WO2011040312A1 - 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 - Google Patents
変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 Download PDFInfo
- Publication number
- WO2011040312A1 WO2011040312A1 PCT/JP2010/066431 JP2010066431W WO2011040312A1 WO 2011040312 A1 WO2011040312 A1 WO 2011040312A1 JP 2010066431 W JP2010066431 W JP 2010066431W WO 2011040312 A1 WO2011040312 A1 WO 2011040312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conjugated diene
- diene polymer
- modified conjugated
- compound
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
- C08C19/42—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
- C08C19/44—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
Definitions
- the present invention relates to a method for producing a modified conjugated diene polymer, a modified conjugated diene polymer, and a modified conjugated diene polymer composition.
- silica Conventionally, carbon black, silica, and the like have been used as reinforcing fillers for tire treads.
- Use of silica has an advantage that low hysteresis loss and wet skid resistance can be improved.
- silica with a hydrophilic surface has a low affinity with conjugated diene rubbers and has a disadvantage of poor dispersibility compared with carbon black, with respect to carbon black with a hydrophobic surface.
- Patent Document 1 discloses a modified diene rubber obtained by reacting a polymer terminus with a modifier having a glycidylamino group
- Patent Document 2 discloses glycidoxyalkoxysilane as a polymer terminal.
- Patent Documents 3 to 7 disclose a modified diene rubber obtained by reacting an alkoxysilane containing an amino group with a polymer terminal, and a composition of these with silica.
- the present invention has been made in view of the above circumstances, has a good balance between low hysteresis loss and wet skid resistance when vulcanized, has practically sufficient wear resistance and fracture strength, Another object is to provide a method for producing a modified conjugated diene polymer, a modified conjugated diene polymer, and a modified conjugated diene polymer composition, which are excellent in processability.
- the present inventors have used an alkali metal compound or an alkaline earth metal compound as a polymerization initiator, and a conjugated diene compound, or a conjugated diene compound and an aromatic vinyl compound.
- a modified conjugate having a step of obtaining a conjugated diene polymer having an active end by polymerization or copolymerization, and a step of reacting a compound having a specific structure with the active end of the conjugated diene polymer.
- the present inventors have found that the above-described problems can be solved by using a method for producing a diene polymer, and have completed the present invention.
- the present invention is as follows. [1] By using an alkali metal compound or an alkaline earth metal compound as a polymerization initiator and polymerizing or copolymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound, a conjugated diene polymer having an active terminal is obtained. A polymerization step to obtain; Two or more silyl groups having one or more heterocyclic structures composed of two or more nitrogen atoms and hydrocarbons and having two or more alkoxy groups bonded to the active terminal of the conjugated diene polymer. A denaturing step of reacting a denaturing agent which is a compound having, A process for producing a modified conjugated diene-based polymer.
- a method for producing a diene polymer [7] A modified conjugated diene polymer obtained by the method for producing a modified conjugated diene polymer according to any one of [1] to [6]. [8] 100 parts by mass of a rubber component containing 20 parts by mass or more of the modified conjugated diene polymer according to [7], 0.5 to 300 parts by mass of a silica-based inorganic filler, A modified conjugated diene polymer composition comprising:
- modified conjugated diene polymer production method modified conjugated diene polymer, and modified conjugated diene polymer composition can be provided.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
- the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
- the method for producing the modified conjugated diene polymer of the present embodiment is as follows: By using an alkali metal compound or an alkaline earth metal compound as a polymerization initiator and polymerizing or copolymerizing a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound, a conjugated diene polymer having an active terminal is obtained. A polymerization step to obtain; Compound having two or more silyl groups having two or more heterocycles composed of two or more nitrogen atoms and hydrocarbons and two or more alkoxy groups bonded to the active terminal of the conjugated diene polymer A denaturing step of reacting a denaturing agent, Have
- an alkali metal compound or an alkaline earth metal compound is used as a polymerization initiator, and the conjugated diene compound, or the conjugated diene compound and the aromatic vinyl compound are polymerized or co-polymerized.
- a conjugated diene polymer having an active terminal is obtained.
- the conjugated diene polymer constituting the modified conjugated diene polymer is a polymer of a single conjugated diene compound, a polymer or copolymer of different types of conjugated diene compounds, or a conjugated diene compound and an aromatic vinyl compound. It is a copolymer.
- the conjugated diene compound is not particularly limited as long as it is a polymerizable monomer.
- 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene examples include 3-methyl-1,3-pentadiene, 1,3-heptadiene, 1,3-hexadiene, and the like.
- 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
- the aromatic vinyl compound is not particularly limited as long as it is a monomer copolymerizable with a conjugated diene compound.
- a conjugated diene compound for example, styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene And diphenylethylene.
- styrene is preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
- the conjugated diene polymer When the conjugated diene polymer is a copolymer, it may be a random copolymer or a block copolymer.
- the random copolymer include a butadiene-isoprene random copolymer, a butadiene-styrene random copolymer, an isoprene-styrene random copolymer, and a butadiene-isoprene-styrene random copolymer.
- the composition distribution of each monomer in the copolymer chain include a completely random copolymer having a statistically random composition, or a tapered random copolymer having a tapered composition distribution.
- the bonding mode of the conjugated diene that is, the composition of 1,4-bonds, 1,2-bonds, etc. may be uniform or distributed.
- Examples of the block copolymer include a 2 type block copolymer comprising 2 blocks, a 3 type block copolymer comprising 3 blocks, and a 4 type block copolymer comprising 4 blocks.
- a block composed of an aromatic vinyl compound such as styrene is represented by S
- S an aromatic vinyl compound
- B a conjugated diene compound
- B a block composed of a copolymer of an aromatic vinyl compound and a conjugated diene compound
- the boundaries of each block need not be clearly distinguished.
- the block B is a copolymer of an aromatic vinyl compound and a conjugated diene compound
- the aromatic vinyl compound in the block B may be distributed uniformly or in a tapered shape.
- a plurality of portions where the aromatic vinyl compound is uniformly distributed and / or a plurality of portions where the aromatic vinyl compound is distributed in a tapered shape may coexist.
- a plurality of segments having different aromatic vinyl compound contents may coexist.
- the structures such as molecular weight and composition thereof may be the same or different.
- the conjugated diene polymer having a functional group can be further hydrogenated in an inert solvent to convert all or part of the double bonds to saturated hydrocarbons.
- heat resistance and weather resistance are improved, and deterioration of the product when processed at a high temperature can be prevented. As a result, it exhibits even better performance in various applications such as automotive applications.
- the hydrogenation rate (ie, “hydrogenation rate”) of the unsaturated double bond based on the conjugated diene compound can be arbitrarily selected according to the purpose and is not particularly limited. When used as a vulcanized rubber, it is preferable that the double bond of the conjugated diene part partially remains. From this point of view, the hydrogenation rate of the conjugated diene part in the polymer is preferably 3 to 70%, more preferably 5 to 65%, and still more preferably 10 to 60%.
- the hydrogenation rate of the aromatic double bond based on the aromatic vinyl compound in the copolymer of the conjugated diene compound and the aromatic vinyl compound is not particularly limited, but is preferably 50% or less, 30 % Or less is more preferable, and 20% or less is further preferable.
- the hydrogenation rate can be measured by a nuclear magnetic resonance apparatus (NMR).
- the hydrogenation method is not particularly limited, and a known method can be used.
- a method of hydrogenation by blowing gaseous hydrogen into a polymer solution in the presence of a catalyst may be mentioned.
- Catalysts include heterogeneous catalysts such as catalysts in which noble metals are supported on porous inorganic materials; catalysts in which salts such as nickel and cobalt are solubilized and reacted with organoaluminum, etc., catalysts using metallocenes such as titanocene, etc. And homogeneous catalysts.
- a titanocene catalyst is preferable from the viewpoint of selecting mild hydrogenation conditions.
- the hydrogenation of the aromatic group is possible by using a noble metal supported catalyst.
- the hydrogenation catalyst examples include (1) a supported heterogeneous hydrogenation catalyst in which a metal such as Ni, Pt, Pd, or Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like.
- a metal such as Ni, Pt, Pd, or Ru
- Ni Ni, A so-called Ziegler type hydrogenation catalyst using a transition metal salt such as an organic acid salt such as Co, Fe or Cr or an acetylacetone salt and a reducing agent such as organic aluminum
- an organic metal such as Ti, Ru, Rh or Zr Examples include so-called organometallic complexes such as compounds.
- a hydrogenation catalyst JP-B-42-8704, JP-B-43-6636, JP-B-63-4841, JP-B-1-37970, JP-B-1-53851, JP-B-2-
- the hydrogenation catalyst described in Japanese Patent Application Laid-Open No. 9041 and Japanese Patent Application Laid-Open No. 8-109219 can be used.
- a preferred hydrogenation catalyst is a reaction mixture of a titanocene compound and a reducing organometallic compound.
- the alkali metal compound used as the polymerization initiator is not particularly limited, but an organic lithium compound is preferable.
- organolithium compounds include low molecular weight compounds, solubilized oligomeric organolithium compounds, compounds composed of carbon-lithium bonds, compounds composed of nitrogen-lithium bonds, and compounds composed of tin-lithium bonds. Etc.
- the organic lithium compound include n-butyl lithium, sec-butyl lithium, tert-butyl lithium, n-hexyl lithium, benzyl lithium, phenyl lithium, stilbene lithium, and the like.
- Examples of the compound comprising a nitrogen-lithium bond include lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium di-n-hexylamide, lithium diisopropylamide, lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, and lithium heptamethylene. Examples thereof include imide and lithium morpholide.
- polymerization can also be carried out using a polyfunctional organolithium compound in combination.
- the polyfunctional organolithium compound include 1,4-dilithiobutane, a reaction product of sec-butyllithium and diisopropenylbenzene, 1,3,5-trilithiobenzene, n-butyllithium and 1,3-butadiene, and the like.
- examples include a reaction product of divinylbenzene, a reaction product of n-butyllithium and a polyacetylene compound.
- organic alkali metal compounds disclosed in US Pat. No. 5,708,092, British Patent 2,241,239, US Pat. No. 5,527,753, etc. are also used. be able to.
- n-butyllithium and sec-butyllithium are preferable from the viewpoints of industrial availability and ease of control of the polymerization reaction.
- organic lithium compounds may be used as a mixture of not only one type but also two or more types.
- organic alkali metal compounds examples include organic sodium compounds, organic potassium compounds, organic rubidium compounds, and organic cesium compounds. Specific examples include sodium naphthalene and potassium naphthalene.
- alkoxides such as lithium, sodium, and potassium, sulfonates, carbonates, amides, and the like can be given. Moreover, you may use together with another organometallic compound.
- alkaline earth metal compounds examples include organic magnesium compounds, organic calcium compounds, and organic strontium compounds. Specific examples include dibutyl magnesium, ethyl butyl magnesium, propyl butyl magnesium, and the like. Further, alkaline earth metal alkoxides, sulfonates, carbonates, amides and other compounds may be used. These organic alkaline earth metal compounds may be used in combination with alkali metal compounds or other organic metal compounds.
- the conjugated diene polymer is preferably obtained by growing by an anionic polymerization reaction using the above-described alkali metal compound and / or alkaline earth metal compound as a polymerization initiator.
- the conjugated diene polymer is more preferably a polymer having an active end obtained by a growth reaction by living anion polymerization.
- a modified conjugated diene polymer having a high modification rate can be obtained.
- it does not specifically limit as a polymerization mode, It can carry out by superposition
- a continuous polymerization process is preferable because a relatively high molecular weight polymer can be stably produced.
- the conjugated diene compound contains allenes, acetylenes or the like as impurities, the denaturation reaction described later may be inhibited. Therefore, the total content concentration (mass) of these impurities is preferably 200 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less.
- allenes include propadiene and 1,2-butadiene.
- acetylenes include ethyl acetylene and vinyl acetylene.
- the polymerization reaction of the conjugated diene polymer is preferably performed in a solvent.
- the solvent include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons. Specifically, aliphatic hydrocarbons such as butane, pentane, hexane and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; Examples thereof include hydrocarbons composed of a mixture thereof.
- a conjugated diene polymer for the purpose of randomly copolymerizing an aromatic vinyl compound with a conjugated diene compound, as a vinylating agent for controlling the microstructure of the conjugated diene part, or improving the polymerization rate, etc.
- a small amount of a polar compound may be added.
- polar compounds include ethers such as tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, and 2,2-bis (2-oxolanyl) propane; tetramethylethylenediamine Tertiary amine compounds such as dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; alkali metal alkoxide compounds such as potassium tert-amylate, potassium tert-butylate, sodium tert-butylate, sodium amylate; A phosphine compound such as triphenylphosphine can be used. These polar compounds may be used alone or in combination of two or more.
- the amount of the polar compound used is not particularly limited and is selected according to the purpose and the degree of effect. Usually, the amount is preferably 0.01 to 100 mol with respect to 1 mol of the polymerization initiator.
- An appropriate amount of such a polar compound (vinylating agent) can be used as a regulator of the microstructure of the polymer conjugated diene moiety depending on the desired vinyl bond amount.
- Many polar compounds simultaneously have an effective randomizing effect in the copolymerization of a conjugated diene compound and an aromatic vinyl compound, and can be used as an adjustment of the distribution of the aromatic vinyl compound and an adjuster of the styrene block amount.
- a method for randomizing a conjugated diene compound and an aromatic vinyl compound a part of 1,3-butadiene is intermittently produced during copolymerization as described in JP-A-59-140221. You may use the method of adding.
- the polymerization temperature is not particularly limited as long as the polymerization reaction such as living anion polymerization proceeds. From the viewpoint of productivity, the polymerization temperature is preferably 0 ° C. or more, and the reaction amount of the modifier with respect to the active terminal after the polymerization is completed. From the viewpoint of sufficiently ensuring the temperature, it is preferably 120 ° C. or lower.
- a polyfunctional aromatic vinyl compound such as divinylbenzene for controlling branching may be used.
- the amount of the conjugated diene in the conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 50 to 100% by mass, and more preferably 60 to 80% by mass. Further, the amount of bonded aromatic vinyl in the conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 0 to 50% by mass, and more preferably 20 to 40% by mass. When the amount of bound conjugated diene and amount of bound aromatic vinyl are within the above ranges, a vulcanizate that is further excellent in the balance between low hysteresis loss and wet skid resistance, and that also satisfies wear resistance and fracture strength can be obtained.
- the amount of bonded aromatic vinyl can be measured by ultraviolet absorption of a phenyl group, and the amount of bonded conjugated diene can also be obtained from this. Specifically, it can measure by the method according to the Example mentioned later.
- the vinyl bond amount in the conjugated diene bond unit is not particularly limited, but is preferably 10 to 75 mol%, more preferably 25 to 65 mol%.
- a vulcanizate having a further excellent balance between low hysteresis loss and wet skid resistance and satisfying wear resistance and fracture strength can be obtained.
- the modified conjugated diene polymer is a copolymer of butadiene and styrene, it is determined by the method of Hampton (RR Hampton, Analytical Chemistry, 21, 923 (1949)) in the butadiene bond unit.
- the vinyl bond amount (1,2-bond amount) can be determined.
- the microstructure (the amount of each bond in the modified conjugated diene polymer) is in the above range and the glass transition temperature of the copolymer is in the range of ⁇ 45 to ⁇ 15 ° C.
- low hysteresis loss and wet It is possible to obtain a vulcanizate having an even better balance of skid resistance.
- the conjugated diene polymer of the present embodiment is a conjugated diene-aromatic vinyl copolymer
- the number of blocks in which 30 or more aromatic vinyl units are linked is small or absent.
- the copolymer is a butadiene-styrene copolymer
- the method described in Kolthoff method described in IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946)
- a block in which 30 or more aromatic vinyl units are chained is preferably 5% by mass or less, more preferably based on the amount of polymer. 3% by mass or less.
- the active end has one or more heterocycles composed of two or more nitrogen atoms and hydrocarbons
- two or more The modified conjugated diene polymer of the present embodiment can be obtained by performing a modification step of reacting a modifying agent that is a compound having two or more silyl groups to which the alkoxy group is bonded.
- a modifying agent that is a compound having two or more silyl groups to which the alkoxy group is bonded.
- the above-mentioned compound used as a modifier is preferably a silyl group in which all three silyl groups are bonded to three alkoxy groups.
- a modifier that is a compound represented by the following formula (1) is preferable. Since the alkoxysilyl group of the following formula (1) efficiently reacts with the active end of the conjugated diene polymer, a bond between the conjugated diene polymer end and Si can be formed more efficiently.
- R 1 to R 4 each independently represents an alkyl group having 1 to 20 carbon atoms or an aryl group
- R 5 and R 6 each independently represent 1 to 20 represents an alkylene group
- R 7 and R 8 each independently represent a hydrocarbon group having 1 to 6 carbon atoms, and together with two adjacent Ns, form a ring structure of five or more members
- m And n each independently represents an integer of 2 or 3.
- Examples of the modifier represented by the above formula (1) include 1,4-bis [3- (trimethoxysilyl) propyl] piperazine, 1,4-bis [3- (triethoxysilyl) propyl] piperazine, 1,4-bis [3- (dimethoxymethylsilyl) propyl] piperazine, 1,3-bis [3- (trimethoxysilyl) propyl] imidazolidine, 1,3-bis [3- (triethoxysilyl) propyl] Imidazolidine, 1,3-bis [3- (diemethoxyethylsilyl) propyl] imidazolidine, 1,3-bis [3- (trimethoxysilyl) propyl] hexahydropyrimidine, 1,3-bis [3- ( Triethoxysilyl) propyl] hexahydropyrimidine, 1,3-bis [3- (tributoxysilyl) propyl] -1,2,3,4-te
- m and n are 3 from the viewpoint of the reactivity of the modifier, the interaction with other compounds such as inorganic fillers such as silica, and the processability of the resulting modified conjugated diene polymer.
- the above-described modifier may contain other compounds such as impurities such as an intermediate during the synthesis of the modifier and the condensate of the modifier as long as the modification reaction does not have a significant adverse effect.
- other conventionally known modifiers may be used in combination as long as the effects of the present embodiment can be obtained.
- reaction temperature, reaction time, and the like when the above modifier is reacted with the polymerization active terminal are not particularly limited, but it is preferable to react at 0 to 120 ° C. for 30 seconds or longer.
- the total number of alkoxy groups bonded to the silyl group in the compound is preferably in the range of 0.8 to 3 times the number of added moles of the polymerization initiator.
- a range that is doubled is more preferable, and a range that is 1 to 2 times is more preferable.
- From the viewpoint of obtaining a sufficient modification rate of the resulting modified conjugated diene polymer it is preferably 0.8 times or more, and preferably 3 times or less from the viewpoint of modifier cost. Further, from the viewpoint of improving processability, it is preferable to couple the polymer ends to obtain a branched polymer component.
- the polymer having a functional group component is preferably 5% by mass or more, more preferably 20%. It is preferable to produce a modified conjugated diene-based polymer so as to obtain a polymer containing at least 50% by mass, more preferably at least 50% by mass.
- a method for quantifying a polymer having a functional group component it can be measured by chromatography capable of separating a functional group-containing modified component and a non-modified component.
- the number average molecular weight (Mn) in terms of polystyrene obtained by gel permeation chromatography (GPC) of the modified conjugated diene polymer of the present embodiment is preferably 20,000 to 2,000,000, more preferably 100,000. 000 to 1,000,000, more preferably 200,000 to 600,000, and even more preferably 300,000 to 400,000.
- GPC gel permeation chromatography
- the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.05 to 3.0, more preferably 1.1 to 3.0, from the viewpoint of physical properties of the vulcanizate. 2.5.
- a deactivator, a neutralizing agent, and the like may be added to the copolymer solution after the modification reaction, if necessary.
- the quenching agent include water; alcohols such as methanol, ethanol, and isopropanol.
- the neutralizing agent include carboxylic acids such as stearic acid, oleic acid, and versatic acid; aqueous solutions of inorganic acids, carbon dioxide gas, and the like.
- the modified conjugated diene polymer of the present embodiment is preferably added with a rubber stabilizer from the viewpoint of preventing gel formation in the finishing step after polymerization and improving the stability during processing.
- the stabilizer for rubber is not particularly limited, and known ones can be used, but 2,6-di-tert-butyl-4-hydroxytoluene (BHT), n-octadecyl-3- (4′-hydroxy) -3 ′, 5′-di-tert-butylphenol) propionate, 2-methyl-4,6-bis [(octylthio) methyl] phenol and the like are preferable.
- an extending oil can be added to the modified conjugated diene polymer as necessary.
- the method of adding the extending oil to the modified conjugated diene polymer is not particularly limited, but a method of adding the extending oil to the polymer solution and mixing to remove the solvent from the oil-extended copolymer solution is preferable.
- the extending oil include aroma oil, naphthenic oil, paraffin oil, and the like. Among these, from the viewpoint of environmental safety, oil bleed prevention and wet grip characteristics, an aromatic substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less by the IP346 method is preferable.
- the aroma substitute oil examples include TDAE and MES shown in Kautschuk Kunststoff 52 (12) 799 (1999), and RAE.
- the amount of the extender oil added is not particularly limited, but is usually 10 to 60 parts by weight, preferably 20 to 37.5 parts by weight, based on 100 parts by weight of the modified conjugated diene polymer.
- a known method can be used. For example, after separating the solvent by steam stripping or the like, the polymer is separated by filtration, further dehydrated and dried to obtain the polymer, concentrated in a flushing tank, and further devolatilized by a vent extruder or the like. The method, the method of devolatilizing directly with a drum dryer etc. are mentioned.
- the modified conjugated diene polymer of the present embodiment is suitably used as a vulcanizate.
- the vulcanized product may be, for example, a modified conjugated diene polymer of the present embodiment, if necessary, an inorganic filler such as silica-based inorganic filler or carbon black, and a modified conjugated diene polymer of the present embodiment.
- a rubber-like polymer, a silane coupling agent, a rubber softener, a vulcanizing agent, a vulcanization accelerator / auxiliary, etc. are mixed to obtain a modified conjugated diene polymer composition, which is then heated to vulcanize. Can be obtained.
- a modified conjugated diene polymer composition containing a rubber component containing the modified conjugated diene polymer of the present embodiment and a silica inorganic filler is preferable. Dispersing the silica-based inorganic filler in the modified conjugated diene polymer of the present embodiment provides an excellent balance between low hysteresis loss and wet skid resistance when used as a vulcanizate, and is practically sufficient It has excellent wear resistance and breaking strength, and can provide excellent workability.
- the modified conjugated diene polymer composition of the present embodiment also includes a silica-based inorganic filler as a reinforcing filler even when used for vulcanized rubber applications such as tires, automobile parts such as vibration-proof rubber, and shoes. It is preferable.
- a rubbery polymer other than the modified conjugated diene polymer of this embodiment can be used in combination with the modified conjugated diene polymer of this embodiment.
- a rubbery polymer include a conjugated diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and a vinyl aromatic compound, or a hydrogenated product thereof, a conjugated diene compound and a vinyl.
- examples thereof include a block copolymer with an aromatic compound or a hydrogenated product thereof, a non-diene polymer, and natural rubber.
- butadiene rubber or hydrogenated product thereof isoprene rubber or hydrogenated product thereof, styrene-butadiene rubber or hydrogenated product thereof, styrene-butadiene block copolymer or hydrogenated product thereof, styrene-isoprene block copolymerized
- examples thereof include styrene-based elastomers such as coalescence or hydrogenated products thereof, acrylonitrile-butadiene rubber or hydrogenated products thereof.
- Non-diene polymers include ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, ethylene-octene rubber and other olefinic elastomers, butyl rubber, brominated butyl rubber, acrylic rubber Fluorine rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylate ester-conjugated diene copolymer rubber, urethane rubber, polysulfide rubber and the like.
- the various rubber-like polymers described above may be modified rubbers having a functional group having a polarity such as a hydroxyl group or an amino group.
- the weight average molecular weight is preferably 2,000 to 2,000,000, more preferably 5,000 to 1,500,000, from the viewpoint of the balance between performance and processing characteristics.
- so-called liquid rubber having a low molecular weight can be used.
- These rubber-like polymers may be used individually by 1 type, and may be used in combination of 2 or more type.
- the blending ratio (mass ratio) thereof is the modified conjugated diene polymer.
- the rubbery polymer is preferably 20/80 to 100/0, more preferably 30/70 to 90/10, and still more preferably 50/50 to 80/20.
- the blending ratio of the modified conjugated diene polymer / rubber-like polymer is within the above range, the vulcanizate has an even better balance between low hysteresis loss and wet skid resistance, and more satisfactory wear resistance and fracture strength. Can be obtained.
- the silica-based inorganic filler is not particularly limited, but may be a known, SiO 2, or Si 3 solid particles preferably contains Al as a constituent unit, SiO 2, or Si 3 Al constituent units It is more preferable to use as a main component.
- Specific examples of the silica-based inorganic filler include inorganic fibrous materials such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber.
- a silica-based inorganic filler having a hydrophobic surface or a mixture of a silica-based inorganic filler and a non-silica inorganic filler can also be used.
- silica and glass fiber are preferable from the viewpoint of reinforcing properties, and silica is more preferable.
- examples of silica include dry silica, wet silica, and synthetic silicate silica.
- wet silica is preferable from the viewpoint of an excellent balance between the effect of improving fracture characteristics and wet skid resistance.
- the nitrogen adsorption specific surface area determined by the BET adsorption method of silica-based inorganic filler is 100 to 300 m 2 / g. It is preferable to be 170 to 250 m 2 / g.
- the specific surface area is relatively small (for example, a silica-based inorganic filler having a specific surface area of less than 200 m 2 / g) and the specific surface area is relatively large (for example, a silica-based inorganic having a specific surface area of 200 m 2 / g or more).
- a filler can be used in combination. Thereby, it is possible to highly balance good wear resistance and fracture characteristics with low hysteresis loss.
- the compounding amount of the silica-based inorganic filler in the modified conjugated diene polymer composition is set to 0.000 parts by mass with respect to 100 parts by mass of the rubber component containing 20 parts by mass or more of the modified conjugated diene polymer of the present embodiment.
- the amount is preferably 5 to 300 parts by mass, more preferably 5 to 200 parts by mass, and still more preferably 20 to 100 parts by mass.
- the compounding amount of the silica-based inorganic filler is preferably 0.5 parts by mass or more from the viewpoint of manifesting the effect of adding the inorganic filler.
- the inorganic filler is sufficiently dispersed to process the composition. And from the viewpoint of making the mechanical strength practically sufficient, it is preferably 300 parts by mass or less.
- Carbon black may be contained in the modified conjugated diene polymer composition.
- the carbon black is not particularly limited, and for example, carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF can be used. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or more is preferable.
- DBP dibutyl phthalate
- the blending amount of carbon black is preferably 0.5 to 100 parts by weight, more preferably 3 to 100 parts by weight, with respect to 100 parts by weight of the rubber component containing the modified conjugated diene polymer of the present embodiment. Part is more preferable.
- the blending amount of the carbon black is preferably 0.5 parts by mass or more from the viewpoint of expressing performances required for tires such as dry grip performance and conductivity, and 100 parts by mass from the viewpoint of dispersibility. The following is preferable.
- the modified conjugated diene polymer composition may contain a metal oxide or a metal hydroxide in addition to the silica-based inorganic filler and carbon black.
- the metal oxide refers to solid particles whose main component is a chemical unit M x O y (M represents a metal atom, x and y each represents an integer of 1 to 6), for example, Alumina, titanium oxide, magnesium oxide, zinc oxide, or the like can be used. A mixture of a metal oxide and an inorganic filler other than the metal oxide can also be used.
- the metal hydroxide is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
- the modified conjugated diene polymer composition may contain a silane coupling agent.
- the silane coupling agent has a function to close the interaction between the rubber component and the silica-based inorganic filler, and has an affinity or binding group for each of the rubber component and the silica-based inorganic filler.
- a compound having a sulfur bond portion, an alkoxysilyl group, and a silanol group portion in one molecule is used.
- the blending amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, and more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the silica-based inorganic filler described above. Further preferred. When the blending amount of the silane coupling agent is within the above range, the addition effect of the silane coupling agent can be made more remarkable.
- the modified conjugated diene polymer composition may contain a rubber softener in order to improve processability.
- a rubber softener mineral oil or a liquid or low molecular weight synthetic softener is suitable.
- the mineral oil rubber softener called process oil or extender oil used for softening, increasing volume and improving processability of rubber is a mixture of aromatic ring, naphthene ring and paraffin chain. Paraffin chains with 50% or more carbon atoms in the total carbon are called paraffinic, naphthenic ring with 30 to 45% carbon atoms is naphthenic, and aromatic carbon with more than 30% aromatics is aromatic. It is called a system.
- the rubber softener used together with the modified conjugated diene-aromatic vinyl copolymer of the present embodiment those having an appropriate aromatic content are preferred because they tend to be familiar with the copolymer.
- the blending amount of the rubber softener is preferably 0 to 100 parts by weight, more preferably 10 to 90 parts by weight, more preferably 30 to 30 parts by weight with respect to 100 parts by weight of the rubber component containing the modified conjugated diene polymer of the present embodiment. 90 parts by mass is more preferable. By setting the blending amount of the rubber softener to 100 parts by mass or less with respect to 100 parts by mass of the rubber component, bleeding out and stickiness on the composition surface can be suppressed.
- the method of mixing the modified conjugated diene polymer of this embodiment and other rubbery polymers, silica-based inorganic fillers, carbon black and other fillers, silane coupling agents, rubber softeners and the like Is not particularly limited.
- a melt kneading method using a general blender such as an open roll, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, a multi-screw extruder, etc.
- the method of removing by heating, etc. are mentioned.
- melt kneading method using a roll, a Banbury mixer, a kneader, or an extruder is preferred from the viewpoint of productivity and good kneading properties.
- any of a method of kneading the modified conjugated diene polymer and various compounding agents at a time and a method of mixing in multiple times can be applied.
- the modified conjugated diene polymer composition may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
- a vulcanizing agent for example, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur and sulfur compounds can be used.
- Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
- the amount of the vulcanizing agent used is usually 0.01 to 20 parts by mass, preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment.
- the vulcanization method conventionally known methods can be applied, and the vulcanization temperature is usually 120 to 200 ° C., preferably 140 to 180 ° C.
- a vulcanization accelerator may be used as necessary.
- the vulcanization accelerator conventionally known materials can be used. For example, sulfenamide, guanidine, thiuram, aldehyde-amine, aldehyde-ammonia, thiazole, thiourea, dithiocarbamate And the like.
- the vulcanization aid zinc white, stearic acid or the like can be used.
- the amount of the vulcanization accelerator used is usually 0.01 to 20 parts by mass, and 0.1 to 15 parts by mass with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer of the present embodiment. preferable.
- the modified conjugated diene-based polymer composition includes other softeners and fillers other than those described above, as well as heat stabilizers, antistatic agents, weathering stabilizers, and aging, as long as the purpose of the present embodiment is not impaired.
- Various additives such as an inhibitor, a colorant, and a lubricant may be used.
- known softeners can be used.
- Specific examples of other fillers include calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
- Known materials can be used as the above heat stabilizer, antistatic agent, weathering stabilizer, anti-aging agent, colorant, and lubricant.
- Amount of bound styrene A sample was used as a chloroform solution, and the amount of bound styrene (% by mass) was measured by UV 254 nm absorption by the phenyl group of styrene (manufactured by Shimadzu Corporation: UV-2450).
- guard column Tosoh TSKguardcolumn HHR-H
- column Tosoh TSKgel G6000HHR, TSKgel G5000HHR, TSKgel G4000HHR were used.
- the molecular weight was measured using an RI detector of HLC8020 manufactured by Tosoh under conditions of an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. A sample of 10 mg was dissolved in 20 mL of THF, and 200 ⁇ L of this solution was injected into the apparatus for measurement.
- Glass transition temperature (Tg) In accordance with ISO 22768: 2006, a DSC curve was recorded using a DSC3200S manufactured by Mac Science Co. under a flow of helium at 50 mL / min while increasing the temperature from ⁇ 100 ° C. to 20 ° C./min. The peak top of the DSC differential curve was the glass transition temperature.
- Example 1 Two autoclaves with an internal volume of 10L, an internal height-to-diameter ratio (L / D) of 4, an inlet at the bottom, an outlet at the top, and a stirrer and a temperature adjustment jacket are connected in series.
- the first group was a polymerization reactor and the second group was a denaturing reactor.
- n-butyllithium treated n-butyllithium
- 2,2-bis (2-oxolanyl) propane as a polymerization initiator at a rate of 0.020 g / min
- n-butyllithium as a polymerization initiator at a rate of 0.150 mmol / min to the bottom of the first reactor
- the temperature of the second reactor was kept at 85 ° C., and 1,4-bis [3- (trimethoxysilyl) propyl] piperazine as a modifier was added from the bottom of the second reactor at a rate of 0.0375 mmol / min. And the modification (coupling) reaction was carried out.
- Antioxidant (BHT) was continuously added to the polymer solution flowing out from the top of the second reactor at a rate of 0.048 g / min (n-hexane solution) so as to be 0.2 g per 100 g of the polymer. The reaction was terminated, and then the solvent was removed to obtain a modified conjugated diene polymer.
- sample A had a Mooney viscosity at 100 ° C. of 80.0, a polystyrene equivalent weight average molecular weight measured by GPC of 908,000, and a number average molecular weight of 393,000.
- the amount of bound styrene was 33% by mass
- the amount of vinyl bonds (1,2-bond amount) in the butadiene bond unit was 38 mol%
- the glass transition temperature measured by DSC was ⁇ It was 25 ° C.
- Example 2 An oil-extended modified conjugated diene polymer (sample) was prepared in the same manner as in Example 1, except that the amount of 1,4-bis [3- (trimethoxysilyl) propyl] piperazine added as a modifier was 0.0563 mmol / min. B) was obtained. The analysis result of Sample B is shown in Table 1.
- Example 3 The modifying agent was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to 1,4-bis [3- (triethoxysilyl) propyl] piperazine in the same manner as in Example 1.
- An oil-extended modified conjugated diene polymer (Sample C) was obtained.
- the analysis result of Sample C is shown in Table 1.
- Example 4 The modifying agent was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to 1,4-bis [3- (dimethoxymethylsilyl) propyl] piperazine, and the addition amount was 0.0563 mmol / min. Except that, an oil-extended modified conjugated diene polymer (Sample D) was obtained in the same manner as in Example 1. The analysis result of Sample D is shown in Table 2.
- Example 5 Example 1 except that the modifier was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to 1,3-bis [3- (trimethoxysilyl) propyl] hexahydropyrimidine.
- an oil-extended modified conjugated diene polymer (Sample E) was obtained.
- the analysis result of Sample E is shown in Table 2.
- Example 1 Example 1 was repeated except that the modifier was changed from 1,4-bis [3- (trimethoxysilyl) propyl] piperazine to bis [3- (trimethoxysilyl) propyl] -N-methylamine.
- An oil-extended modified conjugated diene polymer (Sample F) was obtained.
- the analysis results of Sample F are shown in Table 3.
- Example G A modified conjugated diene polymer (Sample G) was obtained.
- the analysis result of Sample G is shown in Table 3.
- Examples 6 to 10, Comparative Examples 4 to 6 Using the samples shown in Tables 1 to 3 (samples A to H) as raw rubber, rubber compositions containing the respective raw rubbers were obtained according to the formulation shown below.
- Oil-extended modified conjugated diene polymer (samples A to H): 137.5 parts by mass Silica (Evonik Degussa, Ultrasil VN3): 75.0 parts by mass Carbon black (Tokai Carbon Co., Ltd., Seast KH (N339)) : 5.0 parts by mass Silane coupling agent (Evonik Degussa, Si75): 6.0 parts by mass S-RAE oil (JX Nippon Oil & Energy Corporation, JOMO process NC140): 4.5 parts by mass Zinc flower: 2.5 parts by mass Stearic acid: 1.5 parts by mass Anti-aging agent (N-isopropyl-N′-phenyl-p-phenylenediamine): 2.0 parts by mass Sulfur: 2.2 parts by mass Vul
- the rubber composition was kneaded by the following method. Using a closed kneader (with an internal volume of 0.3 L) equipped with a temperature control device, as the first stage kneading, under the conditions of a filling rate of 65% and a rotor rotational speed of 50/57 rpm, raw rubber (samples A to H) , Filler (silica, carbon black), organic silane coupling agent, process oil, zinc white, and stearic acid were kneaded. At this time, the temperature of the closed mixer was controlled, and the rubber composition was obtained at a discharge temperature (formulation) of 155 to 160 ° C.
- the blend obtained above was cooled to room temperature, an anti-aging agent was added, and kneaded again to improve silica dispersion. Also in this case, the discharge temperature (formulation) was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
- sulfur and a vulcanization accelerator were added and kneaded with an open roll set at 70 ° C. Then, it shape
- the physical properties of the rubber composition were measured by the following methods.
- Viscoelastic parameters were measured in a torsion mode using a viscoelasticity tester (ARES) manufactured by Rheometrics Scientific. Each measured value was indexed with Comparative Example 4 as 100. Tan ⁇ measured at 0 ° C. with a frequency of 10 Hz and a strain of 1% was used as an index of wet grip performance. A larger value indicates better wet grip performance. Further, tan ⁇ measured at 50 ° C. with a frequency of 10 Hz and a strain of 3% was used as an index of fuel saving characteristics. The smaller the value, the better the fuel saving performance.
- the modified conjugated diene polymer compositions of Examples 6 to 10 had a low high temperature tan ⁇ and a low hysteresis loss as compared with the compositions of Comparative Examples 4 and 5. It was confirmed that the rolling resistance was realized and the low temperature tan ⁇ was high and the wet skid resistance was excellent. Furthermore, it was confirmed that the wear resistance and tensile strength were also good. Moreover, when compared with Comparative Example 6, the compound Mooney viscosity was low, and it was confirmed that the balance between processability and physical properties of the vulcanizate was excellent.
- Example 11 An autoclave having an internal volume of 10 L and equipped with a stirrer and a jacket and capable of temperature control is used as a reactor, and 777 g of butadiene, 273 g of styrene, 4800 g of cyclohexane from which impurities have been previously removed, and 2,2-bis (2- 1.30 g of oxolanyl) propane was charged into the reactor and the reactor internal temperature was maintained at 37 ° C.
- a polymerization initiator a cyclohexane solution containing 15.1 mmol of n-butyllithium was supplied to the reactor.
- the glass transition temperature was ⁇ 23 ° C.
- the polystyrene equivalent weight average molecular weight (Mw) measured by GPC was 372,000, the number average molecular weight (Mn) was 318,000, and Mw / Mn was 1.17.
- the amount of bound styrene was 26% by mass and the amount of bound butadiene was 74%.
- the Mooney viscosity of the polymer was 58.
- the vinyl bond amount (1,2-bond amount) in the microstructure of the butadiene portion which was calculated from the measurement result using an infrared spectrophotometer according to the Hampton method, was 56%.
- the glass transition temperature was ⁇ 23 ° C.
- the polystyrene-equivalent weight average molecular weight (Mw) measured by GPC was 368,000, the number average molecular weight (Mn) was 281,000, and Mw / Mn was 1.31.
- Example 12 Comparative Example 8
- Rubber compositions containing the respective raw rubbers were obtained according to the formulation shown below.
- Modified conjugated diene polymer (Samples I to J): 100.0 parts by mass Silica (Evonik Degussa, Ultrasil VN3): 25.0 parts by mass Carbon black (Tokai Carbon Co., Ltd., Seast KH (N339)): 20 0.0 part by mass Silane coupling agent (Evonik Degussa, Si75): 2.0 parts by mass S-RAE oil (JX Nippon Oil & Energy, JOMO process NC140): 5.0 parts by mass Zinc flower: 3.
- the rubber composition was kneaded by the same method as in Examples 6 to 10 and Comparative Examples 4 to 6.
- the physical properties of the rubber compositions were also measured by the same methods as in Examples 6 to 10 and Comparative Examples 4 to 6.
- the physical property measurement results are shown in Table 6. For those whose results are expressed as exponent values, Comparative Example 8 was set to “100”.
- the modified conjugated diene polymer composition of Example 12 has a lower high temperature tan ⁇ and less hysteresis loss than the composition of Comparative Example 8, and low tire rolling resistance is realized.
- the low temperature tan ⁇ was high and the wet skid resistance was excellent.
- the compound Mooney viscosity was low and it was excellent in the balance of workability and the physical property of a vulcanizate.
- the wear resistance and tensile strength were also good.
- the modified conjugated diene polymer of this example has a good balance between low hysteresis loss and wet skid resistance when used as a vulcanizate, and has practically sufficient wear resistance and fracture strength. In addition, it was confirmed that the processability is also excellent.
- a modified conjugated diene polymer according to the present invention when used as a vulcanized product, it has an excellent balance between low hysteresis loss and wet skid resistance, and has practically sufficient wear resistance and fracture characteristics. And a modified conjugated diene polymer excellent in processability can be obtained, and can be suitably used as a material for various members such as tire treads, footwear, and industrial articles.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
〔1〕
アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程と、
前記共役ジエン系重合体の前記活性末端に、2個以上の窒素原子と炭化水素からなる複素環式構造を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物である変性剤を反応させる変性工程と、
を有する変性共役ジエン系重合体の製造方法。
〔2〕
前記変性剤が下記式(1)で表される化合物である、〔1〕に記載の変性共役ジエン系重合体の製造方法。
〔3〕
前記変性剤中の全てのシリル基が、3個のアルコキシ基が結合されているシリル基である、〔1〕又は〔2〕に記載の変性共役ジエン系重合体の製造方法。
〔4〕
前記変性剤中のシリル基に結合するアルコキシ基の合計モル数が、前記重合開始剤の添加モル数の0.8~3倍となる範囲である、〔1〕~〔3〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
〔5〕
前記重合工程が連続式である、〔1〕~〔4〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
〔6〕
変性共役ジエン系重合体の、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量が200,000~600,000である、〔1〕~〔5〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
〔7〕
〔1〕~〔6〕のいずれか1項に記載の変性共役ジエン系重合体の製造方法により得られる変性共役ジエン系重合体。
〔8〕
〔7〕に記載の変性共役ジエン系重合体を20質量部以上含むゴム成分100質量部と、
シリカ系無機充填剤0.5~300質量部と、
を含む変性共役ジエン系重合体組成物。
アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程と、
前記共役ジエン系重合体の前記活性末端に、2個以上の窒素原子と炭化水素からなる複素環を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物である変性剤を反応させる変性工程と、
を有する。
試料をクロロホルム溶液とし、スチレンのフェニル基によるUV254nmの吸収により結合スチレン量(質量%)を測定した(島津製作所製:UV-2450)。
試料を二硫化炭素溶液とし、溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して所定の波数における吸光度によりハンプトンの方法の計算式に従いブタジエン部分のミクロ構造を求めた(日本分光(株)製:FT-IR230)。
JIS K 6300に従い、100℃で1分間予熱し、4分後の粘度を測定した。
ポリスチレン系ゲルを充填剤としたカラムを3本連結して用いたゲルパーミエーションクロマトグラフィー(GPC)を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線により重量平均分子量(Mw)及び数平均分子量(Mn)を求め、重量平均分子量と数平均分子量の比から分子量分布の指標(Mw/Mn)を計算した。
溶離液としてはテトラヒドロフラン(THF)を使用した。
カラムは、ガードカラム:東ソー TSKguardcolumn HHR-H、カラム:東ソー TSKgel G6000HHR、TSKgel G5000HHR、TSKgel G4000HHRを使用した。
オーブン温度40℃、THF流量1.0mL/分の条件で、東ソー製 HLC8020のRI検出器を用いて分子量の測定を行った。試料10mgをTHF20mLに溶解し、この溶液200μLを装置に注入して測定した。
ISO22768:2006に従い、マックサイエンス社製DSC3200Sを用い、ヘリウム50mL/minの流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
内容積10Lで、内部の高さと直径の比(L/D)が4であり、底部に入り口、頂部に出口を有し、攪拌機及び温度調整用のジャケットを有するオートクレーブを2基直列に連結し、1基目を重合反応器として、2基目を変性反応器とした。
予め、水分等の不純物を除去したブタジエンを16.0g/分、スチレンを8.0g/分、n-ヘキサンを125.6g/分の条件で混合し、更に不純物不活性化処理用として、1基目反応器に入る直前でn-ブチルリチウム(処理n-ブチルリチウム)0.075mmol/分とスタティックミキサーで混合した後、1基目反応器の底部に連続的に供給し、更に、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.020g/分の速度で、重合開始剤としてn-ブチルリチウムを0.150mmol/分の速度で、1基目反応器底部へ供給し、反応器出口の内温を90℃となるように重合反応を継続させた。
2基目の反応器の温度を85℃に保ち、変性剤として1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンを0.0375mmol/分の速度で2基目反応器の底部から添加し、変性(カップリング)反応を実施した。
2器目反応器の頂部から流出した重合体溶液に酸化防止剤(BHT)をポリマー100gあたり0.2gとなるように0.048g/分(n-ヘキサン溶液)で連続的に添加し、変性反応を終了させ、その後溶媒を除去し、変性共役ジエン系重合体を得た。
更にこの変性共役ジエン系重合体溶液に、S-RAEオイル(JX日鉱日石エネルギー(株)製、NC-140)を重合体100質量部あたり37.5質量部添加した後にドラムドライヤーで溶媒を除去し、油展変性共役ジエン系重合体(試料A)を得た。
試料Aの100℃のムーニー粘度は80.0、GPCで測定したポリスチレン換算の重量平均分子量は90.8万、数平均分子量は39.3万であった。また、油展前のサンプルの測定の結果、結合スチレン量は33質量%、ブタジエン結合単位中のビニル結合量(1,2-結合量)は38モル%、DSCで測定したガラス転移温度は-25℃であった。
変性剤として1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンの添加量を0.0563mmol/分とした以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料B)を得た。
試料Bの分析結果を表1に示す。
変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,4-ビス[3-(トリエトキシシリル)プロピル]ピペラジンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料C)を得た。
試料Cの分析結果を表1に示す。
変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,4-ビス[3-(ジメトキシメチルシリル)プロピル]ピペラジンに替え、添加量を0.0563mmol/分とした以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料D)を得た。
試料Dの分析結果を表2に示す。
変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,3-ビス[3-(トリメトキシシリル)プロピル]ヘキサヒドロピリミジンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料E)を得た。
試料Eの分析結果を表2に示す。
変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、ビス[3-(トリメトキシシリル)プロピル]-N-メチルアミンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料F)を得た。
試料Fの分析結果を表3に示す。
変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1,2-ビス(3-トリエトキシシリル)エタンに替えた以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料G)を得た。
試料Gの分析結果を表3に示す。
重合開始n-ブチルリチウムの添加量を0.120mmol/分に、2,2-ビス(2-オキソラニル)プロパンの添加量を0.018g/分とし、変性剤を、1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンから、1-[3-(トリエトキシシリル)プロピル]-4-メチルピペラジンに替え、添加量を0.130mmol/分とした以外は実施例1と同様にして、油展変性共役ジエン系重合体(試料H)を得た。
試料Hの分析結果を表3に示す。
上記表1~3に示す試料(試料A~試料H)を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
油展変性共役ジエン系重合体(試料A~H):137.5質量部
シリカ(エボニック デグサ社製、Ultrasil VN3):75.0質量部
カーボンブラック(東海カーボン社製、シーストKH(N339)):5.0質量部
シランカップリング剤(エボニック デグサ社製、Si75):6.0質量部
S-RAEオイル(JX日鉱日石エネルギー社製、JOMOプロセスNC140):4.5質量部
亜鉛華:2.5質量部
ステアリン酸:1.5質量部
老化防止剤(N-イソプロピル-N’-フェニル-p-フェニレンジアミン):2.0質量部
硫黄:2.2質量部
加硫促進剤(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
加硫促進剤(ジフェニルグアニジン):2.0質量部
合計:240.9質量部
温度制御装置を具備する密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数50/57rpmの条件で、原料ゴム(試料A~H)、充填剤(シリカ、カーボンブラック)、有機シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度(配合物)は155~160℃でゴム組成物を得た。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により排出温度(配合物)を155~160℃に調整した。
冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤を加えて混練した。その後、成型し、160℃で20分間、加硫プレスにて加硫した。加硫後、ゴム組成物の物性を測定した。物性測定結果を表4、5に示した。
ムーニー粘度計を使用し、JIS K6300-1により、130℃で、予熱を1分間行った後に、ローターを毎分2回転で回転させ4分後の粘度を測定した。値が小さいほど加工性に優れることを示す。
JIS K6251の引張試験法により測定し、比較例4を100として指数化した。
レオメトリックス・サイエンティフィック社製の粘弾性試験機(ARES)を使用し、ねじりモードで粘弾性パラメータを測定した。各々の測定値は比較例4を100として指数化した。0℃において周波数10Hz、ひずみ1%で測定したtanδをウェットグリップ性能の指標とした。値が大きいほどウェットグリップ性能が良好であることを示す。また、50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費特性の指標とした。値が小さいほど省燃費性能が良好であることを示す。
アクロン摩耗試験機(安田精機製作所製)を使用し、JIS K6264-2に従い、荷重44.1N、1000回転の摩耗量を測定し、比較例4を100として指数化した。指数が大きいほど耐摩耗性が優れることを示す。
内容積10Lで、撹拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去したブタジエン777g、スチレン273g、シクロヘキサン4800g、極性物質として2,2-ビス(2-オキソラニル)プロパン1.30gを反応器へ入れ、反応器内温を37℃に保持した。重合開始剤として、n-ブチルリチウム15.1mmolを含むシクロヘキサン溶液を反応器に供給した。重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は70℃に達した。重合反応終了後、反応器に1,4-ビス[3-(トリメトキシシリル)プロピル]ピペラジンを3.39mmol添加し、69℃で5分間変性反応を実施した。このとき、添加した変性剤中のシリル基に結合したメトキシ基の総量の、n-ブチルリチウム添加量に対するモル比は1.35であった。この重合体溶液に、酸化防止剤(BHT)2.1gを添加した後、スチームストリッピングにより溶媒を除去し、乾燥機により乾燥処理を施して、変性成分を有するスチレン-ブタジエン共重合体(試料I)を得た。
(試料I)を分析した結果、結合スチレン量は26質量%、結合ブタジエン量は74%であった。
重合体のムーニー粘度は60であった。
赤外分光光度計を用いた測定結果よりハンプトン法に準じて計算して求めたブタジエン部分のミクロ構造のビニル結合量(1,2-結合量)は56%であった。
ガラス転移温度は-23℃であった。
GPCで測定したポリスチレン換算の重量平均分子量(Mw)は37.2万、数平均分子量(Mn)は31.8万、Mw/Mnは1.17であった。
内容積10Lで、撹拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去したブタジエン777g、スチレン273g、シクロヘキサン4800g、極性物質として2,2-ビス(2-オキソラニル)プロパン0.52gを反応器へ入れ、反応器内温を43℃に保持した。重合開始剤として、n-ブチルリチウム6.52mmolを含むシクロヘキサン溶液を反応器に供給した。重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は71℃に達した。
重合反応終了後、反応器に1-[3-(トリエトキシシリル)プロピル]-4-メチルピペラジンを4.35mmol添加して70℃で5分間変性反応を実施した。この重合体溶液に、酸化防止剤(BHT)2.1gを添加した後、スチームストリッピングにより溶媒を除去し、乾燥機により乾燥処理を施して、変性成分を有するスチレン-ブタジエン共重合体(試料J)を得た。
(試料J)を分析した結果、結合スチレン量は26質量%、結合ブタジエン量は74%であった。
重合体のムーニー粘度は58であった。
赤外分光光度計を用いた測定結果よりハンプトン法に準じて計算して求めたブタジエン部分のミクロ構造のビニル結合量(1,2-結合量)は56%であった。
ガラス転移温度は-23℃であった。
GPCで測定したポリスチレン換算の重量平均分子量(Mw)は36.8万、数平均分子量(Mn)は28.1万、Mw/Mnは1.31であった。
実施例11及び比較例7で得られた試料(試料I及びJ)を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
変性共役ジエン系重合体(試料I~J):100.0質量部
シリカ(エボニック デグサ社製、Ultrasil VN3):25.0質量部
カーボンブラック(東海カーボン社製、シーストKH(N339)):20.0質量部
シランカップリング剤(エボニック デグサ社製、Si75):2.0質量部
S-RAEオイル(JX日鉱日石エネルギー社製、JOMOプロセスNC140):5.0質量部
亜鉛華:3.0質量部
ステアリン酸:2.0質量部
老化防止剤(N-イソプロピル-N’-フェニル-p-フェニレンジアミン):1.0質量部
硫黄:1.9質量部
加硫促進剤(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.0質量部
加硫促進剤(ジフェニルグアニジン):1.5質量部
合計:162.4質量部
Claims (8)
- アルカリ金属化合物又はアルカリ土類金属化合物を重合開始剤として用い、共役ジエン化合物、又は共役ジエン化合物と芳香族ビニル化合物とを、重合又は共重合することで、活性末端を有する共役ジエン系重合体を得る重合工程と、
前記共役ジエン系重合体の前記活性末端に、2個以上の窒素原子と炭化水素からなる複素環式構造を1つ以上有し、かつ2個以上のアルコキシ基が結合したシリル基を2個以上有する化合物である変性剤を反応させる変性工程と、
を有する変性共役ジエン系重合体の製造方法。 - 前記変性剤中の全てのシリル基が、3個のアルコキシ基が結合されているシリル基である、請求項1又は2に記載の変性共役ジエン系重合体の製造方法。
- 前記変性剤中のシリル基に結合するアルコキシ基の合計モル数が、前記重合開始剤の添加モル数の0.8~3倍となる範囲である、請求項1~3のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
- 前記重合工程が連続式である、請求項1~4のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
- 変性共役ジエン系重合体の、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量が200,000~600,000である、請求項1~5のいずれか1項に記載の変性共役ジエン系重合体の製造方法。
- 請求項1~6のいずれか1項に記載の変性共役ジエン系重合体の製造方法により得られる変性共役ジエン系重合体。
- 請求項7に記載の変性共役ジエン系重合体を20質量部以上含むゴム成分100質量部と、
シリカ系無機充填剤0.5~300質量部と、
を含む変性共役ジエン系重合体組成物。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800393621A CN102482359B (zh) | 2009-10-02 | 2010-09-22 | 改性共轭二烯系聚合物的制造方法、改性共轭二烯系聚合物以及改性共轭二烯系聚合物组合物 |
BR112012006333-2A BR112012006333B1 (pt) | 2009-10-02 | 2010-09-22 | Método para produzir um polímero à base de dieno conjugado modificado |
EP10820431.4A EP2484701B1 (en) | 2009-10-02 | 2010-09-22 | Production method for modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition |
US13/497,575 US8816014B2 (en) | 2009-10-02 | 2010-09-22 | Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, and modified conjugated diene-based polymer composition |
JP2011534212A JP5705120B2 (ja) | 2009-10-02 | 2010-09-22 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
KR1020127007377A KR101413791B1 (ko) | 2009-10-02 | 2010-09-22 | 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체 조성물 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009230412 | 2009-10-02 | ||
JP2009-230412 | 2009-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011040312A1 true WO2011040312A1 (ja) | 2011-04-07 |
Family
ID=43826135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066431 WO2011040312A1 (ja) | 2009-10-02 | 2010-09-22 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8816014B2 (ja) |
EP (1) | EP2484701B1 (ja) |
JP (1) | JP5705120B2 (ja) |
KR (1) | KR101413791B1 (ja) |
CN (1) | CN102482359B (ja) |
BR (1) | BR112012006333B1 (ja) |
TW (1) | TWI399389B (ja) |
WO (1) | WO2011040312A1 (ja) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013082843A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ |
JP2013082840A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ |
JP2013082841A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体、その製造方法、変性共役ジエン系重合体組成物、及びタイヤ |
JP2013082842A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ |
JP2013087218A (ja) * | 2011-10-19 | 2013-05-13 | Asahi Kasei Chemicals Corp | ベーストレッド用ゴム組成物 |
JP2013087210A (ja) * | 2011-10-19 | 2013-05-13 | Asahi Kasei Chemicals Corp | タイヤサイドウォール用変性共役ジエン系重合体組成物 |
JP2013087219A (ja) * | 2011-10-19 | 2013-05-13 | Asahi Kasei Chemicals Corp | サイドウォール用ゴム組成物 |
WO2013083749A1 (en) | 2011-12-08 | 2013-06-13 | Dow Corning Corporation | Hydrolysable silanes and elastomer compositions containing them |
JP2013231177A (ja) * | 2012-04-26 | 2013-11-14 | Goodyear Tire & Rubber Co:The | トリグリセリド含有溶液重合調製スチレン/ブタジエンエラストマー及び部品を有するタイヤ |
US20160053059A1 (en) * | 2013-04-25 | 2016-02-25 | Lg Chem, Ltd. | Method for continuous preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same |
WO2016093671A1 (ko) * | 2014-12-11 | 2016-06-16 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물 |
WO2016093496A1 (ko) * | 2014-12-11 | 2016-06-16 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법 |
JP2017508058A (ja) * | 2014-11-13 | 2017-03-23 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法、およびこれを含むゴム組成物 |
KR101759402B1 (ko) * | 2014-12-11 | 2017-07-19 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물 |
JP2017538788A (ja) * | 2014-12-11 | 2017-12-28 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、これを含む変性ゴム組成物および変性共役ジエン系重合体の製造方法 |
JP2018087324A (ja) * | 2016-11-24 | 2018-06-07 | 宇部興産株式会社 | 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法 |
JP2018531998A (ja) * | 2015-12-24 | 2018-11-01 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法及び変性剤 |
JP2019500475A (ja) * | 2016-11-23 | 2019-01-10 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体およびその製造方法 |
US20190256635A1 (en) | 2017-01-03 | 2019-08-22 | Lg Chem, Ltd. | Method for Preparing Modified Conjugated Diene-based Polymer |
WO2020262371A1 (ja) | 2019-06-25 | 2020-12-30 | 日鉄ケミカル&マテリアル株式会社 | 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、その組成物、ゴム架橋物及びタイヤ部材 |
JP2022511923A (ja) * | 2019-09-27 | 2022-02-01 | エルジー・ケム・リミテッド | 変性剤、それを含む変性共役ジエン系重合体、およびその重合体の製造方法 |
WO2023100993A1 (ja) | 2021-12-03 | 2023-06-08 | 日鉄ケミカル&マテリアル株式会社 | 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、樹脂組成物、樹脂架橋物及び構造部材 |
WO2024029624A1 (ja) * | 2022-08-05 | 2024-02-08 | 株式会社Eneosマテリアル | 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201121128D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Treatment of filler with silane |
GB201121124D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Hydrolysable silanes |
GB201121133D0 (en) | 2011-12-08 | 2012-01-18 | Dow Corning | Hydrolysable silanes |
KR101365902B1 (ko) * | 2013-01-14 | 2014-03-12 | 금호석유화학 주식회사 | 공역 디엔계 고분자의 말단 변성제 |
CN105849133B (zh) * | 2013-10-17 | 2018-05-22 | Lg化学株式会社 | 末端官能化的基于共轭二烯的聚合物及制备该聚合物的方法 |
KR101674305B1 (ko) | 2014-11-27 | 2016-11-08 | 주식회사 엘지화학 | 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법 |
WO2016085102A1 (ko) * | 2014-11-27 | 2016-06-02 | 주식회사 엘지화학 | 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법 |
WO2017111463A1 (ko) * | 2015-12-24 | 2017-06-29 | 주식회사 엘지화학 | 변성 공액디엔계 중합체, 이의 제조방법 및 변성제 |
KR102046930B1 (ko) | 2016-05-03 | 2019-11-20 | 주식회사 엘지화학 | 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체 |
KR102225164B1 (ko) * | 2016-08-19 | 2021-03-09 | 아사히 가세이 가부시키가이샤 | 변성 공액 디엔계 중합체, 고무 조성물 및 타이어 |
WO2018097480A1 (ko) * | 2016-11-23 | 2018-05-31 | 주식회사 엘지화학 | 변성 공액디엔계 중합체 및 이의 제조방법 |
KR102072088B1 (ko) | 2016-11-28 | 2020-02-03 | 주식회사 엘지화학 | 변성 공액디엔계 중합체 및 이의 제조방법 |
KR102354835B1 (ko) * | 2017-01-03 | 2022-01-25 | 주식회사 엘지화학 | 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 |
JP7089850B2 (ja) * | 2017-03-31 | 2022-06-23 | 住友化学株式会社 | 共役ジエン系重合体及び共役ジエン系重合体の製造方法 |
CN107652319A (zh) * | 2017-09-30 | 2018-02-02 | 安徽硅宝有机硅新材料有限公司 | 一种哌嗪基丙基硅烷及其制备方法 |
JP6930484B2 (ja) * | 2018-04-17 | 2021-09-01 | 信越化学工業株式会社 | 有機ケイ素化合物およびその製造方法 |
CN110872406B (zh) * | 2018-08-30 | 2022-04-12 | 旭化成株式会社 | 改性共轭二烯系聚合物组合物 |
CN110878151B (zh) * | 2018-09-05 | 2022-04-12 | 旭化成株式会社 | 橡胶组合物 |
KR102653222B1 (ko) * | 2019-09-11 | 2024-04-02 | 주식회사 엘지화학 | 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 |
IT201900019795A1 (it) | 2019-10-25 | 2021-04-25 | Pirelli | Composizione elastomerica per mescole di pneumatici per ruote di veicoli e pneumatici che la comprendono |
IT202200021522A1 (it) | 2022-10-19 | 2024-04-19 | Pirelli | Composizioni elastomeriche per pneumatici comprendenti nuovi agenti funzionalizzanti reticolanti, mescole elastomeriche e pneumatici che li comprendono |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140211A (ja) | 1983-02-01 | 1984-08-11 | Nippon Erasutomaa Kk | スチレン−ブタジエン共重合体の製造方法 |
JPS634841A (ja) | 1986-06-25 | 1988-01-09 | Hitachi Ltd | プラズマ処理装置 |
JPS6453851A (en) | 1987-08-25 | 1989-03-01 | Hitachi Ltd | Printing system |
JPH029041A (ja) | 1988-06-28 | 1990-01-12 | Sony Corp | 回転ドラムのアース装置 |
JPH0245492A (ja) * | 1988-06-25 | 1990-02-15 | Degussa Ag | 環状n,n,n´―およびn,n,n´,n´―置換オルガニルオキシ官能性チオ尿素の製造方法および該チオ尿素 |
JPH02132104A (ja) * | 1988-11-11 | 1990-05-21 | Toshiba Silicone Co Ltd | 加水分解性シリル基で分子鎖末端が閉塞されたポリブタジエン、その製造方法およびそれを含有する室温硬化性組成物 |
GB2241239A (en) | 1990-02-08 | 1991-08-28 | Secr Defence | Olefinic polymerisation using silylether initiators |
JPH0428704A (ja) | 1990-05-24 | 1992-01-31 | Kuraray Co Ltd | 塩化ビニル系化合物の懸濁重合用分散安定剤 |
JPH0436636A (ja) | 1990-06-01 | 1992-02-06 | Canon Inc | フローセル装置 |
JPH07233217A (ja) | 1993-12-29 | 1995-09-05 | Bridgestone Corp | 重合体及びその重合体組成物 |
JPH08109219A (ja) | 1994-10-11 | 1996-04-30 | Asahi Chem Ind Co Ltd | 水添重合体 |
US5527753A (en) | 1994-12-13 | 1996-06-18 | Fmc Corporation | Functionalized amine initiators for anionic polymerization |
US5708092A (en) | 1994-05-13 | 1998-01-13 | Fmc Corporation | Functionalized chain extended initiators for anionic polymerization |
JP2001079709A (ja) | 1999-09-13 | 2001-03-27 | Toshiba Mach Co Ltd | エンドミル |
WO2001023467A1 (fr) | 1999-09-27 | 2001-04-05 | Asahi Kasei Kabushiki Kaisha | Composition de caoutchouc |
JP2001158834A (ja) | 1999-12-02 | 2001-06-12 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2003171418A (ja) | 2001-09-27 | 2003-06-20 | Jsr Corp | 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ |
JP2005232351A (ja) * | 2004-02-20 | 2005-09-02 | Bridgestone Corp | ゴム組成物及びそれを用いたタイヤ |
WO2006112450A1 (ja) * | 2005-04-15 | 2006-10-26 | Bridgestone Corporation | 変性共役ジエン系共重合体、ゴム組成物及びタイヤ |
WO2007034785A1 (ja) | 2005-09-22 | 2007-03-29 | Asahi Kasei Chemicals Corporation | 共役ジエン系重合体およびその製造方法 |
WO2007114203A1 (ja) | 2006-03-31 | 2007-10-11 | Zeon Corporation | 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ |
WO2008013090A1 (fr) | 2006-07-24 | 2008-01-31 | Asahi Kasei Chemicals Corporation | Polymère de diène conjugué modifié et procédé de production de celui-ci |
JP2008143943A (ja) * | 2006-12-06 | 2008-06-26 | Bridgestone Corp | 空気入りタイヤ |
JP2009230412A (ja) | 2008-03-21 | 2009-10-08 | Jfe Steel Corp | 結果予測装置、及び、これを用いた製品品質予測方法 |
JP2010132872A (ja) * | 2008-10-29 | 2010-06-17 | Sumitomo Rubber Ind Ltd | ゴム組成物及びタイヤ |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3333024A (en) | 1963-04-25 | 1967-07-25 | Shell Oil Co | Block polymers, compositions containing them and process of their preparation |
SE307674B (ja) | 1963-12-26 | 1969-01-13 | Shell Int Research | |
JPS59133203A (ja) | 1983-01-20 | 1984-07-31 | Asahi Chem Ind Co Ltd | 重合体の水添方法 |
GB2134909B (en) | 1983-01-20 | 1986-08-20 | Asahi Chemical Ind | Catalytic hydrogenation of conjugated diene polymer |
JPS60220147A (ja) | 1984-04-18 | 1985-11-02 | Asahi Chem Ind Co Ltd | オレフイン水添触媒および該触媒を用いた重合体の水添方法 |
JPS6133132A (ja) | 1984-07-25 | 1986-02-17 | Asahi Chem Ind Co Ltd | オレフインの水添方法 |
JPS62207303A (ja) | 1986-03-07 | 1987-09-11 | Asahi Chem Ind Co Ltd | 共役ジエン系ポリマ−の水添法 |
EP1199313B1 (en) | 1993-12-29 | 2005-08-24 | Bridgestone Corporation | Diene polymers and copolymers having an alkoxysilane group |
JP3895446B2 (ja) | 1997-12-26 | 2007-03-22 | 株式会社ブリヂストン | 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物 |
CN1274719C (zh) | 2001-09-27 | 2006-09-13 | Jsr株式会社 | 共轭二烯(共)聚合橡胶、(共)聚合橡胶的制造方法、橡胶组合物、复合体以及轮胎 |
US9226876B2 (en) * | 2001-10-19 | 2016-01-05 | The Goodyear Tire & Rubber Company | Rubber for baby bottle nipples, pacifiers, and syringe plungers |
JP2004067982A (ja) | 2002-06-14 | 2004-03-04 | Jsr Corp | ゴム・無機化合物複合体、ゴム組成物、タイヤトレッドおよび防振材 |
JP4151835B2 (ja) | 2002-12-04 | 2008-09-17 | 株式会社ブリヂストン | 変性重合体及びその製造方法、並びにゴム組成物 |
JP4739025B2 (ja) | 2003-12-15 | 2011-08-03 | 旭化成ケミカルズ株式会社 | 無機充填剤との親和性に優れた重合体 |
JP2005290355A (ja) | 2004-03-11 | 2005-10-20 | Sumitomo Chemical Co Ltd | 変性ジエン系重合体ゴム及びその製造方法 |
US20050203251A1 (en) | 2004-03-11 | 2005-09-15 | Sumitomo Chemical Company, Limited | Process for producing modified diene polymer rubber |
WO2006025098A1 (ja) * | 2004-08-31 | 2006-03-09 | Asahi Kasei Chemicals Corporation | 耐衝撃性ビニル芳香族炭化水素樹脂 |
ES2390283T3 (es) | 2005-01-14 | 2012-11-08 | Bridgestone Corporation | Polímeros funcionalizados y neumáticos mejorados de los mismos |
WO2008123164A1 (ja) | 2007-03-23 | 2008-10-16 | Jsr Corporation | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物 |
JP2008285558A (ja) | 2007-05-16 | 2008-11-27 | Asahi Kasei Chemicals Corp | 油展共役ジエン系重合体組成物 |
US9623705B2 (en) | 2008-03-10 | 2017-04-18 | Bridgestone Corporation | Method for producing modified conjugated diene polymer/copolymer, modified conjugated diene polymer/copolymer, and rubber composition and tire using the same |
JP5473360B2 (ja) | 2008-03-10 | 2014-04-16 | 株式会社ブリヂストン | ゴム組成物及びそれを用いたタイヤ |
JP5127521B2 (ja) | 2008-03-24 | 2013-01-23 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体及びその製造方法、並びに重合体組成物 |
JP5219606B2 (ja) | 2008-04-25 | 2013-06-26 | 株式会社ブリヂストン | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2009263537A (ja) | 2008-04-25 | 2009-11-12 | Bridgestone Corp | 空気入りタイヤ |
JP2009280805A (ja) | 2008-04-25 | 2009-12-03 | Bridgestone Corp | タイヤ |
FR2930554B1 (fr) | 2008-04-29 | 2012-08-17 | Michelin Soc Tech | Melange elastomerique comprenant majoritairement un elastomere dienique couple par un groupe amino-alcoxysilane, composition de caoutchouc le comprenant et leurs procedes d'obtention. |
EP2277940A4 (en) | 2008-04-30 | 2012-08-15 | Bridgestone Corp | METHOD FOR MANUFACTURING MODIFIED CONJUGATED DIENE COPOLYMER, MODIFIED CONJUGATED DIENE COPOLYMER MANUFACTURED BY THE METHOD, RUBBER COMPOSITION AND TIRE |
JP6085077B2 (ja) | 2008-04-30 | 2017-02-22 | 株式会社ブリヂストン | ゴム組成物及びそれを用いたタイヤ |
SG159479A1 (en) * | 2008-08-27 | 2010-03-30 | Sumitomo Chemical Co | Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer |
-
2010
- 2010-09-22 BR BR112012006333-2A patent/BR112012006333B1/pt not_active IP Right Cessation
- 2010-09-22 EP EP10820431.4A patent/EP2484701B1/en active Active
- 2010-09-22 CN CN2010800393621A patent/CN102482359B/zh active Active
- 2010-09-22 JP JP2011534212A patent/JP5705120B2/ja active Active
- 2010-09-22 KR KR1020127007377A patent/KR101413791B1/ko active IP Right Grant
- 2010-09-22 WO PCT/JP2010/066431 patent/WO2011040312A1/ja active Application Filing
- 2010-09-22 US US13/497,575 patent/US8816014B2/en active Active
- 2010-10-01 TW TW099133555A patent/TWI399389B/zh not_active IP Right Cessation
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140211A (ja) | 1983-02-01 | 1984-08-11 | Nippon Erasutomaa Kk | スチレン−ブタジエン共重合体の製造方法 |
JPS634841A (ja) | 1986-06-25 | 1988-01-09 | Hitachi Ltd | プラズマ処理装置 |
JPS6453851A (en) | 1987-08-25 | 1989-03-01 | Hitachi Ltd | Printing system |
JPH0245492A (ja) * | 1988-06-25 | 1990-02-15 | Degussa Ag | 環状n,n,n´―およびn,n,n´,n´―置換オルガニルオキシ官能性チオ尿素の製造方法および該チオ尿素 |
JPH029041A (ja) | 1988-06-28 | 1990-01-12 | Sony Corp | 回転ドラムのアース装置 |
JPH02132104A (ja) * | 1988-11-11 | 1990-05-21 | Toshiba Silicone Co Ltd | 加水分解性シリル基で分子鎖末端が閉塞されたポリブタジエン、その製造方法およびそれを含有する室温硬化性組成物 |
GB2241239A (en) | 1990-02-08 | 1991-08-28 | Secr Defence | Olefinic polymerisation using silylether initiators |
JPH0428704A (ja) | 1990-05-24 | 1992-01-31 | Kuraray Co Ltd | 塩化ビニル系化合物の懸濁重合用分散安定剤 |
JPH0436636A (ja) | 1990-06-01 | 1992-02-06 | Canon Inc | フローセル装置 |
JPH07233217A (ja) | 1993-12-29 | 1995-09-05 | Bridgestone Corp | 重合体及びその重合体組成物 |
US5708092A (en) | 1994-05-13 | 1998-01-13 | Fmc Corporation | Functionalized chain extended initiators for anionic polymerization |
JPH08109219A (ja) | 1994-10-11 | 1996-04-30 | Asahi Chem Ind Co Ltd | 水添重合体 |
US5527753A (en) | 1994-12-13 | 1996-06-18 | Fmc Corporation | Functionalized amine initiators for anionic polymerization |
JP2001079709A (ja) | 1999-09-13 | 2001-03-27 | Toshiba Mach Co Ltd | エンドミル |
WO2001023467A1 (fr) | 1999-09-27 | 2001-04-05 | Asahi Kasei Kabushiki Kaisha | Composition de caoutchouc |
JP2001158834A (ja) | 1999-12-02 | 2001-06-12 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2003171418A (ja) | 2001-09-27 | 2003-06-20 | Jsr Corp | 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ |
JP2005232351A (ja) * | 2004-02-20 | 2005-09-02 | Bridgestone Corp | ゴム組成物及びそれを用いたタイヤ |
WO2006112450A1 (ja) * | 2005-04-15 | 2006-10-26 | Bridgestone Corporation | 変性共役ジエン系共重合体、ゴム組成物及びタイヤ |
WO2007034785A1 (ja) | 2005-09-22 | 2007-03-29 | Asahi Kasei Chemicals Corporation | 共役ジエン系重合体およびその製造方法 |
WO2007114203A1 (ja) | 2006-03-31 | 2007-10-11 | Zeon Corporation | 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ |
WO2008013090A1 (fr) | 2006-07-24 | 2008-01-31 | Asahi Kasei Chemicals Corporation | Polymère de diène conjugué modifié et procédé de production de celui-ci |
JP2008143943A (ja) * | 2006-12-06 | 2008-06-26 | Bridgestone Corp | 空気入りタイヤ |
JP2009230412A (ja) | 2008-03-21 | 2009-10-08 | Jfe Steel Corp | 結果予測装置、及び、これを用いた製品品質予測方法 |
JP2010132872A (ja) * | 2008-10-29 | 2010-06-17 | Sumitomo Rubber Ind Ltd | ゴム組成物及びタイヤ |
Non-Patent Citations (4)
Title |
---|
I.M. KOLTHOFF ET AL., J. POLYM. SCI., vol. 1, 1946, pages 429 |
KAUTSCHUK GUMMI KUNSTSTOFFE, vol. 52, no. 12, 1999, pages 799 |
R.R. HAMPTON, ANALYTICAL CHEMISTRY, vol. 21, 1949, pages 923 |
See also references of EP2484701A4 |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013082843A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ |
JP2013082840A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ |
JP2013082841A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体、その製造方法、変性共役ジエン系重合体組成物、及びタイヤ |
JP2013082842A (ja) * | 2011-10-12 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ |
JP2013087219A (ja) * | 2011-10-19 | 2013-05-13 | Asahi Kasei Chemicals Corp | サイドウォール用ゴム組成物 |
JP2013087210A (ja) * | 2011-10-19 | 2013-05-13 | Asahi Kasei Chemicals Corp | タイヤサイドウォール用変性共役ジエン系重合体組成物 |
JP2013087218A (ja) * | 2011-10-19 | 2013-05-13 | Asahi Kasei Chemicals Corp | ベーストレッド用ゴム組成物 |
WO2013083749A1 (en) | 2011-12-08 | 2013-06-13 | Dow Corning Corporation | Hydrolysable silanes and elastomer compositions containing them |
CN103974961A (zh) * | 2011-12-08 | 2014-08-06 | 道康宁公司 | 可水解硅烷和包含该可水解硅烷的弹性体组合物 |
JP2015502357A (ja) * | 2011-12-08 | 2015-01-22 | ダウ コーニング コーポレーションDow Corning Corporation | 加水分解性シラン及びそれらを含有するエラストマー組成物 |
CN103974961B (zh) * | 2011-12-08 | 2017-02-22 | 道康宁公司 | 可水解硅烷和包含该可水解硅烷的弹性体组合物 |
JP2013231177A (ja) * | 2012-04-26 | 2013-11-14 | Goodyear Tire & Rubber Co:The | トリグリセリド含有溶液重合調製スチレン/ブタジエンエラストマー及び部品を有するタイヤ |
US20160053059A1 (en) * | 2013-04-25 | 2016-02-25 | Lg Chem, Ltd. | Method for continuous preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same |
US10253158B2 (en) * | 2013-04-25 | 2019-04-09 | Lg Chem, Ltd. | Method for continuously preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same |
JP2017508058A (ja) * | 2014-11-13 | 2017-03-23 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法、およびこれを含むゴム組成物 |
JP2017538788A (ja) * | 2014-12-11 | 2017-12-28 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、これを含む変性ゴム組成物および変性共役ジエン系重合体の製造方法 |
US9834620B2 (en) | 2014-12-11 | 2017-12-05 | Lg Chem, Ltd. | Modified conjugated diene-based polymer, preparation method therefor, and rubber composition containing same |
WO2016093496A1 (ko) * | 2014-12-11 | 2016-06-16 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법 |
JP2017538787A (ja) * | 2014-12-11 | 2017-12-28 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物 |
US10118974B2 (en) | 2014-12-11 | 2018-11-06 | Lg Chem, Ltd. | Modified conjugated diene polymer, a modified rubber composition containing same, and method for preparing modified conjugated diene polymer |
WO2016093671A1 (ko) * | 2014-12-11 | 2016-06-16 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물 |
KR101759402B1 (ko) * | 2014-12-11 | 2017-07-19 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물 |
US10508157B2 (en) | 2015-12-24 | 2019-12-17 | Lg Chem, Ltd. | Modified and conjugated diene-based polymer, method for preparing the same, and modifier |
JP2018531998A (ja) * | 2015-12-24 | 2018-11-01 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法及び変性剤 |
JP2019500475A (ja) * | 2016-11-23 | 2019-01-10 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体およびその製造方法 |
US10808055B2 (en) | 2016-11-23 | 2020-10-20 | Lg Chem, Ltd. | Modified conjugated diene-based polymer and method for preparing the same |
JP2018087324A (ja) * | 2016-11-24 | 2018-06-07 | 宇部興産株式会社 | 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法 |
JP2019534373A (ja) * | 2017-01-03 | 2019-11-28 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体の製造方法 |
US20190256635A1 (en) | 2017-01-03 | 2019-08-22 | Lg Chem, Ltd. | Method for Preparing Modified Conjugated Diene-based Polymer |
US10920004B2 (en) | 2017-01-03 | 2021-02-16 | Lg Chem, Ltd. | Method for preparing modified conjugated diene-based polymer |
WO2020262371A1 (ja) | 2019-06-25 | 2020-12-30 | 日鉄ケミカル&マテリアル株式会社 | 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、その組成物、ゴム架橋物及びタイヤ部材 |
JP2022511923A (ja) * | 2019-09-27 | 2022-02-01 | エルジー・ケム・リミテッド | 変性剤、それを含む変性共役ジエン系重合体、およびその重合体の製造方法 |
JP7161055B2 (ja) | 2019-09-27 | 2022-10-25 | エルジー・ケム・リミテッド | 変性剤、それを含む変性共役ジエン系重合体、およびその重合体の製造方法 |
US12116439B2 (en) | 2019-09-27 | 2024-10-15 | Lg Chem, Ltd. | Modifier, modified conjugated diene-based polymer comprising thereof and method for preparing the polymer |
WO2023100993A1 (ja) | 2021-12-03 | 2023-06-08 | 日鉄ケミカル&マテリアル株式会社 | 変性ビニル芳香族系共重合体及びその製造方法、それから得られる変性共役ジエン系共重合体、樹脂組成物、樹脂架橋物及び構造部材 |
WO2024029624A1 (ja) * | 2022-08-05 | 2024-02-08 | 株式会社Eneosマテリアル | 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋体並びにタイヤ |
Also Published As
Publication number | Publication date |
---|---|
US8816014B2 (en) | 2014-08-26 |
KR101413791B1 (ko) | 2014-06-30 |
JP5705120B2 (ja) | 2015-04-22 |
TWI399389B (zh) | 2013-06-21 |
KR20120058564A (ko) | 2012-06-07 |
EP2484701A4 (en) | 2016-04-20 |
TW201120073A (en) | 2011-06-16 |
JPWO2011040312A1 (ja) | 2013-02-28 |
CN102482359B (zh) | 2013-09-04 |
US20120277369A1 (en) | 2012-11-01 |
BR112012006333B1 (pt) | 2019-09-17 |
CN102482359A (zh) | 2012-05-30 |
BR112012006333A2 (pt) | 2017-07-18 |
EP2484701B1 (en) | 2017-11-08 |
EP2484701A1 (en) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5705120B2 (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP5911524B2 (ja) | 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP6501847B2 (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ | |
JP5898212B2 (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、ゴム組成物、及びタイヤ | |
JP6106476B2 (ja) | 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ | |
WO2016199779A1 (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ | |
JP2016079217A (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP6032880B2 (ja) | 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ | |
JP6105336B2 (ja) | 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ | |
JP6166066B2 (ja) | 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ | |
JP6032882B2 (ja) | サイドウォール用ゴム組成物 | |
JP2018028018A (ja) | 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ | |
JP2018002986A (ja) | 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ | |
JP2013082794A (ja) | 変性共役ジエン系重合体組成物 | |
JP2013082842A (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、及びタイヤ | |
JP6487220B2 (ja) | 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法及びその組成物 | |
JP5534913B2 (ja) | 変性共役ジエン系ゴム組成物及び変性共役ジエン系ゴム組成物の製造方法 | |
JP5850699B2 (ja) | ベーストレッド用ゴム組成物 | |
JP2019131723A (ja) | 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ | |
JP2015113437A (ja) | 変性共役ジエン系重合体組成物の製造方法 | |
JP2015214619A (ja) | ゴム組成物 | |
JP7525666B2 (ja) | ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080039362.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820431 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011534212 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2418/CHENP/2012 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2010820431 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010820431 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127007377 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13497575 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201001304 Country of ref document: TH |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012006333 Country of ref document: BR |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112012006333 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012006333 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120321 |