WO2010150663A1 - サーボ制御装置 - Google Patents
サーボ制御装置 Download PDFInfo
- Publication number
- WO2010150663A1 WO2010150663A1 PCT/JP2010/059871 JP2010059871W WO2010150663A1 WO 2010150663 A1 WO2010150663 A1 WO 2010150663A1 JP 2010059871 W JP2010059871 W JP 2010059871W WO 2010150663 A1 WO2010150663 A1 WO 2010150663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- vibration
- driven
- support
- control device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41117—Cancel vibration during positioning of slide
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41128—Compensate vibration beam, gantry, feedback of speed of non driven end
Definitions
- the present invention relates to a servo control device.
- FIG. 13 simply shows an example of a schematic configuration of a machine tool.
- the machine tool includes a bed 1 and a table 2 arranged on the bed 1.
- the table 2 is provided on the bed 1 so as to be movable along the X-axis direction.
- cross rails are arranged along the Y-axis direction.
- a saddle 5 having a ram 6 is screwed onto the cross rail 4 and is movably provided along the Y-axis direction.
- the movement of the table 2 in the X-axis direction is performed by a ball screw drive mechanism.
- the saddle 5 provided with the ram 6 is also moved in the Y-axis direction by another ball screw drive mechanism installed in the column 3.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a servo control device capable of improving the accuracy of position control.
- the present invention employs the following means.
- the present invention includes a screw feed portion that converts a rotational motion of a motor into a linear motion, a driven portion that is linearly moved by the screw feed portion, and a support that supports the screw feed portion and the driven portion.
- a servo control device that is applied to a numerical control device and that controls the motor so that the position of the driven portion matches a position command, and compensates for vibration of the driven portion due to vibration reaction force of the support
- the servo control device includes a support reaction force compensation unit that includes a rigidity term of the driven portion in a transfer function of the support reaction force compensation unit.
- the support reaction force compensation unit may be provided in a feedforward control system for speed control of the motor.
- the feedforward control system for controlling the speed of the motor, the speed compensation of the motor can be accurately performed.
- the transfer function included in the support reaction force compensation unit includes a rigidity term of the support, and the rigidity term of the support is applied to the support or the driven unit. It is good also as identifying based on the vibration resonant frequency when giving an impact and making it vibrate.
- the vibration resonance frequency is used, for example, higher measurement accuracy can be obtained compared to a method of identification from the relationship between force and strain, and high identification accuracy can be obtained.
- the servo control device may include a constant identification unit that identifies a stiffness term of the support, and the constant identification unit applies an impact to the driven unit to vibrate the driven unit.
- a resonance frequency of the driven part is calculated from a generation part, a vibration detection part that detects vibration of the driven part or the support when an impact is applied, and a vibration signal detected by the vibration detection part.
- a support stiffness term identifying unit that identifies the stiffness term of the support from the resonance frequency may be included.
- the driven part is vibrated by applying an impact to the driven part, and the rigidity term of the support body is identified based on the state of the vibration, so that the reliability of the rigidity term of the support body is increased. Can do.
- the transfer function of the support reaction force compensation unit includes a viscosity term of the support, and the viscosity term of the support is applied to the support or the driven unit. It is good also as identifying based on the damping state of the vibration when giving an impact and making it vibrate.
- the viscosity term of the support is identified based on the vibration damping state, the viscosity term of the support can be easily identified.
- the servo control device may include a constant identification unit that identifies a constant included in the transfer function included in the support reaction force compensation unit, and the constant identification unit applies an impact to the driven unit.
- An impact generating unit that vibrates the driven unit, a vibration detecting unit that detects vibration of the driven unit or the support when an impact is applied, and a vibration signal detected by the vibration detecting unit It is good also as having the support body viscosity term identification part which calculates the damping rate of the vibration of the said driven part, and identifies the viscosity term of the said support body from the damping rate of this vibration.
- the driven part is vibrated by applying an impact to the driven part, and the viscosity term of the support is identified based on the state of this vibration, so the reliability of the identification of the viscosity term of the support is increased. Can do.
- the impact generating unit may vibrate the driven unit by moving the driven unit at a predetermined acceleration or more.
- the constant identification unit identifies the vibration when the amplitude of the vibration of the driven unit detected by the vibration detection unit exceeds a predetermined threshold after identifying the constant.
- the constant may be adjusted based on the vibration signal detected by the detection unit.
- the constant identification unit is configured to calculate the target to be calculated from a vibration signal detected by the vibration detection unit and a model of the support reaction force compensation unit during a period in which the numerical control device is driven.
- the estimated vibration signal of the drive unit may be compared, and the mechanical constant of the transfer function included in the support reaction force compensation unit may be adjusted based on the comparison result.
- the constant since the constant is adjusted even during the period in which the numerical control device is driven, the constant can always be set to an appropriate value. Thereby, the precision of position control of a driven part can be improved.
- FIG. 1 is a diagram illustrating a schematic configuration of a machine tool to which a servo control device according to a first embodiment of the present invention is applied.
- FIG. 13 is a diagram showing a schematic configuration of a machine tool to which the servo control device according to the first embodiment of the present invention is applied.
- the machine tool includes a bed 1 and a table 2 disposed on the bed 1 and movable along the X-axis direction.
- a gate-shaped column (support) 3 is disposed so as to straddle the table 2.
- a cross rail is attached to the column 3 in the Y-axis direction, and the saddle 5 is movable along the Y-axis direction by moving a saddle (driven portion) 5 on the cross rail.
- the saddle 5 includes a ram 6 that can move along the Z-axis direction. At the tip of the ram 6, a machine tip that performs cutting or the like is attached. The purpose of this embodiment is to control the position of the saddle 5 so that the machine tip position of the ram 6 in the Y-axis direction matches the command position ⁇ .
- FIG. 1 shows a schematic configuration of a control target device of the servo control device according to the present embodiment.
- the control target device is a load obtained by converting the rotational motion of the motor 12 into a linear motion by a ball screw feeding portion (screw feeding portion) 9 including a ball screw nut 10 and a ball screw shaft 11.
- This is a ball screw drive mechanism of a machine tool that linearly moves the saddle 5 (moves in the Y-axis direction).
- the motor 12 is provided with a motor encoder 13 that detects and outputs the motor speed ⁇ M.
- the linear scale 14 detects and outputs a load position ⁇ L indicating the position of the saddle 5.
- the ball screw driving mechanism when the motor 12 is driven to rotate and the ball screw shaft 11 rotates, the ball screw nut 10 and the saddle 5 fixedly connected to the ball screw nut 10 move linearly.
- FIG. 2 is a block diagram of the servo control apparatus according to the present embodiment.
- the servo control device 100 calculates a command torque ⁇ for making the machine tip position in the Y-axis direction of the ram 6 attached to the saddle 5 coincide with the command position ⁇ , and outputs the command torque ⁇ as an output signal. Is output to the motor 12.
- the saddle 5 is attached to the column 3 as shown in FIG. If the saddle 5 moves in the Y-axis direction or the ram 6 moves in the Z-axis direction when performing cutting or the like, vibration is generated in the column 3, and this vibration controls the position of the saddle 5 and ram 6. Will affect the accuracy.
- the servo control device 100 includes a mechanical deflection compensation unit 200 for compensating for a position control error caused by such vibration of the column 3. Furthermore, a speed feedforward unit 201 is provided to compensate for position error factors such as “distortion”, “deflection”, “viscosity”, etc. generated in the motor 12 and the saddle 5 and to improve the position control accuracy of the saddle 5. ing. Details of the mechanical deflection compensation unit 200 and the speed feedforward unit 201 will be described later.
- the servo control device 100 includes a mechanical deflection compensation unit 200, a speed feedforward unit 201, a subtraction unit 101, a multiplication unit 102, a subtraction unit 103, and a proportional integration calculation unit 104.
- the mechanical deflection compensation unit 200 compensates the command position ⁇ with a transfer function described later, and outputs the compensated command position ⁇ ′.
- Subtraction unit 101 outputs the deviation position ⁇ is the difference in the column compensated command position ⁇ 'and the load position theta L.
- Multiplier 102 multiplies deviation position ⁇ by position loop gain K P and outputs deviation speed ⁇ V.
- the subtracting unit 103 outputs a command speed V obtained by subtracting the motor speed ⁇ M from the value obtained by adding the compensation speed V ′ output from the speed feedforward unit 201 to the deviation speed ⁇ V.
- the proportional-integral calculation unit 104 performs a proportional-integral calculation on the command speed V and outputs a command torque ⁇ .
- the command torque ⁇ is given to the device to be controlled shown in FIG. 2, and each part is controlled based on the command torque ⁇ .
- the motor 12 is driven to rotate when a current corresponding to the command torque ⁇ is supplied from a current controller (not shown).
- current feedback control is performed so that the current value corresponds to the command torque ⁇ .
- the rotational motion of the motor 12 is converted into a linear motion by the ball screw feeding portion 9, and as a result, the ball screw nut 10 screwed into the ball screw feeding portion 9 is linearly moved and fixed to the ball screw nut 10.
- the saddle 5 is moved together with the ball screw nut 10, and the machine front end position attached to the front end of the ram 6 included in the saddle 5 is moved to the command position ⁇ .
- the speed feedforward unit 201 includes a first derivative term computing unit 301, a second derivative term computing unit 302, a third derivative term computing unit 303, a fourth derivative term computing unit 304, A multiplier 305 that multiplies the first derivative by the first derivative, a multiplier 306 that multiplies the second derivative by the second derivative, a multiplier 307 that multiplies the third derivative by the third derivative, and a fourth order.
- a multiplication unit 308 that multiplies the differential term by a fourth-order differential coefficient, an addition unit 309, a speed loop compensation unit 310, a column reaction force compensation unit (support body reaction force compensation unit) 311, and a subtraction unit 312 are provided.
- s is a Laplace operator (differential operator).
- the first to fourth differential coefficients are set in the transfer function of the inverse characteristic model of torque and speed in the mechanical system model.
- the transfer function of the velocity loop compensation unit 310 is represented by ⁇ K P / (1 + T v s) ⁇ using the position gain K P and the integration time constant T v, and the transfer function of the column reaction force compensation unit 311 is , Column inertia J C , saddle and ram inertia J L , column viscosity C C , feed system stiffness K R , column spring stiffness K C , ⁇ (J C J L / K R ) s 2 / ( 2J C s 2 + C C s + K C ) ⁇ .
- the speed feedforward unit 201 when the command position ⁇ ′ subjected to position compensation by the mechanical deflection compensator 200 is input, the first derivative term multiplied by the first derivative and the second derivative are multiplied. By inputting the third derivative term multiplied by the second derivative term, the third derivative coefficient, and the fourth derivative term multiplied by the fourth derivative coefficient to the adder 309, these different derivative values are added. And supplied to the speed loop compensation unit 310. The velocity loop compensation unit 310 performs position compensation represented by the transfer function and then outputs the result to the subtraction unit 312.
- the third-order differential term output from the third-order differential term calculation unit 303 is also input to the column reaction force compensation unit 311, subjected to position compensation represented by the transfer function, and then output to the subtraction unit 312.
- the compensation speed V ′ is calculated by subtracting the position compensation amount by the column reaction force compensating unit 311 from the output from the speed loop compensating unit 310, and this compensating speed V ′ is supplied to the subtracting unit 103 in FIG. 2. Will be output.
- the compensation speed V ′ is added to the deviation speed ⁇ V in the subtracting unit 103, so that “strain”, “deflection”, “viscosity” with respect to the motor 12 and the saddle 5 that are mass points, etc. Error factors are compensated. As a result, the accuracy of the position control of the saddle 5 can be improved.
- the mechanical deflection compensation unit 200 shown in FIG. 2 and the column position compensation unit 311 shown in FIG. 3, which are one of the main features of this embodiment, will be described.
- the column 3 vibrates due to the movement of the saddle 5, the ram 6, etc., and the position control accuracy decreases due to the vibration of the saddle 5 caused by the vibration of the column 3.
- the purpose is to prevent.
- the position control of the saddle 5 must be performed in consideration of the vibration of the column 3 itself, and the saddle 5 and the vibration of the ram 6 due to the reaction force of the vibration of the column 3 are also considered. 5 position control must be performed.
- the saddle 5 vibrates due to the reaction force of the column 3, and this vibration is not necessarily the same as the vibration of the column 3. Will vibrate. In this case, it is necessary to consider not only the position error due to the vibration of the column 3 but also the position error due to the inherent vibration of the saddle 5 caused by the reaction force of the vibration of the column 3, and to compensate the position control error associated therewith. .
- the present invention focuses on the inherent vibration of the saddle 5 caused by the reaction force of the vibration of the column 3, and one of the features is that the position error due to the inherent vibration of the saddle 5 is compensated. Yes.
- the servo control device 100 compensates not only for the vibration of the column 3 itself as described above but also for the position error caused by the vibration of the saddle 5 due to the reaction force of the vibration of the column 3.
- This compensation model is the column reaction force compensation unit 311 shown in FIG.
- the servo control device 100 according to the present embodiment includes the mechanical deflection compensation unit 200 that compensates for the position control error caused by the vibration of the column 3 itself, and the position caused by the vibration of the saddle 5 caused by the reaction force of the vibration of the column 3.
- Two compensation models including a column reaction force compensation unit 311 for compensating for an error are provided.
- FIG. 4 is a diagram illustrating a mechanical system model of the control target device including the column 3.
- the mechanical system model is specified as a three-mass system mechanical system model including the motor 12, the load saddle 5, and the column 3 as the mass points.
- the characteristics of the motor 12 are modeled and represented by a transfer function, they are represented by a block 12-1 and a block 12-2.
- J M represents motor inertia and D M represents motor viscosity.
- the motor speed ⁇ M is output from the block 12-1, and the motor position ⁇ M is output from the block 12-2.
- theta M indicates the motor position
- theta L is the load position
- C R is feed system of translational attenuation
- K R is feed system stiffness
- J L saddle Lam inertia D L is the load viscous (saddle viscosity), respectively .
- the block 5-1 outputs a reaction force torque. If the value obtained by adding the reaction force of the reaction force torque and the column vibration is inputted to the block 5-2, the load position theta L is output.
- J C represents column inertia
- C C represents column viscosity
- K C represents column rigidity
- equations of motion in the block 101, the block 102, and the block 103 are respectively expressed by the following equations (1) to (3).
- the mechanical deflection compensation unit 200 is expressed by the following equation (7) (see FIG. 2).
- G 1 (s) (2J C s 2 + C C s + K C ) / ⁇ (2J C ⁇ J L ) s 2 + (C C ⁇ D L ) s + K C ⁇ (7)
- ⁇ C ⁇ ( ⁇ M ⁇ L ) K R ⁇ L J L s 2 ⁇ / J C s 2 (8)
- ⁇ M [-2K R -K R (K C + C C s) / J C s 2 ] ⁇ L [-2K R ⁇ J L s 2 ⁇ (J L / J C ) * (K C + C C s) ⁇ K R / J C s 2 * (K C + C s)]
- equation (12) Is obtained.
- transfer of the column reaction-force compensation section 311 in the transfer function G 1 (s) and velocity feedforward section 201 of the mechanical deflection compensating section 200 function G 2 (s) is a column It includes six mechanical constants: inertia J C , column viscosity C C , column stiffness K C , saddle / ram inertia J L , load viscosity D L , and feed system stiffness K R.
- inertia J C , the column viscosity C C , the column stiffness K C , and the feed system stiffness K R are variable constants, and a simple identification method is desired.
- column inertia J C can be estimated because the machine weight of each part is known, and identification is not necessary. Since the feed system stiffness K R can also be estimated from the theoretical value of the ball screw stiffness, identification is not necessary. Therefore, for the remaining column viscosity C C and the column stiffness K C, by a decision of identification, it is possible to determine all the mechanical constants of the compensator.
- an identification method for the column viscosity C C and the column rigidity K C will be described.
- an impact is applied to the column 3, and the column viscosity C C and the column stiffness K C are identified from the response vibration of the impact.
- the column rigidity K C is identified based on the resonance frequency when the saddle 5 is vibrated by applying an impact to the column 3.
- the derivation of an arithmetic expression for calculating the column stiffness K C from the resonance frequency will be described.
- K C (8J C 2 J L K R ⁇ 2 ⁇ (2J c J L ) 2 ⁇ 4 / ( ⁇ 4 J c J L 2 ) ⁇ 2 + 4J C J L K R ) (20)
- K R is feed system stiffness
- J L saddle inertia
- J C is the column inertia
- q column resonance frequency, of which the column inertia J C, saddle inertia J L, and the feed system
- the stiffness K R is known. Accordingly, by detecting the column resonance frequency, the column rigidity K C can be identified according to the above equation (21).
- FIG. 6 is a diagram illustrating a schematic configuration of the constant identification unit 50.
- the constant identification unit 50 includes an impact generation unit 51, an acceleration sensor (vibration detection unit) 52, a column stiffness identification unit (support body stiffness term identification unit) 53, and a column viscosity identification unit (support body viscosity term).
- the impact generating unit 51 applies a predetermined impact to the saddle 5 in the Y-axis direction, for example.
- the predetermined impact is, for example, an impact such as a step response.
- the saddle 5 and the ram 6 are moved so as to draw a substantially square shape on the YZ plane, thereby giving an impact in the Y-axis direction to the saddle 5.
- each corner is set in an arc shape having a predetermined curvature.
- the impact generating unit 52 has a substantially rectangular movement locus on the YZ plane as shown in FIG. 7, and a motor is provided by giving a position command corresponding to this movement locus to the servo control device 100 shown in FIG. 12 is driven to rotate, and the saddle 5 is moved along the movement locus shown in FIG.
- the allowable acceleration is preferably set to 0.2 G or more.
- an impact with an acceleration of 0.2 G to 0 G is generated when moving at a speed of 4600 mm / min and moving from a circular arc with a radius of 3 mm to a straight line.
- the mechanical deflection compensation unit 200 and the column reaction force compensation unit 311 in the servo control device 100 are in the off state, and the machine deflection compensation and the column reaction force compensation are not performed. It is like that.
- the acceleration sensor 52 is attached to the column 3 or the saddle 5, detects vibration of the saddle 5 due to the impact applied to the saddle 5 by the impact generating unit 51, and uses this detection signal as the column stiffness identifying unit 53 and the column viscosity identifying. To the unit 54.
- the column rigidity identifying unit 53 obtains the column resonance frequency q from the detection signal acquired by the acceleration sensor 52 when an impact is applied to the saddle 5 by the impact generating unit 51, and substitutes this in the above-described equation (21). By doing so, the column rigidity K C is identified.
- the column viscosity identifying unit 54 obtains a vibration damping rate from the detection signal acquired by the acceleration sensor 52, and based on the damping rate, the column viscosity C C is obtained. Is identified. Hereinafter, will be described with reference to FIG method for identifying the column viscosity C C.
- an average ⁇ of logarithmic decay rates is obtained from these amplitude values P1, P2, P3.
- the average of LN (P1 / P2), LN (P2 / P3), and LN (P3 / P4) is calculated to obtain the average ⁇ of the logarithmic decay rate.
- the column viscosity C C is calculated from the following equation using the logarithmic damping rate ⁇ , the column inertia J c , and the column stiffness K c identified by the column stiffness identification unit 53 described above.
- the machine constant setting unit 55 determines the column stiffness K C identified by the column stiffness identification unit 53 and the column viscosity C C identified by the column viscosity identification unit 54 as the column reaction force of the mechanical deflection compensator 200 and the speed feedforward unit 201. Set in the compensation unit 311.
- the machine constant setting unit 55 has a table in which machine states such as the W-axis position and attachment are associated with machine constants other than the column rigidity K C and the column viscosity C C. The corresponding machine constants are read from the table, and the read machine constants are set in the machine deflection compensator 200 and the column reaction force compensation unit 311 of the speed feedforward unit 201.
- the servo control device 100 performs the mechanical deflection compensator 200 and the column reaction force compensation.
- the unit 311 is operated to perform position control using these compensation models.
- the servo control device not only the mechanical deflection compensation unit 200 that compensates the position control error due to the vibration of the column 3 but also the saddle 5 of the saddle 5 due to the reaction force of the column 3. Since the column reaction force compensator 311 for compensating the position control error due to the vibration is provided, the vibration of the saddle 5 due to the reaction force of the column 3 can be compensated, and the position control of the saddle 5 can be performed with high accuracy even when the column 3 is vibrating. Can be done.
- FIG. 9 is a graph showing the accuracy of position control before and after compensation by the mechanical deflection compensation unit 200 and the column reaction force compensation unit 311.
- the horizontal axis represents time
- the vertical axis represents the position of the ram tip in the Y-axis direction.
- a jig (equal) having a thickness of 500 mm was arranged on the upper surface of the table shown in FIG. 13, and a lattice scale was arranged on the jig.
- the motor 12 is rotationally driven by giving the servo controller 100 shown in FIG. 2 a position command corresponding to a substantially square movement locus on the YZ plane as shown in FIG.
- the saddle 5 and the ram 6 were moved along the movement trajectory.
- FIG. 9 shows the ram tip position measured on a lattice scale when such a test is performed.
- the constant identification unit 50 ′ of the servo control device according to the second embodiment further includes a vibration determination unit 56 and a constant adjustment unit 57.
- the constant adjustment unit 57 is once set by the machine constant setting unit 55. Adjust the set machine constant. Specifically, the constant adjustment unit 57 changes the column viscosity C C to a direction in which the column viscosity C C increases when the vibration immediately after applying an impact is relatively large, and the vibration is relatively large after a while after the impact is applied. In this case, the mechanical constant is adjusted by changing the compensation frequency. When the machine constant is changed, the same process is performed again until the vibration determination unit 56 determines that the vibration amplitude of the saddle 5 is equal to or less than a predetermined threshold value. Repeat.
- the servo control device As described above, according to the servo control device according to the present embodiment, it has means for confirming whether or not the machine constant once set is appropriate, and until the determination result that the machine constant is appropriate is obtained. Since the adjustment of the mechanical constant is repeatedly performed, the position control accuracy of the saddle 5 can be further improved.
- the acceleration sensor 52 it is necessary to attach the acceleration sensor 52 to the saddle 5. This is because the position control of the saddle 5 is improved by operating the mechanical deflection compensation unit 200 and the column reaction force compensation unit 311, whereas the column 3 still vibrates. Therefore, when the acceleration sensor 52 is attached to the column 3, the effect of position compensation by the mechanical deflection compensation unit 200 and the column reaction force compensation unit 311 cannot be confirmed, and therefore whether the mechanical constant is appropriate. This is because it cannot be judged whether or not.
- the saddle 5 is intentionally vibrated by applying an external impact to the saddle 5, and the mechanical constant is identified based on the state of the vibration. It was.
- the present embodiment is based on the state after the machine constant is once set. In other words, in the state where the position control is performed by the servo control device, in other words, the machine tool is driven. In this state, when the accuracy of the position control is lowered, the machine constant is gradually adjusted.
- the servo control device includes a machine constant adjustment unit 60.
- the mechanical constant adjustment unit 60 includes a column resonance model 61 to which the command position ⁇ is input, a bandpass filter 62 that filters the command position ⁇ compensated by the column resonance model 61, and an acceleration sensor 52.
- the band-pass filter 63 for filtering the signal from the band-pass filter 62 and the adjustment unit 64 for comparing the signals passing through the band-pass filters 62 and 63 and adjusting the machine constant until the difference is eliminated.
- the command position ⁇ is input in such a mechanical constant adjustment unit 60 (step SA1 in FIG. 12)
- the command position ⁇ is filtered by the band pass filter 62 after passing through the column resonance model 61, and the adjustment unit 64 (Step SA2 in FIG. 12).
- the vibration detection signal from the acceleration sensor 52 is output to the adjustment unit 64 after passing through the bandpass filter 63.
- the adjustment unit 64 compares the frequency of the signal from the column resonance model 61 side with the frequency of the signal from the acceleration sensor 52 side (step SA3 in FIG. 12).
- the adjustment unit 64 reduces the column rigidity K C by a predetermined amount.
- the adjustment unit 64 increases the column rigidity K C by a predetermined amount (step SA4 in FIG. 12). ).
- the adjustment unit 64 repeatedly adjusts the column rigidity K C as described above until it is determined that both frequencies match or the difference between both frequencies is within a predetermined threshold (step SA5 in FIG. 12).
- step SA6 when the adjusting unit 64 determines that the frequencies of the two coincide with each other, the amplitudes of the two are subsequently compared (step SA6 in FIG. 12).
- the adjustment unit 64 increases the column viscosity CC by a predetermined amount.
- the adjustment unit 64 reduces the column viscosity C C by a predetermined amount (step SA7 in FIG. 12). ).
- the adjustment unit 64 repeatedly adjusts the column viscosity C C as described above until the amplitudes of the two coincide or the difference between the amplitudes is determined to be within a predetermined threshold (step SA8 in FIG. 12). If it is determined that the amplitudes of the two coincide, the process returns to step SA1 to repeat the above-described processing.
- the mechanical constants in the mechanical deflection compensation unit 200 and the column reaction force compensation unit 311 are appropriate values at regular time intervals even in a normal driving state. In the case where it is not appropriate, the value is adjusted to an appropriate value, so that the position control accuracy of the saddle 5 can always be maintained at a predetermined accuracy or higher.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position Or Direction (AREA)
- Control Of Electric Motors In General (AREA)
- Numerical Control (AREA)
Abstract
Description
テーブル2のX軸方向における移動は、ボールねじ駆動機構により行なわれるようになっている。ラム6を備えたサドル5のY軸方向の移動も、コラム3に設置された別のボールねじ駆動機構により行なわれるようになっている。
このような問題を解消するために、例えば、サーボ系や機械系をモデル化し、そのモデルの逆特性をもった伝達関数を用いてフィードフォワード補償することが提案されている(例えば、特許文献1参照)。
更に、特許文献1等に記載されている発明では、フィードフォワード補償制御用の伝達関数における機械定数を同定する必要があるが、このような機械定数の同定を正確に行うことは難しく、機械定数の同定が適切に行われないと、折角フィードフォワード補償制御を行ったとしても所望の精度を維持できないという問題があった。
本発明は、モータの回転運動を直線運動に変換するねじ送り部と、前記ねじ送り部によって直線移動させられる被駆動部と、前記ねじ送り部及び前記被駆動部が支持される支持体とを備える数値制御機器に適用され、前記被駆動部の位置を位置指令に一致させるように前記モータを制御するサーボ制御装置であって、前記支持体の振動反力による前記被駆動部の振動を補償する支持体反力補償部を備え、前記支持体反力補償部が備える伝達関数には、前記被駆動部の剛性項が含まれているサーボ制御装置を提供する。
このように、モータの速度制御用のフィードフォワード制御系に設けることで、モータの速度補償を正確に行うことが可能となる。
〔第1の実施形態〕
図13は、本発明の第1の実施形態に係るサーボ制御装置が適用される工作機械の概略構成を示した図である。図13に示すように、工作機械は、ベッド1と、ベッド1上に配置され、X軸方向に沿い移動可能なテーブル2を備えている。テーブル2を跨ぐように門形のコラム(支持体)3が配置されている。コラム3には、Y軸方向にクロスレールが取り付けられており、このクロスレール上をサドル(被駆動部)5が移動することにより、サドル5がY軸方向に沿い移動可能とされている。サドル5は、Z軸方向に沿い移動可能なラム6を備えている。ラム6の先端には、切削加工等を行う機械先端が取り付けられている。本実施形態では、このラム6のY軸方向における機械先端位置を指令位置θに一致させるようにサドル5の位置を制御することを目的としている。
上述したように、本実施形態に係るサーボ制御装置100は、サドル5やラム6等の移動によってコラム3が振動し、このコラム3の振動によって起因するサドル5の振動による位置制御の精度低下を防止することを目的としている。
このように、本発明は、コラム3の振動の反力に起因するサドル5の固有の振動に着目したもので、このサドル5の固有の振動による位置誤差を補償することを特徴の一つとしている。
このように、本実施形態に係るサーボ制御装置100は、コラム3そのものの振動による位置制御誤差を補償する機械たわみ補償部200と、コラム3の振動の反力によるサドル5の振動に起因する位置誤差を補償するためのコラム反力補償部311とからなる2つの補償モデルを有している。このように、2つの補償モデルを有することにより、コラムの振動に起因する位置制御の誤差を効率的に解消することができ、図13に示した工作機械におけるY軸方向の位置制御の精度を向上させることができる。
図4は、コラム3を含む制御対象機器の機械系モデルを示した図である。図4に示すように、本実施形態では、機械系のモデルをモータ12、負荷であるサドル5、及びコラム3を質点とした3質点系の機械系のモデルとして特定している。
ブロック5-1は、モータ位置θMと負荷位置θLとの偏差(θM-θL)が入力されると、反力トルクを出力する。この反力トルク及びコラム振動の反力を加算した値がブロック5-2に入力されると、負荷位置θLが出力される。
(θM-θL)KR-θCJCs2=θL(JLs2+DLs) (2)
-(θM-θL)KR-θC(KC+CCs)=θCJCs2 (3)
-θL(JLs2+DLs)=θC(2JCs2+CCs+KC) (4)
{(2JCs2+CCs+KC)-(JLs2+DLs)}θL=θ(2JCs2+CCs+KC)
θL=θ(2JCs2+CCs+KC)/{(2JC-JL)s2+(CC-DL)s+KC} (6)
図4に示した機械系モデルからサドル5の検出位置θLとモータ速度θMsの関係を求めると、上述の(2)式より、以下の(8)式が導出される。
=(θM-θL)KR-θLJLs2 (9)
θM〔-2KR-KR(KC+CCs)/JCs2〕
=θL〔-2KR-JLs2-(JL/JC)*(KC+CCs)-KR/JCs2*(KC+CCs)〕
θM〔-2KRJCs2-KR(KC+CCs)〕
=θL〔-2KRJCs2-JLs2*JCs2-JL*(KC+CCs)s2-KR*(KC+CCs)〕
そして、この4つの機械定数のうち、コラムイナーシャJCについては、各部の機械重量が既知であることから推定することができ、同定は不要である。送り系剛性KRについても、ボールねじ剛性理論値から推定することができることから、同定は不要である。
よって、残りのコラム粘性CC及びコラム剛性KCについて、同定を行って決定をすることで、各補償部の機械定数を全て決定することができる。
本実施形態では、コラム3に対して衝撃を与え、その衝撃の応答振動からコラム粘性CC及びコラム剛性KCを同定する。
コラム剛性KCの同定は、コラム3に対して衝撃を与えてサドル5を振動させたときのその共振周波数に基づいて行われる。
そこで、まずは、共振周波数からコラム剛性KCを算出するための演算式の導出について説明する。
θLKR-θC(KC+CCs)=θCJCs2 (16)
θL=-θcJcs2/(JLs2+KR) (17)
-θc(Jcs2KR)/(JLs2+KR)-θc(KC+CCs)=θcJcs2
Jcs2+CCs+KC+(Jcs2KR)/(JLs2+KR)=0
Jcs2(JLs2+KR)+(Kc+CCs)*(JLs2+KR)+Jcs2KR=0
JcJLs4+CCJLs3+(2JcKR+JLKC)s2+CCKRs+KRKC=0 (18)
KC=Jc(8KRq2-JLq4)/(KR-JLq2) (21)
図6は、定数同定部50の概略構成を示した図である。図6に示すように、定数同定部50は、衝撃発生部51、加速度センサ(振動検出部)52、コラム剛性同定部(支持体剛性項同定部)53、コラム粘性同定部(支持体粘性項同定部)54、及び機械定数設定部55を備えている。
図8に示すような減衰振動が得られた場合、振動の振幅P1,P2,P3・・・をそれぞれ測定する。続いて、これらの振幅値P1,P2,P3・・・から対数減衰率の平均δを求める。例えば、4波形を対象とした場合、LN(P1/P2)、LN(P2/P3)、LN(P3/P4)の平均を計算して対数減衰率の平均δを求める。続いて、対数減衰率δ、コラムイナーシャJc、及び上述のコラム剛性同定部53によって同定されたコラム剛性Kcを用いて、以下の式からコラム粘性CCを算出する。
今回の試験では、図13に示されるテーブルの上面に500mmの厚みの治具(イケール)を配置し、その治具の上に格子スケールを配置した。この状態で、図7に示すようなYZ平面上における略四角形の移動軌跡に応じた位置指令を図2に示したサーボ制御装置100に与えることによりモータ12を回転駆動させ、図7に示した移動軌跡に沿ってサドル5及びラム6を移動させた。この試験では、速度4600mm/minでサドル5及びラム6を移動させた。図9は、このような試験を行ったときのラム先端位置を格子スケールで測定したものである。図9は、ラム先端がY軸に沿って移動した後に、円弧を描き停止するまでの動作部分の波形を切り出して示した図であり、Y=-103の位置を停止位置(基準位置)としている。図9から、補償を行うことにより、サドル5及びラム6の振動が効果的に抑制され、位置制御の精度が向上していることがわかる。
上述したように、定数同定部50によって機械たわみ補償部200及びコラム反力補償部311の定数が設定された場合でも、設定された定数が適切ではなく、これらの補償部を作動させたとしても依然としてサドル5が振動してしまい、位置制御の精度が低下してしまうということが考えられる。
上述した第1の実施形態及び第2の実施形態においては、サドル5に対して外的な衝撃を与えることによりわざとサドル5を振動させ、この振動の状態に基づいて機械定数の同定を行っていた。
これに対し、本実施形態は、一度機械定数が設定された後の状態を前提としたものであり、サーボ制御装置による位置制御が行われている状態において、換言すると、工作機械を駆動している状態において、位置制御の精度が低下してきた場合に、機械定数の調整を徐々に行っているものである。
そして、両者の振幅が一致すると判定した場合には、ステップSA1に戻り、上述した処理を繰り返し行う。
5 サドル
6 ラム
9 ボールねじ送り部
10 ボールねじナット
11 ボールねじ軸
12 モータ
13 モータエンコーダ
14 リニアスケール
50,50´ 定数同定部
51 衝撃発生部
52 加速度センサ
53 コラム剛性同定部
54 コラム粘性同定部
55 機械定数設定部
56 振動判定部
57 定数調整部
60 機械定数調整部
61 コラム共振モデル
62,63 バンドパスフィルタ
64 調整部
100 サーボ制御装置
200 機械たわみ補償部
201 速度フィードフォワード部
311 コラム反力補償部
Claims (9)
- モータの回転運動を直線運動に変換するねじ送り部と、前記ねじ送り部によって直線移動させられる被駆動部と、前記ねじ送り部及び前記被駆動部が支持される支持体とを備える数値制御機器に適用され、前記被駆動部の位置を位置指令に一致させるように前記モータを制御するサーボ制御装置であって、
前記支持体の振動反力による前記被駆動部の振動を補償する支持体反力補償部を備え、
前記支持体反力補償部が備える伝達関数には、前記被駆動部の剛性項が含まれているサーボ制御装置。 - 前記支持体反力補償部は、前記モータの速度制御用のフィードフォワード制御系に設けられている請求項1に記載のサーボ制御装置。
- 前記支持体反力補償部が備える前記伝達関数には、前記支持体の剛性項が含まれており、前記支持体の剛性項は、前記支持体または前記被駆動部に衝撃を与えて振動させたときの振動共振周波数に基づいて同定される請求項1または請求項2に記載のサーボ制御装置。
- 前記支持体の剛性項を同定する定数同定部を備え、
前記定数同定部は、
前記被駆動部に対して衝撃を与えて前記被駆動部を振動させる衝撃発生部と、
衝撃が与えられたときの前記被駆動部または前記支持体の振動を検出する振動検出部と、
前記振動検出部によって検出された振動信号から前記被駆動部の共振周波数を算出し、この共振周波数から前記支持体の剛性項を同定する支持体剛性項同定部と
を有する請求項3に記載のサーボ制御装置。 - 前記支持体反力補償部が備える前記伝達関数には、前記支持体の粘性項が含まれており、前記支持体の粘性項は、前記支持体または前記被駆動部に衝撃を与えて振動させたときの振動の減衰状態に基づいて同定される請求項1または請求項2に記載のサーボ制御装置。
- 前記支持体反力補償部が備える前記伝達関数に含まれる定数を同定する定数同定部を備え、
前記定数同定部は、
前記被駆動部に対して衝撃を与えて前記被駆動部を振動させる衝撃発生部と、
衝撃が与えられたときの前記被駆動部または前記支持体の振動を検出する振動検出部と、
前記振動検出部によって検出された振動信号から前記被駆動部の振動の減衰率を算出し、該振動の減衰率から前記支持体の粘性項を同定する支持体粘性項同定部と
有する請求項5に記載のサーボ制御装置。 - 前記衝撃発生部は、前記被駆動部を所定の加速度以上で移動させることにより、前記被駆動部を振動させる請求項4から請求項6のいずれかに記載のサーボ制御装置。
- 前記定数同定部は、前記定数を同定した後において、前記振動検出部によって検出された前記被駆動部の振動の振幅が既定の閾値を超えていた場合には、該振動検出部によって検出された振動信号に基づいて定数の調整を行う請求項4から請求項7のいずれかに記載のサーボ制御装置。
- 前記定数同定部は、前記数値制御機器が駆動している期間において、前記振動検出部によって検出された振動信号と前記支持体反力補償部のモデルから算出される前記被駆動部の推定振動信号とを比較し、この比較結果に基づいて前記支持体反力補償部が備える伝達関数の機械定数を調整する請求項4から請求項8のいずれかに記載のサーボ制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080005980.4A CN102301297B (zh) | 2009-06-22 | 2010-06-10 | 伺服控制装置 |
US13/146,363 US8723472B2 (en) | 2009-06-22 | 2010-06-10 | Servo control device |
EP10791981.3A EP2447801B1 (en) | 2009-06-22 | 2010-06-10 | Servo control device |
KR1020117017166A KR101359790B1 (ko) | 2009-06-22 | 2010-06-10 | 서보 제어 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009147730A JP5308249B2 (ja) | 2009-06-22 | 2009-06-22 | サーボ制御装置 |
JP2009-147730 | 2009-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010150663A1 true WO2010150663A1 (ja) | 2010-12-29 |
Family
ID=43386435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059871 WO2010150663A1 (ja) | 2009-06-22 | 2010-06-10 | サーボ制御装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8723472B2 (ja) |
EP (1) | EP2447801B1 (ja) |
JP (1) | JP5308249B2 (ja) |
KR (1) | KR101359790B1 (ja) |
CN (1) | CN102301297B (ja) |
TW (1) | TWI427452B (ja) |
WO (1) | WO2010150663A1 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5111589B2 (ja) * | 2010-10-27 | 2013-01-09 | 株式会社牧野フライス製作所 | 送り軸反転時の補正方法 |
WO2012057235A1 (ja) * | 2010-10-27 | 2012-05-03 | 株式会社牧野フライス製作所 | 数値制御方法 |
JP5710367B2 (ja) * | 2011-04-28 | 2015-04-30 | 学校法人東京理科大学 | 制御装置および制御方法、並びにプログラム |
CN102789204B (zh) * | 2011-05-20 | 2014-11-12 | 沈阳机床(集团)设计研究院有限公司上海分公司 | 经济型数控车床的高速螺纹插补方法 |
CN102854906B (zh) * | 2011-07-01 | 2015-04-01 | 上海英威腾工业技术有限公司 | 用于寒冷工况下伺服控制器的辅助加热装置 |
KR101490664B1 (ko) * | 2011-10-13 | 2015-02-05 | 미쓰비시덴키 가부시키가이샤 | 서보 제어 장치 |
JP5943650B2 (ja) * | 2012-03-05 | 2016-07-05 | 三菱重工工作機械株式会社 | サーボ制御装置及びサーボ制御方法 |
JP5650814B1 (ja) * | 2013-07-05 | 2015-01-07 | ファナック株式会社 | フィードフォワード制御を備えたモータ制御装置 |
US9529341B2 (en) * | 2013-10-25 | 2016-12-27 | Mitsubishi Electric Research Laboratories, Inc. | Motion-control system for performing different tasks |
JP6017595B2 (ja) | 2015-01-16 | 2016-11-02 | ファナック株式会社 | 振動を抑制するモータ制御装置 |
JP6154435B2 (ja) * | 2015-07-09 | 2017-06-28 | ファナック株式会社 | 制御系のオンライン自動調整状況を表示する機能を有するサーボ制御装置 |
CN107848116B (zh) * | 2015-08-25 | 2021-09-28 | 川崎重工业株式会社 | 远程操作机器人系统 |
EP3171235B1 (en) * | 2015-11-19 | 2020-04-29 | Omron Corporation | Control device, control method, information processing program, and recording medium |
JP6531682B2 (ja) * | 2016-03-11 | 2019-06-19 | オムロン株式会社 | モータ制御装置、モータ制御方法、プログラム、および記録媒体 |
JP6844158B2 (ja) * | 2016-09-09 | 2021-03-17 | オムロン株式会社 | 制御装置および制御プログラム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11184529A (ja) * | 1997-10-14 | 1999-07-09 | Toshiba Mach Co Ltd | 送り駆動系のサーボ制御方法およびサーボ制御装置 |
JP2007025961A (ja) | 2005-07-14 | 2007-02-01 | Okuma Corp | 数値制御機械の位置制御装置 |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4396975A (en) * | 1980-10-01 | 1983-08-02 | Fujitsu Fanuc Limited | Position control system for a closed loop type numerical-controlled machine tool |
JPS5868118A (ja) * | 1981-10-20 | 1983-04-22 | Telmec Co Ltd | 高精度位置決めステ−ジ用防振装置 |
US5038090A (en) * | 1988-10-05 | 1991-08-06 | Toyota Jidosha Kabushiki Kaisha | Servo motor control apparatus |
FR2645981B1 (fr) * | 1989-04-17 | 1991-07-26 | Aerospatiale | Dispositif de commande en deplacement sans vibrations d'un element optique dans un interferometre stellaire et interferometre stellaire le comportant |
JP3087305B2 (ja) * | 1990-03-05 | 2000-09-11 | 株式会社ニコン | ステージ装置 |
US5504407A (en) * | 1992-02-21 | 1996-04-02 | Canon Kabushiki Kaisha | Stage driving system |
US5374883A (en) * | 1992-09-02 | 1994-12-20 | Cincinnati Milacron Inc. | Method and apparatus for position error compensation |
JP3217604B2 (ja) * | 1993-08-20 | 2001-10-09 | 三菱電機株式会社 | 位置決め装置 |
JPH07170777A (ja) | 1993-12-14 | 1995-07-04 | Fuji Electric Co Ltd | 電動機の振動抑制制御装置 |
US5660255A (en) * | 1994-04-04 | 1997-08-26 | Applied Power, Inc. | Stiff actuator active vibration isolation system |
JPH086644A (ja) | 1994-06-21 | 1996-01-12 | Okuma Mach Works Ltd | 数値制御装置 |
JP3536229B2 (ja) * | 1995-03-07 | 2004-06-07 | 株式会社ニコン | ステージ装置、露光装置、及び位置決め方法 |
DE69601763T2 (de) * | 1995-09-04 | 1999-09-09 | Canon K.K. | Einrichtung zur Antriebsregelung |
JPH09198114A (ja) | 1996-01-23 | 1997-07-31 | Nikon Corp | Xyステージの移動制御方法 |
US5704250A (en) * | 1996-04-04 | 1998-01-06 | Western Atlas, Inc. | Ball screw drive with dynamically adjustable preload |
US6170622B1 (en) * | 1997-03-07 | 2001-01-09 | Canon Kabushiki Kaisha | Anti-vibration apparatus and anti-vibration method thereof |
US5959427A (en) * | 1998-03-04 | 1999-09-28 | Nikon Corporation | Method and apparatus for compensating for reaction forces in a stage assembly |
JPH11309649A (ja) | 1998-04-30 | 1999-11-09 | Mitsubishi Materials Corp | 刃具の欠損検出装置および方法ならびに欠損検出プログラムを記録したコンピュータ読み取り可能な記録媒体 |
JP3313643B2 (ja) * | 1998-04-30 | 2002-08-12 | 東芝機械株式会社 | バイト工具によるオービット加工におけるサーボ制御方法およびオービット加工用のサーボ制御装置 |
JP2000176788A (ja) * | 1998-12-16 | 2000-06-27 | Toyota Motor Corp | アクチュエータの調整方法とワーク位置決め装置 |
JP2000322116A (ja) * | 1999-05-13 | 2000-11-24 | Toyoda Mach Works Ltd | サーボ制御装置及び位置決め装置 |
JP4137321B2 (ja) * | 1999-05-18 | 2008-08-20 | 三菱電機株式会社 | 移動装置 |
JP4448219B2 (ja) | 2000-01-19 | 2010-04-07 | 東芝機械株式会社 | モーションコントローラにおける動的たわみ補正方法およびモーションコントローラ |
JP2002171778A (ja) | 2000-09-25 | 2002-06-14 | Aisin Seiki Co Ltd | 電動モータの振動抑制制御装置及び電動モータの振動抑制制御における設計手法 |
DE10085354B3 (de) * | 2000-11-01 | 2013-11-21 | Mitsubishi Denki K.K. | Servosteuerverfahren und Servosteuervorrichtung |
JP2002221249A (ja) * | 2000-11-27 | 2002-08-09 | Canon Inc | 能動制振装置、その制御方法および能動制振装置を備えた露光装置 |
JP4280543B2 (ja) * | 2002-05-08 | 2009-06-17 | キヤノン株式会社 | 移動体機構および露光装置 |
US6998808B2 (en) * | 2002-09-10 | 2006-02-14 | Keihin Corporation | Positioning apparatus using brushless motor |
JP4391218B2 (ja) * | 2003-02-20 | 2009-12-24 | 三菱電機株式会社 | サーボ制御装置 |
JP4014162B2 (ja) | 2003-08-06 | 2007-11-28 | ヤマザキマザック株式会社 | 工作機械の位置制御装置及び工作機械の位置制御方法 |
JP4226420B2 (ja) * | 2003-09-10 | 2009-02-18 | オークマ株式会社 | 位置制御装置 |
US20050061065A1 (en) * | 2003-09-23 | 2005-03-24 | Gilman Engineering & Manufacturing Co., Llc | Apparatus and method for function testing |
JP2005223163A (ja) * | 2004-02-06 | 2005-08-18 | Hitachi High-Technologies Corp | ステージ制御装置,ステージ制御方法、および製造装置 |
JP2005301508A (ja) | 2004-04-08 | 2005-10-27 | Fanuc Ltd | 制御装置 |
CN100525063C (zh) * | 2004-06-29 | 2009-08-05 | Thk株式会社 | 异常检测方法以及电动机控制装置 |
US20070040529A1 (en) * | 2005-08-19 | 2007-02-22 | Smc Corporation Of America | Stepping motor control system and method for controlling a stepping motor using closed and open loop controls |
US7348748B2 (en) * | 2006-06-02 | 2008-03-25 | Delta Tau Data Systems, Inc. | Motorized system and method of control |
CN101855705A (zh) * | 2007-09-07 | 2010-10-06 | 国立大学法人横滨国立大学 | 驱动控制方法、驱动控制装置、载台控制方法、载台控制装置、曝光方法、曝光装置以及计测装置 |
US20100302526A1 (en) * | 2008-11-13 | 2010-12-02 | Nikon Corporation | Drive control method for moving body, exposure method, robot control method, drive control apparatus, exposure apparatus and robot apparatus |
JP5695555B2 (ja) * | 2011-01-28 | 2015-04-08 | オークマ株式会社 | 位置制御装置 |
US8513906B2 (en) * | 2011-08-23 | 2013-08-20 | Mitsubishi Electric Research Laboratories, Inc. | Base vibration attenuation and load tracking in mechanical systems |
-
2009
- 2009-06-22 JP JP2009147730A patent/JP5308249B2/ja active Active
-
2010
- 2010-06-10 WO PCT/JP2010/059871 patent/WO2010150663A1/ja active Application Filing
- 2010-06-10 KR KR1020117017166A patent/KR101359790B1/ko not_active IP Right Cessation
- 2010-06-10 EP EP10791981.3A patent/EP2447801B1/en not_active Not-in-force
- 2010-06-10 US US13/146,363 patent/US8723472B2/en active Active
- 2010-06-10 CN CN201080005980.4A patent/CN102301297B/zh active Active
- 2010-06-17 TW TW099119705A patent/TWI427452B/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11184529A (ja) * | 1997-10-14 | 1999-07-09 | Toshiba Mach Co Ltd | 送り駆動系のサーボ制御方法およびサーボ制御装置 |
JP2007025961A (ja) | 2005-07-14 | 2007-02-01 | Okuma Corp | 数値制御機械の位置制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2447801A4 * |
Also Published As
Publication number | Publication date |
---|---|
US8723472B2 (en) | 2014-05-13 |
CN102301297B (zh) | 2014-12-31 |
TWI427452B (zh) | 2014-02-21 |
EP2447801A4 (en) | 2013-03-06 |
CN102301297A (zh) | 2011-12-28 |
KR101359790B1 (ko) | 2014-02-07 |
JP5308249B2 (ja) | 2013-10-09 |
KR20110098843A (ko) | 2011-09-01 |
JP2011003137A (ja) | 2011-01-06 |
TW201115291A (en) | 2011-05-01 |
US20110285340A1 (en) | 2011-11-24 |
EP2447801B1 (en) | 2014-04-02 |
EP2447801A1 (en) | 2012-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308249B2 (ja) | サーボ制御装置 | |
JP3899526B2 (ja) | 位置制御装置 | |
JP4944806B2 (ja) | 位置制御装置 | |
WO2017158932A1 (ja) | 機械運動軌跡測定装置 | |
WO2012057235A1 (ja) | 数値制御方法 | |
US8154226B2 (en) | Operating apparatus | |
JP5518156B2 (ja) | 移動可能な機械構造体の振動補償付き加工機械 | |
JP6316323B2 (ja) | モータ制御装置 | |
JP6275245B2 (ja) | 送り軸の制御方法および数値制御工作機械 | |
JP2009512042A (ja) | 機械の移動可能な機械要素の移動案内のための方法および装置 | |
KR101799544B1 (ko) | 모터 제어 장치 | |
JP4577107B2 (ja) | 機械位置制御装置 | |
TWI508425B (zh) | 馬達之控制方法及馬達之控制裝置 | |
JP5972553B2 (ja) | 位置決め制御装置、これを備えた工作機械 | |
JP6903485B2 (ja) | 制振装置および加工機 | |
JP5441944B2 (ja) | モータ制御装置 | |
JP5407435B2 (ja) | モータ制御装置 | |
JP2003208230A (ja) | 機械の制振制御方法,装置および制振制御型機械 | |
US12064843B2 (en) | Motor control device and industrial machine for suppressing vibration | |
JP6214960B2 (ja) | 位置決め装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005980.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10791981 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117017166 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13146363 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5826/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010791981 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |