WO2010150335A1 - 被覆立方晶窒化硼素焼結体工具 - Google Patents
被覆立方晶窒化硼素焼結体工具 Download PDFInfo
- Publication number
- WO2010150335A1 WO2010150335A1 PCT/JP2009/061295 JP2009061295W WO2010150335A1 WO 2010150335 A1 WO2010150335 A1 WO 2010150335A1 JP 2009061295 W JP2009061295 W JP 2009061295W WO 2010150335 A1 WO2010150335 A1 WO 2010150335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- boron nitride
- cubic boron
- nitride sintered
- sintered body
- Prior art date
Links
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 65
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 239000010410 layer Substances 0.000 claims abstract description 304
- 239000011247 coating layer Substances 0.000 claims abstract description 29
- 150000001875 compounds Chemical class 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 54
- 239000002184 metal Substances 0.000 claims description 51
- 238000005520 cutting process Methods 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 18
- 238000002441 X-ray diffraction Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 abstract description 6
- 239000010409 thin film Substances 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- 229910001873 dinitrogen Inorganic materials 0.000 description 32
- 238000010891 electric arc Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 20
- 239000012495 reaction gas Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 229910000760 Hardened steel Inorganic materials 0.000 description 8
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 8
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 8
- 238000003754 machining Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910010037 TiAlN Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- -1 TiCN Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the present invention relates to a coated cubic boron nitride sintered body tool having at least a cutting edge made of a coated cubic boron nitride sintered body.
- Cubic boron nitride sintered bodies are used as cutting tools for processing hardened steel, heat-resistant alloys, and the like because of their high hardness and excellent thermal conductivity.
- a coated cubic boron nitride sintered body tool in which a coating layer is coated on the surface of a cubic boron nitride sintered body base material has been used for improving the working efficiency.
- an atomic ratio X of Ti / (Ti + Al) is 0.3 ⁇ 0.3 on the surface of a substrate made of a CBN sintered body containing 20% by volume or more of cubic boron nitride.
- a composite high hardness material for a hardened steel cutting tool coated with a TiAlN film where X ⁇ 0.5 for example, see Patent Document 1.
- this material is used as a cutting tool, there is a problem that when the cutting speed is increased, the tool blade edge becomes high temperature, the TiAlN film is thermally decomposed and oxidized, and the coating is peeled off from the substrate surface and abnormally worn.
- a cutting tool made of a surface-coated cubic boron nitride-based ultrahigh pressure sintered material in which a layer is formed by vapor deposition see, for example, Patent Document 2.
- this cutting tool has a problem in that Cr in the upper layer diffuses into the hard coating layer and the hard coating layer breaks and wears abnormally as the temperature of the tool edge increases in the processing of hardened steel.
- An object of the present invention is to provide a coated cubic boron nitride sintered tool capable of extending the tool life by suppressing the progress of wear and peeling of the coating layer due to oxidation, which are the problems of the conventional coated cubic boron nitride sintered tool.
- the present inventor has researched on the improvement of the life of the coated cubic boron nitride sintered body used for severe cutting such as high-load machining and high-efficiency machining.
- the upper layer has excellent wear resistance and heat resistance.
- the present invention is a coated cubic boron nitride sintered body tool, wherein at least the cutting edge is made of a coated cubic boron nitride sintered body in which a coating layer is coated on the surface of a cubic boron nitride sintered body base material,
- the coating layer includes a lower layer on the substrate side and an upper layer thereon,
- the upper layer is Composition formula M ⁇ (where M represents at least one element selected from Ti, V, Zr, Nb, Mo, Al and Si, and ⁇ represents at least one element selected from C, N, B and O)
- the lower layer is Composition formula (Ti (1-x) L x ) ⁇ (where L represents at least one element selected from Al, B and Si, x represents the atomic ratio of L to the sum of Ti and L, 0.01 ⁇ x ⁇ 0.7, and ⁇ represents at least one element selected from C and N.)
- the cubic boron nitride sintered compact base material of the present invention is obtained by sintering 20% by volume or more of cubic boron nitride powder and 80% by volume or less of a binder phase forming powder at a high pressure and high temperature.
- the binder phase forming powder of the present invention comprises periodic table 4a, 5a, 6a group metal elements and metals of Al, Si, Mg, Co, Ni, and alloys, nitrides, carbides, borides, oxides of these metals and It consists of at least 1 sort (s) chosen from these mutual solid solutions.
- binder phase forming powder of the present invention include Co, Ni, Mn, Al, Si and alloys thereof, TiN, TiC, TiCN, TiB 2 , WC, WB 2 , W 2 CoB 2 , and Al 2 O 3. AlN, AlB 12 and mutual solid solutions thereof.
- the surface of the cubic boron nitride sintered compact substrate of the present invention is coated with a coating layer.
- the coating layer of the present invention includes a base layer-side lower layer and a surface-side upper layer.
- the coating layer of the present invention can further include a lowermost layer between the base material and the lower layer, or an intermediate layer between the lower layer and the upper layer.
- the upper layer of the present invention has a composition formula M ⁇ having an average layer thickness of 0.5 to 3.0 ⁇ m (where M represents at least one element selected from Ti, V, Zr, Nb, Mo, Al and Si). , ⁇ represents at least one element selected from C, N, B and O.).
- M represents at least one element selected from Ti, V, Zr, Nb, Mo, Al and Si
- ⁇ represents at least one element selected from C, N, B and O.
- the compound is TiN, TiCN, Al 2 O 3 or TiAlN because strength at high temperature is increased.
- the average thickness of the upper layer is 0.5 to 3.0 ⁇ m. When the average layer thickness of the upper layer is 0.5 ⁇ m or more, the upper layer is not too thin, and an effect of improving both wear resistance and heat resistance is obtained.
- the average layer thickness of the upper layer is more preferably 1.0 to 2.0 ⁇ m.
- the average layer thickness of the upper layer portion was measured by an average value of photographs of five fields of view by enlarging the cross section of the upper layer by 5000 to 30000 times in SEM observation. Further, unless otherwise specified, the average layer thickness means an average value obtained by taking a cross-sectional view of each coated layer with a SEM or TEM in a five-view photograph.
- the upper layer portion is an upper layer portion in which the half width of the diffraction line having the highest peak intensity is 0.80 ° or less among diffraction lines obtained by X-ray diffraction measurement using Cu—K ⁇ rays. Since the particles constituting the upper layer are large, it is difficult for the particles to fall off, and the progress of wear due to the particle dropping can be suppressed, which is more preferable.
- the upper layer is TiN or TiAlN
- the half width is preferably 0.35 ° or less
- the upper layer is TiCN
- the half width is preferably 0.75 ° or less.
- the half width of the upper layer of the present invention can be measured with a commercially available X-ray diffractometer. Specifically, in a 2 ⁇ / ⁇ system X-ray diffraction measurement using Cu—K ⁇ rays, output: voltage 50 kV, current 250 mA, step width: 0.02 °, 2 ⁇ measurement range: 4 ° to 140 ° It is possible to measure under conditions. When the diffraction lines of the upper layer overlap with other diffraction lines, it is preferable to perform peak separation using analysis software attached to the X-ray diffractometer.
- the lower layer of the present invention comprises an alternating laminate of a first thin layer of a Ti-based composite compound having a high hardness and a low Young's modulus and a second thin layer of an Al-based composite compound having a low hardness and a high Young's modulus, This alternating laminate imparts excellent cutting performance to the tool.
- the first thin layer has a composition formula (Ti (1-x) L x ) ⁇ having an average layer thickness of 60 to 200 nm, where L represents at least one element selected from Al, B and Si, x represents the atomic ratio of L to the total of Ti and L, satisfies 0.01 ⁇ x ⁇ 0.7, and ⁇ represents at least one element selected from C and N). It consists of a compound layer.
- the first thin layer has a high hardness and a low Young's modulus.
- the atomic ratio x is 0.01 ⁇ x ⁇ 0.7.
- x is 0.01 or more, sufficient hardness is obtained, and when x is 0.7 or less, the strength of the first thin layer does not decrease.
- x is 0.4 ⁇ x ⁇ 0.7 when L is Al, and when 0.01 ⁇ x ⁇ 0.3 when L is Si and B, the first thin layer This is more preferable because the hardness of the is increased.
- the second thin layer of the present invention has a composition formula (Al (1-y) J y ) ⁇ (where J is selected from Ti, V, Cr, Zr, Nb and Mo) having an average layer thickness of 60 to 200 nm.
- Y represents an atomic ratio of J to the sum of Al and J, 0.1 ⁇ y ⁇ 0.5 is satisfied, and ⁇ is at least one selected from C and N It is composed of a compound layer represented by:
- the second thin layer has a low hardness and a high Young's modulus.
- J in the second thin layer represents at least one element selected from Ti, V, Cr, Zr, Nb and Mo, and among them, J is at least selected from Cr, Ti and Zr.
- One element is preferable because the strength of the second thin layer is increased. Among these, it is more preferable that J is Cr.
- the atomic ratio y is 0.1 ⁇ y ⁇ 0.5. When y is 0.1 or more, and y is 0.5 or less, a decrease in hardness is suppressed. Among them, 0.2 ⁇ y ⁇ 0.4 is more preferable.
- the average layer thickness of the first thin layer and the second thin layer in the lower layer of the present invention is 60 to 200 nm each. If the average layer thickness is 60 nm or more, the particle size of the first thin layer and the second thin layer due to an increase in the frequency of nucleation at the time of coating can be suppressed, and the thin layer particles can be prevented from falling off during cutting. The progress of wear can be suppressed, and if the average layer thickness is 200 nm or less, the effect of preventing the propagation of cracks can be ensured, so that the fracture resistance does not deteriorate. Among them, the average thickness of the first thin layer and the second thin layer in the lower layer is more preferably 70 to 150 nm.
- the average thickness of the first thin layer and the second thin layer in the lower layer portion was measured by SEM observation by magnifying the cross section of the lower layer by 30000 to 100000 times and taking the average value of photographs of 5 fields of view.
- TEM observation may be performed to measure the average layer thickness.
- the average layer thickness of the entire lower layer as the alternate laminate of the present invention is 0.4 to 3.0 ⁇ m. If the average thickness of the entire lower layer is 0.4 ⁇ m or more, the effect of preventing the propagation of cracks due to processing impact can be secured, and if it is 3.0 ⁇ m or less, the occurrence of chipping can be suppressed. Among these, the average layer thickness of the entire lower layer of the present invention is more preferably 1.0 to 2.0 ⁇ m.
- the adhesion between the coating layer and the cubic boron nitride sintered base material is improved.
- the average layer thickness of the lowermost layer is preferably 60 to 200 nm. If the average layer thickness of the lowermost layer is 60 nm or more, sufficient adhesion can be obtained, and if it is 200 nm or less, the effect of preventing the propagation of cracks due to processing impact can be secured, so that the chipping resistance and chipping resistance may be reduced. Absent. Among these, the average layer thickness of the lowermost layer is more preferably 70 to 150 nm.
- an intermediate layer composed of a metal composed of the component M of the upper layer having an average layer thickness of 5 to 100 nm is present between the lower layer and the upper layer of the present invention, the adhesion between the lower layer and the upper layer is improved. Since it improves, it is preferable. It is preferable that the intermediate layer is a metal phase composed of the component M of the upper layer, because adhesion between the lower layer and the upper layer is improved and peeling between the lower layer and the upper layer can be prevented.
- the average layer thickness of the intermediate layer is preferably 5 to 100 nm.
- the average layer thickness of the intermediate layer is 5 nm or more, an effect of improving the adhesion between the lower layer and the upper layer is obtained, and when it is 100 nm or less, the wear resistance is not lowered.
- the average layer thickness of the intermediate layer is more preferably 50 to 80 nm.
- the coated cubic boron nitride sintered body tool of the present invention has at least a cutting edge made of the coated cubic boron nitride sintered body of the present invention.
- a cubic boron nitride sintered body used for the substrate in the present invention may be used, or a material different from the cubic boron nitride sintered body, for example, a cemented carbide may be used.
- the cubic boron nitride sintered body of the present invention is brazed to a cutting edge portion of a cemented carbide machined into a cutting tool shape, and then the present invention is applied to the surface of the cubic boron nitride sintered body of the present invention. It is also possible to coat the coating layer.
- the surface of the cubic boron nitride sintered body substrate is ultrasonically cleaned with an organic solvent or water, and then a PVD method, a CVD method or a plasma CVD method which has been conventionally performed.
- covering a coating layer by can be mentioned.
- the PVD method is preferable because it is easy to adjust the layer thickness and has excellent adhesion to the substrate.
- the PVD method includes an arc ion plating method and a magnetron sputtering method, but the arc ion plating method has a high ionization rate of metal elements and is applied to the surface of the substrate before coating the coating film. Metal ion bombardment is possible, and since the adhesion between the coating layer and the substrate is excellent, it is more preferable.
- the coated cubic boron nitride sintered body tool of the present invention does not decrease the tool strength by improving the thermal stability of the coating layer at a high temperature, and the coating layer is caused by the progress of wear or the thermal decomposition caused by dropping of particles of the coating layer. By suppressing abnormal wear such as peeling, tool life can be extended. In particular, the effect of prolonging the tool life is high in high-load cutting such as hardened steel processing and high-efficiency cutting.
- Invented products 1 to 3, 7, 9, 10, 12, 13, 16, 18, 20 to 24 are coated cubic boron nitride sintered body tools having the compositions shown in Table 1 on a base material prepared by the following method.
- the lowermost layer, the lower layer, the intermediate layer, and the upper layer having a thickness were sequentially formed under the following conditions.
- a mixed phase-forming powder composed of 35% TiN and 10% Al by volume and a mixed powder of 55% cubic boron nitride powder by volume is a very high pressure of 5.5 GPa and temperature of 1773 K. Sintered under high temperature conditions to obtain a cubic boron nitride sintered body.
- An ISO standard CNGA120408-shaped cemented carbide was used as a base metal, and the obtained cubic boron nitride sintered body was brazed to a corner portion serving as a cutting edge of the cemented carbide base metal.
- the upper, lower, and outer peripheral surfaces of the substrate were ground with a # 270 mesh diamond grindstone, and then the chamfer honing with an angle of ⁇ 25 ° ⁇ width of 0.15 mm was performed on the cutting edge ridge line with a # 400 mesh diamond grindstone.
- Round honing was performed by pressing a rotating brush against the ridgeline between the flank and the chamfer honing surface. It was measured with a tracer while adjusting the processing time, and round honing with a desired radius of curvature was performed. After processing, the substrate was washed with ethanol and acetone, and then vacuum dried.
- the base material was mounted on a rotary table in an arc ion plating apparatus, and metal targets corresponding to the metal elements of the coating layer shown in Table 1 were arranged as cathode electrodes (evaporation sources).
- metal targets corresponding to the metal elements of the coating layer shown in Table 1 were arranged as cathode electrodes (evaporation sources).
- the inside of the apparatus was evacuated and evacuated until the pressure in the apparatus became 1.0 ⁇ 10 ⁇ 4 Pa while heating to 500 ° C. with a heater.
- argon gas was introduced, the pressure inside the apparatus was maintained at 0.7 Pa, a substrate DC bias voltage of ⁇ 200 V was applied to the substrate while the table was rotated, and the substrate surface was washed with argon ions, Thereafter, argon gas was exhausted from the inside of the apparatus.
- inventive products 1 to 3, 7, 9, 10, 12, 13, 16, 18, 20 to 24 are used as reaction gases introduced into the apparatus while the table is rotated.
- the nitrogen gas (Invention product 24 is a 2: 1 flow ratio (volume ratio) nitrogen gas and acetylene gas) by adjusting the flow rate to 3.0 Pa and maintaining the substrate DC bias voltage at -40V.
- the arc current of 150 A is supplied to the cathode electrode provided with the metal target corresponding to the metal element of the first thin layer of the lower layer shown in Table 1, and the discharge time is 5 to 5 depending on the layer thickness to be formed.
- the first thin layer of the lower layer was coated by changing in a range of 20 minutes.
- the arc discharge is stopped, and an arc current of 150 A is supplied to the cathode electrode provided with a metal target corresponding to the metal element of the second thin layer of the lower layer shown in Table 1 to form it.
- the discharge time was varied in the range of 8-25 minutes to coat the second thin layer of the lower layer.
- the coated cubic boron nitride sintered body tool is formed on the base material prepared by the same method as described above under the following conditions. did.
- the pressure in the apparatus is adjusted by adjusting the flow rate of nitrogen gas as a reaction gas introduced into the apparatus while the table is rotated.
- the thickness of the layer formed is adjusted to 3.0 Pa
- the substrate DC bias voltage is adjusted to ⁇ 40 V
- an arc current of 150 A is supplied to the cathode electrode on which the metal target corresponding to the lowermost metal element shown in Table 1 is arranged.
- the arc discharge was stopped after the lowermost layer was coated by changing the discharge time in a range of 5 to 15 minutes depending on the arc.
- the nitrogen gas as the reaction gas introduced into the apparatus with the table rotated has a flow ratio (volume ratio) of 2
- the first thin layer of the lower layer shown in Table 1 while adjusting the flow rate of the nitrogen gas and acetylene gas (1) to 3.0 Pa and maintaining the substrate DC bias voltage at ⁇ 40V.
- the first thin layer of the lower layer is supplied by supplying an arc current of 150 A to the cathode electrode on which the metal target corresponding to the metal element is arranged and changing the discharge time in the range of 2 to 12 minutes depending on the thickness of the layer to be formed Was coated.
- the arc discharge is stopped, and an arc current of 150 A is supplied to the cathode electrode provided with a metal target corresponding to the metal element of the second thin layer of the lower layer shown in Table 1 to form it.
- the discharge time was varied in the range of 8-25 minutes to coat the second thin layer of the lower layer.
- argon gas was introduced to maintain the pressure in the apparatus at 3.0 Pa, An arc current of 80 A is supplied to the cathode electrode on which the Ti target is placed with a 40 V substrate DC bias voltage applied to the substrate, and the discharge time varies in the range of 3 to 20 minutes depending on the layer thickness to be formed After covering the intermediate layer, the arc discharge was stopped and the argon gas was exhausted.
- the flow rate of nitrogen gas and acetylene gas having a flow rate ratio (volume ratio) of 2: 1 as the reaction gas introduced into the device was adjusted to adjust the flow rate inside
- the substrate DC bias voltage is adjusted to ⁇ 100 V
- the arc current of 150 A is supplied to the cathode electrode provided with the Ti target
- the discharge time is 15 to 90 depending on the layer thickness to be formed.
- the upper layer was coated, and then the arc discharge was stopped, and nitrogen gas and acetylene gas as reaction gases were exhausted.
- coated cubic boron nitride sintered body tools of invention products 4 to 6, 8, 11, 17, 19, 25 were produced.
- the flow rate of nitrogen gas as the reaction gas introduced into the apparatus was adjusted to adjust the pressure in the apparatus to 3.0 Pa and the substrate DC bias voltage to -40 V, as shown in Table 1.
- An arc current of 150 A was supplied to the cathode electrode provided with a metal target corresponding to the lowermost metal element to cover the lowermost layer on the substrate surface, and then the arc discharge was stopped.
- the flow rate of nitrogen gas as the reaction gas introduced into the apparatus is adjusted to set the pressure in the apparatus to 3.0 Pa and the substrate DC bias voltage is maintained at ⁇ 40V.
- An arc current of 150 A was supplied to the cathode electrode provided with the metal target corresponding to the metal element of the first thin layer of the lower layer shown in Table 1 to cover the first thin layer of the lower layer.
- the arc discharge is stopped, and an arc current of 150 A is supplied for 7.5 minutes to the cathode electrode provided with a metal target corresponding to the metal element of the second thin layer of the lower layer shown in Table 1
- the second thin layer of the lower layer was coated.
- the flow rate of oxygen gas as a reaction gas introduced into the apparatus is adjusted so that the pressure in the apparatus is 3.0 Pa, a base pulse DC bias voltage of ⁇ 700 V is applied to the base, and an Al target is disposed.
- a cathode current of 200 A was supplied to the cathode electrode for 65 minutes to coat the upper layer, and then the arc discharge was stopped and oxygen gas as a reaction gas was exhausted. In this way, coated cubic boron nitride sintered body tools of Inventions 14 and 15 were produced.
- the obtained invention product was subjected to SEM observation, SDS-attached EDS measurement, TEM observation, and TEM-attached EDS measurement to measure the layer thickness and composition of each layer.
- SEM observation SDS-attached EDS measurement
- TEM observation TEM-attached EDS measurement
- TEM-attached EDS measurement to measure the layer thickness and composition of each layer.
- 2 ⁇ measurement range 4 ° to 140 °
- X Line diffraction measurement was performed. In the 2 ⁇ measurement range: 4 ° to 140 °, the half width of the diffraction line having the highest peak intensity among the diffraction lines of the obtained upper layer was measured. The results are shown in Table 1.
- a coating layer composed of a lower layer and an upper layer was formed on the base material prepared in the same manner as the invention product without providing the lowermost layer and the intermediate layer under the following conditions.
- the coated cubic boron nitride sintered body tools of comparative products 1 to 3, 5, and 7 were adjusted to a pressure of 3.0 Pa in the apparatus by adjusting the flow rate of nitrogen gas introduced into the apparatus with the table rotated.
- the substrate DC bias voltage was adjusted to ⁇ 40 V, and an arc current of 150 A was supplied to the cathode electrode on which the metal target corresponding to the metal element of the first thin layer of the lower layer shown in Table 2 was provided, and the first layer of the lower layer was supplied.
- One thin layer was coated. After the coating of the first thin layer, the arc discharge is stopped, and an arc current of 150 A is supplied to the cathode electrode on which the metal target corresponding to the metal element of the second thin layer of the lower layer shown in Table 2 is provided.
- a second thin layer of was coated.
- the arc discharge time was in the range of 3 to 11 minutes for the first thin layer and in the range of 2 to 8 minutes for the second thin layer.
- the flow rate of nitrogen gas introduced into the apparatus is adjusted so that the pressure in the apparatus is 3.0 Pa, and the substrate DC bias voltage is maintained at ⁇ 40 V, as shown in Table 2.
- the cathode electrode provided with a metal target corresponding to the metal element in the upper layer was supplied with an arc current of 150 A for 28 to 105 minutes to coat the upper layer, and then the arc discharge was stopped and nitrogen gas as a reaction gas was exhausted. In this manner, coated cubic boron nitride sintered body tools of comparative products 1 to 3, 5, and 7 were produced.
- the pressure in the apparatus was adjusted to 3.0 Pa by adjusting the flow rate of nitrogen gas introduced into the apparatus while the table was rotated.
- the material DC bias voltage was adjusted to ⁇ 40 V, and an arc current of 150 A was supplied to the cathode electrode on which the metal target corresponding to the metal element of the first thin layer in the lower layer shown in Table 2 was supplied, so that the first A thin layer was coated.
- the arc discharge is stopped, and an arc current of 150 A is supplied to the cathode electrode on which the metal target corresponding to the metal element of the second thin layer of the lower layer shown in Table 2 is provided.
- a second thin layer of was coated.
- the arc discharge was stopped and the nitrogen gas as the reaction gas was exhausted. .
- the arc discharge time was in the range of 3 to 9 minutes for the first thin layer and 7 to 21 minutes for the second thin layer.
- the flow rate of nitrogen gas and acetylene gas having a flow rate ratio (volume ratio) of 2: 1 as a reaction gas introduced into the apparatus is adjusted, the pressure in the apparatus is set to 3.0 Pa, and the substrate DC bias voltage is set to After adjusting the voltage to -100 V and supplying a 150 A arc current to the cathode electrode on which the Ti target was disposed for 30 to 105 minutes to coat the upper layer, the arc discharge was stopped and the nitrogen gas and acetylene gas as the reaction gases were exhausted. .
- the coated cubic boron nitride sintered body tools of comparative products 4, 6, and 8 were produced.
- the flow rate of nitrogen gas as the reaction gas introduced into the apparatus was adjusted to set the pressure in the apparatus to 3.0 Pa, and the substrate DC bias voltage was ⁇ 40V. Then, a 150 A arc current was supplied for 3 minutes to the cathode electrode provided with a metal target corresponding to the metal element of the first thin layer shown in Table 2 to cover the first thin layer. After covering the first thin layer, the arc discharge is stopped, and a 150 A arc current is supplied for 2 minutes to the cathode electrode on which the metal target corresponding to the metal element of the second thin layer shown in Table 2 is arranged. The layer was coated.
- the flow rate of the nitrogen gas as the reaction gas introduced into the apparatus is adjusted so that the pressure in the apparatus is 3.0 Pa, and the substrate DC bias voltage is ⁇ 40V.
- the lower layer was coated by supplying an arc current of 150 A for 60 minutes to a cathode electrode provided with a metal target corresponding to the metal element of the lower layer shown in Table 3.
- the flow rate of nitrogen gas introduced into the apparatus is adjusted so that the pressure in the apparatus becomes 3.0 Pa, and the substrate DC bias voltage is maintained at ⁇ 40 V, as shown in Table 3.
- An arc current of 150 A was supplied for 11 minutes to the cathode electrode provided with a metal target corresponding to the metal element of the first thin layer of the upper layer to cover the first thin layer of the upper layer.
- the arc discharge is stopped, and an arc current of 150 A is applied to the first thin layer on the cathode electrode on which the metal target corresponding to the metal element of the second thin layer of the upper layer shown in Table 3 is arranged. The same was applied to cover the second thin layer of the upper layer.
- the coated cubic boron nitride sintered body tool of the comparative product 11 is adjusted to adjust the flow rate of nitrogen gas as a reaction gas introduced into the apparatus so that the pressure in the apparatus is 3.0 Pa and the substrate DC bias voltage is ⁇ 40V. Then, a 150 A arc current was supplied to the cathode electrode provided with the Ti target for 30 minutes to coat the lower layer.
- the coated cubic boron nitride sintered body tool of the comparative product 12 is adjusted to adjust the flow rate of nitrogen gas as a reaction gas introduced into the apparatus so that the pressure in the apparatus is 3.0 Pa, and the substrate DC bias voltage is ⁇ 40V.
- the coating layer was coated by supplying an arc current of 150 A to the cathode electrode for 200 minutes. In this manner, a coated cubic boron nitride sintered body tool of Comparative product 12 was produced.
- Cutting test [1]: Continuous cutting form: Outer diameter continuous turning, DRY Work material: SCM415H (carburized hardened steel), HRC58-62, cylindrical (outer diameter 63mm, length 200mm) Cutting speed: 150 (m / min) Feed: 0.10 (mm / rev) Cutting depth: 0.25 (mm) Tool life: Machining time until the flank wear amount reaches 0.15 mm or machining time until cutting edge failure occurs
- Cutting test [2]: High-speed continuous cutting Form: Continuous outer diameter turning, DRY Work material: SCM415H (carburized hardened steel), HRC58-62, cylindrical (outer diameter 63mm, length 200mm) Cutting speed: 250 (m / min) Feed: 0.10 (mm / rev) Cutting depth: 0.25 (mm) Tool life: Machining time until the flank wear amount reaches 0.15 mm or machining time until cutting edge failure occurs
- Cutting test [3]: Intermittent cutting form: Outer diameter intermittent turning, DRY Work material: SCM435H (carburized hardened steel), HRC58-60, cylindrical shape with 2 V grooves (outer diameter 48mm, length 200mm) Cutting speed: 150 (m / min) Feed: 0.10 (mm / rev) Cutting depth: 0.25 (mm) Tool life: Machining time until the flank wear amount reaches 0.15 mm or machining time until cutting edge failure occurs
- Table 4 shows the tool life in the cutting test [1] [2] [3]. Moreover, comprehensive evaluation was carried out about the cutting performance of an invention product and a comparative product from the tool life and damage form of cutting test [1] [2] [3]. Regarding the tool life in the cutting test [1] [2] [3], in the cutting test [1], 65 to 55 minutes are 1 point, 54 to 45 minutes are 2 points, 44 to 35 minutes are 3 points, 34 to 30 Scoring was performed with 2 points for minutes and 5 points for 29 minutes or less. In the cutting test [2], scoring was made with 1 point for 25 to 20 minutes, 2 points for 19 to 15 minutes, 3 points for 14 to 10 minutes, 2 points for 9 to 5 minutes, and 5 points for 4 minutes or less. went.
- the coated cubic boron nitride sintered body tool of the present invention does not decrease the tool strength by improving the thermal stability of the coating layer at a high temperature, and the coating layer is caused by the progress of wear or the thermal decomposition caused by dropping of particles of the coating layer. By suppressing abnormal wear such as peeling of the tool, the tool life can be extended. In particular, in high-load cutting such as hardened steel processing and high-efficiency cutting, the effect of extending the tool life is high, so the industrial applicability is high.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
摩耗進行や酸化による被覆層剥離などを抑制して工具寿命を長くできる被覆立方晶窒化硼素焼結体工具の提供を目的とする。 被覆層は基材側の下部層とその上の上部層とを含み、上部層を、平均層厚0.5~3.0μmの組成式Mα(MはTi、V、Zr、Nb、Mo、Al、Siの1種以上を表し、αはC、N、B、Oの1種以上を表す。)の化合物層で構成し、下部層を、組成式(Ti(1-x)Lx)β(LはAl、B、Siの1種以上を表し、xはTiとLの合計に対するLの原子比を示し、0.01≦x≦0.7。βはCおよびNから選択される少なくとも1種の元素を表す。)からなる第1薄層と、組成式(Al(1-y)Jy)γ(JはTi、V、Cr、Zr、Nb、Moの1種以上を表し、yはAlとJの合計に対するJの原子比を示し、0.1≦y≦0.5。γはCおよびNから選択される少なくとも1種の元素を表す。)からなる第2薄層と、を交互に積層した平均層厚が0.5~3.0μmの交互積層体で構成した、被覆立方晶窒化硼素焼結体工具である。
Description
本発明は、少なくとも刃先が被覆立方晶窒化硼素焼結体からなる被覆立方晶窒化硼素焼結体工具に関する。
立方晶窒化硼素焼結体は、硬さが高く熱伝導性に優れていることから、焼入れ鋼や耐熱合金などを加工する切削工具として使用されている。近年、加工能率向上のため、立方晶窒化硼素焼結体基材の表面に被覆層を被覆した被覆立方晶窒化硼素焼結体工具が用いられてきた。
被覆立方晶窒化硼素焼結体工具の従来技術としては、立方晶型窒化硼素を20体積%以上含むCBN焼結体からなる基体の表面にTi/(Ti+Al)の原子比Xが0.3≦X≦0.5であるTiAlN膜を被覆した焼入鋼切削工具用複合高硬度材料がある(例えば、特許文献1参照。)。しかしながら、この材料を切削工具として用いると、切削速度が高速になると、工具刃先が高温になり、TiAlN膜が熱分解および酸化して被膜が基板表面から剥離して異常摩耗するという問題がある。
また、[Ti1-XAlX]N(Xは0.4~0.6を示す)を満足するTiとAlの複合窒化物層の下部層と、[Ti1-XAlX]N(Xは0.4~0.6を示す)を満足するTiとAlの複合窒化物層の薄層A及びCr窒化物層の薄層Bの交互積層構造を有する上部層と、からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具がある(例えば、特許文献2参照。)。しかしながら、この切削工具は、焼入れ鋼の加工における工具刃先の高温化に伴い、上部層中のCrが硬質被覆層に拡散して硬質被覆層が壊れて異常摩耗するという問題がある。
本発明は、従来の被覆立方晶窒化硼素焼結体工具の課題である摩耗進行や酸化による被覆層剥離などを抑制して工具寿命を長くできる被覆立方晶窒化硼素焼結体工具の提供を目的とする。
本発明者は、高負荷加工や高能率加工のような過酷な切削加工に用いられる被覆立方晶窒化硼素焼結体の寿命向上について研究してきたところ、耐摩耗性と耐熱性に優れた上部層と、硬さが高くヤング率の低い平均層厚60~200nmのTi含有複合化合物の第1薄層と硬さが低くヤング率が高い平均層厚60~200nmのAl含有複合化合物の第2薄層とを交互に積層した下部層と、を含む被覆層を有する被覆立方晶窒化硼素焼結体工具が工具寿命の長寿命化を実現できることを知見した。
本発明は、少なくとも刃先が、立方晶窒化硼素焼結体基材の表面に被覆層を被覆した被覆立方晶窒化硼素焼結体からなる、被覆立方晶窒化硼素焼結体工具であって、
被覆層が基材側の下部層とその上の上部層とを含み、
(1)上部層が、
組成式Mα(但し、MはTi、V、Zr、Nb、Mo、AlおよびSiから選択される少なくとも1種の元素を表し、αはC、N、BおよびOから選択される少なくとも1種の元素を表す。)で表される平均層厚0.5~3.0μmの化合物層であり、
(2)下部層が、
組成式(Ti(1-x)Lx)β(但し、LはAl、BおよびSiから選択される少なくとも1種の元素を表し、xはTiとLの合計に対するLの原子比を示し、0.01≦x≦0.7を満足し、βはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物からなる平均層厚60~200nmの第1薄層と、
組成式(Al(1-y)Jy)γ(但し、JはTi、V、Cr、Zr、NbおよびMoから選択される少なくとも1種の元素を表し、yはAlとJの合計に対するJの原子比を示し、0.1≦y≦0.5を満足し、γはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物からなる平均層厚60~200nmの第2薄層と、を交互に積層した交互積層体であり、交互積層体の平均層厚が0.5~3.0μmである、
被覆立方晶窒化硼素焼結体工具である。
被覆層が基材側の下部層とその上の上部層とを含み、
(1)上部層が、
組成式Mα(但し、MはTi、V、Zr、Nb、Mo、AlおよびSiから選択される少なくとも1種の元素を表し、αはC、N、BおよびOから選択される少なくとも1種の元素を表す。)で表される平均層厚0.5~3.0μmの化合物層であり、
(2)下部層が、
組成式(Ti(1-x)Lx)β(但し、LはAl、BおよびSiから選択される少なくとも1種の元素を表し、xはTiとLの合計に対するLの原子比を示し、0.01≦x≦0.7を満足し、βはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物からなる平均層厚60~200nmの第1薄層と、
組成式(Al(1-y)Jy)γ(但し、JはTi、V、Cr、Zr、NbおよびMoから選択される少なくとも1種の元素を表し、yはAlとJの合計に対するJの原子比を示し、0.1≦y≦0.5を満足し、γはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物からなる平均層厚60~200nmの第2薄層と、を交互に積層した交互積層体であり、交互積層体の平均層厚が0.5~3.0μmである、
被覆立方晶窒化硼素焼結体工具である。
本発明の立方晶窒化硼素焼結体基材は、20体積%以上の立方晶窒化硼素粉末と80体積%以下の結合相形成粉末とを超高圧高温焼結して得られる。本発明の結合相形成粉末は、周期表4a、5a、6a族の金属元素およびAl、Si、Mg、Co、Niの金属、ならびにこれら金属の合金、窒化物、炭化物、硼化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる。本発明の結合相形成粉末の具体例としては、Co、Ni、Mn、Al、Siおよびこれらの合金、TiN、TiC、TiCN、TiB2、WC、WB2、W2CoB2、Al2O3、AlN、AlB12およびこれらの相互固溶体などを挙げることができる。
本発明の立方晶窒化硼素焼結体基材の表面には被覆層が被覆される。本発明の被覆層は、基材側の下部層と表面側の上部層とを含む。なお、本発明の被覆層は、下部層および上部層に加えて、基材と下部層との間の最下層、あるいは下部層と上部層との間の中間層をさらに含むことができる。
本発明の上部層は、平均層厚0.5~3.0μmの組成式Mα(但し、MはTi、V、Zr、Nb、Mo、AlおよびSiから選択される少なくとも1種の元素を表し、αはC、N、BおよびOから選択される少なくとも1種の元素を表す。)で表される化合物で構成される。これにより、耐摩耗性と耐熱性を向上させることができる。その中でも、化合物がTiN、TiCN、Al2O3またはTiAlNであると、高温での強度が高くなるのでより好ましい。上部層の平均層厚は0.5~3.0μmである。上部層の平均層厚が0.5μm以上であると、上部層が薄すぎることがなく、耐摩耗性と耐熱性の両方を向上させる効果が得られる。上部層の平均層厚が3.0μm以下であると、加工初期におけるチッピングの発生を抑えることができる。上部層の平均層厚は、より好ましくは1.0~2.0μmである。ここで、上層部の平均層厚とは、SEM観察において、上部層の断面を5000~30000倍に拡大し、5視野の写真の平均値により測定した。また、特に断らない限り、平均層厚とは、SEM又はTEMにより被覆各層の断面を5視野写真にとり、その平均値をいう。
さらに、上層部は、Cu-Kα線を用いたX線回折測定により得られた回折線の中でピーク強度が最も高い回折線の半価幅が0.80°以下である上層部であると、上部層を構成する粒子が大きくなるため粒子の脱落が生じにくくなり、粒子脱落による摩耗進行を抑制することができるので、より好ましい。上部層がTiN、TiAlNのときは半価幅が0.35°以下であると、また、上部層がTiCNのときは半価幅が0.75°以下であると、さらに好ましい。
本発明の上部層の半価幅は、市販のX線回折装置によって測定することができる。具体的には、Cu-Kα線を用いた2θ/θ系のX線回折測定において、出力:電圧50kV、電流250mA、ステップ幅:0.02°、2θ測定範囲:4°~140°という測定条件で測定することが可能である。なお上部層の回折線と他の回折線が重なっている場合はX線回折装置付属の解析ソフトウェアによるピーク分離を行うと良い。
本発明の下部層は、硬さが高くヤング率が低いTi系複合化合物の第1薄層と硬さが低くヤング率が高いAl系複合化合物の第2薄層との交互積層体からなり、この交互積層体が優れた切削性能を工具に付与する。第1薄層は、平均層厚60~200nmの組成式(Ti(1-x)Lx)β(但し、LはAl、BおよびSiの中から選択される少なくとも1種の元素を表し、xはTiとLの合計に対するLの原子比を示し、0.01≦x≦0.7を満足し、βはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物層からなる。第1薄層は硬さが高くヤング率が低い。原子比xは、0.01≦x≦0.7である。xが0.01以上であると十分な硬さが得られ、xが0.7以下であると第1薄層の強度が低下することがない。その中でもxは、LがAlのときは0.4≦x≦0.7であると、またLがSi、Bのときは0.01≦x≦0.3であると、第1薄層の硬さが高くなるのでより好ましい。
本発明の第2薄層は、平均層厚60~200nmの組成式(Al(1-y)Jy)γ(但し、JはTi、V、Cr、Zr、NbおよびMoの中から選択される少なくとも1種の元素を表し、yはAlとJの合計に対するJの原子比を示し、0.1≦y≦0.5を満足し、γはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物層からなる。第2薄層は硬さが低くヤング率が高い。第2薄層のJは、Ti、V、Cr、Zr、NbおよびMoの中から選択される少なくとも1種の元素を表すが、その中でもJがCr、TiおよびZrの中から選択される少なくとも1種の元素であると第2薄層の強度が高くなるので好ましい。その中でも、JがCrであるとより好ましい。原子比yは、0.1≦y≦0.5である。yが0.1以上であると、またyが0.5以下であると、硬さの低下が抑えられる。その中でも、0.2≦y≦0.4であるとより好ましい。
本発明の下部層における第1薄層と第2薄層の平均層厚は、各々60~200nmである。平均層厚が60nm以上であると被覆時における核発生頻度が増加することによる第1薄層と第2薄層の粒径の微細化が抑えられ、切削時に薄層粒子の脱落が防止できるので摩耗の進行を抑えることができ、平均層厚が200nm以下であるとクラックの伝播防止効果が確保できるので、耐欠損性が低下することがない。その中でも、下部層における第1薄層、第2薄層の平均層厚は、各々70~150nmであるとより好ましい。ここで、下層部の第1薄層および第2薄層の平均層厚は、SEM観察において、下部層の断面を30000~100000倍に拡大し、5視野の写真の平均値により測定した。なお、SEM観察以外にもTEM観察を行って平均層厚を測定してもよい。
下層部はこの第1薄層と第2薄層とを交互に1層以上積層する。本発明の交互積層体としての下部層全体の平均層厚は0.4~3.0μmである。下部層全体の平均層厚が0.4μm以上であると加工衝撃によるクラックの伝播防止効果を確保でき、3.0μm以下であるとチッピングの発生を抑えることができる。その中でも、本発明の下部層全体の平均層厚は、1.0~2.0μmであるとより好ましい。
本発明の立方晶窒化硼素焼結体基材と下部層との間に、組成式(Al(1-y)Cry)N(但し、yはAlとCrの合計に対するCrの原子比を示し、0.2≦y≦0.4を満足する。)で表される化合物で構成した最下層を存在させると、被覆層と立方晶窒化硼素焼結体基材との密着性が向上するので好ましい。最下層の平均層厚は好ましくは60~200nmである。最下層の平均層厚が60nm以上であると十分な密着性が得られ、200nm以下であると加工衝撃によるクラックの伝播防止効果が確保できるので、耐欠損性や耐チッピング性が低下することがない。その中でも、最下層の平均層厚は70~150nmであるとより好ましい。
また、本発明の下部層と上部層との間に、平均層厚5~100nmの上部層の成分Mからなる金属で構成した中間層を存在させると、下部層と上部層との密着性が向上するので好ましい。この中間層は、上部層の成分Mからなる金属相であると、下部層と上部層との密着性が向上し、下部層と上部層との剥離を防止することができるので好ましい。中間層の平均層厚は好ましくは5~100nmである。中間層の平均層厚が5nm以上であると下部層と上部層との密着性を向上させる効果が得られ、100nm以下であると耐摩耗性が低下することがない。その中でも、中間層の平均層厚は50~80nmであるとより好ましい。
本発明の被覆立方晶窒化硼素焼結体工具は、少なくとも刃先が本発明の被覆立方晶窒化硼素焼結体からなる。刃先以外は、本発明で基材用に使用する立方晶窒化硼素焼結体でもよく、あるいは立方晶窒化硼素焼結体とは異なる材料、例えば超硬合金でもよい。具体的には、切削工具形状に加工した超硬合金の刃先部分に本発明の立方晶窒化硼素焼結体をろう付けし、その後、本発明の立方晶窒化硼素焼結体の表面に本発明の被覆層を被覆することもできる。
本発明の被覆層を被覆する方法としては、立方晶窒化硼素焼結体基材の表面を有機溶剤や水で超音波洗浄した後、従来から行われているPVD法、CVD法またはプラズマCVD法により被覆層を被覆する方法を挙げることができる。その中でも層厚を調整しやすく、基材との密着性に優れるPVD法が好ましい。PVD法にはアークイオンプレーティング法やマグネトロンスッパタリング法などが挙げられるが、アークイオンプレーティング法は金属元素のイオン化率が高いことや被覆膜を被覆する前に基材の表面に対して金属イオンボンバード処理が可能であり、被覆層と基材との密着性に優れるので、より好ましい。
本発明の被覆立方晶窒化硼素焼結体工具は、高温での被覆層の熱安定性を向上させることで工具強度を低下させず、被覆層の粒子の脱落による摩耗進行や熱分解による被覆層の剥離などの異常摩耗を抑制することにより、工具寿命を長くすることが可能になった。特に焼入れ鋼加工などの高負荷切削加工や高能率切削加工において、工具寿命を長くする効果が高い。
[実施例]
発明品1~3、7、9、10、12、13、16、18、20~24の被覆立方晶窒化硼素焼結体工具は、以下の方法により準備した基材に、表1に示す組成及び膜厚を有する最下層、下部層、中間層、上部層を、以下の条件で順次形成した。
発明品1~3、7、9、10、12、13、16、18、20~24の被覆立方晶窒化硼素焼結体工具は、以下の方法により準備した基材に、表1に示す組成及び膜厚を有する最下層、下部層、中間層、上部層を、以下の条件で順次形成した。
(1)基材の準備
体積で35%のTiNと10%のAlとからなる結合相形成粉末および体積で55%の立方晶窒化硼素粉末の混合粉末を圧力5.5GPa、温度1773Kという超高圧高温条件で焼結して立方晶窒化硼素焼結体を得た。ISO規格CNGA120408形状の超硬合金を台金とし、この超硬合金台金の刃先となるコーナー部に、得られた立方晶窒化硼素焼結体をろう付けした。この基材の上下面、外周面を#270メッシュのダイヤモンド砥石で研削加工し、続いて切刃稜線に#400メッシュのダイヤモンド砥石により角度-25°×幅0.15mmのチャンファホーニングを施した。さらに逃げ面とチャンファホーニング面との稜線に回転ブラシを押し当てて丸ホーニング加工を行った。加工時間を調整しながらコントレーサーで測定し、所望の曲率半径の丸ホーニングを施した。加工後、エタノールおよびアセトンで基材を洗浄し、その後に真空乾燥処理を行った。
体積で35%のTiNと10%のAlとからなる結合相形成粉末および体積で55%の立方晶窒化硼素粉末の混合粉末を圧力5.5GPa、温度1773Kという超高圧高温条件で焼結して立方晶窒化硼素焼結体を得た。ISO規格CNGA120408形状の超硬合金を台金とし、この超硬合金台金の刃先となるコーナー部に、得られた立方晶窒化硼素焼結体をろう付けした。この基材の上下面、外周面を#270メッシュのダイヤモンド砥石で研削加工し、続いて切刃稜線に#400メッシュのダイヤモンド砥石により角度-25°×幅0.15mmのチャンファホーニングを施した。さらに逃げ面とチャンファホーニング面との稜線に回転ブラシを押し当てて丸ホーニング加工を行った。加工時間を調整しながらコントレーサーで測定し、所望の曲率半径の丸ホーニングを施した。加工後、エタノールおよびアセトンで基材を洗浄し、その後に真空乾燥処理を行った。
基材をアークイオンプレーティング装置内の回転テーブル上に装着し、カソード電極(蒸発源)としてそれぞれ表1に示される被覆層の金属元素に対応した金属ターゲットを配した。まず、装置内を排気し、ヒーターで500℃に加熱しながら、装置内の圧力が1.0×10-4Paになるまで真空引きを行った。次にアルゴンガスを導入し装置内の圧力を0.7Paに保持し、テーブルを回転した状態で-200Vの基材直流バイアス電圧を基材に印加し、基材表面をアルゴンイオンによって洗浄し、その後、装置内からアルゴンガスを排気した。
(2)最下層の形成
発明品7を除く発明品1~3、9、10、12、13、16、18、20~24については、テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、表1に示される最下層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を5~15分の範囲で変化させて最下層を被覆した後、アーク放電を停止した。
発明品7を除く発明品1~3、9、10、12、13、16、18、20~24については、テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、表1に示される最下層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を5~15分の範囲で変化させて最下層を被覆した後、アーク放電を停止した。
(3)下部層の形成
続いて、発明品1~3、7、9、10、12、13、16、18、20~24について、テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガス(発明品24は流量比(体積比)2:1の窒素ガスとアセチレンガス)の流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま、表1に示される下部層の第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を5~20分の範囲で変化させて下部層の第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表1に示される下部層の第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を8~25分の範囲で変化させて下部層の第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に5~9層積層した交互積層の下層部を被覆した後、アーク放電を停止して反応ガスである窒素ガス(発明品24は窒素ガスとアセチレンガス)を排気した。なお、薄膜形成の放電時間は、膜厚のほかに金属ターゲットの種類でも異なる。
続いて、発明品1~3、7、9、10、12、13、16、18、20~24について、テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガス(発明品24は流量比(体積比)2:1の窒素ガスとアセチレンガス)の流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま、表1に示される下部層の第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を5~20分の範囲で変化させて下部層の第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表1に示される下部層の第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を8~25分の範囲で変化させて下部層の第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に5~9層積層した交互積層の下層部を被覆した後、アーク放電を停止して反応ガスである窒素ガス(発明品24は窒素ガスとアセチレンガス)を排気した。なお、薄膜形成の放電時間は、膜厚のほかに金属ターゲットの種類でも異なる。
(4)中間層の形成
交互積層の下部層を被覆した後、発明品7を除く発明品1~3、9、10、12、13、16、18、20~24については、アルゴンガスを導入し、装置内の圧力を3.0Paに保持し、-40Vの基材直流バイアス電圧を基材に印加した状態で、表1に示される中間層の金属元素に対応した金属ターゲットを配したカソード電極に100Aのアーク電流を供給し、形成する層厚に依存して放電時間を2~15分の範囲で変化させて中間層を被覆した後、アーク放電を停止しアルゴンガスを排気した。
交互積層の下部層を被覆した後、発明品7を除く発明品1~3、9、10、12、13、16、18、20~24については、アルゴンガスを導入し、装置内の圧力を3.0Paに保持し、-40Vの基材直流バイアス電圧を基材に印加した状態で、表1に示される中間層の金属元素に対応した金属ターゲットを配したカソード電極に100Aのアーク電流を供給し、形成する層厚に依存して放電時間を2~15分の範囲で変化させて中間層を被覆した後、アーク放電を停止しアルゴンガスを排気した。
(5)上部層の形成
続いて、発明品1~3、7、9、10、12、13、16、18、20~24について、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま、表1に示される上部層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、、形成する層厚に依存して放電時間を30~200分の範囲で変化させて上部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスを排気した。このようにして発明品1~3、7、9、10、12、13、16、18、20~24の被覆立方晶窒化硼素焼結体工具を作製した。
続いて、発明品1~3、7、9、10、12、13、16、18、20~24について、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま、表1に示される上部層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、、形成する層厚に依存して放電時間を30~200分の範囲で変化させて上部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスを排気した。このようにして発明品1~3、7、9、10、12、13、16、18、20~24の被覆立方晶窒化硼素焼結体工具を作製した。
発明品4~6、8、11、17、19、25の被覆立方晶窒化硼素焼結体工具は、上記した方法と同様の方法で準備した基材に、以下の条件で被覆層を成膜した。
発明品8を除く発明品4~6、11、17、19、25については、テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、表1に示される最下層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を5~15分の範囲で変化させて最下層を被覆した後、アーク放電を停止した。
続いて、発明品4~6、8、11、17、19、25について、テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガス(発明品25は流量比(体積比)2:1の窒素ガスとアセチレンガス)の流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま、表1に示される下部層の第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を2~12分の範囲で変化させて下部層の第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表1に示される下部層の第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を8~25分の範囲で変化させて下部層の第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に6~9層積層した交互積層の下部層を被覆した後、アーク放電を停止し反応ガスである窒素ガス(発明品25は窒素ガスとアセチレンガス)を排気した。
交互積層の下部層を被覆した後、発明品8を除く発明品4~6、11、17、19、25については、アルゴンガスを導入して装置内の圧力を3.0Paに保持し、-40Vの基材直流バイアス電圧を基材に印加した状態でTiターゲットを配したカソード電極に80Aのアーク電流を供給し、形成する層厚に依存して放電時間を3~20分の範囲で変化させて中間層を被覆した後、アーク放電を停止しアルゴンガスを排気した。
続いて、発明品4~6、8、11、17、19について、装置内に導入する反応ガスとしての流量比(体積比)2:1の窒素ガスとアセチレンガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-100Vに調整し、Tiターゲットを配したカソード電極に150Aのアーク電流を供給し、形成する層厚に依存して放電時間を15~90分の範囲で変化させて上部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスおよびアセチレンガスを排気した。このようにして発明品4~6、8、11、17、19、25の被覆立方晶窒化硼素焼結体工具を作製した。
発明品14、15の被覆立方晶窒化硼素焼結体工具は、上記した方法と同様の方法で準備した基材に、以下の条件で被覆層を成膜した。
テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、表1に示される最下層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を10分供給して基材表面に最下層を被覆した後、アーク放電を停止した。
続いて、テーブルを回転した状態で、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま、表1に示される下部層の第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を9.5分供給して下部層の第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表1に示される下部層の第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を7.5分供給して下部層の第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に8層積層した交互積層の下部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスを排気した。
続いて、装置内に導入する反応ガスとしての酸素ガスの流量を調整して装置内の圧力を3.0Paにし、-700Vの基材パルス直流バイアス電圧を基材に印加し、Alターゲットを配したカソード電極に200Aのアーク電流を65分供給して上部層を被覆した後、アーク放電を停止し反応ガスである酸素ガスを排気した。このようにして発明品14、15の被覆立方晶窒化硼素焼結体工具を作製した。
得られた発明品について、SEM観察、SEM付属のEDS測定、TEM観察、TEM付属のEDS測定を行って、各層の層厚と組成を測定した。また、市販のX線回折装置により、Cu-Kα線、出力:電圧50kV、電流250mA、ステップ幅:0.02°、2θ/θ系、2θ測定範囲:4°~140°という測定条件でX線回折測定を行った。2θ測定範囲:4°~140°において、得られた上部層の回折線の中で最もピーク強度の高い回折線について半価幅を測定した。それらの結果を表1に示した。
比較品については、発明品と同様の方法で準備した基材上に、最下層及び中間層を設けずに、以下の条件で下部層と上部層からなる被覆層を成膜した。
比較品1~3、5、7の被覆立方晶窒化硼素焼結体工具は、テーブルを回転した状態で装置内に導入する窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、表2に示される下部層の第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給して下部層の第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表2に示される下部層の第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給して下部層の第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に10~約40層積層した交互積層の下部層を被覆した。なおアーク放電時間は、第1薄層が3~11分の範囲、第2薄層が2~8分の範囲であった。
続いて、テーブルを回転した状態で、装置内に導入する窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま表2に示される上部層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を28~105分供給して上部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスを排気した。このようにして比較品1~3、5、7の被覆立方晶窒化硼素焼結体工具を作製した。
比較品4、6、8の被覆立方晶窒化硼素焼結体工具は、テーブルを回転した状態で、装置内に導入する窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、表2に示される下部層の第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給して下部層の第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表2に示される下部層の第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を供給して下部層の第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に3~22層積層した交互積層の下部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスを排気した。なお、アーク放電時間は、第1薄層が3~9分、第2薄層が7~21分の範囲であった。
続いて、装置内に導入する反応ガスとしての流量比(体積比)2:1の窒素ガスとアセチレンガスの流量を調整して、装置内の圧力を3.0Paにし、基材直流バイアス電圧を-100Vに調整し、Tiターゲットを配したカソード電極に150Aのアーク電流を30~105分供給して上部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスおよびアセチレンガスを排気した。このようにして比較品4、6、8の被覆立方晶窒化硼素焼結体工具を作製した。
比較品9の被覆立方晶窒化硼素焼結体工具は、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調節し、表2に示される第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を3分供給して第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表2に示される第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を2分供給して第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に50層積層した交互積層の被覆層を被覆した後、アーク放電を停止し反応ガスである窒素ガスを排気した。このようにして比較品9の被覆立方晶窒化硼素焼結体工具を作製した。
得られた比較品1~9について、SEM観察、SEM付属のEDS測定、TEM観察、TEM付属のEDS測定を行って、各層の層厚と組成を測定し、それらの結果を表2に示した。
比較品10の被覆立方晶窒化硼素焼結体工具は、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調節し、表3に示される下部層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流60分供給して下部層を被覆した。
続いて、テーブルを回転した状態で、装置内に導入する窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま表3に示される上部層の第1薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を11分供給して上部層の第1薄層を被覆した。第1薄層の被覆後、アーク放電を停止し、表3に示される上部層の第2薄層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を第1薄層と同様に供給して上部層の第2薄層を被覆した。このプロセスを繰り返すことにより、第1薄層と第2薄層とを交互に10層積層した交互積層の上部層を被覆した後、アーク放電を停止し反応ガスである窒素ガスを排気した。このようにして比較品10の被覆立方晶窒化硼素焼結体工具を作製した。
比較品11の被覆立方晶窒化硼素焼結体工具は、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、Tiターゲットを配したカソード電極に150Aのアーク電流を30分供給して下部層を被覆した。
続いて、テーブルを回転した状態で、装置内に導入する窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに保持したまま表3に示される上部層の金属元素に対応した金属ターゲットを配したカソード電極に150Aのアーク電流を140分供給して上部層を被覆した。このようにして比較品11の被覆立方晶窒化硼素焼結体工具を作製した。
比較品12の被覆立方晶窒化硼素焼結体工具は、装置内に導入する反応ガスとしての窒素ガスの流量を調整して装置内の圧力を3.0Paにし、基材直流バイアス電圧を-40Vに調整し、カソード電極に150Aのアーク電流を200分供給して被覆層を被覆した。このようにして比較品12の被覆立方晶窒化硼素焼結体工具を作製した。
得られた比較品10~12について、SEM観察、SEM付属のEDS測定、TEM観察、TEM付属のEDS測定を行って、各層の層厚と組成を測定し、それらの結果を表3に示した。
得られた発明品および比較品について、下記の切削試験[1]、[2]、[3]を行った。
切削試験[1]:連続切削
加工形態:外径連続旋削加工、DRY
被削材:SCM415H(浸炭焼入れ鋼)、HRC58~62、円柱状(外径63mm、長さ200mm)
切削速度:150(m/min)
送り:0.10(mm/rev)
切込み:0.25(mm)
工具寿命:逃げ面摩耗量が0.15mmになるまでの加工時間もしくは刃先欠損が発生するまでの加工時間
加工形態:外径連続旋削加工、DRY
被削材:SCM415H(浸炭焼入れ鋼)、HRC58~62、円柱状(外径63mm、長さ200mm)
切削速度:150(m/min)
送り:0.10(mm/rev)
切込み:0.25(mm)
工具寿命:逃げ面摩耗量が0.15mmになるまでの加工時間もしくは刃先欠損が発生するまでの加工時間
切削試験[2]:高速連続切削
加工形態:外径連続旋削加工、DRY
被削材:SCM415H(浸炭焼入れ鋼)、HRC58~62、円柱状(外径63mm、長さ200mm)
切削速度:250(m/min)
送り:0.10(mm/rev)
切込み:0.25(mm)
工具寿命:逃げ面摩耗量が0.15mmになるまでの加工時間もしくは刃先欠損が発生するまでの加工時間
加工形態:外径連続旋削加工、DRY
被削材:SCM415H(浸炭焼入れ鋼)、HRC58~62、円柱状(外径63mm、長さ200mm)
切削速度:250(m/min)
送り:0.10(mm/rev)
切込み:0.25(mm)
工具寿命:逃げ面摩耗量が0.15mmになるまでの加工時間もしくは刃先欠損が発生するまでの加工時間
切削試験[3]:断続切削
加工形態:外径断続旋削加工、DRY
被削材:SCM435H(浸炭焼入れ鋼)、HRC58~60、V溝2本付き円柱状(外径48mm、長さ200mm)
切削速度:150(m/min)
送り:0.10(mm/rev)
切込み:0.25(mm)
工具寿命:逃げ面摩耗量が0.15mmになるまでの加工時間もしくは刃先欠損が発生するまでの加工時間
加工形態:外径断続旋削加工、DRY
被削材:SCM435H(浸炭焼入れ鋼)、HRC58~60、V溝2本付き円柱状(外径48mm、長さ200mm)
切削速度:150(m/min)
送り:0.10(mm/rev)
切込み:0.25(mm)
工具寿命:逃げ面摩耗量が0.15mmになるまでの加工時間もしくは刃先欠損が発生するまでの加工時間
表4には、切削試験[1][2][3]における工具寿命を記載した。また、切削試験[1][2][3]の工具寿命と損傷形態から、発明品と比較品の切削性能について総合評価を行った。切削試験[1][2][3]における工具寿命について、切削試験[1]では、65~55分を1点、54~45分を2点、44~35分を3点、34~30分を2点、29分以下を5点とした点数付けを行った。切削試験[2]では、25~20分を1点、19~15分を2点、14~10分を3点、9~5分を2点、4分以下を5点とした点数付けを行った。切削試験[3]では、35~30分を1点、29~25分を2点、24~20分を3点、19~15分を4点、14分以下を5点とした点数付けを行った。次に、切削試験[1][2][3]における点数を合計し、5~6点を◎、7~8点を○、9点を△、10~11点を▲、12~13点を×とした総合評価(良い◎>○>△>▲>×悪い)を行った。総合評価の結果は表4に併記した。
表4から、発明品は比較品と比較して、いずれの加工条件においても工具寿命が長く、総合評価が良好であることが分かる。
本発明の被覆立方晶窒化硼素焼結体工具は、高温での被覆層の熱安定性を向上させることで工具強度を低下させず、被覆層の粒子の脱落による摩耗進行や熱分解による被覆層の剥離などの異常摩耗を抑制することにより、工具寿命を長くすることが可能になる。特に焼入れ鋼加工などの高負荷切削加工や高能率切削加工において、工具寿命を長くする効果が高いので、産業上の利用可能性が高い。
Claims (7)
- 少なくとも刃先が、立方晶窒化硼素焼結体基材の表面に被覆層を被覆した被覆立方晶窒化硼素焼結体からなる、被覆立方晶窒化硼素焼結体工具であって、
被覆層が基材側の下部層とその上の上部層とを含み、
(1)上部層が、
組成式Mα(但し、MはTi、V、Zr、Nb、Mo、AlおよびSiから選択される少なくとも1種の元素を表し、αはC、N、BおよびOから選択される少なくとも1種の元素を表す。)で表される平均層厚0.5~3.0μmの化合物層であり、
(2)下部層が、
組成式(Ti(1-x)Lx)β(但し、LはAl、BおよびSiから選択される少なくとも1種の元素を表し、xはTiとLの合計に対するLの原子比を示し、0.01≦x≦0.7を満足し、βはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物からなる平均層厚60~200nmの第1薄層と、
組成式(Al(1-y)Jy)γ(但し、JはTi、V、Cr、Zr、NbおよびMoから選択される少なくとも1種の元素を表し、yはAlとJの合計に対するJの原子比を示し、0.1≦y≦0.5を満足し、γはCおよびNから選択される少なくとも1種の元素を表す。)で表される化合物からなる平均層厚60~200nmの第2薄層と、を交互に積層した交互積層体であり、交互積層体の平均層厚が0.5~3.0μmである、
被覆立方晶窒化硼素焼結体工具。 - 下部層の第1薄層が、組成式(Ti(1-x)Alx)N(但し、xはTiとAlの合計に対するAlの原子比を示し、0.4≦x≦0.7を満足する。)で表される化合物層である、請求項1に記載の被覆立方晶窒化硼素焼結体工具。
- 下部層の第1薄層が、組成式(Ti(1-x)Six)N(但し、xはTiとSiの合計に対するSiの原子比を示し、0.01≦x≦0.3を満足する。)で表される化合物層である、請求項1に記載の被覆立方晶窒化硼素焼結体工具。
- 下部層の第2薄層が、組成式(Al(1-y)Cry)N(但し、yはAlとCrの合計に対するCrの原子比を示し、0.2≦x≦0.4を満足する。)で表される化合物層である、請求項1~3のいずれか1項に記載の被覆立方晶窒化硼素焼結体工具。
- 立方晶窒化硼素焼結体基材表面と下部層との間に形成された最下層を有し、
最下層が、組成式(Al(1-y)Cry)N(但し、yはAlとCrの合計に対するCrの原子比を示し、0.2≦y≦0.4を満足する。)で表される平均層厚60~200nmの化合物層である、
請求項1~4のいずれか1項に記載の被覆立方晶窒化硼素焼結体工具。 - 下部層と上部層との間に形成された中間層を有し、
中間層が、上部層の成分Mからなる平均層厚5~100nmの金属層である、
請求項1~5のいずれか1項に記載の被覆立方晶窒化硼素焼結体工具。 - 上部層が、Cu-Kα線を用いたX線回折測定における回折線の中でピーク強度が最も高い回折線の半価幅が0.80°以下の上部層である、請求項1~6のいずれか1項に記載の被覆立方晶窒化硼素焼結体工具。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09846468.8A EP2446987B1 (en) | 2009-06-22 | 2009-06-22 | Tool having coated cubic boron nitride sintered body |
JP2011519398A JPWO2010150335A1 (ja) | 2009-06-22 | 2009-06-22 | 被覆立方晶窒化硼素焼結体工具 |
US13/380,411 US8784977B2 (en) | 2009-06-22 | 2009-06-22 | Coated cubic boron nitride sintered body tool |
PCT/JP2009/061295 WO2010150335A1 (ja) | 2009-06-22 | 2009-06-22 | 被覆立方晶窒化硼素焼結体工具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/061295 WO2010150335A1 (ja) | 2009-06-22 | 2009-06-22 | 被覆立方晶窒化硼素焼結体工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010150335A1 true WO2010150335A1 (ja) | 2010-12-29 |
Family
ID=43386131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061295 WO2010150335A1 (ja) | 2009-06-22 | 2009-06-22 | 被覆立方晶窒化硼素焼結体工具 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8784977B2 (ja) |
EP (1) | EP2446987B1 (ja) |
JP (1) | JPWO2010150335A1 (ja) |
WO (1) | WO2010150335A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2336382A1 (en) * | 2009-12-04 | 2011-06-22 | Sandvik Intellectual Property AB | Multilayer coated cutting tool |
JP2014087917A (ja) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | 表面被覆切削工具 |
JP2014091169A (ja) * | 2012-10-31 | 2014-05-19 | Mitsubishi Materials Corp | 表面被覆切削工具 |
WO2014156447A1 (ja) | 2013-03-29 | 2014-10-02 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2014156446A1 (ja) | 2013-03-29 | 2014-10-02 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2014156448A1 (ja) | 2013-03-29 | 2014-10-02 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2015001902A1 (ja) | 2013-07-03 | 2015-01-08 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2015001903A1 (ja) | 2013-07-03 | 2015-01-08 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2015001904A1 (ja) | 2013-07-03 | 2015-01-08 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2015064241A1 (ja) | 2013-10-31 | 2015-05-07 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
JP2015127093A (ja) * | 2015-02-13 | 2015-07-09 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
JP2016155221A (ja) * | 2012-08-31 | 2016-09-01 | 株式会社タンガロイ | 被覆切削工具 |
WO2017022501A1 (ja) * | 2015-08-03 | 2017-02-09 | 株式会社タンガロイ | 被覆切削工具 |
JP2017505856A (ja) * | 2013-11-26 | 2017-02-23 | エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーンOerlikon Surface Solutions Ag, Pfaeffikon | コートされた基材への入熱を減少させるための硬質材料層 |
WO2017061325A1 (ja) * | 2015-10-07 | 2017-04-13 | 株式会社タンガロイ | 被覆切削工具 |
WO2017163535A1 (ja) * | 2016-03-25 | 2017-09-28 | 株式会社神戸製鋼所 | 硬質皮膜及び硬質皮膜被覆部材 |
WO2017168841A1 (ja) * | 2016-03-30 | 2017-10-05 | 住友電工ハードメタル株式会社 | 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具 |
JP7463948B2 (ja) | 2020-11-18 | 2024-04-09 | 株式会社タンガロイ | 被覆切削工具 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2628826A1 (en) * | 2012-02-14 | 2013-08-21 | Sandvik Intellectual Property AB | Coated cutting tool and method for making the same |
DE112013003182B4 (de) * | 2012-06-29 | 2022-05-25 | Sumitomo Electric Hardmetal Corp. | Oberflächenbeschichtetes Schneidwerkzeug |
WO2014096351A1 (en) * | 2012-12-21 | 2014-06-26 | Sandvik Intellectual Property Ab | Coated cutting tool and method for manufacturing the same |
KR101891900B1 (ko) * | 2013-07-03 | 2018-09-28 | 외를리콘 서피스 솔루션즈 아게, 페피콘 | TixSi1-xN 층 및 그의 생산 |
EP3120955B1 (en) * | 2014-03-18 | 2020-06-24 | Hitachi Metals, Ltd. | Coated cutting tool and method for producing same |
JP6355124B2 (ja) * | 2014-04-25 | 2018-07-11 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
US20180361447A1 (en) * | 2015-12-07 | 2018-12-20 | Ihi Ionbond Ag | Coated extrusion tool |
JP6928218B2 (ja) * | 2015-12-25 | 2021-09-01 | 三菱マテリアル株式会社 | 表面被覆立方晶窒化ホウ素焼結体工具 |
CN105624618B (zh) * | 2016-02-11 | 2018-01-19 | 广东工业大学 | TiAlSiZrN基复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 |
JP6222675B2 (ja) * | 2016-03-28 | 2017-11-01 | 住友電工ハードメタル株式会社 | 表面被覆切削工具、およびその製造方法 |
WO2018025977A1 (en) * | 2016-08-01 | 2018-02-08 | Mitsubishi Materials Corporation | Multilayer hard film-coated cutting tool |
JP6507399B2 (ja) * | 2017-03-28 | 2019-05-08 | 株式会社タンガロイ | 被覆切削工具 |
JP6858347B2 (ja) * | 2017-07-28 | 2021-04-14 | 株式会社タンガロイ | 被覆切削工具 |
JP6642836B2 (ja) * | 2017-09-19 | 2020-02-12 | 株式会社タンガロイ | 被覆ドリル |
CN112368094B (zh) * | 2018-06-15 | 2023-07-21 | 住友电工硬质合金株式会社 | 表面被覆切削工具及其制造方法 |
CN110526718B (zh) * | 2019-09-03 | 2021-07-27 | 武汉理工大学 | 一种B-Al-Ti系复相陶瓷及其低温致密化烧结制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003071610A (ja) * | 2000-12-28 | 2003-03-12 | Kobe Steel Ltd | 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット |
JP2003136305A (ja) * | 2001-11-02 | 2003-05-14 | Mitsubishi Materials Corp | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 |
WO2006070509A1 (ja) * | 2004-12-28 | 2006-07-06 | Sumitomo Electric Hardmetal Corp. | 表面被覆切削工具および表面被覆切削工具の製造方法 |
JP2006299399A (ja) * | 2005-03-24 | 2006-11-02 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆部材 |
JP2008188689A (ja) * | 2007-02-01 | 2008-08-21 | Sumitomo Electric Hardmetal Corp | 表面被覆切削工具 |
JP2008534297A (ja) * | 2005-04-01 | 2008-08-28 | エーリコン・トレイディング・アーゲー・トリューバッハ | 工具のための多層硬物質被覆 |
JP2009034781A (ja) * | 2007-08-02 | 2009-02-19 | Sumitomo Electric Hardmetal Corp | 表面被覆切削工具 |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971656A (en) | 1973-06-18 | 1976-07-27 | Erwin Rudy | Spinodal carbonitride alloys for tool and wear applications |
JPS61195950A (ja) | 1985-02-25 | 1986-08-30 | Mitsubishi Metal Corp | 高硬度および高靭性を有する切削工具用サ−メツト |
JPS61227910A (ja) | 1985-04-01 | 1986-10-11 | Sumitomo Electric Ind Ltd | チタン・モリブデン複合炭窒化物粉末の製造法 |
JPS62265107A (ja) | 1985-10-14 | 1987-11-18 | Sumitomo Electric Ind Ltd | 硬質合金用複炭窒化物の製造法 |
JPH0698540B2 (ja) | 1986-02-18 | 1994-12-07 | 三菱マテリアル株式会社 | 耐摩耗性のすぐれたサ−メツト製切削工具の製造法 |
JPH0617531B2 (ja) | 1986-02-20 | 1994-03-09 | 日立金属株式会社 | 強靭性サ−メツト |
JPS6468443A (en) | 1987-09-09 | 1989-03-14 | Hitachi Metals Ltd | Cermet alloy |
JP2769821B2 (ja) | 1988-03-11 | 1998-06-25 | 京セラ株式会社 | TiCN基サーメットおよびその製法 |
JP2628200B2 (ja) | 1988-09-27 | 1997-07-09 | 京セラ株式会社 | TiCN基サーメットおよびその製法 |
SE467257B (sv) | 1989-06-26 | 1992-06-22 | Sandvik Ab | Sintrad titanbaserad karbonitridlegering med duplexa strukturer |
JP2817274B2 (ja) | 1989-11-08 | 1998-10-30 | 三菱化学株式会社 | ポリオレフインの製造法 |
JP2771337B2 (ja) | 1990-12-27 | 1998-07-02 | 京セラ株式会社 | 被覆TiCN基サーメット |
US6057046A (en) | 1994-05-19 | 2000-05-02 | Sumitomo Electric Industries, Ltd. | Nitrogen-containing sintered alloy containing a hard phase |
US5882777A (en) | 1994-08-01 | 1999-03-16 | Sumitomo Electric Industries, Ltd. | Super hard composite material for tools |
JP3866305B2 (ja) | 1994-10-27 | 2007-01-10 | 住友電工ハードメタル株式会社 | 工具用複合高硬度材料 |
JP3152105B2 (ja) | 1995-05-15 | 2001-04-03 | 三菱マテリアル株式会社 | 炭窒化チタン系サーメット製切削工具 |
JP3430737B2 (ja) | 1995-09-14 | 2003-07-28 | 三菱マテリアル株式会社 | 高強度を有するTi系炭窒化物サーメット |
JPH10110234A (ja) | 1996-10-07 | 1998-04-28 | Mitsubishi Materials Corp | 耐欠損性のすぐれた炭窒化チタン系サーメット製切削工具 |
SE517474C2 (sv) | 1996-10-11 | 2002-06-11 | Sandvik Ab | Sätt att tillverka hårdmetall med bindefasanrikad ytzon |
DE19704242C1 (de) | 1997-02-05 | 1998-08-27 | Starck H C Gmbh Co Kg | Carbonitrid-Pulver, Verfahren zu ihrer Herstellung sowie deren Verwendung |
US5939651A (en) | 1997-04-17 | 1999-08-17 | Sumitomo Electric Industries, Ltd. | Titanium-based alloy |
WO1999040233A1 (en) * | 1998-02-04 | 1999-08-12 | Osg Corporation | Multilayer coated tool |
JP2000044348A (ja) | 1998-07-22 | 2000-02-15 | Nof Corp | 鋳鉄切削加工用高硬度焼結体 |
JP4375691B2 (ja) | 1999-12-17 | 2009-12-02 | 住友電工ハードメタル株式会社 | 複合高硬度材料 |
EP1702997B1 (en) * | 2000-12-28 | 2013-11-20 | Kabushiki Kaisha Kobe Seiko Sho | Process for forming a hard film for cutting tools |
JP2002302732A (ja) | 2001-04-09 | 2002-10-18 | Toshiba Tungaloy Co Ltd | 超微粒cBN基焼結体 |
CN100408237C (zh) * | 2002-01-21 | 2008-08-06 | 三菱麻铁里亚尔株式会社 | 表面被覆切削工具部件和在切削工具表面形成硬质被覆层的方法 |
US6660133B2 (en) * | 2002-03-14 | 2003-12-09 | Kennametal Inc. | Nanolayered coated cutting tool and method for making the same |
US6814775B2 (en) | 2002-06-26 | 2004-11-09 | Diamond Innovations, Inc. | Sintered compact for use in machining chemically reactive materials |
JP2004292842A (ja) | 2003-03-25 | 2004-10-21 | Tungaloy Corp | サーメット |
US7226670B2 (en) * | 2003-04-28 | 2007-06-05 | Oc Oerlikon Balzers Ag | Work piece with a hard film of AlCr-containing material, and process for its production |
JP2005194573A (ja) | 2004-01-07 | 2005-07-21 | Tungaloy Corp | サーメットおよび被覆サーメット並びにそれらの製造方法 |
JP2005200668A (ja) | 2004-01-13 | 2005-07-28 | Tungaloy Corp | サーメットおよび被覆サーメット並びにそれらの製造方法 |
JP2006111947A (ja) | 2004-10-18 | 2006-04-27 | Tungaloy Corp | 超微粒子サーメット |
KR100792190B1 (ko) | 2005-04-19 | 2008-01-07 | 재단법인서울대학교산학협력재단 | 유심구조가 없는 고용체 분말, 그 제조 방법, 상기 고용체분말을 포함하는 서멧트용 분말, 그 제조 방법, 상기고용체 분말 및 서멧트용 분말을 이용한 유심구조가 없는세라믹스 소결체 및 서멧트 |
JP2006315898A (ja) | 2005-05-12 | 2006-11-24 | Tungaloy Corp | 立方晶窒化硼素焼結体 |
US7537822B2 (en) | 2005-05-26 | 2009-05-26 | Hitachi Tool Engineering, Ltd. | Hard-coated member |
EP1892052B1 (en) | 2005-06-14 | 2016-04-06 | Mitsubishi Materials Corporation | Cermet insert and cutting tool |
JP5157056B2 (ja) | 2005-09-22 | 2013-03-06 | 株式会社タンガロイ | 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体、並びにそれらからなる焼入鋼用切削工具 |
CA2577615C (en) | 2005-10-04 | 2013-02-05 | Satoru Kukino | Cbn sintered body for high surface integrity machining and cbn sintered body cutting tool |
WO2007110770A2 (en) | 2006-03-29 | 2007-10-04 | Element Six (Production) (Pty) Ltd | Polycrystalline abrasive compacts |
CN101678466B (zh) * | 2007-05-30 | 2012-05-30 | 住友电工硬质合金株式会社 | 表面被覆切削工具 |
JP5059528B2 (ja) | 2007-09-14 | 2012-10-24 | 住友電気工業株式会社 | 立方晶窒化硼素焼結体及びその製造方法 |
US7947363B2 (en) * | 2007-12-14 | 2011-05-24 | Kennametal Inc. | Coated article with nanolayered coating scheme |
JP2008208027A (ja) | 2008-05-21 | 2008-09-11 | Sumitomo Electric Hardmetal Corp | cBN焼結体 |
JP5302965B2 (ja) | 2008-07-16 | 2013-10-02 | 一般財団法人ファインセラミックスセンター | 硬質粉末、硬質粉末の製造方法および焼結硬質合金 |
JP2010031308A (ja) | 2008-07-25 | 2010-02-12 | Sumitomo Electric Ind Ltd | サーメット |
JP5559575B2 (ja) | 2009-03-10 | 2014-07-23 | 株式会社タンガロイ | サーメットおよび被覆サーメット |
CN102470446A (zh) | 2009-06-30 | 2012-05-23 | 株式会社图格莱 | 金属陶瓷和被覆金属陶瓷 |
-
2009
- 2009-06-22 EP EP09846468.8A patent/EP2446987B1/en active Active
- 2009-06-22 WO PCT/JP2009/061295 patent/WO2010150335A1/ja active Application Filing
- 2009-06-22 US US13/380,411 patent/US8784977B2/en active Active
- 2009-06-22 JP JP2011519398A patent/JPWO2010150335A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003071610A (ja) * | 2000-12-28 | 2003-03-12 | Kobe Steel Ltd | 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット |
JP2003136305A (ja) * | 2001-11-02 | 2003-05-14 | Mitsubishi Materials Corp | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 |
WO2006070509A1 (ja) * | 2004-12-28 | 2006-07-06 | Sumitomo Electric Hardmetal Corp. | 表面被覆切削工具および表面被覆切削工具の製造方法 |
JP2006299399A (ja) * | 2005-03-24 | 2006-11-02 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆部材 |
JP2008534297A (ja) * | 2005-04-01 | 2008-08-28 | エーリコン・トレイディング・アーゲー・トリューバッハ | 工具のための多層硬物質被覆 |
JP2008188689A (ja) * | 2007-02-01 | 2008-08-21 | Sumitomo Electric Hardmetal Corp | 表面被覆切削工具 |
JP2009034781A (ja) * | 2007-08-02 | 2009-02-19 | Sumitomo Electric Hardmetal Corp | 表面被覆切削工具 |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2336382A1 (en) * | 2009-12-04 | 2011-06-22 | Sandvik Intellectual Property AB | Multilayer coated cutting tool |
US8758890B2 (en) | 2009-12-04 | 2014-06-24 | Sandvik Intellectual Property Ab | Multilayered coated cutting tool |
JP2016155221A (ja) * | 2012-08-31 | 2016-09-01 | 株式会社タンガロイ | 被覆切削工具 |
JP2014087917A (ja) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | 表面被覆切削工具 |
JP2014091169A (ja) * | 2012-10-31 | 2014-05-19 | Mitsubishi Materials Corp | 表面被覆切削工具 |
JP2014195857A (ja) * | 2013-03-29 | 2014-10-16 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2014156447A1 (ja) | 2013-03-29 | 2014-10-02 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
JP2014195858A (ja) * | 2013-03-29 | 2014-10-16 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
JP2014195859A (ja) * | 2013-03-29 | 2014-10-16 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2014156446A1 (ja) | 2013-03-29 | 2014-10-02 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
WO2014156448A1 (ja) | 2013-03-29 | 2014-10-02 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
CN105263657B (zh) * | 2013-07-03 | 2017-03-15 | 住友电工硬质合金株式会社 | 表面被覆氮化硼烧结体工具 |
WO2015001904A1 (ja) | 2013-07-03 | 2015-01-08 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
US10016813B2 (en) | 2013-07-03 | 2018-07-10 | Sumitomo Electric Hardmetal Corp. | Surface-coated boron nitride sintered body tool |
WO2015001902A1 (ja) | 2013-07-03 | 2015-01-08 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
CN105263657A (zh) * | 2013-07-03 | 2016-01-20 | 住友电工硬质合金株式会社 | 表面被覆氮化硼烧结体工具 |
KR20160028409A (ko) | 2013-07-03 | 2016-03-11 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 질화붕소 소결체 공구 |
WO2015001903A1 (ja) | 2013-07-03 | 2015-01-08 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
US9850177B2 (en) | 2013-07-03 | 2017-12-26 | Sumitomo Electric Hardmetal Corp. | Surface-coated boron nitride sintered body tool |
KR20160078972A (ko) * | 2013-10-31 | 2016-07-05 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 질화붕소 소결체 공구 |
KR102269461B1 (ko) * | 2013-10-31 | 2021-06-28 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 질화붕소 소결체 공구 |
US10030299B2 (en) | 2013-10-31 | 2018-07-24 | Sumitomo Electric Hardmetal Corp. | Surface-coated boron nitride sintered body tool |
WO2015064241A1 (ja) | 2013-10-31 | 2015-05-07 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
JP2017505856A (ja) * | 2013-11-26 | 2017-02-23 | エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーンOerlikon Surface Solutions Ag, Pfaeffikon | コートされた基材への入熱を減少させるための硬質材料層 |
JP2015127093A (ja) * | 2015-02-13 | 2015-07-09 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
US10596636B2 (en) | 2015-08-03 | 2020-03-24 | Tungaloy Corporation | Coated cutting tool |
WO2017022501A1 (ja) * | 2015-08-03 | 2017-02-09 | 株式会社タンガロイ | 被覆切削工具 |
JPWO2017022501A1 (ja) * | 2015-08-03 | 2018-05-31 | 株式会社タンガロイ | 被覆切削工具 |
JPWO2017061325A1 (ja) * | 2015-10-07 | 2018-05-31 | 株式会社タンガロイ | 被覆切削工具 |
WO2017061325A1 (ja) * | 2015-10-07 | 2017-04-13 | 株式会社タンガロイ | 被覆切削工具 |
US11084103B2 (en) | 2015-10-07 | 2021-08-10 | Tungaloy Corporation | Coated cutting tool |
WO2017163535A1 (ja) * | 2016-03-25 | 2017-09-28 | 株式会社神戸製鋼所 | 硬質皮膜及び硬質皮膜被覆部材 |
CN108778583A (zh) * | 2016-03-30 | 2018-11-09 | 住友电工硬质合金株式会社 | 表面被覆立方氮化硼烧结体以及包括该烧结体的切削工具 |
KR20180132047A (ko) * | 2016-03-30 | 2018-12-11 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 입방정 질화붕소 소결체 및 이것을 구비하는 절삭 공구 |
WO2017168841A1 (ja) * | 2016-03-30 | 2017-10-05 | 住友電工ハードメタル株式会社 | 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具 |
JPWO2017168841A1 (ja) * | 2016-03-30 | 2018-04-05 | 住友電工ハードメタル株式会社 | 表面被覆立方晶窒化硼素焼結体およびこれを備える切削工具 |
KR102638421B1 (ko) * | 2016-03-30 | 2024-02-19 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 입방정 질화붕소 소결체 및 이것을 구비하는 절삭 공구 |
JP7463948B2 (ja) | 2020-11-18 | 2024-04-09 | 株式会社タンガロイ | 被覆切削工具 |
Also Published As
Publication number | Publication date |
---|---|
EP2446987B1 (en) | 2018-09-26 |
JPWO2010150335A1 (ja) | 2012-12-06 |
EP2446987A1 (en) | 2012-05-02 |
EP2446987A4 (en) | 2016-09-28 |
US20120090247A1 (en) | 2012-04-19 |
US8784977B2 (en) | 2014-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010150335A1 (ja) | 被覆立方晶窒化硼素焼結体工具 | |
JP6634647B2 (ja) | 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具 | |
JP3996809B2 (ja) | 被覆切削工具 | |
JP5235607B2 (ja) | 表面被覆工具 | |
WO2012005275A1 (ja) | 被覆cBN焼結体工具 | |
JP2016026893A (ja) | 耐異常損傷性と耐摩耗性にすぐれた表面被覆切削工具 | |
US10744569B2 (en) | Surface-coated cubic boron nitride sintered material tool | |
JP5418833B2 (ja) | 表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 | |
JP2004100004A (ja) | 被覆超硬合金およびその製造方法 | |
JP2015110256A (ja) | 表面被覆切削工具 | |
JP2004042193A (ja) | 被覆切削工具 | |
JP4883475B2 (ja) | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 | |
WO2016084939A1 (ja) | 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具 | |
JP4883473B2 (ja) | 高硬度鋼の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 | |
JP4807575B2 (ja) | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 | |
JP5094348B2 (ja) | 表面被覆工具 | |
JP2008173751A (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP2008105107A (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP2008006574A (ja) | 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP4120500B2 (ja) | 高速切削加工で表面被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 | |
JP2007136654A (ja) | 高硬度鋼の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 | |
JP4883471B2 (ja) | 高硬度鋼の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 | |
JP2008105106A (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP2008030158A (ja) | 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具 | |
JP2016064470A (ja) | 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09846468 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011519398 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13380411 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009846468 Country of ref document: EP |