[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011040312A1 - 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 - Google Patents

変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 Download PDF

Info

Publication number
WO2011040312A1
WO2011040312A1 PCT/JP2010/066431 JP2010066431W WO2011040312A1 WO 2011040312 A1 WO2011040312 A1 WO 2011040312A1 JP 2010066431 W JP2010066431 W JP 2010066431W WO 2011040312 A1 WO2011040312 A1 WO 2011040312A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
diene polymer
modified conjugated
compound
mass
Prior art date
Application number
PCT/JP2010/066431
Other languages
English (en)
French (fr)
Inventor
吉田 淳一
関川 新一
孝昭 松田
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN2010800393621A priority Critical patent/CN102482359B/zh
Priority to BR112012006333-2A priority patent/BR112012006333B1/pt
Priority to EP10820431.4A priority patent/EP2484701B1/en
Priority to US13/497,575 priority patent/US8816014B2/en
Priority to JP2011534212A priority patent/JP5705120B2/ja
Priority to KR1020127007377A priority patent/KR101413791B1/ko
Publication of WO2011040312A1 publication Critical patent/WO2011040312A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a method for producing a modified conjugated diene polymer, a modified conjugated diene polymer, and a modified conjugated diene polymer composition.
  • silica Conventionally, carbon black, silica, and the like have been used as reinforcing fillers for tire treads.
  • Use of silica has an advantage that low hysteresis loss and wet skid resistance can be improved.
  • silica with a hydrophilic surface has a low affinity with conjugated diene rubbers and has a disadvantage of poor dispersibility compared with carbon black, with respect to carbon black with a hydrophobic surface.
  • Patent Document 1 discloses a modified diene rubber obtained by reacting a polymer terminus with a modifier having a glycidylamino group
  • Patent Document 2 discloses glycidoxyalkoxysilane as a polymer terminal.
  • Patent Documents 3 to 7 disclose a modified diene rubber obtained by reacting an alkoxysilane containing an amino group with a polymer terminal, and a composition of these with silica.
  • the present invention has been made in view of the above circumstances, has a good balance between low hysteresis loss and wet skid resistance when vulcanized, has practically sufficient wear resistance and fracture strength, Another object is to provide a method for producing a modified conjugated diene polymer, a modified conjugated diene polymer, and a modified conjugated diene polymer composition, which are excellent in processability.
  • the present inventors have used an alkali metal compound or an alkaline earth metal compound as a polymerization initiator, and a conjugated diene compound, or a conjugated diene compound and an aromatic vinyl compound.
  • a modified conjugate having a step of obtaining a conjugated diene polymer having an active end by polymerization or copolymerization, and a step of reacting a compound having a specific structure with the active end of the conjugated diene polymer.
  • the present inventors have found that the above-described problems can be solved by using a method for producing a diene polymer, and have completed the present invention.
  • the present invention is as follows. [1] By using an alkali metal compound or an alkaline earth metal compound as a polymerization initiator and polymerizing or copolymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound, a conjugated diene polymer having an active terminal is obtained. A polymerization step to obtain; Two or more silyl groups having one or more heterocyclic structures composed of two or more nitrogen atoms and hydrocarbons and having two or more alkoxy groups bonded to the active terminal of the conjugated diene polymer. A denaturing step of reacting a denaturing agent which is a compound having, A process for producing a modified conjugated diene-based polymer.
  • a method for producing a diene polymer [7] A modified conjugated diene polymer obtained by the method for producing a modified conjugated diene polymer according to any one of [1] to [6]. [8] 100 parts by mass of a rubber component containing 20 parts by mass or more of the modified conjugated diene polymer according to [7], 0.5 to 300 parts by mass of a silica-based inorganic filler, A modified conjugated diene polymer composition comprising:
  • modified conjugated diene polymer production method modified conjugated diene polymer, and modified conjugated diene polymer composition can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the method for producing the modified conjugated diene polymer of the present embodiment is as follows: By using an alkali metal compound or an alkaline earth metal compound as a polymerization initiator and polymerizing or copolymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound, a conjugated diene polymer having an active terminal is obtained. A polymerization step to obtain; Compound having two or more silyl groups having two or more heterocycles composed of two or more nitrogen atoms and hydrocarbons and two or more alkoxy groups bonded to the active terminal of the conjugated diene polymer A denaturing step of reacting a denaturing agent, Have
  • an alkali metal compound or an alkaline earth metal compound is used as a polymerization initiator, and the conjugated diene compound, or the conjugated diene compound and the aromatic vinyl compound are polymerized or co-polymerized.
  • a conjugated diene polymer having an active terminal is obtained.
  • the conjugated diene polymer constituting the modified conjugated diene polymer is a polymer of a single conjugated diene compound, a polymer or copolymer of different types of conjugated diene compounds, or a conjugated diene compound and an aromatic vinyl compound. It is a copolymer.
  • the conjugated diene compound is not particularly limited as long as it is a polymerizable monomer.
  • 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene examples include 3-methyl-1,3-pentadiene, 1,3-heptadiene, 1,3-hexadiene, and the like.
  • 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
  • the aromatic vinyl compound is not particularly limited as long as it is a monomer copolymerizable with a conjugated diene compound.
  • a conjugated diene compound for example, styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene And diphenylethylene.
  • styrene is preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
  • the conjugated diene polymer When the conjugated diene polymer is a copolymer, it may be a random copolymer or a block copolymer.
  • the random copolymer include a butadiene-isoprene random copolymer, a butadiene-styrene random copolymer, an isoprene-styrene random copolymer, and a butadiene-isoprene-styrene random copolymer.
  • the composition distribution of each monomer in the copolymer chain include a completely random copolymer having a statistically random composition, or a tapered random copolymer having a tapered composition distribution.
  • the bonding mode of the conjugated diene that is, the composition of 1,4-bonds, 1,2-bonds, etc. may be uniform or distributed.
  • Examples of the block copolymer include a 2 type block copolymer comprising 2 blocks, a 3 type block copolymer comprising 3 blocks, and a 4 type block copolymer comprising 4 blocks.
  • a block composed of an aromatic vinyl compound such as styrene is represented by S
  • S an aromatic vinyl compound
  • B a conjugated diene compound
  • B a block composed of a copolymer of an aromatic vinyl compound and a conjugated diene compound
  • the boundaries of each block need not be clearly distinguished.
  • the block B is a copolymer of an aromatic vinyl compound and a conjugated diene compound
  • the aromatic vinyl compound in the block B may be distributed uniformly or in a tapered shape.
  • a plurality of portions where the aromatic vinyl compound is uniformly distributed and / or a plurality of portions where the aromatic vinyl compound is distributed in a tapered shape may coexist.
  • a plurality of segments having different aromatic vinyl compound contents may coexist.
  • the structures such as molecular weight and composition thereof may be the same or different.
  • the conjugated diene polymer having a functional group can be further hydrogenated in an inert solvent to convert all or part of the double bonds to saturated hydrocarbons.
  • heat resistance and weather resistance are improved, and deterioration of the product when processed at a high temperature can be prevented. As a result, it exhibits even better performance in various applications such as automotive applications.
  • the hydrogenation rate (ie, “hydrogenation rate”) of the unsaturated double bond based on the conjugated diene compound can be arbitrarily selected according to the purpose and is not particularly limited. When used as a vulcanized rubber, it is preferable that the double bond of the conjugated diene part partially remains. From this point of view, the hydrogenation rate of the conjugated diene part in the polymer is preferably 3 to 70%, more preferably 5 to 65%, and still more preferably 10 to 60%.
  • the hydrogenation rate of the aromatic double bond based on the aromatic vinyl compound in the copolymer of the conjugated diene compound and the aromatic vinyl compound is not particularly limited, but is preferably 50% or less, 30 % Or less is more preferable, and 20% or less is further preferable.
  • the hydrogenation rate can be measured by a nuclear magnetic resonance apparatus (NMR).
  • the hydrogenation method is not particularly limited, and a known method can be used.
  • a method of hydrogenation by blowing gaseous hydrogen into a polymer solution in the presence of a catalyst may be mentioned.
  • Catalysts include heterogeneous catalysts such as catalysts in which noble metals are supported on porous inorganic materials; catalysts in which salts such as nickel and cobalt are solubilized and reacted with organoaluminum, etc., catalysts using metallocenes such as titanocene, etc. And homogeneous catalysts.
  • a titanocene catalyst is preferable from the viewpoint of selecting mild hydrogenation conditions.
  • the hydrogenation of the aromatic group is possible by using a noble metal supported catalyst.
  • the hydrogenation catalyst examples include (1) a supported heterogeneous hydrogenation catalyst in which a metal such as Ni, Pt, Pd, or Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like.
  • a metal such as Ni, Pt, Pd, or Ru
  • Ni Ni, A so-called Ziegler type hydrogenation catalyst using a transition metal salt such as an organic acid salt such as Co, Fe or Cr or an acetylacetone salt and a reducing agent such as organic aluminum
  • an organic metal such as Ti, Ru, Rh or Zr Examples include so-called organometallic complexes such as compounds.
  • a hydrogenation catalyst JP-B-42-8704, JP-B-43-6636, JP-B-63-4841, JP-B-1-37970, JP-B-1-53851, JP-B-2-
  • the hydrogenation catalyst described in Japanese Patent Application Laid-Open No. 9041 and Japanese Patent Application Laid-Open No. 8-109219 can be used.
  • a preferred hydrogenation catalyst is a reaction mixture of a titanocene compound and a reducing organometallic compound.
  • the alkali metal compound used as the polymerization initiator is not particularly limited, but an organic lithium compound is preferable.
  • organolithium compounds include low molecular weight compounds, solubilized oligomeric organolithium compounds, compounds composed of carbon-lithium bonds, compounds composed of nitrogen-lithium bonds, and compounds composed of tin-lithium bonds. Etc.
  • the organic lithium compound include n-butyl lithium, sec-butyl lithium, tert-butyl lithium, n-hexyl lithium, benzyl lithium, phenyl lithium, stilbene lithium, and the like.
  • Examples of the compound comprising a nitrogen-lithium bond include lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium di-n-hexylamide, lithium diisopropylamide, lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, and lithium heptamethylene. Examples thereof include imide and lithium morpholide.
  • polymerization can also be carried out using a polyfunctional organolithium compound in combination.
  • the polyfunctional organolithium compound include 1,4-dilithiobutane, a reaction product of sec-butyllithium and diisopropenylbenzene, 1,3,5-trilithiobenzene, n-butyllithium and 1,3-butadiene, and the like.
  • examples include a reaction product of divinylbenzene, a reaction product of n-butyllithium and a polyacetylene compound.
  • organic alkali metal compounds disclosed in US Pat. No. 5,708,092, British Patent 2,241,239, US Pat. No. 5,527,753, etc. are also used. be able to.
  • n-butyllithium and sec-butyllithium are preferable from the viewpoints of industrial availability and ease of control of the polymerization reaction.
  • organic lithium compounds may be used as a mixture of not only one type but also two or more types.
  • organic alkali metal compounds examples include organic sodium compounds, organic potassium compounds, organic rubidium compounds, and organic cesium compounds. Specific examples include sodium naphthalene and potassium naphthalene.
  • alkoxides such as lithium, sodium, and potassium, sulfonates, carbonates, amides, and the like can be given. Moreover, you may use together with another organometallic compound.
  • alkaline earth metal compounds examples include organic magnesium compounds, organic calcium compounds, and organic strontium compounds. Specific examples include dibutyl magnesium, ethyl butyl magnesium, propyl butyl magnesium, and the like. Further, alkaline earth metal alkoxides, sulfonates, carbonates, amides and other compounds may be used. These organic alkaline earth metal compounds may be used in combination with alkali metal compounds or other organic metal compounds.
  • the conjugated diene polymer is preferably obtained by growing by an anionic polymerization reaction using the above-described alkali metal compound and / or alkaline earth metal compound as a polymerization initiator.
  • the conjugated diene polymer is more preferably a polymer having an active end obtained by a growth reaction by living anion polymerization.
  • a modified conjugated diene polymer having a high modification rate can be obtained.
  • it does not specifically limit as a polymerization mode, It can carry out by superposition
  • a continuous polymerization process is preferable because a relatively high molecular weight polymer can be stably produced.
  • the conjugated diene compound contains allenes, acetylenes or the like as impurities, the denaturation reaction described later may be inhibited. Therefore, the total content concentration (mass) of these impurities is preferably 200 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less.
  • allenes include propadiene and 1,2-butadiene.
  • acetylenes include ethyl acetylene and vinyl acetylene.
  • the polymerization reaction of the conjugated diene polymer is preferably performed in a solvent.
  • the solvent include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons. Specifically, aliphatic hydrocarbons such as butane, pentane, hexane and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; Examples thereof include hydrocarbons composed of a mixture thereof.
  • a conjugated diene polymer for the purpose of randomly copolymerizing an aromatic vinyl compound with a conjugated diene compound, as a vinylating agent for controlling the microstructure of the conjugated diene part, or improving the polymerization rate, etc.
  • a small amount of a polar compound may be added.
  • polar compounds include ethers such as tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, and 2,2-bis (2-oxolanyl) propane; tetramethylethylenediamine Tertiary amine compounds such as dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; alkali metal alkoxide compounds such as potassium tert-amylate, potassium tert-butylate, sodium tert-butylate, sodium amylate; A phosphine compound such as triphenylphosphine can be used. These polar compounds may be used alone or in combination of two or more.
  • the amount of the polar compound used is not particularly limited and is selected according to the purpose and the degree of effect. Usually, the amount is preferably 0.01 to 100 mol with respect to 1 mol of the polymerization initiator.
  • An appropriate amount of such a polar compound (vinylating agent) can be used as a regulator of the microstructure of the polymer conjugated diene moiety depending on the desired vinyl bond amount.
  • Many polar compounds simultaneously have an effective randomizing effect in the copolymerization of a conjugated diene compound and an aromatic vinyl compound, and can be used as an adjustment of the distribution of the aromatic vinyl compound and an adjuster of the styrene block amount.
  • a method for randomizing a conjugated diene compound and an aromatic vinyl compound a part of 1,3-butadiene is intermittently produced during copolymerization as described in JP-A-59-140221. You may use the method of adding.
  • the polymerization temperature is not particularly limited as long as the polymerization reaction such as living anion polymerization proceeds. From the viewpoint of productivity, the polymerization temperature is preferably 0 ° C. or more, and the reaction amount of the modifier with respect to the active terminal after the polymerization is completed. From the viewpoint of sufficiently ensuring the temperature, it is preferably 120 ° C. or lower.
  • a polyfunctional aromatic vinyl compound such as divinylbenzene for controlling branching may be used.
  • the amount of the conjugated diene in the conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 50 to 100% by mass, and more preferably 60 to 80% by mass. Further, the amount of bonded aromatic vinyl in the conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 0 to 50% by mass, and more preferably 20 to 40% by mass. When the amount of bound conjugated diene and amount of bound aromatic vinyl are within the above ranges, a vulcanizate that is further excellent in the balance between low hysteresis loss and wet skid resistance, and that also satisfies wear resistance and fracture strength can be obtained.
  • the amount of bonded aromatic vinyl can be measured by ultraviolet absorption of a phenyl group, and the amount of bonded conjugated diene can also be obtained from this. Specifically, it can measure by the method according to the Example mentioned later.
  • the vinyl bond amount in the conjugated diene bond unit is not particularly limited, but is preferably 10 to 75 mol%, more preferably 25 to 65 mol%.
  • a vulcanizate having a further excellent balance between low hysteresis loss and wet skid resistance and satisfying wear resistance and fracture strength can be obtained.
  • the modified conjugated diene polymer is a copolymer of butadiene and styrene, it is determined by the method of Hampton (RR Hampton, Analytical Chemistry, 21, 923 (1949)) in the butadiene bond unit.
  • the vinyl bond amount (1,2-bond amount) can be determined.
  • the microstructure (the amount of each bond in the modified conjugated diene polymer) is in the above range and the glass transition temperature of the copolymer is in the range of ⁇ 45 to ⁇ 15 ° C.
  • low hysteresis loss and wet It is possible to obtain a vulcanizate having an even better balance of skid resistance.
  • the conjugated diene polymer of the present embodiment is a conjugated diene-aromatic vinyl copolymer
  • the number of blocks in which 30 or more aromatic vinyl units are linked is small or absent.
  • the copolymer is a butadiene-styrene copolymer
  • the method described in Kolthoff method described in IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946)
  • a block in which 30 or more aromatic vinyl units are chained is preferably 5% by mass or less, more preferably based on the amount of polymer. 3% by mass or less.
  • the active end has one or more heterocycles composed of two or more nitrogen atoms and hydrocarbons
  • two or more The modified conjugated diene polymer of the present embodiment can be obtained by performing a modification step of reacting a modifying agent that is a compound having two or more silyl groups to which the alkoxy group is bonded.
  • a modifying agent that is a compound having two or more silyl groups to which the alkoxy group is bonded.
  • the above-mentioned compound used as a modifier is preferably a silyl group in which all three silyl groups are bonded to three alkoxy groups.
  • a modifier that is a compound represented by the following formula (1) is preferable. Since the alkoxysilyl group of the following formula (1) efficiently reacts with the active end of the conjugated diene polymer, a bond between the conjugated diene polymer end and Si can be formed more efficiently.
  • R 1 to R 4 each independently represents an alkyl group having 1 to 20 carbon atoms or an aryl group
  • R 5 and R 6 each independently represent 1 to 20 represents an alkylene group
  • R 7 and R 8 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, and together with two adjacent Ns, form a ring structure of five or more members
  • m And n each independently represents an integer of 2 or 3.
  • Examples of the modifier represented by the above formula (1) include 1,4-bis [3- (trimethoxysilyl) propyl] piperazine, 1,4-bis [3- (triethoxysilyl) propyl] piperazine, 1,4-bis [3- (dimethoxymethylsilyl) propyl] piperazine, 1,3-bis [3- (trimethoxysilyl) propyl] imidazolidine, 1,3-bis [3- (triethoxysilyl) propyl] Imidazolidine, 1,3-bis [3- (diemethoxyethylsilyl) propyl] imidazolidine, 1,3-bis [3- (trimethoxysilyl) propyl] hexahydropyrimidine, 1,3-bis [3- ( Triethoxysilyl) propyl] hexahydropyrimidine, 1,3-bis [3- (tributoxysilyl) propyl] -1,2,3,4-te
  • m and n are 3 from the viewpoint of the reactivity of the modifier, the interaction with other compounds such as inorganic fillers such as silica, and the processability of the resulting modified conjugated diene polymer.
  • the above-described modifier may contain other compounds such as impurities such as an intermediate during the synthesis of the modifier and the condensate of the modifier as long as the modification reaction does not have a significant adverse effect.
  • other conventionally known modifiers may be used in combination as long as the effects of the present embodiment can be obtained.
  • reaction temperature, reaction time, and the like when the above modifier is reacted with the polymerization active terminal are not particularly limited, but it is preferable to react at 0 to 120 ° C. for 30 seconds or longer.
  • the total number of alkoxy groups bonded to the silyl group in the compound is preferably in the range of 0.8 to 3 times the number of added moles of the polymerization initiator.
  • a range that is doubled is more preferable, and a range that is 1 to 2 times is more preferable.
  • From the viewpoint of obtaining a sufficient modification rate of the resulting modified conjugated diene polymer it is preferably 0.8 times or more, and preferably 3 times or less from the viewpoint of modifier cost. Further, from the viewpoint of improving processability, it is preferable to couple the polymer ends to obtain a branched polymer component.
  • the polymer having a functional group component is preferably 5% by mass or more, more preferably 20%. It is preferable to produce a modified conjugated diene-based polymer so as to obtain a polymer containing at least 50% by mass, more preferably at least 50% by mass.
  • a method for quantifying a polymer having a functional group component it can be measured by chromatography capable of separating a functional group-containing modified component and a non-modified component.
  • the number average molecular weight (Mn) in terms of polystyrene obtained by gel permeation chromatography (GPC) of the modified conjugated diene polymer of the present embodiment is preferably 20,000 to 2,000,000, more preferably 100,000. 000 to 1,000,000, more preferably 200,000 to 600,000, and even more preferably 300,000 to 400,000.
  • GPC gel permeation chromatography
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.05 to 3.0, more preferably 1.1 to 3.0, from the viewpoint of physical properties of the vulcanizate. 2.5.
  • a deactivator, a neutralizing agent, and the like may be added to the copolymer solution after the modification reaction, if necessary.
  • the quenching agent include water; alcohols such as methanol, ethanol, and isopropanol.
  • the neutralizing agent include carboxylic acids such as stearic acid, oleic acid, and versatic acid; aqueous solutions of inorganic acids, carbon dioxide gas, and the like.
  • the modified conjugated diene polymer of the present embodiment is preferably added with a rubber stabilizer from the viewpoint of preventing gel formation in the finishing step after polymerization and improving the stability during processing.
  • the stabilizer for rubber is not particularly limited, and known ones can be used, but 2,6-di-tert-butyl-4-hydroxytoluene (BHT), n-octadecyl-3- (4′-hydroxy) -3 ′, 5′-di-tert-butylphenol) propionate, 2-methyl-4,6-bis [(octylthio) methyl] phenol and the like are preferable.
  • an extending oil can be added to the modified conjugated diene polymer as necessary.
  • the method of adding the extending oil to the modified conjugated diene polymer is not particularly limited, but a method of adding the extending oil to the polymer solution and mixing to remove the solvent from the oil-extended copolymer solution is preferable.
  • the extending oil include aroma oil, naphthenic oil, paraffin oil, and the like. Among these, from the viewpoint of environmental safety, oil bleed prevention and wet grip characteristics, an aromatic substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less by the IP346 method is preferable.
  • the aroma substitute oil examples include TDAE and MES shown in Kautschuk Kunststoff 52 (12) 799 (1999), and RAE.
  • the amount of the extender oil added is not particularly limited, but is usually 10 to 60 parts by weight, preferably 20 to 37.5 parts by weight, based on 100 parts by weight of the modified conjugated diene polymer.
  • a known method can be used. For example, after separating the solvent by steam stripping or the like, the polymer is separated by filtration, further dehydrated and dried to obtain the polymer, concentrated in a flushing tank, and further devolatilized by a vent extruder or the like. The method, the method of devolatilizing directly with a drum dryer etc. are mentioned.
  • the modified conjugated diene polymer of the present embodiment is suitably used as a vulcanizate.
  • the vulcanized product may be, for example, a modified conjugated diene polymer of the present embodiment, if necessary, an inorganic filler such as silica-based inorganic filler or carbon black, and a modified conjugated diene polymer of the present embodiment.
  • a rubber-like polymer, a silane coupling agent, a rubber softener, a vulcanizing agent, a vulcanization accelerator / auxiliary, etc. are mixed to obtain a modified conjugated diene polymer composition, which is then heated to vulcanize. Can be obtained.
  • a modified conjugated diene polymer composition containing a rubber component containing the modified conjugated diene polymer of the present embodiment and a silica inorganic filler is preferable. Dispersing the silica-based inorganic filler in the modified conjugated diene polymer of the present embodiment provides an excellent balance between low hysteresis loss and wet skid resistance when used as a vulcanizate, and is practically sufficient It has excellent wear resistance and breaking strength, and can provide excellent workability.
  • the modified conjugated diene polymer composition of the present embodiment also includes a silica-based inorganic filler as a reinforcing filler even when used for vulcanized rubber applications such as tires, automobile parts such as vibration-proof rubber, and shoes. It is preferable.
  • a rubbery polymer other than the modified conjugated diene polymer of this embodiment can be used in combination with the modified conjugated diene polymer of this embodiment.
  • a rubbery polymer include a conjugated diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and a vinyl aromatic compound, or a hydrogenated product thereof, a conjugated diene compound and a vinyl.
  • examples thereof include a block copolymer with an aromatic compound or a hydrogenated product thereof, a non-diene polymer, and natural rubber.
  • butadiene rubber or hydrogenated product thereof isoprene rubber or hydrogenated product thereof, styrene-butadiene rubber or hydrogenated product thereof, styrene-butadiene block copolymer or hydrogenated product thereof, styrene-isoprene block copolymerized
  • examples thereof include styrene-based elastomers such as coalescence or hydrogenated products thereof, acrylonitrile-butadiene rubber or hydrogenated products thereof.
  • Non-diene polymers include ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, ethylene-octene rubber and other olefinic elastomers, butyl rubber, brominated butyl rubber, acrylic rubber Fluorine rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylate ester-conjugated diene copolymer rubber, urethane rubber, polysulfide rubber and the like.
  • the various rubber-like polymers described above may be modified rubbers having a functional group having a polarity such as a hydroxyl group or an amino group.
  • the weight average molecular weight is preferably 2,000 to 2,000,000, more preferably 5,000 to 1,500,000, from the viewpoint of the balance between performance and processing characteristics.
  • so-called liquid rubber having a low molecular weight can be used.
  • These rubber-like polymers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the blending ratio (mass ratio) thereof is the modified conjugated diene polymer.
  • the rubbery polymer is preferably 20/80 to 100/0, more preferably 30/70 to 90/10, and still more preferably 50/50 to 80/20.
  • the blending ratio of the modified conjugated diene polymer / rubber-like polymer is within the above range, the vulcanizate has an even better balance between low hysteresis loss and wet skid resistance, and more satisfactory wear resistance and fracture strength. Can be obtained.
  • the silica-based inorganic filler is not particularly limited, but may be a known, SiO 2, or Si 3 solid particles preferably contains Al as a constituent unit, SiO 2, or Si 3 Al constituent units It is more preferable to use as a main component.
  • Specific examples of the silica-based inorganic filler include inorganic fibrous materials such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber.
  • a silica-based inorganic filler having a hydrophobic surface or a mixture of a silica-based inorganic filler and a non-silica inorganic filler can also be used.
  • silica and glass fiber are preferable from the viewpoint of reinforcing properties, and silica is more preferable.
  • examples of silica include dry silica, wet silica, and synthetic silicate silica.
  • wet silica is preferable from the viewpoint of an excellent balance between the effect of improving fracture characteristics and wet skid resistance.
  • the nitrogen adsorption specific surface area determined by the BET adsorption method of silica-based inorganic filler is 100 to 300 m 2 / g. It is preferable to be 170 to 250 m 2 / g.
  • the specific surface area is relatively small (for example, a silica-based inorganic filler having a specific surface area of less than 200 m 2 / g) and the specific surface area is relatively large (for example, a silica-based inorganic having a specific surface area of 200 m 2 / g or more).
  • a filler can be used in combination. Thereby, it is possible to highly balance good wear resistance and fracture characteristics with low hysteresis loss.
  • the compounding amount of the silica-based inorganic filler in the modified conjugated diene polymer composition is set to 0.000 parts by mass with respect to 100 parts by mass of the rubber component containing 20 parts by mass or more of the modified conjugated diene polymer of the present embodiment.
  • the amount is preferably 5 to 300 parts by mass, more preferably 5 to 200 parts by mass, and still more preferably 20 to 100 parts by mass.
  • the compounding amount of the silica-based inorganic filler is preferably 0.5 parts by mass or more from the viewpoint of manifesting the effect of adding the inorganic filler.
  • the inorganic filler is sufficiently dispersed to process the composition. And from the viewpoint of making the mechanical strength practically sufficient, it is preferably 300 parts by mass or less.
  • Carbon black may be contained in the modified conjugated diene polymer composition.
  • the carbon black is not particularly limited, and for example, carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF can be used. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or more is preferable.
  • DBP dibutyl phthalate
  • the blending amount of carbon black is preferably 0.5 to 100 parts by weight, more preferably 3 to 100 parts by weight, with respect to 100 parts by weight of the rubber component containing the modified conjugated diene polymer of the present embodiment. Part is more preferable.
  • the blending amount of the carbon black is preferably 0.5 parts by mass or more from the viewpoint of expressing performances required for tires such as dry grip performance and conductivity, and 100 parts by mass from the viewpoint of dispersibility. The following is preferable.
  • the modified conjugated diene polymer composition may contain a metal oxide or a metal hydroxide in addition to the silica-based inorganic filler and carbon black.
  • the metal oxide refers to solid particles whose main component is a chemical unit M x O y (M represents a metal atom, x and y each represents an integer of 1 to 6), for example, Alumina, titanium oxide, magnesium oxide, zinc oxide, or the like can be used. A mixture of a metal oxide and an inorganic filler other than the metal oxide can also be used.
  • the metal hydroxide is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
  • the modified conjugated diene polymer composition may contain a silane coupling agent.
  • the silane coupling agent has a function to close the interaction between the rubber component and the silica-based inorganic filler, and has an affinity or binding group for each of the rubber component and the silica-based inorganic filler.
  • a compound having a sulfur bond portion, an alkoxysilyl group, and a silanol group portion in one molecule is used.
  • the blending amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, and more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the silica-based inorganic filler described above. Further preferred. When the blending amount of the silane coupling agent is within the above range, the addition effect of the silane coupling agent can be made more remarkable.
  • the modified conjugated diene polymer composition may contain a rubber softener in order to improve processability.
  • a rubber softener mineral oil or a liquid or low molecular weight synthetic softener is suitable.
  • the mineral oil rubber softener called process oil or extender oil used for softening, increasing volume and improving processability of rubber is a mixture of aromatic ring, naphthene ring and paraffin chain. Paraffin chains with 50% or more carbon atoms in the total carbon are called paraffinic, naphthenic ring with 30 to 45% carbon atoms is naphthenic, and aromatic carbon with more than 30% aromatics is aromatic. It is called a system.
  • the rubber softener used together with the modified conjugated diene-aromatic vinyl copolymer of the present embodiment those having an appropriate aromatic content are preferred because they tend to be familiar with the copolymer.
  • the blending amount of the rubber softener is preferably 0 to 100 parts by weight, more preferably 10 to 90 parts by weight, more preferably 30 to 30 parts by weight with respect to 100 parts by weight of the rubber component containing the modified conjugated diene polymer of the present embodiment. 90 parts by mass is more preferable. By setting the blending amount of the rubber softener to 100 parts by mass or less with respect to 100 parts by mass of the rubber component, bleeding out and stickiness on the composition surface can be suppressed.
  • the method of mixing the modified conjugated diene polymer of this embodiment and other rubbery polymers, silica-based inorganic fillers, carbon black and other fillers, silane coupling agents, rubber softeners and the like Is not particularly limited.
  • a melt kneading method using a general blender such as an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a multi-screw extruder, etc.
  • the method of removing by heating, etc. are mentioned.
  • melt kneading method using a roll, a Banbury mixer, a kneader, or an extruder is preferred from the viewpoint of productivity and good kneading properties.
  • any of a method of kneading the modified conjugated diene polymer and various compounding agents at a time and a method of mixing in multiple times can be applied.
  • the modified conjugated diene polymer composition may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
  • a vulcanizing agent for example, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur and sulfur compounds can be used.
  • Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
  • the amount of the vulcanizing agent used is usually 0.01 to 20 parts by mass, preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment.
  • the vulcanization method conventionally known methods can be applied, and the vulcanization temperature is usually 120 to 200 ° C., preferably 140 to 180 ° C.
  • a vulcanization accelerator may be used as necessary.
  • the vulcanization accelerator conventionally known materials can be used. For example, sulfenamide, guanidine, thiuram, aldehyde-amine, aldehyde-ammonia, thiazole, thiourea, dithiocarbamate And the like.
  • the vulcanization aid zinc white, stearic acid or the like can be used.
  • the amount of the vulcanization accelerator used is usually 0.01 to 20 parts by mass, and 0.1 to 15 parts by mass with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment. preferable.
  • the modified conjugated diene-based polymer composition includes other softeners and fillers other than those described above, as well as heat stabilizers, antistatic agents, weathering stabilizers, and aging, as long as the purpose of the present embodiment is not impaired.
  • Various additives such as an inhibitor, a colorant, and a lubricant may be used.
  • known softeners can be used.
  • Specific examples of other fillers include calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
  • Known materials can be used as the above heat stabilizer, antistatic agent, weathering stabilizer, anti-aging agent, colorant, and lubricant.
  • Amount of bound styrene A sample was used as a chloroform solution, and the amount of bound styrene (% by mass) was measured by UV 254 nm absorption by the phenyl group of styrene (manufactured by Shimadzu Corporation: UV-2450).
  • guard column Tosoh TSKguardcolumn HHR-H
  • column Tosoh TSKgel G6000HHR, TSKgel G5000HHR, TSKgel G4000HHR were used.
  • the molecular weight was measured using an RI detector of HLC8020 manufactured by Tosoh under conditions of an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. A sample of 10 mg was dissolved in 20 mL of THF, and 200 ⁇ L of this solution was injected into the apparatus for measurement.
  • Glass transition temperature (Tg) In accordance with ISO 22768: 2006, a DSC curve was recorded using a DSC3200S manufactured by Mac Science Co. under a flow of helium at 50 mL / min while increasing the temperature from ⁇ 100 ° C. to 20 ° C./min. The peak top of the DSC differential curve was the glass transition temperature.
  • Example 1 Two autoclaves with an internal volume of 10L, an internal height-to-diameter ratio (L / D) of 4, an inlet at the bottom, an outlet at the top, and a stirrer and a temperature adjustment jacket are connected in series.
  • the first group was a polymerization reactor and the second group was a denaturing reactor.
  • n-butyllithium treated n-butyllithium
  • 2,2-bis (2-oxolanyl) propane as a polymerization initiator at a rate of 0.020 g / min
  • n-butyllithium as a polymerization initiator at a rate of 0.150 mmol / min to the bottom of the first reactor
  • the temperature of the second reactor was kept at 85 ° C., and 1,4-bis [3- (trimethoxysilyl) propyl] piperazine as a modifier was added from the bottom of the second reactor at a rate of 0.0375 mmol / min. And the modification (coupling) reaction was carried out.
  • Antioxidant (BHT) was continuously added to the polymer solution flowing out from the top of the second reactor at a rate of 0.048 g / min (n-hexane solution) so as to be 0.2 g per 100 g of the polymer. The reaction was terminated, and then the solvent was removed to obtain a modified conjugated diene polymer.
  • sample A had a Mooney viscosity at 100 ° C. of 80.0, a polystyrene equivalent weight average molecular weight measured by GPC of 908,000, and a number average molecular weight of 393,000.
  • the amount of bound styrene was 33% by mass
  • the amount of vinyl bonds (1,2-bond amount) in the butadiene bond unit was 38 mol%
  • the glass transition temperature measured by DSC was ⁇ It was 25 ° C.
  • Example 2 An oil-extended modified conjugated diene polymer (sample) was prepared in the same manner as in Example 1, except that the amount of 1,4-bis [3- (trimethoxysilyl) propyl] piperazine added as a modifier was 0.0563 mmol / min. B) was obtained. The analysis result of Sample B is shown in Table 1.
  • Example 3 The modifying agent was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to 1,4-bis [3- (triethoxysilyl) propyl] piperazine in the same manner as in Example 1.
  • An oil-extended modified conjugated diene polymer (Sample C) was obtained.
  • the analysis result of Sample C is shown in Table 1.
  • Example 4 The modifying agent was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to 1,4-bis [3- (dimethoxymethylsilyl) propyl] piperazine, and the addition amount was 0.0563 mmol / min. Except that, an oil-extended modified conjugated diene polymer (Sample D) was obtained in the same manner as in Example 1. The analysis result of Sample D is shown in Table 2.
  • Example 5 Example 1 except that the modifier was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to 1,3-bis [3- (trimethoxysilyl) propyl] hexahydropyrimidine.
  • an oil-extended modified conjugated diene polymer (Sample E) was obtained.
  • the analysis result of Sample E is shown in Table 2.
  • Example 1 Example 1 was repeated except that the modifier was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to bis [3- (trimethoxysilyl) propyl] -N-methylamine.
  • An oil-extended modified conjugated diene polymer (Sample F) was obtained.
  • the analysis results of Sample F are shown in Table 3.
  • Example G A modified conjugated diene polymer (Sample G) was obtained.
  • the analysis result of Sample G is shown in Table 3.
  • Examples 6 to 10, Comparative Examples 4 to 6 Using the samples shown in Tables 1 to 3 (samples A to H) as raw rubber, rubber compositions containing the respective raw rubbers were obtained according to the formulation shown below.
  • Oil-extended modified conjugated diene polymer (samples A to H): 137.5 parts by mass Silica (Evonik Degussa, Ultrasil VN3): 75.0 parts by mass Carbon black (Tokai Carbon Co., Ltd., Seast KH (N339)) : 5.0 parts by mass Silane coupling agent (Evonik Degussa, Si75): 6.0 parts by mass S-RAE oil (JX Nippon Oil & Energy Corporation, JOMO process NC140): 4.5 parts by mass Zinc flower: 2.5 parts by mass Stearic acid: 1.5 parts by mass Anti-aging agent (N-isopropyl-N′-phenyl-p-phenylenediamine): 2.0 parts by mass Sulfur: 2.2 parts by mass Vul
  • the rubber composition was kneaded by the following method. Using a closed kneader (with an internal volume of 0.3 L) equipped with a temperature control device, as the first stage kneading, under the conditions of a filling rate of 65% and a rotor rotational speed of 50/57 rpm, raw rubber (samples A to H) , Filler (silica, carbon black), organic silane coupling agent, process oil, zinc white, and stearic acid were kneaded. At this time, the temperature of the closed mixer was controlled, and the rubber composition was obtained at a discharge temperature (formulation) of 155 to 160 ° C.
  • the blend obtained above was cooled to room temperature, an anti-aging agent was added, and kneaded again to improve silica dispersion. Also in this case, the discharge temperature (formulation) was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and a vulcanization accelerator were added and kneaded with an open roll set at 70 ° C. Then, it shape
  • the physical properties of the rubber composition were measured by the following methods.
  • Viscoelastic parameters were measured in a torsion mode using a viscoelasticity tester (ARES) manufactured by Rheometrics Scientific. Each measured value was indexed with Comparative Example 4 as 100. Tan ⁇ measured at 0 ° C. with a frequency of 10 Hz and a strain of 1% was used as an index of wet grip performance. A larger value indicates better wet grip performance. Further, tan ⁇ measured at 50 ° C. with a frequency of 10 Hz and a strain of 3% was used as an index of fuel saving characteristics. The smaller the value, the better the fuel saving performance.
  • the modified conjugated diene polymer compositions of Examples 6 to 10 had a low high temperature tan ⁇ and a low hysteresis loss as compared with the compositions of Comparative Examples 4 and 5. It was confirmed that the rolling resistance was realized and the low temperature tan ⁇ was high and the wet skid resistance was excellent. Furthermore, it was confirmed that the wear resistance and tensile strength were also good. Moreover, when compared with Comparative Example 6, the compound Mooney viscosity was low, and it was confirmed that the balance between processability and physical properties of the vulcanizate was excellent.
  • Example 11 An autoclave having an internal volume of 10 L and equipped with a stirrer and a jacket and capable of temperature control is used as a reactor, and 777 g of butadiene, 273 g of styrene, 4800 g of cyclohexane from which impurities have been previously removed, and 2,2-bis (2- 1.30 g of oxolanyl) propane was charged into the reactor and the reactor internal temperature was maintained at 37 ° C.
  • a polymerization initiator a cyclohexane solution containing 15.1 mmol of n-butyllithium was supplied to the reactor.
  • the glass transition temperature was ⁇ 23 ° C.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by GPC was 372,000, the number average molecular weight (Mn) was 318,000, and Mw / Mn was 1.17.
  • the amount of bound styrene was 26% by mass and the amount of bound butadiene was 74%.
  • the Mooney viscosity of the polymer was 58.
  • the vinyl bond amount (1,2-bond amount) in the microstructure of the butadiene portion which was calculated from the measurement result using an infrared spectrophotometer according to the Hampton method, was 56%.
  • the glass transition temperature was ⁇ 23 ° C.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by GPC was 368,000, the number average molecular weight (Mn) was 281,000, and Mw / Mn was 1.31.
  • Example 12 Comparative Example 8
  • Rubber compositions containing the respective raw rubbers were obtained according to the formulation shown below.
  • Modified conjugated diene polymer (Samples I to J): 100.0 parts by mass Silica (Evonik Degussa, Ultrasil VN3): 25.0 parts by mass Carbon black (Tokai Carbon Co., Ltd., Seast KH (N339)): 20 0.0 part by mass Silane coupling agent (Evonik Degussa, Si75): 2.0 parts by mass S-RAE oil (JX Nippon Oil & Energy, JOMO process NC140): 5.0 parts by mass Zinc flower: 3.
  • the rubber composition was kneaded by the same method as in Examples 6 to 10 and Comparative Examples 4 to 6.
  • the physical properties of the rubber compositions were also measured by the same methods as in Examples 6 to 10 and Comparative Examples 4 to 6.
  • the physical property measurement results are shown in Table 6. For those whose results are expressed as exponent values, Comparative Example 8 was set to “100”.
  • the modified conjugated diene polymer composition of Example 12 has a lower high temperature tan ⁇ and less hysteresis loss than the composition of Comparative Example 8, and low tire rolling resistance is realized.
  • the low temperature tan ⁇ was high and the wet skid resistance was excellent.
  • the compound Mooney viscosity was low and it was excellent in the balance of workability and the physical property of a vulcanizate.
  • the wear resistance and tensile strength were also good.
  • the modified conjugated diene polymer of this example has a good balance between low hysteresis loss and wet skid resistance when used as a vulcanizate, and has practically sufficient wear resistance and fracture strength. In addition, it was confirmed that the processability is also excellent.
  • a modified conjugated diene polymer according to the present invention when used as a vulcanized product, it has an excellent balance between low hysteresis loss and wet skid resistance, and has practically sufficient wear resistance and fracture characteristics. And a modified conjugated diene polymer excellent in processability can be obtained, and can be suitably used as a material for various members such as tire treads, footwear, and industrial articles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、実用上十分な耐摩耗性や破壊強度を有し、かつ加工性にも優れる、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物を提供すること。 【解決手段】アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物を、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程と、前記共役ジエン系重合体の前記活性末端に、特定構造の化合物を反応させる変性工程と、を有する変性共役ジエン系重合体の製造方法。

Description

変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
 本発明は、変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物に関する。
 近年、二酸化炭素排出量の抑制等、環境に対する配慮が社会的要請となっている。具体的には自動車に対する低燃費化要求が高まってきている。このような現状から、自動車用タイヤ、特に地面と接するタイヤトレッドの材料として、転がり抵抗が小さい材料の開発が求められてきている。一方、安全性の観点からは、ウェットスキッド抵抗性に優れ、実用上十分な耐摩耗性、破壊特性を有する材料の開発が求められている。
 従来、タイヤトレッドの補強性充填剤としては、カーボンブラック、シリカ等が使用されている。シリカを用いると、低ヒステリシスロス性及びウェットスキッド抵抗性の向上を図ることができるという利点を有している。しかし、疎水性表面のカーボンブラックに対して、親水性表面のシリカは、共役ジエン系ゴムとの親和性が低く、カーボンブラックに比較して分散性が悪いという欠点を有していることから、分散性を改良させたり、シリカ-ゴム間の結合付与を行ったりするため、別途シランカップリング剤等を含有させる必要がある。
 さらに、近年においては、運動性の高いゴム分子末端部に、シリカとの親和性や反応性を有する官能基を導入することによって、ゴム材中におけるシリカの分散性を改良し、さらにはゴム分子末端部をシリカ粒子との結合で封じることによって、ヒステリシスロスを低減化する試みがなされている。例えば、特許文献1には、グリシジルアミノ基を有する変性剤を重合体末端に反応させて得られる変性ジエン系ゴムが開示されており、特許文献2には、グリシドキシアルコキシシランを重合体末端に反応させて得られる変性ジエン系ゴムが開示されている。さらに、特許文献3~7には、アミノ基を含有するアルコキシシラン類を重合体末端に反応させて得られる変性ジエン系ゴム、及びこれらとシリカとの組成物について開示されている。
国際公開第01/23467号パンフレット 特開平07-233217号公報 特開2001-158834号公報 特開2003-171418号公報 国際公開第07/34785号パンフレット 国際公開第08/13090号パンフレット 国際公開第07/114203号パンフレット
 しかしながら、末端にシリカとの反応性の高い官能基を導入した場合、混練工程中にシリカ粒子との反応が進行して、組成物の粘度が上昇し、練りづらくなったり、混練り後にシートにする際の肌荒れやシート切れが生じやすくなったりといった、加工性が悪化する傾向がみられる。また、加硫物としたとき、特に無機充填剤を含む加硫物とした際に、低ヒステリシスロス性とウェットスキッド抵抗性のバランスをより一層改良することが求められてきている。
 本発明は、上記事情に鑑みなされたものであり、加硫物としたときに低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、実用上十分な耐摩耗性や破壊強度を有し、かつ加工性にも優れている、変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究検討した結果、アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る工程と、前記共役ジエン系重合体の前記活性末端に、特定構造の化合物を反応させる変性工程と、を有する変性共役ジエン系重合体の製造方法とすることで、上記課題を解決し得ることを見出し、本発明を完成させるに至った。
 本発明は以下のとおりである。
〔1〕
 アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程と、
 前記共役ジエン系重合体の前記活性末端に、2個以上の窒素原子と炭化水素からなる複素環式構造を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物である変性剤を反応させる変性工程と、
を有する変性共役ジエン系重合体の製造方法。
〔2〕
 前記変性剤が下記式(1)で表される化合物である、〔1〕に記載の変性共役ジエン系重合体の製造方法。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R1~R4は、各々独立して、炭素数1~20のアルキル基、又はアリール基を表し、R5及びR6は、各々独立して、炭素数1~20のアルキレン基を表し、R7及びR8は、各々独立して、炭素数1~6の炭化水素基を表し、かつ隣接する2つのNとともに5員環以上の環構造を形成し、m及びnは、各々独立して、2又は3の整数を表す。)
〔3〕
 前記変性剤中の全てのシリル基が、3個のアルコキシ基が結合されているシリル基である、〔1〕又は〔2〕に記載の変性共役ジエン系重合体の製造方法。
〔4〕
 前記変性剤中のシリル基に結合するアルコキシ基の合計モル数が、前記重合開始剤の添加モル数の0.8~3倍となる範囲である、〔1〕~〔3〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
〔5〕
 前記重合工程が連続式である、〔1〕~〔4〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
〔6〕
 変性共役ジエン系重合体の、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量が200,000~600,000である、〔1〕~〔5〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
〔7〕
 〔1〕~〔6〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法により得られる変性共役ジエン系重合体。
〔8〕
 〔7〕に記載の変性共役ジエン系重合体を20質量部以上含むゴム成分100質量部と、
 シリカ系無機充填剤0.5~300質量部と、
を含む変性共役ジエン系重合体組成物。
 本発明によれば、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、実用上十分な耐摩耗性や破壊強度を有し、かつ加工性にも優れている、変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物を提供できる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
 本実施形態の変性共役ジエン系重合体の製造方法は、
 アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程と、
 前記共役ジエン系重合体の前記活性末端に、2個以上の窒素原子と炭化水素からなる複素環を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物である変性剤を反応させる変性工程と、
を有する。
 本実施形態の変性共役ジエン系重合体の重合工程では、アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る。
 変性共役ジエン系重合体を構成する共役ジエン系重合体は、単一の共役ジエン化合物の重合体又は異なる種類の共役ジエン化合物の重合体すなわち共重合体、又は共役ジエン化合物と芳香族ビニル化合物の共重合体である。
 共役ジエン化合物としては、重合可能な単量体であればよく、特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘプタジエン、1,3-ヘキサジエン等が挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、イソプレンが好ましい。これらは1種単独で用いてもよく2種以上を組み合わせて用いてもよい。
 芳香族ビニル化合物としては、共役ジエン化合物と共重合可能な単量体であればよく、特に限定されず、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレン等が挙げられる。これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。これらは1種単独で用いてもよく2種以上を組み合わせて用いてもよい。
 共役ジエン系重合体が共重合体である場合、ランダム共重合体であってもブロック共重合体であってもよい。ランダム共重合体としては、ブタジエン-イソプレンランダム共重合体、ブタジエン-スチレンランダム共重合体、イソプレン-スチレンランダム共重合体、ブタジエン-イソプレン-スチレンランダム共重合体等が挙げられる。共重合体鎖中の各単量体の組成分布としては、統計的ランダムな組成に近い完全ランダム共重合体、若しくはテーパー状に組成の分布があるテーパーランダム共重合体等が挙げられる。共役ジエンの結合様式、すなわち1,4-結合や1,2-結合等の組成は、均一であってもよいし、分布があってもよい。
 ブロック共重合体としては、ブロックが2個からなる2型ブロック共重合体、3個からなる3型ブロック共重合体、4個からなる4型ブロック共重合体等が挙げられる。例えば、スチレン等の芳香族ビニル化合物からなるブロックをSで表し、ブタジエンやイソプレン等の共役ジエン化合物からなるブロック及び/又は芳香族ビニル化合物と共役ジエン化合物との共重合体からなるブロックをBで表すと、S-B2型ブロック共重合体、S-B-S3型ブロック共重合体、S-B-S-B4型ブロック共重合体等で表される。上式において、各ブロックの境界は必ずしも明瞭に区別される必要はない。ブロックBが芳香族ビニル化合物と共役ジエン化合物との共重合体の場合、ブロックB中の芳香族ビニル化合物は均一に分布していても、又はテーパー状に分布していてもよい。また、ブロックBには、芳香族ビニル化合物が均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数個共存していてもよい。また、ブロックBには、芳香族ビニル化合物含有量が異なるセグメントが複数個共存していてもよい。共重合体中にブロックS、ブロックBがそれぞれ複数存在する場合、それらの分子量や組成等の構造は、同一でもよいし、異なっていてもよい。
 本実施形態においては、官能基を有する共役ジエン系重合体を、さらに不活性溶剤中で水素化することによって、二重結合の全部又は一部を飽和炭化水素に変換することができる。その場合、耐熱性、耐候性が向上し、高温で加工する場合の製品の劣化を防止することができる。その結果、自動車用途など種々の用途で一層優れた性能を発揮する。
 より具体的には、共役ジエン化合物に基づく不飽和二重結合の水素化率(すなわち「水添率」)は、目的に応じて任意に選択でき、特に限定されない。加硫ゴムとして用いる場合には、共役ジエン部の二重結合が部分的に残存していることが好ましい。かかる観点から、重合体中の共役ジエン部の水添率は3~70%であることが好ましく、5~65%であることがより好ましく、10~60%であることがさらに好ましい。なお、共役ジエン化合物と芳香族ビニル化合物との共重合体中の芳香族ビニル化合物に基づく芳香族二重結合の水添率については、特に限定されないが、50%以下であることが好ましく、30%以下であることがより好ましく、20%以下であるであることがさらに好ましい。水添率は、核磁気共鳴装置(NMR)により測定することができる。
 水素化の方法としては、特に限定されず、公知の方法が利用できる。特に好適な水素化の方法としては、触媒の存在下、重合体溶液に気体状水素を吹き込む方法で水素化する方法が挙げられる。触媒としては、貴金属を多孔質無機物質に担持させた触媒等の不均一系触媒;ニッケル、コバルト等の塩を可溶化し有機アルミニウム等と反応させた触媒、チタノセン等のメタロセンを用いた触媒等の均一系触媒等が挙げられる。これら中でも、特にマイルドな水素化条件を選択できる観点から、チタノセン触媒が好ましい。また、芳香族基の水素化は、貴金属の担持触媒を用いることによって可能である。
 水素化触媒の具体例としては、(1)Ni、Pt、Pd、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持させた担持型不均一系水添触媒、(2)Ni、Co、Fe、Cr等の有機酸塩又はアセチルアセトン塩などの遷移金属塩と有機アルミニウム等の還元剤とを用いる、いわゆるチーグラー型水添触媒、(3)Ti、Ru、Rh、Zr等の有機金属化合物等のいわゆる有機金属錯体等が挙げられる。例えば、水素化触媒として特公昭42-8704号公報、特公昭43-6636号公報、特公昭63-4841号公報、特公平1-37970号公報、特公平1-53851号公報、特公平2-9041号公報、特開平8-109219号公報に記載された水素化触媒を使用することができる。好ましい水素化触媒としてはチタノセン化合物と還元性有機金属化合物との反応混合物が挙げられる。
 重合開始剤として用いるアルカリ金属化合物としては、特に限定されないが、有機リチウム化合物が好ましい。有機リチウム化合物としては、低分子化合物、可溶化したオリゴマーの有機リチウム化合物、有機基とリチウムの結合様式において炭素-リチウム結合からなる化合物、窒素-リチウム結合からなる化合物、錫-リチウム結合からなる化合物等が挙げられる。有機リチウム化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウム等が挙げられる。窒素-リチウム結合からなる化合物としては、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジ-n-ヘキシルアミド、リチウムジイソプロピルアミド、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムモルホリド等が挙げられる。
 上記のモノ有機リチウム化合物に加え、多官能有機リチウム化合物を併用して重合を行うこともできる。多官能有機リチウム化合物としては、例えば、1,4-ジリチオブタン、sec-ブチルリチウムとジイソプロペニルベンゼンの反応物、1,3,5-トリリチオベンゼン、n-ブチルリチウムと1,3-ブタジエン及びジビニルベンゼンの反応物、n-ブチルリチウムとポリアセチレン化合物の反応物等が挙げられる。さらに、米国特許第5,708,092号明細書、英国特許第2,241,239号明細書、米国特許第5,527,753号明細書等に開示されている有機アルカリ金属化合物も使用することができる。
 有機リチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、sec-ブチルリチウムが好ましい。
 これらの有機リチウム化合物は1種のみならず2種以上の混合物として用いてもよい。
 他の有機アルカリ金属化合物としては、例えば、有機ナトリウム化合物、有機カリウム化合物、有機ルビジウム化合物、有機セシウム化合物等が挙げられる。具体的には、ナトリウムナフタレン、カリウムナフタレン等が挙げられる。その他にも、リチウム、ナトリウム及びカリウム等のアルコキサイド、スルフォネート、カーボネート、アミド等が挙げられる。また、他の有機金属化合物と併用してもよい。
 アルカリ土類金属化合物としては、有機マグネシウム化合物、有機カルシウム化合物、有機ストロンチウム化合物等が挙げられる。具体的には、ジブチルマグネシウム、エチルブチルマグネシウム、プロピルブチルマグネシウム等が挙げられる。また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート、アミド等の化合物を用いてもよい。これらの有機アルカリ土類金属化合物は、アルカリ金属化合物や、その他有機金属化合物と併用してもよい。
 本実施形態において、共役ジエン系重合体は、上述したアルカリ金属化合物及び/又はアルカリ土類金属化合物を重合開始剤とし、アニオン重合反応により成長して得られることが好ましい。特に、共役ジエン系重合体は、リビングアニオン重合による成長反応によって得られる活性末端を有する重合体であることがより好ましい。これにより、高変性率の変性共役ジエン系重合体を得ることができる。重合様式としては、特に限定されないが、回分式、又は2個以上の連結された反応器での連続式等の重合様式で行うことができる。特に、重合工程を連続式とすることにより、比較的高分子量の重合体を安定的に生産することができるので、好ましい。
 共役ジエン化合物中に、アレン類、アセチレン類等が不純物として含有されていると、後述する変性反応を阻害するおそれがある。そのため、これらの不純物の含有量濃度(質量)の合計は、200ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましい。アレン類としては、例えば、プロパジエン、1,2-ブタジエン等が挙げられる。アセチレン類としては、例えば、エチルアセチレン、ビニルアセチレン等が挙げられる。
 共役ジエン系重合体の重合反応は、溶媒中で行うことが好ましい。溶媒としては、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。具体的には、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素等が挙げられる。重合反応に供する前に、不純物であるアレン類やアセチレン類を有機金属化合物で処理することは、高濃度の活性末端を有する重合体が得られる傾向にあり、更には高い変性率が達成される傾向にあるため好ましい。
 共役ジエン系重合体の重合反応においては、芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させる目的で、共役ジエン部のミクロ構造を制御するためのビニル化剤として、あるいは重合速度の改善等の目的で、少量の極性化合物を添加してもよい。
 極性化合物としては、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第三級アミン化合物;カリウム-t-アミラート、カリウム-t-ブチラート、ナトリウム-t-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等を用いることができる。これらの極性化合物は、1種単独で用いてもよく2種以上を組み合わせて用いてもよい。
 極性化合物の使用量は、特に限定されず、目的と効果の程度に応じて選択される。通常、重合開始剤1モルに対して0.01~100モルであることが好ましい。このような極性化合物(ビニル化剤)は重合体共役ジエン部分のミクロ構造の調節剤として、所望のビニル結合量に応じて、適量用いることができる。多くの極性化合物は、同時に共役ジエン化合物と芳香族ビニル化合物との共重合において有効なランダム化効果を有し、芳香族ビニル化合物の分布の調整やスチレンブロック量の調整剤として用いることができる。共役ジエン化合物と芳香族ビニル化合物とをランダム化する方法としては、特開昭59-140211号公報に記載されているような、共重合の途中に1,3-ブタジエンの一部を断続的に添加する方法を用いてもよい。
 重合温度はリビングアニオン重合等の重合反応が進行する温度であれば、特に限定されないが、生産性の観点から、0℃以上であることが好ましく、重合終了後の活性末端に対する変性剤の反応量を充分に確保する観点から、120℃以下であることが好ましい。
 また、共役ジエン系重合体のコールドフローを防止する観点から、分岐をコントロールするためのジビニルベンゼン等の多官能芳香族ビニル化合物を用いてもよい。
 本実施形態の共役ジエン系重合体中の結合共役ジエン量は、特に限定されないが、50~100質量%であることが好ましく、60~80質量%であることがより好ましい。また、本実施形態の共役ジエン系重合体中の結合芳香族ビニル量は、特に限定されないが、0~50質量%であることが好ましく、20~40質量%であることがより好ましい。結合共役ジエン量及び結合芳香族ビニル量が上記範囲であると、低ヒステリシスロス性とウェットスキッド抵抗性のバランスがさらに優れ、耐摩耗性や破壊強度も満足する加硫物を得ることができる。ここで、結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。具体的には、後述する実施例に従った方法により測定することができる。
 また、共役ジエン結合単位中のビニル結合量は、特に限定されないが、10~75モル%であることが好ましく、25~65モル%であることがより好ましい。ビニル結合量が上記範囲であると、低ヒステリシスロス性とウェットスキッド抵抗性のバランスがさらに優れ、耐摩耗性や破壊強度も満足する加硫物を得ることができる。ここで、変性共役ジエン系重合体がブタジエンとスチレンの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。
 ミクロ構造(上記変性共役ジエン系重合体中の各結合量)が上記範囲にあり、さらに共重合体のガラス転移温度が-45~-15℃の範囲にあるときに、低ヒステリシスロス性とウェットスキッド抵抗性のバランスがより一層優れた加硫物を得ることができる。ガラス転移温度については、ISO22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とする。
 本実施形態の共役ジエン系重合体が共役ジエン-芳香族ビニル共重合体である場合、芳香族ビニル単位が30以上連鎖しているブロックの数が少ないか又は無いものであることが好ましい。具体的には、共重合体がブタジエン-スチレン共重合体の場合、Kolthoffの方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)により重合体を分解し、メタノールに不溶なポリスチレン量を分析する公知の方法において、芳香族ビニル単位が30以上連鎖しているブロックが、重合体量に対して好ましくは5質量%以下、より好ましくは3質量%以下である。
 以上のような方法で、活性末端を有する共役ジエン系重合体を得た後、その活性末端に、2個以上の窒素原子と炭化水素からなる複素環を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物である変性剤を反応させる変性工程を行うことで、本実施形態の変性共役ジエン系重合体を得ることができる。変性剤として2個以上の窒素原子と炭化水素からなる複素環を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物を用いることにより、共役ジエン系重合体末端とSiとの間に結合をすることができる。
 変性剤として用いられる上記化合物は、その全てのシリル基が3個のアルコキシ基が結合されているシリル基であることが好ましい。かかる化合物を変性剤として用いることにより、変性剤の反応性や剤他の化合物との相互作用性を一層優れたものにできるとともに、得られる変性共役ジエン系重合体の加工性を一層優れたものにできる。
 上述した中でも、下記式(1)で表される化合物である変性剤であることが好ましい。下記式(1)のアルコキシシリル基が共役ジエン系重合体の活性末端と効率よく反応することで、共役ジエン系重合体末端とSiとの間の結合を一層効率よく形成することができる。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R1~R4は、各々独立して、炭素数1~20のアルキル基、又はアリール基を表し、R5及びR6は、各々独立して、炭素数1~20のアルキレン基を表し、R7及びR8は、各々独立して、炭素数1~6の炭化水素基を表し、かつ隣接する2つのNとともに5員環以上の環構造を形成し、m及びnは、各々独立して、2又は3の整数を表す。)
 上記式(1)で表される変性剤としては、例えば、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジン、1,4-ビス[3-(トリエトキシシリル)プロピル]ピペラジン、1,4-ビス[3-(ジメトキシメチルシリル)プロピル]ピペラジン、1,3-ビス[3-(トリメトキシシリル)プロピル]イミダゾリジン、1,3-ビス[3-(トリエトキシシリル)プロピル]イミダゾリジン、1,3-ビス[3-(ジエメトキシエチルシリル)プロピル]イミダゾリジン、1,3-ビス[3-(トリメトキシシリル)プロピル]ヘキサヒドロピリミジン、1,3-ビス[3-(トリエトキシシリル)プロピル]ヘキサヒドロピリミジン、1,3-ビス[3-(トリブトキシシリル)プロピル]-1,2,3,4-テトラヒドロピリミジン等が挙げられる。これらの中でも、変性剤の反応性や、シリカ等の無機充填剤といった他の化合物との相互作用性の観点や、得られる変性共役ジエン系重合体の加工性の観点から、m及びnが3であるものが好ましい。具体的には、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジン、1,4-ビス[3-(トリエトキシシリル)プロピル]ピペラジン、1,3-ビス[3-(トリメトキシシリル)プロピル]イミダゾリジン、1,3-ビス[3-(トリエトキシシリル)プロピル]イミダゾリジン、1,3-ビス[3-(トリメトキシシリル)プロピル]ヘキサヒドロピリミジン、1,3-ビス[3-(トリエトキシシリル)プロピル]ヘキサヒドロピリミジン、1,3-ビス[3-(トリブトキシシリル)プロピル]-1,2,3,4-テトラヒドロピリミジンが好ましく、これらの中でも、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジン、1,4-ビス[3-(トリエトキシシリル)プロピル]ピペラジンがより好ましい。
 上述した変性剤中には、変性反応等に著しい悪影響を及ぼさない限り、上記変性剤合成時の中間体や上記変性剤の縮合物などといった不純物等、他の化合物が含まれていてもよい。また、本実施形態の効果が得られる範囲内であれば、従来公知の他の変性剤を併用してもよい。
 上述した変性剤を、重合活性末端に反応させる際の、反応温度、反応時間等については、特に限定されないが、0~120℃で、30秒以上反応させることが好ましい。
 上述した変性剤は、化合物中のシリル基に結合したアルコキシ基の合計モル数が、重合開始剤の添加モル数の0.8~3倍となる範囲であることが好ましく、1~2.5倍となる範囲であることがより好ましく、1~2倍となる範囲であることがさらに好ましい。得られる変性共役ジエン系重合体が十分な変性率を得る観点から、0.8倍以上とすることが好ましく、変性剤コストの観点から3倍以下とすることが好ましい。また、加工性改良の観点から重合体末端同士をカップリングさせ分岐状重合体成分を得ることが好ましい。
 本実施形態の効果をより優れたものにする観点から、官能基成分を有する重合体(変性剤により変性されている変性共役ジエン系重合体)が、好ましくは5質量%以上、より好ましくは20質量%以上、さらに好ましくは50質量%以上含有する重合体となるように、変性共役ジエン系重合体を製造することが好ましい。官能基成分を有する重合体の定量方法としては、官能基含有の変性成分と非変性成分を分離できるクロマトグラフィーによって測定可能である。このクロマトグラフィーを用いた方法としては、官能基成分を吸着するシリカ等の極性物質を充填剤としたGPCカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法が挙げられる。
 本実施形態の変性共役ジエン系重合体の、ゲル浸透クロマトグラフィー(GPC)によって得られるポリスチレン換算の数平均分子量(Mn)は、好ましくは20,000~2,000,000、より好ましくは100,000~1,000,000、さらに好ましくは200,000~600,000であり、よりさらに好ましくは300,000~400,000である。上記下限値以上の分子量とすることで、加硫物としたときの強度を一層向上させることができ、上記上限値以下の分子量とすることで、加工性を一層向上させることができる。また、数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)は、加硫物の物性の観点から、好ましくは1.05~3.0、より好ましくは1.1~2.5である。
 本実施形態の変性共役ジエン系重合体の製造方法においては、変性反応を行った後、共重合体溶液に、必要に応じて、失活剤や中和剤等を添加してもよい。失活剤としては、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。中和剤としては、例えば、ステアリン酸、オレイン酸、バーサチック酸等のカルボン酸;無機酸の水溶液、炭酸ガス等が挙げられる。
 また、本実施形態の変性共役ジエン系重合体は、重合後の仕上げ工程におけるゲル生成を防止する観点や、加工時の安定性を向上させる観点から、ゴム用安定剤を添加することが好ましい。ゴム用安定剤は、特に限定されず、公知のものを用いることができるが、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等が好ましい。
 また、本実施形態の変性共役ジエン系重合体の加工性を改良するために、必要に応じて伸展油を変性共役ジエン系重合体に添加することができる。伸展油を変性共役ジエン系重合体に添加する方法としては、特に限定されないが、伸展油を重合体溶液に加え、混合して、油展共重合体溶液としたものを脱溶媒する方法が好ましい。伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点や、オイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe 52(12)799(1999)に示されるTDAE、MES等の他、RAE等が挙げられる。伸展油の添加量は、特に限定されないが、通常は、変性共役ジエン系重合体100質量部に対し、10~60質量部であり、20~37.5質量部が好ましい。
 本実施形態の変性共役ジエン系重合体を、重合体溶液から取得する方法としては、公知の方法を用いることができる。例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押し出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法等が挙げられる。
 本実施形態の変性共役ジエン系重合体は、加硫物として好適に用いられる。加硫物は、例えば、本実施形態の変性共役ジエン系重合体を、必要に応じて、シリカ系無機充填剤やカーボンブラック等の無機充填剤、本実施形態の変性共役ジエン系重合体以外のゴム状重合体、シランカップリング剤、ゴム用軟化剤、加硫剤、加硫促進剤・助剤等と混合して、変性共役ジエン系重合体組成物とした後、加熱して加硫することにより得ることができる。これらの中でも、本実施形態の変性共役ジエン系重合体を含むゴム成分と、シリカ系無機充填剤と、を含む変性共役ジエン系重合体組成物とすることが好ましい。本実施形態の変性共役ジエン系重合体に、シリカ系無機充填剤を分散させることで、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、かつ実用上十分な耐摩耗性や破壊強度を有し、優れた加工性を付与できる。本実施形態の変性共役ジエン系重合体組成物が、タイヤ、防振ゴム等の自動車部品、靴等の加硫ゴム用途に用いられる場合にも、補強性充填剤としてシリカ系無機充填剤を含むことが好ましい。
 共役ジエン系重合体組成物においては、本実施形態の変性共役ジエン系重合体以外のゴム状重合体を、本実施形態の変性共役ジエン系重合体と組み合わせて使用できる。このようなゴム状重合体としては、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、非ジエン系重合体、天然ゴム等が挙げられる。具体的には、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル-ブタジエンゴム又はその水素添加物等が挙げられる。
 非ジエン系重合体としては、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-ブテンゴム、エチレン-ヘキセンゴム、エチレン-オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、多硫化ゴム等が挙げられる。
 上述した各種ゴム状重合体は、水酸基やアミノ基等の極性を有する官能基を付与した変性ゴムであってもよい。またその重量平均分子量は、性能と加工特性のバランスの観点から、2,000~2,000,000であることが好ましく、5,000~1,500,000であることがより好ましい。また、低分子量のいわゆる液状ゴムを用いることもできる。これらのゴム状重合体は、1種単独で用いてもよく2種以上を組み合わせて用いてもよい。
 本実施形態の変性共役ジエン系重合体と、上述したゴム状重合体と、を含む変性共役ジエン系重合体組成物とする場合、これらの配合比率(質量比)は、変性共役ジエン系重合体/ゴム状重合体として、20/80~100/0が好ましく、30/70~90/10がより好ましく、50/50~80/20がさらに好ましい。変性共役ジエン系重合体/ゴム状重合体の配合比率が上記範囲であると、低ヒステリシスロス性とウェットスキッド抵抗性のバランスがさらに優れ、耐摩耗性や破壊強度もより一層満足する加硫物を得ることができる。
 シリカ系無機充填剤としては、特に限定されず、公知のものを用いることができるが、SiO2、又はSi3Alを構成単位として含む固体粒子が好ましく、SiO2、又はSi3Alを構成単位の主成分とすることがより好ましい。シリカ系無機充填剤として、具体的には、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質等が挙げられる。また、表面を疎水化したシリカ系無機充填剤や、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も用いることができる。これらの中でも、補強性の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカ等が挙げられる。これらの中でも、破壊特性の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
 変性共役ジエン系重合体組成物において、実用上良好な耐摩耗性や破壊特性を得る観点から、シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積は、100~300m2/gであることが好ましく、170~250m2/gであることがより好ましい。また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m2/g未満のシリカ系無機充填剤)と、比較的比表面積の大きい(例えば、200m2/g以上のシリカ系無機充填剤)と、を組み合わせて用いることができる。これにより、良好な耐摩耗性や破壊特性と低ヒステリシスロス性を高度にバランスさせることができる。
 上記のように、変性共役ジエン系重合体組成物におけるシリカ系無機充填剤の配合量は、本実施形態の変性共役ジエン系重合体を20質量部以上含むゴム成分100質量部に対し、0.5~300質量部であることが好ましく、5~200質量部がより好ましく、20~100質量部がさらに好ましい。シリカ系無機充填剤の配合量は、無機充填剤の添加効果が発現する観点から、0.5質量部以上とすることが好ましく、一方、無機充填剤を十分に分散させ、組成物の加工性や機械強度を実用的に十分なものとする観点から、300質量部以下とすることが好ましい。
 変性共役ジエン系重合体組成物には、カーボンブラックを含有させてもよい。カーボンブラックとしては、特に限定されず、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが使用できる。これらの中でも、窒素吸着比表面積が50m2/g以上、ジブチルフタレート(DBP)吸油量が80mL/100g以上のカーボンブラックが好ましい。
 カーボンブラックの配合量は、本実施形態の変性共役ジエン系重合体を含むゴム成分100質量部に対し、0.5~100質量部が好ましく、3~100質量部がより好ましく、5~50質量部がさらに好ましい。カーボンブラックの配合量は、ドライグリップ性能や導電性等のタイヤ等の用途に求められる性能を発現する観点から、0.5質量部以上とすることが好ましく、分散性の観点から、100質量部以下とすることが好ましい。
 また、変性共役ジエン系重合体組成物には、シリカ系無機充填剤やカーボンブラック以外に、金属酸化物や金属水酸化物を含有させてもよい。金属酸化物とは、化学式Mxy(Mは金属原子を表し、x及びyは各々1~6の整数を表す。)を構成単位の主成分とする固体粒子のことをいい、例えば、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等を用いることができる。また金属酸化物と金属酸化物以外の無機充填剤の混合物も用いることができる。金属水酸化物としては、特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム等が挙げられる。
 変性共役ジエン系重合体組成物には、シランカップリング剤を含有させてもよい。シランカップリング剤は、ゴム成分とシリカ系無機充填剤との相互作用を緊密にする機能を有しており、ゴム成分及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、一般的には、硫黄結合部分とアルコキシシリル基、シラノール基部分を一分子中に有する化合物が用いられる。具体的には、ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィド等が挙げられる。
 シランカップリング剤の配合量は、上述したシリカ系無機充填剤100質量部に対して、0.1~30質量部が好ましく、0.5~20質量部がより好ましく、1~15質量部がさらに好ましい。シランカップリング剤の配合量が上記範囲であると、シランカップリング剤による上記添加効果を一層顕著なものにできる。
 変性共役ジエン系重合体組成物には、加工性の改良を図るために、ゴム用軟化剤を含有させてもよい。ゴム用軟化剤としては、鉱物油、又は液状若しくは低分子量の合成軟化剤が好適である。ゴムの軟化、増容、加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が30~45%のものがナフテン系、芳香族炭素数が30%を超えるものが芳香族系と呼ばれている。本実施形態の変性共役ジエン-芳香族ビニル共重合体とともに用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共重合体との馴染みがよい傾向にあるため好ましい。
 ゴム用軟化剤の配合量は、本実施形態の変性共役ジエン系重合体を含有するゴム成分100質量部に対して、0~100質量部が好ましく、10~90質量部がより好ましく、30~90質量部がさらに好ましい。ゴム用軟化剤の配合量をゴム成分100質量部に対して100質量部以下とすることにより、ブリードアウトや組成物表面のベタツキを抑制することができる。
 本実施形態の変性共役ジエン系重合体とその他のゴム状重合体、シリカ系無機充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤を混合する方法については特に限定されるものではない。例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法等が挙げられる。これらのうち、ロール、バンバリーミキサー、ニーダー、押出機による溶融混練法が生産性、良混練性の観点から好ましい。また、変性共役ジエン系重合体と各種配合剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
 変性共役ジエン系重合体組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。加硫剤としては、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が使用できる。硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。加硫剤の使用量は、通常、本実施形態の変性共役ジエン系重合体を含むゴム成分100質量部に対して0.01~20質量部であり、0.1~15質量部が好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、通常120~200℃であり、好ましくは140~180℃である。
 また、加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系等の加硫促進剤が挙げられる。また、加硫助剤としては、亜鉛華、ステアリン酸等を使用できる。加硫促進剤の使用量は、通常、本実施形態の変性共役ジエン系重合体を含有するゴム成分100質量部に対して0.01~20質量部であり、0.1~15質量部が好ましい。
 変性共役ジエン系重合体組成物には、本実施形態の目的を損なわない範囲内で、上述した以外のその他の軟化剤や充填剤、さらに、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。その他の軟化剤としては、公知の軟化剤を用いることができる。その他の充填剤としては、具体的には、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウム等が挙げられる。上記の耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
 以下の実施例により本実施形態を更に詳しく説明するが、本実施形態は以下の実施例により何ら限定されるものではない。なお、試料の分析は下記に示す方法により行った。
(1)結合スチレン量
 試料をクロロホルム溶液とし、スチレンのフェニル基によるUV254nmの吸収により結合スチレン量(質量%)を測定した(島津製作所製:UV-2450)。
(2)ブタジエン部分のミクロ構造(1,2-ビニル結合量)
 試料を二硫化炭素溶液とし、溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して所定の波数における吸光度によりハンプトンの方法の計算式に従いブタジエン部分のミクロ構造を求めた(日本分光(株)製:FT-IR230)。
(3)ムーニー粘度
 JIS K 6300に従い、100℃で1分間予熱し、4分後の粘度を測定した。
(4)分子量及び分子量分布
 ポリスチレン系ゲルを充填剤としたカラムを3本連結して用いたゲルパーミエーションクロマトグラフィー(GPC)を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線により重量平均分子量(Mw)及び数平均分子量(Mn)を求め、重量平均分子量と数平均分子量の比から分子量分布の指標(Mw/Mn)を計算した。
 溶離液としてはテトラヒドロフラン(THF)を使用した。
 カラムは、ガードカラム:東ソー TSKguardcolumn HHR-H、カラム:東ソー TSKgel G6000HHR、TSKgel G5000HHR、TSKgel G4000HHRを使用した。
 オーブン温度40℃、THF流量1.0mL/分の条件で、東ソー製 HLC8020のRI検出器を用いて分子量の測定を行った。試料10mgをTHF20mLに溶解し、この溶液200μLを装置に注入して測定した。
(5)ガラス転移温度(Tg)
 ISO22768:2006に従い、マックサイエンス社製DSC3200Sを用い、ヘリウム50mL/minの流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
[実施例1]
 内容積10Lで、内部の高さと直径の比(L/D)が4であり、底部に入り口、頂部に出口を有し、攪拌機及び温度調整用のジャケットを有するオートクレーブを2基直列に連結し、1基目を重合反応器として、2基目を変性反応器とした。
 予め、水分等の不純物を除去したブタジエンを16.0g/分、スチレンを8.0g/分、n-ヘキサンを125.6g/分の条件で混合し、更に不純物不活性化処理用として、1基目反応器に入る直前でn-ブチルリチウム(処理n-ブチルリチウム)0.075mmol/分とスタティックミキサーで混合した後、1基目反応器の底部に連続的に供給し、更に、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.020g/分の速度で、重合開始剤としてn-ブチルリチウムを0.150mmol/分の速度で、1基目反応器底部へ供給し、反応器出口の内温を90℃となるように重合反応を継続させた。
 2基目の反応器の温度を85℃に保ち、変性剤として1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンを0.0375mmol/分の速度で2基目反応器の底部から添加し、変性(カップリング)反応を実施した。
 2器目反応器の頂部から流出した重合体溶液に酸化防止剤(BHT)をポリマー100gあたり0.2gとなるように0.048g/分(n-ヘキサン溶液)で連続的に添加し、変性反応を終了させ、その後溶媒を除去し、変性共役ジエン系重合体を得た。
 更にこの変性共役ジエン系重合体溶液に、S-RAEオイル(JX日鉱日石エネルギー(株)製、NC-140)を重合体100質量部あたり37.5質量部添加した後にドラムドライヤーで溶媒を除去し、油展変性共役ジエン系重合体(試料A)を得た。
 試料Aの100℃のムーニー粘度は80.0、GPCで測定したポリスチレン換算の重量平均分子量は90.8万、数平均分子量は39.3万であった。また、油展前のサンプルの測定の結果、結合スチレン量は33質量%、ブタジエン結合単位中のビニル結合量(1,2-結合量)は38モル%、DSCで測定したガラス転移温度は-25℃であった。
[実施例2]
 変性剤として1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンの添加量を0.0563mmol/分とした以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料B)を得た。
 試料Bの分析結果を表1に示す。
[実施例3]
 変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,4-ビス[3-(トリエトキシシリル)プロピル]ピペラジンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料C)を得た。
 試料Cの分析結果を表1に示す。
[実施例4]
 変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,4-ビス[3-(ジメトキシメチルシリル)プロピル]ピペラジンに替え、添加量を0.0563mmol/分とした以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料D)を得た。
 試料Dの分析結果を表2に示す。
[実施例5]
 変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,3-ビス[3-(トリメトキシシリル)プロピル]ヘキサヒドロピリミジンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料E)を得た。
 試料Eの分析結果を表2に示す。
[比較例1]
 変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、ビス[3-(トリメトキシシリル)プロピル]-N-メチルアミンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料F)を得た。
 試料Fの分析結果を表3に示す。
[比較例2]
 変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,2-ビス(3-トリエトキシシリル)エタンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料G)を得た。
 試料Gの分析結果を表3に示す。
[比較例3]
 重合開始n-ブチルリチウムの添加量を0.120mmol/分に、2,2-ビス(2-オキソラニル)プロパンの添加量を0.018g/分とし、変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1-[3-(トリエトキシシリル)プロピル]-4-メチルピペラジンに替え、添加量を0.130mmol/分とした以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料H)を得た。
 試料Hの分析結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実施例6~10、比較例4~6]
 上記表1~3に示す試料(試料A~試料H)を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
 油展変性共役ジエン系重合体(試料A~H):137.5質量部
 シリカ(エボニック デグサ社製、Ultrasil VN3):75.0質量部
 カーボンブラック(東海カーボン社製、シーストKH(N339)):5.0質量部
 シランカップリング剤(エボニック デグサ社製、Si75):6.0質量部
 S-RAEオイル(JX日鉱日石エネルギー社製、JOMOプロセスNC140):4.5質量部
 亜鉛華:2.5質量部
 ステアリン酸:1.5質量部
 老化防止剤(N-イソプロピル-N’-フェニル-p-フェニレンジアミン):2.0質量部
 硫黄:2.2質量部
 加硫促進剤(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
 加硫促進剤(ジフェニルグアニジン):2.0質量部
 合計:240.9質量部
 ゴム組成物は、下記の方法により混練を行った。
 温度制御装置を具備する密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数50/57rpmの条件で、原料ゴム(試料A~H)、充填剤(シリカ、カーボンブラック)、有機シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度(配合物)は155~160℃でゴム組成物を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により排出温度(配合物)を155~160℃に調整した。
 冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤を加えて混練した。その後、成型し、160℃で20分間、加硫プレスにて加硫した。加硫後、ゴム組成物の物性を測定した。物性測定結果を表4、5に示した。
 ゴム組成物の物性は、下記の方法により測定した。
(1)配合物ムーニー粘度
 ムーニー粘度計を使用し、JIS K6300-1により、130℃で、予熱を1分間行った後に、ローターを毎分2回転で回転させ4分後の粘度を測定した。値が小さいほど加工性に優れることを示す。
(2)引張強さ
 JIS K6251の引張試験法により測定し、比較例4を100として指数化した。
(3)粘弾性パラメータ
 レオメトリックス・サイエンティフィック社製の粘弾性試験機(ARES)を使用し、ねじりモードで粘弾性パラメータを測定した。各々の測定値は比較例4を100として指数化した。0℃において周波数10Hz、ひずみ1%で測定したtanδをウェットグリップ性能の指標とした。値が大きいほどウェットグリップ性能が良好であることを示す。また、50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費特性の指標とした。値が小さいほど省燃費性能が良好であることを示す。
(4)耐摩耗性
 アクロン摩耗試験機(安田精機製作所製)を使用し、JIS K6264-2に従い、荷重44.1N、1000回転の摩耗量を測定し、比較例4を100として指数化した。指数が大きいほど耐摩耗性が優れることを示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表4、5に示す通り、実施例6~10の変性共役ジエン系重合体組成物は、比較例4及び5の組成物と比較して、高温のtanδが低くヒステリシスロスが少なく、タイヤの低転がり抵抗性が実現されているとともに、低温のtanδが高くウェットスキッド抵抗性に優れていることが確認された。さらに、耐摩耗性及び引張り強さも良好であることが確認された。また、比較例6と比較した場合には、配合物ムーニー粘度が低く、加工性と加硫物の物性のバランスに優れていることが確認された。
[実施例11]
 内容積10Lで、撹拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去したブタジエン777g、スチレン273g、シクロヘキサン4800g、極性物質として2,2-ビス(2-オキソラニル)プロパン1.30gを反応器へ入れ、反応器内温を37℃に保持した。重合開始剤として、n-ブチルリチウム15.1mmolを含むシクロヘキサン溶液を反応器に供給した。重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は70℃に達した。重合反応終了後、反応器に1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンを3.39mmol添加し、69℃で5分間変性反応を実施した。このとき、添加した変性剤中のシリル基に結合したメトキシ基の総量の、n-ブチルリチウム添加量に対するモル比は1.35であった。この重合体溶液に、酸化防止剤(BHT)2.1gを添加した後、スチームストリッピングにより溶媒を除去し、乾燥機により乾燥処理を施して、変性成分を有するスチレン-ブタジエン共重合体(試料I)を得た。
 (試料I)を分析した結果、結合スチレン量は26質量%、結合ブタジエン量は74%であった。
 重合体のムーニー粘度は60であった。
 赤外分光光度計を用いた測定結果よりハンプトン法に準じて計算して求めたブタジエン部分のミクロ構造のビニル結合量(1,2-結合量)は56%であった。
 ガラス転移温度は-23℃であった。
 GPCで測定したポリスチレン換算の重量平均分子量(Mw)は37.2万、数平均分子量(Mn)は31.8万、Mw/Mnは1.17であった。
[比較例7]
 内容積10Lで、撹拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去したブタジエン777g、スチレン273g、シクロヘキサン4800g、極性物質として2,2-ビス(2-オキソラニル)プロパン0.52gを反応器へ入れ、反応器内温を43℃に保持した。重合開始剤として、n-ブチルリチウム6.52mmolを含むシクロヘキサン溶液を反応器に供給した。重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は71℃に達した。
 重合反応終了後、反応器に1-[3-(トリエトキシシリル)プロピル]-4-メチルピペラジンを4.35mmol添加して70℃で5分間変性反応を実施した。この重合体溶液に、酸化防止剤(BHT)2.1gを添加した後、スチームストリッピングにより溶媒を除去し、乾燥機により乾燥処理を施して、変性成分を有するスチレン-ブタジエン共重合体(試料J)を得た。
 (試料J)を分析した結果、結合スチレン量は26質量%、結合ブタジエン量は74%であった。
 重合体のムーニー粘度は58であった。
 赤外分光光度計を用いた測定結果よりハンプトン法に準じて計算して求めたブタジエン部分のミクロ構造のビニル結合量(1,2-結合量)は56%であった。
 ガラス転移温度は-23℃であった。
 GPCで測定したポリスチレン換算の重量平均分子量(Mw)は36.8万、数平均分子量(Mn)は28.1万、Mw/Mnは1.31であった。
[実施例12、比較例8]
 実施例11及び比較例7で得られた試料(試料I及びJ)を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
 変性共役ジエン系重合体(試料I~J):100.0質量部
 シリカ(エボニック デグサ社製、Ultrasil VN3):25.0質量部
 カーボンブラック(東海カーボン社製、シーストKH(N339)):20.0質量部
 シランカップリング剤(エボニック デグサ社製、Si75):2.0質量部
 S-RAEオイル(JX日鉱日石エネルギー社製、JOMOプロセスNC140):5.0質量部
 亜鉛華:3.0質量部
 ステアリン酸:2.0質量部
 老化防止剤(N-イソプロピル-N’-フェニル-p-フェニレンジアミン):1.0質量部
 硫黄:1.9質量部
 加硫促進剤(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.0質量部
 加硫促進剤(ジフェニルグアニジン):1.5質量部
 合計:162.4質量部
 ゴム組成物は、実施例6~10、比較例4~6と同様の方法により混練を行った。ゴム組成物の物性も、実施例6~10、比較例4~6と同様の方法により測定を行った。物性測定結果を表6に示した。結果が指数値で表されているものについては、比較例8を「100」とした。
Figure JPOXMLDOC01-appb-T000009
 表6に示す通り、実施例12の変性共役ジエン系重合体組成物は、比較例8の組成物と比較して、高温のtanδが低くヒステリシスロスが少なく、タイヤの低転がり抵抗性が実現されているとともに、低温のtanδが高くウェットスキッド抵抗性に優れていることが確認された。また、配合物ムーニー粘度が低く、加工性と加硫物の物性のバランスに優れていることが確認された。さらに、耐摩耗性及び引張り強さも良好であることが確認された。
 以上より、本実施例の変性共役ジエン系重合体は、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、実用上十分な耐摩耗性や破壊強度を有し、かつ加工性にも優れていることが確認された。
 本出願は、2009年10月02日に日本国特許庁へ出願された日本特許出願(特願2009-230412)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る変性共役ジエン系重合体の製造方法によれば、加硫物とした際に、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、実用上十分な耐摩耗性や破壊特性を有し、かつ加工性にも優れた変性共役ジエン系重合体を得ることができ、タイヤトレッド、履物、工業用品等の各種部材の材料として好適に用いることができる。

Claims (8)

  1.  アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程と、
     前記共役ジエン系重合体の前記活性末端に、2個以上の窒素原子と炭化水素からなる複素環式構造を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物である変性剤を反応させる変性工程と、
    を有する変性共役ジエン系重合体の製造方法。
  2.  前記変性剤が下記式(1)で表される化合物である、請求項1に記載の変性共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1~R4は、各々独立して、炭素数1~20のアルキル基、又はアリール基を表し、R5及びR6は、各々独立して、炭素数1~20のアルキレン基を表し、R7及びR8は、各々独立して、炭素数1~6の炭化水素基を表し、かつ隣接する2つのNとともに5員環以上の環構造を形成し、m及びnは、各々独立して、2又は3の整数を表す。)
  3.  前記変性剤中の全てのシリル基が、3個のアルコキシ基が結合されているシリル基である、請求項1又は2に記載の変性共役ジエン系重合体の製造方法。
  4.  前記変性剤中のシリル基に結合するアルコキシ基の合計モル数が、前記重合開始剤の添加モル数の0.8~3倍となる範囲である、請求項1~3のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
  5.  前記重合工程が連続式である、請求項1~4のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
  6.  変性共役ジエン系重合体の、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量が200,000~600,000である、請求項1~5のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
  7.  請求項1~6のいずれか1項に記載の変性共役ジエン系重合体の製造方法により得られる変性共役ジエン系重合体。
  8.  請求項7に記載の変性共役ジエン系重合体を20質量部以上含むゴム成分100質量部と、
     シリカ系無機充填剤0.5~300質量部と、
    を含む変性共役ジエン系重合体組成物。
PCT/JP2010/066431 2009-10-02 2010-09-22 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 WO2011040312A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2010800393621A CN102482359B (zh) 2009-10-02 2010-09-22 改性共轭二烯系聚合物的制造方法、改性共轭二烯系聚合物以及改性共轭二烯系聚合物组合物
BR112012006333-2A BR112012006333B1 (pt) 2009-10-02 2010-09-22 Método para produzir um polímero à base de dieno conjugado modificado
EP10820431.4A EP2484701B1 (en) 2009-10-02 2010-09-22 Production method for modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition
US13/497,575 US8816014B2 (en) 2009-10-02 2010-09-22 Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition
JP2011534212A JP5705120B2 (ja) 2009-10-02 2010-09-22 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
KR1020127007377A KR101413791B1 (ko) 2009-10-02 2010-09-22 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009230412 2009-10-02
JP2009-230412 2009-10-02

Publications (1)

Publication Number Publication Date
WO2011040312A1 true WO2011040312A1 (ja) 2011-04-07

Family

ID=43826135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066431 WO2011040312A1 (ja) 2009-10-02 2010-09-22 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物

Country Status (8)

Country Link
US (1) US8816014B2 (ja)
EP (1) EP2484701B1 (ja)
JP (1) JP5705120B2 (ja)
KR (1) KR101413791B1 (ja)
CN (1) CN102482359B (ja)
BR (1) BR112012006333B1 (ja)
TW (1) TWI399389B (ja)
WO (1) WO2011040312A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082843A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ
JP2013082840A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ
JP2013082841A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体、その製造方法、変性共役ジエン系重合体組成物、及びタイヤ
JP2013082842A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ
JP2013087218A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp ベーストレッド用ゴム組成物
JP2013087210A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp タイヤサイドウォール用変性共役ジエン系重合体組成物
JP2013087219A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp サイドウォール用ゴム組成物
WO2013083749A1 (en) 2011-12-08 2013-06-13 Dow Corning Corporation Hydrolysable silanes and elastomer compositions containing them
JP2013231177A (ja) * 2012-04-26 2013-11-14 Goodyear Tire & Rubber Co:The トリグリセリド含有溶液重合調製スチレン/ブタジエンエラストマー及び部品を有するタイヤ
US20160053059A1 (en) * 2013-04-25 2016-02-25 Lg Chem, Ltd. Method for continuous preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same
WO2016093671A1 (ko) * 2014-12-11 2016-06-16 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2016093496A1 (ko) * 2014-12-11 2016-06-16 주식회사 엘지화학 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
JP2017508058A (ja) * 2014-11-13 2017-03-23 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびこれを含むゴム組成物
KR101759402B1 (ko) * 2014-12-11 2017-07-19 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
JP2017538788A (ja) * 2014-12-11 2017-12-28 エルジー・ケム・リミテッド 変性共役ジエン系重合体、これを含む変性ゴム組成物および変性共役ジエン系重合体の製造方法
JP2018087324A (ja) * 2016-11-24 2018-06-07 宇部興産株式会社 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法
JP2018531998A (ja) * 2015-12-24 2018-11-01 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法及び変性剤
JP2019500475A (ja) * 2016-11-23 2019-01-10 エルジー・ケム・リミテッド 変性共役ジエン系重合体およびその製造方法
US20190256635A1 (en) 2017-01-03 2019-08-22 Lg Chem, Ltd. Method for Preparing Modified Conjugated Diene-based Polymer
WO2020262371A1 (ja) 2019-06-25 2020-12-30 日鉄ケミカル&マテリアル株式会社 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、その組成物、ゴム架橋物及びタイヤ部材
JP2022511923A (ja) * 2019-09-27 2022-02-01 エルジー・ケム・リミテッド 変性剤、それを含む変性共役ジエン系重合体、およびその重合体の製造方法
WO2023100993A1 (ja) 2021-12-03 2023-06-08 日鉄ケミカル&マテリアル株式会社 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、樹脂組成物、樹脂架橋物及び構造部材
WO2024029624A1 (ja) * 2022-08-05 2024-02-08 株式会社Eneosマテリアル 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201121128D0 (en) 2011-12-08 2012-01-18 Dow Corning Treatment of filler with silane
GB201121124D0 (en) 2011-12-08 2012-01-18 Dow Corning Hydrolysable silanes
GB201121133D0 (en) 2011-12-08 2012-01-18 Dow Corning Hydrolysable silanes
KR101365902B1 (ko) * 2013-01-14 2014-03-12 금호석유화학 주식회사 공역 디엔계 고분자의 말단 변성제
CN105849133B (zh) * 2013-10-17 2018-05-22 Lg化学株式会社 末端官能化的基于共轭二烯的聚合物及制备该聚合物的方法
KR101674305B1 (ko) 2014-11-27 2016-11-08 주식회사 엘지화학 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법
WO2016085102A1 (ko) * 2014-11-27 2016-06-02 주식회사 엘지화학 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법
WO2017111463A1 (ko) * 2015-12-24 2017-06-29 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
KR102046930B1 (ko) 2016-05-03 2019-11-20 주식회사 엘지화학 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
KR102225164B1 (ko) * 2016-08-19 2021-03-09 아사히 가세이 가부시키가이샤 변성 공액 디엔계 중합체, 고무 조성물 및 타이어
WO2018097480A1 (ko) * 2016-11-23 2018-05-31 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법
KR102072088B1 (ko) 2016-11-28 2020-02-03 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법
KR102354835B1 (ko) * 2017-01-03 2022-01-25 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
JP7089850B2 (ja) * 2017-03-31 2022-06-23 住友化学株式会社 共役ジエン系重合体及び共役ジエン系重合体の製造方法
CN107652319A (zh) * 2017-09-30 2018-02-02 安徽硅宝有机硅新材料有限公司 一种哌嗪基丙基硅烷及其制备方法
JP6930484B2 (ja) * 2018-04-17 2021-09-01 信越化学工業株式会社 有機ケイ素化合物およびその製造方法
CN110872406B (zh) * 2018-08-30 2022-04-12 旭化成株式会社 改性共轭二烯系聚合物组合物
CN110878151B (zh) * 2018-09-05 2022-04-12 旭化成株式会社 橡胶组合物
KR102653222B1 (ko) * 2019-09-11 2024-04-02 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
IT201900019795A1 (it) 2019-10-25 2021-04-25 Pirelli Composizione elastomerica per mescole di pneumatici per ruote di veicoli e pneumatici che la comprendono
IT202200021522A1 (it) 2022-10-19 2024-04-19 Pirelli Composizioni elastomeriche per pneumatici comprendenti nuovi agenti funzionalizzanti reticolanti, mescole elastomeriche e pneumatici che li comprendono

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140211A (ja) 1983-02-01 1984-08-11 Nippon Erasutomaa Kk スチレン−ブタジエン共重合体の製造方法
JPS634841A (ja) 1986-06-25 1988-01-09 Hitachi Ltd プラズマ処理装置
JPS6453851A (en) 1987-08-25 1989-03-01 Hitachi Ltd Printing system
JPH029041A (ja) 1988-06-28 1990-01-12 Sony Corp 回転ドラムのアース装置
JPH0245492A (ja) * 1988-06-25 1990-02-15 Degussa Ag 環状n,n,n´―およびn,n,n´,n´―置換オルガニルオキシ官能性チオ尿素の製造方法および該チオ尿素
JPH02132104A (ja) * 1988-11-11 1990-05-21 Toshiba Silicone Co Ltd 加水分解性シリル基で分子鎖末端が閉塞されたポリブタジエン、その製造方法およびそれを含有する室温硬化性組成物
GB2241239A (en) 1990-02-08 1991-08-28 Secr Defence Olefinic polymerisation using silylether initiators
JPH0428704A (ja) 1990-05-24 1992-01-31 Kuraray Co Ltd 塩化ビニル系化合物の懸濁重合用分散安定剤
JPH0436636A (ja) 1990-06-01 1992-02-06 Canon Inc フローセル装置
JPH07233217A (ja) 1993-12-29 1995-09-05 Bridgestone Corp 重合体及びその重合体組成物
JPH08109219A (ja) 1994-10-11 1996-04-30 Asahi Chem Ind Co Ltd 水添重合体
US5527753A (en) 1994-12-13 1996-06-18 Fmc Corporation Functionalized amine initiators for anionic polymerization
US5708092A (en) 1994-05-13 1998-01-13 Fmc Corporation Functionalized chain extended initiators for anionic polymerization
JP2001079709A (ja) 1999-09-13 2001-03-27 Toshiba Mach Co Ltd エンドミル
WO2001023467A1 (fr) 1999-09-27 2001-04-05 Asahi Kasei Kabushiki Kaisha Composition de caoutchouc
JP2001158834A (ja) 1999-12-02 2001-06-12 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2005232351A (ja) * 2004-02-20 2005-09-02 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
WO2006112450A1 (ja) * 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
WO2007034785A1 (ja) 2005-09-22 2007-03-29 Asahi Kasei Chemicals Corporation 共役ジエン系重合体およびその製造方法
WO2007114203A1 (ja) 2006-03-31 2007-10-11 Zeon Corporation 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ
WO2008013090A1 (fr) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Polymère de diène conjugué modifié et procédé de production de celui-ci
JP2008143943A (ja) * 2006-12-06 2008-06-26 Bridgestone Corp 空気入りタイヤ
JP2009230412A (ja) 2008-03-21 2009-10-08 Jfe Steel Corp 結果予測装置、及び、これを用いた製品品質予測方法
JP2010132872A (ja) * 2008-10-29 2010-06-17 Sumitomo Rubber Ind Ltd ゴム組成物及びタイヤ

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
SE307674B (ja) 1963-12-26 1969-01-13 Shell Int Research
JPS59133203A (ja) 1983-01-20 1984-07-31 Asahi Chem Ind Co Ltd 重合体の水添方法
GB2134909B (en) 1983-01-20 1986-08-20 Asahi Chemical Ind Catalytic hydrogenation of conjugated diene polymer
JPS60220147A (ja) 1984-04-18 1985-11-02 Asahi Chem Ind Co Ltd オレフイン水添触媒および該触媒を用いた重合体の水添方法
JPS6133132A (ja) 1984-07-25 1986-02-17 Asahi Chem Ind Co Ltd オレフインの水添方法
JPS62207303A (ja) 1986-03-07 1987-09-11 Asahi Chem Ind Co Ltd 共役ジエン系ポリマ−の水添法
EP1199313B1 (en) 1993-12-29 2005-08-24 Bridgestone Corporation Diene polymers and copolymers having an alkoxysilane group
JP3895446B2 (ja) 1997-12-26 2007-03-22 株式会社ブリヂストン 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
CN1274719C (zh) 2001-09-27 2006-09-13 Jsr株式会社 共轭二烯(共)聚合橡胶、(共)聚合橡胶的制造方法、橡胶组合物、复合体以及轮胎
US9226876B2 (en) * 2001-10-19 2016-01-05 The Goodyear Tire & Rubber Company Rubber for baby bottle nipples, pacifiers, and syringe plungers
JP2004067982A (ja) 2002-06-14 2004-03-04 Jsr Corp ゴム・無機化合物複合体、ゴム組成物、タイヤトレッドおよび防振材
JP4151835B2 (ja) 2002-12-04 2008-09-17 株式会社ブリヂストン 変性重合体及びその製造方法、並びにゴム組成物
JP4739025B2 (ja) 2003-12-15 2011-08-03 旭化成ケミカルズ株式会社 無機充填剤との親和性に優れた重合体
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
US20050203251A1 (en) 2004-03-11 2005-09-15 Sumitomo Chemical Company, Limited Process for producing modified diene polymer rubber
WO2006025098A1 (ja) * 2004-08-31 2006-03-09 Asahi Kasei Chemicals Corporation 耐衝撃性ビニル芳香族炭化水素樹脂
ES2390283T3 (es) 2005-01-14 2012-11-08 Bridgestone Corporation Polímeros funcionalizados y neumáticos mejorados de los mismos
WO2008123164A1 (ja) 2007-03-23 2008-10-16 Jsr Corporation 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP2008285558A (ja) 2007-05-16 2008-11-27 Asahi Kasei Chemicals Corp 油展共役ジエン系重合体組成物
US9623705B2 (en) 2008-03-10 2017-04-18 Bridgestone Corporation Method for producing modified conjugated diene polymer/copolymer, modified conjugated diene polymer/copolymer, and rubber composition and tire using the same
JP5473360B2 (ja) 2008-03-10 2014-04-16 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
JP5127521B2 (ja) 2008-03-24 2013-01-23 旭化成ケミカルズ株式会社 変性共役ジエン系重合体及びその製造方法、並びに重合体組成物
JP5219606B2 (ja) 2008-04-25 2013-06-26 株式会社ブリヂストン ゴム組成物及びそれを用いた空気入りタイヤ
JP2009263537A (ja) 2008-04-25 2009-11-12 Bridgestone Corp 空気入りタイヤ
JP2009280805A (ja) 2008-04-25 2009-12-03 Bridgestone Corp タイヤ
FR2930554B1 (fr) 2008-04-29 2012-08-17 Michelin Soc Tech Melange elastomerique comprenant majoritairement un elastomere dienique couple par un groupe amino-alcoxysilane, composition de caoutchouc le comprenant et leurs procedes d'obtention.
EP2277940A4 (en) 2008-04-30 2012-08-15 Bridgestone Corp METHOD FOR MANUFACTURING MODIFIED CONJUGATED DIENE COPOLYMER, MODIFIED CONJUGATED DIENE COPOLYMER MANUFACTURED BY THE METHOD, RUBBER COMPOSITION AND TIRE
JP6085077B2 (ja) 2008-04-30 2017-02-22 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
SG159479A1 (en) * 2008-08-27 2010-03-30 Sumitomo Chemical Co Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140211A (ja) 1983-02-01 1984-08-11 Nippon Erasutomaa Kk スチレン−ブタジエン共重合体の製造方法
JPS634841A (ja) 1986-06-25 1988-01-09 Hitachi Ltd プラズマ処理装置
JPS6453851A (en) 1987-08-25 1989-03-01 Hitachi Ltd Printing system
JPH0245492A (ja) * 1988-06-25 1990-02-15 Degussa Ag 環状n,n,n´―およびn,n,n´,n´―置換オルガニルオキシ官能性チオ尿素の製造方法および該チオ尿素
JPH029041A (ja) 1988-06-28 1990-01-12 Sony Corp 回転ドラムのアース装置
JPH02132104A (ja) * 1988-11-11 1990-05-21 Toshiba Silicone Co Ltd 加水分解性シリル基で分子鎖末端が閉塞されたポリブタジエン、その製造方法およびそれを含有する室温硬化性組成物
GB2241239A (en) 1990-02-08 1991-08-28 Secr Defence Olefinic polymerisation using silylether initiators
JPH0428704A (ja) 1990-05-24 1992-01-31 Kuraray Co Ltd 塩化ビニル系化合物の懸濁重合用分散安定剤
JPH0436636A (ja) 1990-06-01 1992-02-06 Canon Inc フローセル装置
JPH07233217A (ja) 1993-12-29 1995-09-05 Bridgestone Corp 重合体及びその重合体組成物
US5708092A (en) 1994-05-13 1998-01-13 Fmc Corporation Functionalized chain extended initiators for anionic polymerization
JPH08109219A (ja) 1994-10-11 1996-04-30 Asahi Chem Ind Co Ltd 水添重合体
US5527753A (en) 1994-12-13 1996-06-18 Fmc Corporation Functionalized amine initiators for anionic polymerization
JP2001079709A (ja) 1999-09-13 2001-03-27 Toshiba Mach Co Ltd エンドミル
WO2001023467A1 (fr) 1999-09-27 2001-04-05 Asahi Kasei Kabushiki Kaisha Composition de caoutchouc
JP2001158834A (ja) 1999-12-02 2001-06-12 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2005232351A (ja) * 2004-02-20 2005-09-02 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
WO2006112450A1 (ja) * 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
WO2007034785A1 (ja) 2005-09-22 2007-03-29 Asahi Kasei Chemicals Corporation 共役ジエン系重合体およびその製造方法
WO2007114203A1 (ja) 2006-03-31 2007-10-11 Zeon Corporation 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ
WO2008013090A1 (fr) 2006-07-24 2008-01-31 Asahi Kasei Chemicals Corporation Polymère de diène conjugué modifié et procédé de production de celui-ci
JP2008143943A (ja) * 2006-12-06 2008-06-26 Bridgestone Corp 空気入りタイヤ
JP2009230412A (ja) 2008-03-21 2009-10-08 Jfe Steel Corp 結果予測装置、及び、これを用いた製品品質予測方法
JP2010132872A (ja) * 2008-10-29 2010-06-17 Sumitomo Rubber Ind Ltd ゴム組成物及びタイヤ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
I.M. KOLTHOFF ET AL., J. POLYM. SCI., vol. 1, 1946, pages 429
KAUTSCHUK GUMMI KUNSTSTOFFE, vol. 52, no. 12, 1999, pages 799
R.R. HAMPTON, ANALYTICAL CHEMISTRY, vol. 21, 1949, pages 923
See also references of EP2484701A4

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082843A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ
JP2013082840A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ
JP2013082841A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体、その製造方法、変性共役ジエン系重合体組成物、及びタイヤ
JP2013082842A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ
JP2013087219A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp サイドウォール用ゴム組成物
JP2013087210A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp タイヤサイドウォール用変性共役ジエン系重合体組成物
JP2013087218A (ja) * 2011-10-19 2013-05-13 Asahi Kasei Chemicals Corp ベーストレッド用ゴム組成物
WO2013083749A1 (en) 2011-12-08 2013-06-13 Dow Corning Corporation Hydrolysable silanes and elastomer compositions containing them
CN103974961A (zh) * 2011-12-08 2014-08-06 道康宁公司 可水解硅烷和包含该可水解硅烷的弹性体组合物
JP2015502357A (ja) * 2011-12-08 2015-01-22 ダウ コーニング コーポレーションDow Corning Corporation 加水分解性シラン及びそれらを含有するエラストマー組成物
CN103974961B (zh) * 2011-12-08 2017-02-22 道康宁公司 可水解硅烷和包含该可水解硅烷的弹性体组合物
JP2013231177A (ja) * 2012-04-26 2013-11-14 Goodyear Tire & Rubber Co:The トリグリセリド含有溶液重合調製スチレン/ブタジエンエラストマー及び部品を有するタイヤ
US20160053059A1 (en) * 2013-04-25 2016-02-25 Lg Chem, Ltd. Method for continuous preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same
US10253158B2 (en) * 2013-04-25 2019-04-09 Lg Chem, Ltd. Method for continuously preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same
JP2017508058A (ja) * 2014-11-13 2017-03-23 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびこれを含むゴム組成物
JP2017538788A (ja) * 2014-12-11 2017-12-28 エルジー・ケム・リミテッド 変性共役ジエン系重合体、これを含む変性ゴム組成物および変性共役ジエン系重合体の製造方法
US9834620B2 (en) 2014-12-11 2017-12-05 Lg Chem, Ltd. Modified conjugated diene-based polymer, preparation method therefor, and rubber composition containing same
WO2016093496A1 (ko) * 2014-12-11 2016-06-16 주식회사 엘지화학 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
JP2017538787A (ja) * 2014-12-11 2017-12-28 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物
US10118974B2 (en) 2014-12-11 2018-11-06 Lg Chem, Ltd. Modified conjugated diene polymer, a modified rubber composition containing same, and method for preparing modified conjugated diene polymer
WO2016093671A1 (ko) * 2014-12-11 2016-06-16 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
KR101759402B1 (ko) * 2014-12-11 2017-07-19 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
US10508157B2 (en) 2015-12-24 2019-12-17 Lg Chem, Ltd. Modified and conjugated diene-based polymer, method for preparing the same, and modifier
JP2018531998A (ja) * 2015-12-24 2018-11-01 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法及び変性剤
JP2019500475A (ja) * 2016-11-23 2019-01-10 エルジー・ケム・リミテッド 変性共役ジエン系重合体およびその製造方法
US10808055B2 (en) 2016-11-23 2020-10-20 Lg Chem, Ltd. Modified conjugated diene-based polymer and method for preparing the same
JP2018087324A (ja) * 2016-11-24 2018-06-07 宇部興産株式会社 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法
JP2019534373A (ja) * 2017-01-03 2019-11-28 エルジー・ケム・リミテッド 変性共役ジエン系重合体の製造方法
US20190256635A1 (en) 2017-01-03 2019-08-22 Lg Chem, Ltd. Method for Preparing Modified Conjugated Diene-based Polymer
US10920004B2 (en) 2017-01-03 2021-02-16 Lg Chem, Ltd. Method for preparing modified conjugated diene-based polymer
WO2020262371A1 (ja) 2019-06-25 2020-12-30 日鉄ケミカル&マテリアル株式会社 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、その組成物、ゴム架橋物及びタイヤ部材
JP2022511923A (ja) * 2019-09-27 2022-02-01 エルジー・ケム・リミテッド 変性剤、それを含む変性共役ジエン系重合体、およびその重合体の製造方法
JP7161055B2 (ja) 2019-09-27 2022-10-25 エルジー・ケム・リミテッド 変性剤、それを含む変性共役ジエン系重合体、およびその重合体の製造方法
US12116439B2 (en) 2019-09-27 2024-10-15 Lg Chem, Ltd. Modifier, modified conjugated diene-based polymer comprising thereof and method for preparing the polymer
WO2023100993A1 (ja) 2021-12-03 2023-06-08 日鉄ケミカル&マテリアル株式会社 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、樹脂組成物、樹脂架橋物及び構造部材
WO2024029624A1 (ja) * 2022-08-05 2024-02-08 株式会社Eneosマテリアル 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ

Also Published As

Publication number Publication date
US8816014B2 (en) 2014-08-26
KR101413791B1 (ko) 2014-06-30
JP5705120B2 (ja) 2015-04-22
TWI399389B (zh) 2013-06-21
KR20120058564A (ko) 2012-06-07
EP2484701A4 (en) 2016-04-20
TW201120073A (en) 2011-06-16
JPWO2011040312A1 (ja) 2013-02-28
CN102482359B (zh) 2013-09-04
US20120277369A1 (en) 2012-11-01
BR112012006333B1 (pt) 2019-09-17
CN102482359A (zh) 2012-05-30
BR112012006333A2 (pt) 2017-07-18
EP2484701B1 (en) 2017-11-08
EP2484701A1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5705120B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP5911524B2 (ja) 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP6501847B2 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP5898212B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、ゴム組成物、及びタイヤ
JP6106476B2 (ja) 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ
WO2016199779A1 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP2016079217A (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP6032880B2 (ja) 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ
JP6105336B2 (ja) 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ
JP6166066B2 (ja) 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ
JP6032882B2 (ja) サイドウォール用ゴム組成物
JP2018028018A (ja) 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ
JP2018002986A (ja) 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ
JP2013082794A (ja) 変性共役ジエン系重合体組成物
JP2013082842A (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ
JP6487220B2 (ja) 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法及びその組成物
JP5534913B2 (ja) 変性共役ジエン系ゴム組成物及び変性共役ジエン系ゴム組成物の製造方法
JP5850699B2 (ja) ベーストレッド用ゴム組成物
JP2019131723A (ja) 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ
JP2015113437A (ja) 変性共役ジエン系重合体組成物の製造方法
JP2015214619A (ja) ゴム組成物
JP7525666B2 (ja) ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039362.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534212

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2418/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010820431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010820431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007377

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13497575

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001304

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012006333

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012006333

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012006333

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120321