ブチルセルロソルブ等のアルコール溶媒、n-オクタン、n-デカン、n-ウンデカン、n-ドデカン、n-テトラデカン等のアルカン類等が挙げられる。
 塗布形成された層を、窒素ガス雰囲気のような任意好適な雰囲気下において、材料及び溶媒に好適な条件で乾燥することにより第2電極34が完成する。
 以上の工程を実施することにより、第1の実施形態の有機光電変換素子を製造することができる。
(第2の実施形態)
<有機光電変換素子>
 第2の実施形態の有機光電変換素子は、第1電極及び第2電極からなる一対の電極、及び一対の電極間に挟持される活性層を備え、これら一対の電極のうちのいずれか一方の電極が、アルカリ金属塩又はアルカリ土類金属塩を含む金属塩層と導電体を含む導電体層とが積層されて構成されており、かつ金属塩層が活性層と接合していることを特徴としている。
 まず、有機光電変換素子の構成について、図2を参照して説明する。なお、既に説明した第1の実施形態と同様の構成については同一の符号を付してその詳細な説明を省略する場合がある。
 図2は、第2の実施形態の有機光電変換素子の構成を示す概略的な断面図である。
 図2に示すように、有機光電変換素子10は、第1電極32及び第2電極34からなる一対の電極、及び一対の電極間に挟持される活性層40を備えている。
 これら第1電極32、活性層40、第2電極34は基板20上に設けられている。
 この一対の電極のうち、少なくとも光が入射する側の電極、すなわち少なくとも一方の電極は、発電に必要な波長の入射光(太陽光)を透過させことができる透明又は半透明の電極とされる。
 有機光電変換素子は、第1電極32及び第2電極34からなる一対の電極と、この一対の電極間に挟持された活性層40とを備えている。第1電極32及び第2電極34の極性は素子構造に対応した任意好適な極性とすればよく、第1電極32を陰極とし、かつ第2電極34を陽極とすることもできる。
 第2の実施形態の第1電極32又は第2電極34は、アルカリ金属塩又はアルカリ土類金属塩を材料として含有する金属塩層34aと導電体を材料として含有する導電体層とが積層された電極として構成される。
 本実施形態では陰極である第2電極34を、アルカリ金属塩又はアルカリ土類金属塩を材料として含有する金属塩層34aと導電体を材料として含有する導電体層34bとが積層された電極としている。さらに金属塩層34aが活性層40と接合している。
 基板20、他方の電極、活性層40及び付加的な層の構成については、既に説明した第1の実施形態の構成と何ら変わるところがないので詳細な説明は省略する。
 導電体層34bの材料である導電体の例としては、好ましくはアルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)、錫(Sn)及び亜鉛(Zn)からなる群から選ばれる1種以上の金属が挙げられる。
 この導電体は、好ましくは直径100nm以下のナノ粒子である。また導電体は、好ましくは繊維状粒子である。さらに導電体は、好ましくはこれらナノ粒子及び繊維状粒子の混合物である。
 金属塩層34aに含まれるアルカリ金属塩は、好ましくはリチウム(Li)、ナトリウム(Na)、カリウム(K)又はセシウム(Cs)の金属塩である。
 また金属塩層34aに含まれるアルカリ土類金属塩は、好ましくはカルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)からなる群から選ばれるいずれかひとつである。
 金属塩層34aに含まれるアルカリ金属塩及びアルカリ土類金属塩はいずれもが、好ましくは塩化物、フッ化物、臭化物、酢酸塩、シュウ酸塩及び炭酸塩からなる群から選ばれるいずれかひとつである。
 アルカリ金属塩及びアルカリ土類金属塩は、好ましくは粒子直径100nm以下の塩である。
<製造方法>
 次に第2の実施形態の有機光電変換素子の製造方法について、図2を参照して説明する。なお、第1の実施形態と同様の工程については、条件等の詳細な説明を省略する場合がある。
 有機光電変換素子の製造方法は、活性層上に、アルカリ金属塩又はアルカリ土類金属塩と溶媒とを材料として含む塗工液を塗布して金属塩層を形成する工程と、金属塩層上に、導電体と溶媒とを含む導電体層を形成する工程とを含む。
 本実施形態では、金属塩層及び導電体層が積層されてなる電極が第2電極である例につき説明する。
 有機光電変換素子10の製造にあたり、まず基板20を準備する。基板20は対向する2面の主面を有する平板状の基板である。基板20を準備するにあたり、基板20の一方の主面には例えばインジウムスズ酸化物のような電極の材料となり得る導電性材料の薄膜が予め設けられている基板を準備してもよい。
 基板20に導電性材料の薄膜が設けられていない場合には、第1の実施形態で説明したように、第1電極32を形成する。
 次に、第1電極32が形成された基板10上全面に、常法に従って活性層40を形成する。活性層40は、溶媒と任意好適な活性層の材料とを混合した塗工液を塗布し、塗布形成された層を、窒素ガス雰囲気のような任意好適な雰囲気下において、材料及び溶媒に好適な条件で乾燥する、例えばスピンコート法のような塗布法により形成することができる。
 次に活性層40上に第2電極34を形成する。第2電極34は、この例では塗工液、すなわち溶液を用いる、上述の活性層40と同様の成膜方法により形成する。
 成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 これらの溶液を用いる成膜方法に用いられる溶媒は、上述した第2電極34の材料、すなわち既に説明したアルカリ金属塩又はアルカリ土類金属塩と導電体とを溶解させる溶媒であれば特に制限はない。
 このような溶媒の例としては、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、tert-ブタノール、エチレングリコール、プロピレングリコール、α-テルピネオール、エチルカルビトールアセテート、ブチルカルビトールアセテート、エチルセロソルブ、ブチルセルロソルブ等のアルコール溶媒、n-オクタン、n-デカン、n-ウンデカン、n-ドデカン、n-テトラデカン等のアルカン類等が挙げられる。
 形成された活性層40上に、まず、金属塩層34aを既に説明した塗布法により形成する。具体的には、選択されたアルカリ金属塩又はアルカリ土類金属塩と対応する任意好適な溶媒とを混合(溶解)した塗工液を活性層40上に塗布する。塗布形成された層を、窒素ガス雰囲気のような任意好適な雰囲気下において、材料及び溶媒に好適な条件で乾燥することにより金属塩層34aが形成される。
 次に形成された金属塩層34a上に、導電体層34bを既に説明した塗布法により形成する。具体的には、選択された導電体と対応する任意好適な溶媒とを混合(溶解)した塗工液を金属塩層34a上に塗布する。塗布形成された層を、窒素ガス雰囲気のような任意好適な雰囲気下において、材料及び溶媒に好適な条件で乾燥することにより導電体層34bが形成される。このようにして金属塩層34a及び導電体層34bが積層されてなる電極第2電極34が完成する。
 以上の工程を実施することにより、第2の実施形態の有機光電変換素子を製造することができる。
 上述した第1の実施形態及び第2の実施形態の有機光電変換素子の製造方法によれば、高温での加熱が不要である塗布法により電極を形成する。このため、活性層のような有機化合物を含有する機能層を劣化させるか、又は機能を喪失させることなく、極めて簡易な工程で電極(層)を形成することができる。
 またこの方法により製造される有機光電変換素子は、アルカリ金属又はアルカリ土類金属塩と導電体とを含む電極を備えるため、電極とこの電極に接合される活性層との界面の電気的な障壁が低くなるため、電気的に優れた特性を有する。
<動作>
 ここで有機光電変換素子の動作機構を簡単に説明する。透明又は半透明の電極を透過して活性層に入射した入射光のエネルギーが、電子受容性化合物及び/又は電子供与性化合物で吸収され、電子と正孔とが結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物とが接合しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子と正孔とが分離し、独立に動くことができる電荷(電子及び正孔)が発生する。発生した電荷がそれぞれ電極(陰極、陽極)に移動することにより素子外部へ電気エネルギー(電流)として取り出すことができる。
<用途>
 本発明の製造方法により製造される有機光電変換素子は、透明又は半透明の電極である第1電極及び/又は第2電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、本発明の製造方法により製造される有機光電変換素子は、第1電極及び第2電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明である電極を透過させて素子内に光を入射させることにより、光電流が流れる。よって本発明の製造方法により製造される有機光電変換素子は、有機光センサとして動作させることができる。有機光センサを複数集積することにより有機イメージセンサとして用いることもできる。
<実施例1>
 スパッタリング法により150nmの厚みでITO膜を形成したガラス基板(第1基板)を、アセトンにて洗浄した後、低圧水銀ランプを備えた紫外線オゾン照射装置(テクノビジョン社製、型式:UV-312)を用いて、15分間UVオゾン洗浄処理し、清浄な表面をもつITO電極(第1電極)を形成した。次にITO電極が設けられたガラス基板上に、スピンコート法により塗布してPEDOT(スタルク社製、商品名Baytron P AI4083、lot.HCD07O109)層(第1電荷輸送層)を形成した。その後、大気中150℃で、30分間乾燥を行った。共役高分子化合物としてポリ(3-ヘキシルチオフェン)(P3HT)(メルク社製、商品名lisicon SP001、lot.EF431002)、フラーレン誘導体としてPCBM(フロンティアカーボン社製、商品名E100、lot.7B0168-A)を、オルトジクロロベンゼン溶媒中にP3HTが1.5重量%、PCBMが1.2重量%となるよう添加し、70℃で2時間撹拌を行なった後、孔径0.2μmのフィルタにてろ過を行い、塗工液を調製した。PEDOT層上に、塗工液をスピンコート法により塗布した。その後、窒素ガス雰囲気下において、150℃で3分間加熱処理する。加熱処理後の活性層の膜厚は約100nmである。
 導電体である銀ナノ粒子分散液(バンドー化学製、型番:SL-40、分散媒:水/イソプロピルアルコール=70/30(重量比))に、炭酸セシウムを1wt%添加し、撹拌混合して炭酸セシウムを溶解させることで、電極形成用塗工液1を調製した。活性層上にスピンコート法により電極層(第2電極)を成膜した。その後、窒素ガス雰囲気下において、130℃で10分間加熱処理した。有機光電変換素子である有機薄膜太陽電池の形状は、2mm×2mmの正方形である。
 <評価>
 有機薄膜太陽電池の光電変換効率をソーラシミュレータ(山下電装社製、商品名YSS-80)を用い、AM1.5Gフィルタを通した放射照度100mW/cmの光を照射し、電流及び電圧を測定し、光電変換効率を求めた。結果として、作製された有機薄膜太陽電池による発電が確認された。
<実施例2>
 水/イソプロピルアルコール=70/30(重量比)の溶媒に、炭酸セシウムを1wt%添加し、撹拌混合して炭酸セシウムを溶解させることで、電極形成用塗工液2を調製した。実施例1と同様にして形成した活性層上に、電極形成用塗工液2を用いてスピンコート法により炭酸セシウム層を成膜した。その後窒素ガス雰囲気下において、130℃で10分間加熱処理した。次いで銀ナノ粒子分散液を用いて銀層を成膜した後、窒素ガス雰囲気下において、130℃で10分間加熱処理した。
 <評価>
 得られた有機薄膜太陽電池の光電変換効率をソーラシミュレータを用い、AM1.5Gフィルタを通した放射照度100mW/cmの光を照射し、電流及び電圧を測定し、光電変換効率を求めた。結果として、作製された有機薄膜太陽電池による発電が確認された。
 本発明は、有機光電変換素子を提供することから有用である。

Claims (12)

  1.  第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子において、
     前記一対の電極のうちのいずれか一方の電極が、アルカリ金属塩又はアルカリ土類金属塩と導電体とを含む、有機光電変換素子。
  2.  第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子において、
     前記一対の電極のうちのいずれか一方の電極が、アルカリ金属塩又はアルカリ土類金属塩を含む金属塩層と導電体を含む導電体層とが積層されて構成されており、かつ該金属塩層が前記活性層と接合している、有機光電変換素子。
  3.  導電体が、Al、Ag、Au、Cu、Sn及びZnからなる群から選ばれる1種以上の金属である、請求項1に記載の有機光電変換素子。
  4.  導電体が直径100nm以下のナノ粒子である、請求項1に記載の有機光電変換素子。
  5.  導電体が繊維状粒子である、請求項1に記載の有機光電変換素子。
  6.  前記アルカリ金属塩が、Li、Na、K又はCsの金属塩である、請求項1に記載の有機光電変換素子。
  7.  アルカリ土類金属塩が、Ca、Mg、Sr、Baからなる群から選ばれるいずれかひとつの金属の金属塩である、請求項1に記載の有機光電変換素子。
  8.  アルカリ金属塩及びアルカリ土類金属塩が、塩化物、フッ化物、臭化物、酢酸塩、シュウ酸塩及び炭酸塩からなる群から選ばれるいずれかひとつである、請求項1に記載の有機光電変換素子。
  9.  アルカリ金属塩及びアルカリ土類金属塩が、粒子直径100nm以下の塩である、請求項1に記載の有機光電変換素子。
  10.  活性層がフラーレン誘導体を含む、請求項1に記載の有機光電変換素子。
  11.  第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子の製造方法において、
     前記活性層を形成する工程と、
     前記活性層上に、アルカリ金属塩又はアルカリ土類金属塩と導電体と溶媒とを含む塗工液を塗布して、前記電極のうちのいずれか一方の電極を形成する工程と
    を含む、有機光電変換素子の製造方法。
  12.  第1電極及び第2電極からなる一対の電極、及び前記一対の電極間に挟持される活性層を備える有機光電変換素子の製造方法において、
     前記活性層上に、アルカリ金属塩又はアルカリ土類金属塩と溶媒とを含む塗工液を塗布して金属塩層を形成する工程と、
     前記金属塩層上に、導電体と溶媒とを含む導電体層を形成する工程と
    を含む、有機光電変換素子の製造方法。
PCT/JP2010/068878 2009-10-29 2010-10-25 有機光電変換素子及びその製造方法 WO2011052546A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800457727A CN102576804A (zh) 2009-10-29 2010-10-25 有机光电转换元件及其制造方法
US13/502,577 US20120211075A1 (en) 2009-10-29 2010-10-25 Organic photovoltaic cell and method for manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249515 2009-10-29
JP2009-249515 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052546A1 true WO2011052546A1 (ja) 2011-05-05

Family

ID=43921969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068878 WO2011052546A1 (ja) 2009-10-29 2010-10-25 有機光電変換素子及びその製造方法

Country Status (4)

Country Link
US (1) US20120211075A1 (ja)
JP (1) JP2011119679A (ja)
CN (1) CN102576804A (ja)
WO (1) WO2011052546A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249648A1 (ja) 2021-05-24 2022-12-01 パナソニックホールディングス株式会社 組成物およびそれを用いた電子デバイスの製造方法
WO2022249647A1 (ja) 2021-05-24 2022-12-01 パナソニックホールディングス株式会社 電子デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560147B2 (ja) 2010-09-13 2014-07-23 東京エレクトロン株式会社 成膜方法及び半導体装置の製造方法
CN103460426A (zh) * 2011-03-29 2013-12-18 住友化学株式会社 有机光电转换元件的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514729A (ja) * 2001-12-20 2005-05-19 アド−ビジョン・インコーポレイテッド 有機発光デバイスのためのスクリーン印刷可能な電極
JP2005277340A (ja) * 2004-03-26 2005-10-06 Idemitsu Kosan Co Ltd 有機デバイスの電極の製造方法
JP2009060053A (ja) * 2007-09-03 2009-03-19 Fujifilm Corp 光電変換素子
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246896A1 (en) * 2007-07-19 2009-10-01 Melissa Kreger Method and apparatus for improved printed cathodes for organic electronic devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514729A (ja) * 2001-12-20 2005-05-19 アド−ビジョン・インコーポレイテッド 有機発光デバイスのためのスクリーン印刷可能な電極
JP2005277340A (ja) * 2004-03-26 2005-10-06 Idemitsu Kosan Co Ltd 有機デバイスの電極の製造方法
JP2009060053A (ja) * 2007-09-03 2009-03-19 Fujifilm Corp 光電変換素子
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249648A1 (ja) 2021-05-24 2022-12-01 パナソニックホールディングス株式会社 組成物およびそれを用いた電子デバイスの製造方法
WO2022249647A1 (ja) 2021-05-24 2022-12-01 パナソニックホールディングス株式会社 電子デバイス

Also Published As

Publication number Publication date
US20120211075A1 (en) 2012-08-23
JP2011119679A (ja) 2011-06-16
CN102576804A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2011052570A1 (ja) 有機光電変換素子及びその製造方法
JP5680286B2 (ja) 光電変換素子
WO2012132828A1 (ja) 有機光電変換素子の製造方法
WO2011052582A1 (ja) 有機薄膜太陽電池モジュールの製造方法
JP5991799B2 (ja) ホールブロック層の製造方法、およびそのホールブロック層を備える光電変換素子の製造方法
KR101422454B1 (ko) 유기 광전 반도체 장치 및 그 제조방법
EP3552253B1 (en) Photoelectric conversion element
JP2010041022A (ja) 光電変換素子
WO2011052568A1 (ja) 有機光電変換素子
WO2011052510A1 (ja) 有機薄膜太陽電池及びその製造方法
US20120211741A1 (en) Organic photovoltaic cell
WO2011052546A1 (ja) 有機光電変換素子及びその製造方法
WO2011052509A1 (ja) 有機光電変換素子の製造方法
WO2010024157A1 (ja) 有機光電変換素子およびその製造方法
WO2011052583A1 (ja) 有機光電変換素子
JP5715796B2 (ja) 有機光電変換素子の製造方法
WO2011052580A1 (ja) 有機光電変換素子及びその製造方法
WO2011052567A1 (ja) 有機光電変換素子
JP2015099810A (ja) 有機光電変換素子の製造方法
JP6032284B2 (ja) 有機光電変換素子の製造方法
US20110037066A1 (en) Organic photoelectric conversion element and manufacturing method thereof
JP6743812B2 (ja) 有機光電変換素子
WO2013141328A1 (ja) 有機無機ハイブリッド光電変換素子
Hu et al. Organic Optoelectronic Devices Containing Water/Alcohol-Soluble Conjugated Polymers and Conjugated Polyelectrolytes
Meng Interface Engineering and Morphology Study of Thin Film Organic-Inorganic Halide Perovskite Optoelectronic Devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045772.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13502577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826678

Country of ref document: EP

Kind code of ref document: A1